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Abstract: The region of Southern Ethiopia (Borana) and Northern Kenya (Marsabit) is characterised by
erratic rainfall, limited surface water, aridity, and frequent droughts. An important adaptive response to
these conditions, of uncertain antiquity, has been the hand-excavation of a sequence of deep wells at key
locations often along seasonal riverbeds and valley bottoms where subterranean aquifers can be tapped.
Sophisticated indigenous water management systems have developed to ensure equitable access to these
critical water resources, and these are part of well-defined customary institutional leadership structures
that govern the community giving rise to a distinctive form of biocultural heritage. These systems,
and the wells themselves, are increasingly under threat, however, from climate change, demographic
growth, and socio-economic development. To contribute to an assessment of the scale, distribution and
intensity of these threats, this study aimed to evaluate the land-use land-cover (LULC) and precipitation
changes in this semi-arid to arid landscape and their association with, and impact on, the preservation
of traditional wells. Multitemporal Landsat 5, 7 and 8 satellite imagery covering the period 1990 to
2020, analysed at a temporal resolution of 10 years, was classified using supervised classification via
the Random Forest machine learning method to extract the following classes: bare land, grassland,
shrub land, open forest, closed forest, croplands, settlement and waterbodies. Change detection was
then applied to identify and quantify changes through time and landscape degradation indices were
generated using the Shannon Diversity Index fragmentation index within a 15 km buffer of each well
cluster. The results indicated that land cover change was mostly driven by increasing anthropogenic
changes with resultant reduction in natural land cover classes. Furthermore, increased fragmentation
has occurred within most of the selected buffer distances of the well clusters. The main drivers of change
that have directly or indirectly impacted land degradation and the preservation of indigenous water
management systems were identified through an analysis of land cover changes in the last 30 years,
supporting insights from previous focused group discussions with communities in Kenya and Ethiopia.
Our approach showed that remote sensing methods can be used for the spatially explicit mapping of
landscape structure around the wells, and ultimately towards assessment of the preservation status of
the indigenous wells.

Keywords: bio-cultural heritage; random forest classifier; land degradation; LULC change; traditional
wells; Africa; Landsat
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1. Introduction

The use of remote sensing technologies for the detection of archaeological sites and
monuments and other forms of tangible cultural heritage has increased significantly in
recent decades, including on the African continent [1–5]. A common application has been
the use of freely available satellite imagery, such as provided via the Google Earth platform,
to locate previously undocumented sites in remote areas that have not been the focus of
systematic pedestrian surveys [6–8]. The application of remote sensing technologies has
also proved to be an effective means of monitoring the condition of archaeological sites and
monuments [9–14]. The approach has proved especially useful for areas afflicted by civil
war and other forms of conflict that limit the opportunities for physical visits [15–17], and
allows the generation of ‘risk maps’ for particular areas that permit heritage managers to
identify those individual sites and even entire heritage landscapes that might be at greater
risk from damage or destruction and thus plan appropriate intervention and management
strategies. Remote sensing is also increasingly used to map and monitor the environmental
setting of heritage sites, and thereby assess the levels of risk arising from such factors as the
indirect consequences of urban expansion, changing hydrological regimes, and sea level
rise and associated coastal erosion [18–22].

In contrast, there has been less use of remote sensing technologies to map and monitor
examples of extant ‘biocultural heritage’, except where such heritage is located within
designated protected areas such as national parks and heritage landscapes and subject to
formalised management regimes. Precisely because biocultural heritage remains in use
by and under the control of descendants of its ancestral users and makers, changes to
how such heritage is used and modifications to its environmental setting are inherent to
everyday management.

Encompassing “indigenous and local community knowledge, innovations, and prac-
tices . . . developed within, and linked to, the social–ecological context” [23], biocultural
heritage represents a fusion of both the ’natural’ and ’cultural’ components of human–
environment interactions [24]. More specifically, the term is commonly used to refer to
”biological manifestations of culture, reflecting indirect or intentional effects, or domes-
ticated landscapes, resulting from historical human niche construction” [25]. Examples
of such distinctive niches co-created by the interaction of human and non-human agents
include the grazing lawns generated by centuries of pastoralist settlement and mobility
across eastern Africa’s savannah landscapes [26], and the African Dark Earths formed by
routine discard of household waste around settlements in West African forests [27].

As these and other examples suggest, biocultural heritage is intimately connected with
landscape practices. It can also play a crucial role in defining, and redefining community
and in shaping transformability, while also serving as a well-spring for creativity, artistic
expressions, and environmental understanding [28]. However, precisely because such
heritage remains in use as a fundamental component of routine practice, it is always subject
to change and modification—and indeed, heritage, whether tangible or intangible, is best
understood as a dynamic entity modified to meet contemporary needs and values as society
changes. As land use practices change, however, the contributions heritage entities provide
toward sustaining biological and cultural diversity that help support socio-ecological
resilience can diminish. Such changes are typically gradual and difficult to detect from
one year to the next and may only be recognized too late for any effective intervention.
In this regard, time-series remote sensing, which has the capacity to capture change at
multiple temporal scales, especially when integrated with other sources of information,
including oral histories and ethnographic observations, has the potential to play a critical
role in identifying risks and even provide predictive modelling of future trends, allowing
landscape managers to develop appropriate preservation and conservation strategies.

To illustrate these points, and especially the risks such changes can introduce to
the long-term survival of the living traditions that help sustain such heritage as a living
rather than as a relict or fossilised entity, and the role remote sensing mapping can play in
identifying risks and potentially averting them, we present here an analysis of land use
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land cover change (LULC) in an area of Southern Ethiopia and Northern Kenya (Figure 1)
characterised by erratic rainfall, limited surface water, aridity, and frequent droughts. An
important adaptive response of uncertain antiquity to these conditions has been the hand-
excavation of a sequence of deep wells by pastoralists at key locations often along seasonal
riverbeds and valley bottoms where subterranean aquifers can be tapped, as discussed in
the next section.
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1.1. Traditional Wells in Southern Ethiopia and Northern Kenya

Sophisticated indigenous water management systems have developed in Southern
Ethiopia and Northern Kenya to ensure equitable access to critical water resources. Access
to these is governed by well-defined customary institutional leadership structures and have
given rise to a distinctive form of biocultural heritage. By attributing socio-cultural and
sacred values to water, pastoralists have managed to sustain pastoral production in this arid
and semi-arid region for centuries. However, these systems, and the wells themselves, are
increasingly under threat from climate change and socio-economic development. Increased
access to the outside world, urbanisation, population pressure, and commercialisation of
natural resources are said to have contributed to the weakening of customary systems
including indigenous systems of water governance [29,30]. Conflict over access to water
sources has been notable in some areas in recent decades [31], while state-level changes to
regulatory frameworks, notably Kenya’s 2002 Water Act, despite opposite intentions, have
also weakened water security for some pastoralist communities [32,33]. Importantly, the
wells not only supply water to livestock and for human consumption, but also serve as a
center for religious and ritual activities and social and political gatherings. As key nodes in
highly mobile landscapes, wells also serve as foci for the reproduction of heritage values.
To contribute to an assessment of the scale, distribution and intensity of these threats, this
study aims to evaluate the land use land cover (LULC) and precipitation changes over the
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last thirty years in this semi-arid to arid landscape and their association with, and impact
on, the preservation of traditional wells.

Well-digging has been attested among many pastoralist groups inhabiting areas of
northern Kenya and southern Ethiopia. Examples include the so-called ‘singing wells’ of
the Kenyan Gabra [34], and the tula wells constructed by Borana communities in southern
Ethiopia (Figure 2). The precise origins and identity of the initial builders of the majority of
the wells in the region, regardless of their specific forms, remain uncertain. In Marsabit
County (Kenya), local oral traditions attribute the construction of the majority of wells, even
extant ones, to ‘Wardai’, who are said to have occupied these areas prior to the arrival of the
ancestors of the current inhabitants, who herded cattle, not camels, and who also erected
the numerous stone cairns typically found in the vicinity of the wells, with notable clusters
around Balesa, Kalacha, Koroni-Korole, Maikona and Molobot [35]. The name ‘Wardai’
may be a contraction of ‘Worra’ meaning people and ‘Daya’ probably the name of an
ancestor [36]. Some reports suggest that the Wardai migrated south when they abandoned
the area and may be the ancestors of Orma communities (or Warra Dāyā as they are also
known) along the Tana River. This southward expansion is dated to the first part of the
seventeenth century [37], although radiocarbon dates on human remains excavated from
cairns around Kokurmatakore suggest an earlier date for their construction [35]. Borana
Gutuu claim to have begun to displace Wardai Oromo from the mid-seventeenth century
so as to take control of the key complex of Tulla Saglan (the nine well clusters) in the Dirre
region south of the River Dawa, southern Ethiopia [38] vg, while Orma oral traditions assert
that they are an offshoot of the Boran pastoralists and claim that their southward migration
to their present location on the Tana River was due to famine rather than conflict with
the Boran, arriving from the west via the Lorian Swamp at some indeterminate date [39].
Historical research in southern Ethiopia has also determined that the ancient tula well
system there has been in operation for over five centuries and continues to serve as the
main permanent water source for the Borana [29].

Indigenous hydrological knowledge informs the distribution of the wells, which are
not random, and takes into account underground sources, movement of herds and disposal
of livestock dung, sanitary conditions and the risk of flooding [40]. In terms of their form,
tula wells are constructed using a unique technology, where the well is cut into limestone,
and a narrow shaft is created. A staging area where water troughs are filled typically lies
between 15 to 25 m below ground surface with the water table a further 10 to 15 m below
this staging point. Livestock are brought down to the staging area via ramps of beaten
earth where drinking troughs and basins are filled with water hauled up in buckets passed
up from lower down via a chain of young men [40].

In Marsabit County, on the Kenyan side of the border, wells tend to be simpler, often
comprising simply a shaft excavated to a depth of between 3 to 20 m through superficial
deposits and underlying layers of calcrete to reach the water table, with mud-plastered or
concrete water troughs and reservoirs arranged around the well opening, used for watering
livestock. In some localities, the wells are deeper and have surrounding dry-stone walls
and sloping walkways leading below ground leading to an open area with water troughs,
so as to reduce the height from which water has to be drawn manually (Figure 3).

Despite these differences in form and mode of construction, in both localities, diverse
customary rules both guide and govern routine maintenance of the different structural
elements of the wells, the cleaning and repair of water troughs and the areas around the
wells, and the priorities and sequence of access to the well water. Combined, these serve
to ensure that all sections of the community have access to water through the sharing of
responsibilities for managing and maintaining the resource. The wells thus simultaneously
exemplify sophisticated indigenous engineering skills alongside an equitable system of
water governance that in combination have ensured their sustainable use for centuries
creating a unique form of living biocultural heritage.
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Although historical and cultural values continue to be attached to the tula wells, and
their practical utility as a source of water is still managed in a manner that ensures equitable
access, most of the wells in the Borana region are no longer active and have been abandoned
or fallen into disuse in recent decades. In the early 2000s, for example, out of 321 wells
counted, only 25% were still in use and 75% were disused or under re-excavation [29,41].
Informants in the region cite natural and anthropogenic factors for the disuse of wells over
time, including heavy rainfall, flooding, decline in the water table, disputes of ownership,
and structural and labour difficulties in reinstating wells. Oral historians in the Borana
region, for example, attribute well collapse to excessive rainfall, citing flooding between
1800–1808 and 1872–1880 (informants in Borana use eight-year blocks of time corresponding
to the abba gada in power to order and identify the chronology of different key events in
their history), and flooding between 1976–1984 that saw the collapse of the Dubluq well
cluster [41]. Drought and other natural disasters have also contributed to the collapse of
wells through their impacts on the livestock and human populations.
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Tula and related pastoralist wells are not only water sources but also significant points
in the wider meshwork of human habitation of these lands, and they can acquire symbolic
importance through ritual performances, religious worship and political gatherings [40,42].
In southern Ethiopia, wells are also connected conceptually to sustaining human and
livestock fertility, the continuity of lineages, and with peace [40]. As nodes within highly
mobile landscapes and important components of indigenous systems of natural resources
management subject to locally developed regulatory systems of governance, and imbued
with historical and cultural values, these hand-dug wells form a key component of the
region’s pastoralist biocultural heritage. In a mobile pastoralist context, such biocultural
heritage is also in a constant state of re-constitution through practice at a combination of
specific nodes and along particular paths within the landscape. It is at these nodes and
along these paths that cultural valuation of the importance of this biocultural heritage is
given tangible (e.g., monument building, route marking, place making, well construction)
and/or intangible (e.g., through songs, myths, histories, dance) expression, with the latter
often oriented to re-iterating a cultural geography of ‘being in the land’, i.e., of dignified
belonging and the ontological security of shared identity. However, while the importance
of biocultural heritage is increasingly recognised, and calls to embed biocultural heritage



Remote Sens. 2022, 14, 314 7 of 23

protection in landscape planning and conservation have intensified [43–46], there have
been remarkably few efforts to use remote sensing technologies to either monitor the health
of such systems, or to trace their transformation through time as a direct consequence of
land use and land cover (LULC) changes. To demonstrate the potential of such approaches,
this paper provides an assessment of the main directions of LULC change across southern
Ethiopia and northern Kenya over the last forty years and the threats such changes now
pose to the long-term conservation of indigenous wells and the heritage services they
provide for the diverse pastoralist communities, notably Borana, Gabra, Rendille and
Samburu, that have occupied this landscape for centuries.

1.2. Previous Land Use/Land Cover Change Studies of the Study Area

There have been relatively few previous LULC satellite imagery analyses of the Borana
and Marsabit regions, and the area has not been covered as consistently as other parts of
Ethiopia and Kenya, or as extensively as other areas of the globe. In the Borana region, the
rangelands have been analysed mainly for the purpose of pastoralist land management
and assessing changes in ecosystems. In Kenya, research on LULC has focused primarily
on the Marsabit area, in the south of our study region, and as far as we are aware, there
is no published previous LULC research related to the El Hadi and Balasa area in Kenya
(see Figure 3 for locations). Previous LULC research in both areas relied mainly on Landsat
imagery, although in some cases aerial photographs were also used. Virtually all previous
studies have been concerned with how LULC has impacted local livelihood and settlement
strategies, and how such changes relate to wider environmental management issues and
responses to climate change. A single study, for an MSc dissertation, explores the potential
use of remote sensing for heritage management [47].

Research by [48], for example, employed a combination of aerial photographs and
Landsat imagery for the Borana region to assess land cover dynamics between 1967, 1987,
and 2002. The authors found that there had been a significant decrease in grassland cover
since the 1960s, coupled with a significant increase in cultivated, settlement, and bare land
areas. This stimulated changes in land use patterns, with increased cultivation of land by
local communities to generate additional income, and the rearing of more drought resistant
livestock [48]. In another studyAbate and Angassa [49] demonstrated through analysis of
Landsat imagery that the Borana rangelands in southern Ethiopia experienced extensive
and escalating rates of LULC changes between 1987 and 2003, particularly in the increase
in bush cover, settlement and cultivated land. They linked their findings with the views of
Borana pastoralists who described the main elements of landscape change as attributable to
climate related factors such as a rise in average daily temperature, recurrent drought, and
increased rainfall variability. The most recent published LULC analysis of Landsat imagery
covering the Borana region also echoed the findings of previous studies, whereby cultivated
and built-up areas have increased, as well as bare lands, with most changes attributed to
population increase, drought, inappropriate government policy, and mismanagement of
the rangelands [41,50].

Previous LULC studies of the Marsabit region have focused principally on the forested
volcanic area south of Marsabit townMaina and Imwati [51] used Landsat imagery to
demonstrate the changes in LULC in this area and found that closed and open forest,
grassland, and wetlands increased from 1990 to 2000 but had reduced greatly by 2010.
Shrub land gradually increased between 1990 and 2010, while bare land decreased through-
out all years. Anthropogenic and environmental causes were identified as the drivers of
change, for changes to closed and open forest, firewood collection, logging, and livestock
incursion were identified along with climate change and water abstraction [51]. Grassland
was impacted by livestock grazing and dry periods, and loss of wetlands was attributed
to drought and climate change. A similar study indicates that land-use patterns have
been impacted by anthropogenic processes aimed at improving livelihoods [52]. Agri-
culture/settlement and grasslands extended to areas previously covered by open forest,
particularly close to Marsabit town. The drivers for change mirror previous studies which
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cite illegal logging, livestock incursion, firewood collection and illegal settlements [52]. It is
also argued by Hosonuma et al. [53] and Lindquist et al. [54] that deforestation on Mount
Marsabit has been anthropogenically driven rather than the outcome of climate change
or natural processes. In contrast to these large-scale studies, Kihonge’s study [47] was
aimed at documenting sacred, natural sites such as sacred groves in the vicinity of Marsabit
associated with Gabra communities, and to determine whether such locations were more
or less prone to tree loss during periods of extended drought. The study demonstrated that
sacred groves appear to suffer less tree loss than other wooded and forested areas and for
this reason are important islands of biodiversity, underlining their significance as a key
component of the locality’s biocultural heritage.

2. Material and Methods
2.1. Study Area

The study area lies in Southern Ethiopia (Borana) and Northern Kenya (Marsabit),
between latitudes 02◦10′N and 04◦40′N and longitudes 37◦13′E and 39◦31′E, covering an
extent of ~77,000 km2 (Figure 4). The Borana region of southern Ethiopia is located in
Oromia Regional State while the northern Kenya area is located within Marsabit County.
Both are characterised as arid to semi-arid landscapes (ASALs), with land surface tempera-
tures varying from 40 ◦C during daytime and 20 ◦C at night. Across the region, rainfall
occurs in a bimodal pattern, with averages varying between 200 mm and 750 mm, with
large coefficients of variation fluctuating from 44% to 65% [55,56] (Figure 5). The area is
also prone to extreme climatic events, which in recent decades have included droughts
in 1992/1993, 1996/1997, and 1999/2000 and significant flooding which last occurred in
1997/1998 [57,58]. The livelihoods of the populations in this study area are mainly reliant
on livestock herding, with varying preferences for cattle, camel or small stock dependent
on environmental and market conditions and cultural preferences [49] and hand-dug wells
are a critical resource given the scarcity of surface water and low reliability of more recently
excavated boreholes.
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2.2. Mapping the Traditional Wells

The wells in Ethiopia (known as tula wells) were initially identified during fieldwork
undertaken by Waktole Tiki [30,40,41]. Working from these published maps of their dis-
tribution, the image overlay function was used in Google Earth to approximate the wells’
positions, then manual identification of the wells was made using visual inspection. The
wells in Kenya were initially located by field survey and georeferenced using differential
GPS by a team from the British Institute in Eastern Africa led by Freda M’Mbogori in 2019.
This survey was subsequently extended remotely, using the Google Earth Pro platform.
Nineteen clusters of traditional wells were identified in the study area (four clusters with
n = 235 wells in Marsabit region, and fifteen clusters with n = 327 wells in Borana region)
(Figure 4) and digitised from high resolution imagery within the Google Earth Pro platform
and ground survey verification exercises.

2.3. Earth Observation and Precipitation Data

Landsat 5 Thematic Mapper™, Landsat 7 Enhanced Thematic Mapper (ETM), and
Landsat 8 Operational Land imager (OLI) surface reflectance images of the study area
were evaluated and accessed from the Google Earth Engine (GEE) image library for se-
lected years. All the Landsat products used in this study were Tier 1 surface reflectance
(bottom-of–atmosphere) products which have been atmospherically corrected and suitable
for time-series analysis because the data can be used without needing sensor-specific ge-
ometric or radiometric adjustments [59]. ‘Improvements to the geometric accuracy and
interoperability of all Landsat products has been carried out by implementing the Sentinel
2 Global Reference Image (GRI), improved elevation dataset using NASADEM and other
sources of Digital Elevation Model (DEM) for terrain correction, improvements to the
precision correction process for Enhanced Thematic Mapper Plus (ETM+) and Thematic
Map™ (TM) sensors’ [59]. The study years were selected based on precipitation variability,
computed from the Climate Hazards Center Infrared Precipitation with Stations (CHIRPS)
precipitation data set [60], whereby years with extreme events (years 2000 and 2010) were
avoided (Figure 5). Hence, the years 1990, 2001, 2011 and 2020 were selected for the analysis.
To remove cloud-contaminated pixels for each of the selected Landsat images, a cloud
masking algorithm was utilised by using quality assessment (QA) bands To minimise sea-
sonal variations, annual composites for each of the selected years were thereafter produced
by taking the median value for each year by calculating the median of all cloud-free pixels
for each target year. Furthermore, a normalised difference vegetation index (NDVI) was
computed for each of the selected years by taking the median value for each year, and the
greenest pixel generated from the computed NDVI values.
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2.4. Reference Data Collection

Eight classes that were representative of the study area were derived from visual
inspection of freely available high spatial resolution imagery on the Google Earth Pro
platform (July 2021), utilising the time-lapse feature therein to access past imagery for the
1990, 2001 and 2011 epochs. The classes identified were: bare land, closed woody vegeta-
tion, open woody vegetation, grasslands, shrub lands, croplands, urban/settlement and
waterbodies. The croplands class was split into ‘cropland-on’ and ‘cropland-off’ categories
so as to map ‘in or out of the growing season’ crops, but were thereafter merged after
classification into one ‘cropland’ class. We utilised a random sampling approach to collect
the training signature reference data across the area of interest, whereby n = 30 polygons
were collected for each training class in each year. A total of n = 240 polygons were there-
fore collected for each year, and hence n = 960 total polygons were selected as training
samples. The reference training classes were spread randomly across the study area to
enable the collection of robust and representative training and validation datasets. The
collected reference data were distributed into two parts within the GEE script as a training
set (70% = 672 polygons) and a validation set (30% = 288 polygons) following [61].

2.5. Random Forest Classification, Accuracy Assessment and Change Detection

Six Landsat spectral bands and an NDVI band from each of the four selected epochs
were extracted to be used as covariates in the classification model together with the training
and validation data. The Random Forest (RF) decision tree classifier [62] was performed
to map and predict the eight classes in the GEE environment. RF is an efficient, flexible,
and powerful non-parametric machine learning algorithm that is robust against overfitting
and outliers and can handle thousands of input variables [62,63]. Furthermore, RF mainly
requires setting of only two parameters (i.e., the Mtry and Ntree), making it a very straight-
forward classification algorithm to use. The Mtry are the randomly selected number of
variables used to split each decision tree in the forest at every node, while the Ntree is the
number of decision trees in the forest. In a classification application, each decision tree
votes for a class membership, and the final outcome is determined by the maximum votes
of the decision trees [62,64]. In our study, a default value of Ntree = 500 was used which has
demonstrated its suitability for stabilising the internal classification error [64]. Additionally,
the default Mtry value, which is the square root of the number of variables, was used. To
produce final LULC layers across the study area from 1990–2020, the covariate bands to-
gether with the reference data and the RF algorithm were executed. Classification accuracy
was thereafter assessed for all LULC maps using the validation dataset (30%). Classification
confusion metrics (i.e., overall (OA), user’s (UA) and producer’s (PA) accuracies and kappa
coefficient) were derived and utilised as criteria for map accuracy assessments. Afterwards,
the (3 × 3) majority filter was applied to the classified maps to eliminate the effect of
noise in the classifications. The majority filter is a spatial filter based on the majority rule,
whereby a majority of cells must have the same value and be contiguous, and is applied
inside a user-defined moving window for reducing noise effects in classified maps [65].
Subsequently, land cover changes in the area that occurred from 1990–2001, 2001–2011, and
2011–2020 were calculated using image differencing techniques [66]. All of the analysis
was performed in the GEE platform, except for the change detection which was performed
in the QGIS v 3.16 platform.

2.6. Deriving Time-Series Fragmentation Indices within Traditional Well Clusters

The Shannon Diversity Index (SHDI) fragmentation index was extracted from each of
the classified land cover maps. SHDI measures the number of landscape elements, their
proportional changes, and the abundance of landscape types [67] and was selected based
on recommendations that simpler indices like the SHDI are preferable when detecting
landscape diversity [68]. This fragmentation metric was derived to quantify changes in the
landscape structure across the selected years. Landscape fragmentation metrics generally
quantify spatial characteristics of the landscape at the patch level (spatial characteristics of
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individual patches), class level (clusters of similar types of patches e.g., forest, settlement),
or landscape-level metrics (broader landscape heterogeneity metrics) [69]. The Landscape
Ecology Statistics (LecoS) v 3.0.0 QGIS plugin which is based on the FRAGSTATS tool [67]
was selected for this process since it calculates fragmentation metrics at the individual class
(several patches of the same class) and landscape level [67]. A 15 km buffer zone around
each well cluster was selected for the fragmentation analysis following Tiki et al. [40],
given customary proscriptions on permanent settlement within this, and conventional
designation of settlement zones known as laaf seeraa ardaa located approximately 2–4 h
walk from the wells, i.e., c. 8–15 km.

3. Results
3.1. Time Series Land Use Land Cover Classification

Classified land cover maps comprising eight classes i.e., bare land, grassland, shrub
land, open forest, closed forest, croplands, settlement, and water bodies were produced
based on the random forest classification mapping model within the GEE platform for the
years 1990, 2001, 2011 and 2020 (Figure 6). Tables 1–4 provide the detailed classification
accuracy assessments, i.e., observed versus predicted values, using the validation data for
the selected years. The results indicate that the overall accuracies for the years 1990, 2001,
2011 and 2020 were 93.04%, 93.15%, 97.59%, and 96.37%, respectively. Water was most
accurately predicted across the four epochs with average user and producer accuracies of
100%, while the cropland-on class was least accurately predicted with users’ accuracies as
low as 40% and producers’ accuracies as low as 26%. These low accuracies in cropland-on
prediction could be due to spectral variability and confusion with classes such as grassland,
especially given the seasonal changes that occur in this class. However, the cropland-off
class was well predicted with users’ and producers’ accuracies above 90% for all the years.

Table 1. Confusion classification matrix for the landscape classes in the Northern Kenya/Southern
Ethiopia study region mapped using the Landsat 5 TM composite images for 1990, and using random
forest as a classifier.

Bare Built Up Crop-off Crop-on Grass Shrubs Closed Trees Water Open Trees Total UA%

Bare 2036 0 0 0 0 0 0 0 0 2036 100
Built Up 261 489 0 0 0 0 0 0 0 750 65.20
Crop-off 0 0 501 0 21 0 0 0 0 522 95.98
Crop-on 0 0 0 360 36 0 0 0 21 417 86.33

Grass 0 0 108 81 1449 0 0 9 3 1650 87.82
Shrubs 423 0 14 0 150 401 0 0 30 1018 39.39
Closed
trees 0 0 0 117 0 0 9556 0 52 9725 98.26

Water 0 0 0 0 0 0 0 435 0 435 100
Open
trees 0 10 0 5 15 3 17 0 3525 3575 98.60

Total 2720 499 623 563 1671 404 9573 444 3631 20,128
PA% 74.85 98 80.42 63.94 86.71 99.26 99.82 97.97 97.08
OA% 93.04%

Kappa 88.06%

Table 2. Confusion classification matrix for the landscape classes in the Northern Kenya/Southern
Ethiopia study region mapped using the Landsat 7 ETM+ composite images for 2001, and using
random forest as a classifier.

Bare Built Up Crop-off Crop-on Grass Shrubs Closed Trees Water Open Trees Total UA%

Bare 13,275 18 0 0 0 0 0 0 0 13,293 99.86
Built Up 636 1349 9 0 0 0 0 0 0 1994 67.65
Crop-off 0 45 1503 27 45 0 0 0 0 1620 92.78
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Table 2. Cont.

Bare Built Up Crop-off Crop-on Grass Shrubs Closed Trees Water Open Trees Total UA%

Crop-on 0 0 45 306 72 0 63 0 15 501 61.08
Grass 0 0 0 27 3414 0 486 0 5 3932 86.83

Shrubs 127 0 0 0 116 715 51 0 32 1041 68.68
Closed
trees 0 0 0 0 0 0 3330 0 17 3347 99.49

Water 0 0 0 0 0 0 0 138 0 138 100
Open
trees 0 0 0 25 15 52 42 0 2215 2349 94.3

Total 14,038 1412 1557 385 3662 767 3972 138 2284 28,215
PA% 94.56 95.54 96.53 79.48 93.23 93.22 83.84 100 96.98
OA% 93.15%

Kappa 89.59%

Table 3. Confusion classification matrix for the landscape classes in the Northern Kenya/Southern
Ethiopia study region mapped using the Landsat 7 ETM+ composite images for 2011, and using
random forest as a classifier.

Bare Built Up Crop-off Crop-on Grass Shrubs Closed Trees Water Open Trees Total UA%

Bare 72,038 45 0 0 0 18 0 0 0 72,101 99.91
Built Up 102 1247 0 0 0 0 0 0 0 1349 92.44
Crop-off 0 27 1544 9 9 0 0 0 11 1600 96.50
Crop-on 0 0 0 444 69 0 146 0 32 691 64.25

Grass 0 0 0 1092 10,008 0 90 0 35 11,225 89.16
Shrubs 30 3 0 6 115 288 9 0 61 512 56.25
Closed
trees 0 0 0 189 0 0 3468 0 102 3759 92.26

Water 0 0 0 0 18 0 0 2568 0 2586 99.30
Open
trees 0 0 0 0 25 30 72 0 3263 3390 96.25

Total 72,170 1322 1544 1740 10,244 336 3785 2568 3504 97,213
PA% 99.82 94.33 100 25.52 97.7 85.71 91.62 100 93.12
OA% 97.59%

Kappa 92.89%

Table 4. Confusion classification matrix for the landscape classes in the Northern Kenya/Southern
Ethiopia study region mapped using the Landsat 8 OLI composite images for 2020, and using random
forest as a classifier.

Bare Built Up Crop-off Crop-on Grass Shrubs Closed Trees Water Open Trees Total UA%

Bare 1591 0 0 0 0 0 0 0 0 1591 100
Built Up 0 1521 0 0 46 0 0 0 0 1567 97.06
Crop-off 0 0 70 3 0 0 0 0 0 73 95.89
Crop-on 0 0 0 51 26 55 12 0 35 128 39.84

Grass 0 0 15 0 13,458 0 9 12 114 13,608 98.9
Shrubs 0 21 0 10 227 150 18 0 79 505 29.7
Closed
trees 0 0 0 0 0 0 8370 0 95 8465 98.88

Water 0 0 0 0 18 0 0 3423 0 3441 99.48
Open
trees 0 13 0 65 115 35 156 0 2578 2962 87.04

Total 1591 1555 85 129 13,890 240 8565 3435 2901 32,340
PA% 100 97.81 82.35 39.53 96.89 62.5 97.72 99.65 88.87
OA% 96.37%

Kappa 91.89%
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3.2. Land Cover Change Detection from 1990 to 2020

Changes in the land cover matrix for each epoch are shown in Figure 7 and Table 5.
Figure 7displays the proportions of land covers in the study region between 1990 and
2020, while Table 5 indicates the area coverage in km squared for each land cover. Our
study shows that grasslands dominated the land cover throughout the study period (46%)
whereas open trees (~30%), shrubs (~13%) and closed trees (~7%) followed in magnitude.
The results also show that the urban/settlement (<0.1%) and cropland (<1%) land covers
were the lowest in the region throughout the study period. Table 5 demonstrates that the
closed tree cover class underwent a steady decline from 1990 to 2011 (7780 km2), but the
area covered increased slightly by 2020. Conversely, the open tree cover class increased
gradually from 1990 to 2020 by 3507 km2, a fact that can be attributed partially to the decline
in the closed tree cover. Moreover, the shrubs also gradually increased from 1990 to 2020 by
3244 km2 representing a 34% growth. Bare lands also gradually increased during the study
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period by 1020 km2. The area covered by water increased greatly from 14 km2 in 1990 to
42 km2 in 2020. This increase in surface water could be due to the unusually high rainfall
experienced in the region in the year 2020. Among the human-transformed landscapes, i.e.,
croplands and urban/settlements, there was a gradual and expected increase in area of
land covered, particularly the croplands class which experienced a 110% increase from
1990 to 2020. In general, the grasslands class maintained an almost constant area in the
landscape, reducing only marginally by approximately 0.01% from 1990 to 2020.
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Table 5. Land cover distribution in km2 for the years 1990 to 2020 for the Northern Kenya/Southern
Ethiopia study region.

LULC Area (km2)-1990 Area (km2)-2001 Area (km2)-2011 Area (km2)-2020

Croplands 47.47 426.67 419.56 524.43
Trees-closed 10,043.02 6063 2262.53 2350.89
Grasslands 36,913.71 36,704.13 36,555.65 36,312.4

Shrubs 9420.62 9769.4 12,324.15 12,664.61
Water 14.89 14.7 14.03 42.69

Trees-open 20,981.35 24,434.12 24,505.47 24,488.01
Urban 9.35 15.61 20.3 28.41
Bare 1372.82 1375.95 2701.9 2393.21

3.3. Time Series Fragmentation Analysis within the Well Clusters
3.3.1. Marsabit Wells

Results from the landscape-level fragmentation analysis within 15 km of the Marsabit
wells clusters revealed that the Holale wells cluster had the highest fragmentation levels
(mean SHDI = 1.36) while the El Hadi wells had the lowest levels (mean SHDI = 0.30).
Importantly, there were slightly increasing fragmentation patterns among the Sagante
Marsabit (2%) and Holale wells clusters (5%). On the other hand, the Balesa and El
Hadi clusters demonstrated decreased fragmentation in their vicinity (−19% and −4%
respectively) throughout the study period (Figure 8).
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Figure 8. Mean SHDI within a 15 km buffer zone of Marsabit wells clusters in the Northern
Kenya/Southern Ethiopia study region. The y-axis indicates the SHDI values while the x-axis
indicates the year.

3.3.2. Tula Wells

Fragmentation analysis within 15 km of the tula wells clusters showed that the Gorai
wells cluster had the highest SHDI values (mean = 1.13) while the Wachile wells cluster
had the lowest SHDI values (mean = 0.13). Furthermore, SHDI values for five well clusters
(viz. the Anole, Borbor, Dhas, Gayo and Higo well clusters), increased gradually during
the study period of 1990–2020 (Figure 9). The highest increase in fragmentation occurred at
the Anole well cluster (108%), followed by Higo (92%), Dhas (76%), Gayo (52%), Borbor
(11%). Additionally, five well clusters demonstrated a slight increase in SHDI viz. Goff
(9%), Wachile (8%), Lae (7%), Web (5%) and an Unknown cluster (1%). Conversely, four
well clusters showed decreasing fragmentation over the years i.e., Erdar (−37%), Gorai
(−27%), Melbana (−19%) and Dubluq (−12%). The Gorile well cluster did not display any
change in SHDI throughout the study period.
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4. Discussion

Mapping changes in LULC in the Marsabit and Borana regions in Northern
Kenya/Southern Ethiopia study region is key to understanding the linkages between
landscape characteristics and indigenous hand-dug wells in the region and is therefore
fundamental in addressing issues related to these wells which are key resources for pastoral
production, and have significant social, cultural, symbolic, and religious values for the
indigenous populations inhabiting this semi-arid region. Here, we describe a time-series
mapping exercise using 30 m Landsat satellite data from the USGS for four time epochs.
We also report on time-series landscape-level fragmentation patterns represented by the
Shannon Diversity Index (SHDI) within the well clusters in the study region. The semi-
arid rangelands in this study area have undergone widespread LULC changes between
1990 and 2020. Within that time period, the area of closed trees reduced by (−76%) and
grasslands by (−1.62%) while shrubs showed an increase of (+34%) and open trees by
(+16%). Correspondingly, croplands increased by (+110%) within the same period and
urban/settlement increased by (+203%). Similarly, the bare areas increased by (+74%).
These results demonstrate a substantial expansion of anthropogenic landscapes i.e., ur-
ban/settlement and croplands while the ‘natural’ land cover classes have contracted. The
reduction in ‘natural’ landscapes versus the increase in anthropogenic landscapes indicates
that some level of landscape degradation, which we use here to indicate a deterioration
in landscape ecosystem services directly due to the reduction in extent of key vegetation
classes (grassland, woodland, forest) [70], is occurring in this region, which agrees with
the findings of previous studies of LULC in the general area [49,52–54]. As outlined above,
these all demonstrated that anthropogenic activities contributed largely to changes in ‘natu-
ral’ cover in these regions. Interestingly, in our study area, water bodies showed an increase
in extent of (+186%) from 1990 to 2020. This can probably be explained by the increase
in rainfall in the 2018–2020 period (mean = 546 mm) compared to the other epochs, i.e.,
the 2009–2011 period (mean = 377 mm), the 1999–2001 period (mean = 243 mm), and the
1988–1990 period (434 mm). Additionally, the reduction in grasslands cover in the region
(Table 5) is in agreement with Haile et al. [48] who also show a reduction of grasslands
in the Borana area between 1967 and 1987 and a corresponding increase in the woodland
cover class, which could be equivalent to the open trees land cover class in this study.
The reported ongoing reduction in grasslands cover could be deleterious for livestock
wellbeing and subsequently to the human populations that rely on them as a major source
of livelihood, given that grasslands are the main source of feed for the livestock in this
region [48].

Examination of the time-series SHDI values around the well clusters demonstrated that
the landscape structure has changed significantly around some clusters and less in others
during the study period. Increasing SHDI around Anole, Higo, Dhas, Gayo, and Borbor
indicate increased fragmentation in those well clusters. A detailed examination of the land
cover classes within the 15 km buffer zone of Anole cluster, which has experienced increased
fragmentation, shows that the croplands and urban/settlement classes expanded greatly
during the 1990–2020-time period (Figure 10). This is in agreement with observations by
Tiki et al [29]., who show that these humanly created land cover classes have continued
to expand within this region. Discussions with key informants in Borana confirm the
increased fragmentation of the rangeland, particularly increases in cropland, shrubs, and
bare land.

Conversely, a detailed assessment of the land cover classes within the 15 km buffer
zone of the Erdar well cluster, which experienced a decline in fragmentation, still indicates
that croplands and more so the urban/settlement classes expanded greatly during the
1990–2020-time period (Figure 11).
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The gradual increase in croplands within the well clusters in this region indicates an
expansion of cultivation within this study area, which is a departure from the traditional
livestock-keeping practices of the inhabitants of the area. It was found by Mgalula [71]
that croplands were rapidly expanding in the Borana rangeland due to several potential
drivers. Decrease in pasture, recurrent droughts, income diversification, and food insecurity
were found to be the main reasons for the expansion of cultivated areas [71]. Extreme
droughts during the early 1980s and 1990s resulted in massive losses of livestock herds
which brought about diversification into cultivation activities in the area.

Moreover, the proliferation of urban/settlement areas within these well clusters
as demonstrated by the fragmentation analysis in this study is in line with studies by
Hazard et al. [72] who state that, over the last 20–30 years, there has been increased settle-
ment close to water sources. This status has possibly been exacerbated by changes in water
management due to introduction of alternative sources of water, climate change, and rapid
development of urban areas, especially in the case of Marsabit and Moyale areas in the
North Kenya region [73]. In the past, communal water management ensured that extraction
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of resources such as trees and sand around the wells were prohibited. Grazing of animals
close to the wells was also restricted, and this ensured that the natural ecosystem around
the wells was preserved [74]. Furthermore, the Kenya government and other institutions
have encouraged a sedentary lifestyle amongst the region’s inhabitants by distribution
of relief food and restocking of livestock after losses, resulting in expanded urban areas
within the well zones. Thus, the 15 km buffer zones within the well clusters that were pre-
viously reserved for pasture use during excessive weather conditions are now perpetually
occupied and several urban centres are found within 1 km of the wells [73]. An undesirable
result of the expanding urbanisation within these well clusters is increased poverty and
environmental degradation in areas such as Marsabit town [75]. In another study [29], Tiki
and colleagues documented that settlements and urban centers in the Borana area have
moved progressively to the well centers in the last couple of decades. This has affected the
indigenous land use plan which reserves the rangelands within an 8 km radius of wells for
livestock grazing during the dry season. It has further aggravated the fragmentation of the
rangeland due to increased demand for natural resources such as trees for firewood and
house construction, increased cropland, and other land use forms.

Rapid population growth, inequitable access, infrastructure and climate change are
causes for water scarcity in many areas of Africa [76], and here we have demonstrated a
way to monitor these issues in this region. There is a consensus that local level adaptation
is needed to ensure access to water in the future and remote sensing offers a tool to guide
this initiative. More broadly, as a first example of remote sensing analysis in the context
of biocultural heritage preservation, an assessment of the role, potential and challenges of
remote sensing needs to be made.

As discussed above, the concept of biocultural heritage aims to integrate and ana-lyse
simultaneously the local and the global, the short- and long-term, the quantitative and
qualitative, and the tangible and intangible to provide a richer understanding of land-scape
features and cultural landscapes and plan for their sustainable management. [Lindhom
and Ekblom [24], for example, conceive biocultural heritage as both a conceptual and
methodological approach to landscape and research management. In their definition, bio-
cultural heritage is constituted of five elements, three descriptive and two operational. Of
interest to our approach are the terms used to describe and understand biocultural heritage,
which consider heritage as memories, both tangible and intangible, associated with the
environment—namely ecosystem-, landscape- and place-based memories. According to the
authors, the concept of memory can be used to acknowledge that present landscapes carry
the legacy of past practices. In fact, preservation without an integrated study of present
and past landscapes would be incomplete and not sustainable, in particular in contested
landscapes. Ecosystem memories can be defined as biophysical properties, non-human
organisms, and agents affected by human intervention. Landscape memories are tangible
or semi-intangible and represent materialized human practice and ways of organizing
landscapes. Land use is an example of landscape memory generated and regenerated
through routine, daily practice, but also always retaining traces of past practices around
which changes in use tend to be accommodated. Hedgerows found in many western
European landscapes are an obvious example of this—they fulfil contemporary functions
but retain their own histories of management, replanting, and ‘natural’ ecological coloniza-
tion. Place-based memories are the stories, place names and collective forms of practice
associated with a landscape as captured in oral traditions, sayings, poetry, and other forms
of oral expression.

Various methodological approaches and disciplines contribute to the documenta-tion
of these landscape memories with palynology, for example, contributing to the recon-
struction of ecosystem memories and archaeology to that of landscape memories, whilst
place-based memories can be collected through ethnographic work. Remote sensing in this
framework can contribute to the reconstruction of both ecosystem and landscape memories
for the more recent past. Its spatial and temporal richness makes it most suited for medium-
term landscape studies, via the well-established and commonly practiced technique of
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Land Use Land Cover classification and change detection. In contrast, ethnographic work
provides depth and the opportunity to explore place memories at the local level.

5. Conclusions

The combination of the different conceptualisations and understandings of biocul-
tural heritage proposed by Lindhom and Ekblom [24] via an integrated landscape anal-
ysis falls into the sphere of mixed approaches to the study of landscapes, also used by
Wales et al. [14], with the aim of taking up the challenge of incorporating data on social
variables with that from natural sciences, in particular in LULC mapping. As discussed
here, evidence regarding temporal transformation of LULC change patterns and their key
drivers within the study region are crucial for planning appropriate strategies for manage-
ment and conservation of indigenous wells in the region and securing their value as nodes
of biocultural significance and value. To address this, we combined time-series Landsat
satellite data to quantify the spatio-temporal pattern of LULC changes and extracted frag-
mentation metrics within a 15 km buffer zone of the studied well clusters. Overall, the
study demonstrates that derived fragmentation indices from remote sensing methods can
be used successfully to capture growing landscape structure changes occurring within the
vicinity of indigenous wells in this semi-arid to arid study region. These remote sensing
methods together with other methods such as FGD and field verifications can therefore
form the basis for linking landscape quality with biocultural heritage management and,
ultimately, their preservation.

Integrating the remote sensing-based mapping that documents landscape memories
and the community-based work that can provide insights into place-based memories is
not without challenges, however. For example, it should not be taken simply as a way
of finding an explanation for changes detected through on-the-ground interviews, nor as
a way of overly generalising these changes at the scale of the remotely sensed imagery.
It also needs to be acknowledged that the scale of operation of the two approaches is
different, that perceptions of landscapes can contrast with patterns detected via spectra
analysis, and likewise that the phenomena and memories being mapped are complex and
not caused by any single or limited combination of causes and effects. Using both in
combination nevertheless offers an opportunity to examine, via remote sensing, a larger
landscape than the one documented by researchers and described by communities on the
ground at a single location/village, thereby providing the opportunity to examine and
assess variations of changes (or lack thereof) and their different drivers at multiple locations.
This in turns allows for acknowledging different landscape and place-based memories
and a more nuanced understanding of the impact of changes in the landscape and, as a
consequence, preservation and conservation strategies.
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64. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

65. Nex, F.; Delucchi, L.; Gianelle, D.; Neteler, M.; Remondino, F.; Dalponte, M. Land Cover Classification and Monitoring: The STEM
Open Source Solution. Eur. J. Remote. Sens. 2015, 48, 811–831. [CrossRef]

66. Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change
(LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 1–11. [CrossRef] [PubMed]

67. Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014.
68. Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al.

Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol.
2014, 4, 3514–3524. [CrossRef]

69. McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available
online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf (accessed on 15 December 2021).

70. Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al.
2019: Land Degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation,
Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C.,
Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; in press; Available
online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf (accessed on 15 December 2021).

71. Mgalula, M.E. Assessing Trends in Land Use Change in the Borana Rangeland Ethiopia as One Cause of Greenhouse Gas
Emissions and Carbon Sequestration Variations. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2016.

72. Hazard, B.; Adongo, C.; Adano, W.; Ledant, M. Comprehensive Study of Pastoral Livelihoods, WASH and Natural Resource Managment
in Northern Marsabit; IFRA: Nairobi, Kenya, 2012. [CrossRef]

73. M’Mbogori, F.; Kinyua, M.; Gufu, A.; Lane, P.J. Changes to Water Management and Declining Pastoral Economic Resilience in
Northern Kenya: The Example of Gabra Wells. WIREs Water 2022, in press.

74. Robinson, L.W. Participatory Development and the Capacity of Gabra Pastoralist Communities to Influence Resilience; Manitoba
University: Winnipeg, MB, Canada, 2009.

http://doi.org/10.1186/s13717-016-0049-1
http://doi.org/10.5897/IJBC2017.1123
http://doi.org/10.1016/j.gecco.2018.e00512
http://doi.org/10.1088/1748-9326/7/4/044009
http://doi.org/10.1016/S0305-750X(03)00113-X
http://doi.org/10.1111/1467-7660.00211
http://doi.org/10.1111/0002-9092.00189
http://doi.org/10.1038/sdata.2015.66
http://doi.org/10.1080/10106049.2014.997303
http://doi.org/10.1023/A:1010933404324
http://wgrass.media.osaka-cu.ac.jp/gisideas10/papers/04aa1f4a8beb619e7fe711c29b7b.pdf
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.5721/EuJRS20154845
http://doi.org/10.1186/s40064-016-2414-z
http://www.ncbi.nlm.nih.gov/pubmed/27390652
http://doi.org/10.1002/ece3.1155
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf
http://doi.org/10.13140/RG.2.2.17313.04962


Remote Sens. 2022, 14, 314 23 of 23

75. Witsenburg, K.M.; Roba, A.W. Surviving Pastoral Decline: Pastoral Sedentarisation, Natural Resource Management and Liveli-
hood Diversification in Marsabit District, Northern Kenya Deel. Ph.D. Thesis, Amsterdam Institute for Social Science Research
(AISSR), Amsterdam, The Netherlands, 2004.

76. Filho, W.L.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P.
Understanding responses to climate-related water scarcity in Africa. Sci. Total. Environ. 2021, 806, 150420. [CrossRef] [PubMed]

http://doi.org/10.1016/j.scitotenv.2021.150420
http://www.ncbi.nlm.nih.gov/pubmed/34571220

	Introduction 
	Traditional Wells in Southern Ethiopia and Northern Kenya 
	Previous Land Use/Land Cover Change Studies of the Study Area 

	Material and Methods 
	Study Area 
	Mapping the Traditional Wells 
	Earth Observation and Precipitation Data 
	Reference Data Collection 
	Random Forest Classification, Accuracy Assessment and Change Detection 
	Deriving Time-Series Fragmentation Indices within Traditional Well Clusters 

	Results 
	Time Series Land Use Land Cover Classification 
	Land Cover Change Detection from 1990 to 2020 
	Time Series Fragmentation Analysis within the Well Clusters 
	Marsabit Wells 
	Tula Wells 


	Discussion 
	Conclusions 
	References

