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Abstract
Coupling activity-based models with dynamic traffic assignment appears to form a prom-
ising approach to investigating travel demand. However, such an integrated framework 
is generally time-consuming, especially for large-scale scenarios. This paper attempts to 
improve the performance of these kinds of integrated frameworks through some simple 
adjustments using MATSim as an example. We focus on two specific areas of the model—
replanning and time stepping. In the first case we adjust the scoring system for agents 
to use in assessing their travel plans to include only agents with low plan scores, rather 
than selecting agents at random, as is the case in the current model. Secondly, we vary the 
model time step to account for network loading in the execution module of MATSim. The 
city of Baoding, China is used as a case study. The performance of the proposed methods 
was assessed through comparison between the improved and original MATSim, calibrated 
using Cadyts. The results suggest that the first solution can significantly decrease the com-
puting time at the cost of slight increase of model error, but the second solution makes 
the improved MATSim outperform the original one, both in terms of computing time and 
model accuracy; Integrating all new proposed methods takes still less computing time and 
obtains relatively accurate outcomes, compared with those only incorporating one new 
method.

Keywords  Activity-based model · Dynamic traffic assignment · MATSim · Computing 
time · Agent-based model · Varying time step-based approach · Large-scale simulation

Introduction

Activity-based models (ABM), which attempt to simultaneously investigate individual daily 
activities and travel behaviour, has gradually dominated in studies of travel demand model-
ling, see (Rasouli and Timmermans 2014) for a recent review of ABM. More recently, sev-
eral attempts have been made to couple the ABM with dynamic traffic assignment (DTA), 
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in order to take into account the inverse impact of the traffic conditions (e.g., congestion) 
on individual travel behaviour, such as activity location and route choice. Representative 
ABM + DTA integrated frameworks include, for example, MATSim (Balmer et al. 2008, 
2009) and TRANSIMS (Javanmardi et al. 2011). Compared with other ABMs, no aggrega-
tion or disaggregation is needed to process the input or output data of internal sub-models 
of the integrated framework. However, for these integrated frameworks, long computing 
times have become a critical issue that limits their application, especially in large-scale 
scenarios. In response to this, an attempt is made in this paper to improve the performance 
of these integrated frameworks in terms of computing time.

As one of the most popular and typical integrated frameworks, MATSim is chosen as 
an example to demonstrate how the improvement methods can be applied. It is worth not-
ing that the plain MATSim model has relatively weak ABM-related components, such as 
time allocation mutation (adjusting the departure time of an activity). However, MAT-
Sim has the great potential to become a full ABM + DTA integrated framework able to 
model the activity-based travel demand explicitly and to simultaneously adjust the activ-
ity types, locations and the sequence of activities. In addition, the plain MATSim model 
can also be coupled with more comprehensive ABMs, such as CEMDAP (Ziemke et al. 
2015) and DaySim (Castiglione et al. 2010). However, the improvement methods proposed 
in this paper can in principle also be applied in both these cases. From the analysis of the 
MATSim workflow, the following two aspects are identified as time-consuming compo-
nents, which have to date received less attention: first, the integrated framework generally 
needs a number of iterations to converge; second, the network loading (traffic simulation) 
is one of the most time-consuming parts in every iteration. In response to these two issues, 
the improvement work is focused on the reduction of the number of the iterations and the 
decrease of the computing time in network loading, which are achieved by proposing a new 
framework for the MATSim replanning module, and new execution modules, respectively. 
The proposed improvement methods are tested in a Chinese medium-sized using MATSim 
calibrated with Cadyts (Calibration of dynamic traffic simulations) (Flötteröd 2009; Flöt-
teröd et al. 2012; Fourie et al. 2013).

Previous work

Activity‑based models (ABMs)

In an integrated framework, ABM generates individual daily plans (travel demand) which 
are used as the key input for the DTA model. In return, the DTA model gives feedback 
concerning the traffic conditions to the ABM, based on which the ABM can adapt the daily 
plans to the dynamic traffic. To date, several integrated frameworks have been developed: 
Pendyala et  al. (2012) proposed combining PCATS (Prism-Constrained Activity–Travel 
Simulator) with DEBNetS (Dynamic Event-Based Network Simulator). PCATS and DEB-
NetS are ABM and microscale-mesoscale DTA models, respectively (Kitamura et al. 2000, 
2005, 2008; Pendyala et  al. 2012). Lin et  al. (2008) developed a conceptual framework 
which used CEMDAP (Pinjari et al. 2008) and VISTA (Waller and Ziliaskopoulos 1998) as 
the ABM and DTA, respectively. Javanmardi et al. (2011) linked TRANSIMS (Smith et al. 
1995) to ADAPTS (Agent-based Dynamic Activity Planning and Travel Scheduling) (Auld 
and Mohammadian 2009). Ramaekers et al. (2008) presented a framework which integrated 
a custom agent-based travel demand model called Feathers (Bellemans et al. 2010) with an 
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equilibrium-based traffic assignment. Within the SHRP 2 C10A project (in the U.S.), Hadi 
et al. (2014) developed a regional-scale integrated model incorporating DaySim (Bradley 
et al. 2010) and TRANSIMS (Smith et al. 1995) as ABM and DTA, respectively (Castigli-
one et al. 2015). DaySim was also coupled with Dynus-T and FAST-TrIPs, which were a 
dynamic traffic assignment and transit demand assignment tools, respectively, resulting in 
an integrated ABM for Sacramento, California (Castiglione et  al. 2015; National Acad-
emies of Sciences 2014). The San Francisco County Transportation Authority tied to con-
nect the SF-CHAMP model (an ABM model) to the Dynameq model (a microscopic traffic 
simulation model) within another U.S. project (“DTA Anyway”), in order to investigate 
congestion pricing at the disaggregate level (Brinckerhoff 2012; Castiglione et al. 2015). 
Researchers primarily from ETH Zurich and TU Berlin have been working on MATSim for 
more than a decade (Horni et al. 2016), which also provides an integrated framework for 
DTA and Agent-based Modelling. Compared with other integrated frameworks, MATSim 
is one of the most popular, as evident from its worldwide applications (MATSim 2015), 
including China (Zhang et al. 2013; Zhuge et al. 2014), Switzerland (Bekhor et al. 2010), 
Belgium (Röder et al. 2013), Germany (Neumann et al. 2012), Canada (Gao et al. 2010), 
Singapore (Axhausen 2013), and South Africa (Neumann et al. 2015).

In addition, multi-modal activity-based models represent a potential trend in the study 
of travel demand modelling, but currently this receives less attention than single-mode 
models, which only focus on car travel. However, several pilot studies on multi-modal 
activity-based models have been done with MATSim, which can support several transport 
modes, including private cars (Zhuge et al. 2014), electric vehicles (Waraich et al. 2009), 
minibuses (Neumann et al. 2015), public transit (Rieser 2010) and taxis (Maciejewski and 
Nagel 2013). Since it has had a wide range of recent application, MATSim would seem to 
be a good candidate for exploring possible improvements in execution time.

Brief Introduction to MATSim (multi‑agent transport simulation)

Figure 1 demonstrates the MATSim framework which essentially comprises three sections: 
Execution, Replanning and Scoring (Balmer 2007). MATSim aims to optimize initial daily 
plans of each agent by iteratively running the three sections. The main outputs of the itera-
tive simulation include optimal daily plans, traffic flow and facility occupation. Briefly, the 
three modules work in the following way (Balmer 2007; Horni et al. 2016):
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Fig. 1   Framework of MATSim. Source: Adapted from Balmer et al. (2008) and Zhuge et al. (2014)
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•	 Execution Module: executes the daily plans of each agent in the population, simulating 
how agents preform their daily activities and travel from activity location to another;

•	 Scoring Module: uses a utility function (considering both activity and travel) to evalu-
ate the daily plans based on the performance of each agent in the Execution Module;

•	 Replanning Module: adjusts plan elements (e.g., departure time) according to plan 
scores, so as to adapt plans to the varying traffic flow.

In MATSim, the default DTA, which is also known as agent-based traffic assignment, 
differs from those classical ones in that all activities in each agent’s daily plan are chained, 
as detailed in (Nagel and Flotterod 2016).

Previous improvements for MATSim

In large-scale scenarios, MATSim usually needs to handle many agents at the micro level 
(Waraich et al. 2015), and thus may take some considerable time to run. For instance, in 
the Greater Zürich scenario where the travel behaviour of 181,693 agents (10% of the pop-
ulation) in 1 day was simulated with a “dual-core AMD Opteron machine with 2,6 GHz 
CPU and 8 GB RAM”, the computing time was 23 h (Balmer et al. 2008). Similarly, in the 
Swiss scenario where 2.3 million agents with about 7.1 million trips were simulated, the 
required runtime was 36 h (Balmer et al. 2009).

In response, several attempts have been made to speed up the simulation. Firstly, for 
example, network loading can be multi-threaded so as to update multiple links simultane-
ously for each time step. Secondly, for the traffic simulation, an event-driven approach has 
been proposed to replace the time-step based approach, as it is argued that this can be much 
more time efficient (Charypar et al. 2006, 2007; Waraich et al. 2015). Thirdly, using A* 
rather than Dijkstra’s algorithm for shortest path search can be up to 400 times faster than 
Dijkstra’s algorithm (Balmer 2007; Lefebvre and Balmer 2007). In addition to the methods 
above, reducing disk access, decoupling computational tasks, and varying the replanning 
percentage and the covariance matrix adaptation evolution strategy have also been used to 
accelerate the simulation (Charypar et al. 2006; Waraich et al. 2015).

Despite these improvements the performance is still not really satisfactory, especially 
at large-scale. This paper attempts to make further improvements by identifying some 
remaining time-consuming parts of the model. Much of the computing time is occupied 
by the iterative loop that is used to optimize the daily plans: generally a number of itera-
tions are needed to reach the equilibrium state. In response, two solutions are proposed. 
The first is to reduce the number of the iterations required to make the simulation converge 
by adjusting the MATSim framework and replanning module. The second is to reduce the 
computing time for each iteration by employing a varying rather than fixed time-step in the 
execution module. In general, attempts at improvement in computing time are very likely 
to sacrifice accuracy. For example, in the current MATSim traffic simulation, each link is 
processed (updated) every second (as the default). Instead, if the links are processed with a 
much longer time step (e.g., 10 s), computing time might be saved, but the accuracy could 
be much worse, as the movement of agents cannot be simulated in detail. Therefore, model 
accuracy will be paid special attention below when the improvement methods are applied.

It is also worth noting that the proposed two solutions above can be easily implemented, 
as this paper attempts to significantly reduce computing time through some simple adjust-
ments (rather than novel algorithms or computing methods) at no or little cost in terms of 
model accuracy. Although the proposed improvements will be tested within MATSim, the 
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outcomes from this paper should also be of interest to modellers working on ABM. This 
is because, on one hand, MATSim (including its extensions and variants) has become one 
of the most-used ABMs (as reviewed above) with a relatively large number of users across 
the world; on the other hand, the proposed improvements should also be applicable to other 
ABMs (e.g., TRANSIMS) similar to MATSim.

New improvement methods for MATSim

Improvement in framework of MATSim

As discussed above, one of the main time-consuming parts of MATSim is the co-evolu-
tionary module which aims to optimize daily plans of each agent through a number of iter-
ations. In order to save computing time and make the co-evolutionary mechanism more 
realistic, the new framework here will only adjust the daily plans of those agents who are 
not satisfied with their current plans, so as to reduce the number of iterations required to 
converge. However, this is likely to reduce the frequency of replanning, and further to lead 
to local optimal daily plans. In response, the framework will first generate a specific num-
ber of candidate plans at the so-called initialisation stage (see Phase 1 below) when a simu-
lation begins, so as to provide agents with more possible options and to avoid local optimal 
solutions as far as possible. Specifically, the new framework for MATSim (see Fig. 2) can 
be broadly divided into two phases.

In phase 1, the simulator makes each agent in the population adapt their daily plans 
to the dynamic traffic flow for a specific number of times NPlans(e.g., 5 times), so that 
each agent can store NPlans different daily plans in their memory. These plans can be 
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Fig. 2   New framework of MATSim
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used to check if they are satisfied with their current choices and then make decisions 
on whether to continue replanning in Phase 2. Briefly, phase 1 is used to prepare an 
initial situation for phase 2. In addition, in phase 1, two typical replanning strategies, 
reroute and reschedule, can be applied.

In phase 2, the simulator only makes the agents who are not satisfied with their 
daily plans further adapt. That is, those agents who are satisfied with daily plans will 
not perform replanning. Here, the score module calculates the degree to which each 
agent satisfies their own plans, so that the satisfaction of agents can be used to judge if 
further adaption is needed. More details on the new replanning module will be intro-
duced in “Improvement in the replanning module” section. The scoring, replanning 
and execution modules make up an iterative loop that is the same as the one in the 
original model, stopping only when the simulation converges, or the maximum number 
of iterations is reached. As a result, the final daily plans of agents and the traffic flow 
can be obtained.

Improvement in the replanning module

New assumption for the replanning module

The replanning module is composed of Reroute and Reschedule. The reroute module is 
used to find the shortest path given the current origin and destination locations in the 
agents’ plans; the reschedule module is used to adjust the activity-related elements in 
the plan, such as departure time, transport mode and activity location. Both strategies 
are applied to adapt the daily plans to the dynamic traffic flow, aiming at optimizing 
the plans (Horni et al. 2016). In the original replanning module, it is assumed that a 
certain number of agents (e.g., 10% of total agents) are randomly selected to perform 
replanning, no matter whether the agents have a good travel experience or not. How-
ever, such an assumption not only misrepresents the real world, but also results in a 
long convergence time. The new assumption, that only those agents who are not satis-
fied with their current daily plans will perform replanning, is expected both to better 
represent the real world as well as reducing the computing time.

With the application of the new assumption into the replanning module, the simula-
tor works as follows: The replanning module will first select a set of agents who are 
currently not satisfied with their travel experience, and then apply appropriate replan-
ning strategies to these agents. The degree to which the agents are not satisfied with 
their daily plans will be quantified using two levels �

1
 and �

2
 , where 𝜃

1
< 𝜃

2
:

Level 1: The score of the currently executed plan is �
1
 % less than the best score 

in the agent’s memory. For agents classified into level 1, only reroute is applied 
to adapt their daily plans, as it is argued that a minor adjustment to the plans is 
enough.
Level 2: The score of the currently executed plan is �

2
 % less than the best score in 

the agent’s memory. For agents staying at level 2, in addition the reroute module, the 
reschedule module can also be used, as a major adjustment is required to optimize 
the daily plans.
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These two parameters need to be calibrated or set according to users’ experience.

The reroute module

The reroute module in MATSim can be implemented with either the Dijkstra or A* 
algorithm. As mentioned above, A* tends to be faster (Balmer 2007; Lefebvre and 
Balmer 2007), so is chosen as the router here.

The reschedule module

Currently, there are several reschedule strategies available to adapt the plans of agents 
to the dynamic traffic flow, including time allocation mutation (Balmer 2007), change 
of transport mode (Meister et  al. 2010) and change of activity location (Horni et  al. 
2009). In this study, only time allocation mutation is used, and it can randomly change 
the departure time of an activity, in a specific range, for example, [− 30 min, + 30 min] 
(Balmer 2007).

Improvement in execution module

Introduction to execution module

The execution module is used to simulate the movement of each agent according to their 
daily plans, considering both direct and indirect interactions between agents on the trans-
port network. On the basis of traffic simulation, the traffic conditions can be obtained and 
the travel time of each agent can be further calculated. The execution module is one of 
the most time-consuming components in MATSim, especially in large-scale scenarios, 
and thus an efficient execution module can significantly speed up the simulation (Charypar 
et al. 2007).

An event-driven approach and time-step based approach are both available in MATSim 
(Dobler 2010), and they have their own advantages and drawbacks. For example, the time-
step based approach may be much more suitable for parallel computing, as synchronization 
take places automatically at a fixed time point and thus the time taken for synchronization 
of action (which may be needed in event-driven cases) can be saved (Dobler 2010). The 
event-driven approach can save computing time, as the approach only processes the links 
where events happen (Charypar et al. 2007).

New execution module: varying time step based approach

The new execution module is a variant of the time step based approach and differs from 
other similar approaches in the way to set the time step. A fixed time step could waste 
time if the traffic conditions within a time step just slightly change, but do not significantly 
influence the travel time of agents. In response, a varying time step approach is proposed to 
save computing time by setting the time step based on the number of agents moving on the 
network. The underlying concept is that the more agents that are simulated on a network of 
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a given size, the larger time step should be, since agents move more slowly in traffic con-
gestion, for example, and the statuses of agents (e.g., position) do not change significantly 
during a small time step. Therefore, a larger time step might not influence the model accu-
racy, but could markedly decrease the computing time. The detailed procedure of setting 
varying time step is as follows:

(1)	 Analyze the daily plans of all agents in the population and estimate the number of 
agents on the network in a set of time bins with some pre-determined size (e.g., 
60 min). For example, we can count the number of agents on the network from 08:00 
to 09:00, 09:00 to 10:00 and so on. The time bin which includes most agents is defined 
as the peak period.

(2)	 Specify different time step sizes and allocate them to different time bins based on the 
underlying concept: the more agents are in the time bin, the higher time step will be 
allocated to the time bin. As a result, the peak period will be allocated with the highest 
time step. The idea here is to allocate a higher time step to those bins with more agents 
(for example, during peak hours), so as to save computing time to process agents. This 
might decrease the model accuracy, as the statuses of agents are updated less frequently. 
However, it should not add too much bias, because agents in these bins tend to move 
slowly (due to traffic congestion) and their statuses probably do not need to be updated 
too frequently.

The new execution module was implemented by slightly modifying the MATSim code 
related to time step setting, rather than completely rewriting. The pros and cons of the new 
execution module are discussed as follows: this allocation method could significantly speed 
up the simulation, but may lead to inaccuracies if some links are relatively low in traf-
fic level. Furthermore, for each agent, their moving trajectories will become less detailed, 
especially when a large time step is used. Therefore, a proper time step needs to be set in 
order to trade off the computing time and model accuracy.

Case study

Data preparation

The medium-sized Chinese city, Baoding, was used to create a case study, and the car 
travel behavior in 2007 was simulated. The main data included the road network, facility 
(e.g., shop) locations, traffic flow data, a synthetic population and initial daily plans (travel 
demand). All of the data were prepared based on the project “Baoding Integrated Transpor-
tation Planning 2009–2020” conducted in the School of Traffic and Transportation, Bei-
jing Jiaotong University. In general the road network and facility locations can often be 
extracted from GIS or online maps (e.g., OpenStreetMap). The road network used in study 
comprises 1650 links and 539 nodes (see Fig. 6 in “Appendix”). In terms of the synthetic 
population, it was created by a population synthesis method called Pop-H, as detailed in 
(Zhuge et al. 2017). The synthesizer utilizes the household weights derived from sample 
data as the seed and changes these weights only slightly during the process of fitting the 
marginal distribution using a heuristic algorithm, so that the resulting final household 
weights, based on which the population is synthesized, can still be close to the seed that 
represents the real world well in some cases (Zhuge et al. 2017). The synthetic population 
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of Baoding is composed of 298,575 households and 1,001,488 individuals. Initial daily 
plans were generated by a GA-based Household Scheduler (Zhuge 2014; Zhuge and Shao 
2016) using the 2007 Baoding Household Travel Survey as the key input. The scheduler 
incorporates a household-level utility function to create daily plans using only 20% of the 
whole population for the sake of speed. Accordingly, some parameters associated with the 
size of population (e.g., the capacity of the link) needs to be scaled down or up. After the 
simulation, the results (e.g., traffic flow) need to be scaled up to match the full population 
size. In addition, since the case study only looked at car simulation, the individuals who 
travel by car were extracted from the 20% data. In total, there are 40,021 agents using car 
as a transport mode with 154,149 car trips.

Model calibration

For integrated frameworks of ABM and DTA, they are generally calibrated by matching 
the simulated and observed traffic flow data. In this study, Cadyts (Calibration of Dynamic 
Traffic Simulations) (Flötteröd 2009; Flötteröd et al. 2012), which is a typical calibration 
tool for DTA, was used here to calibrate both the original and improved MATSim before 
the performance assessment was carried out. Cadyts does not adjust any parameters when 
it calibrates MATSim. Instead, it tries to select and execute the optimal daily plans in each 
agent’s memory, which can minimize the gap between the simulated and observed traf-
fic counts through a Bayesian framework (Horni et  al. 2016). Specifically, the ABM in 
MATSim adjusts activity elements (e.g., departure time) through the reschedule module, 
resulting in new daily plans. Cadyts encourages agents to select those new plans, which can 
generate simulated traffic counts that well match the observed ones, through an extra posi-
tive utility. Cadyts also needs to observe the traffic conditions from the execution module 
(incorporating a DTA), so as to quantify and minimize the gap between the simulated and 
observed traffic counts. A more detailed theoretical description of Cadyts can be found in 
(Flötteröd et al. 2011).

Cadyts calibration ability was assessed by comparing the calibrated and non-calibrated 
MATSim in terms of plan score, Mean Absolute Percentage Error (MAPE) and Standard 
Deviation (SD). More specifically, the data used for comparison in MAPE and SD was the 
traffic flow of 12 links that were collected from 7 to 9AM on 1 day of 2007. The traffic flow 
data q of each link, which was manually counted, is the number of cars passing the count 
station during the period. The MAPE and SD of each link can be computed using Eqs. (1) 
and (2), and then the MAPE and SD of the (original or improved) MATSim can be com-
puted by averaging the MAPEs and SDs of 12 links.

where qSimulated and qObserved denote the simulated and observed number of vehicles passing 
count stations per hour, respectively; n is the number of observations.

The comparison between calibrated and non-calibrated MATSim plan score, MAPE and 
SD are shown in Fig. 3. The performance of calibrated and non-calibrated MATSim only 
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1

n

∑(
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||||

)
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(2)SD =

√
1

n

∑(
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||||
−MAPE

)
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differ from each other in MAPEs (Fig.  3b): there are no appreciable differences in plan 
score (Fig. 3a) or SD (Fig. 3c). As the number of iteration increases, the plan scores of 
both calibrated and non-calibrated MATSim increase, but their SD values fluctuate around 
30%; For MAPE, the non-calibrated values decrease by 52.3% for the first five iterations, 
and then rise gradually to level off at around 70%; by contrast the MAPE of the cali-
brated version decreases over first 100 iterations to around 40% and then levels out after 
around 100th iteration. According to the outcomes above, we conclude that Cadyts is at 

Fig. 3   Performance comparison 
between calibrated and non-
calibrated MATSim in plan 
score, MAPE and SD
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least effective in improving the overall mean MAPE but is not able to take into account 
the deviation of MAPEs across which results in the continuing relatively large SD. Large 
SD has become a common issue in similar simulation work using MATSim. For instance, 
when Zhang et al. (2013) applied MATSim to simulate the travel behaviour in Shanghai 
and the simulation outcomes (their Figure 9) indicated that the gap between the simulated 
and observed traffic flow could be quite large for certain individual links.

Performance testing

This section reports the performance of the new proposed methods, including the new 
overall framework, new replanning and new execution modules. These new methods 
involve several parameters that are closely associated with the performance of MATSim in 
terms of both model accuracy and efficiency. However, since the time for running MATSim 
once can be quite long, it is time-consuming to fully test the sensitivity of these parameters 
through their full ranges (e.g., from 0 to 1) or the global sensitivity of these parameters and 
original parameters in MATSim. Instead, in this case study, these parameters are set based 
on the several trials, as the idea is to find out proper values for these parameters that can 
speed up the simulation, rather than the optimal value, and to show the effectiveness of the 
new proposed methods.

The performance of the new methods was tested through four experiments, Experiment-
O, Experiment-FR, Experiment-E and Experiment-C. Experiment-O is set up as the con-
trol group to simulate car travel behavior using the original calibrated MATSim without 
any new modules; Experiment-FR and Experiment-E are used to test the performance of 
the new framework and replanning modules, and the new execution module, respectively. 
Experiment-C, which is based on Experiment-FR and Experiment-E together, is used to 
test the performance of the combination of all new proposed methods. It should be noted 
the MATSim applied in all experiments above is calibrated using Cadyts in the same way 
introduced in “Model calibration” section. All the experiments above were carried out on 
the computer with the following configuration: Intel(R) Core(TM) i7-4510U@2.00 GHz, 
64-bit operating system and 8 GB RAM.

Testing framework and replanning module (Experiment‑FR)

Experiment-FR was used to compare the performance of the new and original framework 
of MATSim and replanning modules at the same time, as the new framework and replan-
ning module work cooperatively. For the replanning module, the performance heavily relies 
on three new parameters, NPlans , �1 and �

2
 . The parameter NPlans denotes the number of 

plans that each agent obtains in Phase 1. The higher the NPlans is, the more candidate plans 
that each agent can have to compare. Consequently, agents are more likely to find their 
own optimal plans. However, the computing time spent in Phase 1 is proportional to NPlans . 
The parameters �

1
 and �

2
 denote the two unsatisfactory levels corresponding to different 

replanning strategies that agents can apply. In this case study, the parameters NPlans , �1 and 
�
2
 were set to 20, 0.1% and 10%, respectively, based on several trials. For other parameters 

involved, they were set to the same values in Experiment-FR and Experiment-O.
The performance of the original and new frameworks of MATSim and replanning mod-

ules are compared in the following two aspects:
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(1)	 Model accuracy The model accuracies of original and improved MATSim were exam-
ined using MAPE (Fig. 4). The final MAPE of the original MATSim is 39.7%, slightly 
better than new MATSim at 42.5%, but the difference is small.

(2)	 Computing time For both Experiment-FR and Experiment-O, one of the stopping cri-
teria is that the relative changes of averages score of executed plans should remain 
below 0.001 for four consecutive iterations. A model meeting this criterion is assumed 
to have converged: the non-converged model will stop automatically after the 500th 
iteration. The convergence of original and improved versions is also shown in Fig. 4. 
It can be seen that the improved MATSim converges at iteration 69, while the original 
MATSim converged at iteration 164. The computing time of Experiment-FR is 549 s, 
compared to1263 s for Experiment-O. This is due to the new replanning mechanism 
which only keeps those agents who are not satisfied with their current plans replanning. 
As the simulation continues, it should become more and more difficult for agents to 
find a better plan with a higher score. As a result, agents stop replanning sooner and 
the simulation converges more quickly.

According to the analysis above, the new framework and replanning module can signifi-
cantly reduce the computing time (by about 50%) as a result of more rapid convergence, 
but with some sacrifice of model accuracy (the difference between original and improved 
MATSim in MAPE is about 3%). However, it should be noted that the maximum number 
of plans stored in the agents ‘memory ( NPlans ) is set to 20. This may increase the demand 
on the computer’s RAM (Random Access Memory) and could be a challenge for very 
large-scale scenarios containing massive numbers of agents. Furthermore, NPlans may be 
set with a smaller number, but one should bear in mind that this will result in a smaller 
number of candidate plans for reference when agents make decisions whether or not to 
continue replanning, and this will tend to make it more likely that agents end up in local 
optima, and more difficult for the simulator to find an overall global optimal solution.

Testing execution module (Experiment‑E)

Similar to Experiment-FR, the Experiment-E is used to compare the performance of the 
new and original Execution Modules. Experiment-E is composed of two steps: (1) find the 
peak periods when the number of agents moving on the road network is large (2) assign 

Fig. 4   MAPEs and scores of each iteration in Experiment-FR and Experiment-O
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different time step sizes to different periods. In this case study, in order to find a useful time 
step for the new execution module, the performance of the original MATSim was tested 
with steps ranging from 1 to 120 s (Fig. 5a). It can be seen that for the majority of simula-
tions, the MAPEs do not change significantly after 300th iteration. Therefore, the maxi-
mum number of iterations can be set to 300 when applying the varying time-step based 
approach in this case study. Figure  5b shows the MAPEs of the last iterations, smallest 
MAPEs over iterations and computing time per iteration with time steps from 1 to 120 s. 
It can be seen that with the increase of the time step, the computing time per iteration 
heavily decreases for the first 15 iterations and then levels off at around 3 s after the 15th 
iteration. Both MAPEs of last iterations and smallest MAPEs over iterations have similar 
trends: the MAPE significantly decreases by about 20% for the first 50 iterations and then 
rises and fluctuates between 25 and 30%. In addition, it is worth noting that the MAPEs 
are larger for the smaller time steps in some cases: this seems strange, as the simulation 
with larger time step would be expected to lose more detail of agents’ movement, and thus 
decrease the model accuracy in terms of traffic flow. The main cause of this phenomenon 
could be the number of iterations required for simulation convergence, which is another 
factor significantly influencing the MAPEs in addition to the time step. Specifically, the 

Fig. 5   Computing times and accuracies of original MATSim with time steps from 1 to120



	 Transportation

1 3

smaller MAPEs are generally obtained with a larger number of iterations, shown by the 
simulations with time steps of 105 (500 iterations, MAPE of 25.51%), 50 (500 iterations, 
MAPE of 22.85%) and 40 (452 iterations, MAPE of 25.20%). This phenomenon is consist-
ent with the iterative optimization concept of MATSim. Figure 5c shows the total numbers 
of iterations and total computing times of simulations with time steps ranging from 1 to 
120 s. It can be seen that the number of iterations and total computing time seemingly do 
not have a monotonic variation with the time step, as with the increase of time step, the 
computing time and number of iteration can either increase or decrease. The reason is as 
follows: the change in time step is associated with the frequency of updating the status of 
each agent (e.g., location) in the simulation. However, the updating frequency tends to have 
no linear relationship with replanning behaviour of agents and further the resulting scores 
of each daily plan. As a result, the number of iterations needed to reach a stable point when 
the average score remains below 0.001 for four consecutive iterations would not have any 
significant (or linear) relationship with time step. For the total computing time, it is asso-
ciated with both the number of iterations and computing time per iteration. Although the 
computing time per iteration only changes slightly when the time step is set above 20 s (see 
Fig. 5b), the total computing time is not linearly related with time step since the number of 
iterations needed varies with time step.

Based on the analysis above, time steps of 15 and 30 s were chosen for the Experiment-
E, with a trade-off made between computing time and model accuracy. Specifically, with 
the increase of time step, the status of each agent will be updated less frequently and their 
moving trajectories will become less detailed. Therefore, we need to choose as smaller 
time steps as possible here. However, in order to pay equal attention to the total computing 
time, we choose 15 and 30 s as time step, as they tend to result in significantly shorter com-
puting times (see Fig. 5c). In addition, the period from 7AM to 7PM is identified as the 
peak period because the number of agents moving on the road network is much larger and 
thus this period was allocated with time step 30: other periods were allocated with step 15.

As before, the performance of original and improved MATSim was compared in Table 1 
in the following two aspects:

(1)	 Model Accuracy: the MAPE of the improved MATSim in Experiment-E with varying 
time steps of 15 and 30 s is 30.49%, compared again to 37.48% for Experiment-O with 
time step of 1 s, and the MAPE in Experiment-E is just between those of original MAT-
Sim with steps of 15 and 30 s which are 31.62% and 25.40%, respectively; Similarly, 
the SD of the improved MATSim in Experiment-E is 20.48%, which is also between 
those of original MATSim with steps of 15 and 30 s which are 24.76% and 18.30%, 
respectively.

(2)	 Computing Time: The computing time in Experiment-E is 652 s which is dramati-
cally less than the one of 1187 s in Experiment-O. In addition, the computing time of 
Experiment-E with varying time steps of 15 and 30 s is just between those of original 
MATSim with steps of 15 and 30 which are 540 s and 684 s, respectively. In summary, 
in this case study, the new execution module can improve the performance of MAT-
Sim in both model accuracy and runtime in terms of car travel behavior simulation, 
compared with the original MATSim.
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Testing combination of new modules (Experiment‑C)

On the basis of the Experiment-FR and Experiment-E, Experiment-C was set up to test the 
overall performance of the improved MATSim that incorporates all new proposed meth-
ods including the new framework, new replanning module and new execution module. The 
performance of the improved MATSim in Experiment-C can be assessed through the com-
parison among four experiments, and the results are shown in Table  2. The comparison 
suggests that the improved MATSim in Experiment-C outperforms those in Experiment-
FR and Experiment-E, as well as the original one in Experiment-O in terms of computing 
time. For model accuracy (measured with both MAPE and SD), Experiment-C performs 
better than Experiment-O and Experiment-FR, but slightly worse than Experiment-E. Spe-
cifically, the improved MATSim in Experiment-C takes less time (305 s) to converge, but 
obtains relatively good model accuracy with MAPE of 34.50% and SD of 25.15%, com-
pared with Experiment-FR (Time of 549 s, MAPE of 42.45%, SD of 31.33%), Experiment-
E (Time of 652 s, MAPE of 30.49%, SD of 20.48%) and Experiment-O (Time of 1187 s, 
MAPE of 42.13%, SD of 29.16%). In all, the improved MATSim incorporating all new 
modules can significantly reduce the computing time and get a relatively good accuracy.

Conclusions

An attempt is made to improve computing time in an integrated framework incorporating 
an activity-based model (ABM) with dynamic traffic assignment (DTA), using MATSim, a 
typical type of such integrated framework, as an example. The improvement work focused 
on two aspects: (1) the reduction of the number of iterations to converge (2) and the reduc-
tion of computing time for each iteration, with the application of a more focussed replan-
ning algorithm and a varying time step approach in the execution module of MATSim. On 
the basis of the case study, it is found that both solutions are effective, at least for one rather 
specific case and choice of parameters. Specifically, for the first solution that reduces the 
number of iterations, the improved MATSim incorporating the new framework and replan-
ning module can improve the original one in computing time at the cost of slight decrease 
in model accuracy; While, for the second solution that reduces the time of running each 

Table 2   Performance of four experiments in computing time and model accuracy

Experiments Iterations Total 
computing 
time
(s)

Computing 
time per 
iteration
(s)

MAPE of 
last itera-
tion
(%)

Smallest 
MAPE
(%)

SD of last 
iteration
(%)

Smallest SD
(%)

Experiment-
O

154 1187 7.71 42.13 37.48 29.16 31.35

Experiment-
FR

69 549 7.96 42.45 42.04 31.33 31.20

Experiment-
E

230 652 2.83 30.49 28.12 20.48 21.77

Experiment-
C

99 305 3.08 34.50 33.73 25.15 27.76
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iteration, the varying time step based approach outperforms the original one in both com-
puting time and model accuracy. However, the improved MATSim that incorporates all 
new improvement methods is able to simultaneously overcome the two limitations by com-
bining the advantages of the new proposed methods.

Although the proposed improvement methods can significantly reduce the computing 
time and obtain a somewhat more accurate outcome, several issues remain to be studied. 
First, the improvement methods involve several new added parameters that are closely 
related to the effectiveness of the method. Currently, the parameters are set based on 
ad-hoc trials. However, it is important to fully investigate the sensitivity of the param-
eters and find a practical approach to optimally setting the parameters, so that MAT-
Sim can run at an optimal (or nearly best) speed, rather than just a faster speed, and to 
demonstrate more comprehensively that the proposed improvements are generally effec-
tive. Furthermore, as an integrated framework, MATSim contains a number of param-
eters from both ABM and DTA. This paper calibrated both the original and improved 
MATSim models with Cadyts by selecting optimal daily plans rather than estimating 
these parameters. It would be more behaviorally sound and accurate to calibrate the mod-
els through parameter estimation. However, this could be computationally infeasible or 
expensive, especially for large-scale scenarios, as such a calibration method needs to run 
the model many times with multiple parameter combinations. A further study is therefore 
in principle needed to see whether the improvements we suggest here (that refer mostly 
to the ABM part of the model) carry over into a more complete calibration of the entire 
MATSim model. Second, the new proposed framework and modules need to be tested 
within as many case studies as possible to further confirm its advantages in computing 
time and model accuracy. Especially for the very large-scale scenarios, such as Beijing 
and Shanghai, the computing time may be gained at the cost of using more memory, 
since more daily plans need to be stored in agents’ memory, and this could make the new 
proposed module infeasible. Furthermore, another way to test the improved model is to 
calibrate and validate it using different periods. For example, data collected during the 
morning and evening peak hours can be used for calibration and validation, respectively.

While the application here has been to MATSim specifically, similar considerations 
for improving model performance are likely to apply in other modeling frameworks. 
In particular using selective methods for reducing the number of agents active dur-
ing computationally expensive routines (such as replanning) and varying the time step 
appropriately to the dynamics of the system may well be helpful. The non-monotonic 
behavior of the original code with time step suggests that understanding the way the 
non-linear dynamics of the models is behaving could be an aid in finding places where 
such time step changes could be expected to be useful.
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