Supplementary Material for:
“Penalized likelihood estimation of the proportional

hazards model for survival data with interval censoring”

Jun Ma *!, Dominique-Laurent Couturier®?, Stephane Heritier?, and Ian

Marschner®

"Department of Mathematics Statistics, Macquarie University, Australia
2Cancer Research UK - Cambridge Institute, University of Cambridge, UK
SMRC Biostatistics Unit, University of Cambridge, UK
4School of Public Health and Preventive Medicine, Monash University,
Australia

"NHMRC Clinical Trials Centre, The University of Sydney, Australia

S1 Components of score and Hessian matrix

Let z;; be element j of vector x;. The first derivatives of ® with respect to 3 and 8 are, for
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where U, ( fo ¥, (€)dE, the cumulative of basis function ,(t). Elements of the Hessian

matrix are:
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S2 Proof of asymptotic results

Let C"[a, b] be the set for functions that have r continuous derivatives over interval [a, b]; see
the main paper for the definition of a and b. Let the space for B be given by B = {3 :
18] < Cy < 00,Vj}, a compact subset of RP, and the space for ho(t) be A = {ho(t) : ho €
C"a,b],0 < ho(t) < Cy < 00,Vt € [a,b]}. Then the parameter space for 7 = (8, ho(t)) is
I'={r:8¢€B,hc A} = BxA. Recall ho(t) = Yoy B.10u(t). In order to avoid confusion
we define ho(t) = o 0,1, (1), which is the approximation to hg(t). Assume 6, are bounded
and non-negative and 1, (t) are bounded for ¢ € [a, b]; see Assumption A3 below. The space for
ho(t) is denoted by A, = {ho(t) : 0 < ho(t) < Cs < 00, Vt € [a,b]}. The parameter space for
Th = (ﬁ,ﬁo(zﬁ)) s, ={r,: B¢ B,?Lg € A,} = Bx A,. The MPL estimator of 7, is denoted
by T = (B, ho(1)).

Let W, = (6F, 0,61, 6;, TE, TF x;)T for i = 1,...,n. They are random vectors and are

assumed i.i.d. The density function for W is

FlwisT) = (hit)Si(t:)" (1= Si(t)™ Si(tF)7 (Si(th) — Si(t!) (),
where v denotes the density function of x; which is assumed independent of 7. Let F(w;;T) be
the cumulative distribution function of W;. For 7 € I, define Pl(7) = [log f(w;; 7)dF(w;; 7o) =
Ey(log f(W ;1)) and P,l(T) = %Zizl log f(W;;T). For 7, € Fn, Pl(t,) and P,l(T,) are
similarly defined. Here the expectation Ej is taken with the “true” 7: 79 = (8, hoo(t)), which

in fact maximizes Pl(T).



Assumption A4 below assumes that for any 7 € B *x A, there exist 7, € B % A, such

that p(7,,7) — 0 when n — oo. Here, the definition of p(-) is, if 71 = (8;, ho1(t)) and
To = (,82, hog(t)) then

1/2
p(T1,T2) = {Hﬁl — Ballz + sup |hor(t) — hoz(t)\z} ~ (S1)

t€[a,b]

This assumption can be guaranteed under certain regularity conditions, such as those in Propo-

sition 2.8 in DeBoor and Daniel (1974). Recall the scaled smoothing parameter u,, = A\/n.

S2.1 Sketch proof of Theorem 1

Result of Theorem 1 require regularity conditions stated below.
Al. Matrix X is bounded and E(XX7) is non-singular.
A2. The penalty function J is bounded over I' and T,,.

A3. For function ﬁo(t), there is a constant Cg, independent of n, upper bounds all 4, > 0.

Moreover, assume the basis functions 1, (t) are bounded for ¢ € [a,b] and v =1,...,m.

A4. The knots and basis functions are selected in a way such that for any h(t) € A there
exists a ho(t) € A, such that max; |ho(t) — h(t)] — 0 as n — co; see Proposition 2.8 in

DeBoor and Daniel (1974) for conditions for this assumption.

Our proof below closely follows the proofs in Xue, Lam, and Li (2004), Zhang, Hua, and
Huang (2010) and Huang (1996). Recall 7 = (8, ho(t)) € Bx A and T, = (8, ho(t)) € Bx A, C
B x A. For 71 = (B, ho1(t)) and 79 = (B, ho2(t)) (both in € B % A), define the distance

measure

1/2
plr1,72) = {||[71 — T *}/* = {Hﬁl — Byll3 + sup |hoi(t) — h02(75)|2} :

tela,b]

The proofs below require the concept of covering number of a space; its detailed definition
can be found in, for example, Pollard (1984). Briefly, this is the number of spherical balls of
a given size required to cover a given space. For a space A with measure k(A), we denote the
covering number associated with spheral radius € by N (e, A, k(A)).

Results of Theorem 1 can be demonstrated if we are able to show that p(7¢, 7,) — 0 (a.s.),
where 79 = (B, hoo(t)). Since the scaled smoothing parameter p, — 0 when n — oo and
the penalty function is bounded, we can concentrated on the log-likelihood function only. The

required result can be obtained through the following results.



(1)

Let q(w; T) denote the Fréchet derivative of the density functional f(w;7) with respect
to 7. Let £ be a point in between 7,, and 7. Since £ is not the maximum, the functional
q(w; &) is non-zero. Also, both g(w; &) and f(w; &) are bounded. Recall that Pl(7) has
been defined in Section 4. We have

|Pl(T,) — Pl(T0)| = Eo(log f(W ;) — log f(W;74))

Q(Wi;f)
2f3(W;; €)

> CillTo — Tall3s (52)

2

> || f2 (W) — f2 (Wi 7)) = (To — 7)

where the first inequality is established since the Kullback-Leibler distance is not less
than the Hellinger distance (Wong and Shen, 1995), the second equality comes from the
mean value theorem and Cj is the lower bound of |g(W;; €)/2f2 (W ; €)].

It then suffices to show PI(7T,) — Pl(T¢) — 0 (a.s.). However, since
[PU(Tn) — Pl(7o)| < |PUTy) — Pol(T)| + [Pul(Th) — Pl(T0)l,

we then wish to show that each term on the right hand side converges to 0 (a.s.). For the
first term, we just need to implement the result from part (3) below, but the second term
demands further analyses. Let 7o, = (B, ho(t)) € B A, which satisfies p(Ton, 7o) — 0
(as n — 00) according to Assumption A4. Since 79 maximizes PIl(7) for 7 € B x A and

T, maximizes P,l(T) for T € B x A,,, we have

Pnl(Ton) — Pl(TOn) =+ Pl(Ton) — Pl(To) S Pnl(?n> — Pl(TQ)
< PA(F,) — PI(7).

From part (3) below we have both P,l(T,) — Pl(7,) and P,l(7¢,) — Pl(To,) converge to
0 (a.s.). Pl(To,) — Pl(To) converges to 0 can be established from p(7¢,, 7o) — 0 and the

fact that [(-) is continuous and bounded.

It suffices to demonstrate sup, cp,a. |Pnl(Tn) — Pl(T,)| — 0 (a.s.). This can be achieved

through the following steps:

(i) Firstly, we show that N(e, A, Ls) < (6Cs/e)™ where constant Cg will be speci-
fied below. This is because for any hi, hy € A, (note that h.(t) = > ou (1)),
max; |ﬁ1(t) — Ez(t” < Csmax, |0 — 02| < C5Cs, where Cs and Cg are respectively
the upper bound of )" ,(t) and {6,,Vu}. Thus, N(e, An, L) < N(,{6 : 0 <
0, < Cs : 1 < u < m},Ly). From Lemma 4.1 of Pollard (1984) we have that
N(E{0:0<0,<Cs:1<u<m}, Ly < (6Cs/e)™.
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(ii) Secondly, we first define the set A,, = {i(7) : 7 € B x A}. We wish to demonstrate
that N(e,A,, Ly % Ly) < K/eP™™ where constant K will be defined below. In fact,
from Taylor expansion and the assumption that log-likelihood I(7) is continuous and

bounded, we have for 71,79 € B x A,

l(71) = Ur2)| < M(||B1 — Ball2 + [hor(t) — hoa(t)]),
where M > 0 is a constant. Then (see the Appendix of Xue et al. (2004))
N(e, Ay, Ly x Ly,) < N(e/2,B, Ly) - N(g/2, Ay, Loo)
< (6C1/e)P(6Cs /)™ = K [ePt™,

where C} is the upper bound of {|§;|,Vj} and K = (C;/Cs)?. Note that ¢ in the
last term is in fact £/(6Cj).

(iii) Select a,, = n~1/2*%1/logn where ¢; € (¢o/2,1/2) with ¢y < 1, and define &,, = cau,.
Following the proof of Theorem 1 of Xue et al. (2004) we can show that
P {Sup |Pul(7) — Pl(1y)| > 85n} < 8N (e, Ap, Log)e 0128
An

—C'n2¢
SSC(E C'n 1logn’

whereC' and C” are constants. Hence, > | P[sup, |P,l(7,) — Pl(7,)| > 8¢,] is a

convergent series, and therefore, by the Borel-Cantelli lemma, we have
sup |P,l(7,) — Pl(1,)| = 0
An

almost surely. Thus P,l(7,,) — Pl(7,,) — 0 almost surely V7,, € B x A,,.

S2.2 Sketch proof of Theorem 2
We first state the following assumptions needed for the asymptotic results in Theorem 2.

B1. Assume the distribution of x; is independent of 7).

B2. Assume the limit lim,,_,.[n"'1(n)] exists and has a unique maximum at n, € €, where

is the parameter set for 7 and is a compact subspace of RPT™,

B3. Assume /(1) has a finite upper bound, [(n) is twice continuously differentiable in a neigh-

bourhood of 1, and the matrices

- . 1 O(n)
1 -1
. Z o g o Jim | (53)

exists.



B4. Assume the penalty function J(n) is twice continuously differentiable on €2, and their

derivatives are bounded.

B5. Assume the matrix UTF(n)U is invertible in a neighbuorhood of n,, where matrix U is

defined in the main paper.

Assumption B2 simply states that the true parameters can be recovered exactly from max-
imizing the likelihood if the sample size is infinity.

Let I(n) = lim,_,oo[n"'1(n)]. It follows from the strong law of large numbers that n='l(n) —
I(n) almost surely and uniformly for n € Q. This result, together with p,, — 0 as n — co and
1, being the unique maximum of /(n) due to Assumption B2, implies that 1§ — 7, (recall 7j
maximizes n~'l(n) for n € Q) almost surely by applying, for example, Corollary 1 of Honore
and Powell (1994).

Next we prove the asymptotic normality result. From the KKT necessary conditions (6)

and (7) in the main paper we have that the constrained MPL estimate 7} satisfies

T0%(M) _

According to Taylor expansion

) _ 080 B -

where 7 is a vector between 1 and n,. Therefore

0<I>(no) +UT82(I)(ﬁ) ~

T

(56)

Next, let X be i after deleting the active constraints and x,, be similarly defined corresponding

to 1, then
n—mo=U(X — Xo)- (S7)

Substituting (S7) into (S6), solving for X — x, and then using (S7) to convert the result back

to m — m, again, we eventually have

Vit = ng) = U (0T E8 ) om0 o)). s5)

In (S8), when n — oo and p,, — 0, —n~10*®(7)/0ndn " converges to F(n,) (a.s.) by the law of

large numbers. On the other hand, after applying the central limit theorem to n='/20l(n,)/0n

we have the required asymptotic normality result.



S3 M-spline and Gaussian basis functions

If the baseline hazard is approximated by Gaussian basis functions, ¢,(t) is a truncated Gaus-
sian distribution with location parameter a, (which are knots), scale parameter o, and range

[t(1), t(ny]. This leads to the following expressions of 1, (¢) and its cumulative function W, (¢):

i () o (22

t)

where t(1) <t < t,), ¢(-) and ®(-) respectively are the density and cumulative density functions
of the standard Gaussian distribution, A, = ®((t(n) — aw)/ow) — P((ta) — aw)/0w) and oy, € R
and o, > 0. If the baseline hazard is approximated by means of M—spline basis functions of

order o (Ramsay, 1988), we get the following expressions of ¥ (t) and W9(¢):

¢ ( ) 6(aﬁ*§tia;*+1) $oo 1’

o) = o —ag

“ o Slag<t<al.,) _ o :
e [t = @) v () + (el — 1) U (D)]  otherwise,

(o) <t<ar
min(uto,m+1) (i <t<aiyo)

* Oyio B OCZ* o
) = ooy >n |y Bhen g ,
v=u+1

where ¢y < t < tg), o, is the uth element of knots vector o whose length is n, (a, €

aT,maX(a)lz_JT, and o =

R and o, < Qui1), m = ng +0 — 2, & = [min(a)1]_,,
[min(a)1,, ", max(a)lI]T, where 1, denotes a vector of 1 of length o. Note that W2(t), the
cumulative function of 12(t), is referred to as an I—spline. M—spline basis functions have the

following properties: ffg‘o Y2 (v)dv =0, f:i;“ Y°(v)dv = 1 and fj} Ve (v)dv = 0.
u u+o

S4 More simulation results

In this section we present more simulation results for MPL in Table S1 where we increased
the number of knots for the purpose of demonstrating MPL is less impacted by the number of

knots. In Table S2 we provide the regression coefficient estimates by the competitor methods.



*f =0% xf = 25% =f = 50%

n=100 n=500 n=100 mn=500 n=100 n =>500

B estimates:

Biases

MPL-M(+2) 0.004  -0.022  -0.054  -0.028  -0.054  -0.026
b MPL-M(x2) 0.097 0.001 0022  -0.024  -0.012  -0.024
MPL-M(+2) 0.013  -0.009  -0.044  -0.017  -0.064  -0.021
B MPL-M(x2) 0.108 0.013 0031  -0.013  -0.023  -0.019
MPL-M(+2) 0.020  -0.005  -0.043  -0.018  -0.056  -0.018
Bs MPL-M(x2) 0.113 0.018 0033  -0.014  -0.014  -0.016

Mean asymptotic and (Monte Carlo) standard errors
0.332 0.143 0.283 0.124 0.253 0.111
5 MPL-M(+2)  (g352)  (0.146)  (0.285)  (0.126)  (0.251)  (0.114)

1
0.345 0.144 0.290 0.124 0.255 0.111
MPL-M(x2) (g 388)  (0.151) (0.313)  (0.126)  (0.263)  (0.115)
0.121 0.053 0.103 0.046 0.092 0.041
MPL-M(+2) (g 137)  (0.055) (0.110)  (0.046)  (0.096)  (0.041)
B2 MPLM (2 0.127 0.054 0.106 0.046 0.094 0.042
M(X2)  (0153)  (0.057)  (0.120)  (0.047)  (0.100)  (0.041)
0.084 0.036 0.072 0.031 0.064 0.028
5 MPL-M(+2) (g 090)  (0.034)  (0.072)  (0.030)  (0.064)  (0.026)
3 c

MPLM(x2) 0088 0.037 0.074 0.031 0.065 0.028

(0.097)  (0.036)  (0.081)  (0.030)  (0.067)  (0.027)

95% coverage probabilities

MPL-M(+2) 0.941 0.944 0.949 0.952 0.955 0.938
1 MPL-M(x2) 0.920 0.936 0.940 0.952 0.942 0.935

MPL-M(+2) 0.922 0.945 0.932 0.939 0.919 0.939
B2 MPL-M(x2) 0.900 0.947 0.928 0.939 0.940 0.941

MPL-M(+2) 0.943 0.957 0.948 0.950 0.942 0.957
Bs MPL-M(x2) 0.923 0.956 0.937 0.952 0.938 0.956
ho(t) estimates
Biases
holF=1(0.25 MPL-M(+2) 0.134 0.052 0.114 0.030 0.092 0.017
olFo 7(0-25)]  \pr-M(x2) 0.077 0.071 0.079 0.035 0.062 0.019
helF=1(0.50 MPL-M(+2) 0.123 0.042 0.073 0.036 0.052 0.025
olFo 7(0-50)]  \MpPL-M(x2) 0.306 0.061 0.163 0.036 0.093 0.026
holF=1(0.75 MPL-M(+2) 0.007 -0.034 -0.024 0.000 -0.028 0.004
olFo 7(0-75)] MPL-M(x2) 0.256 0.003 0.118 0.004 0.047 0.006

Mean asymptotic (Monte Carlo) standard errors

) 0.556 0.227 0.477 0.197 0.422 0.176
holFy 7(0-25)]  MPL-M(+2)  (5i697)  (0.240)  (0.498) (0.207)  (0.431)  ( 0.179)
0.553 0.240 0.474 0.199 0.416 0.177

MPL-M(x2) (g 710) (0.268) (0.583) (0.212)  (0.451) ( 0.180)

) 1.142 0.460 0.940 0.399 0.825 0.355
ho[Fg " (0.50)]  MPL-M(+2) 17397y (0.500) (1.021) ( 0.414)  (0.835) ( 0.359)
1.390 0.484 1.047 0.400 0.868 0.355

MPL-M(x2)  (1'g95) (0.543) (1.193) (0.416)  (0.928) ( 0.360)

s 2.025 0.871 1.678 0.772 1.494 0.692
holFy "(0.75)]  MPL-M(+2)  (55664) (0.965)  (1.945) (0.805)  (L.614) ( 0.711)
2.689 0.944 1.999 0.778 1.635 0.693

MPL-M(X2)  (3'999)  (1.046) (2.414) (0.820)  (1.816) (0.714)

95% coverage probabilities

holF(0.25)]  MPLM(+2) 0.914 0.947 0.923 0.936 0.929 0.935

o (0. MPL-M(x2) 0.844 0.938 0.866 0.937 0.913 0.936

e tp-1(050)  MPL-M(+2) 0.903 0.936 0.912 0.935 0.923 0.948

olFo 7(0-50)]  \MpL-M(x2) 0.927 0.939 0.928 0.938 0.926 0.948

hetp—1(075)  MPL-M(+2) 0.807 0.874 0.826 0.923 0.851 0.936

olFo 7(0-75)] MpPL-M(x2) 0.888 0.908 0.894 0.922 0.888 0.940
Integrated discrepancy between hg (t) and ho(t) for ¢t < F(;I(OAQ)

MPL-M(+2) 1.666 0.732 1.351 0.591 1.160 0.518

MPL-M(x2) 2.171 0.779 1.560 0.602 1.226 0.520

Table S1: MPL-M results for different number of knots using Simulation 1 data. MPL-M(+2):
ne = 9,11 for n = 100 and n = 500 respectively; MPL-M(x2): n, = 14,18 for n = 100 and
n = 500 respectively.



Figure S1 displays the true ho(t), the average MPL hg(t) estimates and pointwise 95%
confidence intervals for simulations 1 and 2. The standard approach (Breslow) and the CM
method provide biased noisy estimates in both simulations. The bump observed around ¢t =
4.5 for Breslow is caused by the midpoint strategy to left censored data. More specifically,
left censored events are shrunk towards zero with a maximum around 0.45 (which is half the
maximum of 0.9 chosen for this type of censoring). The ugly kick observed after 0.45 comes
from the low event density right after 0.45 created artificially by using the midpoint strategy.
Evidence of this is provided in Figure S2 (top panel). Slightly better results may be obtained
using the Nelson-Aaalen estimates (see bottom and middle panels), but the issue remains.
Further justification of the cause of the problem can be provided by modifying the strategy
(e.g. adding a small random noise or using the true event times) which makes the kick disappear

— results not shown). In contrast, both the EM-I and MPL methods provide reliable estimates.



Real baseline hazard
—— Median of the estimated baseline hazard functions
. Quantiles 0.05 to 0.95 of the estimated baseline hazard functions

MPL estimator with m-splines

Simulation 1 Simulation 2

ho [F7(0.9)] ho [Fr1(09)]
z 2
0 0
T T T T T T T T T T T T T T T
MPL estimator with Gaussian splines
Simulation 1 Simulation 2
ho [Fr(09)] ho [F(09)]
= g
0 0
T T T T T T T T
Fok r T -
EM-I estimator
Simulation 1 Simulation 2
ho [F7'(09)] ho [F7'(09)]
K 5
0 0
T T T T T T T T T T T
Mid-point partial likelihood estimator
Simulation 1 Simulation 2
ho [F7(0.9)] ho [F71(09)]
z =
0 0
T T TTT T T T T T T T T T T T T
o H - g o g g
Convex minorant estimator
Simulation 1 Simulation 2
ho [F'(09)] ho [F'(09)]
0 0

Fria0) -
Froan
Fios0) —|
Fr'(090)

Frl(070)
Fil(073)
5 0.80)
Fr'(090)

Figure S1: Quantiles 0.025, 0.5 and 0.975 of the baseline hazard estimates for each estimator

(rows) and simulation (columns) in the scenario considering 0% event and n=500.
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Real times

Ho(t)

ho(t)

Figure S2: Real versus corresponding interval censored data for a Monte Carlo sample of
simulation 1 (Weibull hazard) with 0% event and n=2000 (upper plot) and corresponding
Nelson-Aalen cumulative hazard (mid plot) and hazard rate (lower plot) estimates after fitting

the Cox regression parameters by means of the partial likelihood estimator with mid interval

points.

Interval mid-point versus real times

2.0 4
Censoring type: N
O Left censored X " + L+ g
4+ : ‘ + -
15 Interval censored jjr it ++ - i
LT
- B+
# ¢+ +&i+ -+ s
T
# +++
oy T
4# =+
I 1
1.25 1.50

3.0 4

1.5

1.0 4

0.0

Interval mid-point times

Cumulative hazard

Cumulative hazard:

— Real
— — Nelson-Aalen estimate

20

15 4

0.25 0.50 0.75 1.00 1.25 1.50

Time
Hazard
Hazard:

— Real
— — Nelson-Aalen estimate

0.25 0.50 0.75 1.00 1.25 1.50
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Predictors Levels Estimators HR estimates HR 95% CI  p-value

Location Arm MPL-M 0.570 0.429;0.757 0.0001
MPL-G 0.569 0.428;0.756 0.0001
EM-I 0.573 0.430;0.762 0.0001
PL 0.571 0.431;0.758 0.0001
CM 0.572
Leg MPL-M 1.008 0.816;1.244 0.9430
MPL-G 1.008 0.816;1.244 0.9429
EM-I 1.006 0.812;1.247 0.9550
PL 1.001 0.812;1.234 0.9949
CM 0.988
Trunk MPL-M 0.802 0.658;0.977 0.0283
MPL-G 0.801 0.658;0.976 0.0278
EM-I 0.803 0.656;0.983 0.0331
PL 0.798 0.656;0.971 0.0243
CM 0.794
Thickness 1 to 2 mm. MPL-M 1.245 0.937;1.653 0.1303
MPL-G 1.246 0.937;1.656 0.1297
EM-I 1.242 0.914;1.687 0.1664
PL 1.240 0.936;1.644 0.1340
CM 1.255
2 to 4 mm. MPL-M 2.390 1.804;3.166 <0.0001
MPL-G 2.399 1.810;3.181 <0.0001
EM-I 2.372 1.750;3.214 <0.0001
PL 2.399 1.814;3.171 <0.0001
CM 2.438
4 mm. and more MPL-M 3.108 2.295;4.208 <0.0001
MPL-G 3.121 2.303;4.231 <0.0001
EM-I 3.069 2.213;4.256 <0.0001
PL 3.152 2.332;4.260 <0.0001
CM 3.250
Gender Female MPL-M 0.843 0.717;0.990 0.0375
MPL-G 0.842 0.717;0.990 0.0377
EM-I 0.845 0.719;0.993 0.0412
PL 0.838 0.713;0.983 0.0304
CM 0.841
Centered Age (10 years) - MPL-M 1.148 1.093;1.205 <0.0001
MPL-G 1.149 1.094;1.207 <0.0001
EM-I 1.145 1.091;1.203 <0.0001
PL 1.156 1.100;1.214 <0.0001
CM 1.179

Table S2: Hazard ratio estimates (eB ), hazard ratio 95% confidence intervals, and p-values of the
significant tests per model parameter and estimator. We used 7 quantile based internal knots
for the MPL estimator and 4 quantile based internal knots for the EM-I estimator. The latter
was selected by minimising the AIC criteria. The CM estimator as implemented in the intcox
package did not iterate so that the final estimate correspond to its starting point corresponding
to the partial likelihood estimates in which the upper interval bounds of interval censored data

were considered as events.
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