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Summary. In psoriatic arthritis, it is important to understand the joint activity (represented by
swelling and pain) and damage processes because both are related to severe physical dis-
ability. The paper aims to provide a comprehensive investigation into both processes occurring
over time, in particular their relationship, by specifying a joint multistate model at the individual
hand joint level, which also accounts for many of their important features. As there are multiple
hand joints, such an analysis will be based on the use of clustered multistate models. Here
we consider an observation level random-effects structure with dynamic covariates and allow
for the possibility that a subpopulation of patients is at minimal risk of damage. Such an anal-
ysis is found to provide further understanding of the activity–damage relationship beyond that
provided by previous analyses. Consideration is also given to the modelling of mean sojourn
times and jump probabilities. In particular, a novel model parameterization which allows easily
interpretable covariate effects to act on these quantities is proposed.

Keywords: Clustered processes; Jump probabilities; Mover–stayer model; Multistate model;
Psoriatic arthritis; Sojourn times

1. Introduction

In psoriatic arthritis, manifestations of the disease typically result in joints becoming swollen
and/or painful (active joints), which are reversible through treatment or management strategies
or spontaneously, and may lead to permanent joint damage. The interplay between disease
activity (as measured by activity in the joint) and damage is believed to be of a causal nature with
a previous investigation performed by O’Keeffe et al. (2011) providing an extensive discussion on
the topic. In that analysis, among others, individual joint level three-state models consisting of
a not-active and not-damaged state, active and not-damaged state and an absorbing damaged
state were proposed and produced strong evidence of a greatly increased transition rate to
damage when a joint is active (compared with a joint being not active). The three-state models
were fitted under a working independence assumption (the three-state processes are independent
within an individual) with a robust covariance matrix used to adjust standard errors (Lee and
Kim, 1998). The purpose of this paper is to extend the current modelling framework so that
greater confidence with regard to the association between activity and damage can be achieved,
and also to inform on other important clinical questions.
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From a statistical point of view, it is important to adjust for observed and, where possible,
unobserved characteristics which are believed to be strongly related to the processes of interest,
i.e. confounder variables. An analysis that does not may produce spurious associations between
included covariates and the outcome. Therefore, as extensions to O’Keeffe et al. (2011), dynamic
covariates (covariates which describe important aspects of previous developments of the process)
are included to allow current transition intensities to depend on previous history (relaxing the
Markov assumption), random effects are introduced into the transition intensities to account for
unobserved heterogeneity and provide a more efficient estimation procedure, and a mover–stayer
model (Frydman, 1984) is considered to allow for the possibility that some patients (stayers)
have no propensity to develop damaged joints. Whereas much research has focused on the
effect of disease activity on joint damage, no research has yet considered the reverse association
(i.e. the effect of damage on activity). Specifically, it is of interest to investigate whether the
disease activity process changes with onset of damage, and how if so. To inform on the possible
association, the absorbing damaged state is further subdivided into an active and damaged state
and a not-active and damaged state, thereby allowing the disease activity process to be modelled
even after a joint has become damaged. The resulting model then utilizes the entire data set, as
opposed to previously where the disease activity process was stopped once a joint had become
damaged. By considering a mover–stayer model, it is also possible to investigate whether the
activity process is different between movers (those who have the propensity to develop damaged
joints) and stayers, and this will also contribute new knowledge towards the relationship between
damage and activity.

Clustered progressive multistate models constructed using random effects have previously
been proposed in the panel data literature. See, for example, Cook et al. (2004), O’Keeffe et al.
(2012) and Sutradhar and Cook (2008). In our context, these models introduce time invariant,
possibly multivariate random effects at the patient level to account for the correlation between
joints from the same patient, time invariant unobserved heterogeneity and relaxation of the
Markov assumption. A novel feature of our work is the use of observation level multivariate
random effects in clustered non-progressive multistate models to account for correlation and
time varying unobserved heterogeneity and the introduction of dynamic covariates to relax the
Markov assumption explicitly. The proposing of this random-effects structure was motivated
by the extensive lengths of follow-up and the possibly non-predictable changes in unobserved
heterogeneity due to treatment or management strategies employed by the clinic and the spon-
taneous nature of joint activity. Such observations are less likely to result in unobserved hetero-
geneity being time invariant or time varying but deterministic (which is enforced by patient level
random effects). Along with generalized estimating equations, copulas (Diao and Cook, 2014)
and expanded state space models (Tom and Farewell, 2011) have also been proposed to handle
clustering. Although there are considerable advantages to such models, they are particularly dif-
ficult to formulate and implement when more than two intermittently observed non-progressive
multistate processes are of interest.

The natural multistate modelling parameterization allows covariates to act on transition
intensities in a proportional hazards framework. Therefore easily interpretable covariate effects
on these transition intensities can be obtained. Another natural way to view a multistate process
is in terms of its sojourn times (the time spent in a state before a transition occurs) and jump
probabilities (the probability of transitioning to a state given that a transition occurs). If these
quantities are of interest, a model parameterization which allows easily interpretable covariate
effects to act on these quantities would be useful, especially as current parameterizations may
not enable such interpretation. We consider this issue to motivate a modification of the original
three-state model.
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The next section introduces the psoriatic arthritis data on which this analysis is based.

2. Psoriatic arthritis data

Psoriatic arthritis is an inflammatory arthritis that is associated with the skin condition psoriasis.
At the University of Toronto psoriatic arthritis clinic, over 1000 patients have been followed
up longitudinally since it began in 1978 with clinic visits scheduled 6–12 months apart. In
particular, at these visits, the active and damaged joint counts are recorded at the individual
joint level, among other measurements, and therefore permit statistical modelling at this level
of detail. In this investigation, focus will be on the 28 hand joints (14 joints in each hand; see
Fig. 1 for more details), which can result in severe physical disability if active and/or damaged.
Furthermore, this investigation is based on 743 patients who entered the clinic with no damage
in either hand, so that patients are more comparable in their initial state of disease progression,
and had more than two clinic visits. A dynamic covariate which requires previous observations
will be constructed in the next section. Of this subset of patients, 69% (514 of 743 patients) had
no damage at the end of their follow-up, which motivates consideration of a stayer population.
The mean follow-up time was 10 years and 8 months with an interquartile range of 11 years
and 6 months. The mean and median number of clinic visits were 12.7 and 8 respectively, and
this ranged from 2 to 57. The mean and median intervisit times were 10 and 6 months, with a
standard deviation of 1 year and 3 months. At clinic entry, the mean age at onset of arthritis
was 36 years and 8 months with a standard deviation of 13 years and 4 months, whereas the
mean duration of arthritis was 5 years and 2 months with a standard deviation of 7 years and
2 months. Furthermore, 55% of patients were male and 45% female.

In total, there were 264208 observed transitions over all hand joints in the data. The observed
transition matrix is

Fig. 1. Diagram of the type of joints in each hand: this investigation focuses on 14 joints in each hand
consisting of the distal interphalangeal, proximal interphalangeal and metacarpophalangeal joints in each
finger and the proximal interphalangeal and metacarpophalangeal joints in the thumb (the figure was obtained
from the arthritis fact sheet on the Georgia Tech Web page usability.gtri.gatech.edu)
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⎛
⎜⎜⎜⎜⎝

ĀD̄ AD̄ ĀD AD

ĀD̄ 217976 11008 623 158

AD̄ 12250 8599 200 169

ĀD 0 0 10935 680

AD 0 0 882 728

⎞
⎟⎟⎟⎟⎠

where Ā and A denote the absence and presence of activity in the joint respectively, and D̄

and D denote whether the joint has been clinically assessed as not damaged and damaged
respectively.

The next section describes a six-state model which will be useful for jointly investigating the
activity and damage processes.

3. Six-state model for transition intensities

Multistate models provide a convenient framework when the evolution of a stochastic process
is of interest (Commenges, 1999; Anderson, 2002). This investigation demonstrates their use
for the joint analysis of the disease activity and damage processes occurring in each individ-
ual hand joint. Specifically, consider the following four-state representation that is depicted in
Fig. 2.

The process characteristics, particularly the reversibility of activity and permanent nature of
damage, are reflected in the non-zero transition intensities which describe the instantaneous
rate of transitioning between states. It is implicit that this representation describes the possible
transitions of movers since λ13 and λ24 >0. If, however, a stayer population exists with regard to
developing damaged hand joints, their disease activity process can be described by the multistate
diagram in Fig. 3.

Let λl
rsij denote the transition intensity from state r to s for the lth joint of the ith patient at

the jth clinic visit (at each clinic visit all 28 hand joints are observed). Initially to investigate

Fig. 2. Multistate model describing the disease activity and damage processes jointly for movers

Fig. 3. Multistate model describing the activity process for stayers



Modelling Transition Intensities and Sojourn Times in Psoriatic Arthritis 5

specific clinical aspects described in Section 1 (and to formulate a more parsimonious model),
the transition intensities are parameterized as follows:

λl
34ij =λl

12ij exp.βĀA
Damaged/,

λl
43ij =λl

21ij exp.βAĀ
Damaged/,

λl
24ij =λl

13ij exp.βD̄D
Active/,

λl
56ij =λl

12ij exp.βĀA
Stayer/,

λl
65ij =λl

21ij exp.βAĀ
Stayer/:

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.1/

Thus regression coefficients are used to provide a simple representation of the main effect of
damage and mover–stayer status on activity transitions as well as the main effect of activity on
the damage transition. We note that more complex models involving interaction effects can be
developed for estimating differential effects across various subgroups of patients. Furthermore,
we let

λl
12ij =λĀA

0 exp.βĀAzl
ij +uij/,

λl
21ij =λAĀ

0 exp.βAĀzl
ij +αuij/,

λl
13ij =λD̄D

0 exp.βD̄Dzl
ij +vij/,

⎫⎪⎬
⎪⎭ .2/

where λĀA
0 , λAĀ

0 and λD̄D
0 are constant baseline intensities, βĀA, βAĀ and βD̄D are vectors of

regression coefficients, zl
ij is a vector of covariates that are associated with the lth joint from

the ith patient at the jth clinic visit, and uij and vij are realizations of zero-mean bivariate
normal observation level random effects. Here α∈R is an unknown parameter to be estimated
which allows uij to act differently across the different transition intensities associated with the
activity process. Although not formally stated, we include time-dependent dynamic covariates
in zl

ij to relax the Markov assumption. Specifically, the observed history of the activity process
is summarized through a joint-specific covariate denoted as the adjusted mean activity AMA
(Ibañez et al. (2003); Fig. 4 provides a description), whereas a patient’s state of disease progres-
sion is reflected through the current number of damaged joints attained. On average, AMA was
calculated as 0.093 with a standard deviation of 0.19 in our data. Given these dynamic covari-
ates, current transition intensities from the multistate process are then assumed independent of
previous process history, i.e. the Markov assumption. The random effects are assumed indepen-
dent across time (with respect to j) and can be seen as accounting for unobserved heterogeneity
not due to previous process history (where adjustments to unobserved heterogeneity related to
previous history are provided through the dynamic covariates), which is still unaccounted for
in the model. It is worth noting that the explicitly specified regression coefficients in expressions
(1) and (2) correspond to covariates with different modelling assumptions. The covariates in
zl

ij are assumed to remain constant between clinic visits and therefore are relevant when this is
true (time invariant covariates) or a reasonable approximation (e.g. when the covariate process
is unlikely to be highly fluctuating between clinic visits). For simplicity, such covariates are also
usually included if understanding the relationship between these covariates and the outcome is
not of primary interest but some form of adjustment for these covariates is necessary. In con-
trast, the regression coefficients βDamaged and βActive are describing the effect of a binary variable
representing a joint being damaged and active respectively while reflecting the stochastic nature
of these processes and therefore provide more realistic measures of association. This is espe-
cially useful because these are the clinical aspects of primary interest. The regression coefficient
βStayer is similar in nature to α as it describes the effect of a partially observable binary variable
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Fig. 4. Let x.t/ be realized values of X.t/, a binary stochastic process describing the activity process of
a joint: specifically at time t, x.t/ D 1 corresponds to the joint being active and x.t/ D 0 corresponds to the
joint being not active; AMA.t/ is then calculated as .1=t/

∫ t
0 x.s/ ds, thus resulting in a bounded measure

between [0, 1]; as x.t/ is intermittently observed and therefore the true path of x.t/ is not known,
∫ t

0 x.s/ ds
is approximated as the area under the linearly interpolated observations of x.t/; for example, if a joint was
observed at t D .0, 1, 2, 3, 5/ such that x.t/ D .0, 1, 0, 0, 1/ respectively, then AMA.5/ is approximated as the
shaded area divided by 5, i.e. hence 0.4

(stayer = 1 and mover = 0); it can only be known that patients with damage are movers and
that patients with no damage are either movers or stayers.

The motivation behind the use of observation level random effects arose from the potential
need to allow for non-predictable changes in unobserved heterogeneity (Unkel et al., 2014) with
regard to the damage and activity processes. The current methodology in the literature primarily
uses patient level random effects. This forces unobserved heterogeneity to be time invariant and
we assess this assumption in our context by fitting this model (i.e. {Uij, Vij}= {Ui, Vi} ∀ j) in
addition to the model proposed. Likelihood values can then be used to compare informally the
usefulness of the modelling framework proposed (models are non-nested but contain the same
number of parameters; hence the same penalty terms are obtained if information criteria such
as the Akaike information criterion are used). In general, the estimability of random-effects
models, particularly variance components, will be driven by the random-effects structure and
the variability of the data. The observation level random-effects structure incorporates fewer
shared random effects between transition intensities than does its patient level counterpart. As
a consequence, there will be less variability between transition intensities containing the same
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random effect, thus making it more difficult to estimate the random-effect variance when us-
ing the observation level random-effects structure. This would especially be so when a single
multistate process is of interest, where substantial heterogeneity in the data (which could be
generated by constraining transition intensities) will probably be needed for observation level
random-effects models to be estimable, whereas patient level random-effects models are likely to
require considerably less heterogeneity (Satten (1999) and Cook (1999) considered a single mul-
tistate process with patient level random effects). In a clustered multistate process framework,
heterogeneity is also generated through the differences across several multistate processes; thus
the observation level random-effects structure is far more likely to be estimable, especially as
the number of processes increases.

3.1. Maximum likelihood estimation
The model proposed is fitted by constructing and then maximizing the marginal likelihood.
Let Xl

i.tij/ denote the six-state process for the lth joint from the ith patient at time tij, where
{ti1, : : : , timi} denotes the times of the jth clinic visit from the ith patient. Let Ci be a partially ob-
servable binary variable such that Ci =1 with probability 1−πi if patient i is a mover (transitions
are governed by the four-state model in Fig. 1), and Ci =0 with probability πi otherwise (transi-
tions are governed by the two-state model in Fig. 2). Under the assumption that the conditional
process (conditional on the piecewise constant dynamic covariates, {Uij =uij, Vij =vij} ∀j and
Ci = ci) of the lth joint from the ith patient is Markov and time homogeneous (although the
marginal process is not assumed to be Markov and/or time homogeneous), the conditional
likelihood contribution from the lth joint of the ith patient is

mi−1∏
j=2

P{Xl
i.tij+1/= sl

ij+1|Xl
i.tij/= sl

ij; zl
ij, uij, vij, ci}

where sl
ij represents the state corresponding to the specific combination of .{Ā, A}, {D̄, D}/

observed at tij for the lth joint of the ith patient. More details on the likelihood construction
for time homogeneous Markov models, particularly the form of the transition probabilities, can
be found in Kalbfleisch and Lawless (1985). Appendix A provides the closed form transition
probabilities of the six-state process. Here, for simplicity, the likelihood contribution from the
process between ti1 and ti2 is excluded because AMA cannot be calculated at ti1; it requires
previous observations. As a diagnostic check of this simplification, we used activity at baseline to
proxy AMA at baseline and this produced comparable results. If the assumption of independence
between joints from the same patient is reasonable, conditional on the random effects Uij and
Vij, then

Li.Θ|zij, Ci/

=
∫ ∞

−∞

∫ ∞

−∞

28∏
l=1

mi−1∏
j=2

P{Xl
i.tij+1/= sl

ij+1|Xl
i.tij/= sl

ij; zl
ij, uij, vij, ci}φ.uij, vij; 0, Σ/duijdvij

represents the likelihood contribution from the ith patient, still conditional on the dynamic
covariates and Ci = ci. Here Θ is a vector containing all the unknown parameters to be es-
timated (baseline intensities, regression coefficients and random-effects variance–covariance
components) apart from the mover–stayer probabilities πi, φ.uij, vij; 0, Σ/ denotes the zero-
mean bivariate normal density with covariance matrix Σ and zij = {z1

ij, : : : , z28
ij }. The overall

marginal likelihood contribution from the ith patient is then

Li.ΘÅ|zij/={.1−πi/Li.Θ|zij, Ci =1/}cÅ
i {.1−πi/Li.Θ|zij, Ci =1/+πiLi.Θ|zij, Ci =0/}1−cÅ

i
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with the overall marginal likelihood L.ΘÅ|zij/ obtained by taking the product of all likelihood
contributions Li.ΘÅ|zij/ from each patient. Here ΘÅ = {Θ, πi} and cÅ

i is a binary indicator
such that cÅ

i =1 if damaged joints are observed from patient i at their last clinic visit and cÅ
i =0

otherwise. The bivariate numerical integrations were computed by firstly factorizing the bivariate
density function into conditional densities, i.e. φ{vij;ρuijσv=σu, σ2

v.1−ρ2/}φ.uij; 0, σ2
u/, where

σ2
v and σ2

u denote the respective variance components and ρ the correlation parameter, then
using Gauss–Hermite quadrature to evaluate each integral with respect to uij and vij separately.
The numbers of quadrature points for each integration were chosen to be 15 and 30 for the
observation and patient level random-effects models respectively. Weights and nodes from the
quadrature rule were then calculated using the R (R Core Team, 2015) package statmod
(Smyth et al., 2004). A sensitivity analysis indicated that further quadrature points provided
negligible influence on parameter estimates and log-likelihood values. The log-likelihood was
maximized using the BFGS (Broyden, 1970) optimization routine and asymptotic standard
errors for parameter estimates were obtained by evaluating and then inverting the numerically
derived Hessian matrix at the maximum likelihood estimates. The same estimation procedure
was used in Yiu et al. (2017) to fit models that share the same essential characteristics with the
models proposed in this paper. In their work, it was shown through simulation studies that,
with a correctly specified model and sufficient follow-up information, the estimation procedure
in this paper can provide reliable estimates of their model parameters.

The next subsection provides results of fitting the proposed model to the data described in
Section 2.

3.2. Results
In addition to the aforementioned covariates, adjustment covariates for type of joint, presence
of opposite or contralateral joint damage (the same joint in the opposite hand is damaged;
opposite joint damaged equals 1 and 0 otherwise), sex (male ≡ 1 and female ≡ 0), age at onset
of arthritis (in years) and duration of arthritis (in years) are provided through zl

ij. Joint type
is represented through a five-level categorical variable with levels metacarpophalangeal, proxi-
mal interphalangeal, distal interphalangeal, thumb metacarpophalangeal and baseline thumb
proximal interphalangeal. This covariate was included in the transition intensities that were
associated with Ā → A and D̄ → D with preliminary analysis demonstrating little evidence of
differential recovery rates from activity (i.e. A → Ā). The binary variable specifying the pres-
ence of opposite joint damage is motivated by previous analyses (Cresswell and Farewell, 2011;
O’Keeffe et al., 2011) which indicate evidence of symmetric joint damage; the propensity of
damage for a joint in a specific location to become damaged is increased if the contralateral
joint in the other hand is earlier damaged.

Table 1 presents the results from fitting the model proposed (with dynamic covariates and
an observation level random-effects structure) to the 743 psoriatic arthritis patients described
in Section 2. For comparative purposes, a model with patient level random effects, i.e. Uij =Ui

and Vij =Vi, was also fitted. The results of this model and a comparison with the results of the
model proposed are provided in Appendix B. The larger log-likelihood value of −47389:11 for
the model proposed compared with the log-likelihood value of −52784:84 for the comparative
model would suggest a preference for the model proposed.

3.2.1. Damage process
From Table 1, it is clear that both opposite joint damage and the number of damaged joints
are strongly and positively associated with an increased damage progression rate. Thus this
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Table 1. Parameter estimates and 95% Wald intervals resulting from fitting the six-state model (described
in Section 3) to 743 psoriatic arthritis patients

Parameter Estimates for the following transitions:

Ā→A A→ Ā D̄→D

Damaged joint −0:13 (−0:27, 0.0079) −0:2 (−0:31, −0:088)
Opposite joint damaged 0.17 (0.027, 0.3) 0.09 (−0:035, 0.21) 0.83 (0.6, 1.07)
Attained number of 0.033 (0.021, 0.045) −0:0039 (−0:014, 0.0061) 0.22 (0.18, 0.25)

damaged joints
Active joint 1.62 (1.3, 1.94)
AMA 2.72 (2.58, 2.87) −0:49 (−0:61, −0:37) 2.01 (1.68, 2.34)
Metacarpophalangeal 0.3 (0.22, 0.372) −0:84 (−1:10, −0:58)
Proximal interphalangeal 0.46 (0.38, 0.53) −0:15 (−0:38, 0.089)
Distal interphalangeal −0:18 (−0:26, −0:095) 0.49 (0.26, 0.73)
Thumb 0.45 (0.36, 0.55) 0.45 (0.17, 0.72)

metacarpophalangeal
Sex −0:69 (−0:79, −0:59) 0.017 (−0:055, 0.088) 0.2 (−0:047, 0.44)
Age at arthritis onset 0.0012 (−0:0031, 0.0055) 0.008 (0.0049, 0.011) 0.013 (0.0038, 0.023)
Arthritis duration −0:021 (−0:027, −0:015) 0.0066 (0.0026, 0.011) −0:01 (−0:023, 0.0028)
Stayer 1.99 (1.86, 2.12) 0.22 (0.11, 0.33)
log.λ0/ −3:18 (−3:4, −2:95) 0.79 (0.63, 0.94) −9:48 (−10:08, −8:89)

σ2
u 2.07 (1.93, 2.21)

α −0:38 (−0:42, −0:35)
σ2

v 6.62 (5.89, 7.45)
ρ 0.16 (0.1, 0.21)
π 0.14 (0.11, 0.18)
Log-likelihood −47389.11

analysis supports the results in O’Keeffe et al. (2011) concerning symmetry even after adjusting
for a greater number of process features, although not adjusting for the stochastic nature of
the opposite joint damage process. Activity, both current (the joint is active while adjusting for
its stochastic nature) and history (as described by AMA), is seen to be strongly and positively
associated with damage progression. Regarding inference, the confidence interval for the re-
gression coefficient that is associated with current activity is narrower than the corresponding
interval that was reported in O’Keeffe et al. (2011). This has probably resulted from using up-
dated data and a more efficient estimation procedure (through dynamic covariates and random
effects as opposed to a working independence assumption with a robust covariance matrix ad-
justment). These results therefore provide greater confidence in the strong positive association
between activity and damage, and implicitly strengthens the argument that was made regarding
causality.

3.2.2. Activity process
There is evidence that the transition intensities that are associated with entering and leaving the
active joint state reduces once a joint has become damaged. However, as the respective (95%
Wald intervals) confidence intervals contain or are close to zero, this observation must currently
be regarded as suggestive. The presence of opposite joint damage and the number of damaged
joints seem to be moderately or weakly associated with the activity transition intensities. In
particular little association is seen with transitioning from the active joint state to the not-active
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joint state. The strong association between history of activity and current activity transition
intensities is reassuring, since the interpretation of greater amounts of previous activity increas-
ing the transition intensity to the active state while decreasing the transition intensity to the
not-active state is intuitive.

3.2.3. Movers and stayers
The percentage of stayers (100π% where π=πi ∀ i) was estimated to be 14% (11%, 18%). Empir-
ically, when compared with the 69% of patients who did not develop any damage, this estimate
may seem to be a considerable underestimate of the true stayer proportion. However, because
of the relationship between activity and damage, it is conceivable that many of these patients
(those who did not develop damaged joints) did not develop damage because they were in the
not-active state for long periods of continuous time, as opposed to being stayers per se. This
observation is perhaps supported by Table 1, which suggests that movers have a vastly smaller
transition intensity to the active state compared with stayers. A more specific investigation re-
garding the sojourn times of movers and stayers in the not-active joint state follows in the next
section. It is also worth noting that the transition intensity to the not-active state is smaller for
movers; however, it is far less pronounced.

As a diagnostic check for parameter estimation, we plot the profile log-likelihood for π in
Fig. 5. From Fig. 5, it is clear that the numerical optimization routine converged at the maximum
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Fig. 5. Plot of the profile log-likelihood for π based on the six-state model in Section 3 (�, point at which
the numerical optimization procedure converged)
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of the profile log-likelihood for π. This indicates that the latent stayer proportion was identifiable
under the assumptions of the six-state model in Section 3 because the profile log-likelihood has
a quadratic shape.

4. Five-state model for mean sojourn times

In many settings, clinical interest lies in understanding the mean sojourn times from a partic-
ular time point (the mean amount of time that a process will spend in a state from a particular
time point before a transition occurs) as a function of covariates at that particular time point.
When two or more transitions are possible from a state of interest, the current methodology
of investigating a covariate effect involves fixing other covariates at specified values (usually
at their means or as a description of a particular patient) and then calculating the difference
in mean sojourn times from a particular time point for that state by varying the covariate of
interest. This methodology is implicit because, under the current multistate modelling param-
eterization in terms of transition intensities, a direct interpretation of covariate effects on the
mean sojourn times is not straightforward when two or more transitions are possible from
the state of interest; the mean sojourn time is a non-linear function of covariates from dif-
ferent transition intensities. This section considers the novel approach of modelling the mean
sojourn times directly through a model reparameterization to obtain easily interpretable co-
variate effects on this quantity. In our situation, this approach is possible because there is a
smooth bijection from the transition intensities to the mean sojourn times and jump proba-
bilities (see the next paragraph). This implies that more elaborate but computationally inten-
sive techniques such as the use of pseudo-observations (Anderson and Perme, 2010) can be
avoided.

The specific context of interest concerns the sojourn times in the active and not-active states
before damage. For simplicity, we can therefore revert to a three-state model for the movers
by combining the activity process after damage has occurred into a single absorbing state, as
depicted in Fig. 6. Similarly, the multistate diagram describing possible transitions for stayers
is displayed in Fig. 7.

Although continuous time Markov processes can be viewed in terms of transition intensities

Fig. 6. Multistate model describing activity and damage processes jointly for movers

Fig. 7. Multistate model describing the activity process for stayers
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specifying risks of transitioning through states (as thought of previously), another natural way to
view such processes is in terms of sojourn times and jump probabilities being associated with each
state. As mentioned, the sojourn time in a state from a particular time point describes the amount
of time that the process will spend in that state from that particular time point before a transition
occurs. Then, at the point of transitioning, the jump probabilities inform the multinomial dis-
tribution of the possible set of states in which the process will jump to next. For the conditional
process that we consider (a continuous time Markov process), the sojourn time in state r from the
time of entry into state r can be shown to have an exponential distribution with mean 1=Σk �=r λrk

and jump probabilities given by P.jumps to state k| jumps from state r/=λrk=Σk �=r λrk. See pages
259–260 in Grimmett and Stirzaker (2001) for more details. Thus, by using the lack of memory
property of the exponential distribution, we make the simplifying assumption that the sojourn
times from a particular time point do not depend on the (unobserved) time that has already
elapsed in that state conditional on time-dependent covariates and random effects at that par-
ticular time point and the time-independent mover–stayer status.

To investigate the difference in the activity process between movers and stayers again more
simply, we parameterize as follows:

μl
4ij =μl

1ij exp.βĀ
Stayer/,

μl
5ij =μl

2ij exp.βA
Stayer/,

where μl
rij represents the mean sojourn time in state r for the lth joint of the ith patient from time

tij. Regression models for the mean sojourn times and jump probabilities can then be specified
as follows:

μl
1ij =μĀ

0 exp.βĀzl
ij +uij/,

μl
2ij =μA

0 exp.βAzl
ij +α1uij/,

pl
13ij=.1−pl

13ij/=pĀD
0 exp.βĀDzl

ij +vij/,

pl
23ij=.1−pl

23ij/=pAD
0 exp.βADzl

ij +α2vij/,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.3/

where pl
ĀDij

and pl
ADij denote the jump probabilities from state Ā→D and A→D respectively

for the lth joint of the ith patient at tij. The right-hand side of each regression equation in
expression (3) contains a baseline (indicated by 0 in the subscript) multiplied by the exponent
of the sum of a linear predictor and linear function of realizations of random effects, as before.
Dynamic covariates (AMA and the attained number of damaged joints) and random effects
are again included to reflect features of the processes that were described in Section 3. The
random effects follow a zero-mean bivariate normal distribution and are independent across
time.

The model fitting procedure follows from Section 3.1 after having specified the transition
probabilities which as a function of transition intensities can be found in Appendix C. Thus the
following set of equations completes the procedure:

λ12 = .1−p13/=μ1,

λ13 =p13=μ1,

λ21 = .1−p23/=μ2,

λ23 =p23=μ2,

λ45 =1=μ4,

λ54 =1=μ5:
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Fig. 8. Plot of the profile log-likelihood for π based on the five-state model in Section 4 (�, point at which
the numerical optimization procedure converged)

4.1. Results
Along with dynamic covariates, the presence of opposite joint damage, sex, age at onset of
arthritis and duration of arthritis were included in the analysis, as before. Table 2 presents
the results from fitting the five-state model that was described in Section 4 to the 743 pso-
riatic arthritis patients described in Section 2. From Table 2, the presence of opposite joint
damage provides a slight increase in the mean sojourn time in the not-active joint state and
greatly increases the probability of directly transitioning to damage (as opposed to active and
not damaged) once a transition occurs. However, when a joint is active, there is little evidence
to suggest that opposite joint damage influences the sojourn times nor the next state prob-
ability. These results indicate that the presence of opposite joint damage is particularly rel-
evant when a joint is not active. A large number of damaged joints, although substantially
increasing the jump probabilities to damage as opposed to active or not active, provides lit-
tle effect on the mean sojourn times in the active and not-active states. As expected, greater
amounts of previous activity (as described by AMA) decrease the mean sojourn time in the
not-active state and increase the mean sojourn time in the active state. Table 2 also suggests
that AMA is strongly and positively associated with the jump probability to damage when
in the active state but not in the not-active state. Thus current activity is strengthened by the
history of activity when dictating the next state of the process, but jumping to damage or



Modelling Transition Intensities and Sojourn Times in Psoriatic Arthritis 15

Ta
b

le
3.

P
ar

am
et

er
es

tim
at

es
an

d
95

%
W

al
d

in
te

rv
al

s
re

su
lti

ng
fr

om
fit

tin
g

th
e

fiv
e-

st
at

e
m

od
el

w
ith

a
pa

tie
nt

le
ve

lr
an

do
m

-e
ffe

ct
s

st
ru

ct
ur

e
to

74
3

ps
or

ia
tic

ar
th

rit
is

pa
tie

nt
s

P
ar

am
et

er
S

oj
ou

rn
ti

m
es

Ju
m

p
pr

ob
ab

ili
ti

es

Ā
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active from the not-active state could be unaffected by the history of activity. As hypothe-
sized in the previous section, stayers have a far shorter mean sojourn time in the not-active
state, and a slightly shorter sojourn time in the active state. Finally, the estimated stayer pro-
portion in Table 2 is approximately equivalent to the stayer proportion that was reported in
Table 1. Under the assumptions of the five-state model, the numerical optimization procedure
could identify the parameter π as it converged at the maximum of its profile log-likelihood
(Fig. 8).

Table 3 provides the results of fitting the five-state model with a patient level random-effects
structure (i.e. Uij =Ui and Vij =Vi ∀j) to the data that were described in Section 2. The resulting
log-likelihood value was −49256:31, which is far smaller than −44346:26 obtained from the
model proposed. In this context, the observation level random-effects structure, after including
dynamic covariates, again seems to be the more appropriate random-effects structure for the
data.

5. Discussion

This research was motivated by reproducing prior results with an updated data set and un-
dertaking new investigations into disease course and progression. For this, a single unifying
clustered multistate modelling framework which allows simultaneous investigations of multi-
ple clinical aspects was proposed. The results obtained therefore yield greater confidence when
compared with multiple univariate investigations, which were performed previously, since they
are based on adjusting for other important process characteristics. From a clinical perspective,
the relationship between activity and damage was demonstrated as pronounced since both his-
tory and current activity were positively related to damage progression and jumping to damage
once a joint immediately leaves the active state. In terms of the reverse relationship, the onset
of damage is seen to slow the activity process although the confidence intervals for the relevant
regression coefficients indicate that no change is a distinct possibility, maybe because of far fewer
observed transitions after damaged has occurred. Interestingly, both models seem to identify
a subpopulation of approximately 15% who are rapidly fluctuating in their activity process yet
are at minimal risk of damage, perhaps because they have shorter sojourn times in the active
joint state. An avenue of future work could involve identifying these patients especially because
their treatment strategies should conceivably not consist of potent drugs, which may cause un-
pleasant side effects, but soft drugs to reduce joint swelling and pain. It is also reassuring that
neither model contradicts any well-held clinical beliefs.

From a statistical point of view, the novel aspects of this research include the proposing of an
observation level random-effects structure combined with dynamic covariates, a mover–stayer
structure whereby movers and stayers can have different effects on transition intensities in which
they are not implicitly defined for and a model parameterization which allows easily interpretable
covariate effects to act on the sojourn times and jump probabilities. In our context, the usefulness
of the methodology proposed was demonstrated through new clinical insights and substantial
improvements in likelihood values over the use of standard methodology (patient level random-
effect models). Although the methodology proposed was described in terms of specific, but fairly
complex, six- and five-state models for the margins, extensions to general clustered continuous
time Markov models are straightforward. In particular, the proposed model parameterization in
terms of sojourn times and jump probabilities, and mover–stayer effects on transition intensities
are also applicable to univariate Markov multistate processes and therefore can provide a useful
framework for inference in many clinical settings.

Overall, this research represents our efforts to provide a comprehensive investigation into
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many clinical aspects of interest at the finest level of detail (individual joint level). Although
there are foreseeable model extensions, it is important to bear in mind the computationally
intensive nature of fitting clustered multistate models with random effects, especially when re-
versible multistate models are involved (transitions to and from states exist). Some examples of
potentially more appropriate extensions could include relaxing the time homogeneity assump-
tion beyond adjusting for duration of arthritis, relating previous history to current transitions
through more accurate measures than the proposed dynamic covariates, e.g. by specifying a
flexible correlation structure for the observation level random effects, and dividing the damage
onset state into various states of severity of damage. Such extensions, as with many others,
will usually require transitioning from piecewise constant approximations to reflecting the true
stochastic nature of the outcome, covariates and latent processes, which has been seen as one
of the main drivers of making the model fitting procedure more complex, because of the larger
number of integrations or differential equations that are required to be computed or solved.
Nevertheless, as demonstrated here, it is important to identify and provide adjustments for
important process characteristics where possible, in which model comparison is useful. With
respect to understanding clinical aspects of psoriatic arthritis, this has provided new knowledge
and greater confidence in prior results based on less general methodology.
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Appendix A

The transition probabilities, i.e. prs.t/≡prs.t;λ/=P{X.t + t0/= s|X.t0/= r;λ} ∀ t0 �0 where λ is a vector
of the required transition intensities, for the four- and two-state process depicted in Figs 2 and 3 respec-
tively can be calculated by evaluating the matrix exponential of the relevant transition intensity matrix.
Specifically, let

Q1 =

⎛
⎜⎝

−λ12 −λ13 λ12 λ13 0
λ21 −λ21 −λ24 0 λ24
0 0 −λ34 λ34
0 0 λ43 −λ43

⎞
⎟⎠;

then the transition probabilities for the four-state process can be obtained from the .r, s/th entry of
exp.Q1t/. We use Mathematica to compute the following matrix exponential and this results in

p11.t/= exp.−Λt=2/

2γ
{.Λ1 +γ/ exp.−γt=2/+ .γ −Λ1/ exp.γt=2/},

p12.t/= λ12

γ1
[exp{−.Λ−γ1/t=2}− exp{−.Λ+γ1/t=2}],

p13.t/= λ43

Λ2
+ exp.−Λ2t/

Λ2

λ13λ34.λ21 +λ24 −Λ2/−λ12λ24λ43

.λ21 +λ24 −Λ2/.λ13 −Λ2/−λ12.λ24 −Λ2/

+λ13 exp{−.Λ−γ/t=2}λ12λ21 + .λ12 +λ13/.Λ1 −γ/=2+λ43.−Λ1 +γ −2λ34/=2+γ2

−.Λ−γ/3=2+3.Λ−γ/2.Λ+Λ2/=4− .Λ−γ/γ3 +γ4

+λ13 exp{−.Λ+γ/t=2}λ12λ21 + .λ12 +λ13/.Λ1 +γ/=2+λ43.−Λ1 −γ −2λ34/=2+γ2

−.Λ+γ/3=2+3.Λ+γ/2.Λ+Λ2/=4− .Λ+γ/γ3 +γ4
,
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p14.t/=1−p11.t/−p12.t/−p13.t/,

where

Λ=λ12 +λ13 +λ21 +λ24,
Λ1 =λ12 +λ13 −λ21 −λ24,

Λ2 =λ34 +λ43,
γ =√

[Λ2 −4{λ12λ24 +λ13.λ21 +λ24/}],

γ1 =√{λ2
12 +2λ12.λ13 +λ21 −λ24/+ .−λ13 +λ21 +λ24/2},

γ2 = λ43

λ13
.λ12λ24 +λ13λ34/,

γ3 =Λ2.λ21 +λ24/+λ13λ21 + .λ12 +λ13/.λ24 +Λ2/,
γ4 =Λ2{λ13λ21 +λ24.λ12 +λ13/}:

As the four-state process is symmetric, it is easy to verify that

p21.t;λ12, λ13, λ21, λ24, λ34, λ43/=p12.t;λ21, λ24, λ12, λ13, λ43, λ34/,
p22.t;λ12, λ13, λ21, λ24, λ34, λ43/=p11.t;λ21, λ24, λ12, λ13, λ43, λ34/,
p23.t;λ12, λ13, λ21, λ24, λ34, λ43/=p14.t;λ21, λ24, λ12, λ13, λ43, λ34/,
p24.t;λ12, λ13, λ21, λ24, λ34, λ43/=p13.t;λ21, λ24, λ12, λ13, λ43, λ34/:

Finally, we have

p33.t/=1−p34.t/,
p34.t/=λ34{1− exp.−Λ2t/}=Λ2,
p43.t/=λ43{1− exp.−Λ2t/}=Λ2,

p44.t/=1−p34.t/,
p55.t/=1−p56.t/,

p56.t/=λ56{1− exp.−Λ3t/}=Λ3,
p65.t/=λ65{1− exp.−Λ3t/}=Λ3,

p66.t/=1−p56.t/,

where Λ3 =λ56 +λ65.

Appendix B

Table 4 provides the results from fitting the six-state model with a patient level random-effects structure
to the 743 psoriatic arthritis patients that was described in Section 2. Rather reassuringly, most regression
coefficients of primary interest, including the stayer proportion estimate, from Table 4 are seen to have
similar interpretations to those obtained from Table 1. The regression coefficients that are associated
with the dynamic covariates AMA and attained number of damaged joints have, however, resulted in
markedly different estimates from those seen in Table 1. Specifically, the effects of the dynamic covariates
are greatly attenuated and, furthermore, the attained number of damaged joints is now seen to have a
possibly counterintuitive negative association with damage progression. Both dynamic covariates and
patient level random effects adjust for a patient’s propensity to gain or recover from activity and to gain
damage, and thus are likely to be confounded when introduced simultaneously in the model. The regression
coefficients that are associated with the dynamic covariates are now perhaps more difficult to interpret
than before. Aalen et al. (2008) provides a discussion on the relationship between dynamic models (with
dynamic covariates) and frailty models (with patient level random effects).

Appendix C

The transition probabilities of the three-state model were again calculated using the matrix exponential
function in Mathematica. This resulted in
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Table 4. Parameter estimates and 95% Wald intervals resulting from fitting the six-state model with a patient
level random-effects structure to 743 psoriatic arthritis patients

Results for the following transitions:

Ā→A A→ Ā D̄→D

Damaged joint −0:046 (−0:18, 0.086) −0:18 (−0:27, −0:069)
Opposite joint damaged 0.13 (−0:0031, 0.27) 0.087 (−0:037, 0.21) 0.72 (0.52, 0.92)
Attained number of −0:04 (−0:049, −0:03) 0.022 (0.013, 0.031) −0:036 (−0:055, −0:018)

damaged joints
Active joint 1.32 (1.03, 1.61)
AMA 1.8 (1.68, 1.93) −0:34 (−0:45, −0:23) 1.7 (1.39, 2)
Metacarpophalangeal 0.23 (0.16, 0.3) −0:81 (−1:1, −0:57)
Proximal interphalangeal 0.36 (0.29, 0.43) −0:18 (−0:4, 0.049)
Distal interphalangeal −0:19 (−0:27, −0:12) 0.36 (0.14, 0.58)
Thumb 0.39 (0.3, 0.48) 0.36 (0.095, 0.62)

metacarpophalangeal
Sex −0:73 (−0:8, −0:66) 0.011 (−0:051, 0.073) −0:2 (−0:45, 0.042)
Age at arthritis onset 0.014 (0.011, 0.018) 0.0042 (0.0015, 0.0069) −0:012 (−0:024, −0:00034)
Arthritis duration −0:037 (−0:04, −0:033) 0.0058 (0.0022, 0.0095) 0.057 (0.047, 0.067)
Stayer 2.25 (2.12, 2.37) 0.37 (0.26, 0.47)
log.λ0/ −2:88 (−3:07, −2:69) 0.8 (0.66, 0.94) −7 (−7:55, −6:45)

σ2
u 1.33 (1.21, 1.46)

α −0:23 (−0:28, −0:19)
σ2

v 3.19 (2.73, 3.73)
ρ 0.28 (0.2, 0.35)
π 0.17 (0.13, 0.21)
Log-likelihood −52784.84

p11.t/= x1 exp.r1t/−x2 exp.r2t/

x1 −x2
,

p12.t/= x1x2{exp.r2t/− exp.r1t/}
x1 −x2

,

p13.t/=1−p11.t/−p12.t/,

p21.t/= exp.r1t/− exp.r2t/

x1 −x2
,

p22.t/= x1 exp.r2t/−x2 exp.r1t/

x1 −x2
,

p23.t/=1−p21.t/−p22.t/,

p3j.t/=1j=3,

where 1j=3 is an indicator function taking the value 1 when j =3 and 0 otherwise, and

r1 = λ11 +λ22 +√{.λ11 −λ22/
2 +4λ12λ21}

2
,

r2 = λ11 +λ22 −√{.λ11 −λ22/
2 +4λ12λ21}

2
,

xj = rj −λ22

λ21
:

Here λ11 =−λ12 −λ13 and λ22 =−λ21 −λ23.
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