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Abstract 

Seafloor morphology beyond nine tidewater glaciers terminating in open-marine settings in 

eastern Svalbard has been investigated using multibeam swath-bathymetry. Historical 

information on tidewater glacier fluctuations over the past century or so shows that the seafloor 

offshore has been exposed only recently. Most glaciers have been observed to surge or have 

looped surface moraines indicating past surges. During these ice advances and subsequent retreat, 

a well-preserved submarine landform assemblage has been produced. (a) Subglacial landforms 

include: overridden moraine ridges, mega-scale glacial lineations (MSGLs), other streamlined 

lineations, elongate drumlins and medial moraines, small ridges forming a complex boxwork or 

rhombohedral pattern, and meltwater-related eskers and channels. (b) Ice-marginal landforms 

include: large terminal moraines with debris flow lobes on their outer flanks and indentations on 

their inner sides, small transverse retreat moraines, and crater-like kettle holes. (c) Glacimarine 

features include: iceberg ploughmarks and an otherwise relatively smooth sedimentary seafloor 

produced by fine-grained debris rain-out. A schematic plan-view landform assemblage model for 
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tidewater glaciers advancing into open-marine settings is developed. Arcuate terminal moraines 

marking the ice-advance limit provide a distinctive component. Submarine basin(s) exposed 

inside these moraine ridges when ice retreats contain suites of individual landforms, produced 

subglacially and ice-marginally, with a consistent order of timing of deposition and stratigraphic 

superposition. The new schematic model is compared with earlier models based on submarine 

landforms associated with surges in the more topographically constrained setting of Spitsbergen 

fjords.  Differences include: (i) the overall arcuate shape of the open-marine assemblage; (ii) the 

indented ice-proximal sides of terminal moraine ridges; (iii) the fan-shaped pattern of streamlined 

lineations; (iv) crater-like kettle holes at the inner lateral margins of many submarine basins; (v) 

prominent systems of eskers and channels. Modern glaciological analogues from ongoing surges 

of ice caps in eastern Svalbard and Severnaya Zemlya provide contemporary observations of ice 

advance into open-marine settings, including heavily crevassed ice lobes with finger-like termini.  

1. Introduction 

Many Svalbard glaciers are of surge-type, undergoing brief rapid advance in an active phase 

followed by decades of stagnation and retreat during a quiescent phase (e.g. Liestøl, 1969; Schytt, 

1969; Dowdeswell et al., 1991, 1995; Hagen et al., 1993; Hamilton and Dowdeswell, 1996; 

Jiskoot et al., 2000; Sund et al., 2014). The geological imprint of recent glacier surges on the 

seafloor of several steep-sided fjords in Svalbard has been investigated using high-resolution 

multibeam swath-bathymetric data (e.g. Ottesen and Dowdeswell, 2006; Ottesen et al., 2008; 

Flink et al., 2015, 2017; Streuff et al., 2015; Dowdeswell and Ottesen, 2016a; Fransner et al., 

2017). By contrast, and despite the examination of early side-scan sonar data from offshore of the 

surging Austfonna ice cap (e.g. Solheim, 1985, 1991; Solheim and Pfirman, 1985; Dowdeswell et 

al., 2008), the submarine landform record from glaciers surging into the topographically less 
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constrained open-marine environment of eastern Svalbard is less well-known (Robinson and 

Dowdeswell, 2011; Dowdeswell et al., 2016a). It is important that the assemblages of landforms 

characteristic of surging glaciers in both marine and terrestrial environments are described and 

understood (e.g. Sharp, 1985a, 1985b; Evans and Rea, 2003; Ottesen and Dowdeswell, 2006; 

Ottesen et al., 2008; Sund et al., 2009), so that glacier advances due to surging, driven by internal 

glaciological processes (e.g. Kamb et al., 1985; Kamb, 1987; Raymond, 1987; Fowler et al., 

2001; Murray et al., 2003; Sevestre and Benn, 2015), can be distinguished from those of 

climatically driven glacier fluctuations in the geological record. 

    In this paper, we describe and discuss the detailed seafloor morphology in front of nine 

glaciers that terminate in relatively open-marine settings in eastern Svalbard; most of these 

tidewater glaciers have either been observed to surge or have looped surface moraines and ice 

structures indicative of surge-type glaciers (Meier and Post, 1969; Hagen et al., 1993). Eight of 

the glaciers drain from the large, complex ice cap covering most of Olav V Land in eastern 

Spitsbergen; the largest is Negribreen which is fed from a basin of about 1,100 km2 and has 

retreated about 20 km since a surge advance in the 1930s (Liestøl, 1969). In total, the coastline 

around Olav V Land in our study area is 140 km long, with 35 km or 25% made up of marine-

terminating glaciers. The ninth glacier is Besselsbreen, a 140 km2 tidewater glacier draining the 

northern side of a 600 km2 ice cap on Barentsøya (Fig. 1) (Hagen et al., 1993; Dowdeswell and 

Bamber, 1995). Evidence from 1936 oblique aerial photographs and early maps demonstrates that 

the seafloor between about 5-20 km beyond the present glacier termini has been exposed for less 

than a century or so in most cases. The submarine geomorphology is very well preserved, 

providing a suite of glacial landforms relating to the last major advance or surge of each glacier 

drainage basin. The assemblage and relative chronology of the landforms is presented here, 

together with a simple model of the geomorphic imprint produced by these glaciers.  



4 
	

 

2. Data Sources and Methods  

 

    Detailed multibeam swath-bathymetric data were collected by the Norwegian Hydrographic 

Service (NHS) east of Spitsbergen during the years 2007, 2008 and 2009. The data cover the 

seafloor around Olav V Land, at the head of Storfjorden, and offshore of northern Barentsøya 

(Fig. 1). The data were acquired to international hydrographic standards using Kongsberg 

EM3000, EM3002 or EM710 multibeam echo-sounders and were initially processed by the NHS 

for tidal corrections and the removal of false data points and artefacts. These regional data were 

gridded with a cell-size of 10 m, but we also have access to the raw data, which enabled us to 

reprocess and grid the data with 1 m or 2 m cell-size. Our mapping of seafloor glacial landforms 

uses a 2 m grid-cell size, and has a vertical resolution of better than 1 m. A more detailed 

technical review of multibeam echo-sounding is given in Jakobsson et al. (2016). 

    Historical information on the fluctuations of the tidewater glaciers of Olav V Land over the 

past century or so, in the form of early maps and aerial photographs, has been compiled by 

Lefauconnier and Hagen (1991). It should be noted that no aerial photographs were acquired 

before 1936, when the archipelago was comprehensively covered by oblique photographs (held in 

the collection of Norsk Polarinstitutt). The oblique geometry of the 1936 aerial photographs 

makes accurate mapping difficult, with vertical photography only beginning after WWII in 

Svalbard. Older ice-front positions were sketched by early explorers relative to observed features 

on adjacent land.  

 

3. Results: the variety of submarine landforms offshore of Olav V Land  
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    We describe the submarine landforms in front of eight glaciers or glacier systems in Olav V 

Land, eastern Spitsbergen, and Besselsbreen on Barentsøya (Fig. 1). These glaciers have all 

surged or advanced in the recent past, either in the 19th or 20th century. During these surges, a 

suite of landforms has been produced on the seafloor. The individual landform types may be 

divided into those formed subglacially, ice marginally and beyond the ice front in a glacier-

influenced marine setting (e.g. Benn and Evans, 2010; Dowdeswell et al., 2016b). Most are 

sedimentary features at or close to the seafloor, sometimes buried by a thin cover of overlying 

fine-grained material derived mainly from suspension-settling from turbid glacial or glacifluvial 

meltwater plumes (e.g. Powell, 1990; Mugford and Dowdeswell, 2011); little bedrock is exposed 

at the seafloor offshore of Olav V Land, except as a few small islands and isolated submarine 

ridges. The submarine landforms and their mechanisms of formation are discussed generally 

before the distribution of landforms associated with each individual glacier is described in detail. 

Finally, the landform assemblages and their glaciological significance, as well as their links to the 

recent glacial history of the area, are discussed. 

3.1 Subglacial Landforms 

    Several types of streamlined sedimentary landforms are found beyond the modern margins of 

the nine glaciers. Both curvilinear mega-scale glacial lineations (MSGLs) and blunt-nosed 

elongate drumlins are observed (Fig. 2A-B), and are interpreted to form by deformation of a soft 

till bed beneath ice that is either fast-flowing or transitional between relatively slow- and fast-

moving ice (e.g. Clark, 1993, 1994; Wellner et al., 2001; Ó Cofaigh et al., 2002, 2005; 

Dowdeswell et al., 2004, 2016b; Clark et al., 2009; King et al., 2009; Spagnolo et al., 2014). 

Some of the elongate landforms appear to be transitional between classical MSGLs and 

drumlinoid features (Fig. 2A, B), forming part of a continuum of subglacial streamlining (e.g. 
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Clark, 1993; Dunlop and Clark, 2006). Medial moraine ridges are a further, and sometimes 

streamlined, submarine landform probably produced from a combination of supraglacial and 

subglacial sediment sources (Fig. 2C). Such features first form where glaciers from adjacent 

valleys flow together, and sediment is incorporated and transported at the interface between the 

two ice-flow units (e.g. Benn and Evans, 2010; Dowdeswell, E.K. et al., 2016).  

    Some smaller ridges just a few metres high, observed in eastern Svalbard waters, form a 

complex boxwork or rhombohedral pattern, with ridges orientated both transverse and sub-

parallel to flow (Fig. 2D). They are interpreted as a result of the squeezing of soft sediments into 

subglacial crevasses near the ice margin (e.g. Solheim and Pfirman, 1985; Solheim, 1991; 

Dowdeswell et al., 2016a). These delicate landforms are preserved as largely stagnant ice thins 

and floats off as icebergs, typically in the early quiescent phase of a glacier surge.  

    In addition, two specifically meltwater-related subglacial landforms are observed. The first are 

often-sinuous ridges, interpreted as eskers (Fig. 2E), which represent the depositional 

sedimentary fill of channels cut upwards into overlying ice, known as R-channels (e.g. 

Röthlisberger, 1972; Benn and Evans, 2010; Dowdeswell and Ottesen, 2016b; Greenwood et al., 

2016). The second are channels eroded into the sedimentary seafloor (e.g. Lowe and Anderson, 

2003) (Fig. 2F), known as N-channels (Nye, 1976). The eskers and channels both have long-

profiles that, unlike open river channels, trend both up- and down-slope, indicating that they were 

formed under high water pressure in confining subglacial meltwater systems (Shreve, 1972).  

 

3.2 Ice-Marginal Landforms 

    These landforms, produced at or close to grounded tidewater glacier termini, include a variety 

of moraine ridges, ranging in size from large ridges tens of metres in height (Fig. 3A) to delicate 
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landforms only a few metres in elevation and often spaced just a few tens of metres apart (Fig. 

3B). The large ridges sometimes occur as individual landforms but are also found as small 

numbers of sub-parallel landforms. The small ridges usually occur in clusters of tens and even 

hundreds of individual landforms. The large ridges and many of the smaller ridges are orientated 

transverse to the direction of past ice flow (Fig. 3A-B). They contrast with the more complex 

clusters of small crevasse-fill ridges with multiple orientations in a boxwork structure (Fig. 2D). 

    The large transverse ridges are interpreted as terminal or end moraines, formed at the 

maximum position of grounded ice advance, for example at the end of a glacier surge or linked to 

Little Ice Age or full-glacial advances (e.g. Benn and Evans, 2010; Dowdeswell et al., 2016c; 

Graham and Hodgson, 2016). They may also be deposited at tidewater glacier termini when still-

stands of decades or more during deglaciation allow sedimentary ridges to build at temporarily 

stable ice margins (e.g. Lønne et al., 2001). Subsequent ice readvances may deposit streamlined 

subglacial landforms on the surface of such large ridges, and renewed deglaciation may also 

contribute to the development of small transverse ridges on their crests (Fig. 3C). 

   The often steeper ice-distal flanks of these large ridges are typically associated with well-

defined lobate landforms (Fig. 3E) (e.g. Ottesen and Dowdeswell, 2006; Dowdeswell et al., 

2016d). These lobate landforms sometimes have blocky elements and flow structures visible at 

their surfaces and can be seen to override one another. They are interpreted as glacigenic debris-

flow lobes linked to the rapid delivery and failure of soft subglacial sediments at former ice 

margins. They are often up to a few kilometres in length and up to a few tens of metres in 

thickness.  

    The smaller transverse ridges (Fig. 3B), usually found in sub-parallel clusters, are interpreted 

to have been formed in association with small winter readvances of tidewater glacier termini 

superimposed on longer-term summer retreat linked to iceberg calving (Boulton, 1986; Boulton 
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et al., 1996; Ottesen and Dowdeswell, 2006; Todd et al., 2007; Flink et al., 2015; Dowdeswell 

and Ottesen, 2016b; Todd, 2016). This processes requires active, but not necessarily fast-flowing 

ice to generate the small winter readvances of the terminus, which push up the small ridges when 

iceberg calving is largely suppressed by the presence of winter sea ice. The ridges may be, but are 

not always, deposited annually (e.g. Ottesen and Dowdeswell, 2006; Burton et al., 2016). 

   Further ice-marginal landforms are the distinctive flat-floored crater-like depressions with 

relatively steep sides, known as kettle holes (Fig. 3F) (e.g. Eilertsen et al., 2016). They form 

when stagnant blocks of inactive glacier ice remain stranded in very shallow water after ice 

retreat, especially if the ice is rich in debris. After the ice blocks melt or float off in the marine 

environment, these depressions are often partly filled by fine-grained sediments from turbid 

glacial meltwater, further smoothing the crater-like floor.  

 

3.3 Glacimarine Landforms 

   In the marine waters beyond tidewater glacier margins, the submarine keels of drifting icebergs 

may impinge on the sedimentary seafloor, forming irregular to chaotic patterns of depressions 

known as ploughmarks, sometimes with berms at either side (Fig. 4A) (e.g. Woodworth-Lynas et 

al., 1991; Dowdeswell et al., 1993; Bjarnadóttir et al., 2016). Where icebergs have multiple keels, 

parallel sets of ploughmarks are formed (e.g. Andreassen et al., 2014; Batchelor et al., 2016). 

Individual ploughmarks in our study area are metres to tens of metres wide and up to several 

hundred metres in length. Where icebergs wallow at a single point for hours to days, distinctive 

grounding pits are produced in the sedimentary seafloor (e.g. Barrie et al., 1992).  

   Glacimarine sedimentation by the rain-out of fine-grained debris from meltwater plumes begins 

to bury seafloor glacial landforms subsequent to their formation (Fig. 4B), and, in the case of 
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subglacial landforms, after exposure by glacier retreat (e.g. Dowdeswell and Vásquez, 2013). The 

elapsed time since formation and the rate of glacimarine sediment delivery control the depth of 

burial. In the case of inner Storfjorden, most of the landforms inside the larger terminal moraines 

have been exposed for less than about a century, so burial depth beneath draping glacimarine 

sediment is inferred to be very limited based on the clear visibility of fine-scale features on the 

modern seafloor. An exception is the area close to the narrow passage between Spitsbergen, 

Barentsøya and several smaller islands (Fig. 1), Heleysundet, where tidally related current speeds 

reach more than 5 kts. Here, draping sediment cover appears thicker and an active sedimentary 

body of ripple-topped drift (Fig. 4C) can been seen to have built up to completely cover any 

glacial landforms (Fig. 4D).  

 

4. Results: landforms and glacier fluctuations offshore of surge-type glaciers 

4.1 Negribreen - submarine landforms 

    Multibeam swath-bathymetric imagery of the submarine glacial landforms in the open-marine 

setting offshore of the present terminus of Negribreen is shown in Figure 5A, and the distribution 

of these landforms is mapped in Figure 5B. A variety of subglacial and ice marginal landforms is 

present, as described below. 

    Large transverse moraine ridges and debris-flow lobes. Several large moraine ridges are 

observed offshore of the modern terminus of Negribreen (Fig. 5A-B). Unfortunately, however, 

the central part of the outmost moraine ridge is beyond the coverage of existing multibeam 

bathymetry. The terminal moraine ridge that defines the whole Negribreen submarine basin is 

estimated to be about 32 km long. The western part of the outer ridge is composed of two parts 

(Fig. 5A-B). The outermost part (labelled (1) in Figure 5A), is located close to the 1936 ice-front 
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position mapped by Lefauconnier and Hagen (1991). This ridge has an arcuate form and 

transitions into a large set of debris-flow lobes. It is about 1 km wide and up to 15 m high. The 

second ridge (labelled (2) in Figure 5A), lies 2 to 4 km inshore of the first, is up to 1.5 km wide 

and 25 m high with a crest at between 50 and 65 m water depth. The eastern ridge complex is 

composed of up to six individual ridge crests, which may be linked to glacitectonic thrusting. The 

whole ridge complex is up to 2.5 km wide and 25 m high with individual crests about 200 m wide 

and 10 m high. The outermost terminal ridges have debris-flow lobes extending up to 2.5 km 

downslope onto the relatively smooth and sometimes iceberg-ploughed deeper-basin sediments 

further offshore beyond the extent of recent glacier fluctuations. Downslope-orientated flow 

features, similar to those in Figure 3E, are imaged on a number of the debris-flow surfaces (Fig. 

5A). 

   Overridden moraine ridges. In the central part of the Negribreen submarine basin, on the 

eastern side, there is a further series of largely parallel, transverse ridges (Figs. 3D, 5A). The 

ridges are slightly sinuous in plan form and are up to 3 km long. They are on average 300 m wide 

with crests spaced about 400 m apart. The ridges are up to 15 m high and are generally parallel to 

the main moraine ridges further offshore. They are interpreted overridden retreat moraines from 

an earlier ice advance across the inner part of the submarine basin. Some of the ridges clearly 

show superimposed MSGLs, supporting this interpretation.  

    Medial moraine ridge. Towards the western edge of the submarine basin, a flow-parallel 

medial moraine is present (Figs. 2C, 5A). The ridge extends for 9 km, is 250 m wide and 40 m 

high ice-proximally and thins and decreases in height seawards; it can be traced almost to the 

inner of the two large moraine ridges on the western side of the submarine basin. The medial 

moraine is located at the transition zone between Negribreen and Petermannbreen, reflecting a 

time when they were further advanced and confluent, as shown in 1936 aerial photography (Fig. 
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5C). Negribreen has a drainage area an order of magnitude larger than that of Petermannbreen, so 

the latter was constrained between the larger Negribreen and the coastal hills to the west at that 

time. 

    Streamlined subglacial landforms. MSGLs, together with more widely spaced and sometimes 

attenuated linear features, form a slightly radial pattern in the central part of the submarine basin 

defined by the terminal moraines. They follow the main trend of the 80 to 150 m-deep trough. A 

4 km-long field of drumlins is also present in the eastern part of the basin (Figs. 2B, 5A), about 3 

km outside the present glacier front. Individual drumlins are blunt-nosed, about 1 km long and 

taper in an easterly direction. These are the only drumlins observed offshore of Olav V Land. 

   Small moraine ridges. The bulk of the area inshore of the large moraine ridges beyond 

Negribreen is covered by small moraine ridges, which are superimposed on underlying 

streamlined MSGLs and drumlins. These small ridges vary in orientation from transverse to 

parallel to former ice flow, suggesting an origin by annual still-stands/minor readvances or 

through deformable-sediment squeezing into basal crevasses. There are various transitional forms 

between these end members on the seafloor beyond Negribreen, yielding a boxwork or 

rhombohedral pattern in several places. Often, it has not been possible to separate between these 

small moraine types, and we therefore note the variability but map them simply as small moraine 

ridges. The ridges are generally just a few metres high, with a spacing of around 100 m.  

    Subglacial eskers and channels. Two eskers are observed in the inner part of the basin. Both 

begin just outside the modern glacier terminus where embayments are present associated with 

large turbid meltwater plumes. About 6 km seaward, the eskers merge and can be followed 

continuously for 1.5 km, with a further 1.5 km long fragment farther out. The general trend of the 

eskers is NNW-SSE. An additional esker merges with this system after 3 km. Maximum esker 

height is 25 m, but is generally less than 10 m high; the eskers are usually sinuous. Maximum 
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width is 150 m, but is usually less than 100 m. Several small channels are also mapped in 

association with the eskers. Two of the channel systems are located upstream from the eskers in 

the deepest parts of the basin down to 140 m water depth. The largest channel is about 2 km long, 

5 m deep and 50 m wide. Sometimes the channels enlarge to up to 7 m deep and 150 m wide. The 

channels are interpreted as elongate depressions eroded into subglacial sediments by meltwater 

under high pressure, continuing into depositional eskers when the channels instead cut upward 

into ice and eventually fill with debris as water flow wanes. On aerial photographs of the present 

tidewater glaciers the ice front is indented in several places (Fig. 5A). It appears that the 

subglacial drainage systems emerge preferentially at such indentations in the glacier terminus, 

which also coincide to some extent with the deepest water immediately offshore. 

    Unusual landform assemblage - Kvalrossøya. Kvalrossøya is now an island located about 10 

km beyond the present (2011) front of Negribreen (Fig. 5A). This small island (1.2 by 0.3 km) of 

Triassic rocks has clearly functioned as an obstacle to ice flow during the surge of Negribreen in 

1936. In the lee of the island, a distinctive suite of submarine glacial landforms was produced in a 

3 km long and 1.5 km wide area (Fig. 5D). The landforms include glacial lineations developed on 

the large moraine ridges beyond, indicating that the lineations are slightly younger than the large 

ridge. 1936 aerial photographs show surface bands of dirty ice which have been deflected and 

folded around the then ice-covered Kvalrossøya (Fig. 5E).  

 

4.2 Negribreen - recent glacier-margin fluctuations 

    Negribreen is the largest glacier system on Olav V Land, with a maximum flowline length of 

about 40 km and basin area 1,100 km2 (Fig. 1) (Hagen et al., 1993). Its tidewater terminus is fed 

by several glaciers, of which Ordonannsbreen, Akademikerbreen and Opalbreen are the largest 
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(Fig. 1). The earliest recorded ice-front position for Negribreen comes from historical mapping 

from an 1870 expedition (Rabot, 1900; Lefauconnier and Hagen, 1991). Past locations of the ice 

front are also derived from Lefauconnier and Hagen (1991) (Fig. 5A), giving an indication of the 

behaviour of Negribreen over the last 140 years. The 1936 position is the most extensive (Fig. 

5A), and the very crevassed nature of the glacier surface indicates that a surge was in progress at 

that time (Liestøl, 1969; Hagen et al., 1993). Since then, Negribreen has retreated continuously 

almost up to the present, by a maximum of about 20 km. Since July 2016 it has begun a new 

advance (T. Strozzi, pers. comm.). 

    The outermost large transverse moraine ridges identified about 12-20 km offshore of 

Negribreen (Fig. 5A) match clearly with the 1936 ice-front position derived from oblique aerial 

photographs (Lefauconnier and Hagen, 1991). A second pronounced ridge on the western side of 

the area appears to have formed during retreat of the ice front between 1936 and 1948, according 

to the map of Lefauconnier and Hagen (1991), and may represent a still-stand or even minor 

readvance of the terminus. The shape of the submarine area affected by the surge is thus about 25 

km wide and up to 20 km long, with an area of 320 km2. The inner bay exposed by subsequent 

ice retreat is up to 150 m deep, shallowing seaward and reaching 80-90 m in depth in the central 

part of the outer moraine ridge. The terminal moraine formed by this surge event marks the likely 

maximum extent of this glacier system during the Holocene, since the seafloor beyond appears 

largely smooth and fine-grained, and no other evidence of earlier, larger neoglacial fluctuations is 

present in the submarine landform record further offshore.  

 

4.3 Helge Backlundbreen  - submarine landforms  
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    Multibeam swath-bathymetric data of the submarine glacial landforms offshore of Helge 

Backlundbreen, together with their mapped distribution, are shown in Figure 6. The area affected 

by recent glacier advance is the smallest of the nine submarine basins investigated and the variety 

of subglacial and ice marginal landforms observed here is also limited compared with the other 

areas mapped in this study. 

   Large transverse moraine ridges. The submarine basin inside a prominent and largely 

continuous terminal moraine ridge contains several relatively substantial ridge segments (Fig. 6A, 

B). The largest, outermost submarine ridge is 20 m high and 400 m wide. It is about 2 km long 

and can be clearly traced onto land on both sides, where it forms lateral moraines to modern 

Helge Backlundbreen (Fig. 6C). The distal slope of the terminal moraine shows no signs of 

instability and debris flowage. The relatively large moraine ridge in the middle of the basin 

appears to be overlain by small transverse moraine ridges implying that it is an older ridge, 

probably overridden by the 1936 surge. 

   Streamlined subglacial landforms. Just two possible glacial lineations, with a NNW-SSE 

direction, are observed on the southern side of the submarine basin. They are 400 m long, up to 3 

m high, and sub-parallel to one another. Several small transverse ridges are superimposed on 

these features as is a larger moraine ridge segment. On land exposed by glacier retreat from its 

terminal moraines, several streamlined lineations are also present. 

   Small moraine ridges.  About 15 smaller and discontinuous transverse-to-flow moraine ridges 

are mapped. They are generally 1 to 5 m high with an average spacing of around 50 m and a 

mean width of 20 m. These small ridges overlie the large transverse moraine ridge in the middle 

of the basin, indicating that they are younger and related to ice retreat after the 1936 surge. 

   Kettle holes. In the northern part of the submarine basin, close to the subaerial lateral moraine 

ridge, there is a 300 m diameter and 10 m deep depression, interpreted as a kettle hole (marked k 
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in Fig. 6A). The bottom of the depression has a water depth of about 15 m. Several smaller 

depressions are also mapped (Fig. 6B). 

 

4.4 Helge Backlundbreen  - recent glacier-margin fluctuations 

    Helge Backlundbreen has an area of about 27 km2 and a length of 9 km (Lefauconnier and 

Hagen, 1991), making it one of the smaller glaciers in Olav V Land. Its surface was also heavily 

crevassed in 1936, and looped lateral moraines on its western side also imply past surge activity 

(Fig. 6C) (Lefauconnier and Hagen, 1991). The glacier has retreated almost 2 km since 1936; this 

is a smaller terminus fluctuation than any of the other glaciers we discuss. 

    The well-defined large submarine ridge defines the recent maximum extent of Helge 

Backlundbreen (Fig. 6A), and the 1936 ice front is close to this location (Lefauconnier and 

Hagen, 1991). This, together with observation that the 1936 surface was crevassed, suggests a 

surge that began shortly before these oblique photographs were acquired. The exposed submarine 

basin is up to 2 km wide and a little more than 1 km long, with an area of about 2.5 km2; the 

water is up to 30 m deep (Fig. 6). There is no evidence of earlier Holocene glacier fluctuations 

beyond the mapped terminal moraine ridge. 

 

4.5 Sonklarbreen - submarine landforms 

   Submarine landforms beyond the present terminus of Sonklarbreen are shown in swath-

bathymetric imagery (Fig. 7A) and are mapped in Figure 7B. A considerable variety of subglacial 

and ice marginal landforms is present; these landforms are described below. 

    Large transverse moraine ridges and debris-flow lobes. Two major moraine ridges are present, 

defining the limits of recent advances of Sonklarbeen (Figs 3A, 7A-B). The crest of the outermost 
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ridge is a maximum of 10 m high and has a maximum width of 700 m. The multibeam 

bathymetric dataset does not cover the whole ridge, but the ridge is nonetheless estimated to have 

a total length of 18 km, including an exposed termino-lateral part in the far west (Fig. 7A). A 

second large moraine ridge, with two cresentic components, is present about 1 km inside the 

outermost ridge. It reaches a height of about 20 m, a width of 1.5 km and is about 15 km long. On 

the ice-distal flanks of each of these large ridges, a series of lobate features, interpreted as debris-

flow lobes, is present (Fig. 7A). Five further moraine ridges of intermediate size are also mapped 

in the eastern part of the submarine forefield (Fig. 7A). They are up to 4 km long, 200 m wide 

and 10 m high with an average spacing of about 300 m.  

    Overridden moraine ridges. Several subdued ridges are present in the basin defined by the 

large outermost moraines of Sonklarbreen (Fig. 7A, B). These ridges are overprinted by both 

flow-parallel streamlined lineations and, subsequently, by small transverse-to-flow ridges. They 

probably formed during a previous surge of Sonklarbreen. 

    Streamlined subglacial landforms. Several glacial lineations (Fig. 2A) have been imaged on 

the sea floor beyond the modern terminus of Sonklarbreen (Fig. 7A). These generally follow the 

main axis of the trough and appear in a fan-shaped form likely parallel to the direction of past 

ice-flow (Fig. 7B). They reach a length of 1 km, and are generally up to a few metres high. These 

linear ridges, which are interpreted to have formed subglacially, are not so obvious as similar 

features in many of the other glacier forefields offshore of Olav V Land. This may be due to the 

many small transverse ridges superimposed upon them.     

   Small moraine ridges. Several sets of small ridges, interpreted as a combination of transverse-

to-flow small retreat moraines (Fig. 3B) and more complex crevasse-fill ridges (Fig. 2D), have 

been mapped over a large part of the area inside the large moraines, especially in the east of the 

imaged area (Fig. 7A-B). Along a 2,100 m long transect here, we have mapped 40 ridges giving 
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an average spacing between the individual ridges of about 50 m. The average width of the ridges 

is about 20 m and mean height is 2 m.  

    Subglacial eskers and channels. Three esker ridges and channel systems are identified and 

mapped in the inner part of the Sonklarbreen submarine basin within a kilometre or two of the 

modern ice front and close to indentations in the tidewater glacier terminus (Fig. 7A-B). Beyond 

the western indentation two esker systems are present (Figs. 2E, 7A). The first begins close to the 

present ice margin and extends 1,300 m south before turning southwest for a further 500 m. The 

esker is generally less than 50 m wide, but it extends into several fan-shaped forms where it is 

both higher and wider (150 m wide, 17 m high). The second western esker is 1,100 m long, with 

two ridge segments and a small linking channel between. It is up to 30 m wide and 2 m high. The 

linking channel is 100 m long and 1-2 m deep. A third esker system is developed outside an 

indentation in the eastern part of the present glacier front (Fig. 7A). It has a general NW-SE 

direction and is 1.6 km long. It begins as one ridge, dividing into two after 300 m with the 

smaller ridge continuing for 700 m. The main esker is 30-50 m wide and 5-10 m high. At about 

1,000 m downflow it expands to a mound which is 20 m high and 150 m wide. Thereafter it 

narrows to 60-80 m in width and 5-10 m high. A small channel also exists about 200 m east of 

this esker system (Fig. 7A). It is parallel to the esker, 800 m long, 40 m wide and 3 m deep. 

    Kettle holes. In the westernmost part of the imaged area, a series of small depressions are 

developed in water depth of less than 40 m (mostly 10 to 25 m water depth) over an area of about 

4 km2 (Fig. 7A-B). They are oval to sub-rounded in planform and individual holes reach a depth 

of 10 m and an area of 200,000 m2 (Fig 3F).   

 

4.6 Sonklarbreen - recent glacier-margin fluctuations 
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    Sonklarbreen has a 9 km-wide modern tidewater terminus, a maximum flowline length of 17 

km, and is fed by a drainage basin of about 270 km2 (Fig. 1) (Hagen et al., 1993). An early map 

drawn in 1870 provides the first observational information on this glacier (Heuglin, 1872). This 

historical position is close to the modern ice-front location in 2011 vertical aerial photographs 

(Fig. 7A). Reports from expeditions to the area in 1898 and 1900 suggested no unusual activity 

(Lefauconnier and Hagen, 1991). Given that the glacier extended about further 2-3 km seaward 

on 1936 oblique aerial photographs (Fig. 7C), it is likely that a surge occurred sometime during 

these 36 years. The lack of crevassing on 1936 photographs also suggests that a surge probably 

took place in the first decade or so of the 20th Century. Lefauconnier and Hagen (1991) also 

suggest that Sonklarbreen may have had an earlier maximum position indicated by prominent 

lateral moraines that also appear both in the early maps and on modern aerial photographs (Fig. 

7A), implying that either an earlier surge or a Little Ice Age maximum position was attained 

sometime prior to 1870. 

    Both the position of the 1936 terminus of Sonklarbreen and the large terminal moraines 

observed in seafloor imagery (Figs. 7A, C) suggest that the ice front has retreated by about 10 km 

since their deposition. The formation of the terminal moraines almost certainly preceded 1936, as 

the glacier was clearly in the quiescent phase of the surge cycle by then, given the lack of surface 

crevassing (Fig. 7C). It is less clear whether the early 20th Century surge reached the outermost 

moraine ridge or halted at several large ridges about a kilometre further inshore (Fig. 7A). If the 

latter was the case, then the outermost large ridge represents either a pre-1870 surge or the Little 

Ice Age maximum response to the regional climatic cooling of the previous few centuries (e.g. 

Grove, 1988; Werner, 1993). The overall morphology of the 82 km2 area inside these large 

moraines is that of a relatively simple 10 km wide and 10 km long submarine basin whose 

greatest water depth is 70 m at about 6 km from the modern ice front (Fig. 7A).  
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4.7 Pedasjenkobreen - submarine landforms 

   Multibeam swath-bathymetric data from offshore of Pedasjenkobreen and the mapped 

distribution of landforms are illustrated in Figure 8A-B. The observed submarine landform types 

are outlined below. 

    Large transverse moraine ridges. Several large transverse moraine ridges are mapped up to 4 

km offshore of the modern margin of Pedasjenkobreen (Fig. 8A). The outermost terminal ridge is 

about 400 m wide, has a 10 to 20 m high crest and is about 2 km long. Further pronounced ridges 

are 300 to 400 m wide and 8 to 15 m high. There is little evidence of debris-flow lobes on the ice-

distal flanks of the ridges. 

    Streamlined subglacial landforms. Well-developed glacial lineations have been imaged in the 

main inner basin (Fig. 8A). They are generally sub-parallel to the basin axis and cross-cut the 

innermost large moraine ridge (Fig. 8A-B). Individual lineations can be up to 1.5 km long, 1 to 2 

m high and are spaced about 80 to 100 m apart, within the envelope of MSGL dimensions 

described by Spagnolo et al. (2014).  

   Small moraine ridges. In the main submarine basin defined by the large ridges, several small 

transverse-to-flow ridges are present (Fig. 8A-B). They are generally sub-parallel to the large 

moraine ridges, although occasionally they are more oblique. The small ridges are up to 5 m high, 

with an average spacing of 40 m. They probably represent both retreat moraines (when 

transverse-to-flow) and crevasse-fill ridges (when more obliquely orientated). 

   Subglacial eskers and channels. On the eastern, ice-proximal side of the inner submarine basin 

there is a channel and esker system of 2 km in length (Fig. 8A-B). Two small channels merge 

into one after 400 m and continue for 500 m, crossing the innermost large moraine ridge. The 

system then continues as an esker for 800 m. The channels are up to 1 m deep and 10 to 20 m 
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wide, and the esker is up to 5 m high and 50 m wide. Given its clearly up-and-down long profile 

(Fig. 8A), the system must have been formed subglacially under high water pressure (e.g. Shreve, 

1972). 

    Kettle holes. Several large, flat-floored depressions 5 to 10 m deep are present on the western 

side of the Pedasjenkobreen submarine basin in water depths of less than 15 m (Fig. 8A-B). 

There is evidence that the relatively steep walls defining these kettle holes have collapsed in 

some places, with small debris-flow lobes visible protruding into the depressions from the side 

walls. 

 

4.8 Pedasjenkobreen - recent glacier-margin fluctuations 

   Pedasjenkobreen is about 39 km2 in area and almost 9 km in length today (Hagen et al., 1993). 

Lefauconnier and Hagen (1991) reported, based on 1936 oblique aerial photographs showing the 

detailed morphology of subaerial lateral moraines, that the glacier had probably undergone three 

advances linked to surges and a possible Little Ice Age maximum position. Vasiliev’s early map 

of 1900 shows the ice-front position in the embayment 1.5 km inside the curved subaerial lateral-

moraine ridge, not far from its modern position on 2011 imagery (Fig. 8A). It is clear from 1936 

oblique photography that the glacier had advanced at least to the ice-proximal flank of the 

prominent subaerial lateral moraine ridge at that time (Fig. 8C). In addition, its terminus was still 

crevassed, indicating surge activity at or shortly before 1936.  

    The seafloor morphology off modern Pedasjenkobreen consists of a 5 km2 area that reaches no 

more than about 30 m in water depth (Fig. 8A), bounded by three prominent submarine moraine 

ridges. The ridges are presumably the underwater equivalents of the detailed crest morphology 

within the subaerial lateral moraine. At least the innermost of these three large ridges is a product 
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of glacier surging, marking the limit of the 1930s or slightly earlier surge activity. The more ice-

distal ridges may represent previous surges and, possibly, the Little Ice Age glacial limit. 

 

4.9 Besselsbreen – submarine landforms 

   Multibeam bathymetric imagery of the submarine glacial landforms offshore of the present 

terminus of Besselsbreen is shown in Figure 9A. The distribution of these landforms is mapped in 

Figure 9B and discussed below.  

    Large transverse moraine ridges and debris-flow lobes. A major moraine ridge, with two 

arcuate components, defines the recent outer limit of Besselsbreen (Fig. 9A). The ridge crest, of 

maximum width 1,500 m and height of about 20 m, is at up to 45 m in water depth. Along its 

outer flanks a series of coalescing debris-flow lobes is present. The transition from ice-distal 

moraine flanks to debris-flow deposits begins at a water depth of around 40-50 m and ends on the 

sea bottom between 55 and 70 m.  

    Medial moraine ridge. A medial-moraine ridge (Fig. 2C) separates the eastern and western 

parts of the submarine basin defined by the major terminal moraine (Fig. 9A). This feature does 

not appear to be linked to the subaerial medial moraine that divides ice of Besselsbreen from the 

neighbouring Augnebreen (Fig. 9A), or that on the 1936 ice surface, which is presumably 

displaced well to the east by an earlier advance of Besselsbreen (Fig. 9C). 

    Streamlined subglacial landforms. Some sub-parallel glacial lineations have been mapped on 

the floor of the submarine basin (Fig. 9A). They follow the main trend of the two trough axes 

(NNW-SSE). Individual streamlined lineations are up to 3 km long and less than 5 m high. They 

are overprinted and partially obscured in many places by smaller ridges (Fig. 9B). 

    Small moraine ridges. Large numbers of small moraine ridges have been mapped inside both 

the eastern and western submarine basins (Figs. 2D, 3B, 9A). The ridges clearly overlie the 
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glacial lineations (Figs. 2D, 9A). In the eastern basin there is a well-developed pattern of small 

retreat moraines (Fig. 9A). About 25 ridges are mapped along a 2.5 km long transect giving an 

average spacing of approximately 100 m. Average ridge width and height are about 60 m and 4 m 

(max. 10 m), respectively. However, in the western basin in particular it is difficult to decide if 

these features are transverse-to-flow retreat moraines or more complex rhombohedral crevasse-

filled ridges. Where a clear boxwork structure is identified (Figs. 2D, 9A), individual ridges are 

generally smaller than the retreat moraines; for instance, in one area we have measured an 

average ridge width and height of 30 m and 3 m, respectively.  

    Eskers and channels. In the inner western basin two eskers are present (Fig. 9A, B). The 

westernmost is about 2 km long, 10 m high and 100 m wide, with a S-N orientation. The more 

easterly and larger esker is nearly 7 km long, and is also orientated S-N. It is composed of at least 

four parts, up to 15 m high and 100 m wide. In the inner eastern basin there are several channels 

with a SSW-NNE orientation (Fig. 9A, B); the longest is 2 km. Each is relatively straight, about 2 

m deep, with a width of less than 50 m. 

   Kettle holes. In the ice-proximal part of the eastern basin beyond modern Besselsbreen, several 

kettle holes are mapped in water less than 35 m deep (Fig. 9A). The two largest are sub-circular, 

500,000 m2 and 300,000 m2 in area and up to 10 m deep with steep sides and flat floors. 

 

4.10 Besselsbreen - recent glacier-margin fluctuations 

    Besselsbreen drains northwards from the 600 km2 ice cap on Barentsøya (Dowdeswell and 

Bamber, 1995), and is almost 150 km2 in area with a maximum length of 22 km. The earliest 

evidence for the ice-front position of Besselsbreen is from oblique air photographs acquired in 

1936 (Fig. 9C). At that time the glacier was protruding well beyond the line of the coast to the 
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east, but constrained along its western shoreline. Its surface appears uncrevassed and with a very 

low gradient (Fig. 9C). In addition, a number of tabular icebergs are imaged, suggesting that the 

terminus region may have been temporarily afloat due to thinning (Dowdeswell, 1989). Since that 

time, Besselsbreen has retreated about 5 km to its present location, still in tidewater but now in a 

coastal embayment (Fig. 9A). 

   The submarine morphology shows a 10.5 km wide and 11 km long depression, of about 81 

km2, bounded by a large arcuate terminal ridge (Fig. 9A). A subdued medial moraine divides the 

60 m deep western basin from the 50 m deep eastern basin. There is no direct evidence of a past 

surge of Besselsbreen or the neighbouring Augnebreen (Lefauconnier and Hagen, 1991), but it is 

clear that the large moraine ridges mark either the surge limit or that of the Little Ice Age 

maximum position, from which the glacier terminus has retreated about 10 km to its modern 

location. In addition, the presence of many rhombohedral crevasse-fill ridges indicates strong 

basal crevassing suggestive of past surge activity (e.g. Solheim, 1985; Dowdeswell et al., 2016a) 

 

4.11 Hannbreen – submarine landforms 

    Multibeam bathymetry from beyond the modern margin of Hannbreen is shown in Figure 10A. 

The mapping of landforms in Figure 10B is impeded by a drape of apparently fine-grained and 

probably current-delivered sediment, especially within a kilometre of the coastline, which has at 

least partly buried many of the finer-scale glacial landforms beyond Hannbreen; it is the only one 

of the 9 areas we have studied that shows this characteristic (Fig. 4B). The identifiable landforms 

are discussed below. 

    Large transverse moraine ridges. A major arcuate moraine ridge defines the maximum recent 

position of the glacier terminus (Fig. 10A). The ridge crest is in a maximum of 25 m water depth 

and reaches a maximum width of 700 m and height of about 10 m. It is indented at about 7 points 
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on its ice-proximal side, perhaps reflecting variations in marginal ice thickness and the time of 

furthest advance. At least five additional moraine ridges have been mapped nearer to the modern 

coastline; they are up to 300 m wide and a few metres high. No debris-flow lobes are identified 

on the distal flanks of any of the ridges.   

   Streamlined subglacial landforms. Well-developed sets of glacial lineations have been mapped 

in the Hannbreen submarine basin (Fig. 10A). They form an overall fan-shaped pattern (Fig. 

10B). Individual MSGLs are up to 1 km long, from a few to 7 metres high and spaced about 100 

to 150 m apart. They overprint several of the larger transverse ridges, before some details of the 

seafloor topography become obscured by draping sediments close to the coast. 

    Small moraine ridges. A few small moraine ridges have been mapped in the central part of the 

outer submarine basin, sometimes superimposed on the lineations (Fig. 10A-B). The ridges are 

either parallel with or transverse to past glacier-flow direction (W-E). Several transverse-to-flow 

ridges are mapped just inside the terminal moraine ridge; they have average spacing of about 40 

m and a width and height of 20 m and 2 m, respectively. By contrast, in the central part of the 

submarine basin, small ridges of similar dimensions are orientated sub-parallel to past ice-flow 

(Fig. 10A). These ridges are probably crevasse-fill ridges. In the inner basin, much of the seafloor 

has a subdued appearance, with some landforms clearly being buried by a sedimentary drape. 

Sometimes only the upper parts of small ridges remain above what is presumably a fine-grained 

fill (Fig. 4B) that is probably being deposited from longshore currents before they enter the 

narrow Heleysundet between eastern Spitsbergen and Barentsøya (Fig. 1). There is much 

evidence of current transport and reworking of fine-grained sediment to the west of Heleysundet 

(Fig. 4C-D). The generally NE-SW orientation of iceberg ploughmarks offshore of Hannbreen 

(Fig. 10A), indicating the general direction of iceberg drift, also supports this interpretation. 

 



25 
	

4.12 Hannbreen - recent glacier-margin fluctuations 

    Hannbreen drains eastwards from the Olav V Land ice cap and today terminates at the coast 

with only a 400 m-wide section of the glacier terminus reaching the sea (Fig. 10A). Its area is 

about 40 km2 and it has a length of 13 km (Lefauconnier and Hagen, 1991). No observations are 

available prior to 1936 oblique photographs, which show a large lobe protruding into open water 

well beyond the coastline (Fig. 10C). Hannbreen’s surface is relatively uncrevassed but has 

looped moraines, providing indirect evidence of a past surge (Meier and Post, 1969). 

Lefauconnier and Hagen (1991) speculate that the glacier had reached a surge maximum position 

a few years before 1936. Since 1936, the glacier front has retreated about 2.5 km to reveal many 

of the submarine landforms that are mapped in Figure 10B. 

    The large terminal moraine ridge identifies the maximum extent of the early 20th Century surge 

of Hannbreen (Fig. 10C). The 15 km2 basin defined by this ridge is about 4.5 km wide and 4.5 

km long with a maximum water depth of about 30 m. The 1936 position of the ice front is about 2 

km inside the terminal moraine ridge, although it may be that Lefauconnier and Hagen have 

slightly underestimated the extent of the 1936 ice front. 

 

4.13 Koristkabreen – submarine landforms 

    Multibeam swath-bathymetry offshore of Koristkabreen is illustrated in Figure 11A, with 

distribution of submarine landforms shown in Figure 11B and discussed below.  

    Large transverse moraine ridges and debris-flow lobes. A single main terminal moraine ridge 

defines the submarine basin adjacent to the modern margin of Koristkabreen (Fig. 11A). 

Prominent subaerial lateral moraines on either side of Koristkabreen clearly correlate with the 

submarine terminal moraine (Fig. 11A). The terminal ridge appears to be indented on its ice-
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proximal side by at least eight individual features, which may relate to fingers of a broken or 

notched ice margin during its last advance; there is some limited evidence for this in 1936 aerial 

photographs (Fig. 11C), although the recent maximum glacier position was to seaward of the 

photographed location. The ridge crest is in water depths between 10 and 60 m and reaches a 

maximum height of about 20 m; some of the indentations in the ridge mean that it is less well 

developed and is only a few metres high and 300 to 800 m wide in some places (Fig. 11A). The 

outer flank of the moraine ridge translates into a number of well-defined debris-flow lobes along 

most of its perimeter (Figs. 3E, 11A). The largest debris-flow lobe is 1,300 m wide and extends 

over 2 km beyond the moraine ridge reaching a water depth of 125 m. The cross-cutting 

relationships between debris-flow lobes suggest at least three superimposed lobes, with 

thicknesses up to about 10 m.  

    Streamlined subglacial landforms. Well-developed sets of glacial lineations with a radial or 

fan-shaped pattern have been mapped on the sea floor of the Koristkabreen submarine basin 

(Figs. 2A, 11A). These tend to follow the pattern of indentations visible in the detailed 

morphology of the terminal moraine and may relate to fingers of ice where they impinged upon 

the ice-proximal side of the ridge. They cover most of the length of the basin, with ridges a few 

metres high and 40 m wide, spaced about 50 m apart. Some of the streamlined features appear to 

begin from slightly blunt-nose drumlinoid features, implying a position on the continuum of 

lineations between drumlins and MSGLs (Fig. 2A). 

    Small moraine ridges. A series of small transverse-to-flow retreat moraines is superimposed on 

the glacial lineations (Fig. 11A). Up to 30 ridges are mapped along a 1.2 km long transect, giving 

an average spacing of 40 m. The ridges are up to 400 m long, up to 50 m wide and 1 to 3 m high. 

No signs of subglacial meltwater channels or eskers are observed in the Koristkabreen submarine 

basin.  
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4.14 Unnamed glacier west of Koristkabreen (Kw) – submarine landforms 

     The submarine landforms seaward of the unnamed glacier are also shown in Figure 11A; their 

distribution is mapped in Figure 11B and outlined below. 

   Large transverse moraine ridges and debris-flow lobes. The outermost moraine ridge is located 

3 km beyond the present (2011) ice margin of this glacier; the ridge is up to 20 m high and a few 

hundred metres wide (Fig. 11A). The unnamed glacier also has subaerial lateral moraines on both 

sides, the eastern one of which clearly correlates with the terminal submarine ridge (Fig. 11A). 

On the distal side of this terminal ridge several well-developed debris-flow lobes are present; the 

largest is 2 km wide and 1 km long and ends in 80-90 m water depth. Some debris flows 

superimpose on one another, although this is not so well developed as in front of the 

neighbouring Koristkabreen. In addition, there are two sub-parallel finger-like features composed 

of linear ridges with small orthogonal transverse ridges between them that protrude over a 

kilometre beyond the outermost moraine ridge (Fig. 11A). These may represent tongues of ice 

which impinged on the sea floor when the unnamed glacier was at its recent maximum position. 

It appears as though the terminal moraine ridge of Koristkabreen superimposes on the eastern 

side of the unnamed glacier terminal moraine (Fig. 11A), implying that the advance of 

Koristkabreen took place after that of the unnamed glacier. A further transverse ridge is present 

across the whole basin about 1 km from the modern ice front with debris-flow lobes up to 1.6 km 

wide and 0.7 km long on its ice-distal flanks. This represents either a later still-stand or a 

subsequent readvance of the terminus of the unnamed glacier. 

   Streamlined subglacial landforms. Well-developed sets of glacial lineations with a radial 

pattern are found in the main submarine basin offshore of the unnamed glacier (Fig. 11A-B). 

Most of the lineations are found outside the large inner moraine, but a few are also found close to 
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the present ice margin. The individual ridges are up to 1500 m long, 10 m high and a few hundred 

metres wide. 

   Small moraine ridges. A series of small transverse ridges is superimposed on the glacial 

lineations in the outer part of the submarine basin. These ridges are generally small, up to a metre 

high and 20 m wide with an average spacing of around 35 m. Their lack of complexity suggests 

that they are more likely to have been formed at a retreating ice margin than by squeezing of 

sediment into basal crevasses. 

   Kettle holes. Several flat-floored depressions, with clearly defined rims define kettle holes on 

both sides of the submarine basin; kettle holes up to 15 m deep occur in water no more than 25 m 

deep (Fig. 11A). 

 

4.15 Koristkabreen and adjacent unnamed glacier - recent glacier-margin fluctuations 

    Koristkabreen has an area of about 50 km2 and is approximately 13 km long (Lefauconnier and 

Hagen, 1991). The unnamed glacier, 5 km to the northwest, has a slightly larger drainage basin of 

about 68 km2 but a shorter length of about 10 km. Both glaciers now have tidewater ice fronts 

that terminate in embayments in the coast (Fig. 11A). The first observations of these two glaciers 

are from 1936 oblique aerial photographs. These images show both glaciers with lobate ice fronts 

protruding beyond the general line of the coast, but with uncrevassed surfaces. There has been no 

observed surge of either glacier (Lefauconnier and Hagen, 1991), and the uncrevassed surfaces in 

1936 photographs imply that, if a surge was responsible for their advances, then these events 

probably happened several decades earlier.  

    Comparing the 1936 position of each glacier with the offshore bathymetry shows that both 

glaciers were about 1.5 km inside the terminal ridge marking the outer limit of recent ice advance 
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(Fig. 11A-C). The total retreat since this maximum has been 4 km for Koristkabreen and about 

2.5 km for the adjacent unnamed glacier. This retreat has exposed submarine basins of 11 and 7.5 

km2 which reach maximum depths of 60 and 50 m for Koristkabreen and the unnamed glacier, 

respectively.   

 

4.16 Hochstetterbreen – submarine landforms 

    Multibeam swath-bathymetric data imaging the glacial landforms offshore of 

Hochstetterbreen, together with their interpreted distribution pattern, are illustrated in Figure 

12A-B. This is the northernmost glacier in our study and also has the second largest drainage 

basin (Fig. 1). 

    Large transverse moraine ridges and debris-flow lobes. Several large moraine ridges are 

present, with the outermost ridge defining the limit of recent ice advance across the 

Hochstetterbreen submarine basin (Fig. 12A). This outermost, and largest moraine ridge is 22 km 

long and 1 to 2 km wide, narrowing to about 500 m at its western end; it has several distinctive 

elements, representing the irregular shape of the advancing ice terminus. The ice-proximal side of 

the ridge has several subdued indentations, which are less conspicuous than those in terminal 

moraines offshore of Hannbreen and Koristkabreen in particular (Figs. 10A, 11A). The maximum 

distance from the present ice front to the northeastern part of the terminal ridge is 14 km. The 

water depth of the ridge crest varies between 35 and 70 m and reaches up to of 30 m above the 

surrounding seafloor. Debris-flow lobes up to 2 km wide and 0.7 km long extend from the ice-

distal side of the ridge into water about 80 m deep (Fig. 12A). A second ridge complex, 

containing two crests, is located up to 2 km behind the terminal moraine and has a length of 9 km 

and a width of 200-300 m (Fig. 12A-B). Several less well-defined ridges are also present in the 

inner submarine basin, one appearing to link with lateral moraines onshore (Fig. 12A).  
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    Streamlined subglacial landforms. A series of subglacial lineations are present and have a fan-

like pattern, opening out with increasing distance from the present ice margin (Fig. 12A). 

Individual lineation ridges may reach a length of 3 km. The lineations are a few metres high and 

the average spacing is 150 m. They cross-cut some of the less well-defined but relatively large 

transverse moraine ridges in the mid and inner Hochstetterbreen submarine basin (Fig. 12A-B). 

    Small moraine ridges. A limited number of small transverse-to-flow retreat ridges are present 

in the innermost part of the submarine basin. They are superimposed on the subglacial lineations, 

representing retreat of the ice margin. The transverse ridges are up to 300 m long, up to 50 m 

wide and a few metres high.  

 

4.17 Hochstetterbreen - recent glacier-margin fluctuations 

   Hochstetterbreen is one of the larger glaciers draining the Olav V Land ice cap, at about 580 

km2 and 37 km long (Lefauconnier and Hagen, 1991). Historical mapping by de Geer showed 

that the glacier protruded 5-7 km beyond the coastline in 1901. De Geer also mentioned in this 

report a map of 1868 by Koldewey that placed the ice front at the coastline, implying a rapid 

advance, likely a surge sometime during this 33-year interval (Lefauconnier and Hagen, 1991). 

By 1936, Hochstetterbreen had retreated back to the coastline and the view offered by oblique 

aerial photographs shows a crenulated ice front and a largely uncrevassed ice surface, suggestive 

of post-surge stagnation and retreat (Fig. 12C). Retreat has continued since the 1930s, and today 

the 11 km-wide tidewater ice front is about 4 km inside the general coastline (Fig. 12A).  

    The large, outermost moraine ridge, with several debris-flow lobes beyond it, is clearly visible 

in the bathymetry of the offshore area (Fig. 12A). This well-defined terminal moraine is similar 

in general form to the mapping of de Geer, which was undertaken from Wilhelmøya, several 
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kilometres to the north (Fig. 1). Only a small northward shift in the position of the 1901 margin 

reproduced in Lefauconnier and Hagen (1991) would provide an almost exact match with the 

location of the submarine terminal moraine. This implies that the surge of Hochstetterbreen may 

have taken place only a short time before 1901. The submarine basin, of 75 km2 in area and 

maximum depth 120 m, revealed by ice retreat since that time is about 6 km wide close to land, 

widening to about 10 km farther offshore (Fig. 12A).  

 

5. Submarine Glacial Landform Distribution in an Open-Marine Setting 

    The distribution of submarine glacial landforms in the open-marine setting of eastern Svalbard 

is shown in Figure 13. The occurrence of individual landform types is listed in Table 1. The 

seafloor imaged adjacent to the nine eastern Svalbard glaciers has several general characteristics.  

    Each glacier has a large submarine terminal moraine, or set of terminal ridges. Inside these 

large ridges is a submarine basin or basins of varying depth that has been exposed by tidewater 

glacier retreat over the last approximately 80 to about 150 years (Fig. 13), according to aerial 

photographic and earlier historical evidence (e.g. Heuglin, 1872; Nordenskiӧld, 1875; Rabot, 

1900; Liestøl, 1969; Schytt, 1969; Lefauconnier and Hagen, 1991). The terminal ridges represent 

the furthest recent advance of each glacier and demonstrate that all of them have expanded out 

from the general line of the coast as lobes into open water for part of this period (Fig. 13). The 

ridge crests generally exhibit ploughing by iceberg keels (e.g. Fig. 10A). On the distal flanks of 

the terminal ridges, soft sediment failure has, in six of the nine cases (Table 1), produced a series 

of overlapping debris-flow lobes (e.g. Figs. 3E, 13). The material involved in debris flowage 

may, in part at least, be supplied by advection of deforming subglacial till during the active phase 

of the surge cycle, together with slope failure on distal moraine ridge flanks. Clearly defined 
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debris-flow lobes are absent from beyond Helge Backlundbreen, Pedasjenkobreen and 

Hannbreen, which are also the glaciers with the smallest drainage basins (Table 1). We note that 

debris-flow development is very sensitive to both local slope angle and sediment clay/water 

content – for the latter we have no relevant observations.  

    Inshore of the terminal ridges of each glacier there is a well-preserved and clearly visible set of 

glacier-influenced submarine landforms, with the detailed components varying between 

individual glaciers (Fig. 13). The main exception to this is Hannbreen, where it appears that the 

inner part of the submarine landform assemblage is being progressively buried by draping 

sediments (Figs. 4B, 10A). The seafloor in the northwestern part of the submarine basin beyond 

Besselsbreen is also affected to a lesser extent by sediment draping (Fig. 9A). The draping is 

probably a function of strong tidal-current activity and associated sediment transport and 

deposition in this area, close to the topographic constriction of Heleysundet, a narrow channel 

linking Storfjorden and the Northwest Barents Sea (Fig. 1). Here, Den Norske Los (the 

Norwegian pilot or navigation guide) warns mariners of possible current speeds of 8-9 kts. 

Southwest of Heleysundet, the presence of mounded drift deposits, about 2 km long and up to 

700 m wide and 15 m high (volume about 0.2 km3), and trains of current ripples <50 cm high and 

spaced 10 to 15 m apart with the same orientation, support this interpretation (Fig. 4C-D). 

    The occurrence of each individual landform type in the exposed basin or basins between each 

modern glacier terminus and the prominent submarine terminal moraines is set out in Table 1; 

landforms include terminal ridges and associated debris-flow lobes, streamlined glacial lineations 

(MSGLs, drumlins and the continuum of streamlined landforms between them), eskers/channels, 

small traverse-to-flow and more complex boxwork ridges, and kettle holes. There are also several 

medial moraines (Fig. 2C). It is clear that the vast majority of submarine basins contain most of 

the individual landforms described earlier, each of which has been associated previously with 
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phases of the glacier surge cycle (e.g. Solheim, 1991; Ottesen and Dowdeswell, 2006; Ottesen et 

al., 2008; Flink et al., 2015; Dowdeswell and Ottesen, 2016b). The most obvious exception to this 

is the submarine basin of Helge Backlundbreen (Fig. 6), where evidence of debris-flow lobes, 

crevasse-fill ridges and channelized water flow is lacking and streamlined lineations indicative of 

past rapid flow are very limited except on subaerially exposed land (Figs. 6A, 13; Table 1).  

    More generally, erosional and depositional evidence of subglacial water flow is also present in 

the submarine basins beyond four of the nine glaciers, including the relatively large Negribreen, 

Sonklarbreen and Besselsbreen systems (Table 1). Previous observations of submarine landforms 

in Spitsbergen fjords where glacier surging has taken place have also shown that eskers and 

channels are not always present (e.g. Borebreen and Wahlenbergbreen, Ottesen and Dowdeswell, 

2006; Tunabreen, Flink et al., 2015; Blomstrandbreen, Burton et al., 2016). Where eskers and 

channels are observed, it is often in association with major indentations in, and relatively deep-

water areas beyond, modern ice margins (e.g. Nathorstbreen and Paulabreen, Ottesen et al., 

2008). This is a similar morphological setting to the coincidence of major terminus indentations 

and channel/esker systems today close to the margins of Negribreen, Sonklarbreen and 

Besselsbreen (Figs. 5A, 7A, 9A). 

   The presence of submarine crater-like kettle holes has not been identified previously in the 

context of tidewater surge-type glaciers in Svalbard (Fig. 3F), yet is observed beyond six glaciers 

in the eastern Svalbard study area (Fig. 13, Table 1). Further, many subaerially exposed kettle 

holes are present on land affected by surges of Nathorstbreen and Paulabreen in western 

Spitsbergen fjords (Rowan et al., 1982; Ottesen et al., 2008), presumably linked to ice stagnation 

and melt. Given that glacier ice stagnates, especially early in the quiescent phase between surges, 

it is not surprising that such features are produced when the moribund ice melts and/or floats 

away to leave steep-sided submarine depressions. Once formed, infilling by fine-grained 
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glacimarine sedimentation contributes to a smooth kettle hole floor, and side-wall collapse also 

provides infilling by debris flows. The kettle holes observed in eastern Svalbard, typically close 

to the lateral margins of submarine basins, are found in very shallow water often less than 20 m 

deep. Buoyancy considerations in deeper water would probably enable rapid lift-off and 

disintegration of stagnant ice, and this is likely why kettle holes are not found in relatively deep 

fjord waters in western Spitsbergen (e.g. Ottesen et al., 2008; Flink et al., 2015). 

   Further offshore in the eastern Svalbard study area, beyond the terminal moraine ridges, the 

seafloor is relatively smooth, with features such as bedrock ridges and knolls clearly being buried 

beneath a sediment drape. This suggests continuing sedimentation from rain-out of fine grained 

and probably glacier-derived debris over a long period. These distal glacimarine sediments are 

disturbed to varying degrees by iceberg grounding pits and ploughmarks (Fig. 4A), with the 

intensity of reworking depending on water depth and iceberg flux and drift tracks. There is little 

indication of earlier Holocene neoglacial ice advances seaward of the terminal moraine systems 

we have described for each of the nine glaciers. Indeed, it is likely that the streamlined MSGLs 

present in the centre of Ginevrabotnen, the 25 km-wide bay between Olav V Land and 

Barentsøya (Fig. 13), are an indicator of the direction of full or deglacial ice flow from the Last 

Glacial Maximum ice sheet on Svalbard and the Barents Sea (Svendsen et al., 2004; Hughes et 

al., 2016). Their NE-SW orientation is clearly unconnected to any recent glacier fluctuations. 

 

6. Open-Marine Glacial Landform Assemblage and a Simple Schematic Model 

6.1 Landform assemblage for glacier surges in open-marine settings 

    Although the distribution and frequency of occurrence of individual submarine landforms 

varies between each glacier, a general geomorphological pattern or landform assemblage emerges 

(Fig. 14, Table 1). In plan-view, the terminal moraines marking the limits of surge or Little Ice 
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Age advance usually have a distinctive lobate or arcuate form when, in open-marine settings, 

they are unconstrained by fjord walls. The Hannbreen, Koristkabreen and Hochstetterbreen 

submarine landform assemblages are clear examples (Figs. 10A, 11A, 12A). The submarine basin 

or sub-basins exposed inside these outer moraine ridges when ice retreats during the quiescent 

phase of the surge cycle, or due to post-Little Ice Age warming, contain a further suite of 

landforms. Typically the assemblage of landforms consists of several individual features, which 

are considered below in order of timing of deposition and stratigraphic superposition.  

   (a) Streamlined sedimentary landforms are produced during fast glacier flow in the active phase 

of the surge cycle when ice advances in an offshore direction. These streamlined glacial 

landforms, in the form of (i) MSGLs and other streamlined lineations, and occasionally (ii) 

drumlins (Fig. 2A-B), also indicate the direction of past ice flow; this is often fan-shaped as 

surging ice spreads out in an open-marine setting. (iii) Sometimes the lineations are 

superimposed on older sets of ridges within a submarine basin, which are inferred to be 

overridden relicts of terminal moraines marking the maximum position of past surges (Fig. 3D). 

Such buried and overridden ridges therefore represent, where present and identifiable, the oldest 

component of this landform assemblage. 

    (b) (i) Relatively large terminal ridges or sets of ridges define the maximum limit of ice 

advance, linked to surging or a Little Ice Age maximum (Fig. 3A). Two features may be 

associated with these relatively large moraines. (ii) Debris-flow lobes may be present on ice-

distal moraine flanks associated with the failure of the deforming sediments that, under high 

water pressure, enable fast-flow and surging to take place (Fig. 3E). (iii) Indentations are 

sometimes seen on the ice-proximal terminal moraine flanks, probably linked to fingers of ice 

within the advancing glacier terminus (Fig. 3C).  
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    (c) Small ridges, just a few metres high and space 50 to 150 m apart, that are either (i) 

relatively linear and orientated transverse-to-flow (Fig. 3B) or (ii) more complex and 

rhomboherdral or boxwork in pattern (Fig. 2D). It is sometimes difficult to distinguish between 

these two types of small ridge, but in general the complex boxwork moraines are more common 

closer to terminal moraines, whereas geometrically simpler transverse-to-flow moraines become 

more prevalent in inner-basin locations closer to the modern ice margin. This makes sense, given 

that the more complex ridges are interpreted to be a result of squeezing of soft subglacial 

sediments into basal crevasses shortly after the active phase of the surge cycle ceases, whereas 

small transverse ridges are linked to minor winter ice readvances of a grounded tidewater glacier 

terminus, which will take place as the quiescent phase proceeds. 

    (d) Esker and channel systems, produced by water flow in subglacial conduits, formed after an 

organized and relatively efficient hydrological system is re-established at the end of the active 

phase of a surge (e.g. Kamb et al., 1985). Several clear examples of drainage systems are present 

in the submarine basins beyond Negribreen and Sonklarbeen in particular (Fig. 2E-F; Table 1). 

    (e) Submarine kettle holes, sedimentary crater-like forms in shallow water usually at the lateral 

margins of submarine basins, left when stagnant ice melts and/or floats away as the glacier 

terminus retreats during the quiescent phase of a surge. The basin beyond Sonklarbreen has a 

number of well-developed examples (Fig. 3F). 

 

6.2 Schematic model for glacier surges in open-marine settings 

    A new schematic model of the landform assemblage associated with tidewater glaciers surging 

into open-marine settings is set out in Figure 14. The broad-scale arcuate terminal moraines 

marking the surge outer limit provide a distinctive component of the geometry. These terminal 

moraines define a submarine basin or basins inshore, in which the remaining individual 
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landforms typical of the nine glaciers investigated are located. The individual landforms making 

up the assemblage are labeled in terms of their timing of deposition within a surge cycle, from 

overridden ridges of a previous surge through to transverse-to-flow small ridges often deposited 

annually during terminus retreat during the quiescent phase of the cycle as ice retreats through the 

submarine basin (Fig. 14). It should be noted that not all individual landforms in the schematic 

model are necessarily present in association with a specific surge event; this is implied by the 

absence of some features from the submarine basins of some of the nine glaciers (Table 1). 

    This new schematic model of an open-marine surge-type landform assemblage can be 

compared with earlier models that were based on submarine landforms associated with surges in 

Spitsbergen fjords (Ottesen and Dowdeswell, 2006; Ottesen et al., 2008; Flink et al., 2015). The 

model of Flink et al. (2015) includes the terminal moraines and related debris-flow lobes of 

several surges of Tunabreen. We also see similar sequences of terminal ridges and associated 

debris flows in the submarine basins offshore of Negribreen and Sonklarbeen in particular (Figs. 

5A-B, 7A-B). While there are many similarities, our model differs from existing landsystem 

models of surges into Svalbard fjords in several ways. First, the overall shape of the open-marine 

surging landsystem is arcuate, reflecting the lack of constraining fjord walls on overall 

morphology. Secondly, the ice-proximal sides of terminal moraine ridges are often indented, 

reflecting the sometime irregular and broken termini of tidewater glaciers surging into open 

water. Thirdly, the distribution pattern of streamlined lineations is generally fan-shaped, again 

reflecting either the lack of constraint by valley walls as an advancing ice front moves beyond the 

coastline or simply that a single drainage basin surges within a parent ice cap with a long length 

of terminal ice cliffs. Fourthly, we have observed crater-like depressions or kettle holes at the 

inner lateral margins of many submarine basins, linked to ice stagnation in shallow water. In 
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addition, the presence of systems of eskers and channels is also prominent close to relatively deep 

water associated with indentations in the retreating ice front. 

    Our new schematic model relating to surges in open-marine settings, and earlier work on fjord 

landforms, have several elements in common with models of surging glacier landforms in 

terrestrial environments, but there are also some differences (Ottesen et al., 2008). A plan-form 

model of landforms in the forefield of an Icelandic surge-type glacier was given in Sharp 

(1985a). The observed landforms included surge-terminal ridges of glacitectonically thrusted 

sediments, and, closer to the modern glacier termini, chaotic hummocky topography, fluted till 

and crevasse-fill ridges. Evans and Rea (2003) presented a more detailed surging glacier 

landsystem model, based on terrestrial observations in Svalbard and Iceland. The model included 

thrust-block moraine, hummocky moraine, flutings and crevasse-squeeze ridges. Thrust-block 

moraines found at terrestrial surge margins are probably similar to multiple-crested submarine 

terminal moraines, such as those on the large eastern ridge offshore of Negribreen (Fig. 5A). 

Crevasse-fill ridges clearly occur in both terrestrial and marine settings (Fig. 2D). Hummocky 

moraines are widespread inside surge limits on land, but are absent on both fjord and open-

marine sea floors. Ottesen et al. (2008) speculated that such hummocky topography might be a 

degraded form of the small rhombohedral and transverse-to-flow ridges observed in marine 

settings. Flutes in the model of Evans and Rea are somewhat similar in form, if not in scale, to 

MSGLs and other streamlined lineations from Svalbard marine sediments. Eskers have also been 

mapped from the forefields of Icelandic surge-type glaciers, formed by supraglacial or englacial 

streams guided by crevasse networks (Evans and Rea, 2003).   

    A final major difference between terrestrial and marine surge landsystems is that retreat 

moraines, often demonstrably annual, are widespread on the Svalbard sea floor inside surge limits 

(Fig. 3B), whereas they are absent in terrestrial settings. Ottesen et al. (2008) suggested that this 
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may reflect different mechanisms of glacier wastage during the quiescent phase of the surge 

cycle. On land, glacier margins stagnate in situ following surge termination as glacier ice. At 

marine glacier margins, retreat is often by iceberg calving, which in Svalbard is most active 

during the summer months when sea ice is absent (Vieli et al., 2002). Ice-marginal moraines will 

form in winter when calving is suppressed, either by bulldozing if there is some basal motion, or 

by squeeze if the glacier ice is stationary.   

    Submarine geomorphic observational data are particularly useful in constructing landform 

assemblage models because of the lack of landscape modification after initial deposition at 

former glacier beds. This contrasts with the much more fragmentary and often reworked record 

provided by glaciers ending on land (Evans and Rea, 2004). The retreat of tidewater glaciers, 

whether of surge type or otherwise, is likely to take place mainly by mass loss through iceberg 

calving and occasionally by stagnation and melting in very shallow water – kettle holes are 

evidence of the latter situation. Submarine landforms are, therefore, less likely to be subject to the 

meltwater and debris-flow reworking processes that are very common at the retreating margins of 

glaciers ending on land (e.g. Lawson, 1979). In addition, the submarine landforms imaged in the 

seas around Svalbard are also observable at or close to the sea floor because sedimentation rates 

here are relatively low, at a few millimeters to tens of millimeters per year (e.g. Elverhøi et al., 

1983; Dowdeswell et al., 1998). By contrast, in the fjords of southeast Alaska for example, 

sedimentation rates are two or three orders of magnitude higher (e.g. Powell and Molnia, 1989; 

Cowan et al., 2010) and any glacier-related landforms exposed at the sea floor by tidewater 

glacier retreat will be buried rapidly.  

 

7. Links to Glacier Surging  
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7.1 Historical behavior of the eastern Svalbard glaciers 

    Fluctuations of the nine eastern Svalbard glaciers studied have been reconstructed from early 

maps and sketches and, more recently, from 1936 oblique aerial photographs followed by vertical 

aerial photographs and satellite images (Lefauconnier and Hagen, 1991). The observed 

fluctuations of each glacier, illustrated in Figure 15, provide an indication of whether surging has 

taken place in the past 150 years or so that is independent of the marine-geomorphic record. Our 

multibeam-derived location of the maximum recent position of each ice front is also shown (Fig. 

15). 

    Negribreen is clearly a surge-type glacier; indeed its surge, which was observed in 1936 

photographs (Fig. 5E), is among the largest recorded in Svalbard (Liestøl, 1969; Schytt, 1969). A 

new surge of Negribreen appears to have begun from July 2016 (T. Strozzi, pers. comm.). Five 

other glaciers, Helge Backlundbreen, Sonklarbreen, Pedasjenkobreen, Hannbreen and 

Hochstetterbreen, are also very likely to have surged in the decades before 1936 (Fig. 15), based 

on a combination of their frontal positions, looped moraines and degree of crevassing. The 

remaining three glaciers studied, Besselsbreen, Koristkabreen and its unnamed neighbour, have 

no clear historical record of surging. The advanced position of Besselsbreen beyond the coast of 

Barentsøya and its very low surface profile (Fig. 9C) suggest the presence of stagnant ice that 

would be typical of the quiescent phase of a surge cycle. 1936 photographs of Koristkabreen and 

the adjacent glacier are less easy to interpret, although both glaciers clearly protrude beyond the 

outer coast as marine ice lobes (Fig. 11C). Thus, although these three glaciers, and Besselsbreen 

in particular, may well be of surge-type, there is little historical observational evidence to confirm 

this. Thus, it is also possible that these three glaciers have retreated from a maximum Little Ice 

Age position, which was probably achieved sometime in the late 19th Century. However, it 

should also be remembered that many (e.g. Dowdeswell et al., 1991; Hagen et al., 1993; 
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Hamilton and Dowdeswell, 1996; Jiskoot et al., 1998), and arguably a majority (Lefauconnier 

and Hagen, 1991; Sund et al., 2009), of Svalbard glaciers, especially those reaching tidewater, are 

of surge-type. 

    Although the Holocene marine sediments offshore of Svalbard are, for the most part, poorly 

controlled chronologically, it is also possible that glacier surges, some perhaps pre-dating the 

Little Ice Age of the past few hundred years, may be present in the offshore record. Such 

evidence is likely to be fragmentary, however, given likely reworking and buried by fast-flowing 

ice if multiple surges have taken place over a period that may extend as far back as the last 

regional deglaciation from the Late Weichselian ice-sheet maximum.  

 

7.2 Modern Glaciological Analogues from the Eurasian Arctic 

    Oblique aerial photographs from 1936 held by the Norsk Polarinstitutt, together with earlier 

historical maps and sketches, provide an important window on past fluctuations and surges of the 

nine glaciers we have investigated from Olav V Land and Barentsøya (Fig. 15). In addition, 

several very recent and ongoing surges of ice-cap drainage basins of eastern Svalbard and in the 

Russian Arctic archipelago of Severnaya Zemlya provide useful contemporary analogues for ice 

advance into open-marine settings (e.g. Dowdeswell et al., 2008, 2010; Strozzi et al., 2017). 

Modern surges in which ice is advancing rapidly beyond the outer coastline of the Austfonna ice 

cap on Nordaustlandet (McMillan et al., 2014; Dunse et al., 2015) and into open-marine water 

offshore of Vavilov Ice Cap in Severnaya Zemlya (Willis et al., Submitted) are producing heavily 

crevassed ice lobes of several kilometres in length (Fig. 16A-B). Sometimes the ice front is 

observed to break into several filaments or fingers as the surge progresses (Fig. 16C). 

    It is clear that the generally lobate form and dimensions of these modern, active glacier surges 

is very similar to that of the submarine basins defined by terminal moraines in our multibeam 
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bathymetric data (Fig. 13). In addition, the observed breakup of the modern glacier terminus into 

fingers observed during high-velocity contemporary surging (Fig. 16C) may account for the 

indentations in the ice-proximal flanks of several terminal moraines imaged by multibeam echo-

sounder, which are particularly notable at Hannbreen and Koristkabreen (Figs. 10A, 11A). It may 

also assist in explaining more unusual submarine features such as the finger-like structures 

extending beyond the main terminal moraine of the unnamed glacier (Kw) in Figure 11A. Similar 

finger-like geomorphic forms have been reported from the floor of proglacial lake Hvítárvatn 

beyond the Langjökull ice cap in Iceland (Geirsdóttir et al., 2016). 

    Sections through recently deposited moraine ridges of 5 to 15 m in height, observed about 30 

km north of the contemporary surge advance of Austfonna, also demonstrate that ice thrusting 

has taken place to build a series of stacked ridge crests (Fig. 16D). Such features may be similar 

to those observed in multibeam bathymetry of the easternmost part of the Negribreen submarine 

terminal moraine (Fig. 5A), where multiple sub-parallel crests are mapped (Fig. 5B). Ice thrusting 

is a known process at surge-type glaciers (Lawson et al., 1994) and similar stacked thrust 

moraines have also been observed in Late Quaternary glacial sediments (e.g. Hart and Boulton, 

1991). 

8. Conclusions 

    The seafloor morphology in front of nine glaciers terminating in open-marine settings in 

eastern Svalbard has been investigated using multibeam swath-bathymetric data. Most of these 

tidewater glaciers have either been observed to surge or have looped surface moraines and ice 

structures indicative of past surge activity. Historical information on the fluctuations of these 

tidewater glaciers over the past century or so shows that the seafloor to about 5 to 20 km offshore 

of the present glacier termini has been exposed for less than a century or so. The submarine 
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geomorphology is very well preserved, providing a suite of glacial landforms relating to the last 

major advance or surge of each marine-terminating glacier drainage basin.  

    During these ice advances into the open-marine environment, an assemblage of landforms has 

been produced on the seafloor (Fig. 13) which is imaged at very high resolution by multibeam 

echo-sounding. Individual landform types are divided into three categories; those formed 

subglacially, ice marginally and beyond the ice front in a glacier-influenced open-marine setting.  

    (a) Ice-overridden transverse ridges and streamlined subglacial landforms include curvilinear 

MSGLs and lineations, blunt-nosed elongate drumlins and medial moraines. Smaller ridges form 

a complex boxwork or rhombohedral pattern, linked to the squeezing of soft sediment into basal 

crevasses. Meltwater-related subglacial landforms include eskers and channels.  

    (b) Ice-marginal landforms, produced close to grounded tidewater glacier termini, include a 

variety of transverse-to-flow ridges; from large terminal moraines formed at the maximum 

position of grounded ice advance to small delicate retreat moraines only a few metres high. Outer 

terminal moraine flanks are typically associated with well-defined debris-flow lobes, whereas the 

inner flanks sometimes show marked indentations, interpreted to represent the finger-like 

margins of advancing surge-type glaciers. Further ice-marginal landforms are distinctive flat-

floored crater-like kettle holes.  

    (c) In the marine waters beyond tidewater glacier margins, the keels of drifting icebergs 

produce irregular to chaotic patterns of ploughmarks. In addition, glacimarine sedimentation by 

the rain-out of fine-grained debris from meltwater plumes begins to bury seafloor glacial 

landforms subsequent to their formation and exposure by glacier retreat. 

    A schematic plan-view landform assemblage model for tidewater glaciers advancing into open-

marine settings is illustrated in Figure 14. The broad-scale arcuate geometry of terminal moraines 

marking the surge outer limit provides a distinctive component of the assemblage, marking the 
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limits of surge or Little Ice Age advance unconstrained by fjord walls. The submarine basin(s) 

exposed inside these outer moraine ridges when ice retreats during the quiescent phase of the 

surge cycle contain a further suite of landforms. The assemblage of landforms consists of several 

individual features, produced subglacially and ice-marginally, the pattern of which is shown in 

order of timing of deposition and stratigraphic superposition in Figure 14.  

    This new schematic model of an open-marine surge-type landform assemblage can be 

compared with earlier models that were based on submarine landforms associated with surges in 

the more topographically constrained setting of Spitsbergen fjords, differing in several ways: (i) 

the overall shape of the open-marine assemblage is arcuate, reflecting the lack of constraining 

fjord walls; (ii) the ice-proximal sides of terminal moraine ridges are often indented, reflecting 

the sometimes irregular and broken termini of tidewater glaciers surging into open water; (iii) the 

pattern of streamlined lineations is generally fan-shaped; (iv) crater-like kettle holes are found at 

the inner lateral margins of many submarine basins, linked to ice stagnation in shallow water; (v) 

systems of eskers and channels are prominent, associated with indentations in the retreating ice 

front. 

    Modern glaciological analogues from the Eurasian Arctic include several ongoing surges of 

ice-cap drainage basins in eastern Svalbard and Russian Severnaya Zemlya. They provide 

contemporary observations of ice advance into open-marine settings. Modern surges are 

producing heavily crevassed ice lobes of several kilometres in length, where the ice front 

sometimes breaks into several filaments or fingers as the surge progresses. The generally lobate 

form and dimensions of these modern, active glacier surges is very similar to that of the 

submarine basins defined by terminal moraines in our multibeam bathymetric data (Figs. 13, 14). 
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Figure Captions 

 

Fig. 1. Overview map of the study area in eastern Svalbard with multibeam bathymetric 

coverage (© Kartverket) in colours. The locations of the major drainage basins and of the 

study area within Svalbard are inset. Glacial drainage basins shown as dark red lines. Black 

rectangles locate subsequent figures. Ak is Akademikerbreen, Gi is Ginevrabotnen, Hann is 

Hannbreen, Hb is Helge Backlundbreen, He is Heleysundet, Koristka is Koristkabreen, Kw 

is unnamed glacier west of Koristkabreen, Op is Opalbreen, Or is Ordonannsbreen and Pe 

is Pedasjenkobreen. 

Fig. 2. Examples of subglacially produced seafloor features in the study area (© Kartverket). 

A) MSGLs, Negribreen (located in Fig. 5A). B) Drumlins, Negribreen (Fig. 5A). C) Medial 

moraine, Negribreen (Fig. 5A). D) Boxwork or rhombohedral crevasse-fill ridges, 

Besselsbreen (Fig. 9A).  E) Esker, Sonklarbreen (Fig. 7A). F) Meltwater channels, 

Negribreen (Fig. 5A).  

Fig. 3. Examples of ice-marginal landforms exposed at the seafloor in the study area (© 

Kartverket). A) Large moraine ridges (white arrows), Sonklarbreen (located in Fig. 7A). B) 

Small transverse retreat moraines, Besselsbreen (Fig. 9A). C) Indentations in ice-proximal 

moraine flank (white arrows), Hannbreen (Fig. 10A). D) Overidden large moraines ridges 

(one marked as a white dotted line), Negribreen (Fig. 5A). E) Glacigenic debris-flow lobes 

on ice-distal moraine flank, Koristkabreen (Fig. 11A). F) Kettle holes, partly infilled with 

sediment, Sonklarbreen (Fig. 7A). 
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Fig. 4. Glacimarine and related seafloor features in the study area (© Kartverket). A) Iceberg 

ploughmarks beyond the outmost moraine ridges, east of Olav V Land (located in Fig. 1). 

B) Basin-fill sediments partially burying moraine ridges (two marked with white arrows), 

offshore of Hannbreen (Fig. 10A). IPM is iceberg ploughmark. C) Current ripples (white 

arrow) and D) Sediment drift (white arrow) with sharp advancing front burying glacial 

features, west of Heleysundet (Fig. 1). 

Fig. 5. Negribreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of the 

modern glacier front (© Kartverket). P is Petermannbreen, K is Kvalrossøya. (1) and (2) 

mark large moraine ridges. The key for landform interpretation diagrams in this and 

subsequent figures is inset. B) Interpreted distribution of submarine landforms offshore of 

Negribreen. C) Oblique aerial photograph of Negribreen and Petermannbreen from 1936 (© 

Norsk Polarinstitutt). Note medial moraine between Negribreen and Petermannbreen (white 

arrows). D) Seafloor morphology showing the influence of Kvalrossøya on submarine 

landforms and past glacier flow. Small coloured circles mark similar positions on Fig. 5D 

and 5E. E) Oblique aerial photograph of the surface of Negribreen as it flowed over 

Kvalrossøya during the 1936 surge (© Norsk Polarinstitutt). 

Fig. 6. Helge Backlundbreen. A) Multibeam bathymetry and 2011 vertical aerial photograph 

of the modern glacier front (© Kartverket). lm is lateral moraine, k is kettle hole. White 

stippled line marks 1936 ice front position. Small coloured circles mark similar positions on 

Fig. 6A and 6C. B) Interpreted distribution of submarine landforms offshore of Helge 

Backlundbreen (see key in Fig. 5A). C) Oblique aerial photograph from 1936 (© Norsk 

Polarinstitutt). 
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Fig. 7. Sonklarbreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of the 

modern glacier front (© Kartverket). Black stippled line shows ice front position from 1936 

(from Lefauconnier and Hagen, 1991). La is Lamontøya; lm is a lateral moraine ridge also 

marked in Fig. 7C.  B) Interpreted distribution of submarine landforms offshore of 

Sonklarbreen (see key in Fig. 5A). C) Oblique aerial photograph from 1936 of 

Sonklarbreen and Helge Backlundbreen (© Norsk Polarinstitutt). Ga is Ganskijbreen; Pe is 

Pedasjenkobreen. 

Fig. 8. Pedasjenkobreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of the 

modern glacier front (© Kartverket). Black stippled line shows ice front position from 1936 

(digitized from Lefauconnier and Hagen, 1991). lm mark lateral moraine ridges also 

marked in Fig. 8C. B) Interpreted distribution of submarine landforms offshore of 

Pedasjenkobreen (see key in Fig. 5A). C) Oblique aerial photograph from 1936 (© Norsk 

Polarinstitutt). 

Fig. 9. Besselsbreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of the 

modern glacier front (© Kartverket). White stippled line locates ice front position from 

1936 (digitized from Lefauconnier and Hagen, 1991). B) Interpreted distribution of 

submarine landforms offshore of Besselsbreen (see key in Fig. 5A). C) Oblique aerial 

photograph from 1936 (© Norsk Polarinstitutt). 

Fig. 10. Hannbreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of the 

modern glacier front (© Kartverket). Stippled line locates ice front position from 1936 

(from Lefauconnier and Hagen, 1991). lm are lateral moraine ridges. B) Interpreted 
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distribution of submarine landforms offshore of Hannbreen (see key in Fig. 5A). C) 

Oblique aerial photograph from 1936 (view to the north) (© Norsk Polarinstitutt). 

Fig. 11. Koristkabreen and unnamed glacier west of Koristkabreen (Kw). A) Multibeam 

bathymetry (© Kartverket) and 2011 vertical aerial photograph of the modern glacier fronts 

(© Norsk Polarinstitutt). Black stippled lines locate ice from positions from 1936 (digitized 

from Lefauconnier and Hagen, 1991). B) Interpreted distribution of submarine landforms 

offshore of Koristkabreen and the adjacent unnamed glacier (see key in Fig. 5A). C) 

Oblique aerial photograph from 1936.   

Fig. 12. Hochstetterbreen. A) Multibeam bathymetry and 2011 vertical aerial photograph of 

the modern glacier front (© Kartverket). Stippled line locates ice front position from 1936 

(after Lafauconnier and Hagen, 1991). B) Interpreted distribution of submarine landforms 

offshore of Hochstetterbreen (see key in Fig. 5A). C) Oblique aerial photograph from 1936 

(© Norsk Polarinstitutt). 

Fig. 13. Geomorphic map of the distribution of submarine landforms in front of the surging 

glaciers of eastern Spitsbergen. Gi – Ginevrabotnen, Hb – Helge Backlundbreen, Kw – 

unnamed glacier west of Koristkabreen, Pe – Pedasjenkobreen.   

Fig. 14. Schematic model of submarine landforms linked to glacier surges into the open 

marine setting of eastern Spitsbergen. Note that, beyond the maximum surge limit, the sea 

floor is relatively smooth, reflecting rain-out of fine-grained glacimarine debris, but is 

disturbed by the ploughing action of drifting icebergs. 

Fig. 15. Reconstruction of terminus fluctuations on nine eastern Svalbard glaciers since 1860, 

based on satellite and aerial photographic data and historical maps and sketches (data 
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mainly from Lefauconnier and Hagen, 1991). Crosses represent observation of ice-front 

position relative to 2011 ice margins with the points earlier than 1936 have a relatively 

greater uncertainty in age. The likely timing of surges is marked ‘S’ where a surge has been 

observed, ‘S?’ when it has been inferred from historical accounts and surface form, and 

‘S??’ when there is no specific observational evidence that a surge has taken place. The 

maximum terminus positions defined from large moraine ridges identified on multibeam 

imagery are also shown as green dotted line. 

Fig. 16. Modern glaciological analogues for Arctic glaciers advancing into open-marine 

settings. A) Sentinel 2 image (23 July 2016) of ice advance during surges of Basins 2 and 3 

of the 8,000 km2 Austfonna ice cap, Nordaustlandet, eastern Svalbard (Dowdeswell, 1986; 

Dowdeswell et al., 2008). B) Landsat image of ice advance during a surge of a basin in the 

1,770 km2 Vavilov Ice Cap on October Revolution Island, Severnaya Zemlya, Russian 

High Arctic (Bassford et al., 2006; Dowdeswell et al., 2010). White arrow indicates the 

viewing angle of the photograph in panel C. C) May 2016 photograph of the ice front of the 

surging Vavilov Ice Cap (photo: A.F. Glazovsky). D) Recent photograph of glacitectonic 

ridges and thrusts in ice, eastern Austfonna, Svalbard (photo: J.A. Dowdeswell). The image 

is approximately 100 m across. 

 






































	Final Submitted Text 
	Figure_1
	Figure_2
	Figure_3
	Figure_4
	Figure_5AB
	Figure_6
	Figure_7AB
	Figure_7C
	Figure_8
	Figure_9AB
	Figure_9C
	Figure_10
	Figure_11
	Figure_12
	Figure_13
	Figure_14
	Figure_15
	Figure_16

