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ABSTRACT

We present a multilevel Monte Carlo simulation method for analyzing multi-scale physical systems via a hierarchy of coarse-grained repre-
sentations, to obtain numerically exact results, at the most detailed level. We apply the method to a mixture of size-asymmetric hard spheres,
in the grand canonical ensemble. A three-level version of the method is compared with a previously studied two-level version. The extra
level interpolates between the full mixture and a coarse-grained description where only the large particles are present—this is achieved by
restricting the small particles to regions close to the large ones. The three-level method improves the performance of the estimator, at fixed
computational cost. We analyze the asymptotic variance of the estimator and discuss the mechanisms for the improved performance.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102875

I. INTRODUCTION

A key challenge in the molecular simulation of soft matter is
posed by the separation of length-scales between its microscopic
description and the existence or emergence of mesoscopic structure.
In such cases, one often relies on coarse-grained (CG) descriptions
of the system that (approximately) integrate out microscopic degrees
of freedom' " to yield a tractable simplified model. Examples in the
soft-matter context include polymers,”” biomolecules,”” and col-
loidal systems.”'’ Such CG descriptions are essential for multi-scale
modeling approaches.'"'* However, they are not usually exact, and
the associated coarse-graining errors are often difficult to assess.

Such CG models have been studied extensively in colloidal
systems with depletion interactions.”'”'* The typical example is
a mixture of relatively large colloidal particles with much smaller
non-adsorbing polymers that generate effective attractions between
the colloids. This can drive de-mixing, crystallization, or gelation,
depending on the context. Model systems in this context include
the Asakura-Oosawa (AO) model’ where the CG model can even

be exact if the disparity between colloid and polymer radii is large
enough. The theoretical tractability of the AO model arises from
a simplified modeling assumption that polymer particles act as
spheres that can interpenetrate.

Alternatively, one may consider a mixture where both the
colloids and the depletant are modeled as hard spheres. From a the-
oretical perspective, this is an interesting model in its own right as it
undergoes a fluid-fluid de-mixing phase separation for large enough
size-disparities and concentrations.'”'”""” This happens despite the
lack of attractive forces between the particles in the model and can be
attributed to geometric packing effects of the big and small spheres.

Direct simulation of such mixtures is very challenging because
of the large number of small particles. Accurate CG models are
also available in this context,'’ but the CG representations are not
exact: their errors can be detected by accurate computer simulation
of the full (FG) mixtures. Hence, such models are natural test-
ing grounds for theories and simulation methods associated with
coarse-graining.
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In this context, we recently developed a method'”® that links a
CG description with the underlying fine-grained (FG) description.
We call this the two-level method because the CG and FG mod-
els describe the same system with different levels of details. The
method was validated by computations on the AO system,'® where
it provided numerically exact results for the FG model, even in the
regime where the CG description is not quantitatively accurate. The
methodology was also applied to the hard sphere mixture,'” where it
provided a quantitative analysis of the critical point associated with
de-mixing of the large and small particles.

These previous results rely on the idea that properties of the FG
model can be estimated in terms of some CG quantity, with an addi-
tive correction that accounts for the coarse-graining error. This is
an importance sampling method, familiar in equilibrium statistical
mechanics from free-energy perturbation theory,'” which involves
reweighting between two thermodynamic ensembles. In the present
context, the reweighting factors depend on the free energy of the
small spheres, computed in a system where the large particles are
held fixed. This free energy can be estimated by an annealing pro-
cess based on Jarzynski’s equality”’ ** that slowly introduces small
particles to fixed CG configurations.

In this paper, we present an extension of the two-level
method that incorporates additional intermediate levels to improve
the overall performance. Specifically, we introduce a step in the
annealing process where small particles are partially inserted in
regions close to big particles. Before finishing the small-particle
insertion, we then replace weighted sets of configurations with
unweighted ones, duplicating configurations with large weight and
deleting ones with low weight. This resampling step allows us to
make optimal use of the information available at the intermediate
stage, focusing our subsequent computations on configurations that
matter.

This general approach fits in the framework of sequential
Monte Carlo (SMC).”** Such algorithmic ideas have been success-
fully applied in applications across disciplines under various names,
including population Monte Carlo’® or the go-with-the-winners
strategy.”” Examples in computational physics include the pruned-
enriched Rosenbluth method for polymers,”* the cloning method for
rare events,” and diffusion quantum Monte Carlo.’’ We combine
the SMC method with an additional variance reduction strategy.
Instead of estimating the FG average directly, we combine a CG
estimate with estimates of subsequent level differences using the pre-
vious levels as control variate. This is the idea behind multilevel
Monte Carlo methods.”' " The combination of a difference esti-
mate with SMC has been previously investigated, for example, in
Refs. 34-36. As in Ref. 17, we develop a general method alongside
its application to highly size-asymmetric binary hard-sphere mix-
tures, which provide a challenging but well understood example to
benchmark our algorithm.

This paper is organized as follows: In Sec. II, we introduce
the hard-sphere mixture model. In Sec. III, we summarize the
setup of the two-level method before presenting our extension to
three (or more) levels. The three-level method requires an inter-
mediate level for the hard-sphere mixture, whose details we dis-
cuss in Sec. IV. In Sec. V, we present a numerical test of the
method and compare its performance against the two-level method,
and in Sec. VI, we present convergence results. We conclude
in Sec. VII.

ARTICLE scitation.org/journalljcp

Il. HARD-SPHERE MIXTURE

Throughout this work, we illustrate the multilevel method with
an example system, which is a mixture of large and small hard
spheres at size ratio 10 : 1. This system is challenging for simulation
because the big particles may display interesting collective behavior
(in particular, a critical point), but the dominant computational cost
for simulation comes from the large number of small particles.

However, despite our focus on this single example, we empha-
size that the multilevel method is presented in a general way, which
should also be applicable in other systems with a separation of length
scales.

A. Hard sphere mixture

The example system is a mixture of big and small particles,
whose diameters are op and o5, respectively. We consider a peri-
odic box [0, L] of linear size L and we work in the grand canonical
ensemble. (This choice is particularly relevant for analysis of de-
mixing, where the number density of large particles is a suitable
order parameter.’’)

In a given configuration, the numbers of big and small parti-
cles are N and n, respectively; the position of the ith big particles
is R;, while the position of the jth small particle is r;. We denote
the configurations of big and small particles by C = (N;Ry,...,Ry)
and F = (mry,...,1,), respectively, and the full configuration is
denoted X = (C, F).

Since the particles are hard, the temperature plays no role in
the following, and so we set the temperature as kT = 1 without
any loss of generality. The equilibrium distribution of the mixture
is described by a probability density

1 o
pr(C, F) = St tre ), (1)
=F

where the subscript F indicates that we refer to the FG model,
g and yg are the chemical potentials for the large and small par-
ticles, respectively, and Er is the grand canonical partition function.
The particles are hard (non-overlapping), so the potential energy is

oo,  ifany particles overlap,

Us(C, F) = { (2)

0, otherwise.

This py, is normalized as 1 = [ pr(C, F)dCdF, the precise meaning
of these integrals is given in Appendix A 1.

Within this setting, the dimensionless parameters of the model
are the ratio of the particle diameters og/0s, the system size para-
meter L/og, and the two chemical potentials yg and . In practice,
g is more naturally parameterized by the associated reservoir vol-
ume fraction #s, which we relate to g via an accurate equation of
state.”

Our multi-level method is designed for accurate estimates of
properties of the large particles. Specifically, we consider observable
quantities of interest A = A(C) that only depend on the large parti-
cles. (Examples are discussed in Sec. II C: see also Fig. 3.) Our aim is
to compute the equilibrium average of A, that is,

(A)s = f A(C)pr(C, F)dCd F. 3)
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Since A(C) does not depend on F, it is natural to define the marginal
distribution for the big particles

pe(C) = f pe(C, F)dF )

sothat (A)p = [ A(C)pr(C)dC. A similar situation occurs in the con-
text of statistics, where one seeks to analyze the behavior of a few
quantities of interest in a high-dimensional system: in that context,
the small-particle degrees of freedom in (3) would be referred to as
nuisance parameters. This means that their values are not required
to compute the quantity of interest, but their statistical properties
strongly affect the average of this quantity.

B. Coarse-grained model

If samples for the marginal distribution pr(C) could be gener-
ated by an MC method for the big particles alone, this would make
the system much more tractable by simulation. This is a central idea
in coarse-grained modeling.” However, the complexity of packing of
the small hard spheres means that pr(C) is a complex distribution,
and it is not possible to sample it exactly. A great deal of effort has
gone into developing CG models that approximate this distribution
with high accuracy.'”'*"

A suitable CG model is an equilibrium distribution with
probability density

PC(C) _ LeHBN’UC(C)’ (5)

Ec

where Ec is the partition function, and the CG (effective) interaction
energy is

(@)

ARTICLE scitation.orgljournalljcp
N-1 N
Uc(C) :NAy+ Z Z V2(|Ri_Rj|)’ (6)
i=1 j=it+l

where V) is a pairwise interaction potential. Averages with respect
to the CG model are denoted as

(a)c= [ a@p(c)ec. %)

For a suitably chosen V3, the coarse distribution pc(C) can
be an accurate approximation to pr(C). For the CG model in this
work, we take the accurate potential V, = Vggp, developed by Roth,
Evans, and Dietrich.!’ Following Ref. 17, we choose Ay such that the
distributions of N coincide for FG and CG models.

C. Benchmark system: Parameters and observables

Throughout the paper, we benchmark our numerical methods
by considering the hard-sphere mixture with fixed parameters, as
follows: We take the ratio of particle sizes (og/0s) = 10, the lin-
ear size of the periodic system is L = 3105, and the small-particle
(reservoir) volume fraction is #g = 0.2. This volume fraction is large
enough to generate a significant depletion attraction between the
large particles, but not strong enough to cause de-mixing of the large
and small particles.'”

Aspects of the CG and FG models are illustrated in
Figs. 1(a)-1(c) for these parameters. In particular, we show repre-
sentative configurations of the CG and FG models, as well as a plot
of the RED potential. While direct grand canonical Monte Carlo
(GCMC) sampling of the full mixture is possible, in principle, it
should be apparent from Fig. 1(c) that this would be intractable
because insertion of large particles in such a fluid is hardly ever pos-
sible. Advanced MC methods’”*’ might be applicable, but these tend

(€)

Two-level method
Three-level method

Buieauue

FIG. 1. An overview of the levels of the example system from Sec. Il C and the structure of the three-level method. (a) A sample of the CG model p. with N = 11 big
particles. (b) The two-body potential Vrep used for the CG model. (c) A sample of the full FG model p that has the big particle configuration as (a). This system contains
n = 8842 small particles. (d) A sample of the partially inserted model p, used in the three-level algorithm. The small particles are primarily inserted around big particles,
reducing the number to n = 4473. (e) A sketch of the two- and three-level method: starting with a population of CG configurations, we can directly compute importance
weights by simulating an annealing process introducing the small particles (upper path, two-level method). Alternatively, we introduce a partially inserted intermediate level
where we interrupt this annealing process and resample to boost relevant configurations (lower path, three-level method).
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FIG. 2. Properties of a big-particle-only hard sphere model with RED potential
when varying the effective chemical potential ygﬁ as defined in the main text. (a)
The average number of big particles (N). (b) The variance of the number of big
particles var(N), which is maximized around u = 7.

to struggle when the volume fraction gets large. This motivates the
development of two-level and multi-level methods.

Figure 2 highlights properties of the distribution of the num-
ber of big particles for the CG model when varying the effec-
tive large-particle chemical potential u§ = yp — Ap. In particular,
Fig. 2(b) shows that increasing u§! in the CG model leads to a
non-monotonic behavior in the variance of the particle number N
(analogous to the compressibility of the model). This maximum
indicates that the system has a tendency for de-mixing at larger #g

(a)

°
K ° & Dr
15_ ) 18' x Pc
X
17 A
< 10 A
5)
5_
0- T T T T T T T T
10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00
r
(b) x
0.15 Vdh e pr
‘\ x— Pc
- i 2
s 0.10
&
2
0.05 - '
0.00- T T T T T T ‘l' T
2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0

Number of big particles N

FIG. 3. Two quantities of interest for the binary hard-sphere system, computed for
the CG and FG model from Sec. || C. (a) The big-particle pair correlation function
g(r). Apart from underestimating its value at the touch of two big particles, the CG
approximation captures the behavior accurately. (b) The distribution of the number
of big particles N. By the choice of Ay, the average number of big particles of the
CG and FG models coincide. Both models are clearly well below the critical point
of demixing.
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(one expects a divergent compressibility at the critical point, if one
exists). In the following, we fix y; at the value corresponding to this
maximum—the relatively large fluctuations at this point are chal-
lenging for the multi-level model because the distributions pc(C)
and pr(C) are broader, requiring good sampling. The correspond-
ing CG system has an average of N ~ 11.6 big particles, occupying
around 20% of the available volume.

For the specific quantities that we will compute for this mix-
ture, Fig. 3 shows the expectations of the big-particle pair correlation
function g(r) and the distribution of the number of big particles
P(N). Results are shown for both CG and FG models (in the FG
case, the results are computed using the two-level method). For both
quantities of interest, the CG model provides an accurate but not
exact description of the model. In particular, the CG model under-
estimates the pair correlation at the point where two big particles
are in contact. The distributions of the number of big particles in
Fig. 3(b) are both unimodal: both the FG and CG systems are well
below the critical point of demixing.

Compared to the critical hard-sphere mixture discussed in
Ref. 17, the system we consider here is smaller and has a lower
volume fraction 75 of the small particles. This is still challenging
for conventional Monte Carlo algorithms but can be simulated fast
enough to evaluate the performance and compare the computational
methods discussed here. Furthermore, the lower small-particle vol-
ume fraction helps with the construction of the intermediate level in
Sec. IV, whose underlying approximation decays as 5 increases (see
Appendix B).

I1l. MULTILEVEL SIMULATION
A. Overview

This section reviews the two-level method of Refs. 17 and 18
and then lays out its three-level extension. The presentation of the
method is intended to be generic and applicable to a variety of sys-
tems. However, we first introduce the key ideas using the example
and illustrations of Fig. 1 for the hard-sphere mixture.

The two-level method is constructed with the scale separation
of the mixture in mind: it splits the simulation of the big and small
spheres into two stages by first simulating a CG system of large par-
ticles alone and computing (A)c. Then, differences between (A)c
and (A)r are computed by a reweighting (importance sampling)
method. The weight factors for this computation are obtained by an
annealing step, where the small particles are slowly inserted into the
system, with the large particles held fixed [see Fig. 1(e)]. The advan-
tage of this procedure is that large particle motion only happens in
the CG simulation where the small particles are absent—there is
no scale separation in this case so simulations are tractable. Sim-
ilarly, insertion of the small particles happens in a background of
fixed large particles, so these annealing simulations do not suffer
long time scales associated with large-particle motion. This makes
for tractable simulations in scale-separated systems, as long as the
CG model is sufficiently accurate: see Refs. 17 and 18 for further
discussion.

In practice, the simulation effort for two-level computations is
dominated by the annealing step. The weighting factors are required
to high accuracy, which means that the annealing must be done
gradually. Moreover, the weights are subject to numerical uncer-
tainties that tend to be large in systems with many small particles.
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This limits the method to systems of moderate size, with moderate 75
(see Ref. 17).

We show in this work that such problems can be reduced
by breaking the annealing process into several stages—this is the
idea of the three-level method [Fig. 1(e)]. Specifically, we start (as
before) with a population of configurations of the CG model. We
perform a first annealing step where the small particles are added in
regions that are close to large ones. The information from this step
is used in a resampling process, which partially corrects the coarse-
graining error by discarding some of the configurations from the
population and duplicating others. (This idea is similar to go-with-
the-winners.””) Finally, the second annealing step inserts the small
particles in the remaining empty regions, arriving at configurations
of the FG model. Hence, the end point is the same as the two-level
method, but the annealing route is different.

In practice, the effectiveness of the three-level method relies
on a clear physical understanding of the intermediate (partially
inserted) system in order to decide which configurations to discard
in the resampling step. For the hard-sphere case, that issue will be
discussed in Sec. I'V; a more general discussion is given in Sec. VII.
The remainder of this section describes the two- and three-level
methods in more detail.

B. Two-level method

We review the two-level method of Refs. 17 and 18. For a gen-
eral presentation, we assume that CG and FG models exist with
configurations C and X = (C, F), respectively. In the case of hard
spheres, C and F correspond to configurations of the large and small
spheres, respectively.

The two-level method is an importance sampling*’ (or
reweighting) computation, closely related to the free-energy pertur-
bation method of Zwanzig.!” We use the grand canonical Monte
Carlo (GCMC) method to sample M¢ configurations from p., and
these are denoted by C',C?,...,C*c. Then, the CG average can be
estimated as

Ac=—-> A(C). ®)

As the sampling is increased (Mc — o), we have Ac — (A)c.
However, if the coarse-graining error

A= (A} —(A)c ©)

is significant, Ac does not provide an accurate estimate of (A)g.

To address this problem, we use an annealing procedure based
on Jarzynski’s equality’’ that starts from a coarse configuration C
and populates the fine degrees of freedom F; at the same time, it
generates a random weight W(C) with the property that

Epr(C)
pc(0)’

where the angle brackets with subscript ] indicate an averaging over
the annealing process (analogous to Jarzynski’s equality”’), and & is a
constant (independent of C). The details of the annealing process are
given in Appendix A. It is applied to a set of M coarse configura-
tions, again denoted by C',C?, .. .,C™, which are typically a subset
of the M¢ CG configurations above.

(W) = (10)

ARTICLE scitation.org/journalljcp

For later convenience, we define
W"(C) = W(C)/&. (11)

In practical applications, the constant £ is not known, but its effect
can be controlled by defining the self-normalized weight

W(cf)
mw(eh

Mr

w(C) = (12)

Since the C’ are representative of p., the denominator in
converges to & as My — oo and so w(C’) - W"(C/). Then, the
estimator

% (€A 13

converges to (A)r as My — co. (In the case that W is not random
then this procedure recovers the free energy perturbation theory of
Zwanzig."”)

The annealing process has one useful additional prop-
erty: Let the joint probability density for the weight and the
fine degrees of freedom be k(W, F|C), which is normalized as
[ (W, F|C)d FdW = 1. We show in Appendix A that

&pe(C, ]-')
pc(C)

This formula is the essential property of the annealing procedure,
which is required for the operation of the method. Additionally inte-
grating over F shows that (14) ensures that (10) also holds. This
means in turn that if B=B(C, F) is an observable quantity that
depends on both coarse and fine degrees of freedom,

f Wi(W, F | C)dW = (14)

% b(CHB(C!, F7) (15)

converges to (B)r as Mg — oo.

This method can be easily improved without extra computa-
tional effort. The key idea’’ * is to estimate the FG average as the
sum of the CG average and the coarse-graining error (9),

(A)r = (A)c +A. (16)
Then, use importance sampling to estimate A, as

.1 M ; ;

A= w(C') - 1)A(C). (17)
3y 2 (€)= )AC)

Finally, a suitable estimator for the FG average is obtained by

combining the estimate of the coarse-graining error with the

corresponding CG quantity,

AF,A = AC + A (18)

This estimator converges to (A)p in the limit where Mc, Mg — oco.
As discussed in Ref. 18, the variance of the estimate A is typically
smaller than that of Af, and the CG estimate A is cheap to compute
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accurately. Thus, the combined difference estimator Ag  is typically
more accurate at fixed computational cost.

The importance sampling methodology has a useful physical
interpretation, which we explain for the example of the hard-sphere
mixture. If we consider a fixed configuration of the large particles,
the grand canonical partition function for the small particles is

Bleus] = [ &N (19)

As the system is annealed (the small particles are inserted), we esti-
mate (19) by a free-energy method based on Jarzynski’s equality”’
(see Appendix A for details). Since the annealing is stochastic, this
yields an estimate of the partition function, which we denote by
E[C, us]. Moreover, this estimate is unbiased (Z[C, us])y = E[C, us].
Hence, we can take

W(C) = &[C, ps]e(, (20)

and using (4) and (5), we see that (10) holds, with & = (Ec/Er).

Physically, the CG model is constructed so that the Boltzmann
factor e %¢(“) isa good estimate of the small-particle partition func-
tion E[C, ps]. If this is the case, the model is accurate. The two-level
methodology uses estimates of the small-particle partition func-
tion (or, equivalently, their free energy) and compares it with the
assumptions that were made about this quantity in the CG model.
By analyzing the differences between these quantities, the differences
between CG and FG models can be quantified. The effectiveness of
this method for numerical simulation of the mixtures of large and
small particles was discussed in Refs. 17 and 18.

The distribution of the importance weights w(C) impacts the
accuracy of the resulting FG estimate Ap. Additionally, it serves as
a useful indicator of the accuracy of the CG model and the variance
of the free energy computation. To give an example, we apply the
two-level method to the example problem from Sec. IT C. In Fig. 4,
we show the empirical distribution of 18 000 weights of the example
system that are computed using an accurate annealing process; we
use these computations as the reference solution in Sec. V. This illus-
trates a situation where the two-level method is applicable, where no
single sample dominates and only very few samples have a weight
larger than 10.

If one considers less accurate CG models, the variance of the
weights increases, and the tail of their distribution gets heavier.
Eventually, one would reach a situation where a few samples domi-
nate the weighted sum (13). For accurately computed weights @ (C),
such a breakdown of the two-level method indicates that the CG

100 4
1071 4
S
& 1072 5
1073 4
1071 10° 10t
w

FIG. 4. The empirical distribution of weights «i(C) of the two-level method for
18000 coarse samples C ~ pc applied to the example system from Sec. II C.
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model is not sufficiently accurate. This behavior provides a useful
feedback loop that can be used to iterate on the CG model itself.'®

C. Three-level method

We now present the three-level method for estimation of

(A(C))r.

1. Coarse level

We start by generating M, samples of the CG model, denoted
byCy,....C 340. The subscript indicates the step within the algorithm
(which is 0 for the initial sampling of coarse configurations). The CG
average of A can be estimated similarly to (8)

1 Mo

Z;A(C{)). (21)

Ar_ L
¢ MO j=

2. Intermediate level

In addition to the CG and FG models, the three-level method
also relies on an intermediate set of configurations, which corre-
spond in the hard-sphere mixture to the system where the small
particles have been inserted in regions close to the large ones
(see Fig. 5). This state is described by an equilibrium probability
distribution

PI(C> ]_—) _ Hiep.BNﬂan—Ul(C,f)’ (22)

=1

where Ur(C, F) is an interaction energy. Its construction for the
hard-sphere mixture will be discussed in Sec. I'V.

The first annealing step of the three-level algorithm applies the
two-level method, with the FG distribution p replaced by p,. This
part of the algorithm closely follows Sec. III B, and we give a brief
discussion that mostly serves to fix notation. We start with a set of
M; coarse configurations that are samples of p; they are denoted
by C }, c3....C 11\/11) where the subscript 1 indicates the intermediate
stage of the three-level method. (These will typically be a subset of
the configurations that were generated on the coarse level.)

3]

(=)

©

=

2]

4

(%)

=

LL

(]

(=)

©

—

2]

= o

2 :
5 :
[} .
(7] o

FIG. 5. Schematic representation of the small particle insertion process during the
two stages of the three level method.
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For each coarse configuration Ci, we anneal the fine degrees
of freedom of the system ) to arrive at the intermediate level and
generate a random weight W (C,) with the property

h _ &Eipr(Cr)
(Wi(C1)) = Se(@) (23)

with a constant &, independent of C,. (For the hard spheres, we recall
that particles are inserted preferentially in regions close to large ones,
and this is illustrated in the top row of Fig. 5.)

As before, we define W} (C1) = W1 (C1)/&1. Again the constant
&, is generally not known, so we define the self-normalized weight

. ) W Ci
Wi (Cy) = 11\411#)1 (24)
ﬁ,ziﬂ Wi (C1)
which converges to W}’(Cﬂ) as My — oo. Then, the estimator
o LA j
A = 2w (CAC)) (25)
M &

converges to (A) as M; — oo. Similar to (14), the joint probability
density k1 (W1, F1 | C1) of the weight and fine degrees of freedom at
the intermediate level, defined by the annealing process, fulfills

. L . o, F
[ W1K1(W1,]:1 |C1)dW1 = % (26)
Hence, similar to (15), we also obtain
sl 1 a4 j i
B = —> w1 (C))B(C), F), (27)
M &
which converges to (B); as M — oo.

3. Fine level

At the end of the intermediate level, we have M large-particle
configurations. For each configuration C’, the process of annealing

ARTICLE scitation.org/journalljcp

to the intermediate level also provided the weight (CJI) and the

small-particle configuration /. This information can be used to
build a set of configurations that are representative of p;. This proce-
dure is called resampling, its validity in this example relies on the
property (26) of the annealing procedure. This is the part of the
method that is similar to population-based sampling approaches,
such as SMC”® or go-with-the-winners.”” The idea is that one should
focus the effort of the annealing process onto coarse configurations
that are typical of the full system, and to discard those which are
atypical, see Fig. 6 for a visualization of this step.

We write X7 = (C), F/) for the full configuration that is
obtained by the annealing procedure at the intermediate level. The
resampled configurations will be denoted by A’ é, X %, X 12\42; they
are representative of the intermediate level p;. There are M, of them,
and the subscript 2 indicates the final stage of the three-level method.
The simplest resampling method (multinomial resampling) is that
each X'} is obtained by copying one of the A/, chosen at random
with probability w1 (C”, ). In applications, one typically replaces this
by a lower variance resampling scheme like residual resampling; see
Ref. 42 for a comparison of commonly used variants.

We then perform the second annealing step that starts from an
intermediate level configuration X, = (C», F>) and anneals the fine
degrees of freedom from the intermediate to the fine level, yielding
F, and a weight W, ( X2); details are given in Appendix A. For the
hard sphere system, this involves further insertion of small parti-
cles to fill the system and generate realistic configurations of the full
mixture. This procedure is shown in the bottom row of Fig. 5.

Since the starting point of the annealing procedure is X, the
joint probability density of the annealing process (W2, 5 | X2)
depends on both large and small particles. Therefore, the analog of
(26) requires an additional average over the small particles of the
starting configuration

A o . G, F
[ Wara(Wa, 72 [ Co, F2)pi(F2 | C2)dW2d 2 = Ezp;((ié)n
(L2

(28)

FIG. 6. Visualization of the resampling
step. We start with a population of
weighted configurations (top row), where
the weighting is depicted by a star rat-
ing. The goal of the resampling step is to
randomly transform the weighted popu-
lation into an unweighted one that has,
on average, the same empirical distri-
bution. We achieve this by duplicating
large-weight configurations and deleting
small-weight configurations, yielding an
unweighted population of configurations
(bottom row).
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for some constant &,. Note that pi( F|C) = p1(C, F)/p1(C). Similar
to (23), the weights Wz( X>) have the property

3 _ &pr(C)
f (W2(Ca, F2)yipi(F2 | C)dFr = W (29)

From here, we proceed as before. We define the normalized weight
W3(X2) = Wa(X2)/& and its self-normalized estimate

W, (X))

’I_i)z(Xj) i T vV S
Y TR Wa (X))

(30)

Since the X JZ are representative of pp it follows from (28) that
observables of the coarse system A can be estimated as

A 1 & ; j
Al = Msz(xg)A(cfz), (31)
2]':1

which converges to (A)r as M, — oo. Similar to (15), we can also
obtain a consistent FG estimates of observable quantities B that
depend both on coarse and fine degrees of freedom by

. 1 M ; s
B = EZ»uyz()cfz)B(cf , ). (32)
j=1

Following the same variance reduction strategy as in Sec. III B,
we can define a difference estimator of the FG average, which is
expected to have lower statistical uncertainty: let

R 1 M, ) .
3L _ 4 A iy _ Jj
A 7M1j;(w1(cl) 1)a(c)), (33)
An -l (4 X1y -1)AC! 34
P —ﬁZ(W( )= 1)A(C)). (34)
2]‘:1
Then,
Ay = AL+ A+ AY (35)

is a consistent estimator of (A)r, analogous to (18).
4. General features of the three-level method

A few comments on the three-level method are in order. First,
there is a simple generalization to four or more levels by splitting the
annealing procedure into more than two stages. As such, the method
is an example of a sequential Monte Carlo (SMC) algorithm (which
is sometimes more descriptively referred to as sequential impor-
tance sampling and resampling”**’**). We note from (10) that the
weights obtained from the annealing step are random, and this is
not the standard situation in SMC, but similar ideas have been pre-
viously studied in Refs. 46-49. Combining an SMC algorithm with a
difference estimate as in (35) has been investigated in Refs. 34-36.

Second, we observe that the key distinction between the two-
and three-level algorithms is the resampling step at the intermedi-
ate level. Without this, the three-level method reduces to a simple
two-level method with an arbitrary stop in the middle of the anneal-
ing process. As noted above, the resampling process is designed to
partially correct differences between the CG and FG models. This

ARTICLE scitation.org/journalljcp

relies on a good accuracy of the intermediate level (otherwise the
wrong configurations might be discarded, which hinders numeri-
cal accuracy). On the other hand, we note that for sufficiently large
numbers of samples Mo, M1, M, the method does provide accurate
FG estimates, even if the CG and intermediate level models are not
extremely accurate. The distinction between the different methods
comes through the number of samples that are required to obtain
accurate FG results.

Third, note that the ideal situation for difference estimation
is that the three terms in (35) get successively smaller. That is,
the coarse estimate is already close to (A)F, the intermediate-level
estimate provides a large part of the correction, and the fine-level
correction is small. In this case, it is natural to use a tapering strategy
where the number of samples used at each level decreases,

Mo > M1 > Mz. (36)

This allows a fixed computational budget to be distributed evenly
between the various levels to minimize the total error.

IV. CONSTRUCTION OF THE INTERMEDIATE LEVEL

As noted above, the intermediate probability distribution p;
must be designed carefully in order for the resampling part of the
three-level method to be effective. We now describe how this is
achieved for the hard sphere mixture.

To motivate the intermediate level, recall Fig. 5, and note that
defining a suitable CG model is equivalent to an estimate of the
small-particle free energy in the final (fully inserted) state. The phys-
ical idea of the intermediate level is that the free energy associated
with the first stage of insertion may be hard to estimate (because
of the complicated packing of the small particles around the large
ones), but the free energy difference associated with the second
stage should be easier (because it corresponds to insertion into large
empty regions where the packing of the small particles is similar to
that of a homogeneous fluid, whose free energy can be estimated
based on analytic approximations). A combination of these ideas
yields an intermediate level that represents the big particle statistics
more accurately than the CG model. Similar ideas have been consid-
ered before in multi-scale simulation,””””" in particular the problem
of estimating the small-particle free energy has some similarities to
estimation of solvation free energies (where the depletant here plays
the role of a solvent).

We start by analyzing the small particles, so we fix the large
particles in some configuration C. The idea of the intermediate level
is to first insert small particles only in a region close to the large
particles C, and then use this information to make the intermediate
marginal distribution p;(C) match the FG marginal pr(C) as closely
as possible. The structure of the intermediate level is depicted in the
bottom row of Fig. 1(e), and an example configuration is shown in
Fig. 1(d). We implement this idea by introducing an effective (one-
body) potential that acts on the small particles. We first define

dist(r,C) = min |r-Ry| (37)
=l N

to be the distance from the point r to the nearest large particle. Small-
particle insertion is suppressed in regions far from large particles by
a potential energy term
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U, F)= anjEc(r), (38)
=
where
Ec(r) = e(dist(r,C)) (39)
and the function
0, r < Ofree,
e(r) = ssinZ[W], Ofree <7< Ofee +1,  (40)
s, 7> Ofree + 1

interpolates from zero (for small distances r) to the value s at large
r. This function acts as a smoothed out step function, where S
is the position of the step and / its width. In Figs. 1(e) and 5, areas
where Ec(r) > 0 are indicated by blue shaded regions, in which the
insertion of small particles is suppressed.

Then, define a grand-canonical probability distribution for the
small particles in the partially inserted (intermediate) system as

1 sn—-Us(c,F)-U(c,F)
Py . (41)
Ei[C, ps]

This distribution is normalized as [ pi(F | C)dF = 1.1t depends on
the three parameters s, 8, I, as well as the underlying parameters of
the hard sphere mixture model.

The next step is to construct the weights W1 (C). For consis-
tency with (22), we write the intermediate-level distribution in the
form

p(FIC) =

1 U - o
PI(C> ]_—) _ ?e#BN"'Hs Ue(c,7)-U(c,7)- (C) (42)
=)

As discussed above, the term ®“" should be designed so that
the respective coarse-particle marginals pr(C) and pr(C) match as
closely as possible. Using (4), (19), and (41), we can show that a
perfect match requires @ (C) = @**(C) with

1[C s ]
#[C, ps]

where ¢, is an irrelevant constant. Since the Es in (43) are partition
functions, determination of ®@** reduces to computation of the free
energy difference between the non-homogeneous small particle dis-
tributions of the partially and fully inserted system. We now explain
how @™ is defined, as an approximation to ®*.

O(C) =log =28 _ g ) (43)

[I] [1]1

A. Square-gradient approximation
of a non-homogeneous hard sphere fluid

As a preliminary step for estimating ©, we first consider
the grand potential ® for the small particles, in a system with no
large particles, where the small particles feel an (arbitrary) smooth
potential £ = £(r). The grand potential of this system is

Of&ps] = -log [ IO ELOGE, ()

where 0 indicates the large-particle configuration with no particles
atall (N =0).
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If E varies slowly in space, a simple approach to this integral is to
assume that the system is locally the same as a homogeneous system
in equilibrium—similar to the local density approximation.” In this
case,

ofsus] =~ [ plus - &(m)a (45)

where p is the pressure, expressed as a function of the chemical
potential.

However, this approximation is not sufficiently accurate for
the current application. To this end, we include a correction to
account for inhomogeneities, as a squared gradient term ®[&; ys]
~ O%[& ps] with

O[] = [ plus - E@)) + a(us - ER)IVER)Pdr.  (46)

(Within a gradient expansion, this is the first correction that is
consistent with rotational and inversion symmetry.)
We show in Appendix B 1 that g can be estimated as

3
8w = zﬂ’],g 57 S (47)
where S(y; q) is the structure factor of the small hard-sphere system.
For a numerical estimate of this ©*I, we estimate the pressure p by
the accurate equation of state from Ref. 38, and g is estimated from
(47) using the structure factor from Ref. 53. A numerical example
demonstrating the accuracy of this second order approximation for a
non-homogeneous hard-sphere fluid can be found in Appendix B 2.

B. Definition of ®°"

We are now in a position to approximate @ in terms of ®*.
This (analytical) calculation is illustrated in Fig. 7. We require an
estimate of @, which is the free-energy difference between the par-
tially inserted and fully inserted systems in panels (a) and (b). This
is achieved as a sum of three free-energy differences. In the first
step, the large particles are removed and the small-particle fluid
is re-equilibrated, to fill up the remaining space, leading to panel
(c). Then, the confining potential U is removed and the small par-
ticles fully inserted, leading to (d). Finally, the large particles are
re-inserted and the small particles re-equilibrated again, leading
to (b).

To make this precise, define ®¢[&; ys] as the grand potential of
the small particles in the potential £, where the large particles are
also included, with configuration C. Then, the desired free energy
difference between panels (a) and (b) is

O(C) = Dc[0; 5] — De[Ecs ps ], (48)
where we took ¢, = 0.

From the definitions in Sec. IV A, the free energy difference
between panels (c) and (d) is ®[0;us] — O[Ec; us], from (38) and
(44). Our central approximation is that the free energy difference
between panels (a) and (c) is (approximately) equal and opposite of
the difference between (d) and (b) because the local environment of
the large particles is the same in both cases. (The only differences are
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@c[0; ps] — Pe[Ec; ps)
>

@[0; us] — [Ec; ps)
~ B0 (C)

FIG. 7. lllustration of the computation of ®%", which is an estimate of the free
energy difference ©¢* between panels (a) and (b) [see (48)]. As described in the
text, this difference is computed as a sum of three differences using the integration
path [(a),(c),(d),(b)]. The free energy difference between (c) and (d) is ®[0; us]
— ®[Ec; us]. We make the approximation that the differences between [(a),(c)]
and [(d),(b)] are equal and opposite, and this should be accurate if the shaded blue
regions in panel (a) are well-separated in space from the large particles. Combining
this assumption with the square gradient approximation (46) yields ®®"(C) in
(50) as a numerically tractable estimate of ©¢*.

in regions far from any large particles.) At this level of approxima-
tion, the free energy differences between [(a),(b)] and [(c),(d)] are
equal,

D%(C) » P[0 ps] - P[Ec pis]- (49)

Finally, the right-hand side can be estimated by the square gradient
approximation (46), yielding ®*(C) » ©“"(C) with

cI)corr(c) = % [0)[45] - o™ [EC;,uS]~ (50)

Operation of the three-level method requires numerical esti-
mates of this @, which includes the integral in (46). Moreover,
its value is exponentiated when computing weight factors W, so
these numerical estimates are required to high accuracy. This is a
non-trivial requirement because the integrand is constant on regions
far from the big particles, but it varies much more rapidly when
these particles are approached. In such situations, adaptive quadra-
ture schemes are appropriate: we use the cuhre algorithm of the
cuba library™ that uses globally adaptive subdivision to refine its
approximations in the relevant regions of space. Note, however, that
while the choice of the numerical integrator influences the inter-
mediate level, small errors in estimation of this integral will be
corrected by the second annealing step, so such errors do not affect
the consistency of our numerical estimators.

Given this choice of ®“"(C), the intermediate level distribu-
tion p; of (42) has been completely defined, although it still depends
on the three parameters Ofee, s, ! that appear in the function &(r).
We also note that given the approximations made, it is not expected
that this p; is optimal (its marginal p1(C) does not match pg(C) per-
fectly). Subsection I'V C discusses the parameter choices, and some
possibilities for correction factors that can be added to ®“°™ in order
to address specific sources of error.
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C. Variants of the intermediate-level distribution

In fixing the parameters S, S, I, several considerations are rel-
evant. First, if s is too small or .. is too large, the potential E; has
little effect on the system and the small particles are not restricted
to be close to the large ones. In this case, p; ends up close to p;, and
there is little benefit from the intermediate level. On the other hand,
the accuracy of @ is greatest when the gradient of the potential E¢
is small, and this favors small s and large /, 0. In practice, it is also
convenient if the two annealing stages insert similar numbers of par-
ticles, so that their computational costs are similar. For the example
system in Sec. II C, we will present results for a suitable parameter
set

Ofree = 0.505, s=4.4, [=3.50. (51)

We have also tested other values, a few comments are given below.
We will consider several variants of the intermediate level. We
denote by pl(l) the distribution defined by (42) and (50), with para-
meters (51). Figure 8 shows how the quantities of interest differ
between the CG and FG models, and the corresponding differences
between the intermediate level and the FG model. Here, Ag(r) is the
difference between g(r) for the FG model and the distribution of
interest (which is either the CG distribution p.. or one of the vari-
ants of the intermediate distribution). AP(N) is the corresponding
difference in the probability that the system has N large particles.
For the value of g(r) at contact, we see that the intermediate
level pl(l) corrects around half of the deviation between CG and FG
models. However, the probability distribution of the N has the oppo-
site situation that the intermediate level is less accurate than the CG

(a) ° ° ‘ [ ] s e ik H- ‘ kad % % ¥—x_0 o
0.0 v :'!"x us.y"..::::;uv
L4
-029 &
g0l |
<
_06-
o] | " e P
_0 -
| o b0 e pf
-1.0 . . . . . . . .
10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00
r
(b) .
0.02 A o o e
N
- s oo X ~%
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FIG. 8. Estimated accuracy of the CG and the intermediate levels from the main
text for the example from Sec. Il C. We show the difference between the respec-
tive CG and intermediate level estimates and the true FG estimate for the pair
correlation function g(r) in (a) and the distribution of big particles in (b). The FG
estimates of these quantities of interest are shown in Fig. 3.
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model. [This is partly attributable to the fact that Ay in Eq. (6) has
been chosen to make the CG model accurate.]
To explore the behavior of the intermediate level, we con-

structed two variants of p;. The aim is to understand why pl(l) has
inaccuracies and to (partially) correct for them. There are two main
approximations in the intermediate level pl(l): the first is (49) and the
second is that @[ E, ys | can be approximated by the square-gradient
approximation (46). The first approximation neglects a significant
physical phenomenon in these systems, which is a layering effect of
the small particles around the large ones. This is illustrated in Fig. 9
by the radial distribution function gis between large and small parti-
cles (measured in a system with a single large particle). One sees that
there is typically an excess of small particles close to the large ones,
followed by a deficit [ghs(r) < 1], and a (weak) second layer.

For (49) to be accurate, the intermediate level should have
enough small particles to capture this layering so that the particles
being inserted in the second annealing stage are not strongly affected
by the presence of the large particles. However, computational effi-
ciency requires that Jf.e is not too large, so these layers are not fully
resolved at the intermediate level. To partially account for this effect,
we make an ad hoc replacement of yg in (46) by an effective chem-
ical potential ylay(r), which is chosen such that the corresponding

. ! .
reservoir volume fraction ¢’ (r) satisfies

18 _ o
B = gg(dist(r,C)). (52)
s

In estimating the free energy of the small particles that are inserted in
the second level of annealing, this adjustment to ©*? helps to coun-
teract the error made in (49), leading to an updated potential ®™?,
The intermediate level constructed in this way is denoted by pl(z).
The results of Fig. 8 show that this variant is (somewhat) more accu-

rate than pl(l). However, the intermediate level still tends to have a
smaller number of large particles than the full (FG) mixture.

To investigate this further, we took 800 representative CG con-
figurations. For each one, we estimate the error associated with the
approximation (50)

A(DCO" — (I)ex _ (_Dcorr,2. (53)

Results are shown in Fig. 10. One sees that the errors are of order
unity (note that @ itself is of order 10* so this is a small relative

2.04

ggs(r)
-
wn

1.0

5.5 6.0 6.5 7.0 7.5 8.0
dist(r, C)

FIG. 9. The layering of small particles (os = 1) around one big particle (o5 = 10)
at volume fraction #¢ = 0.2. The displayed pair correlation function ggg(r) given
the radius from the center of the big particle shows that small particles form layers
of higher and lower concentration that vanish with increased distance from the big
particle.
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FIG. 10. The error of the free energy prediction for 800 configurations sampled
from the coarse distribution p;, grouped by their number of big particles. Each dot
represents the difference of an estimate of the predicted small-particle free energy

used in the intermediate level pl(z) against an estimate of the full free energy. We

correct for the noticeable trend in the error with a linear ad-hoc correction term,
displayed in black.

error; see below); there is a systematic trend that @2 ynderesti-
mates O when N is large. To correct this error, we introduce an
additional correction term to ™2,

(Dcorr,S (C) _ (Dcorr,Z (C) + ‘xcorrN) (54)

and denote the intermediate level constructed in this way by P1(3)-

A least squares fit to Fig. 10 suggests to take acorr = 0.076; in
practice, this tends to over-correct the error in ®“°™*(C), and we
find better performance with a smaller value

®corr = 0.058. (55)

However, the performance of the method depends only weakly on
the specific choice of acorr, which is discussed in Appendix C. For all
following results, we define the intermediate level p; = pl(s) to use the
potential ®°™?,

D. Discussion of intermediate level

An important aspect of the three-level method is the self-
consistency of the general approach. The intermediate level variants

pI<l) and pI<2) were constructed on a purely theoretical basis. The cor-
responding results in Fig. 8 indicated good performance, but that the
distribution of N had a systematic error. This error was quantified
precisely in Fig. 10, which enabled an improvement to the interme-
diate level. In principle, this procedure could be repeated to develop
increasingly accurate variants of p;. That approach would be useful
if (for example) one wanted to consider increasingly large systems,
where the requirements for the accuracy of p; become increasingly
demanding.

One way to see the effect of system size is to note that Fig. 10
required the estimation of ®¢[E,us] and ®c[0,us], whose values
are of order 1 x 10*. Since the free energies are exponentiated in the
weights for resampling, an absolute error of +1 is required on these
free energies, while their absolute values are extensive in the system
size. Hence, one sees that accurate estimates of the free energy are
required: their relative error is required to be of the order of the
inverse volume of the system.
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V. NUMERICAL TESTS

In this section, we apply the three-level method to the exam-
ple from Sec. IT C using the intermediate level from Sec. IV, with the
parameters defined in (51) and (55). The parameters and the anneal-
ing schedules are chosen such that, on average, the first and second
steps have the same computational effort; see Appendix A for details.

It can be proven® that the three-level method provides accu-
rate results, in the limit where the population sizes My, M1, M; are
all large. In particular, we expect the estimators A3", A}, to all obey
central limit theorems (CLTs), and the two-level estimators AF,AF,A
behave similarly. Detailed results are given in Sec. VI. The impor-
tant fact is that, for large populations, the variances of the estimators
behave as

Var(4) ~ ﬁz, (56)

where M is the relevant population size and X is called the asymp-
totic variance (it depends on the observable A and on which specific
estimator is used). In general, the estimators may have a bias, which
is also of order 1/M. This means that the uncertainty in our numer-
ical computations is dominated by the random error, whose typical
size is \/Z/M, and the mean squared error is given by the variance
MSE(A) = Var(A), to leading order.

This gives us an easy way to measure and compare the per-
formance of the different estimators. Suppose that we require an
estimate of A with a prescribed mean squared error. The associ-
ated computational cost can be identified with the population size
M and is given by (56) as M ~ X /MSE(A). Clearly, estimators with
small X should be preferred. In practice, we do not compare compu-
tational costs at fixed error, instead we compare variances Var(A) at
fixed M. For any two algorithms (and assuming that M is large), the
ratio of these variances approximates the ratio of the ¥’s, which can
then be interpreted as a ratio of computational costs (at fixed MSE).
Numerical results are presented in Sec. V B.

We note that the theoretical results for convergence do not
require that the coarse or intermediate levels are accurate. How-
ever, one easily sees'® that serious inaccuracies in these levels lead
to very large X. In such cases, one may require prohibitively large
populations to obtain accurate results.

In this section, we demonstrate (for the example in Sec. II C)
that we do not require very large populations for the three-level
method and that the numerical results are consistent with (56).
After that, we estimate the asymptotic variances for the two-level
and three-level methods. We will find that introducing the third
level improves the numerical performance, corresponding to a
reduction in X.

To this end, we investigate the pair correlation g(r) of the big
particles. As seen in Fig. 8(a), the coarse approximation of g(r) has
a substantial error, especially when two big particles are in contact.
To quantify this specific effect, we define the coordination number
N, which is the number of large particles within a distance r; of a
given large particle. (For a given configuration, this quantity is esti-
mated as an average over the large particles. We take r; » 10.7305 to
be the first minimum of g(r) of the CG model.) For our example,
the coordination number for the FG and CG systems are given by

(NoJp~1.61,  (Ne)c = 1.56. (57)
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A. Accuracy of method

To illustrate the reliable performance of the method, we take a
simple example with M, =4 x10° and M; = M5 (no tapering) and
we focus on the difference estimator A%,LA, which we expect to be
the most accurate. The corresponding numerical estimate of g(r)
is denoted by ¢(r), binned using 40 equidistant bins at positions
rj between r = 10 and r = 12. Figure 11(a) shows estimates of the
difference between g(r) and its true value, as the population size
increases. (The FG result was estimated independently by the two-
level method using a large value of Mr = 18 000.) A population M,
of several thousand is sufficient for an accuracy better than 0.5 in
each bin of g(r).

For smaller M, fluctuations in the measured ¢(r) are apparent
in Fig. 11(a). To estimate their size, we define the error for a single
run of the three-level method by summing over the bins,

40
(error)’ = 3" [8(17) — g ()" (58)
=1

Hence, one expects from (56) that this error decays with increasing

population, proportional to M 12, Figure 11(b) shows an estimate
of (58), which is consistent with this expected scaling.

B. Measurements of variances =

We now investigate whether the three-level method does
indeed improve on the performance of the (simpler) two-level

(a) 1.0+
0.5
<
S 0.0
~
&, —0.5 1
M,=128 —— M,=2048
—-1.01 M;=512 —— M,=8192

10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00

error

103 104
Number of configurations M,

FIG. 11. Estimating the pair-correlation function g(r) from Fig. 3(a) with the two-
and three-level method. (a) The difference of three-level estimates §(r) with
increasing numbers My = M, number of particles against a reference value of
g(r) that was computed with the two-level method. (b) The error of the binned val-
ues in (a) as defined in (58). The dotted black line displays the expected asymptotic

Monte Carlo convergence rate of M, 2,
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method of Refs. 17 and 18. The key question is whether the resam-
pling step is effective in focusing the computational effort on the
most important configurations of the big particles.

We recall from above that removing the resampling step from
the three-level method leads to a two-level method, where the
annealing process is paused at the intermediate level and then
restarted again. In order to test the effect of resampling, we compare
these two schemes, keeping the other properties of the algorithm
constant, including the annealing schedule. (To test the overall per-
formance, one might also optimize separately the annealing sched-
ules for the two-level and three-level algorithms and compare the
total computational time for the two methods to obtain a result
of fixed accuracy. However, such an optimization would be very
challenging, so instead we focus on the role of resampling.)

As a very simple quantity of interest, we take the co-ordination
number N.. We run the whole algorithm Nru,s independent times,
and we estimate N, for each run. This can be done using several
different estimates of N.. These are (i) the two-level estimates Ar
and Ag from (13) and (18); (ii) the corresponding three-level esti-
mates A%L and A;LA of (31) and (35), in which we also vary the ratio
M : M>, to see the effects of tapering.

All comparisons are done with a fixed total computational bud-
get. We have chosen parameters such that the first and second
annealing stages have the same (average) computational cost. This
means we need to hold Mt = (M; + M;)/2 constant during taper-
ing. The two-level method takes My = Mt (because the single step
of annealing in the two-level method has the same cost as the two
annealing steps of the three-level method). For the coarse level esti-
mates Ac and A¥ (which are used in computation of Ap and A%,LA),
the CG computations are cheap so we take My = Mc = 6 x 10°. This
is large enough that the numerical errors on these coarse estimates
are negligible in comparison to the errors from higher levels.

For each version of the algorithm, we measure the sample
variance of the Nrns estimates. Results are shown in Fig. 12 for
Nruns = 60 and Mt = 500. The error bars are computed by the boot-
strap method.” It is useful that the variance of all these estimators
is expected to be proportional 1/Mr: this means that reducing the
variance by a factor of « requires that the computational effort is
increased by the same factor. Hence, the ratio of variances of two

0.004 A
s T )
< 0.003 1 n
g 1
a
< 0.002 A
.8 ]
= »
Z 0.001{ ® Final-level estimator
m  Difference estimator
0.000 T T T T T T T T
Ao A, A, Ax A Au A% A%
5..5(6. (. a4 Cars. Lare. Cal.
5Ty Ty (5~5/ 6. 2 “:

3)

FIG. 12. The sample variance of Nyns = 60 independent estimates of the coor-
dination number N;. We compare results using a two-level method as well as
three-level methods, with and without tapering. Furthermore, we give the results
for the final-level (left) and difference (right) variants of the estimator. The error
bars are computed via bootstrap; their interpretation is, however, not obvious as
the different estimators are highly correlated; see the main text.
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estimators is a suitable estimate for the ratio of their computational
costs.

When carrying out these runs, each estimator was computed
by performing annealing on the same set of coarse configurations,
to ensure direct comparability. (More precisely, we take a set of
700 representative configurations that are used for the method with
M : M, =7 : 3, and other versions of the method used a subset of
these 700.) In addition, it is possible to share some of the annealing
runs when computing the different estimators (while always keep-
ing the 60 different runs completely independent). This freedom was
exploited as far as possible, which reduces the total computational
effort. However, it does mean that the calculations of the different
estimators are not at all independent of each other.

C. Performance: Discussion

All three-level estimators have a reduced standard deviation
compared to their two-level equivalents, demonstrating the useful-
ness of the intermediate resampling step. In all cases, the difference
estimate outperforms its equivalent final-level estimate; this effect
is stronger for the three-level estimate, providing evidence that the
intermediate stop additionally improves the quality of the control
variate in the difference estimates.

The effect of introducing tapering from M = 600 to Mg = 400
is difficult to assess, given the statistical uncertainties in this exam-
ple. The variance of the tapered final-level estimator is very close
to the non-tapered one, despite averaging over fewer configura-
tions. This is possible since we start with more samples in the CG
model that improves the sampling at the intermediate step, where
we then resample to keep relevant configurations. As the results
for the 700-300 tapering show, the tapering rate needs to be cho-
sen carefully as a too aggressive rate can decrease the performance
quickly.

Overall, the numerical tests in this section provide strong evi-
dence of the benefit of the intermediate resampling. For our exam-
ple, switching from a two-level to a three-level difference estimator
substantially reduces the variance, from around 0.0029 for the two-
level method to 0.0016 at a fixed computational budget. As discussed
just below (56), the ratio of these numbers can be interpreted as the
ratio of costs for the two- and three-level method: the conclusion for
this case is that including the intermediate level reduces the cost by
~45%. This demonstrates a significant speedup in this specific case,
which provides a proof-of-principle of the approach.

VI. CONVERGENCE OF THE MULTILEVEL METHOD

In Sec. V, we have seen that the three-level method outperforms
the two-level method in numerical tests, both for the final-level as
well as the difference version of the estimator. In this section, we
provide convergence results for both algorithms and compare their
asymptotic performance as the number of configurations goes to
infinity.

The proof is general, but it does require some assumptions on
the models of interest. First, for every allowed CG configuration
[that is, configurations C with pc(C) > 0], we assume that the quan-
tity of interest A is bounded. In addition, the probability density
pe(C) must be non-zero whenever p;(C) is non-zero, and similarly
p1(C, F) must be non-zero whenever pg(C, F) is non-zero.
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A. Two-level method

The two-level method has been previously analyzed in Ref. 18.
We summarize its key properties. It was noted in Sec. III B that
Ap — (A)r as Mg — oo (specifically, this is convergence in prob-
ability™®). We also expect a CLT for this quantity: as in Eq. (56),
the distribution of the error (Ar — (A)r) converges to a Gaussian
with mean zero and variance Xg/Mg. We will derive a formula for
this variance, which will be compared later with the corresponding
quantity for the three-level model.

For compact notation, it is convenient to define the re-centered
quantity of interest

A'(C)=A(C) - (A)r. (59)

A significant contribution to X comes from the randomness of the
annealing procedure, and this can be quantified as

v(C) = Vary[W"(C)], (60)

where the variance is again with respect to the annealing procedure
(from coarse to fine). Then, following Ref. 18, it can be shown that

2 = (47(C)*[w(C)” +v(O)))e, (61)

where w(C) = (W"(C))y = pr(C)/pc(C), so one identifies w(C )>
+ v(C) as the mean square weight obtained from the annealing pro-
cedure. Similarly, the estimator A that appears in the difference
estimate A, also obeys a CLT, with variance Var(A) ~ g /M,
where

Spa = (Ar(C)Z[w(C)Z +0(C) - 1]> + Varc(A) - Vars(A). (62)
C

As discussed in Ref. 18, if the computational cost of the coarse model
is low, M can be taken large enough that the variance of the coarse
estimator Ac is negligible, in which case (18) implies Var(Aga)
~ Var(A), and hence

1

Var(AF,A) ~ M
F

ZEa- (63)

Comparing (61) and (62)—which give the variances of Ar and
Ag, respectively—the term v(C) in (61) is replaced by v(C) - 1 in
(62), which reduces the variance of the estimator. We expect, in gen-
eral, that Varc(A) and Varp(A) should be similar in magnitude, in
which case these terms in (62) should have little effect. Hence, one
expects that the estimator Apa has lower variance than Ap. This is
consistent with the results of Fig. 12.

B. Three-level method

The results (61) and (63) are based on the property that each
estimator is a sum of (nearly) independent random variables, which
means that we can immediately apply standard Monte Carlo con-
vergence results.”! This is not possible for the three-level method,
since the resampling step correlates the configurations. This makes
the analysis of SMC-type algorithms challenging, but widely applica-
ble results are available."””””* The three-level method in Sec. I11 C is
an implementation of a random-weight SMC method that has been
analyzed in Ref. 49.

To analyze the variance of the three-level method, we require
results analogous to (61), which depend on the mean square weights
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associated with the annealing procedure. To this end, define the
average of the final level weight

wa(X2) = (W3(X2))y (64)
which fulfills (29). Similar to (60), the variance of this weight is
’Uz(.)(z) :Var][Wg(Xz)]. (65)

The averages in these equations are with respect to the sec-
ond annealing step (from intermediate to fine level), starting at
configuration X, (see Sec. I11 C 3).

For the contribution to the asymptotic variance of the first
annealing step, it is important to consider a product of weight
factors: W (Cy)wz(X1). The first factor in this product is the ran-
dom weight W that is obtained by annealing from the coarse to
the intermediate level, leading to the intermediate configuration is
X1 = (C1, F1). The second factor is the averaged weight w,( )
from (64) associated with the second (subsequent) annealing step.
Combining (26) and (29), the average of the product is

(WH(C)wa(X1))) = pr(C1) /pc(Cr) = w(C), (66)
and the corresponding variance is

vl(Cl) = Var][W?(Cl)wz(‘ffl)]. (67)

Hence, w(C1)*+v1(Ci) is the mean square value of
W3(Ci)wa(X1) with respect to the annealing process: this
turns out to be a relevant quantity for the asymptotic variance.

The number of configurations M, M, can be varied between
steps of the three-level method. We formulate the asymptotic
variance in the average number of configurations

M‘[‘ = %(M] +M2). (68)

If the two annealing steps have comparable cost, we can then directly
compare the variances for different tapering rates at fixed Mr. Define

also
M M
(=,  f=l-c=—2. (69)
2Mr 2Mr

Then, a direct application of Theorem 2.1 of Ref. 49 gives a CLT for
A3 for large M, we have

; 1 5L
Var(Af") » —3 70
(AF") My F (70)
with asymptotic variance
1 1
Sh = —Shi+ - Zps (71)
2c 2c

with
i = (AT(C)*[w(C)? + 01 (0)]) o
i = (AT(C) [wa (X ) + 02 (X)), (72)

The physical interpretation of these formulas will be discussed in
Subsection VI C.
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Computing the asymptotic variance of the three-level differ-
ence estimator A%,LA is more difficult, since it involves difference
of non-trivially correlated samples. For some examples of multi-
level difference estimators, upper bounds on the asymptotic variance
have been developed in Refs. 35 and 36. A detailed analysis of these
bounds in the context of our algorithm is beyond the scope of this

paper.

C. Discussion of CLTs

To understand the differences between the two- and three-level
method, we compare the asymptotic variances of their correspond-
ing final level estimators Z¢ in (61) and E%L in (71). The variance
of the three-level method has two contributions 3 and Zi5; they
are the variances of two-level methods from the coarse to the fine
model and the intermediate to the fine model, respectively. The first
term Zf:Ll is therefore directly related to Xg, where the variance of the
importance weight v(C) has been replaced by v; (C).

In order to make quantitative comparisons, we again con-
sider the three-level method without intermediate resampling. As
discussed in Sec. V B, this is a two-level method with a specific
annealing process that consists of the concatenation of the two
annealing processes of the three-level method. For the concatenated
annealing process, we have

W(C) = Wi (O)W3 (&), (73)

where & = (C, F) is generated by the first annealing stage. This
means that

v(C) = Vary [ Wi (C)W3 ()], (74)

where the variance is now over the randomness of both annealing
processes. Comparing (74) to (67), we see that v1(C) computes the
variance of the same importance weight, but after averaging over the
second annealing stage in (64). We can apply Jensen’s inequality® to
show that

v(C) = v1(C). (75)
By definitions (61) and (71), this directly implies
i < Bp (76)

For the case without tapering ¢ = 1/2, the three-level method,
therefore, trades a reduction in the variance of the importance
weights from coarse to fine in =3 for the addition of a term 27} that
corresponds to the variance of a two-level method going from the
intermediate to the fine level. The possibility of tapering, i.e., ¢ # 1/2,
further allows us to optimize the distribution of computation effort
between the two stages, which is particularly useful if T35 << 225.

For our application to hard sphere mixture example in Sec. II C,
the annealing process is computationally expensive and the result-
ing weights are noisy. We are therefore in the situation where the
variance v(C) contributes substantially to the overall variance, and
where we have constructed an intermediate in Sec. I'V that improves
on the CG model. Following the discussion above, this is the setting
where we expect the three-level method to improve upon a two-level
method, which is confirmed by the numerical results in Sec. V. Fur-
ther discussion of the effect of resampling on random-weight SMC
methods can be found in Ref. 49.
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VIl. CONCLUSIONS

We have introduced a three- and multilevel extension of the
two-level simulation method first discussed in Ref. 18. We have
applied this method to a highly size-asymmetric binary hard-sphere
system. As shown in the numerical test in Sec. V and theoretical
results in Sec. VI, the introduction of intermediate resampling that
distinguishes the two-level from the three-level method can lead
to substantial improvements in performance by reducing the vari-
ance in importance weights and by allowing efficient allocation of
resources between levels via tapering.

A. Hard sphere model

In the application to binary hard-sphere systems, the introduc-
tion of an intermediate level required us to construct a semi-analytic
estimate of the free energy of a system with partially inserted small
particles. For this, we have combined a highly accurate square-
gradient theory with pre-computed ad hoc corrections, yielding an
intermediate level that substantially improves the accuracy of the
investigated quantities of interest compared to the initial coarse
level. Furthermore as we show in Appendix C, the three-level
method appears robust with respect to slight deviations of the
intermediate level.

Compared to our numerical example, Ref. 17 applied the two-
level method to larger and more dense systems than considered
here, to investigate the critical point of demixing. This was achieved
by replacing the two-body CG model with RED potential used in
this publication by a highly accurate two- and three-body potential.
The computation of accurate effective potentials entails a substantial
upfront computational cost (compared to our construction of the
intermediate level), but for the hard sphere mixtures, this results in
a CG level that is more accurate than our intermediate level. Despite
the challenges of keeping the variance of the importance weights
under control for large systems, this turned out to be more efficient
overall.

B. Design principles for other potential applications

We have emphasized throughout that our three-level modeling
approach is generally applicable whenever a suitable intermediate
level can be constructed. We can identify two main scenarios where
this might be attempted. The first scenario is illustrated by the binary
hard sphere mixture, which is a two-scale system by construction
(there are two species). In this situation, there is no obvious inter-
mediate level, and a careful construction is required, to design one.
Our results show that this strategy is possible—it is worthwhile in
this example because the system is very challenging to characterize
by other methods, so the effort of constructing the intermediate level
is worthwhile.

The second scenario—where we may expect a multilevel
method to be particularly useful—is that a multi-scale system admits
a true hierarchy of coarse-graining, such as a system of long-chain
polymers. We can coarse-grain a polymer chain by representing
groups of monomers by their center of masses with suitable effec-
tive interactions.””’ By varying the number of monomers per group,
we get a hierarchy of CG models that could be targeted by a
multilevel method. For such methods to be efficient in such a sce-
nario, we require high accuracy of the CG models, and an efficient
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annealing process to introduce the finer degrees of freedom analo-
gous to the introduction of the small spheres in the hard sphere mix-
ture. Fulfilling these requirements is still challenging and requires
considerable physical insight about the specific polymer system of
interest, but the hierarchical structure of the system hints that a suit-
able method might be fruitfully extended to more than three levels,
with commensurately increased performance gains.

In both scenarios, careful thought is required to apply the three-
level (or multi-level) methods: our approach is far from being a
black-box method. Still, the results presented here show that it can
be applied in a practical (challenging) computational problem.

A separate limitation of multilevel methods is that the popu-
lation of unique coarse configurations is fixed from the start and
reduces with each subsequent resampling step. This is closely related
to the sample depletion effect commonly observed effect in parti-
cle filtering, and SMC methods in general.”>*’ For the multilevel
method, we can address this by following each resampling step with
a number of Markov Chain Monte Carlo (MCMC) steps to decor-
relate duplicated configurations and further explore the system at
the current level of coarse-graining.”” While such an approach is
not feasible for the hard-sphere system where intermediate MCMC
is limited by the cost of computing the required approximations,
we expect this to be beneficial, for example, whenever intermedi-
ate physical systems are described in terms of effective, few-body
interactions.

We end with a comment on the implementation of these meth-
ods. The introduction of intermediate levels increases the complex-
ity of the code required to simulate the systems. It requires adding
an intermediate stage to the annealing process and computing the
required integrals (see Sec. V). Additionally, when implement-
ing the algorithm for the use on compute clusters, the resampling
step requires the communication between all nodes. However, we
emphasize that while these extra steps require some extra program-
ming, none of the additional steps of the three-level method have
added significant computational cost in our example.

To conclude, our results show that the multilevel method can
effectively make use of intermediate levels when available, leading to
improvements in performance at fixed computational cost. We look
forward to further applications of multilevel methods in physical
simulations.
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APPENDIX A: ENSEMBLE DEFINITIONS,
AND ESTIMATION OF PARTITION FUNCTIONS

1. Grand canonical ensemble

We define the grand canonical ensemble of the hard sphere
mixture discussed in Sec. II. Recall that kgT = 1. For the system of
interest, the equilibrium average of a quantity of interest A(C) in (3)
is defined as

1 &2 = eﬂBN‘WS”
(Ae=g, 2 2 NI o
></A(C)e_UF(C’f)de---dRNdrl---r,,, (A1)

where each particle position is integrated over the periodic domain
[0, L]3. For ease of notation, we introduce the integration measures
dC, d F that include the prefactors accounting for the indistinguisha-
bility of particles that appear in (A1), which then becomes

(A)p = — f A(C)e NV (&) geq (A2)
ZF

consistent with (1) and (3). By definition, we require that p is
normalized as pr(C, F)dCdF =1, so we have

. co oo eyBNersn _Us(e,F)
5= 2 N [ O dR - dRdr o (A3)

The relevant quantities of the CG model (A)c are defined
analogously.

2. Estimation of the partition function

The implementation of the two- and three-level methods
requires the computation of the small-particle partition function
that appears in the importance weights. We use a method based on
Jarzynski’s equality”””' that yields an unbiased estimator; see also
Ref. 18. In the statistics literature, this is also known as annealed
importance sampling.”> We first give a short summary of the
method in Appendix A 2 a and then discuss how the annealing
processes are implemented for the two- and three-level method in
Appendix A 2 b. The parameters used for the numerical tests are
given in Appendix A 2 c.

a. Theoretical details

We derive an annealing process that inserts the small particles
F for a fixed big particle configuration C. This process produces
weighted configurations that correctly characterize the FG distribu-
tion. We closely follow the results from Appendix A of Ref. 18; see
also Refs. 20-22 and 61.
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Let ps(C, F) and pe(C, F) be two probability distributions for
the FG model of the form

p«(C, F) = :Leq)“(c’f), ae{se} (A4)
—a
The corresponding marginal  distributions are  p«(C)

= [ pa(C, F)dF. The distributions p_,p, are the start and end
point of an annealing process, with a sequence of intermediate
distributions

oG F) = Le™©) koo K, (A5)
B

where p, = p, and p; = p..

Let C be a sample from p,(C): this configuration remains fixed
during the annealing process. We anneal the small particles, as fol-
lows: first sample an initial small particle configuration F from
ps(F | C), the conditional distribution of p. This distribution is p,,
so write Fo = F and set k = 1: then apply a sequence of MC steps
with transition kernel g¢y( Fy_; — Fj) that is in detailed balance
with the small particle distribution px(F | C). Iterate this process
for k=1,...,K — 1: this yields a sequence of small-particle configu-
rations (Fo, F1,. .., Fx-1). The big-particle configuration C stays
fixed throughout this process.

The relevant results of this procedure are the final small-particle
configuration F = F_; and an annealing weight

Wi = eZkK=1 [Pe(C, F ko) =Ppr (€5 F )] (A6)

Given the initial coarse configuration (C, F), the MC steps define
a probability distribution over the weight W4 and the final small
particle configuration JF, which we denote by

k(Wa, F|C, F). (A7)

Given the initial configuration (C, F), averages with respect to the
annealing process are denoted by (-);.

We now show that this annealing process produces weighted
samples of p,, up to a constant. More specifically,

‘ [

e pe(C, F)
s ps(0) 7

This implies that averaging over the start distribution p_ and the
annealing process yields

f Wak(Wa, F|C, F)ps( F| C)dWad F = (A8)

[11

[1]

(WaB(C, F))yp, =

(B(C, F))p. (A9)

e
S

(1]

for any function B = B(C, F), which may depend on both big and
small particles.

To show (A8), we compute the average over the annealing
process explicitly

f Wak(Wa, F|C, F)ps(F|C)dWad F
K K-1
= /ezk=| (q’k(c>fk—1)—¢’k—1(C>fk4))Hqc,k(]_-k_l > Fo)
k=1

Xps(fo |C)d.7:0"-d.7‘—1<_2. (A10)
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By rearranging the factors in the exponential, the right-hand side of
(A10) becomes

/IﬁQCk(fk—l = Ik)eq)k(cvfk—l)_q)k(Cvfk)
k=1

eq)K(C>]:K—l)ps(]:O | C)

e®0(C,Fo)

x dFo---dFk-a

(A11)
Detailed balance of the Markov kernels g.; implies

Gex(Fior » Fr)e™ @700 2 g (Fr> Fio), (A12)

and by definition
(DK(Cv}—K—l)pS(‘FO ‘ C) _ Be Pe(c> ]:K—l) Al
= — . 3
¢ ePo(C,F o) B ps(c) ( )
Using (A12) and (A13), Eq. (A11) simplifies to
fa Ee pe(C, Fx1)
/ H Gek(Fi = Frer)dFo---dFga————=. (Al4)
k=1 s PS(C)

Since gex ( Fx = Fi-1) is a normalized probability density for F_;,
we can perform the integrals in (A14) one by one, yielding (A8).

b. Application to the two- and three-level method

This section describes the details of the annealing processes
used in the two- and three-level method. We first discuss its imple-
mentation for the two-level method before showing how to split this
process into two stages for the three-level method.

The two-level method starts with samples C of the CG model
Pc- We describe the annealing process,'® which produces a weight
W(C) and small particle configuration F that fulfills (14). Since we
have no initial small particle distribution, we cannot directly apply
the results of Appendix A 2 a and need to proceed in two steps. Let

1
E[C, ps]

be the distribution of small particles around a fixed big-particle con-
figuration C, where we now explicitly note the dependence on the
small particle chemical potential ;. Computing the unnormalized
importance weight W(C) from (20) requires an estimate of the parti-
tion function of the small particles E[C, ys]. For a system with a small
value of the chemical potential y, << y,, we can directly estimate this
quantity

SHsn=Ur(C.7)

pus(FC) =pe(F|C) = (A15)

1

Sleml= 5o
]PPMO ¢l (n=0)

(Al6)

as it is the reciprocal probability of having zero small particles in
a system with fixed C. For small enough g, this value is close to 1
and can be estimated quickly by a GCMC simulation that decor-
relates quickly due to the low density of small particles. Since we
can compute this value to a very low variance at negligible cost, we
consider our estimate of E[C, yo] it to be exact and we neglect the
influence of its fluctuations on the overall variance of the method.
Furthermore, we assume that we can generate samples from the low
chemical potential distribution of small particles p, ( F | C).
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Starting with a sample F of the initial small particle distribu-
tion py, (F | C), we can now apply steps of the annealing process
defined in Appendix A 2 a. We define the steps of the annealing pro-
cess by slowly increasing the chemical potential of the small particles
ty in K + 1 steps, from y, to i, = g while keeping the CG distribu-
tion fixed. More specifically, we simulate an annealing process for
the sequence of probability distributions

P (G F) = pc(C)pu (F[C), k=0,....K, (A17)
yielding an annealing weight W and a fine-particle configuration
F as described previously.

Averaging over the initial distribution of small particles and the

annealing process and using (A8), (A15), and (A17) yields

84]

N A ,C ,
f Wak(Wa, F | C, F)pu (F | C)dWAd F = Mpp(Jf |C).

E[po,C]
(A18)
Combining this with (19), we have
Elus,Cl 2 Er pe(C, F) e
— FlC)= ———F—+1"= . (A19)
20" D72 (@) Bl

Thus, we scale the weight that is produced by the annealing process

W(C) = E[uo,C]e" ) Wa. (A20)
For this weight, the annealing process fulfills (14) when we include
the sampling from the distribution of the initial small particles F
~ puy (F | C) as part of the annealing process.

For the three-level method, we split the annealing process
discussed above into two consecutive steps. The first part fol-
lows exactly the same steps as above, where the annealing process
increases the chemical potential y, from a small value y, to yg. The
only difference is that we include the potential U of the intermediate
distribution: in place of (A15), we have

Pus(F|C) =pi(F|C)

so that small particle insertion is suppressed in regions far from large
particles. As before, the annealing process results in a (scaled) weight
W1(C) and small particle configuration F; that now fulfills (26).

For the second step of the three-level method, we need to
define an annealing process that fulfills (28). We start with a sample
X5 = (Ca, F>2) from the intermediate level p;. Since this configura-
tion already contains small particles, we can directly apply the results
of Appendix A 2 a to anneal from pi(C, F) to pg(C, F). This is
achieved by a sequence of intermediate annealing distributions that
increase the parameter & of the potential (40) so that the volume
available to the small particles is slowly increased. This is done in
K + 1 steps from the parameter §y = g (the intermediate level) to
a final value

(A21)

Sk = maxdist(r,Cz), (A22)
r

at which point the suppression potential does not affect any point

in the domain. Then, the intermediate level with dx corresponds

to the fine-level distribution, up to the correction factor P () i

(42) that only depends on the big particles. Following from (A8),

ARTICLE scitation.org/journalljcp

this annealing process with scaled weight Wa(C) = Wae ®(©) and
final small particle configuration F; fulfills the property (28).

c. Annealing schedules for simulations

The importance weights produced by the annealing process are
unbiased, and this feature is independent of the details of the anneal-
ing schedules. In this sense, the algorithm is valid for any schedule.
However, the variance of the computed importance weights depends
strongly on the choice of schedule.

The initial chemical potential 4, is chosen such that, in a system
with no big particles, and there would be an average of 19 = 0.01
small particles present, that is, the initial reservoir volume fraction is
Mso = 0.01/L°.

For the first stage annealing process, we increase the chemical
potential in steps Ay, such that the average change in the number of
small particles would be 87 = 0.2, in a system where no big parti-
cles were present. For the second stage, we increase dy in fixed steps
Ady = 0s/20 000. In both cases, we run one GCMC sweep between
each step.

To compute accurate FG reference results used, for example,
in Figs. 4 and 11, we apply the two-level method using the same
annealing strategy as for the first stage of the three-level method but
with 87 = 0.05 for increased accuracy. Note that, for the numerical
tests in Figs. 12 and 15 that directly compare the performance of the
two- and three-level method, the two-level method uses the same
annealing schedule as the three-level method outlined earlier. The
only difference is the lack of resampling.

APPENDIX B: DETAILS OF THE INTERMEDIATE LEVEL

1. Perturbative approximation of nhon-homogeneous
hard-sphere fluid

This section derives (47) of the main text. To this end, consider
a homogeneous hard sphere fluid at chemical potential 4 and add a
perturbing potential

E(r) =asin(q-r) (B1)

in (44). In a finite periodic system, q should be a reciprocal lattice
vector. We aim to estimate the free energy difference between the
perturbed and homogeneous system. For this, we follow the steps of
the local density approximation discussed in Ref. 52; see also Chap.
6 of Ref. 62. We approximate this difference as

SD[E] = D - D[£]
o [ b8 -p(w) + sl - OIVEPdr (B2)

To compute g, we need to investigate both sides of Eq. (B2). Starting
with the right-hand side, we assume that g is smooth; therefore, we
can approximate it for small a by a constant g(u — &) = g(¢). To
compute the integral of the pressure difference in (B2), we expand
around y,

[ ot -pwar= [ 5 @em + - giar- o)

- L () + O(@), (B3)
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and integrate the gradient correction term

[ swIverar=¢aa(w) [ cos’(q-ryde
= %qzazg(ﬂ)- (B4)

Overall, we obtain

[ pl=8) b + o - OlvePdr » Ta(q'a(w) + 58" (w))

(B5)

To investigate the left-hand side of (B2), we look at perturba-

tions of the free energy in the limit of small a. We can express the

derivatives of the free energy in a as equilibrium averages of the
perturbed system. For a = 0,

d0[E]

“oa T WPa=0 (BS)
o[E
I o), ®)

with pg = Y sin(q - rj). The first average is zero by translational

invariance. For the second average, use that {|pg|*)u = (1),S(4:9) /2,
where S(u; q) is the structure factor of the fluid®” at chemical
potential y. So,

0[] __ (n)y

3V
Ey —TS(%‘]) = —TUSWS(%‘Z)- (B8)

Now differentiate (B2) twice with respect to a, yielding
3V 2 1 4,
— 3q) ~ = , B
o nS(¢:q) V[q o) +p (#)] (B9)

where the left-hand side used (B8) and the right-hand side was
approximated with (B5) before differentiation.

Finally, differentiate with respect to g and send |g| — 0: we can
identify the second order term of the square-gradient approximation
as

3 o
2103 Og?

g(u) = S(#:9)| 40> (B10)

which is (47).

2. Accuracy of the square-gradient approximation

The intermediate level that is constructed in Sec. IV relies on
the approximation (46) for the free energy of a non-homogeneous
hard-sphere fluid. This section discusses the accuracy of this approx-
imation for a system that only contains small particles in an external
potential.

We consider a grand-canonical ensemble of small hard-spheres
(ds = 1) ina periodic box V = [0, L]* of length L = 1005 without any
big particles. We perturb this system by a one-dimensional cosine
potential with m periods

Emcos (1) = Z[COS(ZIn—Oﬂr) + 1]. (B11)

ARTICLE scitation.org/journalljcp

We apply this potential to the first component r; of the small parti-
cle positions r = (1,72, 13). The potential &y, cos has a fixed maximal
strength of 4. We vary the steepness of the potential by varying
the number of periods of the cosine m =1,2,3; as m increases,
the potential changes more rapidly. We expect this to make our
approximations increasingly inaccurate, as it is constructed under
the assumption that the derivatives of the external potential are
small.

We have computed the predicted free energy (46) in this sys-
tem, as well as the cruder approximation (45), which lacks the square
gradient approximation. We compare these values with the true
free energy, computed via thermodynamic integration, and inves-
tigate the dependence of the accuracy of the approximation on the
small particle volume fraction #5 and the steepness of the external
potential. The results of this computation are shown in Fig. 13.

Figure 13(a) shows that the absolute value of the free energy
depends weakly on the number of periods m in the external poten-
tial. As expected, the error of the approximation methods increases
substantially in Figs. 13(b)-13(d), as the number of periods m
increases, as does the steepness of the cosine potential & cos. The
absolute prediction error also increases in the volume fraction #5.
For all m considered here, the square-gradient method (46) substan-
tially outperforms the prediction (45). For m = 1, where the external
potential varies the slowest, the square-gradient approximation is
nearly exact, which confirms the accuracy of the square-gradient fac-
tor g = g(y) in Appendix B 1. In addition to the increasing error
on increasing m, the relative improvement of the square-gradient
method over the simple approximation decreases. This indicates that
higher order terms in the derivative of the potential start to become
more important.

The choice of the 1d cosine potential &,,cos here is motivated by
the use of a half-period of the cosine to introduce the suppression
potential in the construction of the intermediate level in Sec. IV. For
the numerical examples in Sec. V, the suppression potential has a
(half-period) length of I = 3.5 and a maximal strength of s = 4.4. In
terms of the maximal squared gradient that appears in this poten-
tial, it lies between the cases m = 1 and m = 2. This indicates that
our square-gradient approximation is appropriate for the use of pre-
dicting the free energy of the partially inserted system in the binary
hard-sphere example.

APPENDIX C: INFLUENCE OF THE AD HOC
CORRECTION FACTOR

The construction of the intermediate level in Sec. I'V included
an ad hoc correction term that was identified using preliminary com-
putations. In this section, we take another look at this parameter
and discuss its importance for the performance of the three-level
method. For this, we consider four values for the correction factor

teorr € {0,0.04,0.058,0.076} (C1)

between acorr = 0 (n0 ad hoc correction, which means p; = pl(z)), and
dcorr = 0.076 (corresponding to a linear least-square fit to the weights
in Fig. 10). The effect of the choice of correction factor is displayed
in Fig. 14 where we show the differences between the intermediate
levels and the FG estimate for the two quantities of interest (see I'ig. 3
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FIG. 13. A numerical test of the approximation accuracy of the square-gradient method for computing free energies of non-homogeneous hard-sphere fluids. (a) The free
energy @ of the hard-sphere fluid described in Appendix B 2 with a cosine potential with 1,2, and 3 periods within the simulation box as a function of the volume fraction 7.
(b)—(d) The difference between the free energy and its pressure integral approximation in (46) for a cosine potential with one (b), two (c) or three (d) periods, with (solid line)

and without (dashed lines) the square-gradient term.

for their FG averages). The ad-hoc correction has a noticeable influ-
ence on the quantities of interest, especially for the pair correlation
function g(r) when the two particles are almost touching (r ~ 10).
This is in the relevant region for the coordination number N, which
was measured as part of the performance test in Sec. V B.

To determine how much the three-level method depends on
Ocorr, We repeated this performance test for the different values in
(C1). The measured sample variances for Niuns = 60 independent
realizations of the estimators are shown in Fig. 15. As before, the
results for different acorr are highly correlated because they share the
same configurations. The (bootstrap) standard errors of the values in
Fig. 15 are comparable to the ones shown in Fig. 12; the same caveats
apply and we have omitted them here for clarity of presentation.

(a) .
0.2 1 (]
] e
0.0 s 9 | & s _ Pares | 8
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= o
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FIG. 14. The difference between the estimates at the intermediate and final level
for (a) the pair correlation function g(r) and (b) the distribution of the number of
big particles for different values of the ad-hoc correction factor acorr
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FIG. 15. The sample variance of 60 independent estimates of the coordination
number N for different values of the ad hoc correction factor acor (see also
Fig. 12).

The main takeaway from Fig. 15 is that for our example, the
three-level estimators without tapering outperform the correspond-
ing two-level estimators, independent of the choice of acorr. That is
the method appears to be robust with respect to modifications of
the intermediate level, even if the mean quantity of interest differs
significantly between intermediate distributions.

Given the low number of samples, the exact variance figures
should not be over-interpreted. Nevertheless, the trends in Fig. 15
illustrate two aspects of the SMC methodology that are relevant to
applications. First, the details of the intermediate level become more
important when we increase the tapering rate, as one can, for exam-
ple, see by comparing the four different values for the final-level
estimator Ay" without tapering and with 7 : 3 tapering. Second, this
effect is dampened for the difference estimators. The general robust-
ness of the difference estimator in the example considered here
supports our assertion that for appropriately defined levels, it should
be the preferred estimator when applying the three-level method in
practice.
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