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ABSTRACT: The present study examines the effect of human
monoamine oxidase active anthraquinones emodin, alaternin (=7-
hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia
Linn seeds in modulating human dopamine (hD1R, hD3R, and
hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors
that were predicted as prime targets from proteocheminformatics
modeling via in vitro cell-based functional assays, and explores the
possible mechanisms of action via in silico modeling. Emodin and
alaternin showed a concentration-dependent agonist effect on hD3R
with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively.
On hV1AR, emodin and alaternin showed an antagonist effect with
IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively.
Interestingly, questin and aloe-emodin did not have any observable
effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a
hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR
antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico
and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.

■ INTRODUCTION

Cassia obtusifolia Linn seeds have a long history of use in
traditional Chinese medicine, where anthraquinones and
naphthopyrones derivatives were reported as predominant
constituents, particularly the glycosides (cassiaside, rubrofusar-
in gentiobioside, and cassiaside B).1 Seed extracts and their
constituents have been reported for activities such as anti-
Alzheimer’s disease,2−5 anti-Parkinson’s disease,6 antidiabetic
and diabetic complications,7,8 hepatoprotection,9,10 anti-
inflammation,2 neuroprotective activity,11,12 antibacterial,13

and antioxidant.14,15 In a previous study,16 100 μM emodin
inhibited 4 nM (−)-epinephrine, 2 μM nicotinic acid, and 8
μM histamine-induced dynamic mass redistribution signals in
human epidermoid carcinoma A431 cell, showing hydroxyl
carboxylic acid receptor-2 (HCA-2), histamine receptor
(H1R), and β2-adrenoceptor (β2-AR) as targets. Similarly, by
upregulating glucocorticoid receptor (GR) and brain-derived
neurotrophic factor (BDNF) levels in the hippocampus,
emodin improved the depression-like behavior in chronic
unpredictable mild stress-induced behavioral deficit (depres-
sion-like behavior) mice.17 Emodin at 30 μM concentration
showed an antipsychotic effect in Schizophrenia model
(epidermal growth factor challenged primary neuronal
cultures) by attenuating the receptor activation of ErbB1 and
ErbB2.18

Another anthraquinone, aloe-emodin, attenuated scopol-
amine-induced cognitive deficits by inhibiting the acetylcho-
linesterase activity (IC50 = 18.37 μg/mL) and modulating
H2O2-induced oxidative stress in PC12 cells.19 Likewise, in
subcutaneous human glioblastoma U87MG-implanted nude
CG1 mice, i.p. administration of aloe-emodin at 50 mg/(kg
day) for 15 days showed antiproliferative effect by decreasing
Ki67 positive cells and proapoptotic effect by increasing P53
and caspase 6 in mouse brain.20 In the same study, aloe-
emodin at 20 and 40 μM concentration induced cell cycle
arrest in U87MG cells by increasing the expression levels of
p53, p21, and the reduction of cyclin CDK2 in vitro.
More recently, we have reported the human monoamine

oxidase (hMAO) inhibitory potential of Cassia seed-derived
secondary metabolites21 and a possible role of rubrofusarin
against comorbid diabetes and depression via protein tyrosine
phosphatase 1B and hMAO inhibition.22 In that study,21

emodin, alaternin (7-hydroxyemodin), aloe-emodin, and
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questin inhibited hMAO enzyme activity with low micromolar
IC50 values ranging from 0.17 to 23 μM.
Drugs have specific targets in the body through which they

modulate the disease state. Modern drug discovery and
development incorporates in silico prediction approaches to
predict the potential target proteins to understand the
mechanism of action of drugs in addition to in vitro and in
vivo studies.23 G protein-coupled receptors (GPCRs) represent
one of the most important drug targets with potential
therapeutic benefits in the central nervous system (CNS)
and endocrine systems. The concept of precise medication
relies on GPCRs targeting, and to date, 34% of FDA-approved
drugs are GPCR targets.24 So, the main objectives of this study
were to: (a) predict the main targets for Cassia-derived
secondary metabolites in CNS via proteocheminformatics
modeling (PCM), (b) validate the PCM prediction by
evaluating the modulatory effect on predicted receptors via
cell-based functional GPCRs assays, and (c) look at the specific
binding interactions of test ligands (Figure 1) and target
receptors via molecular docking simulation.

■ RESULTS AND DISCUSSION
In Silico Target Prediction. From PCM, the highest-

ranked 20-potential protein targets were predicted for the four
anthraquinones. Table 1 enlists the target proteins with the
normalization rate. As shown in the table, V1A receptor is on
the top of the list followed by substance P and 5HT1A
receptor, with the dopamine receptor also being placed within
the 10 highest ranks. Based on this prediction, we then
proceeded to validate the predictions in GPCRs cell-based
functional assays with the dopamine (D1, D3, and D4), 5HT1A,
and V1A receptor (Table 2).
Emodin, Alaternin, and Questin as Human Dopamine

D3 (hD3R) Agonists. The effect of test compounds on
dopamine receptor was evaluated fluorimetrically by measuring
the level of cAMP. Agonist effect was expressed as % of the
control response to 300 nM dopamine and antagonist effect
was expressed as % inhibition of control response to 10 nM
dopamine. As tabulated in Table 2, 50 μM concentration of
emodin, alaternin, and questin exhibited 75.6, 43.9, and
34.85% of control agonist response. The concentration-
dependent agonist response is depicted in Figure 2A.
From the dose−response curve, half-maximal effective

concentration (EC50) values of emodin and alaternin for
hD3R were 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively.
Dopamine had an EC50 value of 4 nM. The agonist effect of
emodin at 12.5 μM was similar to that of 50 μM alaternin (i.e.,
approx. 45%). The potency of emodin was 2.5 times greater
than that of alaternin as can be seen from the EC50 values of
respective compounds.
Among central nervous system disorders, Parkinson’s disease

(PD) is the second most common age-related neuro-
degenerative disorder with 1% prevalence rate in the
population above 60 years of age and is characterized by

rigidity, tremor, and bradykinesia. The administration of
dopamine in its prodrug form, levodopa (L-dopa), in
combination with peripheral DOPA decarboxylase inhibitor
is the current therapeutic approach to treat PD. However,
owing to the side effects of L-dopa and the development of
dyskinesia (L-dopa-induced dyskinesia; LID) upon prolonged
use, an alternative treatment approach is warranted. Various
studies have discovered the involvement of dopamine D3
receptors in the etiology of PD and LID. In PD, dopamine
D3 receptor expression decreases, while it increases in the brain
region of LID patients.25−28

To interpret the result of the functional assay, emodin and
alaternin were docked into the D3R co-crystal structure (PDB
ID: 3PBL) in complex with eticlopride. The docking result
(binding pose and interacting residues) was confirmed by
redocking with the reference agonist dopamine and rotigotine,
and antagonist eticlopride. As shown in Figure 3 and tabulated
in Table 3, emodin was predicted to bind to the active site of
dopamine D3R by forming three H-bonds with Ser196, Val111,
and Thr115 at a distance of 2.0, 2.1, and 2.7 Å, respectively
(shown by the blue lines in Figure 3B). In addition, the methyl
group at C-6 formed a π−alkyl interaction with Phe345 (5.03
Å). Aromatic ring C formed a π−anion interaction with
Asp110, while ring A formed π-sulfur and π−π T-shaped
interactions with Cys114 and Phe346, respectively (Figure
3C).
Similarly, as shown by the blue lines in Figure 3D, four H-

bond interactions with Tyr365, Val111, Ser196, and Thr115
were predicted at a distance of 2.1, 2.1, 2.4 and 2.8 Å,
respectively, for alaternin. The methyl group involved in π-
alkyl interactions with Phe345 (5.11 Å) and Tyr373 (4.34 Å).
In addition, similar to emodin, aromatic ring C formed a π-
anion interaction with Asp110, while ring A formed π-sulfur

Figure 1. Structure of anthraquinones from Cassia obtusifolia seeds.

Table 1. Twenty Most Highly Predicted Protein Targets
Predicted from PCM Modeling for Cassia-Derived
Anthraquinones in Neurodegenerative Diseasesa

organismal
system abbreviation protein name NR

STS V1AR vasopressin V1A receptor 2.1742
STS SPR substance P receptor 1.9936
NS 5-HT-1A 5-hydroxytryptamine receptor 1A 1.9824
STS NKR neuromedin-K receptor 1.9311
STS OT-R oxytocin receptor 1.9099
STS MAPK14 mitogen-activated protein kinase 14 1.8689
STS, NS 5-HT-6 5-hydroxytryptamine receptor 6 1.8408
NS DRD3 D3 dopamine receptor 1.8323
STS, NS 5-HT-2B 5-hydroxytryptamine receptor 2B 1.7906
STS, NS 5-HT-4 5-hydroxytryptamine receptor 4 1.7508
NS 5-HT-1B 5-hydroxytryptamine receptor 1B 1.7354
STS PI3K-α phosphatidylinositol 4,5-

bisphosphate 3-kinase catalytic α-
subunit

1.7316

STS, NS ACM5 muscarinic acetylcholine receptor M5 1.7278
STS NTR1 neurotensin receptor type 1 1.7278
STS, NS DRD1 D1 dopamine receptor 1.7278
STS CysLTR1 cysteinyl leukotriene receptor 1 1.7128
STS, NS 5-HT-2A 5-hydroxytryptamine receptor 2A 1.7128
NS 5-HT-3A 5-hydroxytryptamine receptor 3A 1.7128
STS HSP90 heat shock protein HSP 90-α 1.7054
NS ACM4 muscarinic acetylcholine receptor M4 1.6980

aNR: Normalization rate; NS: Nervous system; STS: Signaling
transduction system.
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and π−π T-shaped interactions with Cys114 and Phe346,
respectively (Figure 3E). From these docking results (Table
3), it was found that hydrophobic Phe345 and Phe346 residues
of D3R are important for binding of ligands containing
aromatic rings like emodin, alaternin, dopamine, and
rotigotine. Conserved Asp and Ser residues also acted as
bridges between emodin/alaternin and D3R via electrostatic
and H-bond interaction, respectively.
Besides playing a central role in emotion and behavior,

dopamine is responsible for the suppression of proinflamma-
tory cytokines in macrophages, endothelial cells, neutrophils,
mast cells, or glial cells, thereby regulating immune/
inflammatory response.29−33 Likewise, in a recent study,
dopamine suppressed inflammatory response and attenuated
tissue injury in mice with acute pancreatitis34 and attenuated

lipopolysaccharide/D-galactosamine-induced fulminant liver
injury in mice by suppressing the production of TNF-α
phosphorylation of c-jun-N-terminal kinase (JNK); cleavage of
caspase-3; upregulation of hepatic caspase-3, caspase-8, and
caspase-9 activities; and reducing the count of terminal
deoxynucleotidyl transferase-mediated nucleotide nick-end
labeling (TUNEL)-positive hepatocytes.35 Therefore, the
hD3R agonist effect of emodin and alaternin might have a
role for their reported anti-inflammatory effect.36,37

Emodin and Alaternin as Human Vasopressin 1A
Receptor (hV1AR) Antagonists. In human recombinant
Chinese hamster ovary (CHO) cells expressing the hV1A

receptor, reference agonist arginine vasopressin (AVP) caused
a concentration-dependent increase in intracellular Ca2+

concentration with an EC50 value of 0.29 nM (Figure 2B

Table 2. Efficacy Values (% Stimulation and % Inhibition) of Anthraquinones at Dopamine (D1, D3, and D4) and Serotonin
(5HT1A) and Vasopressin (V1A) Receptors

emodin alaternin aloe-emodin questin
reference
drugs

receptors % stimulationa (% inhibitiona) % stimulationa (% inhibitiona) % stimulationa (% inhibitiona) % stimulationa (% inhibitiona) EC50
b(IC50

c)

D1 (h) −3.55 ± 0.64 (−10.20 ± 6.36) 0.01 ± 2.41 (−30.43 ± 8.95) 0.15 ± 4.45 (−47.85 ± 9.69) −2.10 ± 0.85 (10.95 ± 6.01) 17 (3.6)

D3 (h) 75.60 ± 12.87 (−10.8 ± 6.59) 43.97 ± 4.76 (−9.8 ± 4.82) −57.95 ± 32.88 (20.60 ± 6.79) 34.85 ± 0.78 (1.25 ± 7.42) 4.0 (13)

D4 (h) 2.35 ± 2.76 (−0.35 ± 4.03) 14.10 ± 0.31 (−2.4 ± 6.18) -53.15 ± 7.00 (25.70 ± 15.70) −38.15 ± 15.91 (4.50 ± 10.32) 5.8 (320)

5-HT1A (h) −3.56 ± 0.21 (18.4 ± 3.89) −5.46 ± 0.15 (34.50 ± 4.86) 3.45 ± 0.21 (1.55 ± 3.61) 2.45 ± 0.49 (0.70 ± 4.10) 1.6 (4.4)

V1A (h) −4.80 ± 0.69 (69.35 ± 1.34) −11.0 ± 0.66 (59.20 ± 0.10) 7.45 ± 1.20 (18.90 ± 9.05) −3.40 ± 0.71 (16.30 ± 2.40) 0.29 (4.5)
a% stimulation and % inhibition of control agonist response at 50 μM of anthraquinones. bEC50 (nM) values of standard agonists (D1, D3, and D4:
dopamine, 5-HT1A:serotonin, V1A: AVP). cIC50 (nM) values of standard antagonists (D1: SCH-23390, D3: (+)-butaclamol, D4: clozapine, 5-
HT1A: (S)-WAY-100635, V1A: [d(CH2)51, Tyr(Me)2]-AVP).

Figure 2. Concentration-dependent percentage of control agonist effect (A) and percentage inhibition of control agonist effect (B, C) of emodin,
alaternin, aloe-emodin, and questin on hD3R, hV1AR, and h5-HT1AR, respectively. ND: Not determined.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c00684
ACS Omega 2020, 5, 7705−7715

7707

https://pubs.acs.org/doi/10.1021/acsomega.0c00684?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00684?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00684?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00684?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c00684?ref=pdf


and Table 2). The test compounds emodin, alaternin, aloe-
emodin, and questin did not show any effect on control agonist
response. They did not show any agonist response up to 50
μM, and % of control agonist response was negative at 50 μM
concentration (Table 2). However, for antagonist effect,
emodin and alaternin showed a concentration-dependent
inhibition of control response to 10 nM AVP (Figure 2B).
Even at 12.5 μM concentration, emodin and alaternin inhibited
the 10 nM AVP-induced intracellular Ca2+ concentration by
>50%. The IC50 values for emodin and alaternin were 10.25 ±
1.97 and 11.51 ± 1.08 μM, respectively. The reference
antagonist [d(CH2)5

1, Tyr(Me)2]-AVP inhibited AVP-induced
Ca2+ response with an IC50 value of 4.5 nM. The antagonist
effect of aloe-emodin and questin was very weak with an
approximately 17% inhibition of control agonist response at 50
μM concentration.
Similarly, previous studies on natural emodin had reported

platelet aggregation inhibition38 and vasorelaxant property.39

V1AR in vascular smooth muscles is responsible for vaso-
constriction, myocardial contractility, platelet aggregation, and
uterine contraction.40 Vasopressin receptor is another target
for CNS drugs, and vasopressin antagonists represent a novel
approach for the treatment of stress, mood, and behavioral
disorders.41

Intraperitoneal injection of emodin at a dose of 25 g/(kg
day) in cerebral ischemia/reperfusion (I/R) model rats
improved neurological deficit scores and reduced blood−
brain barrier (BBB) permeability and infarction area,
suggesting the inhibition of the expressions of connexin 43
and aquaporin 4 (AQP4) as a probable mechanism.42 AQP4 is
membrane water channel protein that plays an important role
in the cerebral edema and brain water balance. A selective
V1AR antagonist SR49059 prevented brain edema by
suppressing injury-induced upregulation of GFAP, V1AR, and
AQP4 after traumatic brain injury.43

Vasopressin has numerous peripheral roles. An increased VP
level along with impaired renal water excretion and abnormal
renal hemodynamics in a mouse model of CCl4-induced liver
cirrhosis has previously been reported.44 Similarly, a recent
study on ischemia-reperfusion injury mouse model45 identified
upregulated V1R expression in hepatocytes and highlighted the
importance of the hepatocyte V1R/Wnt/β-catenin/FoxO3a/
Akt pathway in hepatoprotection. From PCM modeling, V1AR
was predicted as a top-target for Cassia-anthraquinones. And
further validation of PCM prediction via cell-based functional
assays in transfected cells expressing human cloned V1AR
(CHO-V1AR), emodin, and alaternin was characterized as
V1AR antagonists (IC50 = 10.25 ± 1.97 and 11.51 ± 1.08 μM,

Figure 3.Molecular docking of human dopamine D3 receptor (hD3R) binding with emodin and alaternin along with positive controls (A). Emodin
(B, C) and alaternin (D, E) docked into the active cavity of hD3R. Emodin, alaternin, dopamine, and eticlopride are presented as orange, green, red,
and black sticks, respectively. Hydrogen-bond interactions are presented as blue lines (B, D).

Table 3. Binding Sites and Docking Scores of Emodin and Alaternin along with Reference Compounds in Human Dopamine
D3 Receptor (hD3R)

compounds
binding energy
(kcal/mol)

no. of H-
bonds H-bond interaction residues nonpolar interacting residues

dopaminea

(agonist)
−5.84 5 Asp110 (salt bridge), Val111,

Thr115, Ser196
Val111, Cys114, Phe346

rotigotinea

(agonist)
−9.23 2 Asp110 (salt bridge), Ser192 Val111, Phe345, His349, Val107, Cys181, Val111, Cys114

eticlopridea

(antagonist)
−8.50b 3 Asp110 (salt bridge), Asp110,

His349
Val111, Cys114, Val189, Phe346, His349, Val111, Ile183, Phe345

emodin −6.67 3 Ser192, Thr115, Val111 Tyr373, Thr369, Tyr365, His349, Phe345, Phe346, Ile183, Trp342,
Asp110, Cys114, Ser196

alaternin −6.79 4 Tyr365, Ser196 Thr115, Val111 Tyr373, Thr369, Tyr365, His349, Phe345, Phe346, Ile183, Trp342,
Asp110, Cys114, Ser192

aDopamine, rotigotine, and eticlopride were used as reference ligands. bRoot-mean-square deviation (RMSD) value: 0.48 Å.
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respectively). Therefore, the reported vasorelaxant and
antiedema property of emodin might be attributed to its
V1AR antagonist effect.
To further interrogate the structural basis of the antagonist

mechanism of emodin and alaternin on the vasopressin
receptor, compounds were docked into the homology model
of V1A receptor and the result (binding pose and interacting
residues) was confirmed by redocking with the reference
agonist arginine vasopressin (AVP) and antagonist SR49059.
As shown in Figure 4 and tabulated in Table 4, AVP bound to
the active site of V1AR with a binding score −9.14 kcal/mol by
forming five H-bond interactions with Asp202, Glu54, Asp112,
and Ile330. Similarly, antagonist SR49059 displayed H-bond
interactions with Gln131, Gln108, and Lys128 with a binding
score of −8.98 kcal/mol. Emodin involved in four H-bond
interactions with Met135, Gln131, Ala101, and Gly337 with a
bond length of 2.0−2.6 Å (shown by the blue lines in Figure
4B).
In addition, other nonpolar interactions such as π−π T-

shaped (Phe307 and Trp304) and π-alkyl (Ala334, 5.25 Å)
interactions were observed for aromatic rings A and C (Figure
4C). In the case of alaternin, five H-bond interactions with
Lys128, Gln131, Ser213, Val217, and Gln311 at a distance of
1.8−3.0 Å were predicted with a binding score of −6.40 kcal/
mol.

Aromatic rings were involved in π-alkyl interactions with
Lys128 (5.43 Å) and Ala205 (4.73 Å), and π-sulfur interaction
with Met220. Although the number of H-bond interactions for
alaternin was greater than that of emodin, both showed similar
binding energies. The binding sites for antagonist SR49059
and test compounds overlappedi.e., interaction with polar
residue Lys128 and Gln131 in TM III, nonconserved residue
Ala334 in TM VII, and aromatic residue Phe307 at the bottom
of the binding pocket in TM VI. The interaction with Ala334
and Phe307 plays an important role in binding V1AR selective
ligands.46

Alaternin as Human Serotonin-1A Receptor (h5-
HT1AR) Antagonists. The antagonist effect of alaternin on
h5-HT1A receptor was evaluated fluorimetrically by measuring
the free cytosolic Ca2+-ion concentration in response to 30 nM
serotonin. Figure 2C illustrates a concentration-dependent
inhibitory effect of alaternin on the control agonist (30 nM
serotonin) response along with the 50% inhibitory concen-
tration. As shown in Table 2, alaternin showed 34.5%
inhibition of 30 nM serotonin effect at 50 μM and gave an
IC50 value of 84.23 ± 4.12 μM (Figure 2C). The reference
antagonist (S)-WAY-100635 had an IC50 value of 4.4 nM.
Emodin, aloe-emodin, and questin remained ineffective in
antagonizing the h5-HT1A receptor activity.

Figure 4. Molecular docking of human vasopressin V1A receptor (hV1AR) binding with emodin and alaternin along with positive controls (A).
Emodin (B, C) and alaternin (D, E) docked into the active cavity of hV1AR. Emodin, alaternin, and SR49059 are presented as orange, green, and
black sticks, respectively. Agonist, AVP is presented as a red ribbon. Hydrogen-bond interactions are presented as blue lines (B, D).

Table 4. Binding Sites and Docking Scores of Emodin and Alaternin along with Reference Compounds in the Modeled Human
Vasopressin V1A Receptor (hV1AR)

compounds
binding energy
(kcal/mol)

no. of H-
bonds H-bond interaction residues nonpolar interacting residues

AVPa (agonist) −9.14 5 Asp202, Glu54, Asp112, Ile330 Trp204, Ile330, Ala101, Ala334, Val132, Met135
SR49059a

(antagonist)
−8.98 5 Gln131, Gln108, Lys128 Phe307, Trp204, Val132, Met135, Met220, Ala334, Ala205,

Gln131, Thr333
emodin −6.36 4 Met135, Gln131, Ala101, Gly337 Val100, Ala101, Ala334, Phe307, Trp304, Met135
alaternin −6.40 5 Lys128, Gln131, Ser213, Val217,

Gln311
Lys128, Met135, Met220, Phe189, Ala205

aArginine vasopressin (AVP) and (2S)1-{(2R,3S)-5-chloro-3-(2-chloro-phenyl)-1-(3,4-dimethoxybenzene-sulfonyl)-3-hydroxy-2,3-dihydro-1H-
indole-2-carbonyl}pyrrolidine-2-carboxamide (SR49059) were used as reference ligands.
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In a recent study, emodin improved cycloheximide-induced
amnesia in rats, and the authors suggested the blocking of
serotonin release or activating the presynaptic 5-HT1A receptor
and muscarinic receptor as a possible mechanism.47 However,
for the particular effect measured here, we did not observe an
effect on 5HT1A receptor. In a previous study,48 Cassia seed
extract at 20 μg/mL showed a significant antiallergic effect in
IgE-mediated mast cells and anaphylactic models by inhibiting
the production of IL4 (p < 0.05), TNF (p < 0.01), PGE2
secretion (p < 0.01), and histamine release (p < 0.01).
Serotonin is one of the putative inflammatory mediators that is
able to induce dose-dependent nociceptive behaviors when
injected into the paw, and also appears to interact synergisti-
cally with other inflammatory mediators to generate pain.49 In

a study on subcutaneous formalin-injected paw model of
pain,50 coadministration of 5-HT1A receptor antagonist WAY
100 135 (450 μg/paw) inhibited the phase 2 (long lasting)
intense flinching behavior significantly (P < 0.001). Similarly,
the analgesic effect of electroacupuncture on inflammatory
pain in the rat model of collagen-induced arthritis was blocked
by a 5-HT1A receptor antagonist spiroxatrine (1 mg/kg i.p.).51

In a previous report, alaternin attenuated neuronal cell death
in transient cerebral hypoperfused mice via anti-inflammatory
responses by preventing nitrotyrosine and lipid peroxidation as
well as inhibiting nitric oxide synthase expression.37 There has
been a well-reported correlation between 5-HT1A receptor
mRNA expression and neuroinflammation.52,53 The expression
of the 5-HT1A receptor mRNA was enhanced in spinal GABA

Table 5. Binding Sites and Docking Scores of Emodin and Alaternin along with Reference Compounds in the Modeled of
Human 5-hydroxytryptamine 1A Receptor (h5HT1AR)

compounds
binding energy
(kcal/mol)

no. of H-
bonds H-bond interaction residues nonpolar interacting residues

serotonina (agonist) −6.77 4 Asp116 (salt bridge), Thr200,
Thr121

Ala203, Val117, Phe362, Phe361, Cys120

WAY 100635a

(antagonist)
−11.22 3 Asp116 (salt bridge), Asn386 Ala93, Tyr96, Thr200, Phe112, Cys120, Ala203, Pbe362,

Phe361
emodin −7.01 1 Cys187 Asp116, Ile189, Phe112, Phe361
alaternin −6.77 1 Cys187 Asp116, Ile189, Phe112, Phe361, Trp358
aSerotonin and N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl) cyclohexanecarboxamide (WAY 100635) were used as reference
ligands.

Figure 5.Molecular docking of human 5-hydroxytryptamine1A receptor (h5HT1AR) binding with emodin and alaternin along with positive controls
(A). Emodin (B, D) and alaternin (C, E) docked into the active cavity of h5HT1AR. Emodin, alaternin, serotonin, and WAY 00635 are presented as
orange, green, red, and black sticks, respectively. Hydrogen-bond interactions are presented as blue lines (B, D).

Table 6. Drug-likeness and ADME Characteristics as Predicted by PreADMET

drug-likeness ADME characteristics

compounds MDDR-like rule Lipinski’s rule log Po/w
a PPBb HIAc in vivo BBB penetration ([brain]/[blood])d

emodin midstructure suitable 2.56 100 90.43 0.668
alaternin midstructure suitable 2.57 98.17 75.71 0.459
aloe-emodin midstructure suitable 1.89 91.11 90.64 0.492
questin midstructure suitable 2.69 96.06 94.04 0.730

aThe log of the coefficient of solvent partitioning between 1-octanol and water. bPlasma protein binding (PPB) (<90% represents weak binding,
and >90% represents strong binding). cHuman intestinal absorption (HIA) (0−20%: poor, 20−70%: moderate, and 70−100%: good). dAbsorption
by the CNS <0.1: low, 0.1−2.0: moderate, and >2.0: high.
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and enkephalin neurons after inflammation.54 We observed a
moderate antagonist effect of alaternin in 5-HT1AR (IC50:
84.23 ± 4.12 μM). This corroborates the reported anti-
inflammatory effect of alaternin.
In the functional assay, only alaternin showed a moderate

antagonist effect on h5-HT1AR for which we hence performed
docking. As tabulated in Table 5, the 3-OH group of emodin
and alaternin displayed a H-bond interaction with Cys187
(Figure 5B,D). Similarly, the same π−π T-shaped interaction
with Phe112, π−π stacked interaction with Phe361, and π-
anion interaction with Asp116 were observed for both the test
compounds (Figure 5C,E). However, additional nonpolar
interaction between the 7-OH group and Trp358 was observed
for alaternin (Figure 5B). This additional interaction could
explain the potency of alaternin compared to that of emodin.
However, further experimental analysis is needed to confirm
the role of Trp358 in h5-HT1A antagonism.
Drug-likeness and ADME Prediction. Drug-likeness was

predicted for emodin, alaternin, aloe-emodin, and questin. The
results in Table 6 suggested that these compounds have good
druglike properties, as they adhered to the MDDR-like rule55

and Lipinski’s rule.56 All anthraquinones were predicted
midstructures in MDDR-like rule and suitable for drug
development from Lipinski’s rule. In ADME prediction, all
compounds were predicted with strong plasma protein binding
(91−100%), good human intestinal absorption (HIA) (75−
94%), and good lipophilicity (log Po/w value range, 1.89−2.69),
indicating the suitability for CNS delivery. Likewise, the
blood−brain barrier (BBB) penetration values ([brain]/
[blood]) were >0.45% indicating moderate absorption by the
CNS.
Overall, drug-likeness and ADME prediction results

demonstrated that the test anthraquinones are suitable for
CNS delivery. In general, relatively higher lipophilicity
provides better CNS penetration; however, too high values
may enhance nonspecific plasma protein binding.57 The
lipophilicity values log P/logD ranging from 1.7 to 2.8
demonstrate the highest CNS penetration,58,59 and the values
for the test anthraquinones in the present study fall within this
range. The HIA rate was predicted to be good for all of the
compounds, indicating the suitability for oral administration.
However, in a previous report,60 oral administration of emodin
at doses of 20 and 40 mg/kg rapidly underwent phase II
metabolism to form its glucuronide, and the parent form of
emodin was almost undetectable in vivo. Therefore, oral
administration would not be the best method of application of
emodin because of fast elimination and low bioavailability in
vivo. All of these predicted results will be helpful for the
optimization of druglike properties.
High-throughput screening of chemical compounds had

predicted quinone derivatives as reactive and pan assay
interference compounds (PAINS) that could show a false
biological effect.61,62 However, this effect cannot be general-
ized for all of the quinone derivatives and structure−activity
relationships would be evidence.61 The basic chemical
structure of the test compounds is anthracene-9,10-dione
with different substituents at ortho-, meta-, and para-positions
of two side rings (Figure 1). The effect of the test compounds
on test receptors varied with substitution (Table 2). When an
anthracene-9,10-dione moiety had a polyhydroxy group at
positions C1, C3, and C8 with methylation at position C6
(emodin), it showed potent agonist effect at dopamine hD3R
and antagonist effect at hV1AR. However, an additional

hydroxyl group at position C7 of emodin (as in alaternin)
retarded the hD3R agonist effect without altering the
antagonist effect at hV1AR. Besides, a moderate antagonist
effect at h5-HT1AR was observed for alaternin, which was not
observed for emodin. Similarly, a dihydroxy group at position
C1 and C8, and a hydroxymethyl group at C6 position in an
anthracene-9,10-dione moiety (aloe-emodin) showed mild
antagonist effect at hD3R and hD4R. The hD3R agonist effect
and hV1AR antagonist effect showed by emodin and alaternin
was completely abolished in aloe-emodin. Interestingly, when
an anthracene-9,10-dione moiety had a dihydroxy group at
position C3 and C8, methyl group at position C6 and methoxy
group at the C1 position, questin selectively modulated the
hD3R agonist effect. From this structure−activity relation, the
following insights can be drawn(1) hydroxyl group at C1,
C3, and C8 and a methyl group at C6 are essential for hD3R
agonist and hV1AR antagonist effects; (2) an additional
hydroxyl group at C7 of emodin is functional for the h5-
HT1AR antagonist effect.
If all quinone derivatives are PAINS indeed, then all of the

test anthraquinones of the present study should show
functional effect in all of the tested receptors. However, only
emodin and alaternin (7-hydroxyemodin) showed a selective
agonist effect on dopamine D3R and antagonist effect on
vasopressin V1AR, meaning these two compounds selectively
bind to the particular receptor for functional effect. This clearly
shows that the functional effect of emodin and alaternin is
attributed to the substituents in the anthraquinone structure
rather than quinone itself. Still, these effects need to be proved
in vivo. Still, these effects need to be proved in vivo.

■ CONCLUSIONS

In conclusion, the present study demonstrates the effect of
emodin, alaternin (7-hydroxyemodin), aloe-emodin, and
questin from C. obtusifolia seeds on various GPCRs (hD1R,
hD3R, hD4R, h5-HT1AR, and hV1AR) modulation via cell-based
functional assays and corroborate with the PCM prediction.
Results characterize emodin and alaternin as dopamine D3R
agonists and vasopressin V1A antagonists. Questin showed a
moderate hD3R agonist effect, and aloe-emodin showed mild
hD3R antagonist effect. Only alaternin was effective in
antagonizing h5-HT1AR, and the remaining compounds
remained ineffective. Thus, we conclude that anthraquinones,
especially emodin and alaternin appear to be an attractive
therapeutic route for neuroprotection that has a beneficial
effect on the aminergic pathways involved in neurodegenera-
tion.

■ MATERIALS AND METHODS

Chemicals and Reagents. A murine interleukin-3-
dependent pro-B (Ba/F3) and a transfected Chinese hamster
ovary (CHO) cell lines were obtained from Eurofins Scientific
(Le Bois I’Eveque, France). Dulbecco’s modified Eagle’s
medium (DMEM) buffer, 4-(2-hydroxyethyl)-1-piperazinee-
thanesulfonic acid (HEPES) buffer, and Hank’s balanced salt
solution (HBSS) buffer were purchased from Invitrogen
(Carlsbad, CA). The reference agonists (dopamine, serotonin,
and arginine vasopressin) and antagonists (SCH-23390,
(+)-butaclamol, clozapine, (S)-WAY-100635, and [d(CH2)5,

1

Tyr(Me)2]-AVP) were obtained from Sigma-Aldrich (St.
Louis, MO). All of the drugs, chemicals, and reagents were
of the highest grade available.
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Isolation of Compounds. Details on plant material,
extraction, fractionation, isolation, and identification have
been described in our recent work.21 The purity of these
compounds was considered to be >98%, as evidenced by
spectroscopic data (NMR and MS).
In Silico Prediction of Targets. To predict potential

protein targets for the four anthraquinones, a proteochemin-
formatics modeling (PCM) in silico target prediction method
was employed. The model was trained on the chemical and
biological similarities of 55 079 compounds active and inactive
against 99 human proteins (11 537 active pairs vs 43 542
inactive pairs). Machine learning algorithm, in this case, Parzen
Rosenblatt Windows (PRW)63,64 was utilized to evaluate the
patterns that differentiate between active and inactive
complexes. Based on the patterns established, the activity of
novel compounds against the 99 protein targets can be
predicted. Chemical structures were represented as ECFP_4
fingerprint,65 and chemical similarities were calculated using
Aitchison−Aitken kernel.66 Protein vectors were represented
by their full sequence where a protein sequence is denoted as a
string of characters, and each character represents an amino
acid that is part of the protein. Prior to calculating the
similarities between two protein sequences, the sequences are
subjected to alignment using MUSCLE,67 performed using the
bio3d package.68 The model was internally and externally
validated by sensitivity values of 0.6837 and 0.4492,
respectively. For full information on the model, readers are
directed to a previous report.23

GPCR Functional Assay for Human Dopamine
Receptor. The effect of test compounds at human dopamine
(D1, D3, and D4) receptors expressed in CHO cells was
evaluated by measuring their effect on cAMP modulation via
homogeneous time-resolved fluorescence (HTRF), as de-
scribed previously.69 Agonist activity was determined by
measuring the effect on cAMP modulation, and antagonist
activity by measuring the effect on agonist-induced cAMP
modulation using the HTRF detection method. The cellular
agonist effect was calculated as the percentage of the control
response to dopamine for each receptor (D1, D3, and D4)
targets, and the cellular antagonist effect was calculated as the
percentage inhibition of the dopamine response for each target.
To validate the result, reference antagonist SCH-23390,
(+)-butaclamol, and clozapine were used for D1, D3, and D4
receptors, respectively.
GPCR Functional Assay for Human Serotonin 5-HT1A

and Vasopressin V1A Receptor. The agonist activity of test
compounds at the human 5-HT1A receptor expressed in Ba/F3
cells and V1A receptor expressed in transfected CHO cells was
determined by measuring their effect on cytosolic Ca2+-ion
mobilization using a fluorimetric detection method described
in our previous reports.70,71 For antagonist activity, the effect
on agonist-induced cytosolic Ca2+-ion mobilization was
measured.
Cellular agonist effect at 5-HT1A receptor was calculated as

the percentage of the control response to serotonin (2.5 μM),
and the antagonist effect was calculated as the percentage
inhibition of the control response to 30 nM serotonin. To
validate the result, reference antagonist (S)-WAY-100635 was
employed. Similarly, for the cellular agonist at V1A receptor, the
percentage of the control response to 1 μM AVP was
determined, and for antagonist effect, percentage inhibition
of control response to 10 nM AVP was recorded. The standard

reference antagonist [d(CH2)51 Tyr(Me)2]-AVP was used to
validate the result.

Homology Modeling and Molecular Docking. The
primary sequence of the human 5HT1AR and human V1AR was
obtained from UniProt (ID: P08908 and P37288, respec-
tively). 5-HT1B receptor (PDB 5V54) and μ-opioid receptor
(4DKL) structures were obtained from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein
Data Bank (PDB) and used as a template for homology
modeling of 5HT1A and V1A receptors, respectively. Modeling
was conducted through SWISS-MODEL and refined through
ModRefiner server (RMSD = 1.264 Å for 5HT1AR and 0.645 Å
for V1AR).

72 Likewise, X-ray crystallography of a human
dopamine D3 receptor (hD3R)−eticlopride complex (PDB ID:
3PBL) at a resolution 2.89 Å was obtained from the PDB.73

The three-dimensional (3D) structures of emodin, alaternin,
aloe-emodin, and questin were obtained from the PubChem
Compound database (NCBI), with compound CIDs of 3220,
12548, 10207, and 160717, respectively. The docking of the
target proteins and active compounds was successfully
simulated using the AutoDock 4.2 program.74 Automated
docking simulations were performed using AutoDockTools
(ADT) to assess appropriate binding orientations. For the
docking calculations, Gasteiger charges were added by default,
rotatable bonds were set by ADT, and all torsions were allowed
to rotate. Grid maps were generated by AutoGrid. The docking
protocol for rigid and flexible ligand docking consisted of 20
independent genetic algorithms; the other parameters used
were the ADT defaults. The results were visualized and
analyzed using Discovery Studio (v17.2, Accelrys, San Diego,
CA) and PyMOL (v1.7.4, Schrödinger, LLC, Cambridge,
MA).

Drug-likeness and ADME Prediction. Drug-likeness
predictions were carried out with PreADMET (v2.0, Yonsei
University, Seoul, Korea). This web-based server can be used
to predict absorption, distribution, metabolism, and excretion
(ADME) data and build a drug-likeness library in silico.

Statistics. All results are expressed as mean ± standard
deviation (SD) of triplicate samples. Statistical significance was
analyzed using one-way analysis of variance (ANOVA) (Systat
Inc., Evaston, IL) and was noted at p < 0.05.
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