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ABSTRACT
Polar crystal surfaces play an important role in the functionality of many materials and have been studied extensively over many decades. In
this article, a theoretical framework is presented that extends existing theories by placing the surrounding solution environment on an equal
footing with the crystal itself; this is advantageous, e.g., when considering processes such as crystal growth from solution. By considering the
polar crystal as a stack of parallel plate capacitors immersed in a solution environment, the equilibrium adsorbed surface charge density is
derived by minimizing the free energy of the system. In analogy to the well-known diverging surface energy of a polar crystal surface at zero
temperature, for a crystal in solution it is shown that the “polar catastrophe” manifests as a diverging free energy cost to perturb the system
from equilibrium. Going further than existing theories, the present formulation predicts that fluctuations in the adsorbed surface charge
density become increasingly suppressed with increasing crystal thickness. We also show how, in the slab geometry often employed in both
theoretical and computational studies of interfaces, an electric displacement field emerges as an electrostatic boundary condition, the origins
of which are rooted in the slab geometry itself, rather than the use of periodic boundary conditions. This aspect of the work provides a firmer
theoretical basis for the recent observation that standard “slab corrections” fail to correctly describe, even qualitatively, polar crystal surfaces
in solution.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097531

I. INTRODUCTION

Crystal morphology is a determining factor in the mechanical,
rheological, and catalytic properties of ionic crystals.1 As such, there
is considerable effort to establish simple and inexpensive routes to
control which facets of a crystal are exposed at its surfaces. In this
article, we will concern ourselves exclusively with polar crystal faces,
which we describe in more detail in Sec. II A. Examples of polar
crystal surfaces include halite (1 1 1), wurtzite (0 0 0 1), and zinc
blende (1 1 1). Polar surfaces have been studied extensively from a
solid state physics perspective2–4 owing to their use in microelec-
tronic devices and the now well-established fabrication techniques
of thin metal oxide films. Polar surfaces are also important for catal-
ysis. For example, the {1 1 1} facets of MgO exhibit ultrahigh catalytic
activity5 for Claisen–Schmidt condensation of benzaldehyde and
acetophone, and the (0 0 0 1) face of ZnO is active in methanol6

decomposition.

What makes polar surfaces both challenging and interesting
is that basic electrostatic arguments show that their surface energy
diverges with increasing crystal thickness along a polar crystal-
lographic direction;2,3,7 this is the so-called “polar catastrophe.”
The fact that polar crystal surfaces are observed, thus, implies a
“polarity compensation mechanism” that overcomes the underly-
ing instability. Known polarity compensation mechanisms are as
follows:3,4 (i) charge transfer via nonstoichiometric reconstruction,
which amounts to an effective transfer of ions from one side of
the crystal to the other; (ii) electronic reconstruction, where inter-
facial charges are modified by partial filling of electronic interface
states; and (iii) adsorption of foreign atoms or ions that provide
an appropriate amount of compensating interfacial charge. The
theoretical rationalization of the polar catastrophe from energetic
considerations of a crystal surface in contact with a low-density
vapor phase lends itself most naturally to describing mechanisms
(i) and (ii).
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Polarity compensation through adsorption of ions from a sur-
rounding liquid environment can be considered an extreme example
of mechanism (iii), and it provides a potentially simple and cost-
effective route to controlled exposure of polar crystal facets. For
example, using the molten salt synthesis route, Xu et al.8 synthe-
sized particles of ZnO, MgO, and Co3O4 that exclusively expose
polar facets, and subsequent studies from Susman et al. suggested
that K+ and Cl− ions potentially stabilize the {1 1 1} facets of MgO,9
while a complex interplay between the molten salt and resulting
crystal morphology is evident for NiO.10 To understand the pro-
cesses that underlie polarity compensation by ion adsorption from
a surrounding liquid, it will be useful to have a theory that treats the
environment on an equal footing to the crystal. The purpose of this
article is to develop such a theoretical framework.

A second motivation is to reiterate the central message of
Tasker’s seminal article2 on the theory of polar surfaces: to demon-
strate that the polar catastrophe has a true physical origin and is not
the result of lattice summation techniques. Such a (re)clarification
is necessary as the use of molecular simulations—and consequently,
lattice summation techniques—has exploded since Tasker’s original
1979 publication, and the technical nature of treating long-range
electrostatic interactions under periodic boundary conditions can
obfuscate physical intuition. Similar to Tasker, then, the theory pre-
sented here will not rely on periodic boundary conditions. Nonethe-
less, we will see implications for simulations that do employ periodic
boundary conditions, and we make two observations that are useful
from a practical viewpoint when modeling, with a slab geometry, the
surfaces of polar crystals in contact with a conducting medium, such
as an electrolyte:

1. Tinfoil Ewald approaches, briefly described in Sec. II B,
are appropriate if we are interested in genuinely thin polar
crystals.

2. An electric displacement field emerges as a boundary
condition.

The second point clarifies the role of the electric displacement field
imposed in previous simulation studies.11–13 Specifically, the cur-
rent work emphasizes that it is conceptually incorrect to associate
this electric displacement field with the removal of spurious interac-
tions between periodic replicas of the simulation cell and places the
observation made in Ref. 13—that standard “slab corrections” lead
to qualitatively incorrect results—on a firmer theoretical footing.

The rest of this article is organized as follows: In Sec. II A, we
derive an expression for the equilibrium adsorbed surface charge
density at halite (1 1 1) in contact with an electrolyte solution
as a function of crystal thickness. We also show how the polar
catastrophe manifests as a diverging free energy cost for fluctua-
tions away from equilibrium as the crystal thickness increases. In
Sec. II B, we show that the theoretical predictions are consistent
with results from molecular dynamics simulations that employ a tin-
foil Ewald approach to treat electrostatic interactions. In Sec. III,
we discuss the emergence of the electric displacement field in the
slab geometry and also outline a justification for the use of tin-
foil Ewald approaches to model genuinely thin polar crystals. We
summarize our findings in Sec. IV, before providing a brief sum-
mary of the simulation methods in Sec. V. In the Appendix, we
also provide a more formal justification for the use of tinfoil Ewald
approaches.

II. THE POLAR CATASTROPHE FROM
FREE ENERGY MINIMIZATION
A. Derivation

A schematic of the system we are interested in is shown in
Fig. 1(a). Here, a crystal exposing polar facets is immersed in an
electrolyte environment. We assume that the crystal assumes a bulk
truncated structure, i.e., nonstoichiometric reconstruction [mecha-
nism (i)] has not taken place. Moreover, we assume an ionic model
such that electronic reconstruction [mechanism (ii)] is not possible.
With these approximations, the exposed crystal faces have surface
charge density ±σ0. We now suppose that ions from solution adsorb
to the polar crystal faces with surface charge density ∓σ(n). The
reason for the “(n)” superscript will become clear shortly. To inves-
tigate these surfaces, we imagine taking a cut of the system far from
the edges of the crystal, as indicated by the dotted box in Fig. 1(a),
and ignore any edge effects. This amounts to assuming that the
planes of charge span the entire plane orthogonal to the surface
normal. This “slab geometry,” which is shown in greater detail in
Fig. 1(b), is similar to the textbook parallel plate capacitor model,14

a fact we draw upon heavily in what follows. Despite relying on the
parallel plate capacitor model extensively, we should acknowledge
that neglecting edge effects in the slab geometry is not an inno-
cent omission; in Sec. III, we will see that doing so ultimately gives

FIG. 1. Schematic of a polar crystal in solution. (a) We imagine that a crystal
exposing polar surfaces with charge density ±σ0 is immersed in an electrolyte
environment. We suppose that anions from the solution adsorb to the positive
crystal surface, giving rise to adsorbed surface charge density −σ(n). Similarly, at
the negative crystal surface, the adsorbed surface charge density is+σ(n). At some
macroscopic distance away from the crystal, there is a boundary between the elec-
trolyte and its vapor phase. To investigate the properties of these polar surfaces,
we imagine taking a cut of the system far from the edges of the crystal, as indicated
by the dashed box, and ignore edge effects; this is the “slab geometry.” (b) In the
slab geometry, the polar crystal is modeled as n + 1 planes with alternating charge
density ±σ0, separated by a distance R. The specific case of n = 5 is shown. We
will also consider cases where the central planes are separated by a distance Rc.
The planes of adsorbed surface charge density (dotted lines) are separated from
the positive and negative termini by ℓ+ and ℓ−, respectively. In regions marked
with filled circles, the electric field is E = 4πσ(n), while in those marked with empty
squares, E = 4π(σ(n) − σ0).
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rise to a boundary condition that is absent in the system of interest
[Fig. 1(a)].

Also given in Fig. 1(b) is a more detailed description of the
structure of the polar crystal. For simplicity, we consider halite
(1 1 1)—relevant to, e.g., MgO, NiO, and NaCl—in which n + 1
crystal planes are separated by a distance R, where n is an odd inte-
ger, though results can be generalized to other geometries. Later,
we will also perform “simulation experiments” in which we change
the separation between the central planes in the crystal to Rc ≠ R. In
the slab geometry, the underlying average microscopic charge den-
sity ρc(z) only varies in the direction normal to the surface, which
we indicate by z. The total adsorbed surface charge density is then
determined by

σ(n) = ∫
int−

dz ρc(z) = −∫
int+

dz ρc(z), (1)

where “int−” and “int+” indicate that the integrations are performed
over interfacial regions corresponding to the negatively and posi-
tively charged crystal surfaces, respectively.15 While Eq. (1) provides
a direct means to obtain σ(n) from average microscopic properties,
deciding where to locate the planes of adsorbed surface charge den-
sity is less straightforward. Nonetheless, it seems reasonable to place
the plane with charge density σ(n) a distance ℓ− from the crystal’s
negatively charged surface and that with −σ(n) a distance ℓ+ from
the crystal’s positively charged surface, where ℓ− and ℓ+ both have
a clear microscopic interpretation, inasmuch as they can be related
to features of ρc(z). In the following, we will, in fact, find an opti-
mal apparent length scale entering the continuum model that has no
such clear microscopic interpretation.

Let us denote the free energy per unit area of the system as
f (σ(n)

). Despite discussing the system in terms of uniform planes
of charge, we have already acknowledged that the underlying sys-
tem comprises atomic and molecular entities. It is natural, then, to
partition f into “capacitive” and “noncapacitive” contributions,

f (σ(n)) = ucap(σ(n)) + f nc(σ(n)). (2)

The capacitive contribution, ucap, captures the energy stored in the
electric fields assuming that the system comprises uniform planes of
charge, as shown in Fig. 1(b). The noncapacitive term, fnc, captures
contributions from everything else, e.g., non-electrostatic interac-
tions, electrostatic interactions not captured by the simple capacitor
model, solvent effects, and any entropic contributions.

To find ucap, we view the crystal in the slab geometry as
(n + 1)/2 parallel plate capacitors, between which the electric field
is E = 4π(σ(n)

− σ0), along with (n − 1)/2 capacitors between which
the electric field is E = 4πσ(n). For both sets of capacitors, the sepa-
ration between plates is R (for the moment, we consider Rc = R). In
addition, the electric field between an adsorbed plane and the surface
of the crystal is also E = 4πσ(n). Recalling that the energy density of
an electric field is ∣E∣2/8π, it follows that

ucap = 2π(nR + 2ℓ)(σ(n))
2
− 2π(n + 1)Rσ0σ(n) + π(n + 1)Rσ2

0 , (3)

where 2ℓ = l+ + l−. (Throughout this formulation, we work in a unit
system in which 4πϵ0 = 1, where ϵ0 is the permittivity of free space.)
At equilibrium, σ(n) assumes a value that minimizes f ,

σ(n,eq)
=
(n + 1)Rσ0 − f ′nc/2π

2nR + 4ℓ
, (4)

where the prime indicates a partial derivative with respect to σ(n).
Equation (4) is a central result of this article. While noncapac-
itive contributions are irrelevant as n→∞, their effects become
increasingly important as the thickness of the crystal decreases.

Although formally exact, analysis of Eq. (4) is complicated
by the presence of the noncapacitive contributions. To make
exploratory progress, we simply postulate that

fnc(σ(n)) = 4πanc(σ(n))
2
. (5)

The equilibrium adsorbed surface charge density then reads

σ(n,eq)
=

(n + 1)Rσ0

2nR + 4(ℓ + anc)
. (6)

Within the phenomenological model specified by Eq. (5), one can
view the effects of noncapacitive contributions as modifying the
apparent length scale associated with ion adsorption, from ℓ to
ℓ + anc, in the continuum representation of the system. A similar
expression for σ(n,eq) was derived previously by Hu16 for the slab
geometry under periodic boundary conditions, within the frame-
work of symmetry-preserving mean field theory.17,18 Within that
framework, an effective length scale is rationalized by consider-
ing the slowly varying components of ρc, whose structural features
need not coincide with those of the full average microscopic charge
density. We will postpone further discussion of the effective length
scale ℓ + anc to Sec. II B and the Appendix. Importantly, the phys-
ical interpretation of Eq. (6) is somewhat different from that of
Ref. 16, where σ(n)

= σ(n,eq) was attributed to the presence of a spu-
rious electric field arising from the use of tinfoil Ewald sums. In
contrast, in this study, Eq. (6) has been derived for a nonperiodic
slab geometry; the driving force for ion adsorption is a significant
reduction in the capacitive energy stored in the system upon ion
adsorption.

To understand the origin of the polar catastrophe from this
free energy perspective, we consider the reversible work required to
change the adsorbed surface charge density by an amount δσ from
its equilibrium value,

f (σ(n,eq)
+ δσ) = f (σ(n,eq)

) +
1
2

f ′′(σn,eq
)(δσ)2

+O((δσ)3
).

Neglecting terms higher than second order in δσ and combining
with Eqs. (2), (3), and (5) give

f (σ(n,eq)
+ δσ) − f (σ(n,eq)

) = 2π(nR + 2(ℓ + anc))(δσ)2. (7)

Equation (7) is another key result of this study; it is analogous to the
familiar diverging surface energy of an unreconstructed polar crystal
in contact with vacuum.2,3 We see that the reversible work required
to change the adsorbed surface charge density from σ(n,eq) by any
finite amount diverges linearly with the crystal thickness nR.
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Despite the clear analogy to the well-known diverging surface
energy of polar crystal surfaces in vacuum, Eq. (7) contains more
information. This can be seen more clearly by considering the behav-
ior of the fluctuations of the total charge Q within a probe area A(n) at
the surface of the crystal. At equilibrium, the total adsorbed charge
within such an area is Q(n,eq)

= A(n)σ(n,eq). Equation (7) states that
the area required to observe δQ = Q −Q(n,eq)

≈ e with appreciable
probability, i.e., βA(n)

[ f (σ(n,eq)
+ δσ) − f (σ(n,eq)

)] ≈ 1, is

A(n) ≈ 2πβe2
(nR + 2(ℓ + anc)), (8)

where e is the unit of elementary charge and β = 1/kBT (where kB
is Boltzmann’s constant and T is the temperature). As the thickness
n of the crystal increases, ever increasing probe areas are required
to observe appreciable fluctuations in the adsorbed surface charge.
The theory presented here not only reveals the strong constraint
placed on the average adsorbed surface charge density at polar crys-
tal surfaces, but also that fluctuations at the interface are strongly
suppressed.

B. Validation of the theory with molecular
simulations

Equation (6) provides an expression for the equilibrium
adsorbed surface charge density at polar halite (1 1 1) surfaces
in contact with an electrolyte solution, assuming an ionic model
for the crystal. As such, Eq. (6) lends itself naturally to valida-
tion with molecular simulations. However, two comments are in
order. The first concerns the treatment of long-range electrostatic
interactions under periodic boundary conditions, for which lattice
summation techniques are often employed. For Ewald summation,
which underlies many of the most popular techniques used in molec-
ular simulations, the expression for the Coulomb energy for a set of
charges {qi} with positions {ri} reads

UC =
1
2∑b

′

∑
i,j

qiqjϕSR(ri − rj − b) +
1

2Ω∑k≠0
∣ρ̃(k)∣2ϕ̃LR(k)

−
1
2∑i

q2
i ϕLR(0) +

1
2Ω

M ⋅ J ⋅M. (9)

In Eq. (9), b is a lattice vector, and the prime indicates that the
term i = j is omitted when b = 0. The volume of the simulation
cell is Ω, and ρ̃(k) is the Fourier transform of the charge density
ρ(r) = ∑iqiδ(r − ri). The potentials ϕSR(r) and ϕLR(r) are defined
by a splitting of the Coulomb potential into short- and long-ranged
contributions, 1/∣r∣ = ϕSR(r) + ϕLR(r), and ϕ̃LR is the Fourier trans-
form of the long-ranged part. Most important for the current dis-
cussion is the final “surface term,” which depends upon the total
dipole moment of the simulation cell, M, and the depolarization ten-
sor, J. This surface term is determined by the specified summation
order of the lattice sum, and for a spherical summation order, it is
equal to 2π∣M∣2/(2ϵ′ + 1), where ϵ′ is the dielectric constant of a
surrounding medium “at infinity.” Tinfoil Ewald approaches take
this surrounding medium to be a perfect conductor, ϵ′ =∞, and
amounts to ignoring the surface term. The above is not intended as
a detailed discussion of Ewald summation, for which there is exten-
sive literature.19–29 The reader is referred to Ref. 30 for a particularly
clear discussion on the topic.

For systems in the slab geometry under periodic boundary con-
ditions employing tinfoil Ewald, where the slab is surrounded on
either side by vacuum, it has long been recognized that if a net
dipole Mz exists along z, then there is a finite electric field in the vac-
uum region. It is, therefore, common to employ “slab corrections” to
mitigate possible spurious interactions between periodic images. In
classical simulations of liquid–solid interfaces, the standard choice
is the method of Yeh and Berkowitz,31 which includes a surface
term 2πM2

z /Ω. A similar expression exists in the surface science
community (which typically uses periodic density functional theory
calculations),32,33 where it is known as the “dipole correction.” In

FIG. 2. Theoretical predictions and molecular simulations paint a consistent picture
for ion adsorption at polar surfaces. (a) Symbols show σ(n,eq) obtained from 10 ns
simulations of a halite slab exposing its (1 1 1) and (1 1 1) surfaces to aqueous
electrolyte solution. The dotted-dashed line indicates a best fit of the theoretical
prediction [Eq. (6)] to the simulation data, with ℓ = R and anc = −0.568 Å, where
anc is the only fitting parameter. A model that ignores noncapacitive contributions
(anc = 0) gives a poor description of the simulation data. A ≈ 15.95 × 13.82 Å2 is
the cross-sectional area of the simulation cell. Error bars indicate 95% confidence
intervals, estimated by splitting trajectories into five samples. (b) Average number
density profiles ρn(z) for Na+ ions (solid orange line) and water hydrogen atoms
(dashed blue line) above halite (1 1 1). (c) Average charge density ρc(z) above

halite (1 1 1). In (c) and (d), the region occupied by the crystal is indicated by the
shaded gray region. The vertical purple dotted line indicates the separation R from
the crystal’s surface, which aligns well with the first peaks in ρn(z) and ρc(z).
The vertical blue dotted-dashed line indicates the separation R + anc, which lacks
a clear microscopic interpretation.
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Ref. 13, however, it was demonstrated that typical slab correction
schemes impose vanishing adsorbed surface charge density; more
generally, it was found that an electric displacement field directly
determines the adsorbed surface charge, irrespective of the slab’s
thickness. Such a scenario is clearly incompatible with σ(n,eq) pre-
dicted by Eq. (6). In contrast, simulations performed with tinfoil
Ewald approaches were found to give adsorbed surface charge densi-
ties that increase with crystal thickness. We will, therefore, compare
the predictions of the theory presented above to simulations that use
a tinfoil Ewald approach; a theoretical justification for doing so will
be given in Sec. III, where it will also become clear why standard slab
corrections fail.

The second comment concerns the parameters that deter-
mine σ(n,eq). Here, we will consider crystals where the positions
of the ions have been clamped and whose charges do not fluc-
tuate; σ0 and R are then straightforward input parameters. The
extent to which agreement between the theory and simulation is
observed is an indicator of how faithfully the theory presented
in this article describes the ionic model of polar surfaces. More-
over, we will consider the specific example of NaCl (1 1 1) in
contact with an aqueous NaCl solution. We then anticipate that
ions in direct contact with the crystal will form a plane separated
from the crystal by a distance ℓ ≈ R. The only remaining unknown
parameter is anc, the length scale associated with noncapacitive
contributions.

In a first validation step, we compare σ(n,eq) obtained from
molecular simulations of a concentrated aqueous NaCl solution in
contact with halite (1 1 1), where anc is simply treated as a free fit-
ting parameter. As seen in Fig. 2(a), Eq. (6) with ℓ = R = 1.628 Å
and anc = −0.568 Å captures the trend seen in the molecular sim-
ulations very well. To determine the significance of noncapacitive
contributions, it is instructive to compare the effective length scale
ℓ + anc = 1.06 Å in the continuum model to real length scales in the
system. To that end, Fig. 2(b) shows the number density profile of
Na+ ions at halite (1 1 1) with n = 5. As expected, the plane sep-
arated from halite (1 1 1) by R coincides with the plane of Na+

directly adsorbed to the surface. In contrast, the plane at ℓ + anc from
(1 1 1) is located in a region that cannot be readily associated with
ion adsorption; it does not appear that anc simply captures effects
due to thermal fluctuations.

The catch-all nature of fnc, and the ad hoc assertion of its
quadratic form [Eq. (5)], makes direct physical interpretation of the
value of anc challenging. Recent work suggests that dielectric bound-
aries for systems with water as a solvent are closely associated with
water’s hydrogen density.34,35 Also plotted in Fig. 2(b), therefore, is
the number density profile of water’s hydrogen atoms. While some
hydrogen density is found marginally closer to halite (1 1 1) than
that of the Na+ ions, it is difficult to draw any firm conclusions
on a possible relationship between anc and the solvent. More likely
is that noncapacitive contributions account for the rather drastic
approximation of collapsing the entire adsorbed surface charge den-
sity into a single plane. As can be seen in Fig. 2(c), ρc(z) exhibits
a pronounced structure beyond the first peak at ℓ = R. In Sec. III,
we will see that the effective length scale ℓ + anc in the continuum
model is that which equalizes the electrostatic potential in the solu-
tion on either side of the crystal, a condition that is automatically
satisfied by molecular simulations of a crystal slab immersed in
an electrolyte solution, in which tinfoil Ewald approaches are used
(see the Appendix).

Despite the lack of a simple physical interpretation, the impor-
tance of fnc can be readily seen by plotting Eq. (6) with anc = 0,
as shown in Fig. 2(a). Clearly, a model that only considers capaci-
tive contributions in which the system is approximated as planes of
uniform charge density poorly describes the simulation data, with
predicted adsorbed surface charge densities much lower than that
observed.

A possible cause for concern is that simply treating anc as a
free fitting parameter amounts to nothing more than a convenient
fix. Challenges in interpreting the value of anc notwithstanding, it is
reasonable to assume that noncapacitive contributions largely arise
from effects that are localized to the solution and interface regions.
While changes to the structure of the crystal in regions far from the
interface will affect ucap, we do not anticipate significant impact on
the coefficient anc. In a second validation step, we, therefore, per-
form a “simulation experiment” in which the separation between
the crystal’s central planes is varied (i.e., Rc ≠ R). The manner in
which σ(n,eq) is affected by Rc ≠ R depends on whether the cen-
tral planes bound a region with E = 4πσ(n) [(n + 1)/2 is even] or
E = 4π(σ(n)

− σ0) [(n + 1)/2 is odd]. Following the same approach
leading to Eq. (6) gives

σ(n,eq)
=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

[(n − 1)R + 2Rc]σ0

[(2n − 2)R + 2Rc + 4(ℓ + anc)]
[(n + 1)/2 is odd], (10a)

(n + 1)Rσ0

[(2n − 2)R + 2Rc + 4(ℓ + anc)]
[(n + 1)/2 is even]. (10b)

Results obtained from simulations with Rc = 3R/4, R/2, and
R/4 are presented in Fig. 3, along with the theoretical predictions
described by Eqs. (10a) and (10b), in which no further fitting has
been performed. That is, the same value anc = −0.568 Å has been
used. The good agreement between the theoretical predictions and
the simulation data lends support to the notion that fitting anc
captures genuine noncapacitive effects that are localized to the
solution and interface regions.

Results presented so far demonstrate consistency between the
theory presented in Sec. II A for the equilibrium adsorbed surface
charge density at halite (1 1 1), and molecular simulations that use
a tinfoil Ewald approach. In Sec. III, we will discuss why it is appro-
priate to compare σ(n,eq) for the system of interest [Fig. 1(a)] to
simulations that employ the slab geometry under periodic bound-
ary conditions. In doing so, we will also shed light on the role of the
electric displacement field in the slab geometry.12,13,36–39

J. Chem. Phys. 157, 094701 (2022); doi: 10.1063/5.0097531 157, 094701-5

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. “Simulation experiments” further validate the theory. Symbols show σ(n,eq)

obtained from simulations with Rc ≠ R, as indicated in the legend. Dashed and
dotted lines indicate theoretical predictions described by Eqs. (10a) and (10b),
respectively, with anc = −0.568 Å (no further fitting). The good agreement between
simulation and theory suggests that anc is insensitive to structural changes away
from the interface. The blue dotted-dashed line is the same as in Fig. 2(a), i.e.,
Rc = R.

III. THE EMERGENCE OF THE ELECTRIC
DISPLACEMENT FIELD IN A SLAB GEOMETRY

Recall the procedure employed in Sec. II A to investigate the
polar surfaces of a crystal in solution. First, a particle of finite size,
with polar surfaces exposed, was immersed in an electrolyte, and
ions from solution were imagined to adsorb to its surfaces. Then,
we constructed the slab geometry by taking a cut of the system far

from the edges of the crystal and considered the free energy per unit
area. Why did we adopt this procedure, rather than starting immedi-
ately with the slab geometry? Consider again the system of interest,
which, to avoid notational clutter, is shown again in Fig. 4(a). As
the particle has finite size, the ions adsorbed to the positive and
negative crystal faces originate from the same pool of ions in the
surrounding electrolyte solution. The remaining electrolyte solution
is electroneutral. As the electrolyte solution is conducting, the total
electric field in its interior vanishes, Ee = 0. Now, consider the vapor
region. We will assume that the vapor pressure is sufficiently low
that this region can be approximated as vacuum. In the absence of
an external field, the total electric field there too vanishes, Ev = 0. It
then follows that the surface charge density at the electrolyte–vapor
interface is zero, i.e., σev = r̂ ⋅ (Ev − Ee) = 0, where r̂ is the outward
normal to the electrolyte surface. This scenario is possible with the
procedure employed in Sec. II A, as the electrolyte solution remains
uncharged. Moreover, there is a clear physical pathway by which the
ions have adsorbed from the solution to the surface.

Imagine that we instead start directly with the slab geometry.
As the crystal spans the entire plane orthogonal to the surface nor-
mal, there are now two distinct regions of electrolyte. Upon ion
adsorption, electroneutrality must be preserved in each region sep-
arately (the ions cannot pass through the crystal). As the electrolyte
is a conductor, the remaining charge in solution must be located at
the electrolyte–vapor boundary, ∣σev∣ = σ(n), as indicated in Fig. 4(b).
As before, Ee = 0, but the electrolyte is now polarized, with uni-
form polarization ẑ ⋅ Pe = σ(n). The electric displacement field in the
electrolyte then satisfies

ẑ ⋅De = ẑ ⋅ (Ee + 4πPe) = 4πσ(n). (11)

FIG. 4. Emergence of the electric displacement field in a slab geometry. (a) The adsorbed surface charge densities σ(n) and −σ(n) comprise ions originating from the same
pool of electrolyte, which remains electroneutral. Both the surface charge density at the electrolyte–vapor interface, σev, and the electric field in vacuum, Ev, are zero. As
the electrolyte is conducting, its interior is equipotential, Va = Vb. In contrast, the slab geometry creates two distinct regions of electrolyte either side of the crystal slab, as
shown in (b). Unlike Fig. 1(b), we have now included the vapor phase, and only the outermost crystal planes are shown explicitly. As electroneutrality must be preserved in
each region separately, σ(n) = σ(n,eq) implies a polarized electrolyte with a finite displacement field, ẑ ⋅ De = 4πσ(n,eq). While this satisfies Va = Vb, the electric field in vapor
is now finite, ẑ ⋅ Ev = 4πσ(n,eq). If σ(n) = ẑ ⋅ Ev = 0, then Va − Vb = 2π(n + 1)Rσ0. Panel (c) depicts the system under a periodic slab geometry, without the vapor region.
While for σ(n) = σ(n,eq), it is still the case that ẑ ⋅ De = 4πσ(n,eq), the electric field in the electrolyte vanishes, Ee = 0, and De ⋅ Ee = 0. Moreover, Va = Vb.
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In the vapor, we assume that atomic density is sufficiently low
that Pv = 0. Matching the electric displacement field across the
boundaries leads us to conclude that

ẑ ⋅ Ev = ẑ ⋅ (Dv − 4πPv) = 4πσ(n). (12)

This result for Ev in the slab geometry is most severe. Integrating
the electrostatic energy density ∣Ev∣

2
/8π over the macroscopic vol-

ume occupied by the vapor phase indicates a prohibitively expensive
energy cost for σ(n)

≠ 0. Another route to arrive at the conclusion
σ(n)
= 0 when starting in the slab geometry is that, as the electric field

external to the parallel plate capacitors vanishes, there is no driving
force for ion adsorption.

The slab geometry, despite widespread use in both theoretical
and computer simulation studies, does not correspond to a phys-
ical reality. Consider the electrostatic potential in the regions of
the electrolyte indicated by the dotted and dotted-dashed circles in
Fig. 4(a), which we denote Va and Vb, respectively. As the elec-
trolyte is conducting, it follows immediately that Va = Vb. In the slab
geometry, the crystal provides an insulating layer between the two
distinct regions of electrolyte. For σ(n)

= 0, the electrostatic potential
difference across the crystal is

Va − Vb = 2π(n + 1)Rσ0. (13)

Even for n = 1, this electrostatic potential difference is substantial:
Va − Vb ≈ 20 V. In contrast, for σ(n)

= σ(n,eq) [Eq. (6)],

Va − Vb = 0, (14)

where, as discussed in the Appendix, we have treated the adsorbed
planes as if they are separated from the crystal’s surfaces by the effec-
tive distance ℓ + anc. The slab geometry fundamentally breaks the
system: for σ(n)

= 0, Ev = 0 is accurately captured, but there exists
an erroneous potential difference across the crystal; for σ(n)

= σ(n,eq),
the potential difference across the crystal is correct, but at the cost
of introducing a finite field in the vapor phase, ẑ ⋅ Ev = 4πσ(n,eq).
This is a consequence of the finite electric displacement field in
the electrolyte, ẑ ⋅De = 4πσ(n,eq) [Eq. (11)], that emerges in the slab
geometry.

What are the implications for molecular simulations? Let us
consider cases where periodic boundary conditions are used in all
three Cartesian directions, restricting ourselves to cases where peri-
odic replicas of the crystal slab sandwich the electrolyte solution
such that there is no vapor region, as shown in Fig. 4(c). Similar
to the nonperiodic slab geometry, Fig. 4(b), the electrolyte is polar-
ized, ẑ ⋅ Pe = σ(n), and there is a finite electric displacement field
in the electrolyte, ẑ ⋅De = 4πσ(n). For simulations that employ tin-
foil Ewald approaches to compute electrostatic interactions, there
is no electrostatic potential difference across the simulation cell.
As Ee = 0, it then follows that Va − Vb = 0. (In the Appendix, it is
shown explicitly that σ(n,eq) is the adsorbed surface charge density
that enforces Ee = 0 when using tinfoil Ewald approaches.) By not
including a vapor region between periodic images, the electrostatic
energy is well behaved; as De ⋅ Ee = 0, we can extend the electrolyte
region between periodic replicas without incurring any cost in elec-
trostatic energy. Simulations using tinfoil Ewald sums, thus, appear
to give a faithful representation of polar surfaces in solution—in

the sense of taking a cut of the system of interest as shown in
Fig. 1(a), albeit with a finite polarization and electric displacement
field in the electrolyte, the effects of which, however, seem largely
benign.

Implicit in the preceding discussion is that the polariza-
tion is treated in an itinerant fashion—the ions are included in
its definition—which has been shown40,41 to satisfy key statisti-
cal mechanical properties for electrolyte solutions, such as the
Stillinger–Lovett sum rules.42,43 Any discussion on the multivalued-
ness of polarization under periodic boundary conditions has also
been neglected, along with implications of whether the crystal or the
electrolyte straddles the boundaries of the simulation cell. The reader
is referred to Refs. 12, 36, and 44 for a discussion of these issues in
the context of molecular dynamics simulations.

As already mentioned, Ref. 13 demonstrated that imposing an
electric displacement field directly determines the adsorbed surface
charge density. Theoretical discussion in that work, however, was
brief, and what little there was relied heavily upon the framework
provided by the “finite field approach” of Zhang and Sprik.36,39,45

The picture to emerge from the finite field approach is that of a set
of “virtual electrodes” that either controls the electrostatic poten-
tial difference across the simulation cell (“constant E”) or controls
the electric displacement field at the cell boundaries (“constant D”).
As the finite field approach was formulated in the context of peri-
odic boundary conditions, it can be challenging to disentangle its
deeper significance from issues concerning conditional convergence
of lattice sums and unwanted interactions between periodic images.
Moreover, the picture of virtual electrodes can give the impression
that one is forcing the system adopt a particular adsorbed surface
charge density with an arbitrary field. In this article, the status of the
electric displacement field as a control variable has been clarified: it
should be viewed as matching an electrostatic boundary condition
that emerges in the slab geometry—even in the absence of peri-
odic boundary conditions—rather than an ad hoc external electric
field that is applied to the system. In Ref. 13, the surfaces of macro-
scopically thick crystals in contact with an electrolyte solution were
effectively simulated by imposing ẑ ⋅De = 4πσ(∞,eq) using the finite
field approach. Similar control of the adsorbed surface charge with
an electric displacement field has also been observed to work away
from equilibrium.46

To end this discussion, it is worth considering standard slab
correction schemes again,31–33 which typically introduce a vacuum
region between periodic replicas along z and remove the electric field
in the vacuum region by enforcing ẑ ⋅Dv = 0. While such a line of
attack seems reasonable from the perspective of removing interac-
tions between periodic images, it presupposes that the true physical
scenario corresponds to an isolated slab in contact with the liquid
[e.g., Fig. 4(b)]. Slabs that completely span the plane orthogonal to
the surface normal, however, do not exist; this fact cannot be ignored
when modeling the surfaces of polar crystals.

IV. CONCLUSIONS
A theoretical framework to describe polarity compensation

arising from the solution environment has been presented in which
the free energy of the system has been separated into “capacitive”
and “noncapacitive” contributions. For crystals that are thin along
a polar crystallographic direction, noncapacitive contributions were
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found to play a significant role. As the thickness of the crystal
increases, the capacitive contribution dominates, and the adsorbed
surface charge density at equilibrium agrees with known expressions
for the required charge imbalance at polar surfaces.2,3

The theory presented here only attempts to capture the net
adsorbed charge at each polar crystal surface and says nothing about
the complex structural details of the solution near the interface. A
major source of the noncapacitive contributions likely arises from
the drastic approximation of assuming that all adsorbed charge lies
in a single plane. In addition, the theory assumes an ionic model
for the crystal. While the severity of such an approximation will
depend on the system under investigation,3 it may nonetheless
provide a useful starting point for more sophisticated theoretical
approaches.

Like previous theoretical treatments for polar crystal surfaces
in contact with vacuum,2,3 the presented theory relies heavily on
modeling the crystal as a stack of parallel plate capacitors. It was
shown that in such a slab geometry, an electric displacement field
arises naturally in the solution. This electric displacement field is
a consequence of the artificial change of topology imposed on the
system in which the crystal blocks the passage of ions, resulting in
a uniformly polarized electrolyte. Our analysis reveals that this is
a consequence of the slab geometry itself, rather than the lattice
summation techniques that are typically used to treat electrostatic
interactions under periodic boundary conditions. We argue that
tinfoil Ewald approaches, which impose zero electropotential differ-
ence in the electrolyte either side of the crystal, are appropriate when
attempting to model the polar surfaces of crystals in solution, if the
crystal is genuinely thin. In contrast, if one is interested in crystals
that are macroscopic in extent, the electric displacement field can be
chosen to enforce σ(∞,eq), as demonstrated in Ref. 13.

Finally, our theoretical prediction [Eq. (7)] for the fluctuations
in the adsorbed surface charge density is intriguing and suggests
that dynamics at the interface may change significantly as the thick-
ness of the crystal increases. Static energy calculations already reveal
that the behavior of thin films in contact with vacuum can be com-
plex, with structural relaxations that we have not considered in
this work permitting uncompensated polarity to a certain extent.47

The morphology of crystals is generally determined by the relative
growth rates along different crystallographic directions.1 Consid-
ering the potential interplay between structural relaxations, and
the thickness dependence of both the equilibrium adsorbed sur-
face charge density and its fluctuations, one can easily imagine
that the growth mechanisms of a polar surface from either a melt
or supersaturated solution will be a complex affair. In addition,
we have implicitly assumed

√
A≫ nR throughout, where A is the

surface area of the exposed polar facets in the crystal [Fig. 1(a)],
whereas the polar catastrophe has nontrivial dependence on crys-
tal morphology.7,48 Future work will focus on disentangling these
different contributions to the growth mechanisms of polar crystal
surfaces.

V. METHODS
The simulation methodology closely resembles that of Ref. 13,

and indeed, for the Rc = R system, we reused trajectories for n = 3, 5,
7, 11, and 23. All simulations used the extended simple point charge
water model (SPC/E),49 whose geometry was constrained using the

RATTLE algorithm50 and the Joung–Cheatham NaCl force field.51

Dynamics were propagated using the velocity Verlet algorithm with
a time step of 2 fs. The temperature was maintained at 298 K with
a Nosé–Hoover chain52,53 with a 0.2 ps damping constant. The
particle–particle particle–mesh Ewald method was used to account
for long-ranged interactions,54 with parameters chosen such that the
root mean square error in the forces were a factor 105 smaller than
the force between two unit charges separated by a distance of 1 Å.55

A cutoff of 10 Å was used for non-electrostatic interactions.
The electrolyte comprised 600 water molecules and 20 NaCl

ion pairs. The crystal consisted of alternating layers of Na+ and Cl−

ions, separated by R = 1.628 Å, and each layer comprised 16 ions.
The lateral dimensions of the simulation cell were Lx = 15.952 Å
and Ly = 13.815 Å along x and y, respectively. In the slab geome-
try with n = 3 and Rc = R, the length of the simulation cell along
z was L = 94.841 Å, and L was increased with n accordingly. For
instance, for n = 5, L was increased by 2R. Each simulation was 10 ns
long post equilibration. The Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) simulation package was used
throughout.56
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APPENDIX: DERIVATION OF σ(n ,eq) UNDER TINFOIL
EWALD PERIODIC BOUNDARY CONDITIONS

In the main article, σ(n,eq) was derived for a nonperiodic slab
geometry [Eqs. (4) and (6)]. In this appendix, an expression for σ(n,eq)

is derived by considering the average molecular charge distribution
under periodic boundary conditions. The derivation strongly hints
that noncapacitive contributions arise from approximating σ(n,eq)

as being confined to a single plane close to the crystal’s surface
(Fig. 1). The derivation largely resembles that of Ref. 16, but differs
in that we do not consider a smeared average molecular charge dis-
tribution. Moreover, we take the present derivation as evidence that

J. Chem. Phys. 157, 094701 (2022); doi: 10.1063/5.0097531 157, 094701-8

© Author(s) 2022

https://scitation.org/journal/jcp
https://doi.org/10.17863/CAM.83994


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

tinfoil Ewald sums provide a reliable estimate of σ(n,eq), rather than
ion adsorption resulting from a spurious treatment of electrostatic
interactions.

When the average molecular charge density ρc only varies along
z, the average electrostatic potential under tinfoil Ewald periodic
boundary conditions is57–59

V(z) = 4π∫
cell

dz′ ρc(z′)J(z − z′), (A1)

with

J(z) = const. +
z2

2L
−
∣z∣
2

, (A2)

where L is the length of the simulation cell along z. For simplicity,
let us first consider the case n = 1. In the simulations discussed in
this article, the crystal ions do not move; approximating these as
uniformly charged planes, we have

ρc(z) = ρ(soln)
c (z) + σ0[δ(z − R/2) − δ(z + R/2)], (A3)

where ρ(soln)
c is the average molecular charge distribution arising

from the electrolyte solution (both solvent and ions). Let us assume
that the crystal is centered at z = 0. In the region R/2 < z ≤ L/2, we
then have

V(z) = 4π∫
cell

dz′ ρ(soln)
c (z′)J(z − z′) + 4πσ0[

−Rz
L
+

R
2
], (A4)

and an average electric field

ẑ ⋅ E(z) = −4π∫
cell

dz′ ρ(soln)
c (z′)

dJ(z − z′)
dz

+ 4πσ0
R
L

. (A5)

At equilibrium, the electric field in the electrolyte vanishes, and,
thus,

∫
cell

dz′ ρ(soln, eq)
c (z′)

dJ(z − z′)
dz

= σ0
R
L

, (A6)

where z is understood to represent a point in the bulk electrolyte.
The equilibrium electrolyte charge distribution satisfies Eq. (A6), no
matter how complex its behavior. For a general ρ(soln,eq)

c , however,
Eq. (A6) is not straightforward to analyze.

To simplify matters, we introduce a model for ρ(soln)
c whereby

the adsorbed surface charge at each surface is confined to a single
plane,

ρ(soln)
c (z) ≈ σ(n=1)

[δ(z + (R + 2ℓ̄)/2) − δ(z − (R + 2ℓ̄)/2)]. (A7)

The relationship between ℓ̄ and the true average molecular charge
distribution is left unspecified, and it should not necessarily be con-
sidered a physically meaningful length scale. For this model, the
average electrostatic potential for (R + 2ℓ̄)/2 < z ≤ L/2 is

V(z) = −4πσ(n=1)
[
−(R + 2ℓ̄)z

L
+

R + 2ℓ̄
2
] + 4πσ0[

−Rz
L
+

R
2
], (A8)

while the electric field is

ẑ ⋅ Ee = −4πσ(n=1) R + 2ℓ̄
L
+ 4πσ0

R
L

. (A9)

Again enforcing the equilibrium condition, ẑ ⋅ Ee = 0, we find

σ(n=1,eq)
=

σ0

1 + 2ℓ̄/R
, (A10)

which agrees with Eq. (6), provided that ℓ̄ = ℓ + anc. Comparing
Eqs. (6), (A6), and (A10) suggests that noncapacitive contributions
largely account for the approximation of treating the entire adsorbed
surface charge density as if it were confined to a single plane.

Following the same procedure for general n, we find

ẑ ⋅ Ee = −4πσ(n)
(nR + 2ℓ̄)

L
− 4πσ0

R
L
(−1)(n+1)/2

×

(n+1)/2

∑
j=1
(2j − 1)(−1)j+1

= −4πσ(n)
(nR + 2ℓ̄)

L
+ 2πσ0

(n + 1)R
L

(−1)(n+1)/2in+1

= −4πσ(n)
(nR + 2ℓ̄)

L
+ 2πσ0

(n + 1)R
L

. (A11)

To arrive at this result, we recall that n + 1 is an even integer, such
that in+1

= (−1)(n+1)/2. At equilibrium,

σ(n,eq)
=
(n + 1)σ0

2nR + 4ℓ̄
. (A12)

Again, we find agreement with Eq. (6), provided that ℓ̄ = ℓ + anc. As
we derived σ(n,eq) by enforcing ẑ ⋅ Ee = 0, and as V(−L/2) = V(L/2)
[Eqs. (A1) and (A2)], it immediately follows that Va = Vb in the
bulk electrolyte either side of the slab (Fig. 4; see also Fig. 4 of
Ref. 13). Note that σ(n,eq) is independent of L. In the limit L→∞,
any value of σ(n) satisfies ẑ ⋅ Ee = 0, which reflects the fact that the
electric field external to a set of infinite parallel plate capacitors van-
ishes. For σ(n)

≠ σ(n,eq), however, Va ≠ Vb, and the system becomes
increasingly unstable as n increases [Eq. (7)].

REFERENCES
1P. Dandekar, Z. B. Kuvadia, and M. F. Doherty, Annu. Rev. Mater. Res. 43, 359
(2013).
2P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).
3C. Noguera, J. Phys.: Condens. Matter 12, R367 (2000).
4J. Goniakowski, F. Finocchi, and C. Noguera, Rep. Prog. Phys. 71, 016501 (2008).
5K. Zhu, J. Hu, C. Kübel, and R. Richards, Angew. Chem., Int. Ed. 45, 7277 (2006).
6W. H. Cheng, S. Akhter, and H. H. Kung, J. Catal. 82, 341 (1983).
7R. W. Nosker, P. Mark, and J. D. Levine, Surf. Sci. 19, 291 (1970).
8T. Xu, X. Zhou, Z. Jiang, Q. Kuang, Z. Xie, and L. Zheng, Cryst. Growth Des. 9,
192 (2009).
9M. D. Susman, H. N. Pham, A. K. Datye, S. Chinta, and J. D. Rimer, Chem. Mater.
30, 2641 (2018).
10M. D. Susman, H. N. Pham, X. Zhao, D. H. West, S. Chinta, P. Bollini, A. K.
Datye, and J. D. Rimer, Angew. Chem., Int. Ed. 59, 15119 (2020).
11T. Sayer, C. Zhang, and M. Sprik, J. Chem. Phys. 147, 104702 (2017).
12T. Sayer, M. Sprik, and C. Zhang, J. Chem. Phys. 150, 041716 (2019).
13T. Sayer and S. J. Cox, J. Chem. Phys. 153, 164709 (2020).
14A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge,
United Kingdom, 2013).
15Equation (1) implicitly assumes that an equal number of crystal planes with σ0
and −σ0 are included in the domain of integration.

J. Chem. Phys. 157, 094701 (2022); doi: 10.1063/5.0097531 157, 094701-9

© Author(s) 2022

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev-matsci-071312-121623
https://doi.org/10.1088/0022-3719/12/22/036
https://doi.org/10.1088/0953-8984/12/31/201
https://doi.org/10.1088/0034-4885/71/1/016501
https://doi.org/10.1002/anie.200602393
https://doi.org/10.1016/0021-9517(83)90200-2
https://doi.org/10.1016/0039-6028(70)90040-3
https://doi.org/10.1021/cg8002096
https://doi.org/10.1021/acs.chemmater.7b05302
https://doi.org/10.1002/anie.202003390
https://doi.org/10.1063/1.4987019
https://doi.org/10.1063/1.5054843
https://doi.org/10.1063/5.0022596


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

16Z. Hu, “Comment on ‘Macroscopic surface charges from microscopic
simulations’ [J. Chem. Phys. 153, 164709 (2020)],” arXiv:2106.12291
[physics.chem-ph] (2021).
17C. Pan, S. Yi, and Z. Hu, Phys. Chem. Chem. Phys. 21, 14858 (2019).
18Z. Hu, Chem. Commun. 50, 14397 (2014).
19S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser. A 373,
27 (1980).
20S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London, Ser. A 373,
57 (1980).
21E. R. Smith, Proc. R. Soc. London, Ser. A 375, 475 (1981).
22S. W. de Leeuw, J. W. Perram, and E. R. Smith, Annu. Rev. Phys. Chem. 37, 245
(1986).
23M. Neumann, Mol. Phys. 50, 841 (1983).
24M. Neumann and O. Steinhauser, Chem. Phys. Lett. 95, 417 (1983).
25M. Neumann and O. Steinhauser, Chem. Phys. Lett. 102, 508 (1983).
26M. Neumann and O. Steinhauser, Chem. Phys. Lett. 106, 563 (1984).
27A. Redlack and J. Grindlay, J. Phys. Chem. Solids 36, 73 (1975).
28L. N. Kantorovich and I. I. Tupitsyn, J. Phys.: Condens. Matter 11, 6159 (1999).
29E. R. Smith, J. Chem. Phys. 128, 174104 (2008).
30V. Ballenegger, J. Chem. Phys. 140, 161102 (2014).
31I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).
32J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
33L. Bengtsson, Phys. Rev. B 59, 12301 (1999).
34S. J. Cox, K. K. Mandadapu, and P. L. Geissler, J. Chem. Phys. 154, 244502
(2021).
35S. J. Cox and P. L. Geissler, “Dielectric response of thin water films: A
thermodynamic perspective,” Chem. Sci. 13, 9102–9111 (2022).
36C. Zhang and M. Sprik, Phys. Rev. B 94, 245309 (2016).

37C. Zhang, J. Chem. Phys. 149, 031103 (2018).
38T. Sayer and S. J. Cox, Phys. Chem. Chem. Phys. 21, 14546 (2019).
39C. Zhang, T. Sayer, J. Hutter, and M. Sprik, J. Phys.: Energy 2, 032005 (2020).
40J.-M. Caillol, J. Chem. Phys. 101, 6080 (1994).
41S. J. Cox and M. Sprik, J. Chem. Phys. 151, 064506 (2019).
42F. H. Stillinger, Jr. and R. Lovett, J. Chem. Phys. 48, 3858 (1968).
43F. H. Stillinger, Jr. and R. Lovett, J. Chem. Phys. 49, 1991 (1968).
44M. Sprik, Mol. Phys. 116, 3114 (2018).
45C. Zhang and M. Sprik, Phys. Rev. B 93, 144201 (2016).
46T. Dufils, M. Sprik, and M. Salanne, J. Phys. Chem. Lett. 12, 4357 (2021).
47J. Goniakowski, C. Noguera, and L. Giordano, Phys. Rev. Lett. 98, 205701
(2007).
48C. Noguera and J. Goniakowski, Chem. Rev. 113, 4073 (2013).
49H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269
(1987).
50H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
51I. S. Joung and T. E. Cheatham III, J. Phys. Chem. B 112, 9020 (2008).
52W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).
53M. E. Tuckerman, J. Alejandre, R. López-Rendón, A. L. Jochim, and G. J.
Martyna, J. Phys. A: Math. Gen. 39, 5629 (2006).
54R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (CRC
Press, 1988).
55J. Kolafa and J. W. Perram, Mol. Simul. 9, 351 (1992).
56S. Plimpton, J. Comput. Phys. 117, 1 (1995).
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