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Abstract. Lattice gauge theories, which originated from particle physics in the context of Quantum Chro-
modynamics (QCD), provide an important intellectual stimulus to further develop quantum information
technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of
QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum
information science. In this way, lattice gauge theories provide both motivation and a framework for inter-
disciplinary research towards the development of special purpose digital and analog quantum simulators,
and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools
from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary
approaches are discussed: first, tensor network methods are presented — a classical simulation approach —
applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice
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gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in
different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits.
Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model

are reviewed.

1 Introduction

In the last few decades, quantum information theory has
been fast developing and consequently its application to
the real world has spawned different technologies that —
as for classical information theory — encompass the fields
of communication, computation, sensing, and simulation
[1-3]. To date, the technological readiness level of quan-
tum technologies is highly diverse: some quantum commu-
nication protocols are ready for the market, while, e.g.,
universal quantum computers — despite experiencing an
incredibly fast development — are still at the first develop-
ment stage [4,5].

Some particularly interesting and potentially disrup-
tive applications of quantum information theory and of
quantum technologies lay within different scientific fields,
such as high-energy, nuclear, condensed matter physics or
chemistry [6]. Indeed, in the last years, it became increas-
ingly clear that concepts and tools from quantum infor-
mation can unveil new directions and will most probably
provide new tools to attack long-standing open problems
such as the study of information scrambling in black holes
[7], the solution of complex chemical or nuclear systems
[8], or the study of lattice gauge theories (LGTSs) — the
main subject of this review.

LGTs are characterised by an extensive number of
symmetries, that is, conservation laws that hold at every
lattice site. They describe an incredibly vast variety of dif-
ferent phenomena that range from the fundamental inter-
actions of matter at high energies [9-13] — the standard
model of particle physics — to the low-energy behaviour
of some materials with normal and/or topological order
in condensed matter physics [14,15]. Moreover, recently it
has been shown that most of the hard problems in com-
puter science can be recast as a LGT [16,17]. The connec-
tion passes through the recasting of the classical problem
in Hamiltonian form, which generally assumes the form of
an Ising Hamiltonian with long-range disordered interac-
tions. This class of Hamiltonians can be mapped exactly
into two-dimensional LGT [18].

For all the aforementioned scenarios, quantum science
provided two novel pathways to analyse them. The first
one has its root in Feynman’s first intuition [19] of quan-
tum computers: having quantum hardware able to pre-
cisely reproduce another physical quantum model, allows
a powerful investigation tool for computing the observ-
ables of the model, and to verify or compare its prediction
with the physical system. Today, the research frontier is
at the edge of having universal quantum computers and
quantum simulators able to perform such investigations
beyond proof of principle analysis. Thus, detailed studies
and proposals have been put forward to perform quan-
tum simulations of LGT in the near and mid-term [20].
The second pathway exploits a class of numerical meth-
ods — tensor network methods (TNM) — which have been

developed in the condensed matter and quantum infor-
mation communities to study strongly correlated many-
body quantum systems [21]. Indeed, as it has been shown
recently, TNM can be exploited to study LGT going in
regimes where standard approaches are severely limited
[22,23].

Lattice gauge theory was originally constructed by
Wilson in order to define Quantum Chromodynamics
(QCD) — the relativistic SU(3) gauge field theory that
describes the strong interaction between quarks and glu-
ons — beyond perturbation theory. For this purpose, he
introduced a hyper-cubic space-time lattice as a gauge
invariant regulator of ultraviolet divergences, with quark
fields residing on lattice sites and gluons fields residing on
links connecting nearest-neighbour sites. This framework
makes numerous important physical quantities accessible
to first principles Monte Carlo simulations using classi-
cal computers. These include static properties, like masses
and matrix elements, of baryons (such as protons and neu-
trons) and mesons (such as pions). Properties of the high-
temperature quark-gluon plasma in thermal equilibrium
are accessible as well. This includes, e.g., the critical tem-
perature of the phase transition in which the chiral sym-
metry of the quarks, which is spontaneously broken at low
temperatures, gets restored.

However, there are other important aspects of the QCD
dynamics, both at high baryon density (such as in the
core of neutron stars) and for out-of-equilibrium real-time
evolution (such as the various stages of heavy-ion col-
lisions), where importance-sampling-based Monte Carlo
simulations fail due to very severe sign or complex action
problems. In these cases, reliable special purpose quan-
tum simulators or universal quantum computers may
be the only tools to successfully address these grand-
challenge problems. While immediate results with quan-
titative impact on particle physics are unrealistic to hope
for, a long-term investment in the exploration of quan-
tum technologies seems both timely and most interesting.
Lattice gauge theory has a very important role to play
in this endeavour, because, besides fully-fledged lattice
QCD, it provides a large class of simpler models, in lower
dimensions, with simpler Abelian or non-Abelian gauge
groups, or with a modified matter content, which often
are interesting also from a condensed matter perspective.
The real-time evolution of all these models is as inacces-
sible to classical simulation as the real-time evolution of
QCD itself. Hence, learning how to tackle with these chal-
lenges in simpler models is a necessary and very promising
step towards the ultimate long-term goal of quantum sim-
ulating QCD. Along the way, via a large variety of lattice
field theory models, particle physics provides an impor-
tant intellectual stimulus for the development of quantum
information technology.

Validation of quantum simulation experiments is vital
for obtaining reliable results. In certain cases, which are
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limited to equilibrium situations, importance sampling
Monte Carlo simulations using classical computers can
provide such validation. However, Matrix Product States
(MPS) and Tensor Network (TN) calculations are often the
more promising method of choice, in particular, because
they can even work in some out-of-equilibrium real-time
situations. This provides an important stimulus to fur-
ther develop these techniques. While they work best in
one (and sometimes in two) spatial dimensions, an exten-
sion to higher dimensions is not at all straightforward,
but very well worth to pursue vigorously. Even if these
methods should remain limited to lower dimensions, they
offer a unique opportunity to gain a deep understanding
of the real-time evolution of simple lattice gauge models.
By quantitatively validating quantum simulators in out-
of-equilibrium situations, even if only in lower dimensions,
MPS and TN methods play a very important role towards
establishing quantum simulators as reliable tools in quan-
tum physics.

This paper reviews the recent activities along these
lines, in particular of the groups that form the QTFLAG
consortium, a European project funded under QuantERA
with the goal of developing novel quantum science
approaches to simulate LGT and study physical processes
beyond what could be done via standard tools. First,
the main concepts of interest are introduced, the LGT
formulation and the tools used to study them: quan-
tum simulators on different hardware and tensor network
methods. Then, the recent numerical studies of one-
dimensional Abelian and non-Abelian LGTs in and out
of equilibrium, at zero and finite temperature are pre-
sented. Different theoretical proposals for the implemen-
tation of LGTs on digital and analog quantum simulators
in trapped ions, Rydberg atoms and in superconducting
circuits are reviewed. Finally, the first experimental reali-
sations of these ideas are also briefly mentioned.

2 Lattice field theory background

Gauge field theories are at the heart of the current theo-
retical understanding of fundamental processes in nature,
both in condensed matter and in high-energy physics.
Although their formulation appears to be simple, they
potentially give rise to very intriguing phenomena, such
as asymptotic scaling, confinement, spontaneous chiral
symmetry breaking or (non-trivial) topological proper-
ties, which shape the observed physical world around
us. Solving gauge theories from first principles has been
a major goal for several decades. Their formulation on
a discrete Euclidean space-time lattice, originally pro-
posed by Wilson in the seventies [24], has provided very
powerful methods to study the non-perturbative regimes
of quantum field theories’. A most prominent example
is the success of ab-initio Lattice Quantum Chromo-
dynamics (LQCD) calculations. Here, starting from the
QCD Lagrangian, the low-lying baryon spectrum could
be computed on very large lattices and extrapolated to

L See [25] for a recent approach using a (-regularisation to
regularise vacuum expectations values.
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the continuum limit [26]. Lattice QCD calculations have
also provided most important insights into the struc-
ture of hadrons [27,28]; they provide information on
non-perturbative contributions to electroweak processes
[29] and flavour physics [30]; they are very successful to
determine thermodynamic properties [31]; and the explic-
itly determination of the strong coupling constant [32].
Today, lattice calculations are performed on large lattices
— presently of sizes around 100 x 200 lattice points — and
directly in physical conditions.

These most impressive results became possible by a
combined progress on algorithmic and computational
improvements as well as the development of new super-
computer architectures. Thus, lattice field theory compu-
tations have demonstrated the potential to characterise
the most fundamental phenomena observed in nature.

The standard approach of lattice field theory relies
on Monte Carlo-based evaluations of path integrals in
FEuclidean space-time with positive integrands. Thus it
suffers from an essential limitation in scenarios that
give rise to a sign problem. These include the pres-
ence of a finite baryon density, which is relevant for
the early universe and for neutron stars; real-time evolu-
tion, e.g., to understand the dynamics of heavy-ion colli-
sions; or topological terms, which could shed light on the
matter-anti-matter asymmetry of the universe. There is
therefore an urgent quest to find alternative methods and
strategies that enable tackling these fundamental open
problems in the understanding of nature.

One such alternative is the application of tensor net-
works (TN). Originally introduced in the context of
condensed matter physics, TN can solve quasi-exactly
one dimensional strongly correlated quantum many-body
problems for system sizes much larger than exact diago-
nalisation allows. They are naturally free from the sign
problem. In fact, for 1-dimensional systems a number of
successful studies have demonstrated the power of TN for
lattice gauge theory calculations [33]. In particular, it has
been shown that TN provide accurate determinations of
mass spectra and that they can map out a broad tem-
perature region. They can also treat chemical potentials
and topological terms and they can be used to study real-
time dynamics. TN also allow the study of entanglement
properties and the entropy (leading in turn to the determi-
nation of central charges) in gauge theories, which brings
new aspects of gauge theories into focus. However, appli-
cations to higher-dimensional problems remain a challenge
presently. There are well-founded theoretical formulations
such as projected entangled pair states (PEPS) but their
practical application is still rather limited (for a recent
review see [34]). New ideas such as the ones developed in
[35] could have the potential to overcome these limitations
but clearly further studies and developments are necessary
in order to turn them into practical tools for addressing
gauge theories in higher dimensions.

Ultimately, the intrinsic quantum nature of lattice
gauge theories will be a limiting factor for classical calcula-
tions, even for TN, e.g., when out-of-equilibrium phenom-
ena of a system are to be studied. In this context, quantum
simulation, i.e., the wuse of another well-controlled
quantum system to simulate the physics of the model
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under study, appears as a more adequate strategy. The
idea of quantum simulation, first proposed by Feynman
[19], is now becoming a reality [36-39], and very different
condensed matter models have already been successfully
quantum simulated in cold-atom laboratories around the
world [40-42]. Regarding the simulation of LGT, a num-
ber of proposals have been put forward in the last years
[43-51], and have even been realised by a few pioneering
experiments [52]. TN calculations have been instrumen-
tal in the definition of many of these proposals. It is in
particular the approach of hybrid quantum-classical sim-
ulation schemes which can take advantage of these new
concepts and there is a great potential to realise them on
near-term quantum architectures.

Gauge fields on the lattice manifest themselves as par-
allel transporters residing on the links that connect neigh-
bouring lattice sites. In Wilson’s formulation of lattice
gauge theory, the link parallel transporters take values
in the gauge group [24]. As a consequence, for continu-
ous gauge groups such as the Abelian U(1) gauge group
of Quantum Electrodynamics (QED) or the non-Abelian
SU(3) gauge group of QCD, the link Hilbert space is
infinite dimensional. When gauge fields are treated by
TN techniques or they are embodied by ultra-cold mat-
ter or quantum circuits, representing an infinite dimen-
sional Hilbert space is challenging, because usually only
a few quantum states can be sufficiently well controlled
in quantum simulation experiments. There are different
approaches to addressing this challenge. First, the link
Hilbert space of the Wilson theory can be truncated to
a finite dimension in a gauge-covariant manner. Gradu-
ally removing the truncation within the gauge group by a
modest amount allows one to get the Wilson formulation.

An alternative approach is provided by quantum link
models (also known as gauge magnets) [53-55] which work
with quantum degrees of freedom with a finite-dimensional
Hilbert space from the outset. For example, the paral-
lel transporters of a U(1) quantum link model are con-
structed with quantum spins [56], which can naturally be
embodied by ultra-cold matter. Again, when one moder-
ately increases the spin value, one can reach the continuum
limit. Both approaches are actively followed presently and
it will be interesting to see in the future, which strategy
will be most appropriate to treat gauge theories with TN
or on quantum devices.

Even when one restricts oneself to the smallest spin
value %, interesting gauge theories emerge. For exam-
ple, when its Gauss’ law is appropriately modified, the
U(1) quantum link model turns into a quantum dimer
model [57,58], which is used in condensed matter physics
to model systems related to high-temperature supercon-
ductors. Kitaev’s toric code [59] — a topologically pro-
tected storage device for quantum information — provides
an example of a Z(2) lattice gauge theory formulated
with parallel transporters consisting of quantum spins %
Quantum spin chains were among the first systems to be
quantum simulated successfully. SU(N) quantum spin lad-
ders, i.e., systems consisting of n transversely coupled spin
chains, can be quantum simulated with ultra-cold alkaline-
earth atoms in optical lattices [60]. For moderate val-
ues of n, these (2 + 1)-dimensional systems dimensionally
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reduce to (1 + 1)-dimensional CP(N — 1) models, which
are asymptotically free and thus serve as toy models for
QCD. Furthermore, for odd n they have non-trivial topol-
ogy, very much like non-Abelian gauge theories in four
space-time dimensions. Also QCD itself can be formulated
as a quantum link model [61,62]. In that case, the paral-
lel transporters are matrices with non-commuting matrix
elements, just as quantum spins are vectors with non-
commuting components. Alkaline-earth atoms can again
be used to encode the QCD color degree of freedom in
the nuclear spin of these atoms [48]. Lattice gauge theory,
either in its gauge covariantly truncated Wilson formula-
tion or in the description of quantum link models, which
nicely complement each other, provides a broad framework
for upcoming quantum simulation experiments.

Whatever the most effective simulations may be in the
future, classical Monte Carlo, tensor network, or quan-
tum simulations for addressing gauge theories, there will
remain a big challenge: in the end, all calculations aim
at providing input for world-wide experiments, whether
the ones in condensed matter physics or the large-scale
collider experiments in high-energy physics. As a conse-
quence, all results emerging from theoretical computa-
tions based on the underlying Hamiltonian or Lagrangian
need to have controlled statistical and systematic errors.
This will lead to a substantial, demanding effort for such
calculations since many simulations at various values of
the lattice spacing and lattice volumes as well as possi-
bly other technical parameters (e.g., the bond dimension
in the TN approach) have to be executed. Only by per-
forming a controlled continuum and infinite volume (or
infinite bond dimension) limit, it will become possible to
rigorously attribute the obtained results to the underly-
ing model. In this way, the underlying model can be thor-
oughly tested and, in turn, any significant deviation seen
in experiment will thus open the door to completely new
and unexplored physics.

3 Quantum science and technologies tools

In a seminal paper published in 1982, Feynman discussed
in great detail the problems connected with the numerical
simulation of quantum systems. He envisaged a possible
solution, the so-called universal quantum simulator, a
quantum-mechanical version of the usual simulators and
computers currently exploited in many applications of
the “classical” world. If realised, such a device would be
able to tackle many-body problems with local interac-
tions by using the quantum properties of nature itself.
Interestingly, even without the advent of a fully universal
quantum computer, the construction of dedicated devices,
also known as purpose-based quantum simulators, would
already be of significant importance for the understand-
ing of quantum physics. The basic idea is to engineer the
Hamiltonian of the quantum model of interest in a highly
controllable quantum system and to retrieve all of the
desired information with repeated measurements of its
properties. Many research fields would eventually bene-
fit from such devices: for example, two-dimensional and
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three-dimensional many-body physics, non-equilibrium
dynamics or lattice gauge theories.

In recent years, the scientific community has been con-
sidering several quantum technologies such as cold atoms
[63], trapped ions [64] or superconducting circuits [65]
as examples of the most promising candidates for the
realisation of a wide variety of dedicated quantum sim-
ulations. Indeed, these platforms are genuine quantum
systems where the available experimental techniques offer
an impressive degree of control together with high-fidelity
measurements, thus combining two fundamental require-
ments for a quantum simulator. Among the most recent
experimental achievements are, just to mention a few, the
observation of Anderson localisation in disordered Bose-
Einstein condensates (BECs) [66-68], the research on itin-
erant ferromagnetism with cold fermions [69-71] or the
reconstruction of the equation of state of fermionic mat-
ter in extreme conditions [72-74], such as in neutron stars.

The advantages of quantum simulation are numerous:
first, one can use it to study physical systems which are
not experimentally accessible (systems of large or small
scales, for example), or to observe the physical properties
of unreal physical systems, which are not known to be
found in nature, but can be mapped to the simulating sys-
tems. So far, a lot of quantum simulations were suggested,
and some were even experimentally implemented. The
simulated systems come from almost every area of physics:
condensed matter and relativistic quantum physics, grav-
ity and general relativity, and even particle physics and
quantum field theory. The last of these is the topic of
this review, specifically gauge theories. While quantum
simulations have been proposed (and even realised) for
condensed matter models, gauge theories are a newer
branch where quantum technologies might be employed.
The possibility to simulate a LGT in a quantum computer
was first considered in [75], which estimated the required
resources to perform a digital quantum simulation of U(1),
SU(2) and SU(3) theories. See also other recent works on
quantum computation [76-83], on superconducting quan-
tum simulation [84,85], on atomic quantum simulation
[41,86-95], on classical simulation [96,97], or on
Hamiltonian formulation [98,99] of lattice gauge theories,
and for a general review on quantum simulation [6].

4 Quantum information techniques
4.1 Tensor networks for lattice gauge theories

TN methods are based on variational tensor structure
ansatze for the many-body wave function of the quantum
system of interest: the tensor structure is chosen to best
accommodate some general system properties, e.g., dimen-
sionality, boundary conditions and symmetries, while a
controlled approximation is introduced in such a way that
one can interpolate between a mean field and an exact
representation of the system. Being a wave function based
method, one has direct access to all relevant informa-
tion of the system itself, including quantum correlations,
i.e., entanglement. In one-dimensional systems, an efficient
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tensor structure is given by the MPS ansatz [21], defined
as,

[onps) = D ABLADP AN o) (1)
o,B

where the tensor A contains the variational parame-
ters needed to describe the system wave-function, «; =
1,...,d characterise the local Hilbert space, and 3; =
1,...,m account for quantum correlations or entangle-
ment (Schmidt rank) between different bipartitions of the
lattice. Indeed, setting m = 1 results in a mean field
description, while any m > 1 allows for the description of
correlated many-body states. Given the tensor structure,
the tensor dimensions and coefficients are then optimised
to efficiently and accurately describe the system proper-
ties by means of algorithms that scale polynomially in
the system size and m. Usually, these algorithms exploit
the system Hamiltonian tensor structure, naturally arising
from the few-body and local nature of the interactions, to
efficiently describe the system ground state or low-lying
eigenstates, or to follow the real- or imaginary-time evo-
lution of the system itself. Indeed, in the TN approach,
real- and imaginary-time evolution present no fundamen-
tal differences at the computational level, as there is no
sign problem. In some scenarios, and depending on the
specific dynamics of interest, limitations may arise due to
the amount of quantum correlations present in the system
wave function. The potential of these methods is witnessed
by the fast increasing literature appearing based on this
approach [34,100-102] (see [23] for further details on TNS
applications to LGT).

As mentioned before, classical numerical simulations
are playing a leading role in the understanding of lattice
gauge theories. In particular, in recent years, there has
been a boost in the development of tensor network meth-
ods to simulate lattice gauge theories. There are different
approaches, that range from the exploitation of mappings
of some theories to spin models [103,104], to the devel-
opment of gauge invariant tensor networks in the quan-
tum link formulation [22,23,101,105-107]. This section
reviews some of the studies that appeared in the last years,
covering most of the available approaches for Abelian
and non-Abelian lattice gauge theories [103-105,108-111].
General studies of the structure and properties of PEPS
with local gauge symmetries were discussed in [108,109,
111-115]. In addition, there has also been an effort specif-
ically focused on classical tensor network methods with
Grassmann fields [116-121], investigation of the sign prob-
lem tackled with TN and compared with Monte Carlo
[122], works on the O(2) model with a purely imaginary
chemical potential using TN [123,124], or on exploiting
useful mappings to construct tensors and study lattice
field theories [125-132].

In the following subsections, a selection of works per-
formed along these lines is described in some detail.

4.1.1 Matrix product states for lattice field theories
[103,104]

The Schwinger model [133,134], ie., QED in one
spatial dimension, is arguably the simplest theory of


https://www.epjd.epj.org

Page 6 of 42

gauge-matter interaction, and yet it exhibits features in
common with more complex models (like QCD) such as
confinement or a non-trivial vacuum. Therefore, it con-
stitutes a fundamental benchmark to explore the perfor-
mance of lattice gauge theory techniques. In particular
it has been extensively used in the last years to probe
the power of TN as alternative methods to conventional
Monte Carlo-based lattice techniques for solving quantum
field theories in the continuum.

The first such study was carried out by Byrnes and
coworkers [135] using the original Density Matrix Renor-
malization Group (DMRG) formulation, and it already
improved by orders of magnitude the precision of the
ground state energy and vector particle mass gap, with
respect to results obtained by other numerical techniques,
although the precision decreased fast for higher exci-
tations. The application of TN formulated algorithms,
including extensions to excited states, time evolution and
finite temperature has allowed a more systematic explo-
ration of the model in recent years.

The discretised Hamiltonian of the model, in the
Kogut—Susskind formulation with staggered fermions [136]
reads

SRS
2
+ 23 (Lt a), (2)

where ¢! represents the creation operator of a spin-less
fermion on lattice site n, and U,, = ¢ is the link oper-
ator between sites n and n + 1. L,, canonical conju-
gate to 6, corresponds to the electric field on the link,
and « corresponds to a background field. Physical states
need to satisfy Gauss’ law as an additional constraint,
L, —Ly_1 = ¢l¢p— 3 [1 — (—1)"]. In the continuum, the
only dimensionless parameter of the model is the fermion
mass m/g (expressed in terms of the coupling). The dis-
cretisation introduces one more parameter, namely the
lattice spacing ag. For convenience, the Hamiltonian is
often rescaled and expressed in terms of the dimensionless
parameters x = 1/(ag)?, u = 2v/zm/g, with the contin-
uum limit corresponding to x — oo. The local Hilbert
space basis for the fermionic sites can be labeled by the
occupation of the mode, ¢} ¢, € {0,1} (for site n), while
the basis elements for the links can be labeled by the inte-
ger eigenvalues of L, £,. Using this basis, an MPS ansatz
can be optimised to approximate the ground state or the
excitations.

Instead of working with explicit gauge degrees of free-
dom, it is possible to integrate them out using Gauss’ law,
and to work directly in the physical subspace. This results
in a Hamiltonian expressed only in terms of fermionic
operators, but with non-local interactions among them.
Additionally, a Jordan—Wigner transformation can be
applied to map the model onto a more convenient spin
Hamiltonian [137]. In [104], a systematic study of the
mass spectrum in the continuum was performed using
MPS with open boundary conditions, in the absence of
a background field, for different values of the fermion
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Fig. 1. (from [104]) Example of the extrapolations in lattice
spacing for the energy density of the ground state (left), and
the mass gaps of vector (center) and scalar (right) particles
for fermion mass m/g = 0.25. The solid lines show the fitted
curves that produce the final value, and the dashed lines a
different fit to estimate the error.

Table 1. Binding energies, M/g := w — 2m/g, with errors
of the vector and scalar particles. Both results obtained with
open boundary finite MPS with gauge degrees of freedom inte-
grated out (left columns) or gauge invariant uniform MPS [109]
(right column) simulations are shown. In the case of mass-
less fermion, the analytical values are My /g = 0.5641895 and
Ms/g = 1.12838.

My /g Ms/g
m/g ~ OBC uMPS OBC uMPS
[104] [109] [104] [109]
0 0.56421(9) 0.56418(2)  1.1283(10) -
0.125  0.53953(5) 0.539491(8) 1.2155(28) 1.222(4)
0.25  0.51922(5) 0.51917(2) 1.2239(22) 1.2282(4)
0.5 0.48749(3)  0.487473(7) 1.1998(17) 1.2004(1)

mass. The ground state and excitations of the discrete
model were approximated by MPS using a variational
algorithm, and the results were successively extrapolated
in bond dimension, system size (individual calculations
were done on finite systems) and lattice spacing, in order
to extract the continuum values of the ground state energy
density and the mass gaps (Fig. 1 illustrates the contin-
uum limit extrapolations). These steps resemble those of
more usual lattice calculations, so that also standard error
analysis techniques could be used to perform the limits
and estimate errors, and thus gauge the accuracy of the
method. Values of the lattice spacing much smaller than
the usual ones in similar Monte Carlo calculations could
be explored, and very precise results were obtained for the
first and second particles in the spectrum (respectively
vector and scalar), beyond the accuracy of earlier numer-
ical studies (see Tab. 1).

Since the algorithms provide a complete ansatz for each
excited state, other observables can be calculated. An
interesting quantity is the chiral condensate, order param-
eter of the chiral symmetry breaking, and written in the
continuum as ¥ = (¥(z)¥(z))/g9. When computed on
the lattice, the condensate has a UV divergence, which is
already present in the free theory. Using the MPS approx-
imations for the ground state, the continuum limit of the
condensate was extracted in [103] (some of these results
were refined later in [138]). After subtracting the UV
divergence, lattice effects were found to be dominated by
corrections of the form a log a. Systematic fitting and error
analysis techniques were applied to obtain very precise
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Table 2. Values of the vacuum chiral condensate in the con-
tinuum for different fermion masses obtained with the MPS
ansatz.

Subtracted condensate

m/g  MPS with OBC Exact
0 0.159930(8) 0.159929
0.125 0.092023(4) -
0.25 0.066660(11) -
0.5 0.042383(22) -
0.4849 0.095
0.4849 L+ 0.09 +F +
s 0.085 + *
0.4848 o o +
= 0.08 ¢+t
0.4848 - +1
. 0.075 _fl-
04847h oorl
0'48470 1 2 3 4 5 0'0650 0.05 0.1 0.15 02 025
1N x10° 1V

Fig. 2. Example of the condensate extrapolations in finite size
(left) and lattice spacing (right) for fermion mass m/g = 0.25
[103]. The left plot corresponds to fixed lattice parameter
x = 100. On the right, the divergent part corresponding to the
non-interacting case has already been subtracted. The dashed
lines show the fitted curves.

estimations of the condensate for massless and massive
fermions (Tab. 2, see also results with uniform MPS [139]
and infinite DMRG [140]). In the former case the exact
value can be computed analytically, but for the latter,
very few numerical estimations existed in the literature
(Fig. 2).

These results demonstrate the feasibility of the MPS
ansatz to efficiently find and describe the low-energy part
of the spectrum of a LGT in a non-perturbative man-
ner. Moreover they show explicitly how the errors can be
systematically controlled and estimated, something fun-
damental for the predictive power of the method, if it is
to be used on theories for which no comparison to an exact
limit is possible.

4.1.2 Matrix product states for gauge field theories

A different series of papers by Buyens et al. [109,139,
141-145] also thoroughly studied the aforementioned
Schwinger model [146] within the broad MPS framework.
In this section, the general systematics of this approach is
reviewed vis-a-vis the particularities that come with the
simulation of gauge field theories in the continuum limit.
An overview of the most important results that result from
these simulations are also shown.

Continuum limit. As in the approach of both Byrnes
et al. [135,147] and Banuls et al. [104], the simula-
tions start from a discretisation of the QFT Hamiltonian
with the Kogut—Susskind prescription [136] followed by
a Jordan-Wigner transformation. But different from
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Fig. 3. (a) Bipartite entanglement entropy for different ground
state simulations at different lattice spacings ga = 1/+/z. Fits
are of the form —1/6log a+A+ Ba [141]. (b) Fit of the Einstein-
dispersion relation E? = k? + m2(a) to the numerical results
for the lowest lying bosonic vector excitation, for m/g = 0.75,
ag = 1/10,1/+/300, 1/4/800. In this case the continuum extrap-
olation (full blue line) a — 0 gives: m,(0)/g = 1.96347(3) [109].

[104,135,147], the simulations [109,139,141-145] are per-
formed directly in the thermodynamic limit, avoiding the
issue of finite-size scaling. From the lattice point of view,
the QFT limit is then reached by simulating the model
near (but not at) the continuum critical point [148]. Upon
approaching this critical point the correlation length in
lattice units diverges £/a — oo. Large scale correlations
require more real-space entanglement, specifically for the
Schwinger model the continuum critical point is the free
Dirac-fermion ¢ = 1 CFT, implying that the bipartite
entanglement entropy should have a UV-divergent scal-
ing of 1/61n(¢/a) [149]. This was confirmed explicitly by
the numerical MPS simulations of the ground state of the
Schwinger model [109,141], as shown in Figure 3a. Notice
the same UV scaling for ground states in the presence
of an electric background field @, leading to a UV finite
subtracted entropy (see the inset), that can be used as a
probe of the QFT IR physics [141].

For the MPS simulations this UV divergence of the
entanglement requires bond dimensions D that grow poly-
nomially with the inverse lattice spacing, D ~ a~". But
it turns out that, despite this polynomial growth one can
simulate the Schwinger model sufficiently close to its con-
tinuum critical point a — 0, with a relatively low com-
putational cost. In the different papers simulations were
performed up to a =~ 1/(30g), corresponding to a cor-
relation length £/a =~ 15—35, depending on the particu-
lar ratio of the fermion mass and gauge coupling m/g in
the Hamiltonian. The simulations at different decreasing
values of a then allow for very precise continuum extrapo-
lations, as illustrated in Figure 4a for the dispersion rela-
tion of the (lowest lying) excitation [109]. Notice that in
contrast to e.g. d =3+1 QCD, d =1+1 QED is a super-
renormalizable theory, with a finite continuum extrapo-
lation of the particle excitation masses mpnys in terms
of the bare parameters (m, g) of the theory: mpnys(a) =
Mphys(0) + O(a). A further study demonstrated that even
simulations with lattice spacings a > 1/(10g) (implying a
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Fig. 4. (a) A typical Schmidt spectrum (single cut on the infi-
nite line) for a converged ground state simulation; justifying
the truncation at electric field values |g| = 3 for a Schmidt
precision € = 2.5 x 107'7 (orange line) [145]. (b) Charge distri-
bution of the light fermions around unit probe point charges
at different inter-charge distances Lg, for m/g = 0.75 [141].

smaller computational cost) are already sufficient for con-
tinuum extrapolations with four digit precision [145].

Truncating the gauge field. The numerical Hamiltonian
MPS simulations require finite local Hilbert spaces, which
is in apparent conflict with the bosonic gauge degrees
of freedom that come with the continuous U(1) group
of the Schwinger model. As became evident in the work
of Buyens et al., these bosonic fields can be efficiently
truncated in the electric field basis, leading to an effective
finite local Hilbert space appropriate for the simulations.
In Figure 4a, the distribution of the Schmidt values? is
shown over the different electric field eigenvalues ¢ for a
particular ground state simulation. Notice that the electric
field values are discrete in the compact QED formulation.
As one can see from the figure, the contribution from the
higher electric field values decays rapidly, in fact expo-
nentially, and it was shown that this decay remains stable
towards the continuum limit [145]. For a given Schmidt
precision one can therefore indeed safely truncate in gq.
Most simulations used ¢ € [—3, 3].

Gauge invariance. As was discussed already in previ-
ous sections, the Kogut—Susskind set-up starts from the
Hamiltonian QFT formulation in the time-like axial gauge
Ap = 0, with the physical states obeying the Gauss con-
straint VE = p. This is indeed equivalent to requir-
ing the physical states to be invariant under local gauge
transformations. The resulting lattice Hamiltonian then
operates on a Hilbert space of which only a subspace of
gauge invariant states, obeying a discretised version of
Gauss’ law, is actually physical. The simulations of Buyens
et al. exploited this gauge invariance by constructing gen-
eral gauge invariant MPS states [109] and simulating
directly on the corresponding gauge invariant manifold.

2 By the singular value decomposition, any matrix M can be
decomposed in a positive semidefinite diagonal matrix D and two
unitaries matrices U and V such that M = UDV'. The diagonal
elements of the matrix D are called the Schmidt values or Schmidt
spectrum
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As shown in [139], for ground state simulations, working
with explicit gauge invariant states leads to a consider-
able reduction in the computation time. The reason lies
in the sparseness of the matrices appearing in gauge invari-
ant MPS states; but also in the fact that the full gauge
variant Hilbert space contains pairwise excitations of non-
dynamical point charges, separated by short electric field
strings of length L ~ a. In the continuum limit this leads
to a gapless spectrum for the full Hilbert space, whereas
the spectrum on the gauge invariant subspace remains
gapped. Such a nearly gapless spectrum requires many
more time steps before convergence of the imaginary time
evolution towards the proper ground state. As such, these
test simulations on the full Hilbert space [139] are con-
sistent with Elitzur’s theorem [150], which states that a
local gauge symmetry cannot be spontaneously broken,
ensuring the same gauge invariant ground state on the
full gauge variant Hilbert space.

Results. Using the Schwinger model [134,151] as a very
nice benchmark model for numerical QFT simulations,
the results of the numerical simulations [109,139,141—
145] were verified successfully against these analytic QFT
results in the appropriate regimes. In addition, where pos-
sible, the results were compared with the numerical work
of [104,135,147], and found to be in perfect agreement
within the numerical precision. Taken together, the ten-
sor network simulations of Byrnes, Banuls, Buyens et al.,
form the current state of art of numerical results on the
Schwinger model. Now, a selection of the results of Buyens
et al. are discussed:

Ground state and particle excitations. By simulating the
ground state and constructing ansatz states on top of the
ground state, MPS techniques allow for an explicit deter-
mination of the approximate states corresponding to the
particle excitations of the theory [152]. For the Schwinger
model three particles were found [109]: two wvector par-
ticles (with a quantum number C' = —1 under charge
conjugation) and one scalar particle (C' = +1). For each
of these particles, the obtained dispersion relation is per-
fectly consistent with an effective Lorentz symmetry at
small momenta, as illustrated in Figure 3a. The second
vector excitation was uncovered for the first time, con-
firming prior expectations from strong coupling perturba-
tion theory [134,151]. See the extrapolated mass values
obtained for the scalar and first vector particle in absence
of a background field in Table 3. Furthermore, in [142] the
excitations were studied in presence of a background elec-
tric field. By extrapolating towards a vanishing mass gap
for a half-integer background field, this allowed for a pre-
cise determination of the critical point (m/g). = 0.3308
in the phase diagram [145].

String breaking. By probing the vacuum of a confin-
ing theory with a heavy charge/anti-charge pair, one can
investigate the detailed physics of string formation and
breaking, going from small inter-charge distances to larger
distances. In the latter case the heavy charges get screened
by the light charged particles that are created out of the
vacuum. This string breaking picture was studied in detail
for the Schwinger model in [141]. Figure 3b shows one of
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Table 3. Energy density and masses of the one-particle exci-
tations (in units g = 1) for different m/g. The last column
displays the result for the heavy vector boson [109].

m/g —wo My 1 M 1 My 2

0 0.318320(4)  0.56418(2)

0.125 0.318319(4)  0.789491(8)  1.472(4) 2.10 (2)
025 0.318316(3) 1.01917 (2) 1.7282(4)  2.339(3)
05  0.318305(2) 1.487473(7) 2.2004 (1)  2.778 (2)
075  0.318285(9) 1.96347(3)  2.658943(6)  3.2043(2)
1 0.31826(2)  2.44441(1)  3.1182 (1)  3.640(4)

the results on the light particle charge density for different
distances between the heavy charges. At small distances
there is only a partial screening, whereas at large distances
the screening is complete: for both fully integrated clouds,
the total charge is exactly +1. For large values of Lg,
the string is completely broken and the ground state is
described by two free particles, i.e. mesons. Notice the red
line in the plot which depicts the corresponding analytic
result of the ground state charge distribution for the non-
relativistic hydrogen atom in d = 1+ 1. Finally, also frac-
tional charges were studied in [141], explicitly showing for
the first time the phenomenon of partial string breaking
in the Schwinger model.

4.1.3 Tensor networks for lattice gauge theories and atomic
quantum simulation [110]

In [110], an exact representation of gauge invariance of
quantum link models, Abelian and non-Abelian, was given
in terms of a tensor network description. The starting
point for the discussion are LGT's in the Hamiltonian for-
mulation, where gauge degrees of freedom U, , are defined
on links of a lattice, and are coupled to the matter ones v,
defined on the vertices. In the quantum link formulation,
the gauge degrees of freedom are described by bilinear
operators (Schwinger representation). This feature allows
one to solve exactly, within the tensor network represen-
tation, the constraints imposed by the local symmetries of
this model.

Quantum link models have two independent local sym-
metries, (i) one coming from the Gauss law and (ii) the
second from fixing a representation for the local degree of
freedom. (i) Gauge models are invariant under local sym-
metry transformations. The local generators of these sym-
metries, G, commute with the Hamiltonian, [H,G,] = 0.
Hence, G, are constants of motion or local conserved
quantities, which constrain the physical Hilbert space of
the theory, G, |phys) = 0 Va, and the total Hilbert space
splits in a physical or gauge invariant subspace and a
gauge variant or unphysical subspace: Hiotal = Hphys @
Hunphys- This gauge condition is the usual Gauss’ law.
(ii) The quantum link formulation of the gauge degrees
of freedom introduces an additional constraint at every
link, that is, the conservation of the number of link parti-
cles, N, = clcy + cle, = N. Hence, [H, N, ,] = 0 which
introduces a second and independent local constraint in
the Hilbert space.
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More concretely, in a fermionic Schwinger representa-
tion of a non-Abelian U(NN) quantum link model, the
gauge operators UY, that live on the links (z,y) of a
d-dimensional lattlce with color indices i, j are expressed
as a bilinear of fermlomc operators, U;{y = cw{f In this
link representation, the number of fermions per link is a
constant of motion Ny, = Y, cifcl + cif¢i = N. In mod-
els with matter, at every vertex x of the 1attlce, there is a
set of fermionic modes 1. with color index i.

The left and right generators of the SU( ) sym-
metry are defined as L, 6~ = >, G )\“ ¢ and

Ry, = 3, 6N cl, with A}, the group btructure
constants. Hence, the non-Abelian generators of the
gauge symmetry are given by G% = >, jzbﬁ)\;{jdg +

> [ stk T R x], with k the different directions in

the lattice. There are also similar expressions for the
Abelian part of the group G,.

The “physical” Hilbert subspace is defined as the one
that is annihilated by every generator, i.e., G,|phys) =
G%|phys) = 0 Vx,a. A particular feature of quantum link
models is that, these operators being of bosonic nature
(they are bilinear combinations of fermionic operators),
the spatial overlap between operators at different vertices
z or y is zero, ie., G4GY = 0,Va,band z # y, even
between nearest-neighbours. In this way, (i) the gauge
invariant Hilbert space (or Gauss’ law) is fixed by a pro-
jection, which is defined locally A[s,] on the physmal”

subspace {|s,)} with A [s]

is some configuration of occupations of fermionic modes ¢’
and 7.

Finally, (ii) the second gauge symmetry is controlled by
the fermionic number on the link, which is ensured by the
product of the nearest-neighbour projectors A [s,] being
non-zero only when N =37, nl , +nl .

The U(1) gauge invariant model in (1 4+ 1) dimensions
is defined by the Hamiltonian,

2
= % > [Erasr — )" Bol” + 1 Z

—¢€ Z wlUm,m+1¢m+1 + H.c.,

Neyny = (s \nc,nw where n?, n¢

REIRTS
(3)

where 1), are spin-less fermionic operators with staggered
mass term p living on the vertices of the one-dimensional
lattice. The bosonic operators Ej ;11 and Uy z41, the
electric and gauge fields, live on the links of the one-
dimensional lattice.

The Hamiltonian is invariant under local U(1) symme-
try transformations, and also it is invariant under the dis-
crete parity transformation P and charge conjugation C.
The total electric flux, & = Y _(Fy+1)/L is the order
parameter and locates the transition. It is zero in the dis-
ordered phase, non-zero in the ordered phase, and changes
sign under the C' or P symmetry, i.e., 7€ =¢ & = —&.

In this framework, in [110] the phase diagram of (1+1)D
quantum link version of the Schwinger model is charac-
terised in an external classical background electric field:
the quantum phase transition from a charge and parity
ordered phase with non-zero electric flux to a disordered
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Fig. 5. Results for the model with spin 1 on the links:
(a) Electric flux & for L = {40,60,80,100}, ¢°/2 = 1 and
€ = 1/2 with an estimate of the critical exponents v ~ 1
and @ ~ 1/8 where the overlap among the different curves is
maximal. (b) Uniform part of the entanglement entropy (green
plot, first order approximation, i.e. Uz, = % (Ua, + Uzt1,1),
and blue plot third order approximation). (c¢) Fit to us, =
£log [2Lwsin (rxL)] + a, where ¢ = 0.49 £ 0.04. Both, criti-
cal exponents and central charge are consistent with the Ising
universality class at the phase transition taken from [110].

one with a net zero electric flux configuration is described
by the Ising universality class (see Fig. 5). The ther-
modynamical properties and phase diagram of a one-
dimensional U(1) quantum link model are characterised,
concluding that the model with half-integer link represen-
tation has the same physical properties as the model with
integer link representation in a classical background elec-
tric field Fy = %

4.1.4 Tensor networks for lattice gauge theories with
continuous groups [108]

The main difference between lattice gauge theories and
generic many-body theories is that they require to work
on an artificially enlarged Hilbert space, where the action
of the group that generates the local invariance can be
defined. The physical Hilbert space [153] is then embedded
into the tensor product Hilbert space of the constituents
by restricting it to those states that fulfill the Gauss law,
that is to those states that are gauge invariant (see Fig. 6
for a graphical description). A generic gauge transforma-
tion is built out of local operators A4(g) that represent the
local rotation at site s corresponding to a certain element
of the group g. The physical Hilbert space (or gauge invari-
ant Hilbert space) H, is defined as the space spanned by
all those states that are invariant under all A4(g),

H, ={|¢) € C(G)",
As(9)|9) = 19)

where s are the sites of the lattice A, L is the number of
links, and ¢ is an arbitrary group element.

In [154], the group algebra C(G) is considered as the
local Hilbert space, as suggested in the original Hamiltonian
description of lattice gauge theories [136,155]. In [154],
by exploiting the locality of the operators A;(g) and the
fact that they mutually commute, it is shown that the
projection onto H, is compatible with a tensor network
structure. In particular, the projector is built as hierar-
chical tensor networks such as the MERA [156] and the
Tree Tensor Network [157]. While the MERA is computa-
tionally very demanding, a hybrid version of it has been
built, that allows to construct the physical Hilbert space

Vse A ge G}, (4)

Eur. Phys. J. D (2020) 74: 165

Fig. 6. The Hilbert space H of a quantum many body system
(represented here by a 3D box) is exponentially large, since it
is the tensor product of the Hilbert spaces of the constituents.
Gauge symmetry allows to identify a smaller space, called the
physical Hilbert space Hp. This is the subspace spanned by
those states that fulfill all the local constraints imposed by the
gauge symmetry and is represented by a membrane inside H.

Fig. 7. The projector on the gauge invariant states defined
through the contraction of the two tensors C that copy the
physical Hilbert space onto the auxiliary Hilbert space and G
that selects only configurations fulfilling the gauge invariance
condition. The case of a 4 x 4 square lattice with PBC is pre-
sented.

by using a MERA and then use a Tree Tensor network on the
physical Hilbert space as a variational ansatz. In the same
paper, it is also highlighted how the construction of a phys-
ical Hilbert space can be understood as a specific case of
a duality such as the well known duality between the Z(2)
gauge theory and the Ising model [158].

The idea [154] is very flexible and general but strongly
relies on using C(G) as the local Hilbert space for every
constituent. Since the group algebra contains an orthog-
onal state for every distinct group element, g, the local
Hilbert space becomes infinite dimensional in the case of
continuous groups such as e.g. U(1) and SU(N).

Furthermore, the numerical results with iPEPS in the
context of strongly correlated fermions in two dimensions
were very promising [159], and thus it was decided to
generalise the construction to PEPS tensor networks in
[108]. There, it was understood that there is a unifying
framework for all the Hamiltonian formulations of lat-
tice gauge theories that can be based on a celebrated
theorem in group theory, stating that the group algebra
can be decomposed as the sum of all possible irreducible
representations C(G) = @, (r®7), where r is an irreducible
representation and 7 is its conjugate (see Figs. 7 and 8). If
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Fig. 8. Variational ansatz for gauge invariant states on a lat-
tice of 4 x 4 sites and periodic boundary conditions. The net-
work contains one C per link of the lattice, and one G every
site. The double lines connecting the tensors are used to remind
that each of the elementary tensors has a double structure, one
part dictated by the symmetry and the other one containing
the actual variational parameters.

the group is compact, the irreducible representations are
finite dimensional.

By decomposing C(G) into the direct sum of all the
irreducible representations and truncating the sum to
only a finite number of them, a formulation of LGT is
obtained on finite dimensional Hilbert spaces. For Abelian
gauge theories furthermore this procedure [44] leads to the
already known gauge magnets or link models [53-55].

With this group theoretical picture in mind, it is very
easy to directly construct both the projector onto the
physical Hilbert space as a tensor network, and tensor
network ansatz for states defined on it. The general recipe
is given in [108]. Here for concreteness, the construction
is shown for a two-dimensional square lattice. The tensor
network is composed of two elementary tensors. The first
one, Cf‘[j , a four-index tensor that has all elements zero
except for those corresponding to « =i = = j. C is
applied to each of the lattice sites and acts as a copy ten-
sor that transfers the physical state of the links (encoded
in the leg 7) to the auxiliary legs «, (.

The two auxiliary legs are introduced to bring the infor-
mation to the two sites of the lattices that the link con-
nects. Thus, the copy tensor C allows the decoupling of
the gauge constraint at the two sites and to impose the
Gauss law individually.

This operation is performed at each site by the second
type of tensor, Gg152, onto the trivial irreducible repre-
sentation contained in the tensor product Hilbert space
Hoy @ Hay @ Hay @ Ha,. The contraction of one C for
every link with one G for every site gives rise to the desired
projector onto H, with the structure of a PEPS.

Alternatively, the projector onto H, can be incorpo-
rated into a variational iPEPS ansatz for gauge invariant
states, by promoting each of its tensor elements to a degen-
eracy tensor along the lines used to build symmetric tensor
network states first introduced in [160]. The gauge invari-
ant tensor network can thus be interpreted as an iPEPS
with a fixed tensor structure dictated by the gauge sym-
metry, where each element is again a tensor. These last
tensors collect the variational parameters of the ansatz.

4.2 Phase diagram and dynamical evolution of lattice
gauge theories with tensor networks

Despite their impressive success, the standard LGT
numerical calculations based on Monte Carlo sampling are

Page 11 of 42

of limited use for scenarios that involve a sign problem, as
is the case when including a chemical potential. This con-
stitutes a fundamental limitation for LQCD regarding the
exploration of the QCD phase diagram at non-zero baryon
density. In contrast, TNS methods do not suffer from the
sign problem, which makes them a suitable alternative tool
for exploring such problems, although, it is challenging to
simulate high-dimensional systems.

In this section, it is shown how tensor network tech-
niques could go beyond Monte Carlo calculations, in the
sense, of being able to perform real-time calculations and
phase diagrams with finite density of fermions. Examples
of these achievements appear in [138,161-167].

4.2.1 Real-time dynamics in U(1) lattice gauge theories
with tensor networks [162]

One of the main applications of tensor network methods is
real-time dynamics. Motivated by experimental proposals
to realise quantum link model dynamics in optical lattice
experiments, reference [162] studied the quench dynamics
taking place in quantum link models (QLMs) when start-
ing from an initial product state (which is typically one
of the simplest experimental protocols). In particular, the
model under investigation was the U(1) QLM with S =1
variables as quantum links, whose dynamics is defined by
the Hamiltonian

H= - tz [wlU;,gg+1wz+1 + wl+1Uz,m+1wm:|
x

2
+mY (U + SN B2, (5)

where 1, defines staggered fermionic fields, Uy z41 =
St apr and By ppq = S; »4+1 are quantum link spin vari-
ables; while the three Hamiltonian terms describe minimal
coupling, mass, and electric field potential energy, respec-
tively.

Several types of time evolutions were investigated.
Figure 9 presents the time evolution corresponding to
string breaking dynamics: the initial state, schematically
depicted on the top of the main panel, consists of a charge
and anti-charge separated by a string of electric field (red
region), and surrounded by the bare vacuum (light yel-
low). After quenching the Hamiltonian dynamics (in this
specific instance, with m = g = 0), the string between
the two dynamical charges breaks (as indicated by a mean
value of the electric field around 0 after a time 7¢ ~ 2), and
the charges spread in the vacuum region. For this specific
parameter range, an anti-string is created at intermediate
time-scales 7t ~ 4. Such string dynamics has also a rather
clear signature in the entanglement pattern of the evolv-
ing state: in particular, it was shown how the speed of
propagation of the particle wave-front extracted from the
local value of the electric field was in very good agreement
with the one extracted from the bipartite entanglement
entropy.

With the same algorithm, it is possible to simulate the
time evolution of a rather rich class of initial states up to
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Fig. 9. Real-time evolution of an electric flux string of length
L = 20 embedded in a larger lattice (of length N = 100) in
the vacuum state (the initial cartoon state is sketched on the
top). The electric flux real-time evolution is shown for m =
0,9 = 0, and the time is in units of ¢ = 1. Figure adapted from
reference [162].

intermediate times. As another example, reference [162]
also investigated the scattering taking place between car-
toon meson states at strong coupling g? > 1 (at smaller
coupling, investigating scattering requires a careful initial
state preparation, where a finite-momentum eigenstate is
inserted ad hoc onto the MPS describing the dressed vac-
uum). Rather surprisingly, even these simplified scattering
processes were found to generate a single bit of entangle-
ment in a very precise manner.

Closer to an atomic physics implementation with
Rydberg atoms is the work [168] where different string
dynamics are explored to infer information about the
Schwinger model.

4.2.2 Finite-density phase diagram of a (1+1)-d
non-Abelian lattice gauge theory with tensor networks [163]

By means of the tools introduced in Section 4.1.3, in [163,
169] the authors have studied the finite-density phase dia-
gram of a non-Abelian SU(2) and SU(3) lattice gauge the-
ory in (1+1)-dimensions.

In particular, they introduced a quantum link formula-
tion of an SU(2) gauge invariant model by means of the
Hamiltonian

H = Hcoupl + Hfree + Hbreak (6)

where the first term introduces the coupling between
gauge fields and matter, as

L—-1
M M
Hopr =t Y Y MUy jwdl , +He, (7)

J=1s,s'=1,]

where ¢ and U are the matter field and parallel transport
operators, j € {1,..., L—1} numbers the lattice sites, and
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Fig. 10. Phase diagram of the SU(2) lattice gauge model in
the quantum link formalism as a function of the matter-field
coupling and the matter filling (¢, far). Two insulating phases
appear at large coupling ¢ and far = 1,2/3 embedded in a
meson BCS and a simple liquid phase. Figure from [163].

s €{1,1}. The second gauge term accounts for the energy
of the free field

2 2 2
g, R L
Hio= B3 [0+ 49,

L
6.2 [L] [L] [R] (R]
=207 ) (1 ML T ”j+1,T”j+1,¢) )

written in terms of the fermion occupation =

3,8
cﬂ%ﬂ, where g1 = go/3/8. The last term Hyreak

has to be introduced to resolve the undesired acci-
dental local conservation of the number of fermions

D=t (nﬁ] +n§?§ +n£LS]) around every site j, that
results in a U(2) theory. This last term breaks this invari-
ance and thus, the final theory is an SU(2) gauge invariant
one [163] (Fig. 10).

Finally, by means of a finite-size scaling analysis of cor-
relation functions, the study of the entanglement entropy
and fitting of the central charge of the corresponding con-
formal field theory, the authors present the rich finite-
density phase diagram of the Hamiltonian (6), as reported
in Figure 11. In particular, they identify different phases,
some of them appearing only at finite densities and
supported also by some perturbative analysis for small
couplings. At unit filling the system undergoes a phase
transition from a meson superfluid, or meson BCS, state
to a charge density wave via spontaneous chiral sym-
metry breaking. At filling two-thirds, a charge density
wave of mesons spreading over neighbouring sites appears,
while for all other fillings explored, the chiral symmetry
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Fig. 11. Phase diagram of the SU(3) lattice gauge model in
quantum link formalism as a function of the space matter-field
coupling ¢ and the matter filling v, for bare mass m = 0. Figure
from [169].

is restored almost everywhere, and the meson superfluid
becomes a simple liquid at strong couplings.

Very recently, also a one-dimensional SU(3) gauge the-
ory has been studied with the same approach. In [169],
working on and extending the results reviewed in the
previous paragraph, the authors present an SU(3) gauge
invariant model in the quantum link formulation, and
perform an extended numerical analysis on the differ-
ent phases of the model. For space reasons, the model
Hamiltonian is not displayed here and the interested
reader is referred to the original publication. However, the
main results are: at filling v = 3/2, the Kogut—Susskind
vacuum, a competition between a chiral and a dimer phase
separated by a small gapless window has been reported.
Elsewhere, only a baryonic liquid is found. The authors
also studied the binding energies between excess quarks
on top of the vacuum, finding that a single baryon state
(three excess quarks) is a strongly bound one, while two
baryons (six quarks) weakly repel each other. The authors
concluded that the studied theory — differently from three
dimensional QCD — disfavours baryon aggregates, such as
atomic nuclei.

4.2.3 Density induced phase transitions in the Schwinger
model: a study with matrix product states [164]

The potential of TNS methods to deal with scenarios
where standard Monte Carlo techniques are plagued by
the sign problem was explicitly demonstrated in [164] by
studying the multi-flavour Schwinger model, in a regime
where conventional Monte Carlo suffers from the sign
problem. The Hamiltonian of the Schwinger model (2)
can be modified to include several fermionic flavours, with
independent masses and chemical potential, that do not
interact directly with each other but only through the
gauge field. In the case of two-flavours with equal masses
studied in [164] the model has an SU(2) isospin symme-
try between the flavours. For vanishing fermion mass and
systems of fixed volume, the analytical results [170,171]
demonstrate the existence of an infinite number of particle
number sectors, characterised by the imbalance between
the number of fermions of both flavours. The differ-
ent phases are separated by first order phase transitions
that occur at fixed and equally separated values of the
(rescaled) isospin chemical potential, independent of the
volume, so that the isospin number of the ground state
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Fig. 12. (from [164]) Left: continuum value, for massless
fermions, of the imbalance AN in the ground state as a func-
tion of the rescaled isospin chemical potential, for increasing
volumes 2 (red solid), 6 (green dashed) and 8 (blue dash-dotted
line). The vertical lines correspond to the analytical prediction
for the phase transitions. The lower inset shows explicitly the
volume dependence of the successive transition points. Right:
phase diagram in the mass vs. isospin chemical potential plane
for volume Lg = 8. The black crosses mark the computed data
points, the different colours indicate the different phases.

varies in steps as a function of the chemical potential (see
left panel of Fig. 12).

The numerical calculations in [164] used MPS with
open boundary conditions, and followed the procedure
described in [104], with the exception that the lattices con-
sidered had constant volume, Lg = N/\/x. Thus there was
no need for a finite-size extrapolation of the lattice results
(N — 00), but a sufficiently large physical volume Lg had
to be considered. The results reproduced with great accu-
racy the analytical predictions at zero mass, as shown in
the left panel of Figure 12. While the analytical results
can only cope with massless fermions, the MPS calcula-
tion can be immediately extended to the massive case, for
which no exact results exist. For varying fermion masses,
the phase structure was observed to vary significantly. The
location of the transitions for massive fermions depends on
the volume, and the size of the steps is no longer constant.
The right panel of Figure 12 shows the mass vs. isospin
phase diagram for volume Lg = 8.

The MPS obtained for the ground state allows fur-
ther investigation of its properties in the different phases.
In particular, the spatial structure of the chiral conden-
sate, which was studied in [164,172]. While for AN = 0,
the condensate is homogeneous, for non-vanishing isospin
number it presents oscillations, with an amplitude close to
the zero density condensate value and a wave-length that,
for a given volume, decreases with the isospin number or
imbalance, but decreases with Lg.

4.2.4 Efficient basis formulation for (1+1)-dimensional
SU(2) lattice gauge theory: spectral calculations with
matrix product states [165]

A non-Abelian gauge symmetry introduces one further
step in complexity with respect to the Schwinger model,
even in 1+1 dimensions. The simplest case, a continuum
SU(2) gauge theory involving two fermion colours, was
studied numerically with MPS in [165], using a lattice for-
mulation and numerical analysis in the spirit of [104].
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The discrete Hamiltonian in the staggered fermion for-
mulation reads [1306]

1 & to o
2*2 Z <¢e U, +1+HC)
n=1 £¢0'=1
N 2 a
ZZ ¢ZT¢ + = g ZJZ (9)
n=1¢=1

The link operators U are SU(2) matrices in the funda-
mental representation, and can be interpreted as rotation
matrices. The Gauss law constraint is now non-Abelian,
GI |¥) =0, Vm, 7, with generators GT, = LT — Rl | —

., where Q7 = 2221 %qﬁﬁjolfyqﬁf,; are the components
of the non-Abelian charge at site m (if there are exter-
nal charges, they should be added to @,,). L™ and R7,
T € {z,y, 2}, generate left and right gauge transforma-
tiODb on the link, and the colour-electric flux energy is

=> . LLL7, =% _ R} R} . The Hilbert space of each
hnk is analogous to that of a quantum rotor, and its basis
elements, for the m-th link, can be labeled by the eigen-
values of J,,,, LZ, and RZ,, as |jmlml,,)-

As in the case of the Schwinger model, it is possible
to truncate the gauge degrees of freedom. This can be
achieved in a gauge invariant manner [51] and was applied
to study the string breaking phenomenon in the discrete
theory in [173]. However, in order to attain precise results
that permit the extraction of a continuum limit, it is con-
venient to work in a more efficient basis, in which gauge
degrees of freedom are integrated out. A first step to
reduce the number of spurious variables is the color neu-
tral basis introduced in [174,175]. In [165], building on
that construction, a new formulation of the model on the
physical subspace is introduced in which the gauge degrees
of freedom are completely integrated out. Nevertheless, it
is still possible to truncate the maximum colour-electric
flux at a finite value jn.x in a gauge invariant manner, and
analyse the effect of this truncation on the physics of the
model. This is relevant, for instance, to understand how
to extract continuum quantities from a potential quan-
tum simulation of the truncated theory. To this end, dif-
ferent quantities were computed and extrapolated to the
continuum, including the ground state energy density, the
entanglement entropy in the ground state, the vector mass
gap and its critical exponent for values of the maximum
colour-electric flux jmax = 1/2,1,3/2, 2.

The results demonstrated that, while a small trunca-
tion is enough to obtain the correct continuum extrapo-
lated ground state energy density, the situation varies for
the mass gap. In particular (see left panel of Fig. 13), if
the truncation is too drastic, it fails to produce a reliable
extrapolation, and only jpna.x > 1 allowed for precise esti-
mations of the vector mass, and the extraction of a critical
exponent as the gap closes for massless fermions.

Particularly interesting is the study of the entanglement
entropy of the vacuum, which can be easily computed
from the MPS ansatz, as already demonstrated in [141]
for the Schwinger model. The gauge constraints are not
local with respect to a straightforward bipartition of the
Hilbert space [176,177], and different contributions to the
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Fig. 13. (from [165]) Left: final value of the vector mass gap
(after continuum extrapolation) as a function of the fermion
mass using truncations jmax = 1 (red triangles), 3/2 (green
squares) and 2 (magenta diamonds), with the yellow stars
showing results from a strong coupling expansion [175]. The
blue circles correspond t0 jmax = 1/2, although the con-
tinuum estimation is not reliable in that case. The dotted
lines represent the best fit of the form ~(m/g)”. Right: cen-
tral charges extracted from the scaling of the entanglement
entropy (see panel d in Fig. 14) for different fermion masses
and jmax = 1/2 (blue circles), 1 (red triangles), 3/2 (green
squares), and 2(magenta diamonds).

entropy can be identified, of which only one is distillable,
while the others respond only to the gauge invariant struc-
ture of the state. In [165], these different contributions
were computed and their scaling analysed (see Fig. 14a).
For a massive relativistic QF'T, as is the case here for non-
vanishing fermion mass, the total entanglement entropy is
predicted to diverge as S = (¢/6) log,(&/a) [149], where ¢
is the central charge of the conformal field theory describ-
ing the system at the critical point, in the SU(2) case,
¢ = 2. This effect could also be studied from the MPS
data (Fig. 14d), and it was also found to be sensitive to
the truncation, leading to the conclusion that truncations
of jmax < 1 would not recover the continuum theory in the
limit of vanishing lattice spacing, as shown by Figure 13.

4.2.5 Gaussian states for the variational study of
(141)-dimensional lattice gauge models [166]

Gaussian states [178-180], whose density matrix can be
expressed as the exponential of a quadratic function in
the creation and annihilation operators, are widely used
to describe fermionic as well as bosonic quantum many-
body systems. They fulfill Wick’s theorem and thus can
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Fig. 14. (from [165]) Ground state entropy in the SU(2) LGT.
(a) The different contributions (distillable in blue circles) are
shown for the entanglement entropy of a chain of 200 sites, for
fermion mass m/g = 0.8 and using jmax = 2. Panels (b) and
(c) show the extrapolations in bond dimension and system size,
and panel (d) shows the continuum limit for the total entropy,
exhibiting the divergent log ag term.

be completely described in terms of a covariance matrix,
with a dimension that scales only linearly in the system
size. This provides a very efficient representation of the
quantum many-body state, which can be used as a varia-
tional ansatz. But in systems with interacting bosons and
fermions, as is the case for lattice gauge theories with
gauge and matter degrees of freedom, Gaussian states
present a severe limitation, since they cannot describe any
correlations between the two types of fields.

However, as was recently shown [181], generalised
ansitze that combine non-Gaussian unitary transforma-
tions with a Gaussian ansatz in the suitable basis, can be
successfully used to approximate static and dynamic prop-
erties of systems containing fermions and bosons, also in
higher dimensions. In [166], this approach was shown to
work for (141)-dimensional lattice gauge theories. More
explicitly, a set of unitary transformations was introduced
that completely disentangle the gauge and matter degrees
of freedom for any gauge symmetry given by a compact
Lie group and a unitary representation. This allows for
new ways of studying these lattice gauge theories.

The particular cases of U(1) and SU(2) were explic-
itly studied in [166]. For U(1), the resulting Hamiltonian
is the one proposed by Hamer, Weihong, and Oitmaa
in [182], which has been used for numerical calculations
[104,161,182], and has been experimentally implemented
with trapped ions in a pioneering quantum simulation
[52]. The general character of the decoupling transfor-
mations thus provides alternative formulations of other
lattice gauge theories which can be suitable for experimen-
tal implementation with the advantage of being directly
defined in the physical space and not requiring the explicit
realisation of any gauge degrees of freedom.

With a numerical perspective, [166] addressed the
decoupled formulation using a Gaussian variational
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Fig. 15. String breaking in U(1) (left column) and SU(2) (right
column) LGT (from [166]). The upper row of plots shows the
static potential between two external charges as a function of
the distance, at fixed lattice spacing, for different values of the
fermion mass, computed with MPS (crosses on the left, circles
on the right) and a Gaussian ansatz (solid lines on the left, tri-
angles and asterisks on the right). The left plot corresponds
to two unit charges in the U(1) LGT, and several fermion
masses, while the right plot shows the corresponding calcu-
lation in the SU(2) case for a pair of external static charges
carrying s = 1/2. The lower row shows the real-time evolution
of a string created on top of the interacting vacuum. On the
left, for the U(1) case, the edges are dynamical charges and
can propagate, while on the right, for SU(2), they are static.
In both cases, the color indicates the chromo-electric flux on
each link as a function of time.

ansatz, and used it to investigate static and dynamical
aspects of string breaking in the Abelian U(1) and non-
Abelian SU(2) gauge models. In the U(1) case, the for-
mulation directly allows the study of the real-time string
breaking phenomenon in the presence of static external
or dynamic charge. In the SU(2) case, only the case of
static external charges was studied, using another unitary
transformation that decouples them from the dynamical
fermions. The Gaussian approach was capable of captur-
ing the essential features of the phenomenon, both the
static properties and the out-of-equilibrium dynamics (see
Fig. 15). The results showed excellent agreement with pre-
vious TNS simulations over a broad range of the param-
eter space, despite the number of variational parameters
in the Gaussian ansatz being much smaller. The approach
could be extended and used for further non-equilibrium
simulations of other LGTs.

4.2.6 Thermal evolution of the Schwinger model [138,161]

TNS ansétze can also describe density operators, in partic-
ular thermal equilibrium states, and can therefore be used
to study the behaviour of a LGT at finite temperature.
This approach was followed in [138,161], which employed
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Fig. 16. Chiral condensate in thermal equilibrium in the con-
tinuum as a function of temperature for massless (left, from
[161]) and massive fermions (right, from [138]). The solid line
on the left shows the analytical prediction for the restoration
of the chiral symmetry, while the data points show results
obtained with MPO using two different approximations for the
evolution operators. For the massive case on the right the hor-
izontal line shows the value at zero temperature (computed
numerically with MPS) and the solid blue line the approxima-
tion by Hosotani and Rodriguez [186] (which is exact only at
very small masses).

a purification ansatz [183] to represent the thermal equi-
librium state as a matrix product operator (MPO). At infi-
nite temperature, g8 = 0, the thermal equilibrium state
is maximally mixed, and has an exact representation as
a simple MPO. By applying imaginary time evolution on
this MPO [183,184], a whole range of temperatures can
be studied. A relevant observable to analyse in the case of
the Schwinger model is again the chiral condensate (see
Fig. 16). In the massless case, the chiral symmetry is bro-
ken (due to an anomaly), and the condensate has a non-
zero value in the ground state. The symmetry is smoothly
restored at infinite temperature, as demonstrated analyt-
ically in [185].

In [138,161] a finite size MPO ansatz was used in the
physical subspace, i.e., after integrating out the gauge
degrees of freedom. The imaginary time (thermal) evolu-
tion was applied in discrete steps, making use of a Suzuki-
Trotter approximation, and after each step a variational
optimisation was used to truncate the bond dimension of
the ansatz. In the physical subspace, the long-range inter-
actions among charges pose a problem for standard TN
approximations of the exponential evolution operators.
Two alternatives were considered to apply the discrete
steps as MPO. In one of them, the long-range exponential
was approximated by a Taylor expansion. In the other,
an exact MPO expression of the exponential of the long-
range term was used, taking advantage of the fact that it is
diagonal in the occupation basis. For the application to be
efficient, a truncation was introduced in this MPO, which
was equivalent to a cut-off in the electric flux that any link
in the lattice can carry. The second approach was found
to be more efficient, and a small cut-off was sufficient for
convergence over the whole range of parameters explored.
With this method, the chiral condensate in the contin-
uum was evaluated from inverse temperature g8 = 0 to
g8 ~ O(10) both for massless and massive fermions. For
non-vanishing fermion masses, the condensate diverges in
the continuum, and a renormalisation scheme has to be
adopted that subtracts the divergence. In [138], this was
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achieved by subtracting the value of the condensate at zero
temperature in the non-interacting case, after the finite-
size extrapolation.

The continuum limit was performed for each value of
the temperature in a manner similar to [104]. The width
of the time step in the Trotter approximation introduced
an additional source of error, and required an additional
extrapolation. However, the form of the step width extrap-
olation is given by the order of the Suzuki-Trotter approx-
imation, and this step did not affect the final precision,
which again turned out to be controlled by the continuum
limit.

All in all, the technique allowed for reliable extrapo-
lations in bond dimension, step width, system size and
lattice spacing, with a systematic estimation and control
of all error sources involved in the calculation. Notably,
although the large temperature regime of the lattice model
is easier to describe by a MPO, the lattice effects are also
more important, which resulted in larger errors after the
continuum extrapolation. As the temperature decreases,
the errors from the lattice effects become less relevant,
but the truncation errors from the MPO approximation
accumulate, so that they dominate the low-temperature
regime. In conclusion, these results further validate the
TNS approach as a tool to investigate the phase diagram
of a quantum gauge theory.

4.2.7 Finite temperature and real-time simulation of the
Schwinger model [109,143,144]

Finite temperature. In [143], different aspects of the finite
temperature physics of the Schwinger model were studied.
For different temperatures the appropriate gauge invariant
Gibbs states were obtained from imaginary time evolution
on a purification of the identity operator. Among the dif-
ferent results here the computation of the temperature
dependent renormalised chiral condensate is quoted, in
agreement with the analytical result for m/g = 0 and the
numerical results of [161] for m/g # 0. Furthermore, the
study of the temperature-dependence of the energy den-
sity in an electric background field allowed for the study
of an effective deconfinement transition. For half-integer
background fields the expected restoration of the C' sym-
metry at non-zero temperature was also verified.

Real-time simulations. Finally, an intriguing effect
in the Schwinger model concerns the non-equilibrium
dynamics after a quench that is induced by the appli-
cation of a uniform electric field onto the ground state
at time ¢ = 0 [109,144]. Physically, this process corre-
sponds to the so-called Schwinger pair creation mecha-
nism [146] in which an external electric field separates vir-
tual electron-positron dipoles to become real electrons and
positrons. The original derivation [146] involved a classical
background field, neglecting any back-reaction of the cre-
ated particle pairs on the electric field. In [187,188], this
back-reaction was taken into account at the semi-classical
level. The real-time MPS simulations of [109,144] provide
the first full quantum simulation of this non-equilibrium
process. In Figure 17, a sample result is shown, for the
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Fig. 17. Real-time evolutions for electric field quenches,
E(0)/g =0.75,1,25,1.5, for m/g = 0.25 . N(t) is the (vacuum
subtracted) particle density, E(t) is the electric field. (a) The
dotted lines show the corresponding thermal values (within a
temperature interval A3 = 0.1). (b) The dotted lines show the
result for the corresponding semi-classical simulations [144].

case of large initial electric fields. After a brief initial time
interval of particle production, a regime can be observed
with damped oscillations of the electric field and parti-
cle densities going to a constant value. This is in line with
the semi-classical results, but as can be seen in Figure 17b
there is a quantitative difference, with a stronger damping,
especially for the smaller fields. Finite temperature MPS
simulations also allow a comparison with the purported
equilibrium thermal values (Fig. 17a).

4.2.8 Phase diagram and conformal string excitations of
square ice using gauge invariant matrix product states [167]

The examples discussed above widely demonstrate the
computational capabilities of tensor network methods
in dealing with (1+1)-d lattice gauge theories. Refer-
ence [167] reports instead results on a two-dimensional
U(1) gauge theory, the (24+1)-d quantum link model, also
known as square ice (for tensor network results on a theory
with discrete gauge group, see Ref. [154]).

The main difference between square ice and a conven-
tional U(1) LGT is that the gauge fields now span a
two-dimensional Hilbert space, and parallel transporters
are replaced by spin operators. The system Hamiltonian

reads:
H=> " (—fo+A\f3) (10)
O

where the summation goes over all plaquettes of a square
lattice, and the plaquette operator fo = ot o, 0, 0, +
H.c. flips the spins on the links pq, ..., 14 of oriented pla-
quettes. The first term corresponds to the magnetic field
interaction energy, while the second term is a potential
energy for flippable plaquettes. There is no direct electric
field energy since the spin representation is S = 1/2.

The phase diagram of the model has been determined
using a variety of methods, including exact diagonali-
sation [189] and quantum Monte Carlo [56]. There are

two critical points: one is the so-called Rokshar-Kivelson
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point at A = 1, where the ground state wave function
is factorised into an equal weight superposition of closed
loops [57]. This points separates a columnar phase at
A > 1 from a resonating valence-bond solid (RVBS). The
latter is separated from a Néel phase by a weak first order
transition point at around A ~ 0.36 [56,189]. All of these
phases are confining. The richness of its phase diagram
and the possibility of carrying out precise MC simulations
make this an ideal model for testing tensor network tech-
niques for (241)-d lattice gauge theories.

Reference [167] presents an analysis based on several
observables computed in L, x L, cylinder geometries to
mitigate entanglement growth as a function of the sys-
tem size. The method of choice was an iTEBD algorithm
applied on an MPS ansatz. Beyond simplicity and numer-
ical stability of the algorithm, the main technical advan-
tage of this approach is that re-arranging the MPS in
columns allows the integration of the Gauss law in a rel-
atively simple manner.

In the first part, conventional LGT diagnostics, such
as the scaling of order parameters for the ordered phase,
and the decay of Wilson loops, were analysed. The main
conclusion is that TN methods can reach system sizes
well beyond ED with the necessary accuracy for determin-
ing order parameters and correlation functions. However,
the system sizes achieved (up to 600 spins) were smaller
when compared to the ones accessible with QMC: this pre-
vented, for instance, a systematic study of Wilson loops,
that were found to be particularly sensitive to finite vol-
umes and open boundary conditions.

The second part of the work instead focused on entan-
glement properties of string states, which are gener-
ated by introducing two static charges in the system at
given distance ¢. Some results on the entropy difference
between the string and ground states are depicted in
Figures 18a and 18b: in the region of space between the
two charges (n € [11,20] in the panels), this entropy
difference is compatible with a conformal field theory
scaling, with a central charge that is compatible with
1 in a large parameter regime within the RVBS phase
(Fig. 18c), where finite volume effects are moderate. These
results represent an entanglement proof of the conformal
behaviour of string excitations in a confining theory, which
is a well established fact in non-Abelian (3+1)-d cases as
determined from the string energetics [190].

5 Quantum computation and digital quantum
simulation

There are two avenues towards quantum simulations —
analog and digital. In analog simulations, the degrees of
freedom of the original system and the dynamical evolu-
tions, are mapped to the simulating system. In digital sim-
ulations, the simulating system is evolving forward in time
stroboscopically, by applying a sequence of short quantum
operations. In this section, the digital quantum simula-
tion approach to high-energy models is reviewed, while
the analogue quantum simulation is described in the fol-
lowing one.
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Fig. 18. (a) Increase in von Neumann entropy after insertion
of two static charges +1 at distance £ = 9 on a 30 x 10 lattice.
Entropies taken at vertical cuts of the cylinder between sites
n,n+1. Between the charges, a Calabrese—Cardy fit (red) yields
a central charge c¢ as shown for A = —0.2 (left) and A = 0.7
(right). (b) Central charges ¢ over coupling parameter A for
system sizes 24 x 8 (grey boxes) and 30 x 10 (blue points), £ =5
(open) and ¢ = 9 (filled symbols). For A € [0.7,1) (dashed
lines), resonant plaquettes on both sub-lattices where found
in superposition when charges where present, increasing the
entanglement entropy compared to the system without charges.
For A = 1, exact ground state results are shown. Bare fit-errors
are smaller than point sizes. Figure taken from reference [167].

5.1 Quantum and hybrid algorithms for quantum field
theories

Quantum information, in general, and quantum compu-
tation, in particular, have brought new tools and per-
spectives for the calculation and computation of strongly
correlated quantum systems. Understanding a dynamical
process as a quantum circuit and/or the action of a mea-
surement as a projection in a Hilbert space are just two
instances of this quantum framework. In this section, two
relevant articles [191,192] are described where these new
approaches are used.

5.1.1 Quantum algorithms for quantum field theories [191]

Quantum computers can calculate scattering probabili-
ties in ¢* theory to arbitrary precision with real-time
dynamics, contrary to what is achieved in LGT where
the scattering data are computed in Euclidean simulations
[193-195]. In [191], Jordan et al. developed a constructive
quantum algorithm that could compute relativistic scat-
tering probabilities in a massive quantum field theory with
quartic self-interactions (¢* theory) in space-time of four
and fewer dimensions: the algolrithm solves the unitary
time evolution of QFT efficiently and provides predictions
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that can be compared with the data from particle accelera-
tors. The proposed algorithm is polynomial in the number
of particles, their energy, and the desired precision. The
algorithm actually provides an exponential acceleration
with respect to the best known classical algorithms.

This work is based on three important technical achieve-
ments. First, continuous fields can be accurately repre-
sented by a finite number of qubits whose coordinates form
a lattice. Second, one bottleneck for an efficient imple-
mentation of the simulation, the preparation of the initial
state, is achieved by a preparation of particles in the form
of wave packets. Third, the time evolution is split into the
action of local quantum gates. This procedure works well
for local theories whose accuracy and convergence can be
controlled. In this way, quantum computation for contin-
uous fields can be achieved in a controlled way and with
an exponential quantum speedup.

More concretely, the scalar field Hamiltonian in D — 1
spatial dimensions reads H = H, + Hy with

anl 5
He=>" 5 (@)

D—-1

H¢:Za2

x

(Vo + mo @) + o))
(1)

The conjugate variables ¢(x) and 7(x) obey the canonical
commutation relations [¢ (x),¢ (y)] = [7 (z),7 (y)] = 0,
[6(2),7 (4)] = 2rir0 (2,).

If the coefficient A\g vanishes, then the Hamiltonian is
quadratic in the variables ¢ and 7. In that case, the theory
is Gaussian, describes a massive non-interacting particle
and it can be solved exactly. The complete Hamiltonian is
the sum of two terms, one is diagonal in the 7 basis, while
the other is diagonal in the ¢ basis. Choosing a small time
step €, then exp (—ieH) ~ exp(—ieH,)exp(—ieHy) +
0] (62). It is easy to simulate time evolution governed by
the diagonal Hamiltonian I, or Hy, evolving the system
using the field Fourier transform to alternate back and
forth between the m and ¢ bases, and applying a diagonal
evolution operator in each small time step.

5.1.2 Simulations of subatomic many-body physics on a
quantum frequency processor [192]

The emerging paradigm for solving optimisation prob-
lems using near-term quantum technology is a kind of
hybrid quantum-classical algorithm. In this scheme, a
quantum processor prepares an n-qubit state, then all the
qubits are measured and the measurement outcomes are
processed using a classical optimiser; this classical opti-
miser instructs the quantum processor to alter slightly
how the n-qubit state is prepared. This cycle is repeated
many times until it converges to a quantum state from
which the approximate solution can be extracted. When
applied to classical combinatorial optimisation problems,
this procedure goes by the name Quantum Approximate
Optimisation Algorithm (QAOA) [196]. But it can also
be applied to quantum problems, like finding low-energy
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Fig. 19. Simulation of particle production out of the bare vacuum. (a) Pair creation in the encoded Schwinger model. The left
spin configuration corresponds to the bare vacuum state. The right configuration displays a state with one particle-anti-particle
pair. (b,c) Instability of the bare vacuum: (b) particle number density v(¢) and (c) entanglement entropy S(¢) for J/w =1 and
different values of m/w, where J and w quantify the electric field energy and the rate at which particle-anti-particle pairs are
produced, and m is the fermion mass, for the lattice Hamiltonian Hia, = w Y, 646, +HC]+ 2>, ()65 +T), L2
(b) After a fast transient pair creation regime, the increased particle density favours particle-anti-particle recombination inducing
a decrease of v(t). This non-equilibrium interplay of regimes with either dominating production or recombination continues over
time and leads to an oscillatory behaviour of v(t) with a slowly decaying envelope. (¢) The entanglement entropy S(¢) quantifies
the entanglement between the left and the right half of the system, generated by the creation of particle-anti-particle pairs that
are distributed across the two halves. An increasing particle mass m suppresses the generation of entanglement. From [197].

states of many-particle quantum systems (large molecules,
for example). When applied to quantum problems this
hybrid quantum-classical procedure goes by the name
Variational Quantum Eigensolver (VQE).

Hence, VQE algorithms provide a scalable path to solve
grand challenge problems in subatomic physics on quan-
tum devices in the near future. One way to implement
VQE optically is using a quantum frequency proces-
sor (QFP). A variety of basic quantum functionalities
have recently been demonstrated experimentally in this
approach. A QFP is a photonic device that processes
quantum information encoded in a comb of equi-spaced
narrow band frequency bins. Mathematically, the QFP is
described by a unitary mode transformation matrix V' that
connects input and output modes.

In [192], it was demonstrated how augmenting classi-
cal calculations with their quantum counterparts offers
a roadmap for quantum-enabled subatomic physics sim-
ulations. More concretely, a subatomic system can be
described by a collection of nucleons with effective field
theory (EFT) parameters input from experimental data or
ab-initio calculations. Using a photonic QFP, the ground
state energies of several light nuclei using experimentally
determined EFT parameters were computed in [192].

The VQE algorithm calculates the binding energies of
the atomic nuclei *H, >He, and *He. Further, for the first
time, a VQE was employed to determine the effective
interaction potential between composite particles directly

from an underlying lattice quantum gauge field theory, the
Schwinger model. This serves as an important demonstra-
tion of how EFTs themselves can be both implemented
and determined from first principles by means of quan-
tum simulations.

5.2 Digital quantum simulation with trapped ions

Due to the high degree of quantum control of trapped
ions platforms, they can be seen as prototypes of universal
quantum simulators. In the following sections, two appli-
cations are described that realise experimentally the idea
of a quantum simulator for high-energy processes.

5.2.1 Real-time dynamics of lattice gauge theories with a
few-qubit quantum computer [52,197]

The article [52] reports on the first digital quantum sim-
ulation of a gauge theory from high-energy physics and
entails a theoretical proposal along with its realisation
on a trapped ion quantum computer [198,199]. This sim-
ulation addresses quantum electrodynamics in one spa-
tial and one temporal dimension, the so-called Schwinger
model [133,200] (Fig. 19).

In [52,197], the coherent real-time dynamics of sponta-
neous particle-anti-particle pair creation has been stud-
ied. Such dynamical processes cannot be addressed
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with conventional Markov Chain Monte Carlo meth-
ods due to the sign problem [201] preventing the sim-
ulation of time evolutions. The experiment performed
in [52,197] realises a Trotter time evolution [202] based
on the Kogut—Susskind Hamiltonian formulation of the
Schwinger model [203]. The simulation protocol used
in this demonstration is custom-tailored to the exper-
imental platform and based on eliminating the gauge
degrees of freedom. The Schwinger model entails dynam-
ical matter and gauge fields (electromagnetic fields).
The gauge degrees of freedom are analytically integrated
out [182], which leads to a pure matter model that can
be cast in the form of an exotic spin model that features
two-body terms and long-range interactions. The gauge
bosons do not appear explicitly in the description but
are included implicitly in the form of long-range inter-
actions. The resulting encoded model is gauge invariant
at all energy scales and allows one to simulate the full
infinite-dimensional Hamiltonian. This approach is well
matched to simulators based on trapped ions [198,199],
which naturally feature a long-range interaction and
hence allow for a very efficient implementation of the
encoded Schwinger model. The Trotter protocol that has
been devised in [52,197] can be realised in a scalable
and resource-optimised fashion. The number of Trotter
steps is ideal for the required ion—ion coupling matrix and
scales only linearly in the number of lattice sites V. More-
over, the protocol is designed such that Trotter errors do
not lead to gauge variant contributions.

The experiment [52,197] has been carried out for N = 4
lattice sites (i.e., using four qubits) and a gate sequence
comprising more than 200 gate operations. The used
resources are high-fidelity local gate operations and the
so-called Mglmer—Sgrensen gates [204] with all-to-all con-
nectivity between the individual ions. The qubit states are
encoded in electronic sub-levels of the ions. In the experi-
ment, a quench has been performed in which the bare vac-
uum (i.e., the ground state for infinite fermion mass) has
been prepared, followed by a Trotterised time evolution
under the encoded Schwinger Hamiltonian, which leads
to the generation of particle-anti-particle pairs. This type
of experiment can also be performed starting from the
dressed vacuum (i.e., an eigenstate of the full Hamiltonian
for finite fermion mass), which is a highly entangled state
that can be prepared on a trapped ion quantum simulator
using the method demonstrated in [205] (see Sect. 5.2.2).
In this case, a quench to generate pair creation events
would involve the time evolution under the Schwinger
Hamiltonian including background electric fields. Includ-
ing electric background fields to the encoded Schwinger
Hamiltonian leads to additional local terms and therefore
requires only minor modifications in the quantum simula-
tion protocol [197]. Using trapped ions, high-fidelity mea-
surements can be made using fluoresce detection [198,199].
In [52,197], local measurements in the z-basis have been
used to study the site-resolved particle number density
and electric field distribution in real-time as a function of
the fermion mass. This type of analysis can be directly
scaled up to larger system sizes. The experiment [52,197]
probed also the entanglement generated during pair cre-
ation, which can be done for small system sizes and
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involved the measurement of the density matrix of the
spin system. As shown in [52,197], the entanglement of
the encoded model corresponds to the entanglement in the
original model involving both gauge fields and fermions.

5.2.2 Self-verifying variational quantum simulation of the
lattice Schwinger model [205]

In this article, a quantum co-processor successfully sim-
ulated particle physics phenomena on 20 qubits for the
first time. The experiment uses new methods with a pro-
grammable ion trap quantum computer with 20 quan-
tum bits as a quantum co-processor, in which quantum
mechanical calculations that reach the limits of classical
computers are outsourced. For this, a sophisticated opti-
misation algorithm has been developed that, after about
100000 uses of the quantum co-processor by the classi-
cal computer, leads to the result. In this way, the pro-
grammable variational quantum simulator has simulated
the spontaneous creation and destruction of pairs of ele-
mentary particles from a vacuum state on 20 quantum
bits. See Section 5.1.2 for a general idea of using quantum
variational algorithms.

An analog quantum processor prepares trial states,
quantum states that are used to evaluate physical quanti-
ties. The classical computer analyses the results of these
evaluations, with the aim of optimising certain adjustable
(variational) parameters on which the trial states depend.
This computer then suggests improved parameters to its
quantum co-worker in a feedback loop. In the study, the
quantum device contains a line of atomic ions that each
represent a qubit. This set-up is used to carry out quan-
tum simulations of the ground state of electrons coupled
to light, a system that is described by the theory of quan-
tum electrodynamics in one spatial dimension.

5.3 Digital quantum simulation with superconducting
circuits

This section reviews the possibility to perform digital
quantum simulation of lattice gauge theories with super-
conducting circuits [49)].

5.3.1 Non-Abelian SU(2) lattice gauge theories in
superconducting circuits [49]

Superconducting circuits have proven to be reliable
devices that can host quantum information and simulation
processes. The possibility to perform quantum gates with
high fidelities, together with high coherence times, makes
them ideal devices for the realisation of digital quantum
simulations. In [49], a digital quantum simulation of a non-
Abelian dynamical SU(2) gauge theory is proposed in a
superconducting device. The proposal starts from a mini-
mal setup, based on a triangular lattice, that can encode
pure-gauge dynamics. The degrees of freedom of a sin-
gle triangular plaquette of this lattice are encoded into
qubits. Two implementations of this quantum simulator
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Fig. 20. (a) Six tunable-coupling transmon qubits coupled to a
single microwave resonator. (b) Six Xmon qubits on a triangu-
lar geometry, coupled to a central one. The box 1 in the scheme
is implicitly repeated for the sides 2 and 3. Both setups can
encode the dynamics of the SU(2) triangular plaquette model
schematised in (c), where the left and right gauge degrees of
freedom are explicitly depicted. From [49].

are described, using two different superconducting circuit
architectures. A setup in which six tunable-coupling trans-
mon qubits are coupled to a single microwave resonator is
considered, and a device where six capacitively coupled
Xmon qubits stand on a triangular geometry, coupled to
a central auxiliary one. The experimental requirements
necessary to perform the simulation on one plaquette are
characterised and arguments for scaling to large lattices
are also given in [49] (Fig. 20).

A minimal implementation of a pure SU(2) invariant
model in a triangular lattice is considered by using trian-
gular plaquettes. In this case, the pure-gauge Hamiltonian
on a single plaquette reads

Hy = —J Te[U(z, U (@ + 1, 0)U(z + i+ 0, — i — )]
(12)

This interaction corresponds to the magnetic term of a
gauge invariant dynamics, which acts on closed loops.

Due to gauge invariance, the local Hilbert space of a
link is four dimensional, and it can be faithfully spanned
by two qubits, called “position” o], and “spin” qubit oy,.
In this subspace, it is useful to define the operators I'® =
UI‘"’)COSJE,L, ' = 08,505, such that the total Hamiltonian is
written as

- J{F?2F83Fg1 + Z €abel 1515515,
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Hrp = (13)

In order to simulate the interaction of equation (13), one
can decompose its dynamics in terms of many-body mono-
mials, and implement them sequentially with a digitised
approximation. In a digital approach, one decomposes the
dynamics of a Hamiltonian H = ;" | hj, by implement-

. . . _i —3 N
ing its components stepwise, e *ft a (T, e~ th+t/N)
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(here and in the following h = 1), for a total of
m X N gates, with an approximation error that goes
to zero as the number of repetitions N grows. In a practi-
cal experiment, each quantum gate e~**#* will be affected
by a given error €. By piling up sequences of such gates,
for small gate errors €, < 1, the total protocol will be
affected by a global error, which is approximately the sum
ER Y, €L

To simulate the pure-gauge interaction in a single tri-
angular plaquette, first, a setup with six tunable-coupling
transmon qubits coupled to a single microwave resonator
is considered. Each tunable-coupling qubit is built using
three superconducting islands, connected by two SQUID
loops. Acting on these loops with magnetic fluxes, one
can modify the coupling of the qubits with the resonator,
without changing their transition frequencies. By thread-
ing with magnetic fluxes at high frequencies, one can drive
simultaneous red and blue detuned sidebands, and per-
form collective gates. Each many-body operator can be
realised as a sequence of collective and single-qubit gates.

A second architecture is considered where six Xmon
qubits in a triangular geometry are capacitively coupled
with an additional central ancillary qubit. In this case, the
collective interactions can be decomposed and performed
with pairwise C-phase gates, using the central ancillary
qubit to mediate non-nearest-neighbour interactions. In
this way, the quantum simulation of one digital step of
the Hamiltonian in equation (13) will amount to realise
168 C-phase gates and a number of single-qubit rotations
which is upper bounded by 520.

5.4 Digital quantum simulation with ultra-cold atoms

Digital quantum simulators show the possibility to achieve
universal quantum computation. Among the most promis-
ing platforms are the ones built with ultra-cold atoms.
In this section, several instances are shown using optical
lattices and Rydberg platforms where even a completely
gauge invariant simulation could be achieved [44,47,206—
208].

5.4.1 A Rydberg quantum simulator [206]

A universal quantum simulator is a controlled quantum
device that faithfully reproduces the dynamics of any
other many-particle quantum system with short-range
interactions. This dynamics can refer to both coher-
ent Hamiltonian and dissipative open-system time evo-
lution. Cold atoms in optical lattices, which are formed
by counter-propagating laser beams, represent a many-
particle quantum system, where the atomic interactions
and dynamics of the particles can be controlled at a micro-
scopic level by external fields. This high level of control
and flexibility offers the possibility to use these systems
as quantum simulators, i.e., as devices which can mimic
the behaviour of other complex many body quantum sys-
tems and allow the study of their properties, dynamics
and phases (Fig. 21).
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Fig. 21. Setup of the system: (a) two internal states |A); and
|B); give rise to an effective spin degree of freedom. These
states are coupled to a Rydberg state |R); in two-photon
resonance, establishing an electromagnetically induced trans-
parency (EIT) condition. On the other hand, the control atom
has two internal states |0). and |1).. The state |1). can be
coherently excited to a Rydberg state |r). with Rabi frequency
Q,, and can be optically pumped into the state |0). for initialis-
ing the control qubit. (b) For the toric code, the system atoms
are located on the links of a two-dimensional square lattice,
with the control qubits in the centre of each plaquette for the
interaction A, and on the sites of the lattice for the interac-
tion Bs. Setup required for the implementation of the color
code (c), and the U(1) lattice gauge theory (d). From [206].

Stored cold atoms in deep lattices, in which atoms do
not hop between the lattice sites, can be used to encode
quantum bits in different electronic states of the atoms.
Interestingly, although the atoms sit at different sites and
do not collide, it is possible to induce very strong inter-
actions between atoms separated by distances of several
micrometers. This can be achieved by exciting them to
electronically high-lying Rydberg states. These Rydberg
interactions offer the possibility to realise fast quantum
gates between remote atoms. Motivated by and building
on these achievements, a digital Rydberg simulator archi-
tecture based on sequences of fast and efficient quantum
gates between Rydberg atoms is developed in [206]. This
“digital” simulator offers promising perspectives for the
simulation of complex spin models, which are of great
interest both in quantum information science, condensed
matter, and high-energy physics.

The proposed simulation architecture allows one to
realise a coherent Hamiltonian as well as dissipative open-
system time evolution of spin models involving n-body
interactions, such as, e.g., the Kitaev toric code, colour
code and lattice gauge theories with spin-liquid phases.
The simulator relies on a combination of multi-atom
Rydberg gates and optical pumping to implement coher-
ent operations and dissipative processes. Highly excited
Rydberg atoms interact very strongly, and it is possible
to switch these interactions on and off in a controlled way
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by applying laser pulses. By choosing on which atoms to
shine light, the properties of the quantum simulator can
be precisely tuned.

As a key ingredient of the setup, extra auxiliary qubit
atoms are introduced in the lattice, which play a two-
fold role. First, they control and mediate effective n-body
spin interactions among a subset of n system spins resid-
ing in their neighbourhood of the lattice. This is achieved
efficiently, making use of single-site addressability and a
parallelised multi-qubit gate, which is based on a combi-
nation of strong and long-range Rydberg interactions and
electromagnetically induced transparency (EIT). Second,
the auxiliary atoms can be optically pumped, thereby pro-
viding a dissipative element, which in combination with
Rydberg interactions results in effective collective dissipa-
tive dynamics of a set of spins located in the vicinity of the
auxiliary particle, which itself eventually factors out from
the system spin dynamics. The resulting coherent and dis-
sipative dynamics on the lattice can be represented by, and
thus simulates a master equation, where the Hamiltonian
is the sum of n-body interaction terms, involving a quasi-
local collection of spins in the lattice. The Liouvillian
term in the Lindblad form governs the dissipative time
evolution, where the many-particle quantum jump oper-
ators involve products of spin operators in a given
neighbourhood.

5.4.2 Optical Abelian lattice gauge theories [44]

In [44], it is described how to perform a digital quantum
simulation of the gauge-magnet /quantum link version of a
pure U(1) lattice gauge theory with ultra-cold atoms, for a
recent proposal of an analogue Rydberg simulator for the
same theory see [209]. Its phase diagram has been recently
characterised by numerical investigations [56]. The exper-
iment aims at mapping the phase diagram of the spin 1/2
U(1) quantum link model by measuring the string tension
of the electric flux tube between two static charges and
its dependence on the distance. In the confined phase, the
string tension is finite, and thus the energy of the sys-
tem increases linearly with the inter-charge separation.
Charges are thus bound together. In the deconfined phase
the string tension vanishes and thus the charges can be
arbitrarily far away with only a finite energy cost.

In the proposed quantum simulation the gauge bosons
are encoded in the hyper-fine levels of Rydberg atoms. The
atoms are in a Mott-insulating phase with one atom per
site. Extra atoms are needed in order to collectively and
coherently address several atoms at the same time. The
simulation requires imposing the Gauss law and engineer
the dynamics. The latter is obtained digitally decompos-
ing unitary time evolution in elementary Trotter steps that
can be performed by Rydberg gate operations. The former
can be imposed by dissipation or by engineering digitally
an energy penalty for the forbidden configurations. This is
achieved by using the Rydberg blockade as first proposed
in [210]. The key ingredient is the mesoscopic Rydberg
gate in which one control atom is excited and de-excited
from its Rydberg state and as a result of the blockade this
affects several atoms inside its blockade radius. The setup
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thus requires two sets of atoms, atoms encoding the gauge
boson degrees of freedom (one per link of the lattice) that
are called ensemble atoms. These atoms are controlled by
addressing another set of atoms, the control atoms. In this
setup the control atoms are used in order to imprint the
desired dynamics on the ensemble atoms.

In order to simulate the U(1) quantum link model, one
control atoms located at the center of every plaquette
and one control atom located at every site are used. The
ensemble atoms are located at the center of the links of the
lattice. The lattice spacing should also be engineered in
such a way that only four atoms encoding the gauge boson
degrees of freedom should be contained inside the blockade
radius of the control atoms. Individually addressing and
manipulating the control atoms via, e.g., a quantum-gas
microscope is also needed.

With this setup, an arbitrary Hamiltonian can be imple-
mented on the atoms encoding the gauge boson degrees
of freedom digitally, by decomposing it into a sequence of
elementary operations, involving single-site rotations com-
bined with the use of the mesoscopic Rydberg gate. As a
result of the lattice geometry, the gate involves one control
atom (either at one site or in the center of one plaquette)
and the four ensemble atoms surrounding it. This archi-
tecture is indeed sufficient to perform a universal quantum
simulation of Abelian lattice gauge theories [206].

The simulation requires two stages. During the first
stage one starts from some trivial state and prepares the
state to be studied such as, e.g., the ground state of the
quantum link Hamiltonian. In a second stage, the meso-
scopic Rydberg gates are reversed and the state of the
system is transferred to the state of the control atoms,
that if appropriately read out (through, e.g., a quantum-
gas microscope), allow the measurement of the physical
state of the system and its properties, such as, e.g., the
string tension between two static charges.

The simulations are digital, in the sense that they
require applying a discrete sequence of pulses to the
atoms, whose nature and duration can be found by using
optimal control techniques.

5.4.3 Simulations of non-Abelian gauge theories with
optical lattices [47]

An important and necessary step towards the quantum
simulation of QCD is the simulation of simpler non-
Abelian gauge theories in two dimensions to study the
interplay of electric and magnetic interactions with non-
Abelian local symmetry. The minimal relevant example is
given by SU(2) gauge magnets or quantum link models
[54,55] with static charges considered in [47]. There it is
shown how to characterise confinement in the model and
determine its phase diagram by simulating it digitally with
Rydberg atoms.

For SU(2), the quantum link is written as the direct
sum of two spins % sitting at each end of the link, see
Figure 22a. As in [136], physical states, i.e., configurations
allowed by gauge invariance, are determined through the
(non-Abelian version of the) Gauss’ law, and the dynam-
ics comes from competition of electric (on each link) and

Page 23 of 42

magnetic (plaquette) interactions. In SU(2) gauge mag-
nets, the charges occupying the sites of the lattice are also
represented as spins and the Gauss law demams that the
total spin at each site, i.e., spins % at the link ends coupled
to the static charge residing at the site, is zero. Thus, for
spin % charges, physical states are singlet coverings. The
electric term weights them depending on the position of
the singlets while the plaquette interchanges singlet cov-
erings (or annihilates them) as shown in Figure 22b.

The main features that SU(2) gauge magnets share with
QCD (and other non-Abelian gauge theories) are: the
nature of confinement phases at weak (plaquettes dom-
inate) and at strong coupling (electric terms dominate)
and long-range entanglement between charges. To sat-
isfy the Gauss law, the charges must form singlets with
the nearby link spins, thus many singlets must be rear-
ranged, and the allowed singlet coverings are different with
respect to the ones of the vacuum, at least along a string
between the charges. Such rearrangement generates long-
range entanglement and costs an energy that increases
linearly with the charge separation, i.e., linear confine-
ment, see in Figure 22c. To target such phenomena in a

quantum simulator, it is enough to consider static spin %

charges [47]. Both spin

5 or qubits on the links and on
the sites are represented by ground and Rydberg states
of atoms. The non-Abelian Gauss’ law is converted into
an energy penalty and added to the Hamiltonian. The
dynamics of the generalised Hamiltonian is decomposed
in a sequence of simultaneous Rabi transfers controlled
by ancillary qubits and realised by Rydberg gates [210]
see Figure 22d, in a similar fashion as done for Abelian
gauge theories [44,206]. In such a simulator, the ground
state is prepared with a pair of opposite static charges at
distance L adiabatically (or super-adiabatically). By mea-
suring the final state of the control qubits the energy of
such a ground state can be computed with respect to the
vacuum as a function of L, E(L), and thus determines the
string tension o = F(L)/L. If ¢ is finite for large L, there
is a linearly confined phase. The proposed Rydberg simu-
lator can probe confinement at any coupling. By inspect-
ing quantum correlations in the prepared ground state,
it is also possible to experimentally access the long-range
entanglement due to confinement in non-Abelian gauge
theories.

5.4.4 Digital quantum simulation of Z(2) lattice gauge
theories with dynamical fermionic matter [207,208]

In a recent work [207,208], a digital scheme was introduced
and its implementation with cold atoms was studied, for
Z(2) and Z(3) lattice gauge theories. The scheme includes,
in addition to the gauge and matter degrees of freedom,
auxiliary particles that mediate the interactions and give
rise to the desired gauge theory dynamics, by construct-
ing stroboscopically the evolution from small time steps.
The individual time steps respect local gauge invariance,
so errors due to the digitisation will not break local gauge
symmetry. Moreover, it is shown that the required three-
and four-body interactions, can be obtained by a sequence
of two-body interactions between the physical degrees of
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Fig. 22. Non-Abelian gauge theories with Rydberg atoms. (a)
SU(2) gauge magnets: the gauge quanta on the links are a
direct sum of spin % at the links ends (red dots) while charges
are spins on the sites (dark dots). Gauge invariance translates
to singlet formation, some examples (without charges) with
singlets in yellow. (b) Electric interactions favour singlets in
the left /down ends of the links. Magnetic interactions exchange
parallel singlets on plaquettes and annihilate the other config-
urations. (c) Linear confinement induced by a pair of oppo-
site charges at strong and weak couplings, where the electric
and magnetic terms dominate, respectively. (d) Implementa-
tion scheme without charges: the Gauss law and the plaquette
interactions are decomposed in elementary C-not gates that
involve all physical qubits/atoms (in red) within the yellow
and blue blockade areas, respectively, of the auxiliary Rydberg
atoms (in blue). For the full scheme see [47].

freedom and the ancillary particles. The construction is
general in form, and valid for any gauge group. Its gener-
ality and simplicity follows from the use of a mathematical
quantum mechanical object called stator [211,212]. This
formulation also applies to higher space dimensions, and
in [213] a quantum simulation scheme of a lattice gauge
theory with dynamical fermions in three space dimen-

Eur. Phys. J. D (2020) 74: 165

(0,0,0)

Fig. 23. Different atomic species reside on different vertical
layers. Green straight lines show how the auxiliary atoms have
to move in order to realise interactions with the link atoms
and the fermions, or to enter odd plaquettes. Red arrows show
selective tunnelling of fermions across even horizontal links.
From [207].

sions was introduced and demonstrated for the D(3) gauge
groups (Fig. 23).

6 Analog quantum simulations

6.1 Analog quantum simulation of classical gauge
potential

The complete challenge of quantum simulating a lattice
gauge theory has many interesting side products such
as the study of classical gauge potential and the related
topological insulators. In these cases, the gauge poten-
tial appears just as a classical configuration of the vector
potential that is described by the minimal Wilson line
in the lattice or the Peierls substitution of the hopping
term. In the following, several theoretical proposals and
an experimental realisation are reviewed [214-217].

6.1.1 Wilson Fermions and Axion electrodynamics in optical
lattices [214]

Ultra-cold Fermi gases in optical superlattices can be used
as quantum simulators of relativistic lattice fermions in
(341) dimensions. By exploiting laser-assisted tunnelling,
an analogue of the so-called naive Dirac fermions is charac-
terised in [214]. An implementation of Wilson fermions is
shown, and it is discussed how their mass can be inverted
by tuning the laser intensities. In this regime of the quan-
tum simulator, Maxwell electrodynamics is replaced by
axion electrodynamics: a three dimensional topological
insulator (Fig. 24).

In particular, a concrete proposal for the realisation of
laser-assisted tunnelling in a spin-independent optical lat-
tice trapping a multi-spin atomic gas is presented. The
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Fig. 24. (a) Superlattice potential (grey lines). The hopping
between F' = 9/2 levels is laser-assisted via an intermediate

= 7/2 state. The coupling is induced by an off-resonant
Raman transition with Rabi frequency. (b) Scheme of the four
states of the F' = 9/2 manifold [(red) vertices]|, connected by
laser-induced hopping [(green) boxes]. (c) Time-evolution of
the populations of the neighbouring hyperfine levels. The solid
(dashed) line is used for site ¢ (¢ + 1); the red (black) line is
used for mp = 9/2 (mr = 7/2). A clear spin-preserving Rabi
oscillation between neighbouring sites is shown. (d) The same
as before for a spin-flipping hopping. Notice the need for a
superlattice staggering (10-20kHz) in order to avoid on-site
spin-flipping. From [214].

setup consists of a spin-independent optical lattice that
traps a collection of hyperfine states of the same alka-
line atom, to which the different degrees of freedom of the
field theory to be simulated are then mapped. Remarkably
enough, it is possible to tailor a wide range of spin-flipping
hopping operators, which opens an interesting route to
push the experiments beyond the standard superfluid-
Mott insulator transition. The presented scheme combines
bi-chromatic lattices and Raman transfers, to adiabati-
cally eliminate the states trapped in the middle of each
lattice link. These states act as simple spectators that
assist the tunnelling of atoms between the main minima of
the optical lattice. This mechanism is clearly supported by
numerical simulations of the time evolution of the atomic
population between the different optical-lattice sites.

Such a device could have important applications in the
quantum simulation of non-interacting lattice field the-
ories, which are characterised, in their discrete version,
by on-site and nearest-neighbour hopping Hamiltonians.
Once the fields of the theory to be simulated are mapped
into the atomic hyperfine states, the desired operators
correspond to population transfers between such levels.
The former can be realised by standard microwaves,
whereas the latter might be tailored with the laser-assisted
schemes. Combining this trapping scheme with Fermi
gases, this platform would open a new route towards
the simulation of high-energy physics and topological
insulators.
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Fig. 25. Non-Abelian SU(2) gauge fields from lattice shaking.
(a) The optical lattice: two standing laser waves (with a phase
shift of 7/2 and in-plane polarisation as denoted in the figure)
create a bipartite square lattice with alternating o and o~
polarised sites (A and B). mp = £1 particles feel an energy dif-
ference of +AFE between A and B sites. (b) The resulting level
scheme. A constant B field realises an additional on-site energy
splitting AE’ (green arrow) such that AE4 5 = VEAE + AE’
becomes sub-lattice dependent. In combination with a cou-
pling © of both spin states realised microwave (or magnetic)
fields the sub-lattice splitting gives local spin eigenbasis that
differ in the two sub-lattices by SU(2) rotation. With lattice
shaking, the SU(2) gauge transformation is converted by time-
averaging into a non-trivial synthetic non-Abelian gauge field.
(¢) Accessible Wilson loops |Tr L| for convenient experimental
parameters (K, /K, is the relative shaking amplitude in the
y and x directions and w is the frequency). Deviations from 2
imply non-Abelian physics: outside the white (black) regions,
|Tr L| < 1.9 (<1.99).

6.1.2 Non-Abelian gauge fields and topological insulators in
shaken optical lattices [215]

A preliminary step to quantum simulating full-fledged
non-Abelian gauge theory is to consider classical non-
Abelian gauge fields. It is thus crucial to devise effi-
cient experimental strategies to achieve classical synthetic
non-Abelian gauge fields for ultra-cold atoms in the bulk
and in optical lattices [215]. The latter situation is espe-
cially interesting as it allows for an anomalous quantum
Hall effect [218] and, in combination with strong interac-
tions, for fractional quantum Hall states with non-Abelian
anyonic excitations [219]. On the lattice, synthetic non-
Abelian gauge fields (in LGT language, the Wilson oper-
ators on the links) correspond to tunnelling matrices that
determine the superposition each atomic species is sent to
when it tunnels to a neighbouring site. In [215], it is shown
for the first time how to achieve such matrices for the
SU(2) gauge group from lattice shaking (for general theory
of lattice shaking and Floquet driving see [220]). For sim-
plicity, consider a spin-dependent square lattice described
by Figure 25, which in combination with a uniform mag-
netic field produces a sublattice-dependent energy split-
ting between the spin up and down states, e.g., mp = +1
hyperfine states of "Rb. With a constant microwave beam
Q coupling the two spin states, the eigenstates of the on-
site Hamiltonian in the two sublattices thus differ by an
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Fig. 26. A convenient approach for analog quantum simu-
lation with ultra-cold neutral atoms relies in the concept of
“synthetic dimensions”: a coherent coupling 2 between inter-
nal atomic states |¢) (induced e.g. with laser fields) mimics an
effective hopping ¢ between sites with position m; of a fictitious
synthetic dimension m.

SU(2) rotation. Thus, an atom tunnelling between the
sublattices would experience an SU(2) gauge field that is
trivial: the product of the tunnelling matrices around the
plaquette L is the identity, i.e., its trace — the Wilson loop
— is 2. Furthermore, such tunnelling is highly suppressed
as out of resonance due to the energy offset between the
sublattices (if it is sufficiently large). However, the energy
conservation can be restored, and thus the tunnelling, by
shaking the lattice at a frequency commensurable with the
energy off-sets. Such analysis can be made precise by time
averaging the total Hamiltonian in the rotating frame of
the driving plus the on-site Hamiltonian [215]. The main
result is that for feasible experimental parameters, generic
non-trivial classical SU(2) gauge field configurations can
be engineered, i.e., characterised by |Tr L| < 2, as shown
in Figure 25.

6.1.3 Observation of chiral edge states with neutral
fermions in synthetic Hall ribbons [216]

A powerful resource for the implementation of analog
quantum simulations with ultra-cold-atomic samples is
based on the manipulation of the internal atomic degrees
of freedom. In this context, atoms with two valence elec-
trons (such as alkaline-earth elements or lanthanide ytter-
bium) represent a convenient choice, as they provide
access to several stable internal states (either nuclear or
electronic), that can be initialised, manipulated with long-
coherence times and read-out optically with high-fidelity.
This platform is particularly suitable for implementing the
concept of “synthetic dimensions”, in which a manifold of
internal states is mapped onto effective positions along
a fictitious discretised extra-dimension, and the coher-
ent optical coupling between the different states can be
described as an effective hopping between synthetic sites
(see Fig. 26 for a sketch of the general idea).

This approach, initially proposed in reference [221], pro-
vided a very convenient method for the realisation of tun-
able background gauge potentials [222]. This is explained
in Figure 27a, showing a hybrid lattice structure combin-
ing one real direction (discretised by a real optical lat-
tice in sites with position j) with a synthetic direction
composed by internal atomic states, depicted orthogonally
to the real one. The hopping matrix element along the
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Fig. 27. (a) Sketch of the experlmental configuration employed
in reference [216] for the generation of classical gauge poten-
tials. (b) Measured lattice momentum distribution along the
different synthetic legs of the ladder, showing the emergence
of steady-state chiral edge currents J. (¢) Experimental recon-
struction of the average trajectory on the synthetic strip, evi-
dencing a non-equilibrium dynamics induced after a quench in
the tunnelling. Adapted from reference [216].

(m)

synthetic lattice is a complex quantity Qe’®’, with an argu-
ment depending on the phase of the electric field inducing
the transition between the internal states generating the
synthetic dimension. As a consequence, hopping around a
unit cell of the real and synthetic lattice can be described
in terms of an effective geometric Aharonov-Bohm phase ¢
associated with the effect of a background synthetic mag-
netic field on effectively charged particles.

This idea was experimentally realised in reference [216]
(and in a related experiment [223]), where different
nuclear-spin projection states of fermionic !"3Yb atoms
were coupled coherently with a two-photon Raman tran-
sition, realising the scheme of Figure 27a. This system is
particularly suited to study edge physics, as the synthetic
dimension is made up by a finite number of states/sites,
resulting in a ladder geometry (with a tunable number of
legs). The emergence of steady-state chiral currents at the
edges of the ladder was detected with a state-dependent
imaging technique (corresponding to a single-leg detection
in momentum-space), evidencing a counter-propagating
atomic motion on the two outer legs. This behaviour is


https://www.epjd.epj.org

Eur. Phys. J. D (2020) 74: 165

shown in the graphs of Figure 27b for a three-leg lad-
der made by three nuclear-spin projection states m =
—5/2,—1/2,+3/2. The asymmetry of the lattice momen-
tum distribution n(k) (along the real direction) provides
a direct measurement of the steady-state edge currents J
induced in the system after an adiabatic loading. Non-
equilibrium dynamics was also studied after imposing a
quench on the system: after preparing the fermionic parti-
cles on a single external leg, tunnelling along the rungs was
suddenly activated. The ensuing dynamics was studied
by reconstructing the average trajectory of the particles
on the synthetic strip: the result is shown in Figure 27c,
evidencing a “skipping-orbit” motion, in which the syn-
thetic gauge field bends the centre-of-mass trajectory in a
cyclotron-like fashion, with repeated bouncing at the edge
of the strip producing a net motion along the edge (akin
to the steady-state chiral currents discussed above).

Synthetic dimensions are a general concept, that can
be adapted to different implementations. In a follow-up
of that experimental work [224], with a different imple-
mentation relying on the manipulation of the electronic
state of 1”3Yb (rather than the nuclear-spin states) with
a single-photon optical clock transition, the strength and
direction of the chiral currents was measured as a func-
tion of the synthetic magnetic flux ¢, all the way from
zero to above half of a quantum of flux per unit cell (a
quantum of flux corresponding to ¢ = 27). The mea-
surements are summarised in Figure 28, where the chi-
ral current J is plotted vs. ¢. It is apparent that the
chiral current vanishes and then changes direction cross-
ing the ¢ = m point. This can be explained by recalling
the two underlying symmetries of the system: the time-
reversal symmetry (broken by the magnetic field) impos-
ing J(¢) = —J(—¢) and the periodicity condition coming
from the underlying lattice structure J(¢) = J(¢ + 27).
A similar conclusion could be reached by considering the
behaviour of an extended two-dimensional system, which
realises the Harper-Hofstadter model describing charged
particles in a two-dimensional lattice with a transverse
magnetic field. The topological invariant, i.e., the Chern
number, resulting from that model (shown in the inset
of Fig. 28 as a colour-coded shading of the Hofstadter
butterfly spectrum) changes from positive to negative val-
ues when the ¢ = 7 point is crossed: this sign change
is connected, by the bulk-boundary correspondence prin-
ciple, to the reversal of chiral currents measured in the
experimentally-realised ladder geometry.

The concept of synthetic dimensions is promising for
the realisation of quantum simulators with advanced con-
trol on topological properties and site connectivities. For
instance, controlling the parameters of the atom-laser
interaction gives the possibility of engineering systems
with periodic boundary conditions (i.e., a compactified
extra-dimension) [225] or different kinds of topological lad-
ders. Furthermore, combining this idea with atom-atom
interactions (featuring an intrinsic global SU(N) symme-
try in !"3Yb atoms) results in intriguing possibilities for
engineering synthetic quantum systems, as interactions
along the synthetic dimension have an intrinsic non-local
character (as different sites of the synthetic dimension cor-
respond to the same physical position of space). While
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Fig. 28. The main graph shows the magnitude and direction
of the chiral current J vs. synthetic magnetic flux in an experi-
mental configuration similar to that shown in Figure 27b (with
two legs only). The reversal of the edge current above ¢ = 7
flux is reminiscent of the change in sign of the Chern number
for an extended two-dimensional system (plotted in the inset of
the figure as a shading of the Hofstadter butterfly spectrum,
with warm colours corresponding to positive Chern number
and cold colours corresponding to negative Chern number).
Experimental data taken from reference [224].

effects of atom-atom interactions have already been stud-
ied theoretically in combination with the classical gauge
potential described above, with the prediction of strongly
correlated states that are reminiscent of the fractional
quantum Hall effect [226-228], the application of this
approach to the realisation of other kinds of gauge fields
is still to be investigated.

6.2 Quantum simulation of Abelian gauge fields with
ultra-cold atoms

6.2.1 Atomic quantum simulator for lattice gauge theories
and ring exchange models [229]

Reference [229] presents the design of a ring exchange
interaction in cold-atomic gases subjected to an optical
lattice using well-understood tools for manipulating and
controlling such gases. The strength of this interaction can
be tuned independently and describes the correlated hop-
ping of two bosons. This design offers the possibility for
the atomic quantum simulation of a certain class of strong
coupling Hamiltonians and opens an alternative approach
for the study of novel and exotic phases with strong corre-
lations. A setup is discussed where this coupling term may
allow for the realisation and observation of exotic quantum
phases, including a deconfined insulator described by the
Coulomb phase of a three-dimensional U(1) lattice gauge
theory.

6.2.2 Cold-atom simulation of interacting relativistic
quantum field theories [230]

Dirac fermions self-interacting or coupled to dynamic
scalar fields can emerge in the low-energy sector of


https://www.epjd.epj.org

Page 28 of 42

designed bosonic and fermionic cold-atom systems. In ref-
erence [230] this is illustrated with two examples defined
in two space-time dimensions: the first one is the self-
interacting Thirring model, and the second one is a model
of Dirac fermions coupled to a dynamic scalar field that
gives rise to the Gross—Neveu model. The proposed cold-
atom experiments can be used to probe spectral or cor-
relation properties of interacting quantum field theories
thereby presenting an alternative to lattice gauge theory
simulations. The Hamiltonians of these systems are sup-
ported on one spatial dimension. The necessary building
blocks are the Dirac Hamiltonian, which describes rel-
ativistic fermions, and the interaction of fermions with
themselves or with a dynamic scalar field. The presented
models are exactly solvable and serve for demonstrating
the ability to simulate important properties of the stan-
dard model such as dynamical symmetry breaking and
mass generation with cold atoms.

6.2.3 Confinement and lattice QED electric flux-tubes
simulated with ultra-cold atoms [231]

The effect of confinement is known to be linked with
a mechanism of electric flux tube formation that gives
rise to a linear binding potential between quarks. While
confinement is a property of non-Abelian gauge theories
including QCD, it has been shown that the Abelian model
of compact quantum electrodynamics (cQED), also gives
rise to similar phenomena. Particularly, it has been shown
long ago by Polyakov that in ¢cQED models in (2+1)
dimensions, the effect of confinement persists for all val-
ues of the coupling strength, in both the strong and the
weak coupling regimes, due to non-perturbative effects of
instantons [232]. Lattice cQED in (2+1) dimensions, hence
provides one of the simplest play grounds to study con-
finement in a setup that contains some essential properties
of full fledged QCD, in a rather simple Abelian system.
It was first suggested in [231] that the well-known gauge
invariant Kogut—Susskind Hamiltonian, which describes
cQED in (2+1)-d, can be simulated by representing each
link along the lattice by a localised BEC, properly tun-
ing the atomic scattering interactions, and using external
lasers. In this proposal, the cQEDs’ degrees of freedom on
each link are the condensate’s phases which correspond to
the periodic cQED vector potentials and the atomic num-
ber operator to the quantised electric field on the link.
Charged sources are non-dynamical, and introduced to the
model by coupling the fields to external static charges. To
obtain the Kogut—Susskind Hamiltonian, it is shown that
particular two- and four-body interactions between the
condensates provide manifest local gauge invariance. Fur-
thermore, to avoid the hopping processes of an ordinary
Bose-Hubbard model, one introduces a four-species two-
dimensional setup, Raman transitions and two-atom scat-
tering processes in order to obtain particular “diagonal”
hopping and nonlinear interactions. It is then shown that a
certain choice of parameters gives rise to gauge invariance
in the low-energy sector, hence compact QED emerges.
In the strong coupling limit, the atomic system gives rise
to electric flux-tubes and confinement. To observe such
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Fig. 29. (a) Correlated hop of a fermion assisted by gauge
bosons consistent with Gauss’ law in a QLM with spin S = 1.
(b) Realisation of the process in (a) with bosonic and fermionic
atoms in an optical superlattice. (c) Breaking of a string con-
necting a static quark-anti-quark pair: from an unbroken string
(top), via fermion hopping (middle), to two mesons separated
by vacuum (bottom). (d) From a parity invariant staggered
flux state (top), via fermion hopping (middle), to the vacuum
with spontaneous parity breaking. Taken from reference [45].

effects one needs to measure local density deviations of
the BECs. It is reasoned that the effect should persist
also outside the perturbatively calculable regime.

6.2.4 Atomic quantum simulation of dynamical gauge fields
coupled to fermionic matter: from string breaking to
evolution after a quench [45]

In [45], a quantum simulator for lattice gauge theo-
ries is proposed, where bosonic gauge fields are coupled
to fermionic matter, which allows the demonstration of
experiments for phenomena such as time-dependent string
breaking and the dynamics after a quench. Using a Fermi-
Bose mixture of ultra-cold atoms in an optical lattice, a
quantum simulator is constructed for a U(1) gauge theory
coupled to fermionic matter. The construction is based
on quantum links which realise a continuous gauge sym-
metry with discrete quantum variables. At low energies,
quantum link models with staggered fermions emerge from
a Hubbard-type model which can be quantum simulated.
This allows one to investigate string breaking as well as the
real-time evolution after a quench in gauge theories, which
are inaccessible to classical simulation methods. While the
basic elements behind the model have been demonstrated
individually in the laboratory, the combination of these
tools and the extension to higher dimensions remain a
challenge to be tackled in future generations of optical
lattice experiments (Fig. 29).

6.2.5 Simulating compact quantum electrodynamics with
ultra-cold atoms: probing confinement and non-perturbative
effects [43]

An alternative for simulating cQED, that relies on single
atoms arranged on a lattice (rather than small BECs),
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has been proposed in reference [43]. In this work the
idea is to use single atoms, described in terms of spin-
gauge Hamiltonians, in an optical lattice, carrying 27 + 1
internal levels. As [ increases, it is found that the spin-
gauge Hamiltonian manifests a rather fast convergence
to the Kogut—Susskind cQED Hamiltonian model. This
then enables the simulation in both the strong and weak
regime of cQED in (2+41) dimensions. Hence the model
can be used to simulate confinement effects in the non-
perturbative regime, with a rather compact system and
with a modest value of [. The case [ = 1, corresponds
to the lowest value, which is sufficient for demonstrating
confinement and flux tubes between external charges, and
is here explicitly constructed. This implementation with
single atoms might be experimentally easier compared to
the BEC approach [231], as it does not rely on the over-
laps of local BECs wave functions and thus involves larger
Hamiltonian energy scales.

6.2.6 Quantum simulations of gauge theories with
ultra-cold atoms: local gauge invariance from angular
momentum conservation [233]

Further development in realising compact QED in (1+1)
and (2+1)-d is described in [233], which also provides a
rather systematic discussion of the structure and needs
of quantum simulations of lattice gauge theory in the
Hamiltonian form of Kogut and Susskind. In particular, in
Section 4 of the article, a systematic method is described
for constructing the required fermion-gauge boson inter-
action terms needed on the links for the particular cases
involving a U(1) interaction, and a Z(N) elementary inter-
action. The key point is that one can in fact reduce the
problem of gauge invariance to that of conservation of
angular momentum in elementary fermion-boson scatter-
ings, by making a clever choice of the internal fermion
and boson levels on the vertices and links. Then, while
the fermion hops from one vertex to another, it interacts
and scatters from bosonic species situated on the link.
By using an adequate selection of the internal fermionic
and bosonic states one can then guarantee that the result-
ing interaction is gauge invariant. The general plaquette
interaction term tr(UUUTUT) has been obtained through
an auxiliary particle that goes around loops, in Section 4
of the article. This method can be used for all gauge field
interactions of the minimal form +{ U4),,; 1, with U being a
precise unitary, by producing such an interaction between
an auxiliary particle and the physical matter. Given that
that is indeed possible, it is shown how the “loop method”
gives rise to plaquette interactions for the cases of U(1)
and SU(N) gauge fields.

6.2.7 Quantum spin ice and dimer models with Rydberg
atoms [234]

Abelian gauge theories also play a rather prominent role
in the theory of frustrated quantum magnets [235]. Refer-
ences [234,236] report two approaches aimed at realising
the dynamics of frustrated quantum magnets with direct
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Fig. 30. (a) Schematics of the energy levels (black lines) and
lasers (thick solid dark-blue arrows) in the Rydberg dressing
scheme. The ground state |g) of each atom is off-resonantly
coupled to a Rydberg state |r;) with a laser of Rabi frequency
Q, and detuning A,. The coupling can be either direct (e.g.,
to p-states) or via an intermediate state. Pairwise interactions
between the energetically well-isolated Rydberg states can be
anisotropic, i.e. Vij(r) = A(9)/r®. (b) Typical behaviour of
Vi;j(r) as a function of distance for different values of the
Condon radius 7. (¢) Contour plot of the dressed ground state
interaction V;;(r)/Vy between the atom in the middle (yellow
circle) and the surrounding atoms (black circles) arranged on
a square lattice. Figure adapted from reference [234].

gauge theoretic interpretation, utilising Rydberg atoms
trapped in lattices (either optical or tweezers).

Reference [234] introduces a toolbox to realise frus-
trated quantum magnets in two dimensions via Rydberg
dressing. The main feature of this type of potentials, which
is generated by off-resonantly coupling ground states to
Rydberg states (see Fig. 30a), is that, different from the
bare Rydberg potential, it exhibits a plateau up to a crit-
ical distance of order of the Condon radius, as depicted in
Figure 30b. This feature is already sufficient to generate
gauge theory dynamics on a variety of lattices that can
be decomposed in triangular unit cells, including kagome
and squagome ones.

In addition, depending on the type of Rydberg states
one is coupling to, it is possible to exploit the angu-
lar dependence of the Rydberg—Rydberg interactions
(encoded in the angular dependent factor A(¥)) to engi-
neer Gauss’ law constraints in other geometries. For the
square lattice case, the resulting Hamiltonian is known
as square Ice. The interactions needed to impose the cor-
responding constraint (the Gauss law, also known as ice
rule) are both anisotropic and position dependent. This
can be achieved by coupling ground state atoms to p-
states: an example of the resulting interaction pattern is
depicted in Figure 30c.

The resulting system dynamics, despite some additional
features due to the long-range character of the Rydberg-
dressing potentials, is able to reproduce the quantum ice
rule, including a ground state with resonating valence-
bond solid order. In addition, even in the absence of quan-
tum fluctuations, an interesting thermal transition to an
(imperfect) Coulomb phase takes place. This work has also
served as a stimulus for tensor network simulations of two-
dimensional systems, as reported in reference [167].

In reference [236] (see also the related work in Ref. [237]
in the context of spin-1 models), the methods discussed
above were considerably expanded. In particular, it was
shown that the full dynamics within the Rydberg mani-
fold can be exploited for the realisation of almost arbitrary
spin-spin interactions, including U(1) and Z(2) invariant
spin exchanges. Some of these terms could be additionally


https://www.epjd.epj.org

Page 30 of 42

@ —e-o—
SuR

@ Auxiliary particles

SR

. b-Bosons

Eur. Phys. J. D (2020) 74: 165

J+Yy

[Fu_ 9+.¢'u] %?—9

Dynamical tunneling

(b) 4—>mfwm r
) [ RN N
™ (*[:] [:]—» A yT% P :
i"‘i“'i‘"‘i DD ; LAAMMAMAMA EAAMMAAMAMA-
Dimer state Effective plaquette Effective plaquette

interaction

interaction

Fig. 31. Key ingredients — (a) Left panel: the auxiliary particles (black dots) are trapped in super-lattice geometry following the
pattern in the figure. The tunnelling rate is large (small) along dark (dashed) bonds. There is one particle for every dark bond.
Middle panel: a large occupation of b-bosons on every site is needed. This is achieved by trapping them along one-dimensional
tubes (blue ovals) arranged in a square lattice geometry. Right panel: upon appropriately shaking the set-up (see text for details),
the effective tunnelling of the a-bosons, at low-frequencies, is modulated in phase by the presence of the b-bosons. (b) Left panel:
by further increasing the tunnelling along dark bonds, the a-bosons delocalise on that bond. Middle panel: at second order in
perturbation theory with respect to the weak tunnelling, the virtual processes depicted create an effective plaquette interaction
for the b-bosons (yellow sphere). Right panel: changing variable to plaquette variables, that can be thought as belonging to a
coarse-grained lattice (shown by the wiggly blue lines) where the electric fields and the vector potentials live, taken from [239].

tuned exploiting quantum interference effects, or local AC
Stark shifts. The possibility of utilising Rydberg atoms to
engineer constrained models can also be directly applied
to dynamics where the matter or gauge fields are inte-
grated out explicitly. For instance, in [238], it was shown
how recent experiments in Rydberg atoms arrays have
already realised [41] quantum simulations of gauge theo-
ries at large scales. In [168], it is shown how to implement
a Rydberg-atom quantum simulator to study the non-
equilibrium dynamics of an Abelian (14 1)-d lattice gauge
theory, the implementation locally codifies the degrees of
freedom of a Z(3) gauge field, once the matter field is inte-
grated out by means of the Gauss local symmetries.

6.2.8 Toolbox for Abelian lattice gauge theories with
synthetic matter [239]

In [239], it is described what can be achieved by using
the simplest possible implementation, taking a mixture of
two Bose-gases on an optical lattice and working with lat-
tice potentials and their time modulation (shaking). The
Hamiltonian governing the system is thus the standard
Bose—Hubbard Hamiltonian in which the atoms can hop
between neighbouring sites around x gaining an energy
J(x) and their interactions lead to an energy cost U. The

two species of bosons behave quite differently: a-bosons
are strongly interacting, say in the hardcore limit, while
b-bosons need to be non-interacting. Their mutual inter-
action is described by Uyp.

Upon fast modulation of this inter-species interaction
and lattice potentials, an effective Hamiltonian is achieved
(for the details of the implementation, refer to [239]), in a
Floquet approximation, for the slow degrees of freedom in
which the hopping of the a-bosons is modulated in ampli-
tude and phase by the difference of occupations of the
b-bosons. This means that the a-bosons behave as charged
particles under a vector potential generated by the differ-
ence in occupations of b-bosons.

In this setting, an interesting scenario is obtained by
considering initially the a-bosons hopping on a dimerised
lattice as presented in the left-hand panel of Figure 31b
where in a first approximation they can only hop hor-
izontally from even to odd sites with amplitude J,(h).
Thus, at half-filling, there is an insulating phase where
each dimerised link contains exactly one delocalised
a-boson as in Figure 31b. By switching on perturbatively
both the hopping of b-bosons J, and the vertical hop-
ping of a-bosons J,(v), applying second order perturba-
tion theory with respect to the hopping ratios J2/J,(h)
and J2(v)/J,(h) an effective Hamiltonian is achieved that
can be described in terms of an exotic gauge theory.
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Fig. 32. Low-energy excitations and phase diagram. (a) At
weak coupling the low-energy excitations are plaquette exci-
tations, magnetic fluxes of strength +2/N. Excitations can
only be created in pairs inside a column and are free to move
along that column. Alternatively, dipoles of magnetic fluxes
involving the excitations of two adjacent plaquettes are free to
move along both lattice directions. (b) Qualitative phase dia-
gram of the Hamiltonian Hgauge in the g—IN plane. The upper
shaded region denotes a gapped phase in the strong coupling
limit. In the weak coupling limit, for low N, the system is
gapped but deconfined (region shaded in light blue). In the
U(1) limit, the system becomes gapless and an exotic dipole
liquid phase emerges (region shaded in dark blue). In the inter-
mediate region, the system is effectively in a one-dimensional
gapless Bose liquid phase, extracted from [239].

The gauge invariant variables are plaquettes construct
from a coarse grained lattice, along the horizontal direc-
tion on whose links the following Hamiltonian is obtained,

5 4
e 5ot (50
p J
27
+ 2 cos (N[S(‘]’:i) — g(J+Q,f3)}>

2
1 cos <N[5(3,@) - 5(j+@,g>])] :

The B, represent the standard plaquette magnetic term
and & is the electric field. N represents the rank of the
Abelian group Z(N) and the U(1) theory is obtained in
the limit V — oo. Even in that limit, the above Hamil-
tonian differs from the standard two-dimensional QED
Hamiltonian, since the electric field part of the Hamil-
tonian acts on neighbouring links, rather than on a single
link as in the standard case.

This specific pattern of the electric field implies that
the low-energy sector of the model can be described by
a gas of oriented magnetic dipoles rather than a gas of
magnetic monopoles. As a consequence, even when the
dipoles condense, they cannot screen the electric field and
thus the model contains new exotic deconfined phases. The
sketch of the conjectured phase diagram is contained in
Figure 32.

(14)

6.2.9 Many-body localisation dynamics from gauge
invariance [240]

The experimental realisation of a synthetic lattice
gauge theory reported in reference [52] has immediately
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stimulated a novel interest in the real-time evolution of
low-dimensional lattice gauge theories, following related
works in the context of statistical mechanics models [241].
A vparticularly active area of research in the latter field
has been the study of disordered, interacting systems,
which, under certain conditions, may fail to thermalise —
a phenomenon referred to as many-body localisation
(MBL) [242].

In reference [240] it was shown that, in contrast to sta-
tistical mechanics models, LGTs may display MBL even
in the absence of any disorder. The feature at the basis of
this phenomenon is the presence of Hilbert space sectors,
which are a characteristic feature in LGTs. For Abelian
theories, these subspaces are simply characterised by a
given background charge distribution.

An arbitrary translationally invariant state is typi-
cally spanning several of these super-selection sectors: this
implies that the resulting time evolution is actually sensi-
tive to several, distinct background charge distributions,
mimicking the time evolution of a system under an inho-
mogeneous potential. This does not map into uncorrelated
disordered patterns, at least for the gauge group and the
class of initial states considered in reference [240].

This type of dynamics was then analysed numerically
using large-scale exact diagonalisation methods for the
lattice Schwinger model, starting from initial states with
gauge fields in an equal weight superposition of F =
(—=1,0,1), and staggered fermions. A sample of these
results is depicted in Figure 33: absence of relaxation
for two local observables is indicated in the upper two
panels. The bottom two report a finite-size scaling anal-
ysis for a thermalising and non-thermalising case. The
entanglement evolution of this MBL-type dynamics is
however rather peculiar, as signalled by the evolution of
the half-chain entanglement entropy: while this typically
increases logarithmically with time, in the present context,
a double-logarithmic increase was observed up to numer-
ically accessible time-scales.

A related phenomenology was also observed in theo-
ries without confinement in reference [243], and was also
proposed as an implementation route for non-interacting
models in reference [244]

6.2.10 Discretizing quantum field theories [245,246]

The majority of platforms for quantum simulations: ultra-
cold atoms in optical lattices, Rydberg atoms in traps or
trapped ions deal with discretised versions of the considered
Quantum Field Theory. As always in such cases, this can
be viewed as a nuisance or an opportunity. In fact, to
simulate LGT, discrete lattice models and their implemen-
tations are needed. But, studying and quantum simulating
discrete versions of continuous QFT models might also
lead to new fascinating physics. In [246], a Gross—Neveu-
Wilson model was studied and its correlated symmetry-
protected topological phases revealed. A Wilson-type
discretisation of the Gross—Neveu model, a fermionic
N-flavour quantum field theory displaying asymptotic
freedom and chiral symmetry breaking, can serve as a play-
ground to explore correlated symmetry-protected phases
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Fig. 33. Dynamics following a quantum quench in the
Schwinger model, starting from a state with gauge fields in an
equal weight superposition of E = (—1,0,1) and fermions in
the bare vacuum. Top panels: overall staggered fermion occupa-
tion (a) and central staggered fermion occupation (b) for differ-
ent values of the coupling strength parameter J, and N = 26.
(c) and (d) Final time value of v(t) and u(t), respectively, aver-
aged from ¢t = 50 to t = 100 for different system sizes up to
N =30and J = 0.1, 1.0, representative of the thermalising and
non-thermalising dynamics. The absolute error due to averag-
ing over realisations are shown as vertical bars for each point.
Figure taken from reference [240].

of matter using techniques borrowed from high-energy
physics. A large-N study, both in the Hamiltonian and
Euclidean formalisms, was used and analysed.

In [245], renormalisation group flows for Wilson-
Hubbard matter and the topological Hamiltonian were
studied. The aim was to understand the robustness of
topological phases of matter in the presence of interac-
tions, a problem that poses a difficult challenge in modern
condensed matter physics, showing interesting connec-
tions to high-energy physics (see also other works facil-
itating quantum simulations with ultra-cold atoms and
ions: Jinemann et al. [247] for exploration of interacting
topological insulators with ultra-cold atoms in the syn-
thetic Creutz-Hubbard model, Magnifico et al. [248] for
symmetry-protected topological phases in lattice gauge
theories, Magnifico et al. [249] for the study of the topo-
logical Schwinger model, Gonzdlez-Cuadra et al. [250]
for Z(N) gauge theories coupled to topological fermions.
These connections present an analysis of the continuum
long-wavelength description of a generic class of correlated
topological insulators of Wilson-Hubbard type, feasible for
experiments with quantum simulators.

6.2.11 Interacting bosons on dynamical lattices [250-253]

For ultra-cold atoms in optical lattices quantum simula-
tions with bosons are more experimentally friendly than
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those with fermions. For these reasons there is a clear ten-
dency in recent years to design and study lattice models
in which bosons replace fermions. Particularly fruitful and
fascinating are such models, dubbed as dynamical lattices,
where some objects live on the lattice links, like in LGTs.

Inspired by the so-called fluctuating bond supercon-
ductivity for fermionic Hubbard-like models that include
quantised phonons on the links (see for instance [254]),
a bosonic version of such models was formulated where
phonons on the links are replaced by two states of
a spin-1/2, which provides a minimal description of a
dynamical lattice. These Z(2) Bose-Hubbard models are
extraordinarily rich and lead to bosonic Peierls transitions
[251], intertwined topological phases [252,255], symmetry-
protected topological defects [250], etc. Thus even in the
absence of the gauge invariance, these models allow one
to explore interesting strongly-correlated topological phe-
nomena in atomic systems.

Similar models, now with exact Z(2) gauge symmetry,
were studied theoretically [256] and realised recently in a
cold-atom experiment [257]. Peierls states and phases were
also studied in models of Floquet-engineered vibrational
dynamics in a two-dimensional array of trapped ions [258].
Recently, density-dependent Peierls phases were realised
coupling dynamical gauge fields to matter [259].

The culmination of this effort is the paper [253], in
which the bosonic Schwinger model was studied and con-
finement and lack of thermalisation after quenches was
observed. The vacuum of a relativistic theory of bosons
coupled to a U(1) gauge field in 141 dimensions (bosonic
Schwinger model) was excited out of equilibrium by cre-
ating a spatially separated particle-anti-particle pair con-
nected by an electric flux string. During the evolution, a
strong confinement of the bosons is observed witnessed by
the bending of their light cone, reminiscent of what was
observed for the Ising model. As a consequence, for the
time scales amenable to simulations, the system evades
thermalisation and generates exotic asymptotic states.
These states extend over two disjoint regions, an external
deconfined region that seems to thermalise, and an inner
core that reveals an area-law saturation of the entangle-
ment entropy.

6.3 Abelian quantum simulation with trapped ions and
superconducting circuits

6.3.1 Quantum simulation of a lattice Schwinger model in a
chain of trapped ions [260]

Reference [260] represents the first attempt to identify
gauge theory dynamics in trapped ion systems. From the
point of view of analog quantum simulation, the main
difference between atom and ion experiments resides in
the type of degrees of freedom one can harness. While
in former settings one is typically dealing with itiner-
ant fermions and bosons, in the latter, the dynamics is
dictated by the interactions between the ions’ internal
degrees of freedom (either nuclear or electronic spin) and
the phonon modes generated by the ion crystal.
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The internal levels of the ions and the phonon modes
are then coupled via external light fields: upon integration
of the phonon degrees of freedom the resulting dynamics
is then given by a spin chain, typically with S = 1/2.
Reference [260] exploits the fact that such interactions can
be made spatially anisotropic. The main idea is that one
can identify ions on one sub-lattice (A) as “matter” fields,
and ions on the other sub-lattice (B) as gauge fields in the
quantum link formulation discussed above.

Within this setting, gauge invariance is then enforced
by energy punishment. The latter is generated using a
combination of two laser-assisted (e.g., Raman) interac-
tions between qubits, that can be made spatially inhomo-
geneous either utilising local shifts, or by properly shaping
the Rabi frequency of the light beams. The effective quan-
tum link model dynamics is then generated in second order
perturbation theory, similar to several atomic schemes.

Here the main source of experimental imperfections is
the presence of long-ranged terms in the spin-spin interac-
tions. While the latter are gauge invariant, their presence
might be detrimental to observe physical phenomena: as
such, one has to find a balance between enforcing the con-
straint, while still keeping the effective QLM dynamics
sufficiently fast. In [260], this question was addressed in
the context of ground state preparation: there, it is pos-
sible to find an optimal parameter regime that allows the
observation of the Ising transition present in the QLM.

Following this first work, other proposals have been pre-
sented to realise LGT dynamics in trapped ion systems.
Reference [261] dealt instead with two-dimensional mod-
els, mostly focusing on condensed matter realisations of
Z(2) quenched gauge theories which are known to exhibit
topological quantum spin liquid behaviour. The main idea
there was to utilise localised phonon modes generated in
two-dimensional lattices either via Rydberg excitations,
or by laser-pinning a subset of the trapped ions. At the
few plaquette level, the model corresponds to the frus-
trated magnet introduced by Balents, Fisher and Girvin
in reference [262].

6.3.2 Superconducting circuits for quantum simulation of
dynamical gauge fields [263]

The essential building blocks of a superconducting quan-
tum simulator are described in [263] for dynamical lat-
tice gauge field theories, where the basic physical effects
can already be analysed with an experimentally avail-
able number of coupled superconducting circuits. This
proposal analyses a one-dimensional U(1) quantum link
model, where superconducting qubits play the role of mat-
ter fields on the lattice sites and the gauge fields are rep-
resented by two coupled microwave resonators on each
link between neighbouring sites. A detailed analysis of
a minimal experimental protocol for probing the physics
related to string breaking effects shows that, despite the
presence of decoherence in these systems, distinctive phe-
nomena from condensed-matter and high-energy physics
can be visualised with state-of-the-art technology in small
superconducting-circuit arrays (Fig. 34).
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Fig. 34. (a) Pictorial view of a 1D quantum link model,
where the operators on even (odd) sites represent matter (anti-
matter) fields and the spin operators residing on each link
represent the gauge fields. (b) Equivalent physical implemen-
tation, where two-level systems replace the fermionic mat-
ter fields and two oscillators with a fixed total number of
excitations N encode a spin S = N/2 on each link. (c)
Superconducting-circuit implementation. Neighbouring super-
conducting qubits on the sites of a 1D lattice are connected via
two nonlinear LC resonators. Figure taken from reference [263].

6.3.3 Loops and strings in a superconducting lattice gauge
simulator [264]

An architecture for an analog quantum simulator of elec-
tromagnetism in (2+1) dimensions is proposed in [264],
based on an array of superconducting fluxonium devices.
The simulator can be tuned between intermediate and
strong coupling regimes, and allows non-destructive mea-
surements of non-local, space-like order and disorder
parameters, resolving an outstanding gap in other pro-
posals. Moreover, a physical encoding of the states is pro-
vided, where local electric field terms are non-trivial. The
devices operate in a finite-dimensional manifold of low-
lying eigenstates, to represent discrete electric fluxes on
the lattice. The encoding is in the integer (spin 1) rep-
resentation of the quantum link model formulation of
compact U(1) lattice gauge theory. In the article, it is
shown how to engineer Gauss’ law via an ancilla medi-
ated gadget construction, and how to tune between the
strongly coupled and intermediately coupled regimes. The
protocol is rather robust to inhomogeneities, allowing for
implementations in superconducting arrays, and numer-
ical evidence is presented that lattice QED in quasi-
(2 + 1) dimensions exhibits confinement. Beyond ground
state characterisation, the simulator can be used to probe
dynamics and measure the evolution of non-local order or
disorder parameters. The witnesses to the existence of the
predicted confining phase of the model are provided by
non-local order parameters from Wilson loops and disor-
der parameters from 't Hooft strings. In [264], it is shown


https://www.epjd.epj.org

Page 34 of 42

Fig. 35. U(1) quantum link model engineered in a fluxonium
array. (a) “Blectric” Ea.5, and “magnetic” Us.s, degrees of
freedom are associated with links (a; ) of a square lattice.
The link degrees of freedom (red circles) are encoded in eigen-
states of the fluxonia. The ancillae (blue diamonds) on vertices
are inductively coupled to neighbouring link islands to mediate
the Gauss constraint and plaquette interactions are obtained
via link nearest-neighbour capacitive coupling. (b) Supercon-
ducting circuit elements used to build and couple components
of the simulation. The link devices have local phase ¢ink and
capacitive, inductive, and flux-biased Josephson energies Ec,
FEr, and E;, respectively, and similarly for the ancilla devices.
The capacitive and inductive coupling energies are E¢ and Ef .
(¢) A minimal quasi-1D “ladder” implementation embedded
in a microwave cavity (black box), in which a ’t Hooft string
of link fluxonia (green circles) can be measured via anancilla
coupled to the cavity (green triangle). Figure taken from ref-
erence [264].

how to construct such operators in this model and how to
measure them non-destructively via dispersive coupling of
the fluxonium islands to a microwave cavity mode. Numer-
ical evidence was found for the existence of the confined
phase in the ground state of the simulation Hamiltonian
on a ladder geometry (Fig. 35).

6.4 Quantum simulation of non-Abelian gauge fields
with ultra-cold atoms

6.4.1 Atomic quantum simulation of U(N) and SU(N)
non-Abelian lattice gauge theories [48]

Using ultra-cold alkaline-earth atoms in optical lattices,
[48] constructs a quantum simulator for U(NN) and SU(N)
lattice gauge theories with fermionic matter based on
quantum link models. These systems share qualitative fea-
tures with QCD, including chiral symmetry breaking and
restoration at non-zero temperature or baryon density.
The proposal builds on the unique properties of quantum
link models with rishons representing the gauge fields: this
allows a formulation in terms of a Fermi-Hubbard model,
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Fig. 36. (a) (upper panel) U(N) QLM in (1+1)-d with quark
fields on lattice sites and gauge fields on links; (lower panel)
hopping of alkaline-earth atoms between quark and rishon sites
of the same shading. (b) Implementation of the QLM in rishon
representation with fermionic atoms in (24 1)-d. (c) Encoding
of the color degrees of freedom for N = 2 in Zeeman states of a
fermionic alkaline-earth atom with I = 3/2. (d) Lattice struc-
ture to avoid the interaction in fermionic matter sites using a
species-dependent optical lattice. (e) Initial state loaded in the
optical lattice with a staggered distribution of doubly occu-
pied sites for a U(2) QLM with N = 2. Figure taken from
reference [48].

which can be realised with multi-component alkaline-earth
atoms in optical lattices, and where atomic physics pro-
vides both the control fields and measurement tools for
studying the equilibrium and non-equilibrium dynamics
and spectroscopy (Fig. 36).

6.4.2 A cold-atom quantum simulator for SU(2) Yang—Mills
lattice gauge theory [46]

A realisation of a non-Abelian lattice gauge theory, which
is an SU(2) Yang-Mills theory in (1+1)-dimensions is pro-
posed in [46]. The system one wants to simulate involves a
non-Abelian gauge field and a dynamical fermionic matter
field. As in ordinary lattice gauge theory the fermions are
located at the vertices and the gauge fields on the links.
Using staggered fermion methods, in the (1+1)-d case the
Hamiltonian is equivalent, to the non-Abelian Schwinger
model, with a minimal-coupling interaction of the form
Yl Uptbp i1, involving a 2 x 2 unitary matrix. In order to
simulate the non-Abelian SU(2) Hamiltonian, this paper
uses a particular realisation of the group elements and
“left” and “right” generators, using a Jordan—Schwinger
map, that connects harmonic oscillators (bosons) and
angular momentum. Mapping SU(N) to a bosonic sys-
tem allows one to express the gauge fields by means of
bosonic atoms in the prepotential method [265-270]. For
the SU(2) group, one then needs four bosonic species for
each link. Remarkably, gauge invariance arises as a conse-
quence of conservation of angular momentum conservation
and thus is fundamentally robust. However, the effective
Hamiltonian obtained here is not valid beyond the strong
coupling limit.
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6.4.3 Constrained dynamics via the Zeno effect in quantum
simulation: implementing non-Abelian lattice gauge theories
with cold atoms [271]

Implementing non-Abelian symmetries poses qualitatively
new challenges from the theory side with respect to the
Abelian case. In particular, energy punishment strategies,
which are widespread for U(1) theories, are not immedi-
ately viable. The main reason is the following: consider a
set of local generators G, and a microscopic Hamiltonian
of the type:

H=Hy+H +Y > UGS)? (15)

T «

where Hj is a gauge invariant term, and H; is gauge vari-
ant. Here, differently from the Abelian case, where a single
generator is considered, one deals with several constraints,
that have to be satisfied in a symmetric manner — that
is, U = U,. Typically, this requires fine-tuning, making
energy punishment strategies not immediately viable.

In reference [271], an alternative procedure was pro-
posed based on quantum Zeno dynamics [272]. The basic
idea is to consider a set of classical noise sources £2 (t) cou-
pled to the generators of the gauge symmetry, described
by the effective microscopic Hamiltonian:

Hmicro = HO + Hl + v 2’%253(”6:2

T,

(16)

In the limit of independent, white noise sources, the sys-
tem dynamics is described by a master equation, whose
corresponding effective Hamiltonian reads:

He = Ho+ Hy —ir® Y (G9)%.

T,a

(17)

In the large noise limit, where s is much larger than all
microscopic scales involved in Hy, the effective dynamics
is constrained to the gauge invariant subspace Hp. In this
limit, any coupling term between the gauge invariant sub-
space to the gauge variant one Hy is suppressed by the
noise terms (see Fig. 37a). Depending on the nature of
Hy, one can use a limited number of noise sources, with
the condition that neighbouring blocks are subject to dis-
tinct noise terms, as illustrated in Figure 37b. From a
theoretical viewpoint, this scheme can be seen as a classi-
cal analogue of the quantum Zeno effect [272], which has
also been discussed in the context of quantum many-body
systems as a source of local interaction [273-275].

The main feature of this scheme is that, different from
energy penalty schemes, here the constraints are induced
by just coupling to simple operator terms (there is no
microscopic term (G¢)? that shall be engineered), that can
be easily controlled by means of external fields. This dras-
tically simplifies the conditions required to achieve gauge
invariant dynamics. This comes at the price of needing to
realise the desired dynamics Hy without the help of per-
turbation theory: two applications in the context of both
Abelian and non-Abelian theories are discussed in refer-
ence [271] in the context of cold atoms in optical lattices.
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Fig. 37. Dissipative protection of gauge invariance via the
quantum Zeno effect. (a) The dynamics Hp spans the gauge
invariant subspace Hp, defined by G2|v) = 0, but gauge vari-
ant perturbations H; may drive the system into the gauge
variant subspace Hq (where Gg|¢) # 0). (b) The noise sources
coupled to each single building block of the LGT constrain the
dynamics within Hp. The multi-site structure of the genera-
tors implies that the noise has to be correlated quasi-locally in
space. Figure taken from reference [271].

6.4.4 SO(3) “Nuclear Physics” with ultra-cold gases [276]

An ab initio calculation of nuclear physics from QCD, the
fundamental SU(3) gauge theory of the strong interac-
tion, remains an outstanding challenge. In this proposal,
the emergence of key elements of nuclear physics using
an SO(3) lattice gauge theory as a toy model for QCD
is discussed. This model is accessible to state-of-the-art
quantum simulation experiments with ultra-cold atoms
in an optical lattice. The phase diagram of the model is
investigated, and showed that it shares some fundamental
properties with QCD, most prominently confinement, the
spontaneous breaking of chiral symmetry, and its restora-
tion at finite baryon density, as well as the existence of
few-body bound states, which are characteristic features
of nuclear physics. The most critical step in implementing
a gauge theory on a quantum simulator is to make sure
that the gauge symmetry remains intact during the sim-
ulation. It is shown how the lattice gauge model, which
has a non-Abelian gauge symmetry, can be realised in a
quantum simulator platform by encoding the operators
directly in the gauge invariant subspace, thus guaranteeing
exact gauge invariance. This encoding strategy is gener-
ally applicable to the whole class of quantum link models,
which are extensions of Wilson’s formulation of lattice
gauge theories. Quantum link models permit encoding to
local spin Hamiltonians. This not only makes the imple-
mentation feasible on different platforms, such as ultra-
cold atoms and molecules trapped in optical lattices, but
also establishes a novel connection between non-Abelian
lattice gauge theories including matter fields and quantum
magnetism (Fig. 38).

Concretely, it is shown in [276] how (1+1)-d SO(3) lat-
tice gauge theories can be naturally realised using ultra-
cold atoms in optical lattices. The phase diagram of these
models features several paradigmatic phenomena, e.g. the
presence of stable two-body bound states, phases where
chiral symmetry is spontaneously broken, where the bro-
ken chiral symmetry is restored at finite baryon density,
and emergent conformal invariance. The dynamics in the
gauge invariant sector can be encoded as a spin S = 3/2
Heisenberg model, i.e., as quantum magnetism, which has
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Fig. 38. (a) Sketches of the different objects in SU(3) and
SO(3) gauge theories. In both cases, three colour matter fields
are present. Single baryons have different internal structures:
in SU(3) gauge theories, they contain three quarks, while in
SO(3) theories they can be formed by a single quark paired
with a gluon. (b) Summary table of both local and global sym-
metries in the (14-1)-d SO(3) QLM, compared with its (2+1)-d
counterpart, and with (34 1)-d QCD. The model investigated
here has the same baryon number symmetry as QCD, and has
a non-trivial discrete chiral symmetry (which is simpler than
QCD’s continuous chiral symmetry). (c¢) Local gauge invari-
ant states in the SO(3) gauge model. Gauss’ law implies that
the physical subspace contains singlet states in the combined
matter and gauge degrees of freedom. (d) Cartoon states for
some phases of the SO(3) QLM. From top to bottom: generic
configuration with no order; chiral symmetry broken vacuum,
where the quark population is arranged in a staggered fashion;
baryon configuration, where a single baryon is created on top
of the vacuum state; anti-baryon configuration, where a single
anti-baryon is created on top of the vacuum state. Figure taken
from reference [276].
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a natural realisation with bosonic mixtures in optical lat-
tices, and thus sheds light on the connection between
non-Abelian gauge theories and quantum magnetism. This
encoding technique has the dramatic advantage of realis-
ing gauge invariance exactly, and at the same time bypass-
ing the complex interaction engineering which is required
for non-Abelian theories.

7 Conclusions

At the time of writing this review, there is a coordinated
effort to study the possible applications of quantum tech-
nologies to the study of gauge theories. The global aim
is to develop novel methods and techniques, namely clas-
sical and quantum hardware and software, that eventu-
ally could be applied to study open problems in different
fundamental and applied fields of science ranging from
materials science and quantum chemistry to astrophysics
and that will impact fundamental research and our every-
day life. This challenge is a highly collaborative advanced
multidisciplinary science and cutting-edge engineering
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project with the potential to initiate or foster new lines
of quantum technologies. Along the way, the scientific
community that is growing around this topic, is devel-
oping a deeper fundamental and practical understanding
of systems and protocols for manipulating and exploiting
quantum information; at enhancing the robustness and
scalability of quantum information processing; identify-
ing new opportunities and applications fostered through
quantum technologies and enhancing interdisciplinarity
in crossing traditional boundaries between disciplines in
order to enlarge the community involved in tackling these
new challenges.

The results of this endeavour serve as benchmarks
for the first generation of quantum simulators and will
have far reaching consequences, e.g., in the long run this
research will enable the study and design of novel mate-
rials with topological error correcting capabilities, which
will play a central role in the quest for building a scalable
quantum computer. In particular, in the review, the most
advanced quantum simulation of a lattice gauge theory
achieved so far is presented, a digital ion-trap quantum
variational optimisation applied to find the ground state
of the Schwinger model. Moreover, it is also reviewed how
novel tensor network methods are being developed and
applied to study such systems in one and two dimensions,
and finally, how new directions are being proposed for
quantum simulations of more complex theories.

Apart from the reviewed results and methods, in this
field that we are just starting to build, there is plenty of
new questions, open problems, and opportunities. Some
of them offer a clearer roadmap. It is for instance the case
of hybrid strategies between classical and quantum sim-
ulations, where bottlenecks for the classical computation,
due to the various types of sign problems or the exponen-
tial growth of the Hilbert space, are replaced by a quan-
tum computation, which could speed up the calculations.
Other avenues will require a much longer time to become
a reality, such as the full-fledged quantum simulation of a
realistic gauge model.

Lattice gauge theories provide both motivation and
a framework for pushing forward the interdisciplinary
advancement of quantum technologies. While the quan-
tum simulation of classical intractable aspects of QCD
(such as its real-time evolution or its phase diagram at
high baryon density) remain long-term goals with a poten-
tially large impact on particle physics, a wide class of lat-
tice gauge theories, often with applications in condensed
matter physics or quantum information science, suggests
itself for theoretical investigation and experimental reali-
sation. There is a lot of interesting physics to be discovered
along the way towards developing powerful hard- and soft-
ware for the fast growing field of quantum simulation and
computation technology.
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