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Abstract

How temporal modulations in functional interactions are shaped by the underlying

anatomical connections remains an open question. Here, we analyse the role of

structural eigenmodes, in the formation and dissolution of temporally evolving func-

tional brain networks using resting-state magnetoencephalography and diffusion

magnetic resonance imaging data at the individual subject level. Our results show

that even at short timescales, phase and amplitude connectivity can partly be

expressed by structural eigenmodes, but hardly by direct structural connections.

Albeit a stronger relationship was found between structural eigenmodes and time-

resolved amplitude connectivity. Time-resolved connectivity for both phase and

amplitude was mostly characterised by a stationary process, superimposed with very

brief periods that showed deviations from this stationary process. For these brief

periods, dynamic network states were extracted that showed different expressions

of eigenmodes. Furthermore, the eigenmode expression was related to overall cogni-

tive performance and co-occurred with fluctuations in community structure of func-

tional networks. These results implicate that ongoing time-resolved resting-state

networks, even at short timescales, can to some extent be understood in terms of

activation and deactivation of structural eigenmodes and that these eigenmodes play

a role in the dynamic integration and segregation of information across the cortex,

subserving cognitive functions.
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1 | INTRODUCTION

During the last decades, a wealth of network neuroscience studies

have contributed to the understanding of how large-scale neuronal

interactions are shaped and constrained by the underlying anatomical

wiring (Bassett & Sporns, 2017). The anatomical wiring forms the

structural network and whole-brain functional networks are formed

by large-scale neuronal interactions, that is, so-called functional con-

nections (FC) (Friston, 1994). It is widely assumed that the structural

network, or connectome, supports a diversity of functional network

patterns that emerge and dissolve over time (Park & Friston, 2013),

which in turn are responsible for information transfer across the cor-

tex, subserving cognition and behaviour (Bassett & Sporns, 2017). The

relationship between large-scale structural and functional networks

has so far mainly been addressed in the domain of ‘static’ functional
connectivity and at the group level rather than for individual subjects

(Avena-Koenigsberger et al., 2018; Honey et al., 2007). In other

words, functional connectivity is usually estimated over the entire

duration of a recording and is subsequently averaged across subjects.

In this way, information about the temporal evolution of functional

connectivity (i.e., dynamic functional connectivity or time-resolved

connectivity) and its variance across individuals is neglected. Assess-

ment of the structure–function relationship at the individual level may

reveal biologically meaningful and useful relationships, for example, in

the context of individualised trajectories of functional network alter-

ations in neurological diseases (Douw et al., 2019).

Functional connectivity studies at the static group-averaged level

reveal clear relationships between structural and functional brain net-

works (Avena-Koenigsberger et al., 2018; Suárez et al., 2020). How-

ever, FC fluctuate on the millisecond timescale in relation to the

current cognitive demands and, therefore, an assumed static or fixed

relationship between structural and static functional networks may

not provide an accurate description (O'Neill et al., 2017). Rather, a

weak coupling between structural and functional networks is required,

allowing for flexibility of the functional network so that it can change

according to variations in cognitive demand (Deco & Kringelbach,

2016). At the same time, modelling studies predict that, especially at

shorter timescales, a decoupling between structural and functional

networks could occur, that is, a structure–function discrepancy

(Honey et al., 2007; Ton et al., 2014), due to rapid transitions between

functional network states. It therefore remains an open question how

strong structural networks could be related to a repertoire of func-

tional networks when the time-varying aspect of functional connectiv-

ity is considered at the individual subject level.

A few previous studies have addressed the relationship between

structural and temporally evolving functional networks using func-

tional MRI (fMRI) (Glomb et al., 2020; Hansen et al., 2015; Preti & Van

De Ville, 2019; Rué-Queralt et al., 2021; Shen et al., 2015). A recent

and successful approach to disentangle the relationship between

structural and functional brain networks is the so-called eigenmode

approach (Abdelnour et al., 2018; Aqil et al., 2021; Atasoy et al., 2016,

2018; Robinson, 2021; Robinson et al., 2016). These eigenmodes cor-

respond to eigenvectors of the Laplacian of the structural network

and they can be interpreted as spatial connection patterns in the

structural network that can become activated at the level of

FC. Eigenmodes belonging to higher Laplacian eigenvalues tend to

spatially oscillate stronger over the end nodes of a link in any

undirected network. Combinations of structural eigenmodes have

been related to resting-state functional networks (Atasoy et al., 2016,

2018). Recent studies have demonstrated that fluctuations in neu-

ronal activity across the brain, as reconstructed from electroen-

cephalography or indirectly from fMRI, can be expressed in terms

of a set of eigenmodes of the connectome (Glomb et al., 2020;

Preti & Van De Ville, 2019; Raj et al., 2020; Rué-Queralt

et al., 2021).

However, the role of these structural eigenmodes in relation to

temporal fluctuations in electrophysiological connectivity and the

functional relevance of this potential relationship for cognition

remains to be elucidated. Electrophysiological connectivity can be

reconstructed from magnetoencephalography (MEG) data. MEG has

good spatial resolution and high temporal resolution (in the order of

milliseconds). The latter is important given the observation that cogni-

tive relevant modulations of neuronal activity and communication also

occur in this timescale (Fries, 2015). More specifically, it is assumed

that normal cognitive functioning strongly relies on time-varying,

locally segregated communities (Park & Friston, 2013). Until now, it is

unclear if communities at the functional level in electrophysiological

data relate to structural eigenmodes.

It is widely assumed that there are two dominant intrinsic modes

of large-scale functional connectivity in electrophysiological data,

namely amplitude coupling and phase coupling (Siegel et al., 2012).

Connectivity patterns from both modes show considerable similarities

(Colclough et al., 2016), yet contain nonredundant and complemen-

tary information (Siems & Siegel, 2020). Recent work found power-

law scaling for both amplitude and phase dynamics, albeit with the dif-

ference that phase dynamics showed faster decay of temporal auto-

correlations, suggesting a more flexible way of information-coding in

the brain for phase coupling (Daffertshofer et al., 2018). Hence, in the

light of these findings we argue that such divergent temporal dynam-

ics could entail distinct coupling between structural and time-varying

functional networks for amplitude and phase coupling. Recently

developed approaches and methods allow us to capture temporally

evolving functional connectivity without the need for sliding windows

with arbitrary widths, for example, using Hidden Markov modelling or

measures of functional connectivity with high temporal resolution

(Baker et al., 2014; O'Neill et al., 2017; Vidaurre et al., 2018). In this

work, we therefore used metrics with high temporal resolution that

capture amplitude coupling, the recently introduced instantaneous

amplitude correlation (IAC) metric (Tewarie et al., 2019b), and phase

coupling, the phase difference derivative (PDD) metric (Breakspear

et al., 2004).

The novelty and contribution of the current work is the applica-

tion of the eigenmode approach to time-resolved functional connec-

tivity estimated from MEG data. We first aimed to analyse whether

temporal fluctuations in phase and amplitude connectivity could be

explained by modulations in expression of structural eigenmodes in
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individual subjects using their own structural connectivity data. This

potential relationship was examined using both an analytical and

numerical (i.e., statistical) approach for individual data. We analytically

derived the conditions for which the relationship between eigen-

modes and time-resolved functional connectivity for both phase and

amplitude holds, and whether these conditions were met in empirical

data. The first step in the numerical approach was to test the

structure–function discrepancy hypothesis for dynamic functional

connectivity. We expected to see little resemblance of the structural

network in ongoing fluctuations in functional connectivity for both

phase and amplitude. Hence, we tested the null hypothesis that time-

resolved functional connectivity could equally well be explained by

direct structural connections or structural eigenmodes (Tewarie

et al., 2020). If the null hypothesis could be rejected, we further tested

whether a relationship between structural eigenmodes and time-

varying connectivity could be obtained by chance (using surrogate

data with equal degrees of freedom). To support the use of individual

structural connectivity, we analysed and compared the relationship

between structural eigenmodes and time-varying functional connec-

tivity based on individual and group average structural connectivity.

We lastly extended our analysis to detect how eigenmodes map onto

time-varying functional connectivity when the null hypothesis of sta-

tionary connectivity was rejected.

The second aim was to explore the functional relevance of a

potential relationship between structural eigenmodes and time-

varying functional connectivity (for both phase and amplitude). This

was done by analysing (1) whether modulations in expression of struc-

tural eigenmodes co-varied with communities at the functional level;

(2) whether expression of structural eigenmodes related to overall

cognitive test scores.

2 | METHODS

2.1 | Diffusion MRI: Estimation of structural
networks

We included diffusion MRI data from 88 healthy controls (who also

underwent MEG recordings) of the Human Connectome project

(Larson-Prior et al., 2013), (range of the age 22–35 years, mean age

29 years, 41 females, 47 males). Diffusion MRI data were obtained

from the Human Connectome Project (Van Essen et al., 2013). Full

acquisition protocol details are described in Sotiropoulos et al. (2013).

Briefly, a monopolar Stejskal-Tanner echo planar imaging sequence

was used in a 3 T Siemens Connectom Skyra to acquire data at (1.25

mm)3 isotropic resolution. Diffusion-sensitization was applied with

three b-values (b = 1000, 2000 and 3000 s/mm2) and along 90 direc-

tions per b-shell. Two repeats were obtained with blip-reversed phase

encoding. The minimally processed data were used (Glasser

et al., 2013), where susceptibility-induced distortions, eddy currents

and subject motion were all corrected simultaneously using a non-

parametric framework (Andersson & Sotiropoulos, 2016) based on

Gaussian processes (Andersson & Sotiropoulos, 2015). We refer the

reader to Tewarie et al. (2019a) for a full description of the estimation

of the structural connectivity. In short, diffusion data was fed into

probabilistic tractography in FMRIB Software Library to estimate

structural networks (Behrens et al., 2007). Streamlines were seeded

from 60,000 standard-space vertices on the white/grey matter

boundary surface (5000 streamlines per seed). Connectivity was quan-

tified as the number of streamlines reaching each vertex normalised

by the total number of valid streamlines propagated. Using the auto-

mated anatomical labelling (AAL) cortical parcellation, this connectivity

was reduced to a 78� 78 parcellated connectome (denoted as A), by

computing for each pair of regions the mean structural connectivity

between all pairs of vertices that they were comprised of.

2.2 | MEG: Participants, data acquisition and
source reconstruction

We included resting-state MEG data from 89 healthy controls of the

Human Connectome project (Larson-Prior et al., 2013). One subject

was excluded due to a lack of diffusion data (hence 88 subjects in

total). Human connectome project (HCP) provides resting-state MEG

data where participants were in supine position with their eyes open

and fixated on a central cross. For the main analysis, we used the first

recording session (out of three repeated recordings) in the same sub-

ject. The second recording session was used as validation data set.

The data have been provided pre-processed (Larson-Prior

et al., 2013), after passing through a pipeline to remove any

artefactual segments of time from the recordings, identify any record-

ing channels that were faulty, and to regress out artefacts that appear

as independent components with clear artefactual temporal signatures

(such as eye-blinks or cardiac interference) in an independent compo-

nent analysis decomposition. An atlas-based beamforming approach

(Hillebrand et al., 2012) was adopted to project MEG sensor level data

into source-space as outlined by Tewarie et al. (2019a). To this end,

the cortex was parcellated into 78 cortical regions according to the

AAL atlas (Tzourio-Mazoyer et al., 2002) and source localised data

was only reconstructed for the centroid voxels of the parcels. Source

localised data was frequency filtered into five frequency bands: delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13Hz), beta (13–30Hz) and low

gamma (30–48Hz).

2.3 | Behavioural data

We used the ‘cognition total composite’ as obtained from the pro-

vided cognitive test battery (NIH toolbox Cognitive Function Battery)

as a proxy measure for cognitive performance (Barch et al., 2013). We

omitted other separate test scores that were based on measures of

cognitive domains that were not fully covered by the NIH toolbox.

The ‘cognition total composite’ score was used as score of global cog-

nition based on the following tests in the NIH toolbox: dimensional

card sort test (executive function), flanker inhibitory control and

attention test (executive function), list sorting working memory test
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(working memory), oral reading recognition test (language/reading

decoding), pattern comparison processing speed test (information

processing speed), picture sequence memory test (episodic memory), pic-

ture vocabulary test (language/vocabulary comprehension). Three sub-

jects had missing behavioural data. The mean and SD of the ‘cognition
total composite’ score was 122.6 ± 15.2 (scores are normalised to popu-

lation averages of 100). Cognitive performance scores were correlated to

the goodness-of-fit of time-varying functional connectivity from the spa-

tial eigenmodes (see Section 2.8). We used the Bonferroni method to

correct for multiple testing (five frequency bands � two statistical out-

come measures� two connectivity metrics).

2.4 | MEG: Time-varying functional connectivity

We used two high temporal resolution metrics of functional connec-

tivity, the IAC (Tewarie et al., 2019b) for amplitude coupling and the

PDD for phase coupling (Breakspear et al., 2004), as implemented in

Tewarie et al. (2019b). For both measures, we extract the phases and

the amplitude envelopes from the analytic signal using the Hilbert

transform of bandpass filtered data. Since both metrics are sensitive

to the effects of signal leakage, we used pairwise orthogonalisation as

a method to reduce leakage effects prior to the calculation of func-

tional connectivity (Hipp et al., 2012).

The IAC metric captures simultaneous increases in amplitude

envelopes between two time-series, and can be regarded as a time-

resolved version of the amplitude envelope correlation metric

(Brookes et al., 2011; Hipp et al., 2012). If two regions show simulta-

neously high amplitudes, the correlation between the two amplitude

envelopes is driven up. The IAC is computed by taking the Hadamard

product (element wise product) between the amplitude envelope vec-

tor of two band-filtered time-series. This product provides a high tem-

poral resolution measure of functional connectivity

IACij tð Þ¼ Êi tð Þ ∘ Êj tð Þ, ð1Þ

where ∘ represents the Hadamard product. The hat symbol in Equa-

tion 1 indicates that the time-series (not the amplitude envelopes)

were normalised using the z-scores.

The PDD is a measure that captures the stability of phase relation-

ships between two time-series. For each pair of signals i and j, it is

assumed that there is phase-locking, that is, a functional interaction,

when the phase difference Δφij remains approximately constant over

time. Hence, the derivative of the phase difference is assumed to be

approximately zero. A representation of dynamic phase connectivity for

each pair of time-series can be computed using the following expression

PDDij tð Þ¼ exp � dΔφij tð Þ
dt

� �2
 !

, ð2Þ

where the use of the decaying exponential ensures that the outcome

is bounded between one and zero, and where
dΔφij tð Þ

dt

� �2
≈0

corresponds to a PDD value of 1, and a PDD value approaching 0 cor-

responds to no coupling. Here, we used a slightly different implemen-

tation of the PDD compared to Tewarie et al. (2019b), where we used
dΔφij tð Þ

dt

��� ��� instead of
dΔφij tð Þ

dt

� �2
. Here, we had to avoid the use of the

absolute value …j j in our analytical derivation on the relationship

between phase connectivity and the structural network (see

section analytical approach).

2.5 | The relationship between structural
eigenmodes and time-varying functional connectivity

We followed the same approach as in Tewarie et al. (2020) to map

structural eigenmodes onto time-varying functional connectivity,

with the difference that our method is now applied to time-

resolved functional connectivity rather than static functional con-

nectivity. An in-depth explanation of the method can be found in

Tewarie et al. (2020), but the main proposition is that there is a

relationship between the eigenvectors of the graph Laplacian of

the structural network and the graph Laplacian of the functional

network. The rationale for using structural eigenmodes of the

normalised graph Laplacian instead of the weighted adjacency

matrix is that the eigenmodes of the graph Laplacian relate to spa-

tial configurations with ascending spatial frequencies (Preti & Van

De Ville, 2019).

We extracted the structural eigenmodes from the graph

Laplacian of the N�N structural connectivity matrix A. The graph

Laplacian of the structural connectivity matrix is denoted by

QA ¼KA�A. Here KA refers to the diagonal node strength matrix.

We further applied symmetric normalisation to the graph

Laplacian with

QAs ¼KA
�1=2QAKA

�1=2, ð3Þ

followed by diagonalisation of the Laplacian as

QAs ¼Zdiag μ1,…,μNð ÞZT , where Z corresponds to the matrix in which

the columns refer to the eigenvectors belonging to the eigenvalues μi

(1≤ i≤N, where N is the number of nodes in the network) of the

normalised Laplacian QAS. Since the N�1 vector u¼ 1,…,1ð ÞT is an

eigenvector of the Laplacian matrix QA, it holds that

QAS K
�1

2
A u

� �
¼K

�1
2

A QAu¼0:

Hence, the N�1 eigenvector of the normalised Laplacian QAS

corresponding to the eigenvalue μN ¼0 is given by

zN ¼ 1

K
1
2
Au

��� ���
2

K
1
2
Au:

Since KA refers to the diagonal node strength matrix, we can

rewrite the eigenvector zN in terms of node strength di ¼
PN

j¼1aij

(weighted degree for node i)
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zN ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1di

q
ffiffiffiffiffi
d1

p

..

.

ffiffiffiffiffiffi
dN

p

0
BB@

1
CCA:

The N�N Laplacian of the functional connectivity matrix W tð Þ at
time t equals QW tð Þ¼KW tð Þ�W tð Þ. W tð Þ refers to either the PDD tð Þ
or IAC tð Þ functional connectivity matrices and KW tð Þ is the diagonal

node strength matrix of the functional connectivity matrix W tð Þ. We

apply the same symmetric normalisation as for the structural case,

hence the normalised Laplacian of the functional connectivity matrix

is given by

QWs ¼KW
�1=2 tð ÞQW tð ÞKW

�1=2 tð Þ: ð4Þ

If we assume a linear relationship between structural and

functional networks, then we can approximate W tð Þ≈Wapx tð Þ
using a well understood relationship between the eigenvectors Z of

the graph Laplacian of the structural connectivity matrix and Wapx tð Þ
(Tewarie et al., 2020), encoded in the diagonal matrix P tð Þ with

weighting coefficients. In Tewarie et al. (2020) we show that the

relationship between eigenvectors Z and Wapx tð Þ can be formu-

lated as

Wapx tð Þ¼KW tð Þ�KW
1
2 tð Þ ZP tð ÞZT	 


KW
1
2 tð Þ: ð5Þ

The estimation of the weighting coefficients P tð Þ is an optimisa-

tion problem. The analytical solution to optimisation problem was

derived in Tewarie et al. (2020) and given by

P tð Þ¼diag zT1QWs tð Þz1,…,zTNQWs tð ÞzN
	 


: ð6Þ

Note that the current notation differs from Tewarie et al. (2020)

in the sense that some state variables are time-dependent.

2.6 | Analytical approach: Amplitude connectivity

The relationship between structural eigenmodes and functional con-

nectivity as outlined in Equation 5 and derived in Tewarie et al. (2020)

is naïve to the connectivity metric of interest. In contrast to our previ-

ous work (Tewarie et al., 2020), we analytically derive conditions for

which the relationship between eigenmodes and time-resolved phase

and amplitude connectivity holds.

We first consider time-varying amplitude connectivity in the

absence of leakage correction followed by the case where there is

leakage correction. At every time t we can define the N�1 amplitude

envelope vector

Ê tð Þ¼
Ê1 tð Þ
..
.

ÊN tð Þ

0
BB@

1
CCA:

The symmetric N�N instantenous amplitude correlation matrix

IAC tð Þ equals to the outer product

IAC tð Þ¼ Ê tð ÞÊT tð Þ: ð7Þ

Proposition 1. Suppose that the functional connectivity

matrix W tð Þ is given by the instantaneous amplitude

correlation matrix, that is, W tð Þ¼ IAC tð Þ. Furthermore,

consider that Êi tð Þ≠0 for at least one region i. Then,

the approximation Wapx tð Þ¼W tð Þ if and only if there is

a scalar γ tð Þ>0 such that the amplitude envelope vector

Ê tð Þ equals to

Ê tð Þ¼ γ tð Þd ð8Þ

Here, d¼ d1,…,dNð ÞT dennotes the node strength vector of the

structural connectome A. The proof of this proposition can be found

in Data S1.

In other words, Proposition 1 states that the eigenmode approach

Equation 5 is exact if and only if the envelope vector Ê tð Þ is parallel to
the degree vector d.

So far we have not considered leakage correction, but if we con-

sider pairwise leakage correction, than the IAC tð Þ matrix will not

exactly equal to the outer product in Equation 7. For almost all ampli-

tude envelope vectors Ê tð Þ, condition of Equation 8 is not strictly sat-

isfied, which implies that the eigenmode approach is not exact, that is,

Wapx tð Þ≠W tð Þ. We would like to know if relaxing condition of Equa-

tion 8 to

Ê tð Þ≈ γ tð Þd ð9Þ

implies that Wapx tð Þ≈W tð Þ. The formulation of Equation 9 is impre-

cise. Hence, instead of Equation 9, we consider the angle α between

the two vectors Ê tð Þ and d, which is defined by

cos αð Þ¼ Ê
T
tð Þd

Ê
T
tð Þ

��� ���
2
dk k2

¼ 1

Ê
T
tð Þ

��� ���
2
dk k2

XN
i¼1

diÊi tð Þ:

Since the components of both vectors Ê tð Þ and d are nonnegative,

it holds that cos αð Þ� 0,1½ �. The closer cos αð Þ is to 1, the larger the

alignment of the envelope vector Ê tð Þ and the structural degree vec-

tor d.

To quantify the goodness of the approximation Wapx tð Þ, we con-

sider the relative two-norm error

err W tð Þ,Wapx tð Þð Þ¼ W tð Þ�Wapx tð Þk k2
W tð Þk k2

ð10Þ
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If the approximation Wapx tð Þ is exact, then it holds that

err W tð Þ,Wapx tð Þð Þ¼0. Further evaluation of err W tð Þ,Wapx tð Þð Þ will be

demonstrated in the result section, which would hence answer

whether Ê tð Þ≈ γ tð Þd indeed implies that Wapx tð Þ≈W tð Þ.

2.7 | Analytical approach: Phase connectivity

Likewise for amplitude connectivity, we are interested in the condi-

tions for which eigenmodes of the graph Laplacian of the structural

connectivity matrix form an accurate basis set for time-varying phase

connectivity. Unlike for amplitude connectivity (see Equation 7), the

matrix PDD tð Þ cannot be easily obtained by the outer product of the

phase vector by itself. To obtain a simpler, approximate expression for

the matrix PDD tð Þ, we define the N�1 phase derivative vector ω tð Þ
with components

ωi tð Þ¼ dφi tð Þ
dt

� 1
N

XN

j¼1

dφj tð Þ
dt

, with i¼1,…,N: ð11Þ

Thus, the vector ω tð Þ equals the derivative of the phase vector

φ tð Þ plus offset, such that uTω tð Þ¼0. If the phases φj tð Þ change not

too erratically, then the derivative dφi tð Þ=dt is small, which implies that

the phase derivative vector ω tð Þ is small. For a small vector ω tð Þ, we

can approximate the phase difference derivative matrix PDD tð Þ by a

simpler expression than Equation 2:

Lemma 2. For small phase derivatives ω tð Þ, the phase

difference derivative matrix PDD tð Þ in Equation 2 can be

approximated by

PDD tð Þ≈ v tð ÞvT tð Þ: ð12Þ

Here, the N�1 vector v tð Þ is given by

v tð Þ¼
e�ω2

1 tð Þ

..

.

e�ω2
N tð Þ

0
BB@

1
CCA: ð13Þ

The proof can be found in Data S1.

In other words, Lemma 2 states that, for small phase derivatives

ωi tð Þ, the matrix PDD tð Þ approximately equals the outer product

v tð ÞvT tð Þ. If the approximation of Equation 12 is exact, then we obtain

the analogue of Proposition 1 for phase connectivity:

Proposition 3. Suppose that the functional connectivity

matrix W tð Þ equals the approximation of Equation (12)

of the phase difference derivative matrix PDD tð Þ, that
is, W tð Þ¼ v tð ÞvT tð Þ. Then, the approximation Wapx tð Þ
equals W tð Þ if and only if there is a scalar γ tð Þ>0 such

that the vector v tð Þ equals to

v tð Þ¼ γ tð Þd:

Proof. By definition of Equation 13, all components of the vector

v tð Þ are positive. Hence, we can prove Proposition 3 analogously to

Proposition 1, by formally replacing the amplitude envelope vector

Ê tð Þ by the vector v tð Þ.
Thus, Proposition 3 indicates that if the phase derivatives ωi tð Þ

satisfy e�ω2
i tð Þ ¼ γ tð Þdi for some scalar γ tð Þ, then the approximation

Wapx tð Þ of the phase connectivity matrix PDD tð Þ is accurate. Similar

to the angle α in the previous section, we introduce the angle β for

phase connectivity as

cos βð Þ¼ vT tð Þd
v tð Þk k2 dk k2

ð14Þ

¼ 1
v tð Þk k2 dk k2

XN
i¼1

die
�ω2

i tð Þ:

Similar as for the amplitude, we will evaluate err W tð Þ,Wapx tð Þð Þ
according to Equation 10 for phase connectivity in the result

section as well. This again will imply that if v tð Þ≈ γ tð Þd it indeed

implies that Wapx tð Þ≈W tð Þ.
Propositions 1 and 3 show that the accuracy of the method is

theoretically justified if the functional connectivity is proportional to

the structural degree vector. Hence, the approximation is not meant

to gain computation time, but to gain insight into the theoretical accu-

racy of our approach.

2.8 | Numerical approach

The analysis pipeline is shown in Figure 1. In addition to the error

metric formulated in the analytical approach (Equation 10), we used a

goodness-of-fit metric that is more straightforward to interpret in the

context of the current literature, namely the linear correlation

expressed in the amount of explained variance, R2. Below, we outline

the analysis steps that were carried out for both time-varying ampli-

tude and phase connectivity and for the canonical frequency bands

(delta [1–4 Hz], theta [4–8 Hz], alpha [8–13Hz], beta [13–30Hz] and

low gamma [30–48Hz]).

1. We first analysed the extent to which the individual structural net-

work, described by the matrix A, was mirrored in ongoing fluctua-

tions of W tð Þ of individual subjects. We computed the correlation

for every W tð Þ with A for every subject, resulting in a time-series

of R2 with a size equal to T (in seconds) � sampling fre-

quency (t¼1,…:,T).

2. We further evaluated whether the explained variance of W tð Þ
would remarkably increase if W tð Þ was approximated by individual

structural eigenmodes in terms of Wapx tð Þ (Equation 5). That is, the

linear correlation between the observed W tð Þ and the predicted

Wapx tð Þ was computed for every point in time, and R2 was esti-

mated. This procedure (again) resulted in a time-series for the

goodness-of-fit R2. Subsequent analysis steps all yield such a time-

series of goodness-of-fit R2.
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To test the null hypothesis that relationships between structural

eigenmodes and functional connectivity could be obtained by chance

in a system with the same degrees of freedom, we created surrogate

data by adding random Gaussian noise to the mapping coefficients on

the diagonal of P tð Þ.
We evaluated whether the use of individual structural eigen-

modes should be preferred over group-averaged structural eigen-

modes. We averaged the A matrices across subjects to obtain a

group-averaged Agroup structural connectivity matrix. The Laplacian

matrix of Agroup was computed and the eigenvectors of this Laplacian

matrix were used for predictions for all individual W tð Þ.

3. We repeated step 2. using MEG data from the same HCP subjects,

but from a different recording session, with the purpose to validate

the results of step 2 in a different data set.

Comparisons of R2 distributions between conditions (i.e., R2

[obtained from step 1] versus R2 [obtained from step 2, 3 or 4]) were

performed using the Mann–Whitney U test.

To test the functional relevance of the a relationship between

structural eigenmodes and time-varying functional connectivity we

extracted measures acknowledged to be important for ongoing

cognitive functioning (Bassett et al., 2011; Bassett & Sporns, 2017),

average functional connectivity and community structure. Global

time-dependent functional connectivity is described as

⟨W⟩ tð Þ¼ 1
N N�1ð Þ=2

P
i, j¼1,…,N; j< i

wij tð Þ. We also estimated for every time

point t the community structure Q tð Þ, which describes the extent to

which connectivity could be partitioned into communities. Community

detection was evaluated using the Louvain algorithm with default

parameters (Blondel et al., 2008). Hence, for both ⟨W⟩ tð Þ and Q tð Þ we

obtained time-series with the same dimensions as R2. We computed

correlations between Q tð Þ with R2 (obtained from step 1). We also

computed the power spectral densities of ⟨W⟩ tð Þ, Q tð Þ, and R2 by tak-

ing the square of the absolute value of the Fourier coefficients of the

respective time-series in order to get some insight into the temporal

dynamics of these state variables.

2.9 | Stationary versus dynamic connectivity

We constructed surrogate data with preserved stationary (or static)

connectivity to test the null-hypothesis that eigenmodes map onto

dynamic functional connectivity in a similar way as for surrogate data

with static functional connectivity. A uniform phase randomisation

method was used, that is, the same random numbers were added to

the Fourier phases of all time time-series (Prichard & Theiler, 1994).

For every subject 10 surrogates were constructed. Both the PDD and

IAC were computed from these surrogate data sets. Connectivity esti-

mation from these surrogates are henceforth referred to as static or

stationary connectivity. For both metrics we computed global func-

tional connectivity in surrogate data ⟨Wsurr⟩ tð Þ, which was compared to

global functional connectivity ⟨W⟩ tð Þ from genuine data. Time points

corresponding to values of ⟨W⟩ tð Þ from genuine data that lie in or out-

side the 1% tail of the distribution of ⟨Wsurr⟩ tð Þ, were considered to be

genuinely ‘dynamic’. For all these ‘dynamic’ time points we compared

the eigenmode coefficients and R2 with the corresponding values

obtained from surrogate data using the Mann–Whitney U test. In

F IGURE 1 Analysis pipeline. Panel (a) shows an example of bandpass-filtered timeseries. Panel (b) shows the group-averaged connectome
and the structural eigenmodes obtained from the symmetric normalised Laplacian of this connectome. The Laplacian is defined as QA ¼KA�A,
where the KA refers to the diagonal node strength matrix and A to the structural connectivity matrix. Normalisation is computed by
QAs ¼KA

�1=2QAKA
�1=2. There is an increase in spatial frequency for increasing eigenmode numbers. Panel (c) shows the empirical dynamic

functional connectivity (FC). Panel (d) shows the eigenmode-estimated dynamic FC, along with the goodness-of-fit fluctuations over time and the
fluctuations of eigenmode expression (coefficients) over time for an arbitrarily selected number of eigenmodes
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addition, we extracted dynamic network states using nonnegative ten-

sor factorisation (Andersson & Bro, 2000; Gauvin et al., 2014) as in

Tewarie et al. (2019b). The input for the nonnegative tensor

factorisation were the connectivity matrices W t0ð Þ for t0 that were

labelled as ‘dynamic’. The number of network states or components

was determined based on the plateau of the goodness-of-fit as out-

lined in Andersson and Bro (2000) and Tomasi and Bro (2006). We

approximated every network state using the eigenmode approach.

3 | RESULTS

For illustration purposes, we show the first 11 eigenmodes of the

Laplacian of the group-averaged connectome in Figure 1, but all

eigenmodes were used in the predictions of functional connectivity.

The first eigenmode of the Laplacian is not shown as it could be con-

sidered as an offset with the same magnitude for all regions (see also

Wang et al., 2017). The explained variance of the Laplacian of the

group-averaged connectome, for increasing numbers of incorporated

eigenmodes, is shown in Figure S1.

3.1 | Amplitude connectivity: An analytical
approach

We analytically showed that the eigenmode prediction of amplitude-

based time-resolved functional networks is accurate if and only if the

vector E tð Þ¼ E1 tð Þ,E2 tð Þ,…,EN tð Þ½ �T containing the amplitude enve-

lopes Ei tð Þ across regions i� 1,…,Nf g at a single time point is aligned

(albeit with some angle α) with the node strength vector of the struc-

tural network. This alignment can be verified by assessing the rela-

tionship between the goodness-of-fit of the eigenmode approach and

the angle α, that is, by the projection of the node strength vector onto

the amplitude envelopes vector. Figure 2i shows the alignment in

terms of a distribution of correlation values (between R2 and cos(α))

for all frequency bands, which indeed showed strong correlations for

all bands (p < 0.001), indicating that predictions in the current work

can be considered accurate.

3.2 | Amplitude connectivity: A numerical
approach

The goodness-of-fit, R2, expressed as the proportion of the variance

of functional connectivity explained by the linear combination of indi-

vidual structural eigenmodes (Figure 1), is illustrated for a short seg-

ment of the data of one representative subject (Figure 2a). This time-

series for R2 reflects the extent to which the eigenmodes are

expressed in the functional connectivity patterns over time. The

goodness-of-fit R2 fluctuates slower for the lower frequencies (delta,

gamma) and faster for the higher frequencies (alpha, beta, gamma, see

Figure 2a). The differences between frequency bands in terms of

fluctuation-frequency of R2 can also be observed from their respec-

tive power spectral densities (Figure 2e). A few examples of empirical

and predicted time-varying functional networks are illustrated in

Figure 2c. The distributions of R2 across frequency bands and subjects

are displayed in Figure 2b. We showed that there is a poor represen-

tation of direct structural connections (i.e., the connectome itself,

instead of its eigenmodes) in time-varying FC, as we observed very

low correlations between the structural and functional connectivity at

each time point, resulting in an average R2 close to zero (Figure 2b,

fourth quadrant of the plot). Results show that predictions of time-

varying functional connectivity based on individual connectomes (R2

for the IAC modulates at around 0.6) outperformed predictions based

on a group-averaged connectome (R2 for the IAC modulates at around

0.4; Mann–Whitney U test, p < 0.001 for all frequency bands;

Figure 2b). In order to verify that the obtained R2 could not have been

obtained by chance, we tested the null hypothesis that a randomly

weighted linear combination of the eigenmodes could explain func-

tional connectivity patterns at each time point. The analysis revealed

that the R2 based on the genuine mapping between structural eigen-

modes and functional connectivity clearly outperformed the R2 for

the surrogate data (Figure 2b, third quadrant); for all frequency bands

a nonparametric test (Mann–Whitney U test) was performed, which

revealed that the results for genuine data were significantly different

from those obtained for surrogate data (p < 0.001). In other words,

fluctuations in amplitude coupling across all frequency bands can

partly be expressed by eigenmodes of the structural network. The R2

based on individual eigenmodes was replicated in the validation

dataset (see Figure S2).

3.3 | Amplitude connectivity: Functional relevance

Since structural eigenmodes may support functional subnetworks or

communities (Atasoy et al., 2016), we tracked whether the time-series

of R2, such as shown in Figure 2a, co-occurred with fluctuations in

community patterns of time-varying functional networks. Figure 2f,g

shows the power spectral densities of community structure and global

functional connectivity across regions for the different frequency

bands for amplitude coupling. As was found for R2, community and

global functional connectivity fluctuated slower in the lower than in

the higher frequency bands. For all frequency bands and subjects,

fluctuations in the expression of eigenmodes showed a significant

moderate positive correlation with the fluctuations of community

structure Q (Figure 2h).

The functional relevance of the fluctuations in R2 was further

assessed by correlating the mean and SD of the time-series of R2 to

the overall cognitive performance across subject, where cognitive per-

formance was quantified by the ‘cognition total composite’ score as

obtained using the NIH toolbox (see Section 2). There was a moderate

and positive statistically significant correlation between SD of R2 in

the alpha band and cognitive performance across subjects (Figure 2d).

Mean of R2 in the alpha band did not show a significant correlation
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F IGURE 2 Expression of structural eigenmodes during time-resolved amplitude coupling. Panel (a) shows a short segment of the fluctuation of the
explained variance R2 of time-resolved functional connectivity by the linear combination of structural eigenmodes for the different frequency bands
(colours as in b). Panel (b) shows violin plots for R2 values across all participants for the entire recording, together with the R2 values for surrogate data
and R2 values obtained from the prediction of time-resolved functional connectivity based on direct structural connections (individual connectome). The
eigenmode results are illustrated based on individual eigenmodes (first quadrant) and eigenmodes obtained from the group-averaged connectome
(second quadrant). Panel (c) shows examples of empirical and predicted time-varying functional connectivity matrices. Panel (d) shows the correlation
between mean and SD of the R2 and cognitive performance. Panels (e, f, g) show the power spectral densities of the time-series of the goodness-of-fit
R2 for experimental data, community structure Q and average functional connectivity, all averaged over subjects. Panel (h) shows a distribution of
moderate correlations between the expression of the eigenmodes and fluctuations of community structure over time, across all frequency bands. Panel
(i) shows subject-wise correlations for the goodness-of-fit and the cosine of the angle between the degree vector and the amplitude envelope across all
regions. A dot in panels (h, i) corresponds to a correlation for a single subject
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(Figure 2d, right panel), nor SD or mean of R2 in any other frequency

bands after correcting for multiple testing (Figure S3).

3.4 | Amplitude connectivity: Stationary versus
dynamic connectivity

To further pin down the dynamics of connectivity and corresponding

eigenmode predictions, we compared static versus dynamic connec-

tivity. This analysis shows that there are brief periods when time-

varying connectivity exceeds the level of static connectivity. This

observation is illustrated for a single subject in the beta band in

Figure 3a, which shows an example of whole brain connectivity fluc-

tuations for the dynamic (blue curve) and static connectivity case (red

curve), and when the dynamic connectivity exceeds the static connec-

tivity (black). Time-varying connectivity was again approximated by

the eigenmode approach. For time points when dynamic connectivity

did not exceed the magnitude of stationary connectivity, there was no

significant difference in explained variance R2 or mapping coefficients

P tð Þ (Mann–Whitney U, p > 0.05). However, for the brief periods when

dynamic connectivity exceeded the magnitude of stationary connec-

tivity (time points t0), the first five eigenmodes were more dominant

compared to those obtained for stationary connectivity (Figure 3c).

However, the amount of explained variance was the same for the

dynamic and stationary connectivity case (Figure 3b). We further esti-

mated dynamic network states (or components) for time points t0 ,

revealing a sensorimotor network, a lateralised hemispheric network,

a right temporal network, a visual network and an occipitoparietal

(visual)/frontal network (Figure 3e). Eigenmode predicted brain maps

and mapping coefficients for these network states are shown in

Figure 3f and d, which show that these states recruit eigenmodes with

different weighting coefficients. For illustrational purposes, we

showed results for the beta band, see Figure S9 and S11–S14 for

results for the other frequency bands.

3.5 | Phase connectivity: An analytical approach

We analytically showed that the eigenmode prediction of phase-

based dynamic functional networks is accurate only if a specific condi-

tion is met. This condition is based on similar reasoning as for the IAC

(see Section 2.7). In this case, the eigenmode prediction of phase con-

nectivity is accurate if the node strength vector of the structural net-

work is aligned (albeit with some angle β) with a vector

v tð Þ¼ v1 tð Þ,v2 tð Þ,…,vN tð Þ½ � containing PDD information v tð Þ across

regions i� 1,…,Nf g at a single time point. Distributions of the strong

correlations between the goodness-of-fit of the eigenmode approach

and the alignment between the node strength vector and the PDD

information are illustrated in Figure 4i. The high correlations (R > 0.7,

p < 0.001) implicate that the condition for which the eigenmode

approach is accurate was met. However, the correlations were lower

than was the case for the instantaneous amplitude envelope correla-

tion (compare Figures 2i and 4i).

3.6 | Phase connectivity: A numerical approach

Akin to the results for amplitude coupling, direct structural connectivity

was hardly reflected in the fluctuations of phase connectivity (Figure 4b,

fourth quadrant). A few examples of time-varying functional networks

and their predictions are illustrated in Figure 4c. Similarly, as for the IAC,

temporal fluctuations of phase connectivity could partly be explained by

fluctuations in the expression of structural eigenmodes (see Figure 4a for

an example of a time-series for R2). This finding was strengthened by the

demonstration that there was far a better prediction of varying func-

tional connectivity when using genuine data instead of surrogate data

(Figure 4b): for all frequency bands a nonparametric test (Mann–Whitney

U test) showed that results with genuine data were significantly different

from those obtained with surrogate data (p < 0.001). Again, predictions

based on individual eigenmodes outperformed predictions based on

group-average-based eigenmodes (Mann–Whitney U, p < 0.001 for all

frequency bands). The R2 based on individual eigenmodes was replicated

in the validation data set (Figure S4). However, the extent to which

phase-based connectivity modulations could be explained by the eigen-

modes was smaller than for amplitude-based connectivity (compare

Figures 2b and 4b, Mann–Whitney U, p < 0.001). Modulations of the

eigenmode expression for the phase coupling were faster than for ampli-

tude coupling, as can be observed for an exemplar short epoch from a

single subject (Figure 4a), and from the power spectral density of the

fluctuations of R2 (compare Figures 4e and 2e). The main difference with

amplitude coupling is the much smaller contribution of the very slow

fluctuations of R2 for the phase coupling. The same is true for fluctua-

tions of community structure Q and average connectivity, denoted as

⟨PDD⟩ (compare Figures 4f and 2f, and Figures 4g and 2g,

respectively).

3.7 | Phase connectivity: Functional relevance

Unlike for amplitude coupling, there was no correlation between SD

or mean of R2 and cognitive performance for the alpha band

(Figure 4d), or any other frequency band (Figure S5). In contrast to

amplitude coupling, there was a negative and strong correlation

between fluctuations in community structure and eigenmode expres-

sions, except for the alpha and gamma band, which showed significant

but moderate to weak negative correlations. Consecutive eigenmodes

correspond to spatial configurations with increasing spatial frequency.

Given the opposite sign of the correlations between eigenmode

expressions and community structure (for some frequency bands) for

amplitude and phase coupling, we investigated whether this discrep-

ancy could be related to a different weighting of eigenmodes for the

two different intrinsic modes of coupling. Figure S6 shows that eigen-

mode mappings of dynamic amplitude connectivity are indeed more

strongly weighted by the first 10 to 15 eigenmodes (for all frequency

bands) than is the case for phase coupling, that is, eigenmodes with

lower spatial frequency are more expressed in amplitude coupling

compared to phase coupling. This difference in eigenmode weighting

could potentially explain the positive correlation with community
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structure for amplitude coupling and negative correlation for phase

coupling.

3.8 | Phase connectivity: Stationary versus
dynamic connectivity

Stationary versus dynamic connectivity for PDD also shows brief

periods when time-varying connectivity exceeded the level of

stationary connectivity. This is illustrated for the beta band in a single

subject in Figure 5a. This figure demonstrates how whole brain con-

nectivity fluctuates for the dynamic (blue curve) and stationary con-

nectivity case (surrogate data; red curve). Time points when dynamic

connectivity exceeded the stationary connectivity are depicted in

black. For the set of time points when the null hypothesis of station-

ary connectivity could not be rejected, there was no significant differ-

ence in eigenmode prediction, both in terms of explained variance R2

and estimated mapping coefficients P tð Þ (Mann–Whitney U, p > 0.05).

F IGURE 3 Stationary (static) versus dynamic connectivity (IAC). Results are, apart from panel (b), shown for the beta band. Panel (a) shows a
short segment from a single subject of whole brain connectivity fluctuation for genuine data (dynamic connectivity, depicted in blue) and
surrogate data with preserved static connectivity (depicted in red). There are brief periods when dynamic connectivity exceeds stationary
connectivity (depicted in black). Panel (b) shows the goodness-of-fit (R2) of the eigenmode approach for the stationary connectivity (red) and for
the genuine data at time-points when dynamic connectivity exceeded stationary connectivity (blue). For all frequency bands there is no difference
in goodness-of-fit between stationary and dynamic connectivity. Panel (c) shows the estimated mapping coefficients for the same conditions as in
(b). An asterisk refers to a significant difference (p < 0.001). Dynamic network states for time-points when dynamic connectivity exceeded
stationary connectivity are shown in (e), which shows a sensorimotor network, a lateralised hemispheric network, a right temporal network, a
visual network and an occipitoparietal (visual)/frontal network. Eigenmode predicted brain maps and mapping coefficients are depicted in (f) and
(d), respectively. ⟨pi⟩, average eigenmode coefficients; dFC, dynamic functional connectivity, comp., component, PDD, phase difference
derivative, R2, explained variance
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F IGURE 4 Expression of structural eigenmodes during time-resolved phase coupling. Panel (a) shows a short epoch of the fluctuating
proportion of the explained variance R2 of dynamic functional by the linear combination of structural eigenmodes for the different frequency
bands (colours as in b). Panel (b) shows violin plots for R2 values across all participants and recording, together with the R2 values for surrogate
data and R2 values obtained from the prediction of dynamic functional connectivity based on direct structural connections (individual
connectome). The eigenmode results are illustrated based on individual eigenmodes and group average obtained eigenmodes. Panel (c) shows
some examples of empirical and predicted time-varying functional connectivity matrices. Panel (d) shows the correlation between mean and SD of
the R2 and cognitive performance. Panels (e, f, g) show the power spectral densities of the time-series of eigenmodes R2 for genuine data,
community structure Q and average functional connectivity, all averaged over subjects. Panel (h) shows a distribution of moderate correlations

between the expression of the eigenmodes over time and fluctuations of community structure across all frequency bands. Panel (i) shows subject
wise correlations for the goodness-of-fit and the cosine of the angle between the degree vector and the vector encompassing the exponential of
the phase derivative across all regions. A dot in (h, i) corresponds to a correlation for a single subject.
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For the time points when there was a significant increase in dynamic

connectivity relative to stationary connectivity, there was a significant

difference in both explained variance R2 and estimated parameters

(Figure 5b,c). Results for the beta band are illustrated in Figure 5a,c,d–

f, results for the other frequency bands can be found in

Figure S10–S14. For the PDD, the explained variance was higher

whenever dynamic connectivity exceeded stationary connectivity

(Figure 5b). In the same way as for IAC, during these times, there was

more dominance of the first five eigenmodes for the dynamic connec-

tivity case compared to the stationary connectivity case. Estimation of

dynamic network states (or components) revealed a sensorimotor net-

work, a right temporal network, a visual network and a frontal net-

work (Figure 3e). Eigenmode predicted brain maps and mapping

coefficients for these network states are shown in Figure 3f and d,

which show that also for PDD these states recruit eigenmodes with

different weighting coefficients.

4 | DISCUSSION

How fluctuations in functional connectivity are shaped by the under-

lying structural network remains an open research question. On the

one hand, it is widely argued that hierarchical organisation captured in

structural networks gives rise to a diversity of functional connectivity

patterns across multiple timescales. On the other hand, modelling

studies claim that for shorter timescales a decoupling between struc-

tural and functional connectivity would occur, the so-called structure–

function discrepancy (Ton et al., 2014). The current work demon-

strates that there is hardly any signature of direct structural connec-

tions present within time-varying functional connectivity patterns.

However, there is clear expression of the various structural eigen-

modes in the dynamics of functional connectivity, for both amplitude

and phase coupling, but to a higher extent in amplitude than in phase

connectivity fluctuations. There were brief periods when time-varying

functional connectivity deviated significantly from stationary connec-

tivity. For amplitude connectivity, dynamic and stationary functional

connectivity during these brief periods could equally well expressed in

terms of eigenmodes. While for phase connectivity, dynamic func-

tional connectivity could be better explained by a weighted combina-

tion of eigenmodes than stationary functional connectivity. For both

modes of coupling, eigenmodes were differentially during deviations

from stationary connectivity. In addition, predictions based on individ-

ual connectomes clearly outperformed predictions based on a group-

averaged connectome. Our results further show that fluctuations in

the expression of the eigenmodes relate to cognitive performance and

fluctuate to some extent in synchrony with fluctuations of community

structure, further underlining the functional relevance of time-varying

expressions of the structural eigenmodes.

Despite the observation that the structural network itself was

hardly expressed during time-varying functional connectivity, to some

extent structural eigenmodes were always expressed in dynamic func-

tional connectivity, which ranged from low expressions to moderate

expressions. Since the pattern of structural connectivity is fixed, this

description of the structural connectome seems to be insufficient to

describe fluctuations in functional connectivity. It is probably rather

the case that a set of structural connections are being used at the

functional level at some point in time while others are unused. Clus-

tering approaches would potentially be able to capture such sets of

structural connections that subserve function and it is an open ques-

tion whether there would be a clear relationship between eigenmodes

and sets of structural connections activated at different time points.

At least, the eigenmode approach is a data-driven and relatively

assumption-free way to capture such information. We used surrogate

data to show that the extent to which the variance of functional con-

nectivity could be explained by the eigenmodes was not merely the

result of high degrees of freedom in the prediction.

Stationary versus dynamic connectivity analysis revealed that

ongoing functional connectivity can mostly be described by a station-

ary process, but that there are brief periods when ongoing connectiv-

ity deviates from this stationary process. This was the case for both

amplitude and phase connectivity. These findings seem in line with

previous work on time-resolved functional connectivity in MEG

(De Pasquale et al., 2010), showing that dynamic network states remi-

niscent of the well-known resting state networks usually occur during

brief periods of time. During these periods of deviation from the sta-

tionary state we observed that especially the first five eigenmodes

were more dominantly represented in the predictions compared to

the stationary connectivity case. These five eigenmodes also differed

in their expression for different dynamic network states. Hence, we

can state that the evolution and dissolution of dynamic network

states are characterised by differential recruitment of eigenmodes

over time.

It remains an open question as to what the mechanism is that

underlies the relationship between the temporally evolving functional

connectivity and structural eigenmodes and why that differs between

stationary and dynamic connectivity. Numerous previous studies have

suggested that empirical functional connectivity emerges if the system

operates near a phase transition for synchronisation, in a so-called

metastable state (Cabral et al., 2017a; Deco et al., 2017). From previ-

ous MEG modelling work, we know that in a network of neuronal

oscillators the spatial pattern of functional connectivity is dominated

by the first eigenmode (of the structural connectivity matrix) if the

system operates at this phase transition (Tewarie et al., 2019a). In

other words, the first eigenmode is the first pattern that gets acti-

vated or expressed when neuronal oscillators start to synchronise.

However, if there are no conduction delays, this first eigenmode

remains dominant and hence functional connectivity can be consid-

ered as a stationary process. However, once conduction delays are

taken into account in the system, the first eigenmode can lose its sta-

bility and at the same time, other eigenmodes can become activated

(Tewarie et al., 2019a). Hence, metastability and a system with con-

duction delays may be sufficient to explain the mechanism for eigen-

modes to get activated and deactivated over time at the level of

time-varying functional connectivity.

Amplitude connectivity modulations were better predicted by the

structural eigenmodes than fluctuations in phase connectivity
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(compare R2 values in Figure 3b and b). This was also verified from

our analytical results for the accuracy of the eigenmode approach for

the two intrinsic modes of functional connectivity (compare Figure 2j

with 3j). There is no straightforward explanation for this difference.

The reason can either be related to an intrinsic property of the brain,

or due to extrinsic factors such as noise-related issues, for example,

phase slips or other noise factors in phase data can lead to noisy esti-

mates of phase connectivity, especially when computing the deriva-

tive of the phase difference. In order to evaluate whether less noisy

phase connectivity could better be predicted by individual structural

eigenmodes, we reanalysed the structure–function mappings by den-

oising time-varying phase connectivity by using only the first 10 eigen-

modes of the time-varying functional networks instead of the

complete FC connectivity matrix, similarly as in Cabral et al. (2017b).

The results remained qualitatively the same as those obtained without

denoising (Figure S7), indicating that noise may not be the sole factor

driving a weaker correlation between structural eigenmodes and time-

varying phase connectivity. The overlapping and complementary

F IGURE 5 Stationary versus dynamic connectivity (PDD). Results are, apart from (b), shown for the beta band. Panel (a) shows a short
segment from a single subject of whole brain connectivity fluctuation for genuine data (called dynamic connectivity depicted in blue) and
surrogate data with preserved stationary connectivity (depicted in red). There were brief periods when dynamic connectivity exceeds stationary
connectivity (depicted in black). Panel (b) shows the goodness-of-fit (R2) of the eigenmode approach for the stationary connectivity case (red) and
for the case whenever dynamic connectivity exceeded stationary connectivity (blue). For all frequency bands predictions are better for dynamic
connectivity. Panel (c) shows the estimated parameters for the same conditions as in (b). An asterisk refers to a significant difference (p < 0.001).
Dynamic network for time-points when dynamic connectivity exceeded stationary connectivity are shown in (e), which shows a sensorimotor
network, a right temporal network, a visual and frontal network. Eigenmode predicted brain maps and mapping coefficients are depicted in (f) and
(d), respectively. ⟨pi⟩, average eigenmode coefficients; dFC, dynamic functional connectivity; comp., component, PDD, phase difference
derivative, R2, explained variance
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nature of phase- and amplitude-based connectivity remains complex.

Some previous work suggest that amplitude connectivity is more

dominant in resting-state data and task independent (Hipp

et al., 2012), while phase connectivity seem to be highly task depen-

dent (Helfrich et al., 2016). It remains an open question whether this

could relate more decoupling between structure and function for

phase connectivity.

Some methodological issues warrant further discussion. Our

eigenmode approach is based on a few main assumptions: firstly, we

assume that functional connectivity on top of the structural network

behaves linearly, which allows for a well understood analytical rela-

tionship between functional connectivity and the eigenmodes of the

structural network (Tewarie et al., 2020). There is previous work

suggesting that time-varying functional connectivity (based on fMRI

BOLD) requires nonlinear dynamics (Hansen et al., 2015), however,

there is also evidence that linear models already explain a significant

part of the variance of functional connectivity (Messé et al., 2015; Raj

et al., 2020; Tewarie et al., 2019a). Hence, although linear models may

not capture all information, they do provide good approximations.

Secondly, this approach assumes separation of timescales, that is,

dynamics of functional networks are sufficiently fast compared to the

evolution of the structural network such that the latter can be consid-

ered to be static. Thirdly, we have assumed symmetric matrices for

functional and structural networks. Taking into account directed func-

tional connectivity would violate this assumption and would require

handling of complex eigenvectors. Fourthly, we have assumed the

same dimension for structural and functional networks, which given

the spatial resolution of different imaging modalities may not neces-

sary be the case. Besides the eigenmode approach, several

approaches have also been successful in explaining the emergence of

resting-state functional networks from the underlying structural net-

work (Suárez et al., 2020; Avena-Koenigsberger et al., 2018), including

approaches that use coupled neural mass models (Cabral et al., 2017a;

Deco & Kringelbach, 2016). The advantage of the current approach is

that it is not dependent on the choice of the model for the neurophys-

iology (Breakspear, 2017). Another promising approach is the analyti-

cal and linear graph spectral model of brain activity, which predicts

both spatial and spectral features of neural activity based on a super-

position of eigenmodes (Raj et al., 2020). In addition, a dominant view

is that functional connectivity can be represented in terms of the sum

of all possible walks on the underlying structural network, that is, the

so-called series expansion or communicability approach (Gilson

et al., 2018; Robinson, 2012). However, recent work has proven that

the eigenmode and series expansion approaches are equivalent

(Robinson, 2019), but that due to numerical errors, the eigenmode

approach should be preferred over the series expansion approach

(Tewarie et al., 2020). Further, previous work has demonstrated that a

limited set of eigenmodes could already explain a large proportion of

the explained variance of the structural connectome (Figure S1), indi-

cating that it may not be necessary to take all eigenmodes into

account when predicting functional connectivity (Glomb et al., 2020;

Tewarie et al., 2019a). However, since our analytical expression for

the mapping between structure and function was based on the use of

all eigenmodes (Tewarie et al., 2020), we also included all eigenmodes

in the predictions in the current work. In our previous work, using a

system with known ground truth, we have shown that current high-

temporal-resolution-metrics outperform metrics based on sliding win-

dows, although it remains an open question whether the time-varying

network states obtained using the current method are generalizable

and comparable to, for example, stated obtained using Hidden Markov

modelling. A future study on the comparison of these methods could

shed light on this. Lastly, we applied pairwise orthogonalisation (Hipp

et al., 2012) rather than symmetric orthogonalisation (Colclough

et al., 2015). Pairwise orthogonalisation may come with spurious con-

nectivity especially if sources are densely sampled over the cortex

(Palva et al., 2018). However, the use of symmetric orthogonalisation

changes the signal-to-noise in the data in such a way that the underly-

ing modulations in functional connectivity are much harder to capture

(see Figure S8).

In summary, we have demonstrated that structural connectomes are

hardly reflected directly in time-varying functional networks at the indi-

vidual level. Our findings provide compelling evidence in support of the

structure–function decoupling hypothesis at faster timescales. Moreover,

we show for the first time in empirical data and analytically that the for-

mation and dissolution of temporally evolving network states can be

understood in terms of differential recruitment of eigenmodes over time.

This could play a role in the dynamic integration and segregation of infor-

mation across the cortex, subserving cognitive functions.
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