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A. Supplementary methods

Al. Culturing and DNA isolation

Sequencing of C. membranifera BICM strain was done with Illumina short paired-end and long
MinlON read technologies. The Illumina sequencing employed DNA from a monoxenic culture
grown in 50 ml Falcon tubes in F/2 media enriched with the bacterium Shewanella frigidimarina as
food. DNA was isolated from a total of two litres of culture using a salt extraction protocol followed
by CsClI gradient centrifugation. RNA was also extracted from these cultures using TRIzol
(Invitrogen, USA), following the manufacturer’s instructions. For MinlON sequencing, C.
membranifera was grown in sterile filtered 50% natural sea water media with 3% LB with either
Shewanella sp or Vibrio sp. isolate JH43 as food. Cell cultures were harvested at peak density by
centrifugation at 500xg, 8 min, 20 °C. The cells were resuspended in sterile-filtered spent growth
media (SFSGM) and centrifuged again at 500xg, 8 min, 20 °C. The cell pellets were resuspended in
1.5 mL SFSGM, layered on top of 9 mL Histopaque®-1077 (Sigma-Aldrich) and centrifuged at
2000xg, 20 min, 20 °C. The protists were recovered from the media:Histopaque interface by
pipetting, diluted in 10 volumes of SFSGM and centrifuged 500xg, 8 min, 20 °C. High molecular
weight DNA was extracted using MagAttract HMW DNA Kit (Qiagen, Cat No. 67563), purified with

GenomicTip 20/G (Qiagen, Cat No. 10223), and resuspended in 5 mM Tris-HCI (pH 8.5).

A2. Reads processing and genome assembly

Long reads were base-called and trimmed with Albacore v2.3.3 (www.nanoporetech.com) and
Porechop v0.2.3%, respectively. ABruijn v1.0? with default parameters and max genome size of 30Mb
produced an assembly that was polished with Nanopolish v0.10.13. The latter was iteratively error-
corrected with the genomic paired-end Illumina reads using the stand-alone tool ‘unicycler polish’

from Unicycler v0.4.4* The tool uses short reads to do iterative correction on a provided assembly by
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wrapping on Pilon® and Bowtie2® programs. These two programs are usually used in combination for
polishing/error-correction to correct any sequences from long read technologies, and we chose to use
them as implemented in ‘unicycler polish’ because: 1) C. membranifera’s genome is small (the code
is not optimized for large assemblies) and predicted as haploid (personal communication with R.
Wick* suggested that its use on a haploid eukaryotic genome should be fine as problems would be
expected due to unphased assemblies or ploidy levels), and 2) the stand-alone tool uses an iterative
approach evaluating whether there were improvements or not in each round of corrections; hence, it
determines if additional correction rounds are needed. We note that we did not use the ALE-guided
correction of larger variants output (one of the outputs), instead, we used the output produced in
round 8 (Supplementary Table 1). The identification and removal of prokaryotic contigs was assisted
by BLASTN’ v2.7.1 searches against the nt database with the following cut-offs: percentage identity
> 40%, query coverage > 60% and e-value of 103, Read-depth coverage at each position of the

genomic scaffolds were obtained with SAMtools v1.112 and mosdepth v0.2.5°.

Supplementary Table 1 Corrections done by each round with Unicycler_polishing tool

Variants applied Homopolymer

Round after the round corrections Insertions Deletions Substitutions

1 16804 12098 924 872 2910

2 543 143 60 74 266

3 191 44 29 20 98

4 101 19 11 6 65

5 85 12 4 5 64

6 55 6 4 6 39

7 47 6 2 2 37

8 10 4 0 2 4




A3. Genome size and completeness using BUSCO and a phylogeny-guided approach

The BUSCO approach?® was prone to false negative predictions with our dataset because of the high
divergence of metamonad homologs. Therefore, the completeness of the BUSCO set was re-assessed
with a phylogeny-guided search. For this, we eliminated 31 proteins associated with mitochondria or
mitochondrion- related organelles (MROs) as Metamonada have reduced or no MROs!?, and
employed taxa-enriched Hidden Markov Model (HMM) searches to account for divergence between
the remaining 272 proteins and the studied taxa. In brief: BLASTp was carried out using the 272
BUSCO proteins as queries for finding their orthologues in a local version of the PANTHER 14.0
database? to enable the identification of the most likely Panther subfamily HMM and its annotation.
Then, each corresponding subfamily HMM was searched for in the predicted proteomes with an e-
value cut-off of 1x10 with HMMER v3.1b2%. In cases where these searches did not produce any
result, a broader search was run using the HMM of the Panther family with 1x107 as e-value cut-off.
Five best hits for each search were retrieved from each proteome, aligned to the corresponding
Panther subfamily or family sequences with MAFFT v7.310'* and phylogenetic reconstructions were
carried out using IQ-TREE v1.6.5* under the LG+C60+F+I" model with ultrafast bootstrapping
(1000 replicates). Protein domain architectures were visualized by mapping the respective Pfam

v33.1 accessions onto trees using ETE tools v3.1.1%,

A4. Taxa selected for comparative genomic analysis

Our analyses included the publicly available genomes and predicted proteomes of Trichomonas
vaginalis G3'/ (Parabasalia, www.trichdb.org), Monocercomonoides exilis'® (Preaxostyla,
www.protistologie.cz/hampllab), the free-living fornicates Carpediemonas frisia'® (i.e., metagenomic
bin and predicted proteome), Carpediemonas membranifera (reported here) and Kipferlia bialata®,

plus the parasitic diplomonad fornicates: Giardia intestinalis Assemblages A%* and B%, Giardia



muris® (Note: a higher quality assembly for G. intestinalis A was recently published and contains
938 genes less than the assembly we used, but has on average longer genes and smaller intergenic
regions?*. Our analyses only considered the assembly reported in?!), Spironucleus salmonicida
ATCC50377% (www.giardiadb.org) and Trepomonas sp. PC12® —the latter was only available as a
transcriptome. We also included a set of genomes that are broadly representative of eukaryote
diversity, such as Homo sapiens GRCh38%’, Saccharomyces cerevisiae S288C 2010
(https://www.yeastgenome.org/), Arabidopsis thaliana TAIR10?® (https://www.arabidopsis.org/),
Dictyostelium discoideum AX4?°, Trypanosoma brucei TREU927% (www.uniprot.org), Naegleria
gruberi NEG-M3! (www.ncbi.nlm.nih.gov), Guillardia theta and Bigelowiella natans®

(www.genome.jgi.doe.gov/portal/).

Additional analyzed genomes were those of the microsporidia Encephalitozoon intestinalis ATCC
50506% (ASM14646v1), E. cuniculi GB-M13* (ASM9122v2) and Trachipleistophora hominis®®

(ASM31613v1), the yeasts Hanseniaspora guilliermondii®®(ASM491977v1), Hanseniaspora

opuntiae®” (ASM174979v1), Hanseniaspora osmophila®” (ASM174704v1), Hanseniaspora uvarum?®’

(ASM174705v1) and Hanseniaspora valbyensis NRRL Y-1626% ( GCA_001664025.1), the
metamonad Tritrichomonas foetus®® (ASM183968v1), the nucleomorphs of Hemiselmis andersenii*
(ASM1864v1), Cryptomonas paramecium* (ASM19445v1), Chroomonas mesostigsmatica*?
(ASM28609v1), Guillardia theta**(ASM297v1), Lotharella vacuolata* (AB996599-AB996601),
Amorphochlora amoebiformis* (AB996602—-AB996604) and Bigellowiela natans* (ASM245v1),
the corals Galaxea fascicularis, Fungia sp., Goniastrea aspera, Acropora tenuis and the coral

endosymbionts Symbiodinium kawagutii and Symbiodinium goreaui®64’,



A5. Phylogenomic analysis

A previously constructed phylogenomic dataset and pipeline published by Brown et al.*® was used to
obtain alignments of 351 highly conserved protein orthologs from a total of 29 eukaryotic genomes
and transcriptomes (for taxa sources see ref*°). Orthologs from C. membranifera and C. frisia were
added to that dataset, which was further sub-selected to avoid those with known deep-paralogy, and
to maximize alignment site coverage amongst taxa of interest. This resulted in 181 highly conserved
genes, encompassing 19 metamonads and other outgroup 12 eukaryotes, that were aligned and then
concatenated. The alignment was done with MAFFT v7.310* (mafft-linsi option) and trimmed with
BMGE v1.0°° with default parameters. Initially, a guide tree was estimated by maximum likelihood
using 1Q-TREE®® with the LG+C60+F~+T" model and 1000 ultrafast bootstraps. This was used to
estimate the PMSF profiles for tree inference under the LG+PMSF(C60)+F+ I model for 100

nonparametric bootstraps, approximate likelihood ratio tests and aBayes support tests.

A6. Additional strategies used to search for ORC, Cdc6 ad Ndc80 proteins

Strategies included enriched HMMs as mentioned in the main text and HMMs for individual Pfam
domains with e-value thresholds of 1x1073, 1) Metamonad-specific HMMs were built as described for
kinetochore proteins — containing the newly found hits plus orthologs from additional publicly
available metamonad proteomes or transcriptomes*™3, 2) we applied the eggNOG 4.5 profiles
COG1474, COG5575, KOG2538, KOG2228, KOG2543, KOG4557, KOG4762, KOG0995,
KOG4438, KOG4657 and 2526V which encompass 2774, 495, 452, 466, 464, 225, 383 , 504, 515,
403 and 84 taxa, respectively, and 3) the Pfam v33.1 HMMs: PF09079 (Cdc6_C), PF17872
(AAA_lid_10), PF00004 (AAA+), PF13401 (AAA_22), PF13191 (AAA_16), PF01426 (BAH),
PF04084 (Orc2), PF07034 (Orc3), PF18137 (ORC_WH_C) , PF14629 (Orc4_C), PF14630

(Orc5_C), PF05460 (Orc6), PF03801 (Ndc80_HEC), PF03800 (Nuf2), PF08234 (Spindle_Spc25)



and PF08286 (Spc24). For Ncd80, Nuf2, Spc24 and Spc25 we also applied the HMMs models

published in®*,

B. Supplementary results

B1. BUSCO completeness

A subset of 272 BUSCO proteins from the odb9 database was used for a phylogeny-guided search for
divergent orthologs. This revealed that: i) 27 out of 272 BUSCO (9.9%) proteins are absent in all
metamonads, ii) only 101 (~41%) of the remaining 245 proteins were shared by all metamonad
proteomes, and iii) up to 38% are absent in all Fornicata. Metamonad genomes only contained 60%
to 91% of the BUSCO proteins (Table 1, Supplementary Data 1, note that the BUSCO presence-
absence patterns of the transcriptomic data from Trepomonas sp. PC1 are consistent with those of the
remaining diplomonads). These analyses demonstrate that the Metamonada have secondarily lost a
relatively large number of highly conserved eukaryotic proteins and, therefore, BUSCO analysis

cannot be used on its own to evaluate metamonad genome completeness.

B2. Proteins with patchy distribution in metamonads

The replisome proteins Cdtl, Mcm10, Cdc45, GINS subunits 1 and 3, Dbf4 (A and B), subunits 2
and 3 of RFA, and subunits 3 and 4 of polymerase 6 and ¢ vary in their presence/absence distribution
pattern across non-metamonad eukaryotes suggesting that some of these are apparently not essential,
but their loss could lead to some degree of function impairment. In fact, polymerase & and € subunits
3 and 4 are typically considered accessory®>*3, and the same designation may apply to proteins such
as Cdtl, Mcm10 and Dbf4, which rarely have been reported outside of Viridiplantae and
Opisthokonta (see taxonomy reports for KOG4762 (Cdtl), KOG3056 (Mcm10), COG5067 (Dbf4) at

http://eggnog5.embl.de/). However, there is experimental evidence supporting serious function



impairment when the recruitment of some proteins is compromised (e.g., GINS, Cdc45, RFA)%*%,
Therefore, we suspect that the absence of some of these subunits, although only detected in a few
non-metamonad taxa in our study, may be indicative of unstable replisomes in the organisms lacking
them. Some of these absence patterns were also observed in metamonads, for example, subunits of
polymerases & and € are missing, consistent with their ‘accessory’ designation. Although, it is notable
that the degree of depletion in subunits of GINS, RFA, ORC is far more pronounced in Fornicata
than in the Parabasalida and Preaxostyla. Experimental investigations are needed to elucidate how the
replisomes of these metamonads function — specially in fornicates — with these greatly reduced or

absent complexes.

In terms of the BER and NER pathways, many proteins are not found in any metamonads (e.g., Pol
B, Ligase Ill, OGGL1, XPC, XPA) (Supplementary Data 2) and therefore could have been lost prior to
the last common ancestor of the group. The absence of Pol B from the BER pathway is intriguing and
suggests that a different polymerase should have taken up its task, especially because only long-patch
BER pathway would be enabled in metamonads. The patterns of NER proteins in metamonads,
particularly K. bialata and diplomonads, indicate that these are likely to be sensitive to UV exposure
(only the diplomonad G. intestinalis has been studied in this regard?>°6:°57), In the MMR pathway, we
found a near complete set of proteins from the MutL family in metamonads (i.e., Mlh1, MIh2 and
MIh3) with orthologs that are highly divergent but conserve the domain architecture of the protein
family. In contrast, the MutS protein family has several missing orthologs with only Msh2 and Msh6
(Msh6-like in diplomonads) shared by all metamonads, and Msh4 and Msh5 only absent in
diplomonads (note that Msh4 and Msh5 do not participate in MMR but are implicated in meiosis®).
The loss of Msh3 in T. vaginalis, Carpediemonas species and diplomonads suggests that these taxa

are only able to repair base-base and small insertion/deletion mismatches by using Msh2-Msh6 or
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Msh2-Msh6-like (MutSa) but not larger insertion/deletion mismatches as the heterodimer Msh2-

Msh3 (MutSB) could not be formed®®.

In terms of damage signaling, we speculate that, due to the consistent patchiness of the checkpoint
proteins Chk1 and Chk2 over all eukaryotes we examined, other kinases probably have taken over
their roles in multiple separate lineages. The remaining damage sensing proteins and recombinases in
T. vaginalis and M. exilis indicate that these taxa likely have slightly modified complexes that would
be expected to conserve their function (Supplementary Data 2, Supplementary Fig. 5). For example,
whereas the complex BCDX2 (Rad51B-Rad51C-Rad51D-Xrcc2), that is responsible for facilitating
the assembly and stability of the Rad51 filament, is completely absent in fornicates, a modified
version occurs in M. exilis (i.e., Rad51B-Rad51C-Xrcc2) and a different one in T. vaginalis (i.e.,

Rad51C-Rad51D-Xrcc2).

Mitosis and meiosis are very distinctive processes that, besides using the recombination machinery
and checkpoint controls previously described, use multiple members from the SMC and Rad21
families, among others. Metamonads have all Condensin | and Il, Cohesin, and Smc5-Smc6
complexes for chromosome handling. The number of homologs for the Rad21 family, part of the
Cohesin complex, varies from fully absent in diplomonads to four paralogs in M. exilis. Notably,
these proteins are very divergent in M. exilis, K. bialata and C. membranifera, forming a new Rad21

clade in this family.

It is noteworthy that our findings in all the studied systems provide additional evidence that M. exilis,
despite the apparent lack of a mitochondrial compartment, has molecular systems that are more

complete than those of other metamonads®°.
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B3. Additional search strategies employed to find missing ORC/Cdc6 and Ndc80 proteins

Metamonad-specific HMM retrieved two candidates for Orc1/Cdc6 proteins from C. frisia (i.e.,
Cfrisia_2222, Cfrisia_2845) and one from C. membranifera (i.e., J8273_3200), and one Orc4
candidate from each Carpediemonas species (i.e., Cfrisia_2559, J8273 _7545). Further inspection of
these hits showed that only the AAA+ region shared similarity among all of these proteins, which is
expected as ORC and Cdc6 proteins belong to the ATPase superfamily. However, based on full
protein identity, full profile composition and domain architecture, the proteins retrieved with the
Orcl/Cdc6 HMM were confidently annotated as Katanin P60 ATPase-containing subunit Al
(Cfrisia_2222), Replication factor C subunits 1 (J8273_3200) and 5 (Cfrisia_2845), and proteins
retrieved with Orc4 HMM were members of the Dynein heavy chain (Cfrisia_2559) and AAA-family
ATPase families (J8273_7545). The latter is a 744 aa protein that has a C-terminal region with no
sequence similarity or amino acid profile frequencies that resembles a Orc4_C Pfam domain from
other metamonads or model eukaryotes. All the additional search strategies yielded false positives in
Carpediemonas species, as these retrieved AAA-family members lacking sequence similarity to orc
proteins, showed completely different protein domain architecture than the expected one and were
associated with different functional annotation. When reconstructing the domain architecture of ORC
and Cdc6 proteins in metamonads, we noted that Fornicata Orc1/Cdc6-like proteins are remarkably
smaller (i.e., 1.5 to 3 times smaller) than Orc1 and Cdc6 from the model organisms and other protists
used later in phylogenetic reconstruction (Supplementary Fig. 3a and b, Supplementary Data 2, 5 and
6). In most cases, the small proteins lack protein domains rendering a different domain architecture
with respect to their homologs in S. cerevisiae, H. sapiens, A. thaliana and T. vaginalis
(Supplementary Fig. 3a, Supplementary Data 5). For example, Orc1 and Cdc6 paralogs in Fornicata
lack BAH, and AAA _lid10 and Cdc6_C domains. Protein alignments show that the conserved areas

of these proteins correspond to AAA+ domain that have relatively conserved Walker domains A and
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B (except MONOS_13325 from M. exilis), with a few proteins lacking the arginine finger motif (R-
finger) within the Walker B motif (Supplementary Fig. 3c). The latter may negatively affect ATPase
activity of the R-finger-less proteins. In an attempt to establish orthology, metamonad Orc1/Cdc6
candidates were used for phylogenetic reconstruction together with publicly available proteins that
have reliable annotations for Orc1 and Cdc6, expected domain architecture and/or with experimental
evidence of their functional activity in the replisome. Phylogenetic analysis shows that metamonad
proteins form separate clades from the bona fide Orcl and Cdc6 sequences (Supplementary Fig. 3d).
One of these separate clades encompasses Orc1-b from T. brucei that has been shown to participate

during DNA replication despite lacking the typical domain architecture®:.

B4. DNA replication streamlining in nucleomorphs

The loss of ORC/Cdc6 accompanied by the partial retention of MCM, PCNA, Cdc45, RFC, GINS
and the homologous recombination (HR) recombinase Rad51 was observed in cryptophyte and
chlorarachniophyte nucleomorphs (Supplementary Fig. 4). ORC and Cdc6 were found as single copy
genes (except Orc2) in the nuclear genomes of these two groups; their predicted proteins lack
obvious signal and targeting peptides which would likely prevent them from participating in a
nucleus-coordinated nucleomorph replication. Hence, nucleomorph DNA replication likely occurs by
HR without the assistance of ORC/Cdc6 origin-binding, but this replication might nonetheless be
regulated at the transcriptional level by the nucleus as shown by®2. Many of the remaining nuclear-
encoded proteins involved in replication are present in more than one gene copy in those taxa, with
several of them containing predicted signal and transit peptides (e.g., H2A, Pol D, RFC1 and

RFAL)5%8,
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B5. Acquisition of Endonuclease 1V, RarA and RNAse H1 by lateral gene transfer

The Endonuclease 1V (Apnl in yeast) and exonuclease I11 (Exo I11) function in the removal of abasic
sites in DNA via the BER pathway. Our analyses show that C. frisia and C. membranifera have Exo
111 and have a prokaryotic version of Endo IV (Supplementary Fig. 10). Interestingly, none of the
parabasalids and Giardia spp. have an Endo 1V homolog, either eukaryotic or prokaryotic. S.

salmonicida and Trepomonas sp. PC1, by contrast, appear to encode a typical eukaryotic Endo IV.

The RarA (Replication-Associated Recombination protein A, also known as MgsA) protein is
ubiquitous in bacteria and eukaryotes (e.g., homologs Msg1 in yeast and WRNIP1 in mammals) and
acts in the context of collapsed replication forks®®®. Carpediemonas possesses a prokaryotic-like
version (Supplementary Fig. 11) that lacks the ubiquitin-binding Zn finger N-terminal domain typical
of eukaryotic homologs®. No canonical eukaryotic RarAs were detected in the remaining
metamonads, but it appears that prokaryotic-like RarA proteins in Giardia, S. salmonicida and

Trepomonas sp. PC1 were acquired in an independent event from that of Carpediemonas.

Both Carpediemonas genomes have a eukaryotic RNAse H2, lack eukaryotic RNAse H1 but encode
up to two copies of a prokaryotic-like RNAse H1 (Supplementary Fig. 12) which do not have the
typical eukaryotic HBD domain®. The HBD domain is thought to be responsible for the higher
affinity of this protein for DNA/RNA duplexes rather than for dSRNA®"€8, All prokaryotic-like
RNAse H1s in metamonads are highly divergent (Supplementary Fig. 12) and, in the case of S.
salmonicida RNase H1 proteins, these formed very long branches in all of our preliminary trees, that
had to be removed for the final phylogenetic reconstruction. Remarkably, the phylogenetic

reconstruction that includes other metamonad proteins suggests that Giardia, Trepomonas sp. PC1, T.
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foetus and T. vaginalis, also acquired bacterial RNAse H1. Trepomonas sp. PC1 and Giardia
sequences cluster together but the T. foetus and T. vaginalis enzymes each emerge amidst different
bacterial branches, suggesting that they have been acquired independently from the Carpediemonas
homologs. It should, however, be noted that the support values are overall low, partly due to the fact
that these sequences and their relatives are highly divergent from each other, from Carpediemonas

bacterial-like sequences, and from typical eukaryotic RNaseH1.

C. Supplementary discussion

C1. BUSCO incompleteness

Both eukaryote-wide and protist BUSCO analyses using the BUSCO methods underperformed in our
analyses. Despite using a phylogeny-guided search with the Eukaryota database, a more
comprehensive database than the protist BUSCO database, a remarkably large number of BUSCO
proteins were inconsistently present in Metamonada. This is not surprising, as the clade harbors a
very diverse group of taxa with varied lifestyles and many have undergone genome
streamlining?%21232526 and the BUSCO databases are expected to be more accurate with greater
taxonomic proximity to the studied genome'®®%%, While it might be tempting to suggest the 101
BUSCO proteins that are shared by all metamonads be used to evaluate genome completion in the
clade, the overwhelming evidence of differential genome streamlining strongly indicates that
databases should be lineage specific (e.g., Carpediemonas, Giardia, etc). Hence, our results highlight
the need for constructing such databases including proteins that showcase the sequence diversity of
the groups and genes that are truly single copy in each of these lineages. Regardless, using only
standard BUSCO methods to capture genome completion will still fall short in such assessments as it

will fail to evaluate the most difficult-to-assemble regions of the genome’® ™, For that reason,
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combined approaches such as the ones used here provide a more comprehensive global overview of

genome completeness.

D. Supplementary figures.

Figures in high resolution are available at Dryad (https://doi.org/10.5061/dryad.wh70rxwnv)
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Supplementary Fig. 1 Maximum-likelihood reconstruction of the phylogenetic relationships within
the Metamonada clade. An initial reconstruction was carried out in 1Q-Tree with the LG+C60+F+I"
model and 1000 ultrafast bootstraps, this was followed by tree inference under LG+PMSF(C60)+F+
I' model using 100 nonparametric bootstraps; alignment length of 181 genes encompassing 48341
sites. Tree rooted on the ancestral branch of Amorphea. Scale bar shows the inferred number of
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the values are represented in the following order: SH-aLRT support

percentage/aBayes/nonparametric bootstrapping.
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Supplementary Fig. 2 Phylogenetic reconstruction of Orc5 proteins inferred with 1Q-TREE under

the LG+ C60+F+ I" model using 1000 ultrafast bootstraps (SH-aLRT support

percentage/aBayes/bootstrap). Value ranges for branches are shown by dots, the red dot indicates that

the values apply for each node within the clade. The alignment consists of 60 taxa with 422 sites after

trimming. For simplicity, only the domain architecture for metamonads, S. cerevisiae, A. thaliana and

H. sapiens are depicted on the tree.
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Supplementary Fig. 3 Orc1-6 and Cdc6 proteins. (a) Left: typical domain architecture observed for
Orcl1-6 and Cdc6 in Saccharomyces cerevisiae. Right: representative domain architecture of
metamonad proteins drawn to reflect the most common protein size. If no species name is given, then
the depicted domain structure was found in all of the metamonads where present. Numbers on the

right of each depiction correspond to the total protein length or its range in the case of metamonads
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(additional information in Supplementary Data 2). (b) Comparison of Orcl, Cdc6 and Orcl/Cdc6-
like protein lengths across 81 eukaryotes encompassing metamonads and non-metamonads protists
(Supplementary Data 6). Metamonad proteins are highlighted with green shaded bubbles in the
background. (c) Orc1/Cdc6 partial ATPase domain showing Walker A and Walker B motifs
including R-finger. Reference species at the top. Multiple sequence alignment was visualized with
Jalview using the Clustal colouring scheme. (d) Phylogenetic reconstruction of Orc1, Cdc6 and
Orc1/Cdc6-like proteins inferred with IQ-TREE®® under the LG+ C10+F+ I model using 1000
ultrafast bootstraps (bootstrap value ranges for branches are shown with black and grey dots). The
alignment consists of 81 taxa (Supplementary Data 6) with 367 sites after trimming. Orc1/Cdc6-like
proteins do not form a clade with bona fide Orc1 and Cdc6 proteins making it impossible to

definitively establish whether or not they are orthologs.
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Supplementary Fig. 4 The distribution of core molecular systems of the replisome, double strand break repair and endonucleases in

nucleomorph genomes of cryptophyte and chlorarachniophytes.
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Supplementary Fig. 5 The distribution of core molecular systems of DNA repair across eukaryotic diversity. A schematic global eukaryote
phylogeny is shown on the left with classification of the major metamonad lineages indicated. Double strand break repair and endonuclease
sets. ““Carpediemonas-Like Organisms. ‘?” is used in cases where correct orthology was difficult to establish, so the protein name appears

with the suffix ‘-like’ in tables.
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Supplementary Fig. 6 Presence/absence diagram of LECA kinetochore components in eukaryotes, with a greater sampling of metamonads,
including C. membranifera and C. frisia. Left: matrix of presences (coloured) and absences (light grey) of kinetochore, SAC and APC/C

proteins that were present in LECA. On top: names of the different subunits; single letters (A-X) indicate Centromere protein A-X (e.g.,
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CenpA) and numbers, APC/C subunit 1-15 (e.g., Apcl). E2S and E2C, refer to E2 ubiquitin conjugases S and C, respectively. Colour
schemes correspond to the kinetochore overview figure on the right and to those used in Figure 3. Right: cartoon of the components of the
kinetochore, SAC signalling, the APC/C and its substrates (Cyclin A/B) in LECA and Carpediemonas species to indicate the loss of
components (light grey shading). Blue lines indicate the presence of proteins that are part of the MCC. Asterisk: Apcl10 has three paralogs in
C. membranifera and two in C. frisia. One is the canonical Apcl0, the two others are fused to a BTB-Kelch protein of which its closest

homologs is a likely adapter for the E3 ubiquitin ligase Cullin 3.
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Supplementary Fig. 7 Carpediemonas harbours three different types of Histone H3 proteins, a centromere-specific variant (CenpA).
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Multiple sequence alignment of different Histone H3 variants in eukaryotes and metamonads, including the secondary structure of canonical

H3 in humans (pdb: 6ESF_A). CenpA orthologs are characterized by extended amino and carboxy termini and a large L1 loop. Red names in

the CenpA panel indicate for which species centromere/kinetochore localization has been confirmed. In addition to CenpA and canonical

Histone H3-variants, multiple eukaryotes, including C. membranifera and C. frisia, harbour other divergent H3 variants. Such divergent

variants make the annotation of Histone H3 homologs ambiguous (see Asterisks; incomplete sequences). Multiple sequence alignments were

visualized with Jalview'?, using the Clustal colour scheme. Asterisks indicate two potential CenpA candidates in T. vaginalis
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Supplementary Fig. 8 Likely presence of SAC signalling in Carpediemonas. (a) Short linear motifs

form the basis of SAC signalling. During prometaphase, unattached kinetochores catalyse the

production of inhibitor of the cell cycle machinery,

a phenomenon known as the SAC™. (1) The main
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protein scaffold of SAC signalling is the kinase MadBub (paralogs Mad3/Bubl exist in eukaryotes),
which consist of many short linear motifs (SLiMs) that mediate the interaction of SAC components
and the APC/C (light blue)’*". MadBub itself is recruited to the kinetochore through interaction with
Bub3 (GLEBS), which on its turn binds repeated phosphomotifs in Knl175"8, The CDI or CMI motif
aids to recruit Mad1'®81, which has a Mad2-interaction Motif (MIM) that mediated the kinetochore-
dependent conversion of open-Mad2 to Mad?2 in a closed conformation®?. (11) Mad2, MadBub, Bub3
and 2x Cdc20 (APC/C co-activator) form the mitotic checkpoint complex (MCC) and block the
APC/C"884 MadBub contains 3 different APC/C degrons (D-box, KEN-box and ABBA motif)’
that direct its interaction with 2x Cdc20s and effectively make the MCC a pseudo substrate of the
APC/C. (1) Increasing amounts of kinetochore-microtubule attachments silence the production of
the MCC at kinetochores and the APC/C is released. Cdc20 now presents its substrates Cyclin A and
Cyclin B (some eukaryotes have other substrates as well, but they are not universally conserved) for
ubiquitination and subsequent degradation through recognition of a Dbox motif8>. Chromosome
segregation will now be initiated (anaphase). (b) Presence/absence matrix of motifs involved in SAC
signalling in a selection of Eukaryotes and Metamonads, including C. membranifera and C. frisia.
Colours correspond to the motifs in panel a, light grey indicates motif loss. N signifies the number of
MadBub homologs that are present in each species. ‘Incomplete’ points to sequences that were found
to be incomplete due to gaps in the genome assembly. Question marks indicate the uncertainty in the
presence of that particular motif. Although Metamonads have all four MCC components (Mad2,
Bub3, MadBub and Cdc20), most homologs do not contain the motifs to elicit a canonical SAC
signalling and it is therefore likely that they do not have a SAC response. Exceptions are C
membranifera, C. frisia and Kipferlia bialata. They retained the N-terminal KEN-boxes and one
ABBA motif, which are involved in the binding of two Cdc20s and a Mad2-interaction motif (MIM)

in Mad1 and Cdc20. (c) Multiple sequence alignments of the motifs from panel A and B. Coloured
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motif boxes correspond to panel a and b. Multiple sequence alignments were visualized with
Jalview™, using the Clustal colouring scheme. Asterisks indicate ambiguous motifs in

Carpediemonas membranifera.
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Supplementary Fig. 9 Histogram showing the frequency distribution of single nucleotide variants in

the genome of C. membranifera. Diagram showing the typical distribution of a haploid genome.
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Prokaryotes

Carpediemonas 0‘7;-
Carpediemonas membrani

Prokaryotes

Supplementary Fig. 10 Maximum likelihood reconstruction of Endonuclease V. The unrooted tree

contains eukaryotic and prokaryotic Endo IV sequences, showing Carpediemonas sequences

emerging within bacterial proteins. The tree was inferred with IQ-TREE under the LG+I+C20 model

with 1000 ultrafast bootstraps; alignment length was 276. Scale bar shows the inferred number of

amino acid substitutions per site.
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Supplementary Fig. 11 Maximum likelihood reconstruction of RarA. The unrooted tree contains
eukaryotic and prokaryotic sequences, showing Carpediemonas sequences emerging within bacterial
proteins. The tree was inferred with IQ-TREE under the LG+1+C20 model with 1000 ultrafast
bootstraps; alignment length was 414. Scale bar shows the inferred number of amino acid

substitutions per site.
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Supplementary Fig. 12 Maximum likelihood reconstruction of RNAse H1. Carpediemonas RarA-
like proteins emerge within bacterial proteins. Parabasalia and Diplomonada proteins highlighting the
proteins have been acquired in different events. The tree was inferred with 1Q-TREE under the
LG+I+G+C20 model with 1000 ultrafast bootstraps; alignment length was 149. Scale bar shows the

inferred number of amino acid substitutions per site.
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