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The Gregory–Laflamme Instability and Conservation Laws for
Linearised Gravity

Sam Colley Collingbourne

Abstract
This thesis is concerned with the black hole stability problem in general relativity. In particular,

it presents stability and instability results associated to the linearised vacuum Einstein equation
on black hole backgrounds.

The first chapter of this thesis gives a direct rigorous mathematical proof of the Gregory–
Laflamme instability for the 5-dimensional Schwarzschild black string. Under a choice of ansatz
for the perturbation and a gauge choice, the linearised vacuum Einstein equation reduces to an
ODE problem for a single function. In this work, the ODE is cast into a Schrödinger eigenvalue
equation to which an energy functional is assigned. It is then shown by direct variational methods
that the lowest eigenfunction gives rise to an exponentially growing mode solution which has
admissible behaviour at the future event horizon and spacelike infinity. After the addition of
a pure gauge solution, this gives rise to a regular exponentially growing mode solution of the
linearised vacuum Einstein equation in harmonic/transverse-traceless gauge.

The remainder of this thesis is concerned with conservation laws associated to the linearised
vacuum Einstein equation. For later application, chapter 2 of this thesis contains a review of
the double null gauge for the vacuum Einstein equations. In chapter 3, the ‘canonical energy’
conservation law of Hollands and Wald is studied. This canonical energy conservation law gives
an appealing criterion for stability of black holes based upon a conserved current. The method is
appealing in its simplicity as it requires one to ’simply’ check the sign of the canonical energy
E with E > 0 implying weak stability and E < 0 implying instability. However, in practice
establishing the sign of E proves difficult. Indeed, even for the 4-dimensional Schwarzschild
black hole exterior the positivity was not previously established. In this thesis, a resolution to
this issue for the Schwarzschild black hole is presented by connecting to another weak stability
result of Holzegel which exploits the double null gauge. Further weak stability statements for the
Schwarzschild black hole (including a proof of mode stability) arising from the canonical energy
are also established.

In chapter 4, some preliminary results associated to a novel conserved current associated
to the linearised vacuum Einstein equation are presented. This can be viewed as a modifica-
tion/simplification of the conserved current associated to the canonical energy. In particular,
applications of this current to other black hole spacetimes are discussed.
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Introduction

General relativity is a theory that models gravity. Mathematically, the fundamental objects in
general relativity are a n-dimensional Lorentzian manifold, M , and its associated metric, g. These
describe the gravitational field and dictate how matter moves. The metric is constrained to satisfy
the celebrated Einstein equation:

Ric(g) − 1
2Scal(g)g = 8πT. (I.1)

This equation relates the geometry of the spacetime, through the combination of the Ricci and
scalar curvature on the left-hand side known as the Einstein tensor, to the matter content of the
theory, which is modelled with the energy-momentum tensor, T, on the right-hand side. One
can write down energy-momentum tensors for many matter models including Yang–Mills fields,
scalar fields or fluids. In contrast to the Newtonian predecessor, one can even set T = 0 to yield
non-trivial solutions in the absence of matter. In this case, the reduced equation,

Ric(g) = 0, (I.2)

is called the vacuum Einstein equation.

Famously, the theory of general relativity predicts the existence of black holes, the simplest of
which was written down by Schwarzschild [1] mere months after Einstein proposed the theory in
1915 [2]. Informally, these black hole solutions are characterised by the property that they contain
a region of spacetime from which not even light can escape. The following ‘Penrose diagram’ (to
which one can attach a precise mathematical meaning) provides a depiction of the geometry of
the Schwarzschild black hole:

I+
H+B

E
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In this diagram, E is the exterior of the black hole which is the region in which external observers
live and B is the black hole region which is the region from which nothing can escape to E . The
boundary between B and E , denoted by H+, is the future event horizon and can be thought of as
the point (surface) of no return for observers; once an observer crosses this boundary from E they
cannot return to E . The dashed line denoted I+ is called ‘future null infinity’ and is, roughly
speaking, where idealised gravitational wave experiments take place. The ‘wavey’ line is the black
hole curvature singularity where infinite tidal forces tear apart anyone who is unfortunate enough
to enter the black hole region.

Remark 0.0.1. For the more astrophysically minded reader, one can construct the Penrose
diagram of a black hole arising from the gravitational collapse of a star. This can be modelled with
the Oppenheimer–Snyder solution [3] to the Einstein equation which represents a homogeneous,
spherically symmetric, collapsing dust star.a Outside of the star, the spacetime is vacuum and
therefore, by Birkoff’s theorem [4, 5], is a region of the Schwarzschild spacetime.

The modern perspective of the vacuum Einstein equation is to view it as a system of 2nd-order
quasi-linear partial differential equations for the metric. The equation’s type is obscured by the
issue of diffeomorphism invariance; one must choose coordinates, (xα), locally for the spacetime
to determine the type of the vacuum Einstein equation. This is often called picking a ‘gauge’.
For example, one can show that in ‘harmonic gauge’, which is defined by requiring

□g(xα) .= 1√
det(g)

∂µ

(√
det(g)gµν∂νx

α
)

= 0, (I.3)

the vacuum Einstein equation reduces to a system of quasi-linear wave equations

□g(gαβ) = Nαβ(g, ∂g), (I.4)

where Nαβ(g, ∂g) only depends on g and its first derivatives. Therefore, in harmonic gauge the
vacuum Einstein equation is hyperbolic. The hyperbolic nature of the vacuum Einstein equation
in harmonic gauge was exploited in the monumental work of Choquet–Bruhat [6] to formulate
and prove that the vacuum Einstein equation admits a locally well-posed initial value problem.
Global aspects of the initial value problem for the vacuum Einstein equation were subsequently
formulated and proven in the work of Choquet–Bruhat–Geroch [7]. In particular, given initial
data for the vacuum Einstein equation, the authors prove the existence and uniqueness (up to
diffeomorphism) of a ‘maximal globally hyperbolic Cauchy development’.b

Associated to the initial value formulation is the question of stability of solutions to the
Einstein equation: suppose you start with initial data close (in a suitable norm) to initial data
which would lead to a known solution, does the solution that results asymptotically approach the

aThis solution is a weak global solution due to the discontinuity of the dust across the boundary of the star.
bThe reader can consult [8, 9] for further details on the initial value formulation of the vacuum Einstein equation.



Introduction 3

known solution, tend to something else or blow up? Based on many works (for example [10–35])
conducted over the last 60 years starting with the seminal works of Regge–Wheeler [36] in 1957,
stability is expected to be true of all 4-dimensional (the 3 spatial and 1 time that we experience)
stationary vacuum black holes.

Motivation for Higher-Dimensional Relativity

Since some of the results in this thesis are concerned with higher dimensional relativity, some
motivational and expository remarks are in order (for reviews on the topic of black holes in higher
dimensions see [37–39]). The convention adopted in this work is that n will denote the spacetime
dimension.

First, from a purely mathematical perspective, it is of interest to see how general relativity
differs in higher dimensions from the 4-dimensional case. This sheds light on how general
Lorentzian manifolds obeying the vacuum Einstein equation behave. There are many differences
in higher dimensional relativity as apposed to the usual 4-dimensional case. These are effectively
due to the increased number of degrees of freedom inherent in the metric, g. In higher dimensions,
many results from 4-dimensional general relativity no longer hold. A few examples are the
following:

(1) Event horizon topology does not have to be spherical. As shown by Hawking, in 4-
dimensions the cross-sections of the event horizon of an asymptotically flat stationary black
hole spacetime must be homeomorphic to S2 (under the dominant energy condition) [40].
In (n ≥ 5)-dimensions, cross-sectional horizon topology does not have to be spherical.
There exist examples of black holes with spherical horizon topology such as the Myers–Perry
black hole [41] (the generalisation of the Kerr solution to arbitrary dimension), which
has cross-sectional horizon topology homeomorphic to Sn−2. However, it is possible to
construct explicit examples of asymptotically flat black hole spacetimes with non-spherical
cross-sectional horizon topology. For example, the 5D Emparan–Reall and Pomeransky–
Sen’kov black ring solutions have horizon topology S2 × S1 [42]. Hawking’s theorem has
been generalised to higher dimensions in [43], which shows that the horizon topology
of asymptotically flat black hole spacetimes must be of positive scalar curvature. In 5
dimensions a more precise result is known: under the assumptions of stationarity, asymptotic
flatness, two commuting axisymmetries and a ‘rod structure’, the horizon topology is
either S3, S1 × S2 or a quotient of S3 [44].

(2) Naive black hole uniqueness fails. In 4-dimensions, under the assumption of either ana-
lyticity [40] or axisymmetry [45, 46], the Kerr family is the unique family of stationary
vacuum black hole solutions, i.e., a (analytic or axisymmetric) stationary vacuum black hole
in 4-dimensions is uniquely specified by its mass, M , and its angular momentum per unit
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mass, a. Uniqueness of the Kerr family in the class of smooth stationary vacuum black
hole solutions is conjectured to hold but a proof seems elusive.c This has led to the further
conjecture that maximal developments of ‘generic’ asymptotically flat initial data sets can
asymptotically be described by a finite number of Kerr black holes. These uniqueness
theorems and, therefore, this ‘final state conjecture’ cannot generalise immediately to higher
dimensions since there exist at least two distinct families of vacuum black hole solutions
that can have the same mass and angular momentum: the Myers–Perry black hole and the
Emparan–Reall black ring. Moreover, there exist distinct black ring solutions with the same
mass and angular momentum [37, 48]. The final state conjecture may need to be modified
to include the property of stability. Again, the work [44] provides a more precise result in 5
dimensions.

(3) Black holes in higher dimensions can be unstable. As mentioned above, stability is expected
to be true of all 4-dimensional stationary vacuum black holes. Indeed, the subextremal
Kerr family is conjectured to be asymptotically stable as a solution of the vacuum Einstein
equation which, in view of the uniqueness of the Kerr family mentioned in point (2), would
constitute all 4-dimensional stationary vacuum black holes (see section IV.1 of [35] for a
precise formulation of the Kerr stability conjecture). In stark contrast, many stationary
vacuum black hole solutions in higher dimensions are expected to be unstable [37, 38, 49–69].
This is a topic that is addressed in Chapter 1 of this thesis.

Secondly, the physics community is very interested in higher-dimensional gravity from the
point of view of producing a ‘grand unified theory’, i.e., a theory that rectifies the apparent
incompatibility of general relativity and quantum field theory [39]. One of the earliest ideas of
unification goes back to the 1920s to the works of Kaluza [70] and Klein [71] who produced a
classical unified theory of general relativity and electromagnetism in 5 dimensions. Many of the
current proposed unifying theories are also formulated in dimensions more than 4. For example,
certain types of ‘string theory’ are formulated with 10 or 11 dimensions [72]. The belief is that we
only perceive 4 out of the actual number of dimensions since the rest are sufficiently small and
compact that we traverse them imperceptibly fast. For such a theory to be considered ‘good’,
there has to be some limit which produces the previous tried and tested theory, i.e., general
relativity. Therefore, understanding how general relativity behaves in higher dimensions is there-
fore of relevance to the low energy limit of these grand unified theories such as string theory [37, 73].

Summary of the Thesis

The research presented in this PhD thesis focuses on stability problems in general relativity. In
particular, it presents a study of the linearised vacuum Einstein equation on two backgrounds:

cA partial result in this direction is [47] which shows that if a stationary vacuum black hole solution is ‘close’ to
a Kerr solution then it is isometric to that Kerr solution.
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the Schwarzschild black string [49] and the Schwarzschild(–Tangherlini) black hole [74].

The linearised vacuum Einstein equation can be written as an equation for a symmetric
2-tensor h:

gcd∇c∇dhab + ∇a∇b(Trgh) − ∇a(divh)b − ∇b(divh)a + 2Ra
c
b
dhcd = 0 (I.5)

where ∇ and R are the Levi-Civita connection and Riemann tensor, respectively, of the background
metric g. Studying this equation on flat Minkowski spacetime led Einstein to the prediction of
gravitational waves [75], which have now been confirmed by LIGO [76]. It has also been fruitful
in establishing stability statements about many black hole spacetimes and is often a precursor to
understanding the full ‘non-linear’ stability of a black hole solution to the Einstein equation. For
example, the full non-linear stability of the 4-dimensional Schwarzschild spacetime has only very
recently been rigorously established in the monumental work of Dafermos, Holzegel, Rodnianski
and Taylor [35] which utilised ‘double null gauge’ (see also the work of Klainerman and Szeftel
under symmetry [31]). However, the road to this result came from a deep understanding of the
scalar wave equation

□gΨ = 0, (I.6)

for Ψ ∈ C∞(M) on the Schwarzschild background (see [19] for a summary) and then the linearised
Einstein equation [28].d

The first chapter of this thesis is devoted to the ‘Gregory–Laflamme instability’ of the 5-
dimensional Schwarzschild black string. This spacetime is constructed from the Schwarzschild
black hole by taking its Cartesian product with R or a circle of radius R. Strong numerical
evidence for the existence of an admissible exponentially growing solution to the linearised vacuum
Einstein equation was first given in 1993 by Gregory and Laflamme [49]. Since the original paper,
this type of instability has been identified numerically [77–79] and heuristically [55, 57] for other
black hole solutions in higher dimensions, such as the exotic 5-dimensional Emparan–Reall [80] and
Pomeransky–Sen’kov black ring solutions [81], the 6D ultra-spinning Myers–Perry solution [41]
and the 5D Kerr black string [62]. However, even for the original 5-dimensional Schwarzschild
black string, there was no direct mathematical proof of the existence of the Gregory–Laflamme
instability until my work [69] (see however the work of Prabu–Wald [66] to be discussed in sec-
tion 1.1.5 of Chapter 1). In Chapter 1, this direct proof of the existence of the Gregory–Laflamme
instability for the Schwarzschild black string is presented. Under a choice of ansatz for the
perturbation and a gauge choice, the linearised vacuum Einstein equation reduces to an ODE
problem for a single function. In this work, a suitable rescaling and change of variables is applied

dDue to its hyperbolic nature, the scalar wave equation can be viewed as the ‘poor man’s’ linearised Einstein
equation (I.5).
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which casts the ODE into a Schrödinger eigenvalue equation to which an energy functional is
assigned. It is then shown by direct variational methods that the lowest eigenfunction gives
rise to an exponentially growing mode solution which has admissible behaviour at the future
event horizon and spacelike infinity. After the addition of a pure gauge solution, this gives rise
to a regular exponentially growing mode solution of the linearised vacuum Einstein equation in
harmonic/transverse-traceless gauge.

The second chapter provides a detailed discussion of the double null gauge (following the
works [82–84]) that is employed in the subsequent chapters of this thesis. In double null coordinates
(u, v, θA) the metric takes the form

g = −2Ω2(du⊗ dv + du⊗ dv) + /gAB
(dθA − bAdv) ⊗ (dθA − bAdv). (I.7)

The hypersurfaces of constant u and v are then manifestly null hypersurfaces. Therefore, the double
null gauge choice is particularly well adapted to the causal structure of spacetime. Associated to
such coordinates is a natural normalised double null frame

e3 = 1
Ω∂u, e4 = 1

Ω
(
∂v + bA∂θA

)
. (I.8)

Completing this frame with a (local) basis for the horizontal subspace ⟨e3, e4⟩⊥ allows for a double
null decomposition of the Ricci coefficients and the Weyl curvature tensor. The content of the
vacuum Einstein equation can then be encoded in a system of elliptic and transport equations
for metric and Ricci coefficients known as the null structure equations and the Bianchi identities
(decomposed with respect to the null frame (I.8)). In keeping with the higher-dimensional theme
of the first chapter, these equations are derived in arbitrary dimension. To the best of the
author’s knowledge, until this work, no complete discussion of this topic in higher dimensions
has appeared in the literature.e This chapter contains a derivation of the linearised null structure
equations around the n-dimensional Schwarzschild–Tangherlini spacetime (the higher-dimensional
Schwarzschild solution) for use in Chapters 3 and 4. Further, there is some additional discus-
sion on the failure of decoupling of the famous Teukolsky null Weyl curvature components (1)

α

and (1)
α for n > 4. It should be stressed that the failure of decoupling for n > 4 is a known

result and has appeared in previous literature (see works [86–88]) albeit in the slightly different
higher-dimensional Geroch–Held–Penrose formalism [89]. The original work in this chapter is the
discussion of obtaining a Regge–Wheeler system of equations through a physical space version of
the Chandrasekhar transformation.

eThe reader should note that these equations were schematically derived up to error terms in the work [85]
which was sufficient for their purposes.
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The third chapter of this thesis is concerned with the ‘canonical energy’ linear stability criterion
of Hollands and Wald [65]. Their criterion is based upon a divergence-free current for the linearised
vacuum Einstein equation associated with a Killing symmetry X ∈ X(M) of the black hole in
question (typically for stationary black holes X is the Killing field T associated to stationarity).
Applying the divergence theorem on regions of the black hole spacetime yields a conservation law
for a quantity called the canonical energy, EX . For a class of initial data, Hollands and Wald’s
criterion is that a stationary vacuum black hole spacetime is weakly linearly stable or unstable if
ET (evaluated on a Cauchy hypersurface) is positive or negative, respectively. The criterion is ap-
pealing conceptually since one can write down a conservation law for any stationary vacuum black
hole spacetime (or more generally a black hole with a symmetry) and one ‘simply’ needs to check
the sign of ET (for a particular class of data). However, in practice, it is hard to establish positivity
or negativity. Indeed, even for the ‘basic’ case of the stability of the 4-dimensional Schwarzschild
black hole, the positivity of ET is only rectified in this thesis. To do this, the canonical energy is
decomposed in a manner that is favourable for the causal structure of the spacetime: the double
null gauge (as mentioned above). The conservation law for ET is then understood locally and
it is shown that the canonical energy conservation law is equivalent to a conservation law for
another energy, ĒT , inherent in the system of double null decomposed gravitational perturbations
on 4D Schwarzschild established by Holzegel [90]. Since Holzegel established a weak stability
statement (an energy boundedness statement) for the 4-dimensional Schwarzschild solution from
the energy ĒT (in particular, the positivity of this energy), the same statement then follows from
the canonical energy. Moreover, a hierarchy of conservation laws are derived for the system of
double null decomposed gravitational perturbations from the canonical energy and the respective
energy boundedness statements are studied. This hierarchy of conservation laws is then used to
prove mode stability of the 4-dimensional Schwarzschild black hole. Additionally, a novel con-
servation law for the celebrated decoupled Teukolsky null curvature components α and α is derived.

In the final chapter of this thesis, a new divergence-free current associated to the linearised
vacuum Einstein equation is defined. This current can be written down on any vacuum spacetime
with a Killing symmetry. This current can be viewed as modification of the current which gives rise
to the canonical energy conservation law and is arguably simpler to compute than the canonical
energy current. An application of this conservation law is then given by producing a double null
decomposed conservation law on the n-dimensional Schwarzschild–Tangherlini spacetime which
should be useful in proving a stability statement for this spacetime.



8 Conventions

Conventions

The conventions of this thesis are the following:

• The metric signature convention is (−,+,+,+, . . .).

• Greek Indices (α, β, γ, . . .) will be used for expressions that hold in a particular basis.

• Latin Indices (a, b, c, . . .) are abstract indices which will be used for expressions that hold
in any basis (see [91] or [92] for more details).

• The notation X(M) denotes the set of vector fields on a manifold M .

• The notation Ωk(M) denotes the set of k-forms on a manifold M .

• The notation sym(T ⋆M ⊗ T ⋆M) and symtr(T ⋆M ⊗ T ⋆M) denotes the set of symmetric
(0, 2)-tensors and symmetric-traceless (0, 2)-tensors respectively on a manifold M .

• The convention for the Riemann tensor is

R(X,Y )Z .= ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

for X,Y, Z ∈ X(M). The convention for the Riemann tensor indices is

Ra
bcdX

cY dZb = (R(X,Y )Z)a.



Chapter 1

The Gregory–Laflamme Instability of
the Schwarzschild Black String Exterior

1.1 Introduction

The main topic of this chapter is the study of the stability problem for the Schwarzschild black
string solution to the Einstein vacuum equation in 5 dimensions. In 1993, the work of Gregory–
Laflamme [49] gave strong numerical evidence for the presence of an exponentially growing
mode instability. This phenomenon has since been known as the Gregory–Laflamme instability.
This work has been widely invoked in the physics community to infer instability of many higher
dimensional spacetimes, for example, black rings, ultraspinning Myers–Perry black holes and black
Saturns (see [55, 57, 77–79]). For a review and introduction to instabilities in higher dimensions,
the interested reader should consult [37, 39] and references therein, as well as [61] and [65, 66]
which give a general approach to stability problems. The purpose of the present chapter is to
provide a direct, self-contained and elementary mathematical proof of the Gregory–Laflamme
instability of the 5D Schwarzschild black string.

1.1.1 Schwarzschild Black Holes, Black Strings and Black Branes

The most basic solution to the vacuum Einstein equation (I.2) giving rise to the black hole
phenomena is the Schwarzschild–Tangherlini black hole solution (Schwn, gs). It arises dynamically
as the maximal Cauchy development of the following initial data: an initial hypersurface Σ0 =
R × Sn−2, a first fundamental form (in isotropic coordinates)

hs =
(
1 + M

2ρn−3

) 4
n−3 (dρ⊗ dρ+ ρ2

/̊γn−2), ρ ∈ (0,∞) ∼= R (1.1.1)

and second fundamental form K = 0, where /̊γn−2 is the metric on the unit (n− 2)-sphere Sn−2.
This spacetime is asymptotically flat and spherically symmetric. The Penrose diagram in Fig. 1.1
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represents the causal structure of (Schwn, gs) arising from this initial data, restricted to the future
of Σ0.

I+
AI+

B

i+
B

i0
B

i+
A

i0
A

r = 0

H+
AH+

B

Σ0

S

B
EAEB

Fig. 1.1 The Penrose diagram of the Schwarzschild–Tangherlini spacetime (Schwn, gs).

Here, I+ .= I+
A ∪ I+

B is future null infinity, i+ .= i+A ∪ i+B and i0
.= i0A ∪ i0B are future timelike

infinity and spacelike infinity respectively, EA
.= J−(I+

A ) ∩ J+(Σ0) is the distinguished exterior
region, EB

.= J−(I+
B ) ∩ J+(Σ0) is another exterior region, B .= Schwn \ J−(I+) is the black

hole region, H+ = H+
A ∪ H+

B
.= B \ int(B) is the future event horizon and S .= H+

A ∩ H+
B is

the bifurcation sphere. The wavy line denotes a singular boundary which is not part of the
spacetime (Schwn, gs) but towards which the Kretchmann curvature invariant diverges. It is in
this sense that (Schwn, gs) is singular. Note that every point in this diagram is in fact an (n− 2)-
sphere. The metric on the exterior EA of the n-dimensional Schwarzschild–Tangherlini black hole
in traditional Schwarzschild coordinates (t, r, φ1, ..., φn−2) takes the form [1, 74]

gs = −Dn(r)dt⊗ dt+ 1
Dn(r)dr ⊗ dr + r2

/̊γn−2, Dn(r) .= 1 − 2M
rn−3 , (1.1.2)

where t ∈ [0,∞), r ∈
(
(2M)

1
n−3 ,∞

)
and /̊γn−2 is the metric on the unit (n− 2)-sphere.

The Lorentzian manifold that is the main topic of this chapter is the Schwarzschild black string
spacetime in 5 dimensions which is constructed from the 4D Schwarzschild solution (Schw4, gs).
Before focussing on this spacetime explicitly, it is of interest to discuss more general spacetimes
constructed from the n-dimensional Schwarzschild–Tangherlini black hole solution (Schwn, gs).
Let S1

R denote the circle of radius R and let Fp ∈ {Rp,Rp−1 × S1
R, ...,R ×

∏p−1
i=1 S1

Ri
,
∏p

i=1 S1
Ri

}
with its associated p-dimensional Euclidean metric δp. If one has the n-dimensional Schwarzschild
black hole spacetime (Schwn, gs) and takes its Cartesian product with Fp then one realises
the (n + p)-dimensional Schwarzschild black brane (Schwn × Fp, gs ⊕ δp). This means that
the (n+ p)-dimensional Schwarzschild black brane (Schwn × Fp, gs ⊕ δp) is a product manifold
made from Ricci-flat manifolds, which is again Ricci-flat and hence satisfies the vacuum Einstein
equation (I.2). Note that in contrast to (Schwn, gs), the spacetimes (Schwn × Fp, gs ⊕ δp) are
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not asymptotically flat but are called ‘asymptotically Kaluza–Klein’.

The Schwarzschild black brane spacetimes (Schwn ×Fp, gs ⊕δp) arise dynamically as the maxi-
mal Cauchy development of suitably extended Schwarzschild initial data, i.e., (Σ0×Fp, hs⊕δp,K =
0). Hence, the above Penrose diagram in Fig. 1.1 can be reinterpreted as the Penrose diagram
for the Schwarzschild black brane, but instead of each point representing a (n − 2)-sphere, it
represents a Sn−2 × Fp. In particular, the notation EA will be used henceforth to denote the
distinguished exterior region of (Schwn × Fp, gs ⊕ δp).

Taking p = 1 gives rise to the (n+1)-dimensional Schwarzschild black string spacetime Schwn×
R or alternatively Schwn × S1

R. The topic of the present chapter is the 5D Schwarzschild black
string spacetime Schw4 × R or alternatively Schw4 × S1

R. The metric on the exterior EA in
standard Schwarzschild coordinates is

g
.= −D(r)dt⊗ dt+ 1

D(r)dr ⊗ dr + r2
/̊γ2 + dz ⊗ dz, D(r) = 1 − 2M

r
, (1.1.3)

where t ∈ [0,∞), r ∈ (2M,∞) and z ∈ R or R/2πRZ.

Finally, to analyse the subsequent problem of linear stability on the exterior region EA up to
the future event horizon H+

A, one requires a chart with coordinate functions that are regular up
to this hypersurface H+

A \ S, where S now denotes the bifurcation surface. A good choice is
ingoing Eddington–Finkelstein coordinates defined by

v = t+ r⋆,
dr⋆

dr
= rn−3

rn−3 − 2M , with r⋆(3M) = 3M + 2M log(M). (1.1.4)

The (n+ p)-dimensional Schwarzschild black brane metric becomes

gs ⊕ δ = −Dn(r)dv ⊗ dv + dv ⊗ dr + dr ⊗ dv + r2
/̊γn−2 + δijdz

i ⊗ dzj , (1.1.5)

where Dn(r) is defined in equation (1.1.2) and v ∈ R and r ∈ (0,∞).

1.1.2 Previous Works

For a good introduction to the Gregory–Laflamme instability and the numerical result of [49] see
the book chapter [63]. A detailed survey of the key work [57] related to the present chapter is
undertaken in section 1.3. A brief history of the problem is presented here:

(i) In 1988, Gregory–Laflamme examined the Schwarzschild black string spacetime and stated
that it is stable [93]. However, an issue in the analysis arose from working in Schwarzschild
coordinates which lead to incorrect regularity assumptions for the asymptotic solutions.
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(ii) In 1993, Gregory–Laflamme used numerics to give strong evidence for the existence of a
low-frequency instability of the Schwarzschild black string and branes in harmonic gauge [49].

(iii) In 1994, Gregory–Laflamme generalised their numerical analysis to show instability of
‘magnetically-charged dilatonic’ black branes [50] (see [50, 73] for a discussion of these
solutions).

(iv) In 2000, Gubser–Mitra discussed the Gregory–Laflamme instability for general black branes.
They conjectured that a necessary and sufficient condition for stability of the black brane
spacetimes is thermodynamic stability of the corresponding black hole [52, 53].

(v) In 2001, Reall [51], with the aim of addressing the Gubser–Mitra conjecture, explored further
the relation between stability of black branes arising from static, spherically symmetric
black holes and thermodynamic stability of those black holes. In particular, the work of
Reall argues that there is a direct relation between the ‘negative mode’ of the Euclidean
Schwarzschild instanton solution (this mode was initially identified numerically in a paper
by Gross, Perry and Yaffe [94]) and the threshold of the Gregory–Laflamme instability.
This idea was further explored in a work of Reall et al. [59], which extended the idea that
‘negative modes’ of the Euclidean extension of a Myers–Perry black hole (the generalisation
of the Kerr spacetime to higher dimensions, see [41, 37] for details) correspond to the
threshold for the onset of a Gregory–Laflamme instability.

(vi) In 2006, Hovdebo and Myers [57] used a different gauge (which was introduced in [95]) to
reproduce the numerics from the original work of Gregory and Laflamme. This gauge choice
will be called spherical gauge and will be adopted in the present work. This work discusses
the presence of the Gregory–Laflamme instability for the ‘boosted’ Schwarzschild black
string and the Emparan–Reall black ring (for a discussion of this solution see [42, 37, 48]).

(vii) In 2010, Lehner and Pretorius numerically simulated the non-linear evolution of the Gregory–
Laflamme instability; see the review [64] and references therein.

(viii) In 2011, Figueras, Murata and Reall [61] put forward the idea that a local Penrose inequality
gives a stability criterion. Furthermore, [61] showed numerically that this local Penrose
inequality was violated for the Schwarzschild black string for a range of frequency parameters
which closely match those found in the original work of Gregory–Laflamme [49].

(ix) In 2012, Hollands and Wald [65] and, later in 2015, Prabu and Wald [66] developed a
general method applicable to many linear stability problems which encompasses the problem
of linear stability of the Schwarzschild black string exterior EA. The papers [65] and [66]
are explored in detail in section 1.1.5.

A few other works are of relevance to this discussion. The review paper [37] and book
chapter [48] discuss the black ring solution [42] in great detail. This relates to the work presented
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here since the Gregory–Laflamme instability is often heuristically invoked when discussing higher-
dimensional black hole solutions. In particular, if the black ring of study has a large radius and is
sufficiently thin then it ‘looks like’ a Schwarzschild black string and therefore would be susceptible
to the Gregory–Laflamme instability. There has been heuristic and numerical results to give
evidence to this claim [57, 67]. Finally, in 2021 Benomio produced the first mathematically
rigorous result on the stability problem for the black ring spacetime [68].

1.1.3 Statement of the Main Theorem: Theorem 1.1.2

The purpose of this chapter is to give a direct, self-contained, elementary proof of the Gregory–
Laflamme instability for the 5D Schwarzschild black string.

For the statement of the main theorem, one should have in mind the Penrose diagram in
Fig. 1.2 for the 5D Schwarzschild black string spacetime.

I+
A

S

i+
A

i0
A

H+
A

Σ = Σ̃ × F1

B EA

Fig. 1.2 The Penrose diagram for the 5D Schwarzschild black string illustrating the set up for the
linear instability problem. Every point in this diagram represents a S2 × F1.

Indicated in figure 1.2 is a spacelike asymptotically flat hypersurface Σ̃ which extends from
spacelike infinity i0A to intersect the future event horizon H+

A to the future of the bifurcation
surface S. Further, F1 = R or S1

R, B is the black hole region, EA is the exterior region, I+
A

is future null infinity and i+A is future timelike infinity. The hypersurface Σ can be expressed
as Σ = {(t, r⋆, θ, φ, z) : t = f(r⋆)} such that f = o(r) for r⋆ → ∞. An explicit example would
be a hypersurface of constant t⋆ where t⋆ = t+ 2M log(r − 2M).

Definition 1.1.1 (Mode Solution). A solution of the linearised vacuum Einstein equation (I.5)
on the exterior EA of the Schwarzschild black string Schw4 × R of the form

hαβ = eµt+ikzHαβ(r, θ) (1.1.6)

with µ, k ∈ R and (t, r, θ, φ, z) standard Schwarzschild coordinates will be called a mode solution.

Remark 1.1.1. The above definition 1.1.1 of a mode solution is not the most general definition
one could make. In particular, the above definition restricts h to be axisymmetric and to have
µ ∈ R; a more general definition of mode solution would allow dependence on φ and µ ∈ C.
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A way of establishing the linear instability of an asymptotically flat black hole is exhibiting a
mode solution of the linearised Einstein equation (I.5) which is smooth up to and including the
future event horizon, decays towards spacelike infinity and such that µ > 0.

Theorem 1.1.2 (Gregory–Laflamme Instability). For all |k| ∈ [ 3
20M , 8

20M ], there exists a non-
trivial mode solution h of the form (1.1.6) to the linearised vacuum Einstein equation (I.5) on the
exterior EA of the Schwarzschild black string background Schw4 × R with µ > 1

40
√

10M
> 0 and

Hαβ(r, θ) =



Htt(r) Htr(r) 0 0 0
Htr(r) Hrr(r) 0 0 0

0 0 Hθθ(r) 0 0
0 0 0 Hθθ(r) sin2 θ 0
0 0 0 0 0


. (1.1.7)

The solution h extends regularly to H+
A and decays exponentially towards i0A and can thus be

viewed as arising from regular initial data on a hypersurface Σ extending from the future event
horizon H+

A to i0A. In particular, h|Σ and ∇h|Σ are smooth on Σ. Moreover, the solution h is
not pure gauge and can in fact be chosen such that the harmonic/transverse-traceless gauge
conditions divh = 0

Trgh = 0
(1.1.8)

are satisfied.

Suppose R > 4M , then one can choose k such that there exists an integer n ∈ [ 3R
20M , 8R

20M ]
and therefore h induces a smooth solution on the exterior EA of the Schwarzschild black
string Schw4 × S1

R. Moreover, the initial data for such a mode solution on the exterior EA

of Schw4 × S1
R has finite energy.

Hence, the exterior EA of the Schwarzschild black string Schw4×R or Schw4×S1
R for R > 4M

is linearly unstable as a solution of the vacuum Einstein equation (I.5), and the instability can be
realised as a mode instability in harmonic/transverse-traceless gauge (1.1.8) which is not pure
gauge.

Remark 1.1.3. One can construct a gauge invariant quantity, the tztz-component of the linearised
Weyl tensor

(1)
W , which is non-vanishing for a non-trivial mode solution h with k ≠ 0 and µ ̸= 0

and exhibits exponential growth in t when µ > 0. This allows one to show that the mode solution
constructed in Theorem 1.1.2 is not pure gauge. Hence, one expects that the above mode solution
persists in any ‘good’ gauge, not just (1.1.8).
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Remark 1.1.4. The reader should note that the lower bound on the frequency parameter k
should not be interpreted as ruling out the existence of unstable modes with arbitrarily long
wavelengths. The lower bound on k in Theorem 1.1.2 results from the use of a test function in the
variational argument (see proposition 1.4.5 in section 1.4.3). The numerics of Gregory–Laflamme
and Hovdebo–Myers [49, 57] both provide evidence that there are unstable modes for k arbitrarily
small.

1.1.4 Difficulties and Main Ideas of the Proof

It may seem natural to directly consider the problem in harmonic gauge since the equation of
study (I.5) reduces to a tensorial wave equation

gcd∇c∇dhab + 2Ra
c
b
dhcd = 0. (1.1.9)

The above equation (1.1.9) results from the linearisation of the gauge reduced non-linear vacuum
Einstein equation (I.2) which is strongly hyperbolic and therefore well-posed. The equation (1.1.9)
reduces to a system of ODEs under the mode solution ansatz (1.1.6) with (1.1.7). This system
can be reduced to a single ODE of the form

d2u

dr2 + Pµ,k(r)du
dr

+Qµ,k(r)u = µ2

D(r)2u, D = 1 − 2M
r
, (1.1.10)

where u = Htt, Htr, Hrr or Hθθ and Pµ,k(r) and Qµ,k(r) depend on µ, k and r. However, if
one insists on this decoupling one introduces a regular singular point in the range r ∈ (0,∞).
For certain ranges of µ and k, this value occurs on the exterior EA, i.e., the regular singular
point occurs in r ∈ (2M,∞). In particular, this regular singularity occurs on the exterior for the
numerical values of k and µ for which Gregory–Laflamme identified instability. In the original
works of Gregory and Laflamme the decoupled ODE for Htr was studied; see the works [49, 63, 93].

It turns out that, in looking for an instability one can make a different gauge choice called
spherical gauge. As shown in section 1.3, the linearised vacuum Einstein equation (I.5) for a
mode solution (1.1.6) in spherical gauge can be reduced to a 2nd-order ODE of the form (1.1.10),
where, in contrast to harmonic/transverse-traceless gauge, Pµ,k(r) = Pk(r) and Qµ,k(r) = Qk(r)
depend only on k and r. Hence, existence of solution to the ODE (1.1.10) becomes a simple
eigenvalue problem for µ. Spherical gauge was originally introduced in [95] and has another
advantage over harmonic/transverse-traceless gauge which is that all r ∈ (2M,∞) are ordinary
points of the ODE (1.1.10). Hence, the spherical gauge choice also avoids the issues of a regular
singularity at some r ∈ (2M,∞). However, in contrast to harmonic gauge, for this gauge choice,
well-posedness is unclear. If one were trying to prove stability then exhibiting a well-posed gauge
would be key since well-posedness of the equations is essential for understanding general solutions.
For instability, it turns out that it is sufficient to exhibit a mode solution of the non-gauge reduced
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equation (I.5) which is not pure gauge. One expects then that such a mode solution will persist
in all ‘good’ gauges, of which harmonic gauge is an example. The discussion of pure gauge mode
solutions in spherical gauge in section 1.3.3 provides a proof that if k ̸= 0 and µ ̸= 0 then a
mode solution in spherical gauge is not pure gauge. This can be shown directly or from the
computation of a gauge invariant quantity, namely the tztz-component of the linearised Weyl
tensor,

(1)
W . Further, it is shown that if a non-trivial mode solution in spherical gauge grows

exponentially in t then
(1)
Wtztz is non-zero and grows exponentially t.

An issue with spherical gauge is that mode solutions in the spherical gauge do not, in general,
extend smoothly to the future event horizon H+

A, even when they represent physically admissible
solutions. However, as shown in section 1.3.4, one can detect what are the admissible boundary
conditions at the future event horizon in spherical gauge by adding a pure gauge perturbation to
the metric perturbation to try and construct a solution that indeed extends smoothly to H+

A. In
fact, the pure gauge perturbation found is precisely one that transforms the metric perturbation to
harmonic/transverse-traceless gauge (1.1.8). Hence, after also identifying the admissible boundary
conditions at spacelike infinity i0A in section 1.3.4, proving the existence of an unstable mode
solution to the linearised vacuum Einstein equation (I.5) that is not pure gauge is reduced to
showing the existence of a solution to the ODE (1.1.10) with µ > 0 and k ̸= 0 which satisfies the
admissible boundary conditions that are identified in this work.

In this chapter, the ODE problem (1.1.10) is approached from a direct variational point of
view in section 1.4. To run a direct variational argument, the solution u of ODE (1.1.10) is
rescaled and change of coordinates is applied. It is shown in section 1.4.1 that equation (1.1.10)
can be cast into a Schrödinger form

−∆r⋆u+ Vk(r⋆)u = −µ2u, r⋆ = r + 2M log(r − 2M) (1.1.11)

with Vk independent of µ. The ODE (1.1.11) can be interpreted as an eigenvalue problem for −µ2;
finding an eigenfunction, in a suitable space, with a negative eigenvalue will correspond to an
instability. As shown in section 1.4.2, this involves assigning the following energy functional to
the Schrödinger operator on the left-hand side of (1.1.11):

E(u) .= ⟨∇r⋆u,∇r⋆u⟩L2(R) + ⟨Vku, u⟩L2(R). (1.1.12)

Using a suitably chosen test function, one can show that the infimum over functions in H1(R)
of this functional is negative for a range of k. One then needs to argue that this infimum
is attained as an eigenvalue, by showing this functional is lower semicontinuous and that the
minimizer is non-trivial. The corresponding eigenfunction is then a weak solution in H1(R) to
the ODE (1.1.11) with µ > 0 for a range of k ∈ R \ {0}. Elementary one-dimensional elliptic
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regularity implies the solution is indeed smooth away from the future event horizon, H+
A, and

therefore corresponds to a classical solution of the problem (1.1.11). Finally, the solution can be
shown to satisfy the admissible boundary conditions by the condition that the solution lies inH1(R).

The chapter is organised in the following manner. The remainder of the present section
contains additional background on the Gregory–Laflamme instability. In section 1.2, linear per-
turbation theory is reviewed and the linearised Einstein equation (I.5) is derived. In section 1.3,
the analysis in spherical gauge is presented. The decoupled ODE (1.1.10) resulting from the
linearised Einstein equation (I.5) is derived and it is established that the problem can be reduced
to the existence of a solution to the decoupled ODE with µ > 0 and k ̸= 0 satisfying admissible
boundary conditions. In section 1.4, the proof of the existence of such a solution is presented via
the direct variational method.

Appendix A.1 contains a list of the Riemann tensor components and the Christoffel symbols
for the Schwarzschild black string spacetime Schw4 × R or Schw4 × S1

R. Appendix A.2 collects
results on singularities in 2nd order ODE relevant for the discussion of the boundary conditions
for the decoupled ODE (1.1.10). Appendix A.3 provides a method of transforming a 2nd order
ODE into a Schrödinger equation. Appendix A.4 collects some useful results from analysis that
are needed in the proof of theorem 1.1.2. Appendix A.5 compliments theorem 1.1.2 with some
stability results.

1.1.5 The Canonical Energy Method

The reader should note that there are two papers [65, 66] concerning a very general class of
spacetimes which are of relevance to the stability problem for the Schwarzschild black string. In
particular, it follows from [65, 66] that there exists a linear perturbation of the Schwarzschild black
string spacetime which is not pure gauge and grows exponentially in the Schwarzschild t-coordinate.
The following describes the results of these works.

In 2012, a paper of Hollands and Wald [65] gave a criterion for linear stability of stationary,
axisymmetric, vacuum black holes and black branes in D ≥ 4 spacetime dimensions (see also an
extension of this work to a broad class of theories that include matter by Keir [96]). They define a
conserved quantity known as the ‘canonical energy’ E associated to the space of solutions to the
linearised vacuum Einstein equation (I.5) and established a stability criterion based upon it. The
canonical energy E can be expressed as integral over an initial Cauchy surface of an expression
quadratic in the perturbation (see definitions 3.2.5 and 3.2.6 in section 3.2.3 of chapter 3) and
the associated stability criterion applies to general static or stationary, axisymmetric black hole
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spacetimes. It can be related to thermodynamic quantities by

E = δ2M −
∑
B

ΩBδ
2JB − κ

8πδ
2A, (1.1.13)

where M and JB are the ADM mass and ADM angular momenta in the Bth plane, and A is the
cross-sectional area of the horizon. Note that the right-hand side of (1.1.13) refers to the second
variation of thermodynamic quantities. It is remarkable that the combination E of these second
variations is in fact determined by linear perturbations.

The work [65] considers initial data for a perturbation of either a stationary, axisymmetric
black hole or black brane with the following properties:

(i) the linearised constraint equations are satisfied.

(ii) the linear change to the ADM charges (momentum, mass and angular momentum) vanish.

(iii) the perturbation is axisymmetric when the black hole spacetime is stationary, rotating and
axisymmetric.

(iv) certain gauge conditions and finiteness/regularity conditions are satisfied at the horizon
and infinity.

In what follows, initial data satisfying (i)–(iv) will be referred to as admissible. On this class of
data, the canonical energy is gauge invariant and degenerate if and only if the initial data for
the perturbation is towards another stationary, axisymmetric black hole. Further, by avoiding
superradiance (via point (iii) above), Hollands and Wald establish that the flux of (a modified)
canonical energy, Ẽ , through (a finite subset) the future event horizon and through (a finite
subset) null infinity is positive.

Remark 1.1.5. The motivation for point (ii) of the admissibility criterion is as follows. For the
Schwarzschild black hole, one can take initial data which corresponds simply to a change of the
mass parameter M 7→ M+α and therefore, by equation (1.1.13) and since the cross-sectional area
of the horizon is given by A = 16π(M + α)2, it follows that E < 0. This is the ‘thermodynamic
instability’ of the Schwarzschild black hole. However, by point (ii), the initial data for a change of
mass perturbation is manifestly not admissible (the family of Schwarzschild black holes is, after
all, dynamically stable [28, 35]).

Hollands and Wald’s stability criterion is then formulated as follows. If one can establish
positivity of E for all admissible initial data then this implies the black hole (or black brane) in
question is ‘weakly’ linearly stable. In particular, it rules out growing modes since these would
violate the conservation of canonical energy. On the other hand, if there exists admissible initial
data for which E < 0 then the positivity of the flux of the (modified) canonical energy, Ẽ , through
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the event horizon and null infinity implies that the canonical energy can only decrease through a
foliation that connects the event horizon to null infinity. This is depicted in the following diagram:

◦

◦

H+ I+

Ẽ0 < 0

Ẽτ ≤ Ẽ0 ẼI+ ≥ 0ẼH+ ≥ 0

This monotonicity property prevents future convergence of the canonical energy to zero when
it is negative and therefore implies there exist admissible initial data for a perturbation which
cannot approach a stationary perturbation at late times, i.e., one has failure of asymptotic stability.

The canonical energy gives a very clear criterion for stability and instability based on checking
the sign of E . However, the complexity of checking that the initial data satisfies the above
criteria (i)-(iv) is involved. Further, the expression quoted for the canonical energy in terms of the
linearised metric h (see equation (86) of [65]) is complicated and coercivity properties are obscure.
Indeed, prior to this work, even the positivity of the canonical energy for the Schwarzschild black
hole spacetime (which is known to be linearly stable by [28]) was an open problem. See Chapter
3 for a resolution to this problem.

The work of Hollands and Wald [65] also shows an additional result relevant specifically to
the problem of stability of black strings (and black branes). Suppose there exist initial data for a
perturbation of the ADM parameters of a vacuum black hole, (MBH, g), such that E < 0 and
let (MBH × S1

R, g ⊕ δ) be the associated black string. The work [65] shows that, starting from
such a perturbation of the black hole, one can infer the existence of admissible initial data for a
perturbation (which is not pure gauge) of the associated black string such that again E < 0 as
the S1

R radius R → ∞. One should note that this argument does not give an explicit bound on R.
This is in contrast to the result of theorem 1.1.2 presented in the present chapter which shows
that, for R > 4M , one can construct an explicit exponentially growing mode solution on the
exterior of the Schwarzschild black string. Hollands and Wald’s criterion for linear instability of a
black string formalised a conjecture by Gubser–Mitra that a necessary and sufficient condition
for stability of the black brane spacetimes is thermodynamic stability of the corresponding black
hole [52, 53]. Since the change of mass perturbation of Schwarzschild black hole produces E < 0,
this argument implies that the Schwarzschild black string fails to be asymptotically stable.

The failure of asymptotic stability does not in itself imply that perturbations grow. However,
the results of [65] were strengthened in 2015 by Prabhu and Wald [66]. They showed, using
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some spectral theory, that if there exist admissible initial data for a perturbation h, which can be
written as h = LT h̃ for another perturbation h̃, such that E < 0 for a black brane, then there
exists initially well-behaved perturbations that are not pure gauge and that grow exponentially in
time. Having established that there exist admissible initial data for a perturbation such that E < 0
for the Schwarzschild black string in [65], existence of a linear perturbation which is not pure
gauge and has exponential growth should follow.

Remark 1.1.6. The reader should note that the Hollands and Wald paper [65] also showed that
a necessary and sufficient condition for stability, with respect to axisymmetric perturbations, is
that a ‘local Penrose inequality’ is satisfied. The idea that a local Penrose inequality gives a
stability criterion was originally discussed in the work of Figueras, Murata and Reall [61] which
gave strong evidence in favor of sufficiency of this condition for stability. Furthermore [61] showed
numerically that this local Penrose inequality was violated for the Schwarzschild black string
for a range of frequency parameters which closely match those found in the original work of
Gregory–Laflamme [49].

The present work differs from the above as it gives a direct, self-contained, elementary proof
of the Gregory–Laflamme instability following the original formulation of [49, 57, 63, 93] which is
completely explicit. In particular, it gives an exponentially growing mode solution with an explicit
growth rate, of the form defined by equations (1.1.6) and (1.1.7) in harmonic/transverse-traceless
gauge which is not pure gauge.

Remark 1.1.7. It would also be of interest to see if Theorem 1.1.2 in the form stated could be
inferred from the canonical energy method of Hollands, Wald and Prabu [65, 66] in an explicit
way bypassing some of the functional calculus applied in the work [66]. In particular, it would be
interesting to explore the possible relation between the variational theory applied to E and that
applied here (see section 1.4.2).

1.1.6 Outlook

This chapter brings together what is known about the Gregory–Laflamme instability as well as
providing a direct elementary mathematically rigorous proof of its existence without the use of
numerics and with an explicit bound on µ and k. Note that whilst only the 5D Schwarzschild
black string was considered here, the result of instability readily extends to higher dimensions
with the replacement of kz in the exponential factor with ∑

i kizi.

Further directions of work could be to study the non-linear problem, the extension to Kerr4×S1

or Kerr4 ×R, the extension to charged black branes of the work [50], the extension to black rings
or ultraspinning Myers–Perry black holes.
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1.2 Linear Perturbation Theory

This section provides a derivation and review of the linearised vacuum Einstein equation (I.5) around
a general spacetime background metric (M, g) satisfying the vacuum Einstein equation (I.2).

1.2.1 Linearised Vacuum Einstein Equation

Consider a Lorentzian manifold (M, g) with metric satisfying the vacuum Einstein equation (I.2).
In this section a ‘perturbation’ of the spacetime metric will be discussed. This will be represented
by a new metric of the form g + ϵh with ϵ > 0. Here h is a symmetric bilinear form on the fibres
of TM . In the following, a series of results on how various quantities change to O(ϵ) (the linear
level) are derived. This will result in an expression for the Ricci tensor under such a perturbation
to linear order.

Remark 1.2.1. An important point to note that indices are raised and lowered here with respect
to g.

Proposition 1.2.2 (Change to the Levi-Civita Connection). Consider a Lorentzian manifold (M, g).
Suppose the metric ḡab = gab + ϵhab is a Lorentzian metric. Then the Levi-Civita connection, Γγ

αβ ,
of ḡab to O(ϵ) is

Γγ
αβ = Γγ

αβ + ϵ
(1)
Γγ

αβ (1.2.1)

with

(1)
Γa

bc = 1
2g

ad(
∇bhcd + ∇chbd − ∇dhbc

)
. (1.2.2)

Proof. Proof of this proposition follows from a direct computation of the Christoffel symbols
of g + ϵh in normal coordinates at some p ∈ M .

Proposition 1.2.3. Consider a Lorentzian manifold (M, g). Suppose the metric ḡab = gab + ϵhab

is a Lorentzian metric. Then the Riemann tensor, R̄a
bcd, of ḡab to O(ϵ) is

R̄a
bcd = Ra

bcd + ϵ
(1)
Ra

bcd (1.2.3)

where

(1)
Ra

bcd = ∇c

(1)
Γa

bd − ∇d

(1)
Γa

bc. (1.2.4)

Proof. Proof of this proposition follows from a direct computation in normal coordinates at some
p ∈ M and proposition 1.2.2.
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Proposition 1.2.4 (Change in the Ricci Tensor). Consider a Lorentzian manifold (M, g). Suppose
the metric ḡab = gab + ϵhab is a Lorentzian metric. Then the Ricci tensor, (Ric(g))ab, of ḡab

to O(ϵ) is

Ric(g) = Ric(g) + ϵ
(1)

Ric, (1.2.5)

with

(1)
Ricab

.= −1
2∆Lhab (1.2.6)

where ∆L denotes the Lichnerowicz operator given by

∆Lhab = gcd∇c∇dhab + 2Ra
c
b
dhcd − 2(Ric(g))c(ahb)

c − 2∇(a∇chb)c + ∇a∇bTrgh. (1.2.7)

Proof. This proposition follows from a contraction on (a, c) of
(1)
Ra

bcd in proposition 1.2.3 and an
application of the Ricci identity.

If one assumes g satisfies the vacuum Einstein equation (I.2) and g + ϵh satisfies the vacuum
Einstein equation (I.2) to O(ϵ) then it follows from proposition 1.2.4 that h must satisfy the
equation (I.5) to O(ϵ). This motivates the terminology of ‘linearised vacuum Einstein equation’
for equation (I.5). This will be the main equation of interest, with g the Schwarzschild black
string metric

g
.= −D(r)dt⊗ dt+ 1

D(r)dr ⊗ dr + r2
(
dθ ⊗ dθ + sin2 θdφ⊗ dφ

)
+ dz ⊗ dz, (1.2.8)

with D(r) defined in equation (1.1.3).

1.2.2 Pure Gauge Solutions in Linearised Theory

The vacuum Einstein equation (I.2) is a system of second order quasilinear partial differential
equations of the pair (M, g) which are invariant under the diffeomorphisms of M . This means that
for given initial data, the vacuum Einstein equation (I.2) only determines a spacetime uniquely up
to diffeomorphism, i.e., if there exists a diffeomorphism Φ : M → M then (M, g) and (M,Φ⋆(g))
are equivalent solutions of the vacuum Einstein equation (I.2). For constructing spacetimes, one
often imposes conditions on local coordinates called a gauge choice. Upon linearisation of the
theory, this freedom to impose conditions on local coordinates manifests itself as the freedom to
impose a form or a condition for linearised metric. A familiar example would be implementing the
well known harmonic gauge condition

□g(xα) = 1√
det(g)

∂µ

(√
det(g)gµν∂νx

α
)

= 0 ⇔ Γα
µνg

µν = 0. (1.2.9)
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Now to linearise this condition, consider two Lorentzian metrics g and g + ϵh on a manifold M .
Denote the difference of their Levi-Civita connections to O(ϵ) as

(1)
Γa

bc as in proposition 1.2.2. Note
that this object is a tensor. Taking some arbitrary point p in (M, g) and using normal coordinates
there gives that Γ(p) = 0. Hence, linearising the condition (1.2.9) gives

(1)
Γα

µνg
µν

∣∣∣
p

= 0. (1.2.10)

This is a basis independent result since this is a tensorial expression and the p ∈ M was arbitrary,
so one can promote this condition to

(1)
Γc

abg
ab = 0 (1.2.11)

everywhere. From proposition 1.2.2,
(1)
Γc

ab can be written in terms of a metric perturbation h as

(1)
Γc

ab = 1
2g

cd
(
∇ahbd + ∇bhad − ∇dhab

)
. (1.2.12)

Hence,

0 =
(1)
Γc

abg
ab =⇒ (divh)a − 1

2∇aTrgh = 0. (1.2.13)

More generally, for linearised theory, gauge choice can be formulated as follows.

Consider a Lorentzian manifold (M, ḡ
.= g + ϵh) with ϵ > 0. Let {Φτ } be a 1-parameter

family of diffeomorphisms generated by a vector field X and define ξ .= τX ∈ X(M). Then from
the definition of the Lie derivative one has

(Φτ )⋆(ḡ) = ḡ + Lξg + O(ϵ2) (1.2.14)

if one treats τ = O(ϵ). So in the context of linearised theory, one considers two solutions to the
linearised vacuum Einstein equation (I.5), h1 and h2, as equivalent if

h2 = h1 + Lξg ⇐⇒ (h2)ab = (h1)ab + 2∇(aξb) (1.2.15)

for some vector field ξ ∈ X(M).

Definition 1.2.1 (Pure Gauge Solution). Let (M, g) be a vacuum spacetime. A solution h to
the linearised vacuum Einstein equation (I.5) will be called pure gauge if there exists a vector
field ξ ∈ X(M) such that

hab = 2∇(aξb). (1.2.16)
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The notation hpg will be used to denote a pure gauge solution to the linearised vacuum Einstein
equation (I.5).

Remark 1.2.5. One can show by a direct computation that any 2-tensor of the form 2∇(aξb)

automatically verifies the linearised vacuum Einstein equation (I.5).

Showing that a solution h to the linearised vacuum Einstein equation (I.5) is not pure gauge
is tantamount to showing that h is not equivalent to the trivial solution. It is thus essential that
the solution constructed in this chapter not be pure gauge. The following propositions establish
that the tztz-component of linearised Weyl tensor

(1)
W is invariant under gauge transformation.

This means that if
(1)
W is non-zero for a solution h to the linearised vacuum Einstein equation (I.5)

then h cannot be pure gauge.

Proposition 1.2.6 (Change to the Weyl Tensor). Let (M, g) be a vacuum spacetime. Suppose
the metric ḡab = gab + ϵhab is a Lorentzian metric such that h satisfies the linearised vacuum
Einstein equation (I.5). Then the Weyl tensor, W̄abcd, of ḡab to O(ϵ) is

W̄abcd = Wabcd + ϵ
(1)
Wabcd (1.2.17)

where

(1)
Wabcd = ∇c∇[bha]d + ∇d∇[ahb]c + 1

2
(
Re

bcdhae −Re
acdheb

)
. (1.2.18)

Henceforth,
(1)
W will be referred to as the linearised Weyl tensor.

Proof. This follows from a direct computation of the linearisation of

Wabcd = gaeR
e
bcd, (1.2.19)

using proposition 1.2.3.

Proposition 1.2.7. For the 5D Schwarszchild black string,
(1)
Wtztz evaluated on a pure gauge

solution vanishes.

Proof. Let
(1)
Wpg denote the linearised Weyl tensor evaluated on a pure gauge solution hpg. Recall

that a pure gauge solution hpg can always be written as hpg = Lξg for some vector field ξ ∈ X(M).
Using proposition 1.2.6 one has and that

(
(1)
Wpg)abcd =∇c∇[b∇a]ξd + ∇d∇[a∇b]ξc + 1

2
(
Re

bcd∇aξe −Re
acd∇eξb

)
(1.2.20)

+ ∇[c∇|b|∇d]ξa + ∇[d∇|a|∇c]ξb + 1
2

(
Re

bcd∇eξa −Re
acd∇bξe

)
.



1.2 Linear Perturbation Theory 25

By repeated use of the Ricci identity with the first and second Bianchi identities one can compute
that

(
(1)
Wpg)abcd = 2∇[aRb]edcξ

e +Re
adc∇bξe +Re

bcd∇aξe +Re
dab∇cξe +Re

cba∇dξe. (1.2.21)

From appendix A.1 one has Rµ
αβz = 0, Rµ

αzβ = 0, Rµ
zαβ = 0 and Γα

zβ = 0. Further, the black
string metric (1.1.3) is independent of t and z. Hence,

(
(1)
Wpg)tztz = 0. (1.2.22)
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1.3 Analysis in Spherical Gauge

In this section a mode solution, h, of the linearised vacuum Einstein equation (I.5) on the
exterior EA of the Schwarzschild black string spacetime Schw4 × R or Schw4 × S1

R is considered.
One makes the additional assumption that this mode solution preserves the spherical symmetry
of Schw4. So in particular the solution can be expressed in (t, r, θ, φ, z) coordinates as

hαβ = eµt+ikz



Htt(r) Htr(r) 0 0 Htz(r)
Htr(r) Hrr(r) 0 0 Hrz(r)

0 0 Hθθ(r) 0 0
0 0 0 Hθθ(r) sin2 θ 0

Htz(r) Hrz(r) 0 0 Hzz(r)


(1.3.1)

where α, β ∈ {t, r, θ, φ, z}. Moreover, in search of instability, the most interesting case for the
present work is µ > 0.

This section contains the analysis of the ODEs resulting from the linearised Einstein vacuum
equation (I.5) for a mode solution of the form (1.3.1) when it is expressed in spherical gauge.

Definition 1.3.1 (Spherical Gauge). A mode solution h of the linearised vacuum Einstein
equation (I.5) on the exterior EA of the Schwarzschild black string spacetime Schw4 × R is said
to be in spherical gauge if it is of the form

hµν = eµt+ikz



Ht(r) µHv(r) 0 0 0
µHv(r) Hr(r) 0 0 −ikHv(r)

0 0 0 0 0
0 0 0 0 0
0 −ikHv(r) 0 0 Hz(r)


. (1.3.2)

For the Schwarzschild black string spacetime Schw4 × S1
R one makes the same definition with the

additional assumption that kR ∈ Z.

Remark 1.3.1. The terminology ‘spherical gauge’ is motivated by the fact that a mode solution
of this form preserves the area of the spheres of the original spacetime.

First, it is shown in section 1.3.1 that one can impose the gauge consistently at the level
of modes, i.e., if there is a mode solution of the form (1.3.1), with µ ̸= 0 and either k ̸= 0
or dHtz

dr −Hrz = 0, then there is a mode solution of the form (1.3.2) differing from the original
one by a pure gauge solution. In the case where Htz = 0, Hrz = 0 and Hzz = 0 this consistency
condition is already implicit in [95, 57]. In section 1.3.2, the original decoupling of the ODEs
resulting from the linearised vacuum Einstein equation (I.5) and the spherical gauge ansatz (1.3.2)
is reproduced from [57]. This decoupling results in a single ODE for the component Hz(r) in
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equation (1.3.2). It is then shown, in section 1.3.3, that if k ≠ 0 and µ ̸= 0, then mode solutions
in spherical gauge (1.3.2) are not pure gauge. This is proved by examining the tztz-component
of the linearised Weyl tensor

(1)
W associated to a mode solution in spherical gauge, which is gauge

invariant by proposition 1.2.7. In this section it is also proved that if a non-trivial mode solution
in spherical gauge has µ > 0 (i.e. it grows exponentially in t) and k ̸= 0 then

(1)
Wtztz is non-zero

and also grows exponentially. By the gauge invariance of
(1)
Wtztz this behaviour will persist in

all gauges. Next, in section 1.3.4, the admissible boundary conditions for the solution at the
future event horizon H+

A and finiteness conditions at spacelike infinity i0A are identified. Note this
issue is subtle since, in general, both ‘basis’ elements for a mode solution h of the form (1.3.2)
are, in fact, singular at the future event horizon H+

A in this gauge. By adding a pure gauge
perturbation, the admissible boundary conditions for the solution h in the form (1.3.2) can be
identified. Moreover, this pure gauge solution can be chosen such that, after adding it, the
harmonic/transverse-traceless gauge (1.1.8) conditions are satisfied. Finally, in section 1.3.5,
the problem of constructing a linear mode instability of the form (1.3.1) is reduced to showing
there exists a solution to the decoupled ODE for Hz(r), with µ > 0 and k ≠ 0, that satisfies
the admissible boundary conditions at the future event horizon H+

A and spacelike infinity i0A (see
proposition 1.3.15).

1.3.1 Consistency

In the paper [57], it is stated that any mode solution of the form in equation (1.3.1) with Htz =
0, Hrz = 0 and Hzz = 0 can be brought to the spherical gauge form (1.3.2) by the addition of a
pure gauge solution. Slightly more generally, one, in fact, has the following:

Proposition 1.3.2 (Consistency of the Spherical Gauge). Consider a mode solution h to the
linearised Einstein vacuum equation (I.5) on the exterior EA of the Schwarzschild black string
spacetime Schw4 × R or Schw4 × S1

R of the form (1.3.1) with µ ≠ 0. Further suppose that
either k ̸= 0 or d

drHtz −µHrz = 0. Then there exists a pure gauge solution hpg such that h+hpg

is of the form (1.3.2). It is in this sense that the spherical gauge (1.3.2) can be consistently
imposed on the exterior EA of the Schwarzschild black string Schw4 × R or Schw4 × S1

R.

Proof. From section 1.2.2, a pure gauge solution is given by hpg = 2∇(aξb) for a vector field ξ.
So, h̃ab = hab + 2∇(aξb) is the new mode solution. Consider a diffeomorphism generating vector
field of the form ξ = eµt+ikz(ζt(r), ζr(r), 0, 0, ζz(r)).

If k ̸= 0, one can take

ζr(r) = − Hθθ(r)
2(r − 2M) , ζz(r) = −

(
Htz(r) + ikζt(r)

)
µ

, (1.3.3)
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with

ζt(r) = ir(r − 2M)
2Mk

(
∂rHtz(r) − µHrz(r)

)
+ r(r − 2M)

2M Htr(r) − rµ

2MHθθ(r) (1.3.4)

and immediately verify that h̃ is of the form (1.3.2).

If d
drHtz − µHrz = 0, then one can take

ζr(r) = − Hθθ(r)
2(r − 2M) , ζz(r) = −

(
Htz(r) + ikζt(r)

)
µ

, (1.3.5)

with

ζt(r) = r(r − 2M)
2M Htr(r) − rµ

2MHθθ(r) (1.3.6)

and immediately verify that h̃ is of the form (1.3.2).

1.3.2 Reduction to ODE

Under a spherical gauge ansatz (1.3.2) with µ ̸= 0 and k ≠ 0, the linearised vacuum Einstein
equation (I.5) reduces to a system of coupled ODEs for the components Ht, Hv, Hr and Hz.
This system of ODEs can be decoupled to the single ODE for H .= Hz

d2H

dr2 (r) + Pk(r)dH
dr

(r) +
(
Qk(r) − µ2r2

(r − 2M)2

)
H(r) = 0, (1.3.7)

with

Pk(r) .= 12M
r(k2r3 + 2M) − 5

r
+ 1
r − 2M , (1.3.8)

Qk(r) .= 6M
r2(r − 2M) − rk2

r − 2M − 12M2

r2(r − 2M)(k2r3 + 2M) . (1.3.9)

The following proposition establishes this decoupling of the linearised vacuum Einstein equa-
tion (I.5) to the ODE (1.3.7) and the construction of a mode solution h in spherical gauge (1.3.2)
from a solution H to the ODE (1.3.7).

Proposition 1.3.3. Given a mode solution h in spherical gauge (1.3.2) with µ ̸= 0 and k ̸= 0 on
the exterior EA of the Schwarzschild black string Schw4 × R or Schw4 × S1

R, the ODE (1.3.7) is
satisfied by hzz. Conversely, given a C2((2M,∞)) solution H(r) to the ODE (1.3.7) with k ̸= 0
and µ ̸= 0, one can construct a mode solution h in spherical gauge (1.3.2) to the linearised
vacuuum Einstein equation (I.5) on the exterior EA of the Schwarzschild black string Schw4 × R.
If kR ∈ Z then h induces a mode solution on Schw4 × S1

R.
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Remark 1.3.4. Since Pk(r) and Qk(r) are real analytic any C2((2M,∞)) solution H(r) to the
ODE (1.3.7) is, in fact, real analytic (see theorem 3.1 in chapter 5 of Olver [97] for more details).

Proof. Let h be a mode solution in spherical gauge (1.3.2) with µ ∈ R and k ∈ R satisfying
the linearised vacuum Einstein equation (I.5) on the exterior EA of the Schwarzschild black
string Schw4 × R or Schw4 × S1

R. Equivalently, the following system of ODE has to be satisfied:

µkHr = 2Mµk

r(r − 2M)Hv, (1.3.10)

µk2Hv = µ

2
dHz

dr
− µ(r − 2M)Hr

r2 − µMHz

2r(r − 2M) , (1.3.11)

k
dHt

dr
= kMHt

r(r − 2M) − k(r − 2M)(2r − 3M)Hr

r3 + 2µ2kHv, (1.3.12)

Ht = (r − 2M)(r(k2 − µ2) − 2Mk2)
M

Hv + (r − 2M)2(r +M)
Mr2 Hr (1.3.13)

+ (r − 2M)3

2Mr

dHr

dr
− (r − 2M)2

2M
dHz

dr
+ r(r − 2M)

2M
dHt

dr
,

d2Hz

dr2 = k2Hr +
r2(

µ2Hz − k2Ht
)

(r − 2M)2 + 2(r −M)
r(r − 2M)

(
2k2Hv − dHz

dr

)
+ 2k2dHv

dr
, (1.3.14)

d2Hz

dr2 = 2M(2r − 3M)
r(r − 2M)3 Ht −

(
6M2 − (µ2 + k2)r4 + 2Mr(k2r2 − 2)

)
r3(r − 2M) Hr (1.3.15)

− 2M(2Mk2 + r(µ2 − k2))
r(r − 2M)2 Hv − 2µ2r + 4Mk2 − 2k2r

r − 2M
dHv

dr

+ 2r − 3M
r2

dHr

dr
− M

r(r − 2M)
dHz

dr
− M

(r − 2M)2
dHt

dr
+ r

r − 2M
d2Ht

dr2 ,

d2Ht

dr2 = k2r4 − 2Mk2r3 − 2M2

r2(r − 2M)2 Ht −
(
µ2 + 2M2

r4

)
Hr − rµ2

r − 2MHz (1.3.16)

+ 4µ2r2 + 4M2k2 − 2Mr(3µ2 + k2)
r2(r − 2M) Hv − M(r − 2M)

r3
dHr

dr

− 2r − 5M
r(r − 2M)

dHt

dr
+ 2µ2dHv

dr
+ M

r2
dHz

dr
.

Now, if µ ̸= 0 and k ̸= 0, then from equations (1.3.10) and (1.3.11) one can find Hv in terms
of Hz and dHz

dr . This can then be used in equation (1.3.12) to give and equation for dHt
dr in terms

of Ht, Hz and dHz
dr . All of these expressions can be used to express Ht in terms of Hz, dHz

dr
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and d2Hz
dr2 via equation (1.3.13). The resulting equations are

Hr(r) = − M2r

(r − 2M)2(k2r2 + 2M)Hz(r) + Mr2

(r − 2M)(k2r2 + 2M)
dHz

dr
, (1.3.17)

Hv(r) = − Mr2

(2(r − 2M)(k2r2 + 2M)Hz(r) + r3

2(k2r2 + 2M)
dHz

dr
, (1.3.18)

Ht(r) = 2M2(r − 3M) +Mk2r3(2r − 5M) − k4r6(r − 2M)
r(k2r3 + 2M)2 Hz (1.3.19)

− 2(r − 2M)(M(r − 4M) + (2r − 5M)k2r3)
(k2r3 + 2M)2

dHz

dr
+ r(r − 2M)2

k2r3 + 2M
d2Hz

dr2 .

Finally, one can use the above expressions to obtain a decoupled ODE for H .= Hz, namely

d2H

dr2 (r) + Pk(r)dH
dr

(r) +
(
Qk(r) − µ2r2

(r − 2M)2

)
H(r) = 0, (1.3.20)

with

Pk(r) .= 12M
r(k2r3 + 2M) − 5

r
+ 1
r − 2M , (1.3.21)

Qk(r) .= 6M
r2(r − 2M) − rk2

r − 2M − 12M2

r2(r − 2M)(k2r3 + 2M) . (1.3.22)

Conversely, given any C2((2M,∞)) solution H(r) to the ODE (1.3.7) with k ≠ 0 and µ ̸= 0
one can define Hz(r) = H(r). As noted in remark 1.3.4, Pk(r) and Qk(r) are real analytic,
so any C2((2M,∞)) solution H(r) to the ODE (1.3.7) is, in fact, real analytic. Therefore,
since k ̸= 0, one can use equations (1.3.17)–(1.3.19) to construct Ht(r), Hr(r) and Hv(r).
These then define the components of a mode solution h in spherical gauge (1.3.2). Explicitly

h = eµt+ikz



Ht(r) µHv(r) 0 0 0
µHv(r) Hr(r) 0 0 −ikHv(r)

0 0 0 0 0
0 0 0 0 0
0 −ikHv(r) 0 0 Hz(r)


. (1.3.23)

If the ODE (1.3.7) is satisfied and (1.3.17)–(1.3.19) defineHr,Hv andHt, then equations (1.3.10)–
(1.3.16) are also satisfied. Therefore, a mode solution h constructed in this manner solves
the linearised vacuum Einstein equation (I.5) on the exterior EA of the Schwarzschild black
string Schw4 × R. If kR ∈ Z then this construction also gives a mode solution h which solves
the linearised vacuuum Einstein equation (I.5) on the exterior EA of the Schwarzschild black
string Schw4 × S1

R.
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Remark 1.3.5. If k = 0 and µ ̸= 0, then one can add an additional pure gauge solution hpg to a
mode solution h in spherical gauge (1.3.2) such that h+ hpg is also in spherical gauge (1.3.2)
with Ht(r) ≡ 0. The relevant choice of pure gauge solution is given by (hpg)ab = 2∇(aξb) with

ξ = eµt
(

− Ht(r)
2µ , 0, 0, 0, 0

)
. (1.3.24)

A mode solution h in spherical gauge with Ht(r) ≡ 0 satisfying the linearised vacuum Einstein
equation (I.5) on the exterior EA of the Schwarzschild black string is then again equivalent to the
system of ODE (1.3.10)-(1.3.16) (with k = 0 and Ht ≡ 0) being satisfied. Equations (1.3.10)
and (1.3.12) are automatically satisfied by k = 0. The equation (1.3.14) automatically gives
the decoupled equation (1.3.7) for Hz. Then, equation (1.3.11) can be solved for Hr in terms
of Hz and dHz

dr . This gives the relation in equation (1.3.17) for Hr with k = 0. Equation (1.3.13)
can be used to solve for Hv in terms of Hz and dHz

dr . At this point, the equations (1.3.15)
and (1.3.16) are automatically satisfied. Therefore, again a solution to the ODE (1.3.7) induces a
mode solution in spherical gauge with Ht = 0.

1.3.3 Excluding Pure Gauge Perturbations

This section contains two proofs that if k ̸= 0 and µ ̸= 0 then a non-trivial mode solution h of
the form (1.3.2) cannot be a pure gauge solution. One can prove this directly via the following
proposition:

Proposition 1.3.6. Suppose k ̸= 0 and µ ̸= 0. A non-trivial mode solution h in spheri-
cal gauge (1.3.2) of the linearised vacuum Einstein equation (I.5) on the exterior EA of the
Schwarzschild black string Schw4 × R or Schw4 × S1

R cannot be pure gauge.

Proof. If h is pure gauge, it must be possible to write hab = 2∇(aξb) for some vector field ξ.
Therefore one finds

hzz = Hz(r)eµt+ikz =⇒ 2∂zξz = Hz(r)eµt+ikz, (1.3.25)
hzθ = 0 =⇒ ∂θξz + ∂zξθ = 0. (1.3.26)

Applying ∂z to the equation (1.3.26), using that partial derivatives commute and that, from
equation (1.3.25), ∂zξz clearly does not depend on θ gives

∂2
zξθ = 0. (1.3.27)

Next, hθθ = 0 implies

∂θξθ − Γr
θθξr = 0. (1.3.28)
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From appendix A.1, Γr
θθ = (r− 2M). Hence, taking two derivatives of (1.3.28) in the z direction

and using ∂2
zξθ = 0 gives

Γr
θθ∂

2
zξr = (r − 2M)∂2

zξr = 0. (1.3.29)

Therefore, ∂2
zξr = 0 on EA.

From the hrr component one has,

2∂rξr − 2Γr
rrξr = 2∂rξr + 2M

r(r − 2M)ξr = Hre
µt+ikz (1.3.30)

where one uses Γr
rr = − M

r(r−2M) from appendix A.1. Taking the second z derivative of equa-
tion (1.3.30) and using ∂2

zξr = 0 on EA gives k2Hr = 0 on EA. Since k ̸= 0, this implies Hr ≡ 0
on the exterior EA. Since k ≠ 0 and µ ̸= 0, equation (1.3.10) implies that if Hr = 0 on EA,
then Hv ≡ 0 on EA. Using the hzr component, one finds

∂zξr + ∂rξz = −ikHve
µt+ikz = 0 =⇒ ∂r(∂zξz) = 0 =⇒ dHz

dr
= 0 on EA, (1.3.31)

where one uses the identity ∂2
zξr = 0 on EA in the first implication and that ∂zξz = Hz(r)eµt+ikz

in the second implication. The linearised vacuum Einstein equation (I.5) under this ansatz
(equation (1.3.11)) then implies Hz ≡ 0 on EA and therefore, from equations (1.3.12) and (1.3.13),
Ht ≡ 0 on EA. Hence, h ≡ 0 on EA.

Perhaps more satisfactorily one can establish that, if h is a non-trival mode solution in spherical
gauge (1.3.2) with k ̸= 0 and µ ≠ 0, then the tztz-component of the linearised Weyl tensor

(1)
W is

non-vanishing. Moreover, if h has µ > 0 then
(1)
Wtztz grows exponentially. Since

(1)
Wtztz is gauge

invariant this behaviour persists in all gauges. More precisely, one has the following proposition:

Proposition 1.3.7. Suppose k ̸= 0, µ ̸= 0 and h is a non-trivial mode solution in spheri-
cal gauge (1.3.2) of the linearised vacuum Einstein equation (I.5) on the exterior EA of the
Schwarzschild black string Schw4 × R or Schw4 × S1

R. Then
(1)
Wtztz is non-vanishing and h is not

pure gauge. Moreover, if µ > 0 then
(1)
Wtztz also grows exponentially.

Proof. By proposition 1.2.7,
(1)
Wtztz is gauge invariant. Hence, if

(1)
Wtztz is non-zero when evaluated

on a non-trivial mode solution h in spherical gauge (1.3.2), h cannot be pure gauge. Using
proposition 1.2.6 gives the following expression for

(1)
Wtztz:

(1)
Wtztz = eµt+ikz

2
(
k2Ht(r) − 2Mk2(r − 2M)

r3 Hv(r) + M(r − 2M)
r3

dHz

dr
− µ2Hz(r)

)
. (1.3.32)
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If k ̸= 0 and µ ̸= 0, one can use the equations (1.3.17)-(1.3.19) and the ODE (1.3.7) to simplify
this to

(1)
Wtztz = − eµt+ikz

(M(r − 2M)(k2r3(3r − 7M) − 2M2)
r3(k2r3 + 2M)2

dHz

dr
(r) (1.3.33)

+ M(k4r3(r − 2M) + k2(µ2r4 −Mr + 2M2) + 2Mµ2r)
r(k2r3 + 2M)2 Hz(r)

)
.

Suppose
(1)
Wtztz ≡ 0 identically, then

dHz

dr
(r) = r2(Mr(2k4r2 + k2 − 2µ2) − k2(µ2 + k2)r4 − 2M2k2)

(r − 2M)(3k2r4 − 7Mk2r3 − 2M2) Hz(r). (1.3.34)

Substituting this into the ODE (1.3.7) gives that either

k4r3(r − 2M)2 +Mr(4r − 9M)µ2 + r5µ4 (1.3.35)
+ k2(r − 2M)(2r4µ2 − 2Mr + 5M2) = 0

for all r ∈ (2M,∞) or Hz(r) ≡ 0. If µ ̸= 0 and k ≠ 0 then the polynomial in equation (1.3.35)
has at most 5 roots in r ∈ (2M,∞). Therefore, if

(1)
Wtztz = 0 then Hz(r) = 0 which is a

contradiction. Moreover, since
(1)
Wtztz ̸= 0, it is clear from equation (1.3.33) that if µ > 0 then

(1)
Wtztz grows exponentially.

1.3.4 Admissible Boundary Conditions

One can construct two sets of distinguished solutions to the ODE (1.3.7) associated to the “end
points" of the interval (2M,∞). Note that, by definition A.2.1 from appendix A.2, r = 2M is a
regular singularity, as 2M is not an ordinary point and

(r − 2M)Pk(r) and (r − 2M)2
(
Qk(r) − µ2r2

(r − 2M)2

)
(1.3.36)

are analytic near r = 2M . By definition A.2.3, the ODE (1.3.7) has an irregular singularity at
infinity, since there exist convergent series expansions

Pk(r) =
∞∑

n=0

pn

rn
and Qk(r) − µ2r2

(r − 2M)2 =
∞∑

n=0

qn

rn
(1.3.37)

in a neighbourhood of infinity with p0 = 0, p1 = −4, q0 = −(k2 +µ2) and q1 = −2M(k2 + 2µ2).
The asymptotic analysis of the ODEs around these points is examined in the following two
subsections. This analysis of the ODE (1.3.7) near r = 2M and r = ∞ will lead to the
identification of the admissible boundary conditions for a mode solution h in spherical gauge (1.3.2)
of the linearised Einstein vacuum equation (I.5).
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The Future Event Horizon H+
A

The goal of this section is to identify the admissible boundary conditions for a solution H to the
ODE (1.3.7) near r = 2M . This requires one to understand the behaviour near r = 2M of the
mode solution h in spherical gauge (1.3.2) of the linearised vacuum Einstein equation (I.5) which
results (through the construction in proposition 1.3.3) from H.

Associated with the future event horizon H+
A, there exists a basis H2M,± for solutions to

the ODE (1.3.7). From H2M,± one can examine the behaviour near r = 2M of any mode
solution h in spherical gauge (1.3.2) with µ ̸= 0 and k ̸= 0 through proposition 1.3.3. A mode
solution h in spherical gauge (1.3.2) with µ > 0 and k ≠ 0 constructed from H2M,− never
smoothly extends to the future event horizon. A mode solution h in spherical gauge (1.3.2)
with µ > 0 and k ̸= 0 constructed from H2M,+ also does not smoothly extend to the future event
horizon unless µ satisfies particular conditions. However, if h is a mode solution in spherical
gauge (1.3.2) with µ > 0 and k ̸= 0 constructed from H2M,+ then, after the addition of a pure
gauge solution hpg, it turns out one can smoothly extend h+ hpg to the future event horizon.
Moreover, it will be shown that h+ hpg satisfies the harmonic/transverse-traceless gauge (1.1.8)
conditions. This will be the content of proposition 1.3.9.

Remark 1.3.8. Suppose h is a mode solution in spherical gauge (1.3.2) with µ > 0 and k ̸= 0
constructed from H2M,−. This work does not claim that there does not exist a pure gauge
solution hpg such that h+hpg extends smoothly to the future event horizon H+

A. It is simply that,
after adding the particular pure gauge solution hpg generated by ξ ∈ X(M) in equation (1.3.65)
below, h + hpg does not extend smoothly to the future event horizon if h arises from H2M,−

(see equations (1.3.78)-(1.3.81)). It could be the case that there does not exist a pure gauge
solution hpg such that h+ hpg extends smoothly to the future event horizon H+

A. However, it is
unnecessary to establish such a statement since, for the purposes of establishing an instability,
only needs to exhibit a mode which extends smoothly to the future event horizon. This is precisely
what proposition 1.3.9 guarantees if the mode solution is associated to H2M,+.

First, some preliminaries. The coefficients of the ODE (1.3.7) extend meromorphically
to r = 2M and behave asymptotically as

Pk(r) = 1
r − 2M + O(1) Qk(r) − µ2r2

(r − 2M)2 = − 4M2µ2

(r − 2M)2 + O
( 1
r − 2M

)
. (1.3.38)

So one may write the ODE (1.3.7) as

d2H

dr2 +
( 1
r − 2M + O(1)

)dH
dr

−
( 4M2µ2

(r − 2M)2 + O
( 1
r − 2M

))
H = 0. (1.3.39)
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From appendix A.2, the indicial equation associated to the ODE (1.3.39) is

I(α) = α2 − 4M2µ2, (1.3.40)

which has roots

α±
.= ±2Mµ. (1.3.41)

If α+ − α− = 4Mµ ̸∈ Z, then one can deduce from theorem A.2.3 the asymptotic basis for
solutions near r = 2M . If α+ − α− = 4Mµ ∈ Z then the relevant result for the asymptotic basis
of solutions is theorem A.2.5. Combining the results of theorems A.2.3 and A.2.5 one has the
following basis for solutions for µ > 0

H2M,+(r) .= (r − 2M)2Mµ
∞∑

n=0
a+

n (r − 2M)n, (1.3.42)

H2M,−(r) .=


∑∞

n=0
a−

n (r−2M)n

(r−2M)2Mµ + CNH2M,+ ln(r − 2M) if 4Mµ = N ∈ Z>0

(r − 2M)−2Mµ ∑∞
n=0 a

−
n (r − 2M)n otherwise,

(1.3.43)

where the coefficents a+
n , a−

n and the anomalous term CN can be calculated recursively (see
theorems A.2.3 and A.2.5). A general solution to the ODE (1.3.7) will be of the form

H(r) = k1H
2M,+(r) + k2H

2M,−(r) (1.3.44)

with k1, k2 ∈ R.

If 4Mµ is not an integer or 4Mµ is an integer and CN = 0, then the asymptotic basis for
solutions for µ > 0 reduces to

H2M,+(r) = (r − 2M)2Mµ
∞∑

n=0
a+

n (r − 2M)n, (1.3.45)

H2M,−(r) = (r − 2M)−2Mµ
∞∑

n=0
a−

n (r − 2M)n. (1.3.46)

In equations (1.3.45) and (1.3.46), the first order coefficients of the basis can be calculated to be

a±
1 = ±µ(20M2k2 − 1) + 4M(µ2 − k2 + 4M2µ2k2 + 2M2k4)

(1 ± 4Mµ)(4M2k2 + 1) . (1.3.47)

The main result of this section is the following:

Proposition 1.3.9. Suppose µ > 0, k ̸= 0 and let H be a solution to the ODE (1.3.7). Let h be
the mode solution on the exterior EA of the Schwarzschild black string Schw4 × R constructed
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from Hz = H in proposition 1.3.3. Then there exists a pure gauge solution hpg such that h+ hpg

extends to a smooth solution of the linearised vacuum Einstein equation (I.5) at the future event
horizon H+

A if k2 = 0, where k2 is defined in equation (1.3.44). Moreover, h+ hpg can be chosen
to satisfy the harmonic/transverse-traceless gauge (1.1.8) conditions.

Remark 1.3.10. To determine admissible boundary conditions of H at r = 2M it is essential
that one works in coordinates that extend regularly across this hypersurface. A good choice is
ingoing Eddington–Finkelstein coordinates (v, r, θ, φ, z) defined by

v = t+ r⋆(r), r⋆(r) = r + 2M log |r − 2M |. (1.3.48)

Also note that for the boundary conditions to be admissible, one needs to consider all components of
the mode solution h constructed from H via proposition 1.3.3. These remarks will be implemented
in the proof of proposition 1.3.9.

Before proving the statement of proposition 1.3.9 it is useful to prove the following lemma:

Lemma 1.3.11. Let h be a mode solution of the linearised vacuum Einstein equation (I.5) of
the form

hαβ = eµt+ikz



Htt(r) Htr(r) 0 0 0
Htr(r) Hrr(r) 0 0 0

0 0 Hθθ(r) 0 0
0 0 0 Hθθ(r) sin2 θ 0
0 0 0 0 0


. (1.3.49)

Then h satisfies the harmonic/transverse-traceless gauge conditions:∇ahab = 0

gabhab = 0
(1.3.50)

if k ̸= 0.

Proof. First, it is instructive to write out explicit expressions for ∇chab and ∇c∇dhab in coordinates.
These are the following:

∇γhαβ =∂γhαβ − Γλ
γαhλβ − Γλ

γβhαλ (1.3.51)
∇γ∇δhαβ =∂γ(∂δhαβ − Γλ

δαhλβ − Γλ
δβhαλ) − Γµ

γδ(∂µhαβ − Γλ
µαhλβ − Γλ

µβhαλ) (1.3.52)

− Γµ
γα(∂δhµβ − Γλ

δµhλβ − Γλ
δβhµλ) − Γµ

γβ(∂δhαµ − Γλ
δαhλµ − Γλ

δµhαλ).
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If one takes the ansatz (1.3.49) and α = z in equation (1.3.52), then, since hzβ = 0 for all
β ∈ {t, r, θ, φ, z} and, from appendix A.1, Γλ

zβ = 0 for all β, λ ∈ {t, r, θ, φ, z},

∇γ∇δhαβ = 0 (α = z). (1.3.53)

Hence,

gγδ∇γ∇δhαβ = 0 (α = z) (1.3.54)
gδβ∇γ∇δhαβ = 0 (α = z). (1.3.55)

Consider the linearised vacuum Einstein equation (I.5) in coordinates

gγδ∇γ∇δhαβ + ∇α∇βTrgh− ∇α∇γhβγ − ∇β∇γhαγ + 2Rα
γ

β
δhγδ = 0. (1.3.56)

Since, from equations (1.3.54)–(1.3.55) and, from appendix A.1, Rzβγδ = 0, it follows that
the linearised vacuum Einstein equation (I.5) in local coordinates with α = z and under the
ansatz (1.3.49) reduces to

∇z(∇βTrgh− ∇γhβγ) = 0. (1.3.57)

Further, ∇z = ∂z, so using the explicit z-dependence of the ansatz (1.3.49), the equation (1.3.57)
reduces to

k(∇βTrgh− ∇γhβγ) = 0. (1.3.58)

Since k ̸= 0, the harmonic gauge condition

∇βTrgh− ∇γhβγ = 0 (1.3.59)

is satisfied. If β = z then, using equation (1.3.51) and ∇z = ∂z, equation (1.3.59) reduces to

∂zTrgh = kTrgh = 0 =⇒ Trgh = 0 (1.3.60)

since k ̸= 0. Substituting (1.3.60) into equation (1.3.59) gives the transverse condition

∇γhβγ = 0. (1.3.61)

Proof of Proposition 1.3.9. ConsiderH2M,±
z

.= H2M,± where H2M,± are given by equations (1.3.45)
and (1.3.46) with first order coefficients (1.3.47). Taking k2 = 0 is equivalent to examining the
basis element H2M,+

z . Since µ > 0 and k ̸= 0, one can use proposition 1.3.3 to construct the
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components Ht, Hr and Hv associated to H2M,±
z . Substituting the basis into equations (1.3.17)–

(1.3.19), one finds

H2M,±
r = (r − 2M)±2Mµ

(r − 2M)2

(M2(±4Mµ− 1)
1 + 4M2k2 + M(4M2(2µ2 + k2) ± 6Mµ− 1)

2(1 + 4M2k2) (r − 2M)

+ O((r − 2M)2)
)
, (1.3.62)

H2M,±
t = (r − 2M)±2Mµ

((1 + 4Mµ)(4Mµ− 1)
4(1 + 4M2k2) (1.3.63)

+ 3 + 4M2(8µ2 − k2) ± 2Mµ(8M2(2µ2 + k2) − 11)
8M(1 + 4M2k2) (r − 2M) + O((r − 2M)2)

)
,

H2M,±
v = (r − 2M)−1+2Mµ

(M2(±4Mµ− 1)
1 + 4M2k2 + M(2M2(2µ2 + k2) − 1 ± 5Mµ)

1 + 4M2k2 (r − 2M)

+ O((r − 2M)2)
)
. (1.3.64)

Consider a pure gauge solution hpg = 2∇(aξb) generated by the following vector field

ξ = eµt+ikz
(

− µHz(r)
2k2 ,

2k2Hv(r) − dHz
dr (r)

2k2 , 0, 0, iHz(r)
2k

)
(1.3.65)

where Hv is defined via equation (1.3.18). This gives a new solution to the linearised vacuum
Einstein equation (I.5)

h̃µν = hµν + 2∇(µξν) = eµt+ikz



H̃tt(r) H̃tr(r) 0 0 0
H̃tr(r) H̃rr(r) 0 0 0

0 0 H̃θθ(r) 0 0
0 0 0 H̃θθ(r) sin2 θ 0
0 0 0 0 0


, (1.3.66)

with the following expressions for the matrix components

H̃tt(r) = c1(r)Hz(r) + c2(r)dHz

dr
(r), (1.3.67)

H̃θθ(r) = c3(r)Hz(r) + c4(r)dHz

dr
(r), (1.3.68)

H̃rr(r) = r2

(r − 2M)2 H̃tt(r) − 2
r(r − 2M)H̃θθ(r), (1.3.69)

H̃tr(r) = − 2Mµ

k2(2M + r3k2)
(dHz

dr
(r) − M

r(r − 2M)Hz(r)
)
, (1.3.70)
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where

c1(r) .= 6M2(r − 2M)
r(k2r3 + 2M)2 − 2M(r − 2M)

r(k2r3 + 2M) + µ2r3

k2r3 + 2M − µ2

k2 ,

c2(r) .= M(r − 2M)
k2r3 − M(r − 2M)

k2r3 + 2M − 6M(4M2 − 4Mr + r2)
(k2r3 + 2M)2 ,

c3(r) .= − Mr2

k2r3 + 2M , c4(r) .= r3(r − 2M)
k2r3 + 2M − r − 2M

k2 .

(1.3.71)

Note that equations (1.3.7) and (1.3.17)–(1.3.19) have been used to derive equations (1.3.67)–
(1.3.70). By lemma 1.3.11, this new mode solution (1.3.66) satisfies the harmonic/transverse-
traceless gauge: g

µν h̃µν = 0

∇µh̃µν = 0.
(1.3.72)

As remarked above (see remark 1.3.10), to determine admissible boundary conditions of H
at r = 2M it is essential that one works in coordinates that extend regularly across this
hypersurface. Moreover, to identify the boundary conditions to be admissible, one needs to
consider all components of the mode solution h constructed from H via proposition 1.3.3. The
following formulas give the transformation to ingoing Eddington–Finkelstein coordinates for the
components of the mode solution h defined in equation (1.3.66):

H̃ ′
vv =

( ∂t
∂v

)2
H̃tt,

H̃ ′
vr =

( ∂t
∂v

)(∂r
∂r

)
H̃tr +

( ∂t
∂v

)( ∂t
∂r

)
H̃tt

= H̃tr − r

r − 2M H̃tt,

H̃ ′
rr =

( ∂t
∂r

)2
H̃tt +

( ∂t
∂r

)(∂r
∂r

)
H̃tr +

(∂r
∂r

)2
H̃rr

= r2

(r − 2M)2 H̃tt − r

r − 2M H̃tr + H̃rr,

(1.3.73)

where one uses t = v− r⋆(r) with r⋆(r) = r+ 2M log |r− 2M |. Explicitly, the equations (1.3.73)
can be computed to be

H̃ ′
vv = 2M(2Mµ2r + k2(µ2r4 −Mr + 2M2) + k4r3(r − 2M))

r(k3r3 + 2Mk)2 Hz(r) (1.3.74)

− 2M(r − 2M)(k2r3(3r − 7M) − 2M2)
r3(k3r3 + 2Mk)2

dHz

dr
(r),
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H̃ ′
vr =

( µ(µr2 +M)
rk2(r − 2M) − µ2r4 +Mµr2 − 2M(r − 2M)

(r − 2M)(k2r3 + 2M) − 6M2

(k2r3 + 2M)2

)
Hz (1.3.75)

+
(6Mr(r − 2M)

(k2r3 + 2M)2 + r(µr2 +M)
k2r3 + 2M − µr2 +M

k2r2

)dHz

dr
,

H̃ ′
rr =

(2r(Mµr2 + µ2r4 −M(r − 2M))
(r − 2M)2(k2r3 + 2M) + 12M2r

(k2r3 + 2M)2(r − 2M) − 2µ(µr +M)
k2(r − 2M)2

)
Hz

+
(2(µr2 + r −M)
k2r(r − 2M) − 12Mr2

(k2r3 + 2M)2 − 2r2(µr2 + r −M)
(r − 2M)(k2r3 + 2M)

)
H ′

z, (1.3.76)

H̃ ′
θθ = − Mr2

k2r3 + 2MHz(r) − 2M(r − 2M)
k4r3 + 2Mk2

dHz

dr
(r) (1.3.77)

where the ODE (1.3.7) with H = Hz has been used. To determine the behaviour of these new met-
ric perturbation components close to the future event horizon H+

A one must substitute H2M,±
z (r) .=

H2M,±(r) from equations (1.3.42)–(1.3.43). Substituting H2M,±
z (r) .= H2M,±(r) from equa-

tions (1.3.45) and (1.3.46) into these expressions gives leading order behaviour close to the future
event horizon H+

A determined by the relations

H̃2M,±
vv = fvv(r)(r − 2M)±2Mµ, (1.3.78)

H̃2M,±
vr =

((µ∓ µ)(1 + 4Mµ)
2k2(1 + 4M2k2) (r − 2M)−1 + fvr(r)

)
(r − 2M)±2Mµ, (1.3.79)

H̃2M,±
rr =

( −2(1 ∓ 1)Mµ(1 + 4Mµ)
k2(1 + 4M2k2)(r − 2M)2 + k±

(r − 2M) + frr(r)
)
(r − 2M)±2Mµ, (1.3.80)

H̃2M,±
θθ = fθθ(r)(r − 2M)±2Mµ (1.3.81)

with fvv, fvr, frr, fθθ smooth functions of r ∈ [2M,∞) which are non-vanishing at 2M , k+ = 0
and k− a non-zero constant depending on k,M and µ. Therefore, multiplying H̃2M,+

vv , H̃2M,+
vr , H̃2M,+

rr

and H̃2M,+
θθ by eµt = eµve−µr(r − 2M)−2Mµ gives

eµt+ikzH̃2M,+
vv = fvv(r)eµv−µr+ikz, (1.3.82)

eµt+ikzH̃2M,+
vr = fvr(r)eµv−µr+ikz, (1.3.83)

eµt+ikzH̃2M,+
rr = frr(r)eµv−µr+ikz, (1.3.84)

eµt+ikzH̃2M,+
θθ = fθθ(r)eµv−µr+ikz, (1.3.85)

which can indeed be smoothly extended to the future event horizon H+
A.

Remark 1.3.12. The form of the pure gauge solution defined by equation (1.3.65) can be
derived as follows. From lemma 1.3.11, a mode solution h̃ of the form (1.3.49) satisfies the
harmonic/transverse-traceless (1.1.8) gauge conditions. Take a mode solution h in spherical
gauge (1.3.2) add the pure gauge solution hpg = 2∇(aξb) for some vector field

ξ = eµt+ikzζ (1.3.86)
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where ζ is a vector field which depends only on r. From a direct calculation of h+ hpg one can
see that, to obtain a solution h̃ of the form (1.3.49), ζ must be given by equations (1.3.65).

Remark 1.3.13. To explicitly see the singular behaviour of the mode solution h± in spherical
gauge (1.3.2) with µ > 0 and k ̸= 0 associated, via proposition 1.3.3, to either H2M,±, consider
directly transforming to ingoing Eddington–Finkelstein coordinates. This transformation gives the
following basis elements:

H2M,±
rr

′ =
( ∂t
∂r

)2
H2M,±

t + 2
( ∂t
∂r

)
µH2M,±

v +H2M,±
r (r), (1.3.87)

H2M,±
vv

′ = H2M,±
t (r), (1.3.88)

H2M,±
vr

′ =
( ∂t
∂r

)
H2M,±

t (r) + µH2M,±
v (r), (1.3.89)

H2M,±
zz

′ = H2M,±
z (r), (1.3.90)

where H2M,±
v , H2M,±

t and H2M,±
r are the basis for solutions for Hv, Ht and Hr constructed from

proposition (1.3.3). These relevant expressions can be found from equations (1.3.17)–(1.3.19).

First, if 4Mµ is a positive integer and the coefficent CN does not vanish then, by equa-
tion (1.3.90), the basis element H2M,−

zz
′(r) = H2M,−

z = H2M,− has an essential logarithmic
divergence and is therefore always singular at the future event horizon H+

A.

If CN = 0 or 4Mµ is not a positive integer then the basis elements H2M,±
z = H2M,± are

given by equations (1.3.45) and (1.3.46) with first order coefficients (1.3.47). Substituting the
basis into equations (1.3.17)–(1.3.19) for the other metric perturbation component, one finds

H2M,±
r = (r − 2M)±2Mµ

(r − 2M)2

(M2(±4Mµ− 1)
1 + 4M2k2 + M(4M2(2µ2 + k2) ± 6Mµ− 1)

2(1 + 4M2k2) (r − 2M)

+ O
(
(r − 2M)2))

, (1.3.91)

H2M,±
t = (r − 2M)±2Mµ

((1 + 4Mµ)(4Mµ− 1)
4(1 + 4M2k2) (1.3.92)

+ 3 + 4M2(8µ2 − k2) ± 2Mµ(8M2(2µ2 + k2) − 11)
8M(1 + 4M2k2) (r − 2M) + O

(
(r − 2M)2))

,

with

H2M,±
v = (r − 2M)±2Mµ

(r − 2M)
(M2(±4Mµ− 1)

1 + 4M2k2 + M(2M2(2µ2 + k2) − 1 ± 5Mµ)
1 + 4M2k2 (r − 2M)

+ O
(
(r − 2M)2))

. (1.3.93)
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Transforming to ingoing Eddington–Finkelstein coordinates gives

H2M,±
rr

′ = (r − 2M)−2±2Mµ
(2M2(1 − 2Mµ(1 ∓ 1))(4Mµ− 1)

1 + 4M2k2 (1.3.94)

+
2M2µ

(
(3 ∓ 4) + 2(9 ∓ 7)Mµ− (1 ∓ 1)4M2(2µ2 + k2)

)
1 + 4M2k2 (r − 2M)

+ O((r − 2M)2)
)
,

H2M,±
vv

′ = (r − 2M)±2Mµ
((1 + 4Mµ)(4Mµ− 1)

4(1 + 4M2k2) + O(r − 2M)
)
, (1.3.95)

H2M,±
vr

′ = (r − 2M)−1±2Mµ
(M(2Mµ(1 ∓ 2) − 1)(±4Mµ− 1)

2(1 + 4M2k2) + O(r − 2M)
)
, (1.3.96)

H2M,±
zz

′ = (r − 2M)±2Mµ(1 + O(r − 2M)). (1.3.97)

Note that the full mode solution h constructed from proposition 1.3.3 involves a factor of eµt =
eµve−µr(r − 2M)−2Mµ so, after multiplication by this exponential factor, one can see that the
basis elements H2M,−

µν
′ are always singular, i.e., a solution with k2 ̸= 0 is always singular at the

future event horizon. The components eµtH2M,+
vv

′ and eµtH2M,+
z

′ are unconditionally smooth.
However, in general, the components eµtH2M,+

rr
′ and eµtH2M,+

vr
′ remain singular at the future

event horizon H+
A unless 4Mµ = 1 or −2 + 2Mµ ∈ N ∪ {0} or −2 + 2Mµ > 2. (In appendix

A.5 it is shown that for existence of a solution H with µ > 0 which has k2 = 0 and is finite
at infinity (see section 1.3.4) then µ < 3

16M

√
3
2 <

1
4M .) So neither basis perturbation h± in

spherical gauge (1.3.2) extends, in general, smoothly across the future event horizon H+
A.

Spacelike Infinity i0A

The goal of this section is to identify the admissible boundary conditions for a solution H to the
ODE (1.3.7) as r → ∞. This requires one to understand the behaviour as r → ∞ of the mode
solution h in spherical gauge (1.3.2) of the linearised vacuum Einstein equation (I.5) which results
(through the construction in proposition 1.3.3) from H.

In this section, a basis for solution H∞,± associated to r → ∞ is constructed. This basis H∞,±

captures the asymptotic behavior of any solution to the ODE (1.3.7) as r → ∞. In particular, as
r → ∞, H∞,+ grows exponentially and H∞,− decays exponentially. It will be shown that after
the addition of the pure gauge solution hpg defined in equations (1.3.65) and (1.3.66), h+ hpg is
a mode solution in harmonic/transverse-traceless gauge (1.1.8) to the linearised Einstein vacuum
equation which is a linear combination of solutions which grow or decay exponentially as r → ∞.
The admissible boundary condition will be that the solution should decay exponentially, from
which it will follow that H = aH∞,−.
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One should note that the functions Pk(r) and Qk(r) − µ2r2

(r−2M)2 admit convergent series
expansions in a neighbourhood of r = ∞

Pk(r) =
∞∑

n=0

pn

rn
Qk(r) =

∞∑
n=0

qn

rn
(1.3.98)

with p0 = 0, p1 = −4, q0 = −(k2 + µ2) and q1 = −2M(k2 + 2µ2). Therefore, r = ∞ is an
irregular singular point of the ODE (1.3.7) according to the discussion of appendix A.2. The
equations (A.2.19) and (A.2.20) from appendix A.2 give

λ± = ±
√
µ2 + k2, µ± = 2 ± M(2µ2 + k2)√

µ2 + k2 . (1.3.99)

From theorem A.2.7, there exists a unique basis for solutions H∞,±(r) to the ODE (1.3.7)
satisfying

H∞,± = e±
√

µ2+k2rr
2± M(2µ2+k2)√

µ2+k2 + O
(
e±

√
µ2+k2rr

1± M(2µ2+k2)√
µ2+k2

)
. (1.3.100)

Therefore a general solution will be of the form

H = c1H
∞,+ + c2H

∞,− (1.3.101)

with c1, c2 ∈ R.

Proposition 1.3.14. Let H be a solution to the ODE (1.3.7). Let h be the mode solution to the
linearised vacuum Einstein equation (I.5) in spherical gauge (1.3.2) associated to the solution H

and let hpg the pure gauge solution defined by equations (1.3.65) and (1.3.66) such that h+ hpg

satisfies the harmonic/transverse-traceless gauge (1.1.8) conditions. Then the solution h+ hpg to
the ODE (1.3.7) decays exponentially towards spacelike infinity i0A if c1 = 0, where c1 is defined
by equation (1.3.101).

Proof. Defining H∞,±
z (r) .= H∞,±(r) and using equations (1.3.67)–(1.3.68) one can construct

the corresponding basis for solutions as H̃tt, H̃tr, H̃rr and H̃θθ from proposition 1.3.3. Note that
equations (1.3.67)–(1.3.68) define the components of the mode solution h+ hpg to the linearised
vacuum Einstein equation (I.5) which satisfies harmonic/transverse-traceless gauge (1.1.8).
Asymptotically H̃tt, H̃tr, H̃rr and H̃θθ have the following behavior:

H∞,±
tt = e±

√
µ2+k2rr

−1± M(2µ2+k2)√
µ2+k2 + O

(
e±

√
µ2+k2rr

−2± M(2µ2+k2)√
µ2+k2

)
, (1.3.102)

H∞,±
tr = e±

√
µ2+k2rr

−1± M(2µ2+k2)√
µ2+k2 + O

(
e±

√
µ2+k2rr

−2± M(2µ2+k2)√
µ2+k2

)
, (1.3.103)

H∞,±
rr = e±

√
µ2+k2rr

−1± M(2µ2+k2)√
µ2+k2 + O

(
e±

√
µ2+k2rr

−2± M(2µ2+k2)√
µ2+k2

)
(1.3.104)
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and

H∞,±
θθ = e±

√
µ2+k2rr

1± M(2µ2+k2)√
µ2+k2 + O

(
e±

√
µ2+k2rr

± M(2µ2+k2)√
µ2+k2

)
. (1.3.105)

It is clear from these expressions that, if c1 = 0, then the mode solution h + hpg decays
exponentially as r → ∞.

1.3.5 Reduction of Theorem 1.1.2 to Proposition 1.3.16

This section summarises propositions 1.3.3, 1.3.6, 1.3.7, 1.3.9 and 1.3.14 to give a full description
of the permissible asymptotic behavior of a mode solution h in spherical gauge (1.3.2) which
is not pure gauge. This provides a reduction of theorem 1.1.2 to proving that there exists a
solution H to the ODE (1.3.7) which has µ > 0, k ̸= 0 and obeys the admissible boundary
conditions: k2 = 0 and c1 = 0.

Proposition 1.3.15. Let µ > 0 and k ∈ R with k ̸= 0. Let H2M,± be the basis for the space
of solutions to the ODE (1.3.7) as defined in equations (1.3.42) and (1.3.43) and H∞,± be the
basis for the space of solutions to the ODE (1.3.7) as defined in equation (1.3.100). In particular,
to any solution H of the ODE (1.3.7) one can ascribe four numbers k1, k2, c1, c2 ∈ R defined by

H(r) = k1H
2M,+(r) + k2H

2M,−(r), (1.3.106)
H(r) = c1H

∞,+(r) + c2H
∞,−(r). (1.3.107)

Let h be the mode solution in spherical gauge (1.3.2) to the linearised vacuum Einstein equa-
tion (I.5) on the exterior EA of Schwarzschild black string Schw4 × R associated to H via propo-
sition 1.3.3. Let hpg be the pure gauge solution as defined in equations (1.3.65) and (1.3.66).
Then h+ hpg decays exponentially towards spacelike infinity i0A and is smooth at the future event
horizon H+

A if k2 = 0 and c1 = 0. Moreover, h+ hpg satisfies the harmonic/transverse-traceless
gauge conditions (1.1.8) and cannot be a pure gauge solution.

Under the additional assumption that kR ∈ Z the mode solution h defined above can be
interpreted as a mode solution to the linearised vacuum Einstein equation (I.5) on the exterior EA

of Schwarzschild black string Schw4 × S1
R. Hence, if kR ∈ Z the above statement applies to the

exterior EA of Schw4 × S1
R.

The next section will prove the existence of a solution H to the ODE (1.3.7) satisfying
the properties of proposition 1.3.15. In particular, for all |k| ∈ [ 3

20M , 8
20M ], a solution H to the

ODE (1.3.7) with µ > 1
40

√
10M

> 0, k2 = 0 and c1 = 0 is constructed. If R > 4M , then there
exists an integer n ∈ [ 3R

20M , 8R
20M ]. Hence, one can choose k such that the constructed H gives

rise to a mode solution on Schw4 × S1
R. Moreover, on Schw4 × S1

R, h will manifestly have finite
energy in the sense that ||h|Σ||H1 and ||∂t⋆h|Σ||L2 are finite. (Note that, on Schw4 × R, h will
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not have finite energy due to the periodic behaviour in z on R.) Thus, theorem 1.1.2 follows
from proposition 1.3.15 and the following proposition:

Proposition 1.3.16. For all |k| ∈ [ 3
20M , 8

20M ] there exists a C∞((2M,∞)) solution H to
ODE (1.3.7) with µ > 0, and in the language of proposition 1.3.15, k2 = 0 and c1 = 0.
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1.4 The Variational Argument

By proposition 1.3.15, the proof of theorem 1.1.2 has now been reduced to proposition 1.3.16
which exhibits a solution H to (1.3.7) with µ > 0, k ̸= 0, k2 = 0 and c1 = 0. This section
establishes the proposition 1.3.16 thus completing the proof of theorem 1.1.2.

In order to exhibit such a solution H to the ODE (1.3.7), it is convenient to rescale the
solution and change coordinates in the ODE (1.3.7) so as to recast as a Schrödinger equation for
a function u. This transformation is given in section 1.4.1. In section 1.4.2 an energy functional
is assigned to the resulting Schrödinger operator. With the use of a test function (constructed in
section 1.4.3), a direct variational argument can be run to establish that for |k| ∈ [ 3

20M , 8
20M ],

there exists a weak solution u ∈ H1(R) with ||u||H1(R) = 1 such that µ > 0. The proof of
proposition 1.3.16 concludes by showing that the solution u is indeed smooth for r ∈ (2M,∞)
and satisfies the conditions of proposition 1.3.15, i.e., k2 = 0 and c1 = 0.

1.4.1 Schrödinger Reformulation

To reduce the number of parameters in the ODE (1.3.7), one can eliminate the mass parameter
with x .= r

2M , µ̂ .= 2Mµ and k̂ .= 2Mk to find

d2H

dx2 (x) + Pk̂(x)dH
dx

+
(
Qk̂(x) − µ̂2x2

(x− 1)2

)
H(x) = 0, (1.4.1)

with

Pk̂(x) .= 1
x− 1 − 5

x
+ 6
x(k̂2x3 + 1)

, (1.4.2)

Qk̂(x) .= 3
x2(x− 1) − k̂2x

x− 1 − 3
x2(x− 1)(1 + k̂2x3)

. (1.4.3)

Following proposition A.3.1 from appendix A.3 one can now transform the equation (1.4.1) into
regularised Schrödinger form by introducing a weight function H(x) = w(x)H̃(x) and changing
coordinates to x⋆ = r⋆

2M = x + log |x − 1|. This will produce a Schrödinger operator with a
potential which decays to zero at the future event horizon and tends to the constant k̂2 at spatial
infinity. From proposition A.3.1 the weight function must satisfy the ODE

dw

dx
+ (1 − 2k2x3)
x(1 + k2x3)w = 0. (1.4.4)

The desired solution for the weight function is

w(x) = (1 + k̂2x3)
x

. (1.4.5)
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The ODE (1.4.1) becomes

−d2H̃

dx2
⋆

(x⋆) + V (x⋆)H̃(x⋆) = −µ̂2H̃(x⋆), (1.4.6)

where V : R → R can be found from equation (A.3.12) to be

V (x⋆) = k̂2 (x− 1)
x

+ (6x− 11)(x− 1)
x4 + 18(x− 1)2

x4(1 + k̂2x3)2
− 6(4x− 5)(x− 1)

x4(1 + k̂2x3)
, (1.4.7)

where x ∈ (1,∞) is understood as an implicit function of x⋆.

As a trivial consequence of proposition 1.3.15 in section 1.3.4 on asymptotics of the solution
to the ODE (1.3.7), one has the following proposition for the asymptotics of the Schrödinger
equation (1.4.6).

Proposition 1.4.1. Assume µ̂ > 0. To any solution H̃ to the Schrödinger equation (1.4.6) one
can ascribe four numbers k̃1, k̃2, c̃1, c̃2 ∈ R defined by

H̃(x⋆) = k̃1H̃
2M,+(x⋆) + k̃2H̃

2M,−(x⋆) as x⋆ → −∞, (1.4.8)
H̃(x⋆) = c̃1H̃

∞,+(x⋆) + c̃2H̃
∞,−(x⋆) as x⋆ → ∞ (1.4.9)

with

H̃2M,± .= H2M,±

w
, (1.4.10)

H̃∞,± .= H∞,±

w
. (1.4.11)

The conditions that c̃1 = 0 and k̃2 = 0 are equivalent to, in the language of proposition 1.3.15, c1 =
0 and k2 = 0.

Remark 1.4.2. In the case 4Mµ is not a positive integer or 4Mµ is a positive integer and
CN = 0 the leading order terms of these basis elements are

H̃2M,± = (x− 1)±µ̂
( 1

1 + k̂2
+ O(x− 1)

)
, (1.4.12)

H̃∞,± = e±
√

µ̂2+k̂2xx
± (2µ̂2+k̂2)

2
√

µ̂2+k̂2
( 1
k̂2

+ O
( 1
x

))
. (1.4.13)

1.4.2 Direct Variational Argument

This section establishes a variational argument which will be used to infer the existence of a
negative eigenvalue to the Schrödinger operator in equation (1.4.6).
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Proposition 1.4.3. Let W : R → R and define

E0
.= inf

v∈H1(R)
||v||

L2(R)=1

{
E(v) .= ⟨∇v,∇v⟩L2(R) + ⟨Wv, v⟩L2(R)

}
. (1.4.14)

Suppose that W = p+q with q ∈ C0(R) such that lim|x|→∞ q(x) = 0 and p(x) ∈ C0(R) bounded
and positive. If E0 < 0, then there exists u ∈ H1(R) such that ||u||L2(R) = 1 and E(u) = E0.

Proof. By the definition of the infimum there exists a minimizing sequence (um)m ⊂ H1(R)
and ||um||L2 = 1 such that

lim
n→∞

E(un) = E0. (1.4.15)

Now, un are bounded in H1(R) by the following argument. There exists an M ∈ N such that,
for all m ≥ M ,

E(um) ≤ E0 + 1. (1.4.16)

So, for m ≥ M ,

⟨∇um,∇um⟩L2(R) ≤ E0 + 1 + sup
x∈R

|p(x)| + sup
x∈R

|q(x)|. (1.4.17)

Hence, ||um||H1(R) is controlled. Now using theorem A.4.1 from appendix A.4 there exists a
subsequence (umn)n such that umn ⇀ u in H1(R).

Consider

E(um) =
∫
R

|∇um|2 + p(x)|um|2 + q(x)|um|2dx. (1.4.18)

Since the Dirichlet energy is lower semicontinuous, only the latter two terms under the inte-
gral (1.4.18) need to be examined more carefully. The middle term in integral (1.4.18) are simply
a weighted L2 integral, so lower semicontinuity is established via

||un − u||2L2
p

= ⟨un − u, un − u⟩L2
p

= ||un||2L2
p

− 2⟨un − u, u⟩L2
p

− ||u||2L2
p
. (1.4.19)

So,

||u||2L2
p

≤ ||un||2L2
p

− 2⟨u, un − u⟩L2
p
. (1.4.20)

Hence by weak convergence

||u||2L2
p

≤ lim inf
n→∞

||un||2L2
p
. (1.4.21)
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The proposition A.4.2 from appendix A.4 establishes that the multiplication operator Mq : u → qu

is compact from H1(R) to L2(R). Hence, by the characterisation of compactness through weak
convergence (theorem A.4.1 from appendix A.4), qum → qu in L2(R). Therefore

⟨qu, u⟩L2 = lim
m→∞

⟨qum, um⟩L2 = lim inf
m→∞

⟨qum, um⟩L2 . (1.4.22)

Hence, the last term under the integral (1.4.18) is also lower semicontinuous. Therefore

E(u) ≤ lim inf
n→∞

E(un) = E0. (1.4.23)

Since the infimum is negative the minimiser is non-trivial. One needs to show that there is no
loss of mass, i.e., ||u||L2 = 1. Note ||u||L2 ≤ lim infn→∞ ||un||L2 = 1. So suppose ||u||L2 < 1
and define ũ = u

||u||L2
so ||ũ||L2 = 1, then

E(ũ) = E0
||u||2L2(R)

≤ E0 (1.4.24)

since ||u||L2 ≤ 1. Hence one would obtain a contradition to the infimum if ||u||L2 < 1.

Corollary 1.4.4. Let W = V with V as defined in equation (1.4.7) then

E(v) .= ⟨∇v,∇v⟩L2(R) + ⟨V v, v⟩L2(R) E0
.= inf

v∈H1(R)
||v||

L2(R)=1

E(v) (1.4.25)

satisfies the assumptions of proposition 1.4.6.

Proof. The function V : R → R can be written as V = p+ q with p and q as follows. Define

p(x⋆) .= k̂2x− 1
x

, (1.4.26)

q(x⋆) .= (6x− 11)(x− 1)
x4 + 18(x− 1)2

x4(1 + k̂2x3)2
− 6(4x− 5)(x− 1)

x4(1 + k̂2x3)
(1.4.27)

where in these expressions x considered as a implicit function of x⋆. Since x ∈ (1,∞), it follows
that p(x⋆) > 0 for all x⋆ ∈ R. Moreover, supx⋆∈R |p(x⋆)| = 1. Therefore, p is bounded. Note that
the function q satisfies lim|x⋆|→∞ q(x⋆) = 0. So the assumptions of proposition 1.4.3 hold.

1.4.3 The Test Function and Existence of a Minimiser

The ODE (1.4.6) is now in a form where a direct variational argument can be used to prove that
there exists an eigenfunction of the Schrödinger operator associated to the left-hand side of the
ODE (1.4.6) with a negative eigenvalue, i.e. −µ̂2 < 0. The following proposition constructs a
suitable test function such that it is in the correct function space, H1(R), and, for all |k̂| ∈ [ 3

10 ,
8
10 ],
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implies that the infimum of the energy functional in equation (1.4.25) is negative. (As will be
apparent, the negativity is inferred via complicated but purely algebraic calculations.)

Proposition 1.4.5. Define uT (x⋆) .= x(1 + |k̂|2x3)(x − 1)
1
n e−4|k̂|(x−1) where x is an implicit

function of x⋆, n is a finite non-zero natural number, k̂ ∈ R \ {0} and define E and E0

as in equation (1.4.25) of corollary 1.4.4. Then uT ∈ H1(R) and, for n = 100 and |k̂| ∈
[ 3
10 ,

8
10 ], E0 ≤ E(uT )

||uT ||2
L2(R)

< − 1
4000 .

Proof. Let k ∈ N ∪ {0} and define the following functions

fj(x) .= xj−1(x− 1)
2
n

−1e−8|k̂|(x−1). (1.4.28)

The H1(R)-norm of uT can be expressed as

||uT ||2H1(R) =
∫ ∞

1

∣∣∣x− 1
x

duT

dx

∣∣∣2 x

x− 1dx+
∫ ∞

1
|uT |2 x

x− 1dx (1.4.29)

where on the right-hand side the change of variables from x⋆ ∈ R to x ∈ (1,∞) has been made.
To calculate ||uT ||L2(R) it is useful to write it as a linear combination of the functions fk in
equation (1.4.28). Explicitly, one can show that

|uT |2 x

x− 1 = f4(x) + 2|k̂|2f7(x) + |k̂|4f10(x). (1.4.30)

Similarly, one can show that

∣∣∣x− 1
x

duT

dx

∣∣∣2 x

x− 1 =
11∑

j=1
cjfj−1(x) (1.4.31)

with c1 = 1 and

c3 = 1 + 1
n2 + 2

n
+ 16|k̂| + 8|k̂|

n
+ 16|k̂|2,

c5 = −10|k̂|2

n
− 40|k̂|3,

c7 = −40|k̂|3 − 16|k̂|3

n
− 48|k̂|4,

c11 = 16|k̂|6,

c2 = −2 − 2
n

− 8|k̂|,

c4 = −8|k̂| − 8|k̂|
n

− 24|k̂|2,

c8 = −8|k̂|4

n
− 32|k̂|5,

c10 = −32|k̂|5 − 8|k̂|5

n
− 32|k̂|6,

(1.4.32)

and

c6 = 8|k̂|2 + 2|k̂|2

n2 + 10|k̂|2

n
+ 80|k̂|3 + 16|k̂|3

n
+ 32|k̂|4, (1.4.33)

c9 = 16|k̂|4(1 + |k̂|2) + |k̂|4

n2 + 8|k̂|4(1 + |k̂|)
n

+ 64|k̂|5. (1.4.34)



1.4 The Variational Argument 51

One can express E(uT ) with the change of variables from x⋆ to x as

E(uT ) =
∫ ∞

1

(∣∣∣x− 1
x

duT

dx

∣∣∣2 + V |uT |2
) x

x− 1dx. (1.4.35)

The integrand can be written as

(∣∣∣x− 1
x

duT

dx

∣∣∣2 + V |uT |2
) x

x− 1 =
11∑

j=1
ajfj−1(x), (1.4.36)

with a1 = 0

a2 = −2 + n+ 8n|k̂|
n

,

a4 = −|k̂|
(8(1 + n)

n
+ 33|k̂|

)
,

a8 = −|k̂|4
((8 + 15n)

n
+ 32|k̂|

)
,

a10 = −|k̂|5
(8(1 + 4n)

n
+ 33|k̂|

)
,

a3 = 1 + 1
n2 + 16|k̂| + 16|k̂|2 + 2 + 8|k̂|

n
,

a5 = (21n− 10)|k̂|2

n
− 40|k̂|3,

a7 = −|k̂|3
(8(2 + 5n)

n
+ 39|k̂|

)
,

a11 = 17|k̂|6

(1.4.37)

and

a6 = |k̂|2
(2(1 + 5n− 2n2)

n2 + 16(1 + 5n)|k̂|
n

+ 32|k̂|2
)
, (1.4.38)

a9 = |k̂|4
(1 + 8n+ 22n2

n2 + 8(1 + 8n)
n

+ 16|k̂|2
)
. (1.4.39)

Therefore, if one can compute the integrals

Ij
.=

∫ ∞

1
fj(x)dx (1.4.40)

for k = 0, ..., 10 then one can compute ||uT ||L2(R), ||duT
dx⋆

||L2(R) and E(uT ).

Defining a change variables in the integrals (1.4.40) by t = x − 1, the integrals (1.4.40)
become

Ij =
∫ ∞

0
(t+ 1)j−1t

2
n

−1e−8|k̂|t. (1.4.41)

Note that the confluent hypergeometric function of the second kind U(a, b; z) can be defined as

U(a, b; z) .= 1
Γ(a)

∫ ∞

0
(t+ 1)b−a−1ta−1e−zt (1.4.42)
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for a, b, z ∈ C with Re(a) > 0 and Re(z) > 0 where Γ(a) is the Euler Gamma function, which
can be defined through the integral

Γ(a) =
∫ ∞

0
ta−1e−tdt (1.4.43)

for a ∈ C with Re(a) > 0. For a reference see chapter 9 of [98]. Therefore, setting a = 2
n ,

b = k + 2
n and z = 8|k̂| gives

Ij = Γ
( 2
n

)
U

( 2
n
, j + 2

n
; 8|k̂|

)
. (1.4.44)

The function U(a, b; z) satisfies the following recurrence properties (see chapter 9 of [98] and
chapter 16 of [99]):

U(0, b; z) = 1, (1.4.45)
U(a, b; z) − z1−bU(1 + a− b, 2 − b; z) = 0, (1.4.46)

U(a, b; z) − aU(a+ 1, b; z) − U(a, b− 1; z) = 0, (1.4.47)
(b− a− 1)U(a, b− 1; z) + (1 − b− z)U(a, b; z) + zU(a, b+ 1; z) = 0. (1.4.48)

Setting a = 2
n , b = 1 + 2

n and z = 8|k̂| in equation (1.4.46), and using equation (1.4.45) allows
one to calculate I1. Setting a = 2

n , b = 2 + 2
n and z = 8|k̂| in equation (1.4.47), using I1

and equation (1.4.45) allows one to calculate I2. Setting a = 2
n , b = j + 2

n and z = 8|k̂| in
equation (1.4.48), using Ij−1, ..., I1 and equation (1.4.45) allows one to calculate Ij . Finally,
one can show that I0 < ∞ by the following argument. One can see from the definition of Ij in
equation (1.4.41) that

I0 =
∫ ∞

1

1
x(x− 1)(x− 1)

2
n e−8|k̂|(x−1)dx. (1.4.49)

Now, since e−8|k̂|(x−1) < 1 on x ∈ (1,∞) and (x−1)
2
n −1

x < 1
2(x− 1) for n ≥ 1 on x ∈ (2,∞),

I0 ≤
∫ 2

1

1
x(x− 1)(x− 1)

2
n + 1

2

∫ ∞

2
(x− 1)e−8|k̂|(x−1) < ∞. (1.4.50)

Using the recurrence properties in equations (1.4.45)–(1.4.48) and the estimate (1.4.50) allows
one to explicitly show that ||uT ||H1(R) < ∞ for n ≥ 1, k̂ ∈ R \ {0}, i.e., uT ∈ H1(R). Moreover,
one can calculate E(uT )

||uT ||2
L2(R)

. To ease notation let Ê(uT ) .= E(uT )
||uT ||2

L2(R)
. Explicitly, Ê(uT ) is given

by

Ê(uT ) = |k̂|2
∑9

i=1 pi(n)|k̂|i−1∑10
j=1 qj(n)|k̂|i−1

(1.4.51)
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with

p1(n) .= 16 + 416n+ 5576n2 + 36176n3 + 123809n4 + 234794n5 + 244459n6

+ 128034n7 + 25560n8,

p2(n) .= 32n(16 + 336n+ 3296n2 + 15572n3 + 29107n4 + 21238n5

+ 4361n6 − 366n7),

p3(n) .= 128n2(56 + 924n+ 6130n2 + 20133n3 + 11972n4 − 3365n5 − 466n6),

p4(n) .= 1024n3(56 + 700n+ 2750n2 + 6041n3 − 1715n4 − 18n5),

p5(n) .= 2048n4(140 + 1260n+ 2225n2 + 3443n3 − 1758n4),

p6(n) .= 32768n5(28 + 168n+ 43n2 + 111n3),

p7(n) .= 917504n6(2 + 7n− 3n2),

p8(n) .= 1048576n7(2 + 3n),

p9(n) .= 1048576n8,

(1.4.52)

and

q1(n) .= 16 + 288n+ 2184n2 + 9072n3 + 22449n4 + 33642n5 + 29531n6

+ 13698n7 + 2520n8,

q2(n) .= 4n(144 + 2016n+ 12104n2 + 39120n3 + 71801n4 + 73494n5

+ 38171n6 + 7590n7),

q3(n) .= 128n2(72 + 756n+ 3534n2 + 8535n3 + 11180n4 + 7137n5 + 1642n6),

q4(n) .= 1536n3(56 + 420n+ 1510n2 + 2535n3 + 2351n4 + 706n5),

q5(n) .= 2048n4(252 + 1260n+ 3485n2 + 3495n3 + 2554n4),

q6(n) .= 8192n5(252 + 756n+ 1653n2 + 669n3 + 512n4),

q7(n) .= 393216n6(14 + 21n+ 39n2),

q8(n) .= 524288n7(18 + 9n+ 16n2),

q9(n) .= 9437184n8,

q10(n) .= 4194304n9.

(1.4.53)

Taking n = 100, one can check, via Sturm’s algorithm [100], that the polynomial

p(n, |k̂|) .=
9∑

i=1
pi(n)|k̂|i−1 (1.4.54)
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has two distinct real roots in |k̂| ∈ (0, 1). Evaluating p(100, |k̂|) at |k̂| = 0, |k̂| = 3
10 , |k̂| = 8

10
and |k̂| = 1 yields

p(100, 0) > 0, p
(
100, 3

10
)
< 0, p

(
100, 8

10
)
< 0 and p(100, 1) > 0. (1.4.55)

So, Ê(uT ) must be negative for all |k̂| ∈ [ 3
10 ,

8
10 ]. Taking the derivative of Ê(uT ) with respect

to |k̂| yields another rational function of |k̂| with positive denominator. Evaluating at the end
points of the interval |k̂| ∈ [ 3

10 ,
8
10 ] yields dÊ(uT )

d|k̂|
< 0 at |k̂| = 3

10 and dÊ(uT )
d|k̂|

> 0 at |k̂| = 8
10 for

n = 100. Using Sturm’s algorithm once again, one can check that the numerator of dÊ(uT )
d|k̂|

has
one distinct root in |k̂| ∈ ( 3

10 ,
8
10) for n = 100. Hence, Ê(uT ) with |k̂| ∈ [ 3

10 ,
8
10 ] and n = 100

attains its maximum in at one of the end points. Further evaluating Ê(uT ) with n = 100 at the
end points of the interval |k̂| ∈ [ 3

10 ,
8
10 ] one finds

E(uT )
||uT ||2L2(R)

∣∣∣∣
n=100

= Ê(uT )|n=100 < − 1
4000 (1.4.56)

for all |k̂| ∈ [ 3
10 ,

8
10 ]. Hence, E0 ≤ E(uT )

||uT ||2
L2(R)

∣∣
n=100 < − 1

4000 < 0 for all |k̂| ∈ [ 3
10 ,

8
10 ].

1.4.4 Proof of Proposition 1.3.16

To prove proposition 1.3.16, one can clearly reformulate as follows:

Proposition 1.4.6. For all |k̂| ∈ [ 3
10 ,

8
10 ], there exists a C∞(R) solution H̃ to the Schrödinger

equation (1.4.6) with µ̂ > 1
20

√
10 > 0, and in the language of proposition 1.4.1, k̃2 = 0 and c̃1 = 0.

Proof. By proposition 1.4.3, corollary 1.4.4 and proposition 1.4.5, for all k ∈ [ 3
10 ,

8
10 ], there exists

a minimiser u ∈ H1(R) with ||u||L2(R) = 1 such that

E(u) = E0
.= inf

{
⟨∇v,∇v⟩L2(R) + ⟨V v, v⟩L2(R) : v ∈ H1(R), ||v||L2(R) = 1

}
(1.4.57)

with V as defined in equation (1.4.7). Moreover, by proposition 1.4.5, E0 < − 1
4000 < 0.

By standard Euler–Lagrange methods (see theorem 3.21 and example 3.22 in [101]), u will
weakly solve the ODE

−d2u

dx2
⋆

+ V (x⋆)u = −µ̂2u (1.4.58)

with −µ̂2 = E0. From proposition 1.4.5, µ̂2 = −E0 >
1

4000 . Hence, for all |k̂| ∈ [ 3
10 ,

8
10 ], there

exists a weak solution u ∈ H1(R) to the Schrödinger equation (1.4.6) with ||u||L2(R) = 1 and
µ̂ =

√
−E0 >

1
20

√
10 .
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From the regularity theorem A.4.3, any u ∈ H1(R) which weakly solves the Schödinger
equation (1.4.6) is in fact smooth. Therefore, for all |k̂| ∈ [ 3

10 ,
8
10 ], there exists a solution

u ∈ C∞(R) to the Schrödinger equation (1.4.6) with µ̂ =
√

−E0 >
1

20
√

10 .

To verify the boundary conditions of u, recall by proposition 1.4.1 the solution u can be
expressed, in the bases associated to r = 2M and r → ∞, as

u = k̃1H̃
2M,+ + k̃2H̃

2M,−, u = c̃1H̃
∞,+ + c̃2H̃

∞,−, (1.4.59)

with k̃1, k̃2, c̃1, c̃2 ∈ R. Note that

∫ 0

−∞
|H̃2M,−|2dx⋆ =

∫ 3
2

1
|H̃2M,−|2 x

x− 1dx = ∞, (1.4.60)

whilst∫ 0

−∞
|H̃2M,+|2 + |∇x⋆H

2M,+|2dx⋆ =
∫ 3

2

1

(
|H̃2M,+|2 +

∣∣∣x− 1
x

∇xH
2M,+

∣∣∣2) x

x− 1dx (1.4.61)

which is finite. Similarly, for X⋆ > 0 sufficently large∫ ∞

X⋆

|H̃∞,+|2dx⋆ =
∫ ∞

x(X⋆)
|H̃∞,+|2 x

x− 1dx = ∞, (1.4.62)

whilst∫ ∞

X⋆

|H̃∞,−|2 + |∇x⋆H
∞,−|2dx⋆ =

∫ ∞

x(X⋆)

(
|H̃∞,−|2 +

∣∣∣x− 1
x

∇xH
∞,−

∣∣∣2) x

x− 1dx < ∞.

(1.4.63)

Therefore, since u ∈ H1(R), the solution u, in the language of proposition 1.4.1, must have k̃2 = 0
and c̃1 = 0.

Therefore, taking H̃ = u and |k̂| ∈ [ 3
10 ,

8
10 ] gives a C∞(R) solution to the Schrödinger

equation (1.4.6) with µ̂ > 1
20

√
10 > 0, k̃2 = 0 and c̃1 = 0.





Chapter 2

The Einstein Equation in Double Null
Gauge

In keeping with the higher-dimensional theme of the first chapter, this chapter gives an introduc-
tion to the double null decomposition of an n-dimensional spacetime following [84] (see also the
lecture notes [82] for an alternative introduction in the 4D case). To the best of the author’s
knowledge the results of this chapter have not been previously derived completely. However, one
should note that the paper [85] provides a schematic derivation of the results in this section up
to error terms that was sufficient for their purposes.

This chapter starts in section 2.1 with the introduction of the double null foliation of spacetime
and canonical coordinates. It proceeds with a double null decomposition of the Ricci coefficients
and Weyl tensor in sections 2.2 and 2.3. Some useful operations and calculations are introduced
in section 2.4. The null structure equations and Bianchi equations are introduced in sections 2.6
and 2.7. Sections 2.8 and 2.9 provide double null foliations of the Schwarzschild(–Tangherlini)
and Kerr spacetimes. Section 2.10 discusses linearisation of the vacuum Einstein equation in
the double null gauge. In particular, it focuses on linearisation in double null gauge around
the Schwarzschild(–Tangherlini) spacetime. It provides a detailed derivation of the Teukolsky
and Regge–Wheeler (systems of) equations on Schwn associated to the double null gauge and
discusses the relation to the traditional Teukolsky equation [13] in n = 4 as derived with the
Newman–Penrose formalism [102].

2.1 Double Null Foliation and Canonical Coordinates

A double null gauge is a set of coordinates (u, v, θA), with A = 1, .., n− 2, such that the metric
takes the form

g = −2Ω2(du⊗ dv + dv ⊗ du) + /gAB
(dθA − bAdv) ⊗ (dθB − bBdv). (2.1.1)
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Remark 2.1.1. Any Lorentzian metric can be locally put into the form (2.1.1).

One can construct a double null gauge associated to a double null foliation in a region of
n-dimensional spacetime (M, g) in the following manner. One starts by picking an embedded
codimension-2 closed submanifold S0,0 of M . Let C0 and C0 the null hypersurfaces spanned by
outgoing and ingoing null geodesics emanating orthogonally from S0,0 as depicted in the following
diagram:

C0 C0

S0,0 = C0 ∩ C0

Fig. 2.1 Illustration of starting point for the double null foliation.

One now considers two optical functions u and v that satisfy the Eikonal equation

|∇u|2g = 0, |∇v|2g = 0, (2.1.2)

with initial data u = 0 on C0 where the normal derivative of u is chosen so that |∇u|2g = 0 on C0

and ∇u is chosen to be transversal to C0 and similarly for v with C0. Denote the level sets of u
as Cu and Cv (so that C0 = Cv=0 and C0 = Cu=0). Since (u, v) satisfy the Eikonal equation
Cu and Cv are null hypersurfaces. Note that the foliation being described here will only exist in
general up to some Cvf

and Cuf
for vf , uf small. Denote this region Duf ,vf

. One additionally
assumes that there are no cut or conjugate points along Cu and Cv in Duf ,vf

.

Define the two null vectors

L′ .= −2(du)♯, L′ .= −2(dv)♯ (2.1.3)

and the null lapse function as

Ω2 .= − 2
g(L′, L′) . (2.1.4)

Note that by virtue of the Eikonal equation, (L′, L′) are geodesic. Additionally, define the
normalised null frame as

e3
.= ΩL′ e4

.= ΩL′, (2.1.5)
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so that g(e3, e4) = −2. Finally, the sets at fixed values of (u, v) are homeomorphic to the
(n− 2)-dimensional surface S0,0. In what follows these sets will be denoted Su,v.

Suppose one is given a double null foliation of Duf ,vf
⊂ M and let p ∈ Duf ,vf

. One can
assign double null canonical coordinates to p as follows:

(i) On S0,0 let θA be local coordinates for some patch U ⊂ S0,0.

(ii) Use v on C0 as a parameter so that on C0 one can take the coordinate system (v, θA) by
parallelly propagating the coordinates θA, i.e., take L′(θA) = 0 on C0.

(iii) Suppose p ∈ Cv0 where Cv0 is the null hypersurface of ingoing null geodesics emanating
from S0,v0 in C0. Parallel propagate θA along the null geodesic in Cv0 that intersects p, i.e.
impose L′(θA) = 0 on Cv0 . Note that doing this for all v0 imposes L′(θA) = 0 everywhere.

(iv) Suppose additionally that p ∈ Cu0 where Cu0 is the null hypersurface of out null geodesics
emanating from Su0,0 in C0. Therefore, one assigns the coordinates (u0, v0, θ

A) to p.

The following figure illustrates this construction:

Cu=0

p

Cv=0

Cu0 Cv0

S0,0

Su0,0

Su0,v0

θAL′ L′

Fig. 2.2 Illustration of the double null foliation and canonical coordinates.

In canonical coordinates one has

e3 = 1
Ω∂u, e4 = 1

Ω
(
∂v + bAeA

)
, (2.1.6)

for some bA such that bA|Cu=0 = 0 for all A = 1, ..., n− 2 and where eA
.= ∂

∂θA ∈ X(Su,v) for all
A = 1, ..., n− 2 and u, v. The metric in canonical coordinates for the double null foliation is then
in form (2.1.1), where /g is the induced metric on Su,v = Cu ∩ Cv.

The inverse metric in the normalised null frame is

g−1 = −1
2(e3 ⊗ e4 + e4 ⊗ e3) + /g

AB∂θA ⊗ ∂θB . (2.1.7)
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The metric in the dual normalised null frame is given by

g = −2
(
f3 ⊗ f4 + f4 ⊗ f3

)
+ /gAB

fA ⊗ fB, (2.1.8)

where (f3, f4, fA) is the dual basis to (e3, e4, ∂A) which can be explicitly computed to be

f3 = Ωdu, f4 = Ωdv, fA = dθA − bAdv. (2.1.9)

Associated to the embedded submanifolds Su,v are the notion of Su,v-tensors. These are defined
as follows:

Definition 2.1.1 (Su,v-tensors). A vector field X ∈ X(M) is an Su,v-vector field if

g(X, e4) = 0 = g(X, e3). (2.1.10)

Further, a X ∈ X(Su,v) can be viewed as a vector field in X(M) satisfying (2.1.10). A one-form
ω ∈ Ω1(M) is an Su,v-one-form if

ω(e3) = 0 = ω(e4). (2.1.11)

Similarly, one can view ω ∈ Ω1(Su,v) as ω ∈ Ω1(M) satisfying (2.1.11). One extends these
definitions naturally to arbitrary tensors.

Remark 2.1.2. Note that in double null coordinates this definition means ωu = 0 and ωv =
−bAωA.

Remark 2.1.3. Note that /g induces a musical isomorphism between TSu,v and T ⋆Su,v.

2.2 Null Decomposition of Ricci Coefficients

It is particularly convenient to decompose the Ricci coefficients in the normalised null frame. One
makes the following definition:

Definition 2.2.1 (Connection coefficients). Define the following Su,v-tensor fields:

χAB
.= g(∇Ae4, eB),

ηA
.= 1

2g(∇3e4, eA),

ω̂
.= −1

2g(∇4e4, e3),

χ
AB

.= g(∇Ae3, eB),

η
A

.= 1
2g(∇4e3, eA),

ω̂
.= −1

2g(∇3e3, e4)

(2.2.1)

and

ζA
.= 1

2g(∇Ae4, e3). (2.2.2)
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Extend these to tensor fields on M by zero on e3 and e4. Additionally, it is useful to define

ω
.= Ωω̂, ω

.= Ωω̂. (2.2.3)

Remark 2.2.1. Note that since e3 = ΩL′ and e4 = ΩL′ and (L′, L′) satisfy the (affinely
parameterised) geodesic equation that

ω̂ = e4(Ω)
Ω , ω̂ = e3(Ω)

Ω . (2.2.4)

Since χ and χ are defined with respect to the double null canonical coordinates one has the
following proposition:

Proposition 2.2.2. The Su,v-tensors χ and χ are symmetric.

Proof. Let X,Y ∈ X(Su,v). Then, using the properties of the Levi-Civita connection, one has

χ(X,Y ) = χ(Y,X) − g(e4, [X,Y ]) (2.2.5)

and similarly for χ. Noting that X,Y ∈ X(Su,v) can be decomposed as X = XA∂A and
Y = Y A∂A gives that [X,Y ] = [X,Y ]A∂A and therefore g(e3, [X,Y ]) = 0 = g(e4, [X,Y ]).

The following relations are particularly useful for computations.

Proposition 2.2.3. The connection coefficients of definition 2.2.1 satisfy the following relations:

∇AeB = /∇AeB + 1
2χABe3 + 1

2χAB
e4 (2.2.6)

and
∇3eA = /∇3eA + ηAe3,

∇Ae3 = χB
A
eB + ζAe3,

∇3e4 = 2ηAeA − ω̂e4,

∇3e3 = ω̂e3,

∇4eA = /∇4eA + η
A
e4,

∇Ae4 = χB
AeB − ζAe4,

∇4e3 = 2ηAeA − ω̂e3,

∇4e4 = ω̂e4,

(2.2.7)

where χB
A = χAC/g

CB one makes the following definitions:

/∇3X = ∇3X + 1
2g(∇3X, e3)e4 + 1

2g(∇3X, e4)e3, (2.2.8)

/∇4X = ∇4X + 1
2g(∇4X, e3)e4 + 1

2g(∇4X, e4)e3, (2.2.9)

/∇XY = ∇XY + 1
2g(∇XY, e3)e4 + 1

2g(∇XY, e4)e3, (2.2.10)

for all X,Y Su,v-vector fields.

Proof. This follows from a direct computation and using definition 2.2.1.
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Remark 2.2.4. Let /d be the exterior derivative on Su,v. One has the following relations for the
torsion and the null-lapse

ζ = 1
2(η − η), /d log(Ω) = 1

2(η + η). (2.2.11)

Now one can show

[Ωe4,Ωe3] = −4Ω2ζ♯ =⇒ ∂ub
A = 4Ω2ζA. (2.2.12)

It is conventional to decompose χ and χ in the following manner:

Definition 2.2.2 (Shear,Expansion). The traceless part of χ is called the shear χ̂ and the trace
of χ is called the expansion. Therefore,

χ = χ̂+
Tr/gχ

n− 2/g. (2.2.13)

2.3 Null Decomposition of the Weyl Tensor

One can also decompose the Riemann tensor

Rαβγδ
.= g(eα, R(eγ , eδ)eβ), (2.3.1)

with respect to the normalised null frame as follows.

Definition 2.3.1 (Curvature Components). One defines the following Su,v tensors:

νABC
.= RABC4,

τAB
.= 1

2
(
R3A4B +R3B4A

)
,

αAB
.= RA4B4,

βA
.= 1

2RA434,

νABC
.= RABC3,

ςAB
.= 1

2
(
R3A4B −R3B4A

)
,

αAB
.= RA3B3,

β
A

.= 1
2RA334

(2.3.2)

and

ρ
.= 1

4R3434. (2.3.3)

For n = 4, one defines the scalar σ as

σ
.= 1

4(⋆R)3434 (2.3.4)

where (⋆R)abcd
.= 1

2εefabR
ef

cd and ε is the volume form for (M, g).
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Remark 2.3.1. For n = 4, note that ε(e4, e3, e2, e1) = 2
√

|det(/g)|, hence εAB34 = 2/εAB where
/ε is the volume form of (Su,v, /g). So,

(⋆R)3434 = 1
2εAB34R

AB
34 = /εABRAB34. (2.3.5)

Therefore, σ = 1
4/ε

ABRAB34.

Proposition 2.3.2. The curvature components of definition 2.3.1 satisfy

Tr/gα = Ric44,

βA = νAB
B + RicA4,

Tr/gτ = −2ρ+ Ric34,

ν[ABC] = 0,

νA[BC] = 1
2νCBA,

Tr/gα = Ric33

β
A

= −νAB
B − RicA3,

τAB = /g
CDRCADB − RicAB,

ν(AB)C = 0,

νABC = 4
3νA(BC) + 2

3νC(BA).

(2.3.6)

and identical for ν.

Proof. Observe that Ric(e4, e4) = R3
434 +RA

4A4 = g34R4434 + Tr/gα = Tr/gα. The relation for
Tr/gα is completely analogous.

Now,

(Ric(g))A4 = −1
2R4A34 + /g

BCRBAC4, (2.3.7)

which gives the relation between ν and β. Additionally,

RicAB = −1
2R4A3B − 1

2R3A4B + /g
CDRCADB, (2.3.8)

which gives the relation for τ . Further,

(Ric(g))34 = −1
2R4334 + /g

ABRA3B4 (2.3.9)

which gives the relation between τ and ρ.

For the ν identities one notes

R(AB)C4 = 0 =⇒ ν(AB)C = 0 (2.3.10)

and

R[ABC]4 = 0 =⇒ ν[ABC] = 0, (2.3.11)
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which can be written as

νABC + νBCA + νCAB = 0. (2.3.12)

Combining with equation (2.3.10) gives

νA[BC] = 1
2νCBA. (2.3.13)

One can now derive the last identity from this

νABC = νA(BC) + νA[BC] = νA(BC) + 1
2νCBA = νA(BC) + 1

2νC(BA) + 1
2νC[BA] (2.3.14)

= νA(BC) + 1
2νC(BA) + 1

4νABC , (2.3.15)

which gives the last identity for ν.

The following proposition details the reduction to 4D:

Proposition 2.3.3. Suppose (M, g) is a 4D spacetime satisfying Ric(g) = 0 then the following
relations are satisfied

νBCA = /gAB
β

C
− /gAC

β
B
,

νBCA = /gAC
βB − /gAB

βC ,

ς = σ/ε,

RABCD = ρ(/gAD/gBC
− /gAC/gBD

),
(2.3.16)

and τ̂ = 0.

Proof. One starts by noting that

0 = (Ric(g))4A = Rµ
4µA = βA +RC

4CA. (2.3.17)

Further, by symmetry

RC4AB = ξC/εAB. (2.3.18)

So,

−βB = /g
CARC4AB = −(⋆ξ)B =⇒ ξ = −(⋆β). (2.3.19)

If one then notes that

/εAB/εCD = /gAC/gBD
− /gBC/gAD

, (2.3.20)

then one has the relations in the first column of the statement.
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To show the relations in the second column, start by noting that

(Ric(g))AB = 0 =⇒ R3
A3B +R4

A4B + /g
CDRCADB = 0. (2.3.21)

Now, by symmetry, RCADB = f/εCA/εDB, so /gCDRCADB = f/gAB
. Therefore,

−1
2R4A3B − 1

2R3A4B + f/gAB
= 0. (2.3.22)

Tracing gives

2f = Ric34 + 1
2R4334 = −2ρ. (2.3.23)

Hence, f = −ρ and τ̂ = 0. Using the first Bianchi identity

RA3B4 −RB3A4 = RAB34 = h/εAB. (2.3.24)

One has /εAB/ε
AB = 2 so h = 2σ and ς = σ/ε.

2.4 Algebra Calculus of Su,v-Tensor Fields

In this section some useful operations on Su,v tensors are defined.

Definition 2.4.1 (Operations). Let Θ,Φ be (0, 2) Su,v-tensor fields and ξi be Su,v one-forms

Φ̂AB
.= 1

2
(
ΦAB + ΦBA − 2

n− 2(Tr/gΦ)/gAB

)
, (2.4.1)

(Θ × Φ)AB
.= /g

CDΘACΦBD, (2.4.2)

(Θ ∧ Φ) .=


1
2(Θ × Φ − Φ × Θ), n > 4
1
2/ε

AB(Θ × Φ − Φ × Θ)AB, n = 4
(2.4.3)

⟨Θ,Φ⟩ .= ΘABΦAB, (2.4.4)

ξ1⊗̂ξ2
.= ξ1 ⊗ ξ2 + ξ2 ⊗ ξ1 − 2

n− 2⟨ξ1, ξ2⟩/g. (2.4.5)

Additionally, in n = 4 one defines the left and right Hodge dual as

(⋆ξ)A
.= /εABξ

B,

(⋆Θ)AB
.= /εACΘC

B,

(ξ⋆)A
.= ξB/εBA,

(Θ⋆)AB
.= ΘA

C/εCB.
(2.4.6)
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Definition 2.4.2 (Projected Covariant and Lie Derivatives). The projected covariant derivative
/∇3, /∇4 and /∇A on a rank-(0, p) Su,v-tensor field T is defined as

( /∇3T )(X1, ..., Xp) .= (∇3T )(X1, ..., Xp), (2.4.7)
( /∇4T )(X1, ..., Xp) .= (∇4T )(X1, ..., Xp), (2.4.8)
( /∇AT )(X1, ..., Xp) .= (∇AT )(X1, ..., Xp), (2.4.9)

for all Xi ∈ X(Su,v). Further one defines the projected Lie derivatives as

(/L4T )(X1, ..., Xp) .= (L4T )(X1, ..., Xp), (2.4.10)
(/L3T )(X1, ..., Xp) .= (L3T )(X1, ..., Xp), (2.4.11)

for all Xi ∈ X(Su,v).

One defines (p− 1)-covariant tensor field /divT as

( /divT )A1...Ap−1
.= /g

BC( /∇BT )CA1...Ap−1 . (2.4.12)

For n = 4, one additionally defines

( /curlT )A1...Ap−1
.= /εBC( /∇BT )CA1...Ap−1 , (2.4.13)

where /ε is the induced volume form on Su,v.

Remark 2.4.1. By the Leibniz rule for ∇ one has the Leibniz rule for /∇, i.e.,

( /∇αT )(X1, ..., Xp) = eα(T (X1, ..., Xp)) − T ( /∇αX1, ..., Xp) − ...− T (X1, ..., /∇αXp) (2.4.14)

for α = 3, 4, A and for all Xi ∈ X(Su,v).

Definition 2.4.3 (Symmetrised Derivative). One defines the operator /∇⊗̂ on Su,v-one-forms as

( /∇⊗̂ξ)AB = ( /∇Aξ)B + ( /∇Bξ)A − 2
n− 2( /divξ)/gAB

. (2.4.15)

Definition 2.4.4 (Formal Adjoint Operators). Let ξ be an arbitrary Su,v one-form and Θ an
arbitrary symmetric traceless 2-tensor on Su,v. Define /D2 : symtr(T ⋆Su,v ⊗ T ⋆Su,v) → Ω1(Su,v)
by

/D2Θ .= /divΘ (2.4.16)
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and /D⋆
2 : Ω1(Su,v) → symtr(T ⋆Su,v ⊗ T ⋆Su,v) by

/D⋆
2ξ

.= −1
2
/∇⊗̂ξ. (2.4.17)

For n = 4, define the following operators /D1 : Ω1(Su,v) → C∞(M) × C∞(M) by

ξ 7→ ( /div(ξ), /curl(ξ)) (2.4.18)

and /D⋆
1 : C∞(M) × C∞(M) → Ω1(Su,v) by

[ /D⋆
1(f1, f2)]A = − /∇Af1 + /εAB

/∇B
f2 ∀f1, f2 ∈ C∞(M). (2.4.19)

Proposition 2.4.2. The operators /D⋆
1 and /D⋆

2 are the formal L2 adjoints of /D1 and /D2 respectively.

This section concludes with a collection of useful results for n = 4.

Lemma 2.4.3 (Useful Identities in 4D). Let n = 4, X ∈ X(Su,v), Φ,Θ ∈ symtr(T ⋆Su,v ⊗T ⋆Su,v)
and ξ ∈ Ω1(Su,v). Then

(Φ × Θ)(AB) = 1
2⟨Φ,Θ⟩/gAB

(2.4.20)

and

⋆Θ = (̂⋆Θ), ⋆Θ = −(Θ⋆). (2.4.21)

Additionally, one has the following identity relating /div and /curl,

/curlΘ = ⋆( /divΘ) (2.4.22)

and the following identities for the projected Lie derivative

(/LXξ)A = ( /∇Xξ)A − (/D⋆
2ξ)ABξ

B + 1
2( /divX)ξA + 1

2( /curlX)(⋆ξ)A, (2.4.23)

(/LXΘ) = ( /∇XΘ) − ⟨/D⋆
2X,Θ⟩/g + ( /divX)Θ + ( /curlX)(⋆Θ). (2.4.24)

Further, the following integrated identities hold:∫
Su,v

| /∇Θ|2/ε =
∫

Su,v

(
2| /divΘ|2 − Scal(/g)|Θ|2

)
/ε, (2.4.25)∫

Su,v

| /∇ξ|2/ε =
∫

Su,v

(
| /curlξ|2 + | /divξ|2 − 1

2Scal(/g)|ξ|2
)
/ε. (2.4.26)



68 The Einstein Equation in Double Null Gauge

Proof. The first two results (equations (2.4.20) and (2.4.21)) in this lemma can be proved by
computing explicitly the components of each object.

The identity in equation (2.4.22) relating /div and /curl is proved by noting by metric compati-
bility

⋆( /divΘ) = − /div(Θ⋆) (2.4.27)

and hence, by the second result in equation (2.4.21),

⋆( /divΘ) = /div(⋆Θ) = /curlΘ. (2.4.28)

The results (equations (2.4.23) and (2.4.24)) on the Lie derivative in the lemma follow from
writing

(/LXξ)A = ( /∇Xξ)A + ξB( /∇AX)B (2.4.29)

and similarly for Θ. Writing

( /∇AX)B = −(/D⋆
2X)AB + 1

2
/divX/g + 1

2
/curlX/ε, (2.4.30)

then gives the result (in the Θ case one uses (2.4.20) to conclude).

Turning to the integrated identities in equations (2.4.25) and (2.4.26). Start by noting a
standard identity for the Levi-Civita symbol /ε

/εAB/εCD = /g
AC
/g

BD − /g
AD
/g

BC . (2.4.31)

Further, for a 2D surface

/R
A

BCD = 1
2Scal(/g)(/δA

C/gBD
− /δ

A
D/gBC

). (2.4.32)

This allows one to establish, by considering | /curlΘ|2 and using the Ricci identity, that

| /∇θ|2 = | /divθ|2 + | /curlθ|2 − Scal(/g)|θ|2 + /div(X), (2.4.33)

where XA = θBC( /∇Bθ)AC − θAC( /divθ)C . The result then follows from noting that

| /curlΘ|2 = | ⋆ /divΘ|2 = |divΘ|2. (2.4.34)
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Turning to the result for the 1-form, one compute directly using the Ricci identity that

| /∇ξ|2 = | /curlξ|2 + | /divξ|2 − 1
2Scal(/g)|ξ|2 + /div(Y ), (2.4.35)

with Y = /∇ξξ − ( /divξ)ξ.

2.5 Computing in Double Null Coordinates

It is often the case that one wants to compute explicitly objects such as /∇3X for X an Su,v-vector
field or ( /∇AT )B1...Bs . This section elaborates on how to compute such things.

Proposition 2.5.1. In double null coordinates (u, v, θA) one has

/∇3eB = χB
A
eB, (2.5.1)

/∇4eB = (χB
A − 1

Ω∂Ab
B)eB, (2.5.2)

/∇AeB = /ΓC
ABeC . (2.5.3)

Proof. The first two follow from the torsion-free condition on ∇ and proposition 2.2.3.

The last result follows from writing,

∇AeB = Γu
AB∂u + Γv

AB∂v + ΓC
AB∂C (2.5.4)

and noting that

ΓC
AB = /ΓC

AB + bCΓv
AB. (2.5.5)

Projecting onto the horizontal subspace gives the result.

Proposition 2.5.2 (Projected Derivatives of p-covariant S-Tensor Fields). Let T be a p-covariant
Su,v-tensor field. Then, in double null coordinates (u, v, θA),

( /∇3T )A1...Ap = 1
Ω

(
∂u(TA1...Ap) − p

n− 2(ΩTr/gχ)TA1...Ap − Ω
p∑

i=1
χ̂

Ai

BTA1...ÂiB...Ap

)
, (2.5.6)

( /∇4T )A1...Ap = 1
Ω

(
(∂v + bA∂A)(TA1...Ap) − p

n− 2(ΩTr/gχ)TA1...Ap (2.5.7)

−
p∑

i=1

(
Ωχ̂Ai

B − (∂Aib)B
)
TA1...ÂiB...Ap

)
,

( /∇AT )B1...Bp = ∂A(TB1...Bp) −
p∑

i=1
/ΓC

ABi
TB1...B̂iC...Bp

. (2.5.8)
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where Âi denotes removing the ith index and replacing it by B.

Proof. By the remark 2.4.1 following definition 2.4.2 above one has

( /∇αT )B1...Bp = eα(TB1...Bp) − T ( /∇αeB1 , ..., eBp) − ...− T (eB1 , ..., /∇αeBp), (2.5.9)

for α = 3, 4, A. Using proposition 2.5.1, one gets the result.

Remark 2.5.3. This shows that induced metric on Su,v satisfies

( /∇3/g)AB = 0 = ( /∇4/g)AB. (2.5.10)

2.6 Null Structure Equations

In this section a series of results are stated about the geometry of the double null foliation.
Note that the vacuum Einstein equations are not assumed. For completeness, a proof of these
statements can be found in appendix B.1.

Proposition 2.6.1 (First Variation Formulas). The metric coefficients Ω, b and /g satisfy

/L4/g = 2χ,

e3(Ω) = ω,

∂ub
A = 2Ω2(η − η)A,

/L3/g = 2χ,

e4(Ω) = ω,

/∇Ω = Ω
2 (η + η).

(2.6.1)

Proposition 2.6.2 (Raychaudhuri/Shear Equations). The expansions Tr/gχ, Tr/gχ and the shears
χ̂, χ̂ satisfy

/∇4(ΩTr/gχ) = −ΩRic44 − Ω|χ̂|2 − 1
(n− 2)Ω(ΩTr/gχ)2 + 2ωTr/gχ, (2.6.2)

/∇3(ΩTr/gχ) = −ΩRic33 − Ω|χ̂|2 − 1
(n− 2)Ω(ΩTr/gχ)2 + 2ωTr/gχ, (2.6.3)

/∇4χ̂ = ω̂χ̂− 2
n− 2(Tr/gχ)χ̂− ̂̂χ× χ̂− α̂, (2.6.4)

/∇3χ̂ = ω̂χ̂− 2
n− 2(Tr/gχ)χ̂− ̂̂χ× χ̂− α̂. (2.6.5)

where ̂̂χ× χ̂ = 0 if n = 4. If (M, g) satisfies the vacuum Einstein equation (I.2), α̂ = α

and α̂ = α.
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Proposition 2.6.3 (Torsion Propagation Equations). The torsions η and η satisfy

( /∇4η)A = −βA − χ̂AB(η − η)B − 1
n− 2Tr/gχ(η − η)A, (2.6.6)

( /∇3η)A = β
A

+ χ̂
AB

(η − η)B + 1
n− 2Tr/gχ(η − η)A. (2.6.7)

Proposition 2.6.4 (Torsion Constraints). The torsions η and η satisfy

/dη = 1
2χ ∧ χ− ς, (2.6.8)

/dη = −1
2χ ∧ χ+ ς. (2.6.9)

For n = 4, the torsions η and η satisfy

/curlη = 1
2χ ∧ χ− σ, (2.6.10)

/curlη = −1
2χ ∧ χ+ σ. (2.6.11)

Proposition 2.6.5 (Propagation Equations for ω̂, ω̂). The functions ω̂, ω̂ satisfy

/∇4ω = Ω
(
2⟨η, η⟩ − |η|2 − ρ

)
, (2.6.12)

/∇3ω = Ω
(
2⟨η, η⟩ − |η|2 − ρ

)
. (2.6.13)

Proposition 2.6.6 (Transversal Propagation Equations for χ and χ). The expansions Tr/gχ, Tr/gχ

and the shears χ̂, χ̂ satisfy

/∇4(ΩTr/gχ) = 2Ω /divη + 2Ω|η|2 − Ω⟨χ̂, χ̂⟩ −
(ΩTr/gχ)(ΩTr/gχ)

(n− 2)Ω + 2Ωρ− ΩRic34, (2.6.14)

/∇3(ΩTr/gχ) = 2Ω /divη + 2Ω|η|2 − Ω⟨χ̂, χ̂⟩ −
(ΩTr/gχ)(ΩTr/gχ)

(n− 2)Ω + 2Ωρ− ΩRic34, (2.6.15)

/∇4χ̂ = η⊗̂η − τ̂ − 2/D⋆
2η − 1

n− 2(Tr/gχ)χ̂− 1
n− 2(Tr/gχ)χ̂− ω̂χ̂− ̂̂χ× χ̂, (2.6.16)

/∇3χ̂ = η⊗̂η − τ̂ − 2/D⋆
2η − 1

n− 2(Tr/gχ)χ̂− 1
n− 2(Tr/gχ)χ̂− ω̂χ̂− ̂̂χ× χ̂. (2.6.17)

where ̂̂χ× χ̂ = 0 if n = 4. Additionally, if n = 4 and (M, g) satisfies the vacuum Einstein
equation (I.2), τ̂ = 0.
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Proposition 2.6.7 (Gauss Constraint Equation(s)). Let /Scal, /Ric and /R be the Ricci scalar,
Ricci curvature and Riemann tensor associated to Su,v. Then,

/RABCD = RABCD + 1
2

[
χADχBC

+ χBCχAD
− χACχBD

− χ
AC
χBD

]
, (2.6.18)

/̂RicAB = τ̂AB + R̂icAB + (̂̂χ× χ̂)AB − n− 4
2(n− 2)

(
Tr/gχχ̂AB

+ Tr/gχχ̂AB

)
, (2.6.19)

/Scal = Scal + 2Ric34 − 2ρ+ 3 − n

n− 2Tr/gχTr/gχ+ ⟨χ̂, χ̂⟩. (2.6.20)

For n = 4, let K be the Gauss curvature of Su,v. Then,

/RABCD = K(/gAC/gBD
− /gBC/gAD

) (2.6.21)

and

K = Scal
2 + Ric34 − ρ− 1

4Tr/gχTr/gχ+ 1
2⟨χ̂, χ̂⟩. (2.6.22)

Proposition 2.6.8 (Codazzi Constraint Equations). The shears χ̂, χ̂ satisfy

/∇[Aχ̂B]C = 1
n− 2/gC[A

/∇B](ΩTr/gχ) + 1
2νABC + χ̂C[AζB] −

Tr/gχ

n− 2/gC[AηB], (2.6.23)

/∇[Aχ̂B]C = 1
n− 2/gC[A

/∇B](ΩTr/gχ) + 1
2νABC − χ̂

C[AζB] −
Tr/gχ

n− 2/gC[AηB], (2.6.24)

( /divχ̂)A = n− 3
(n− 2)Ω

/∇A(ΩTr/gχ) − 1
2 χ̂AB(η − η)B − n− 3

n− 2Tr/gχηA
− βA + Ric4A, (2.6.25)

( /divχ̂)A = n− 3
(n− 2)Ω

/∇A(ΩTr/gχ) + 1
2 χ̂AB

(η − η)B − n− 3
n− 2Tr/gχηA + β

A
+ Ric3A. (2.6.26)

If n = 4, then

/∇[Aχ̂B]C = 1
2(⋆ /divχ̂)C/εAB, (2.6.27)

/∇[Aχ̂B]C = 1
2(⋆ /divχ̂)C/εAB. (2.6.28)

Remark 2.6.9. If (M, g) satisfies the vacuum Einstein equation (I.2), i.e., one sets Ric(g) =
0 = Scal, then one has encoded the vacuum Einstein equation in the null structure equations of
propositions 2.6.1-2.6.8.

2.7 The Bianchi Identities in Double Null Gauge

In this subsection a collection of results are stated for the Weyl tensor. These are derived in
appendix B.2. Note that the vacuum Einstein equations are assumed.
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Proposition 2.7.1. Suppose Ric(g) = 0. The null Weyl curvature components of definition 2.3.1
satisfy the following alterations of the usual n = 4 (null-decomposed) Bianchi identities:

/∇4ρ = ⟨2η + ζ, β⟩ −
(n− 1
n− 2

)
ρTr/gχ+ /divβ + 1

2⟨τ̂, χ̂⟩ − 1
2⟨α, χ̂⟩, (2.7.1)

/∇3ρ = −⟨2η − ζ, β⟩ −
(n− 1
n− 2

)
ρTr/gχ− /divβ + 1

2⟨τ̂, χ̂⟩ − 1
2⟨α, χ̂⟩, (2.7.2)

( /∇4β)A = (η + 2ζ)BαAB + ω̂βA + ( /divα)A − n

n− 2(Tr/gχ)βA − χ̂C
AβC + χ̂CDνDAC , (2.7.3)

( /∇3β)A = (2ζ − η)BαAB + ω̂β
A

− ( /divα)A − χ̂B
A
β

B
− n

n− 2Tr/gχβA
− χ̂DBνDAB, (2.7.4)

( /∇4β)A = 3ςABη
B + τ̂ABη

B − 2(n− 1)
n− 2 ρη

A
− ω̂β

A
+ 2χ̂

AB
βB − n− 4

n− 2Tr/gχβA (2.7.5)

− 2(n− 3)
n− 2

/∇Aρ− /div(τ̂ + ς)A − χ̂B
AβB

+ χ̂BDνABD − 2
n− 2Tr/gχβA

,

( /∇3β)A = 3ςABη
B − τ̂ABη

B + 2(n− 1)
n− 2 ρηA − ω̂βA + 2χ̂ABβ

B − n− 4
n− 2Tr/gχβA

(2.7.6)

+ 2(n− 3)
n− 2

/∇Aρ+ /div(τ̂ − ς)A − χ̂B
A
βB − χ̂BDνABD − 2

n− 2Tr/gχβA,

( /∇4ς)AB = ηCνABC + (β ∧ (η + ζ))AB − (/dβ)AB + (τ̂ ∧ χ̂)AB − (α ∧ χ̂)AB (2.7.7)

− 3(ς ∧ χ̂)AB − 3
n− 2(Tr/gχ)ςAB,

( /∇3ς)AB = −ηCνABC + (β ∧ (η − ζ))AB − (/dβ)AB − (τ̂ ∧ χ̂)AB + (α ∧ χ̂)AB (2.7.8)

− 3(ς ∧ χ̂)AB − 3
n− 2(Tr/gχ)ςAB,

( /∇3α)AB =
((

2η + 1
2ζ

)
⊗̂β

)
AB

− 2ω̂αAB − (/D⋆
2β)AB + ̂(τ̂ × χ̂)AB − 1

2(Tr/gχ)τ̂AB (2.7.9)

− ρ
n

(n− 2) χ̂AB − 1
2(Tr/gχ)αAB + χ̂CERCABE − 3 ̂(ς × χ̂)AB − (̂ /divν)AB

− (ζ + 4η)C
(
νC(AB) − 1

n− 2βC/gAB

)
+ 1
n− 2⟨τ̂, χ̂⟩/gAB

,

( /∇4α)AB =
((1

2ζ − 2η
)
⊗̂β

)
AB

− 2ω̂αAB + (/D⋆
2β)AB + ̂(τ̂ × χ̂)

AB
− 1

2(Tr/gχ)τ̂AB (2.7.10)

− ρ
n

(n− 2) χ̂AB
− 1

2(Tr/gχ)αAB + χ̂CERCABE + 3 ̂(ς × χ̂)
AB

− (̂ /divν)AB

+ (ζ − 4η)C
(
νC(AB) + 1

n− 2βC/gAB

)
+ 1
n− 2⟨τ̂, χ̂⟩/gAB

,
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and the additional (null-decomposed) Bianchi identities for n > 4 (which are automatically
satisfied in n = 4 due to the above)

( /∇4τ̂)AB = −(η⊗̂β)AB + (/D⋆
2β)AB + ̂(α× χ̂)

AB
− (n− 4)

2(n− 2)Tr/gχαAB + χ̂ABρ (2.7.11)

− 1
2(β⊗̂ζ)AB − (̂ /divν)AB − n

2(n− 2)(Tr/gχ)τ̂AB + 1
n− 2⟨τ̂, χ̂⟩/gAB

− (ζ + 2η)C
(
νC(AB) − 1

n− 2βC/gAB

)
+ χ̂CERCABE ,

( /∇3τ̂)AB = (η⊗̂β)AB − (/D⋆
2β)AB + ̂(α× χ̂)AB − (n− 4)

2(n− 2)Tr/gχαAB + χ̂
AB
ρ (2.7.12)

− 1
2(β⊗̂ζ)AB − (̂ /divν)AB − n

2(n− 2)(Tr/gχ)τ̂AB + 1
n− 2⟨τ̂, χ̂⟩/gAB

+ (ζ − 2η)C
(
νC(AB) + 1

n− 2βC/gAB

)
+ χ̂CERCABE ,

( /∇3ν)ABC = 2
(
/∇[BαA]C + χ

C[BβA] − χD
[Bν|CD|A] − χD

[BνA]DC + η[BαA]C

)
(2.7.13)

+ ω̂νABC ,

( /∇4ν)ABC = 2
(
/∇[BαA]C − χC[BβA] − χD

[Bν|CD|A] − χD
[BνA]DC + η[BαA]C

)
(2.7.14)

+ ω̂νABC ,

( /∇4ν)ABC = 2η
C
ςBA + 2(τ + ς)C[AηB] + 2ηDRABCD − ω̂νABC − 2χ

C[AβB] (2.7.15)

− 2( /∇[A(τ − ς))B]C + 2χD
[AνB]DC + 2νCD[Bχ

D
A],

( /∇3ν)ABC = 2ηCςAB + 2(τ − ς)C[AηB] + 2ηDRABCD − ω̂νABC + 2χC[AβB] (2.7.16)

− 2( /∇[A(ς + τ))B]C + 2χD
[AνB]DC + 2νCD[Bχ

D
A],

/∇4RABCD = −2(ζ + η)[Cν|AB|D] − 2η[Aν|CD|B] − 2 /∇[Cν|AB|D] + 2χE
[CR|AB|D]E (2.7.17)

− χ
A[CαD]B + χ

B[CαD]A − χA[C(τD]B − ςD]B) + χB[C(τD]A − ςD]A),

/∇3RABCD = 2(ζ − η)[Cν|AB|D] − 2η[Aν|CD|B] − 2 /∇[Cν|AB|D] + 2χE
[CR|AB|D]E (2.7.18)

− χA[CαD]B + χB[CαD]A − χ
A[C(τD]B + ςD]B) + χ

B[C(τD]A + ςD]A).
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Proposition 2.7.2 (Additional Constraint Equations). Suppose Ric(g) = 0. The Su,v-tensors ν
and ν satisfy the constraints

( /divν)[AB] = χC
[A(ς + τ)B]C − 1

2(/dβ)AB − β[AζB] + 1
2(Tr/gχ)ςAB + ζCνC[AB], (2.7.19)

( /divν)[AB] = χC
[A(τ − ς)B]C + 1

2(/dβ)AB − β[AζB] − 1
2(Tr/gχ)ςAB − ζCνC[AB]. (2.7.20)

The Su,v-tensor τ̂ satisfies the constraint

( /divτ̂)A = −n− 4
n− 2

/∇Aρ+ 1
2νABCχ

BC − 1
2νABCχ

BC − 1
2χ

B
AβB

+ 1
2χ

B
A
βB (2.7.21)

− 1
2Tr/gχβA + 1

2Tr/gχβA
.

2.7.1 The Bianchi Identities in Double Null Gauge in 4D

In this subsection a collection of results are stated about the Weyl tensor for n = 4. The proof of
these statements follow from reducing the above equation for general n with proposition 2.3.3
and lemma 2.4.3.

Proposition 2.7.3 (Bianchi Identities). Suppose Ric(g) = 0. Then, for n = 4, the double null
decomposed Weyl tensor satisfies the following relations:

/∇3α = −2ω̂α+ (4η + ζ)⊗̂β − 3ρχ̂− 3σ(⋆χ̂) − 2(/D⋆
2β) − 1

2(Tr/gχ)α, (2.7.22)

/∇4ρ = /divβ − 3
2ρTr/gχ− 1

2⟨α, χ̂⟩ + ⟨2η + ζ, β⟩, (2.7.23)

/∇4σ = − /curlβ − 3
2σTr/g(χ) + 1

2 χ̂ ∧ α+ β ∧ (ζ + 2η), (2.7.24)

/∇4β = /divα− 2(Tr/gχ)β + iη♯+2ζ♯α+ ω̂β, (2.7.25)
/∇3β = 3ρη + 3σ(⋆η) − ω̂β + /D⋆

1(−ρ, σ) + 2iβ♯χ̂− (Tr/gχ)β, (2.7.26)

/∇4α = −2ω̂α− (4η − ζ)⊗̂β − 3ρχ̂+ 3σ(⋆χ̂) + 2( /D⋆
2β) − 1

2(Tr/gχ)α, (2.7.27)

/∇3ρ = − /divβ − 3
2ρTr/gχ− 1

2⟨α, χ̂⟩ − ⟨2η − ζ, β⟩, (2.7.28)

/∇3σ = − /curlβ − 3
2σTr/gχ− 1

2 χ̂ ∧ α+ β ∧ (2η − ζ), (2.7.29)

/∇3β = − /divα− 2(Tr/gχ)β − iη♯−2ζ♯α+ ω̂β, (2.7.30)

/∇4β = −3ρη + 3σ(⋆η) − ω̂β + /D⋆
1(ρ, σ) + 2iβ♯χ̂− (Tr/gχ)β. (2.7.31)

2.8 The Double Null Foliation of the Schwn Exterior

The n-dimensional Schwarzschild–Tangherlini black hole solution (Schwn, gs) has been discussed
in detail in section 1.1.1 in chapter 1. Here it is simply recalled that the metric on the exterior EA
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in traditional Schwarzschild coordinates (t, r, φ1, ..., φn−2) takes the form

gs = −Dn(r)dt⊗ dt+ 1
Dn(r)dr ⊗ dr + r2

/̊γn−2, Dn(r) = 1 − 2M
rn−3 , (2.8.1)

where t ∈ [0,∞), r ∈
(
(2M)

1
n−3 ,∞

)
and /̊γn−2 is the metric on the unit (n− 2)-sphere.

Remarkably, the maximally extended Schwarzschild–Tangherlini spacetime can be globally
covered by a double null coordinate system known as the Kruskal coordinate system (see
the works [103–105]). The distinguished exterior region EA can be covered by a convenient
set of double null coordinates known as the double null Eddington–Finkelstein coordinates
(u, v, φ1, ..., φn−2) which can be introduced as follows. Let u = 1

2(t − r⋆) and v = 1
2(t + r⋆)

where r⋆ : ((2M)
1

n−3 ,∞) → R is defined in the usual way by the ODE

dr⋆

dr
= 1
Dn(r) , (2.8.2)

with the initial condition r⋆((4M)
1

n−3 ) = (4M)
1

n−3 and Dn(r) is given in equation (2.8.1). The
metric in (u, v, φ1, ..., φn−2) coordinates becomes

g = −2Dn(r(u, v))(du⊗ dv + dv ⊗ du) + r(u, v)2
/̊γn−2, (2.8.3)

where /̊γn−2 is the metric on the unit (n− 2)-sphere and (u, v) ∈ R2. So one has

Ω(u, v)2 = Dn(r(u, v)), bA ≡ 0, /g = r(u, v)2
/̊γn−2. (2.8.4)

and coordinate r is now viewed as a function r : Ru × Rv → ((2M)
1

n−3 ,∞) defined implicitly
as a function of (u, v). The exterior is covered by (u, v, φ1, ..., φn−2). In particular, u, v ∈ R so
that EA = Ru × Rv × Sn−2

r(u,v). Strictly speaking the coordinates (u, v, φ1, ..., φn−2) do not cover
the future event horizon H+

A or future null infinity I+
A . However, formally one can parameterise

the future event horizon as (∞, v, φ1, ..., φn−2) and future null infinity as (u,∞, φ1, ..., φn−2).

The normalised null frame is simply

e3 = 1
Ω∂u, e4 = 1

Ω∂v, eA = ∂φA . (2.8.5)

Remark 2.8.1. One should note that the frame (e3, e4, eA) does not extend regularly to the
future event horizon H+. However, one can check that, by transforming to Kruskal coordinates,
the re-scaled frame ( 1

Ωe3,Ωe4, eA) does extend regularly to a non-vanishing null frame on H+.
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One can calculate all Ricci coefficients and curvature components explicitly in terms of r.
The only non-vanishing Ricci coefficients are

(ΩTr/gχ) = −(ΩTr/gχ) = (n− 2)Ω2

r
, ω = −ω = (n− 3)M

rn−2 (2.8.6)

and the only non-vanishing double null curvature component is

ρ = −(n− 2)(n− 3)M
rn−1 . (2.8.7)

One has that the Riemann and Ricci curvature of Sn−2
u,v are

/RABCD = 1
r2 (/gAC/gBD

− /gAD/gBC
), /Ric = (n− 3)

r2 /g (2.8.8)

and scalar curvature of /g is

/Scal = (n− 2)(n− 3)
r2 . (2.8.9)

Finally, one can compute that

RABCD = − 2ρ
(n− 2)(n− 3)(/gAC/gBD

− /gAD/gBC
). (2.8.10)

Recall that in n = 4 one has /Scal = 2K where K is the Gauss curvature of S2
u,v. So, K = 1

r2 .

Further proposition 2.2.3 simplifies to

Proposition 2.8.2. The connection coefficients of definition 2.2.3 for Schwn in double null
Eddington–Finkelstein coordinates satisfy the following relations:

∇AeB = /ΓC
ABeC + 1

2(n− 2)Tr/gχ(e3 − e4)/gAB
(2.8.11)

and
∇3eA = −

Tr/gχ

n− 2eA,

∇Ae3 = −
Tr/gχ

n− 2eA,

∇3e4 = ω̂e4,

∇3e3 = −ω̂e3,

∇4eA =
Tr/gχ

n− 2eA,

∇Ae4 =
Tr/gχ

n− 2eA,

∇4e3 = −ω̂e3,

∇4e4 = ω̂e4.

(2.8.12)

Also, proposition 2.5.2 becomes

Proposition 2.8.3 (Projected Derivatives of p-covariant Sn−2
u,v -Tensor Fields). Let T be a p-

covariant Sn−2
u,v -tensor field. Then in double null Eddington–Finkelstein coordinates on the
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n-dimensional Schwarzschild–Tangherlini exterior one has

( /∇3T )A1...Ap = 1
Ω

(
∂u(TA1...Ap) + p

n− 2(ΩTr/gχ)TA1...Ap

)
, (2.8.13)

( /∇4T )A1...Ap = 1
Ω

(
∂v(TA1...Ap) − p

n− 2(ΩTr/gχ)TA1...Ap

)
, (2.8.14)

( /∇AT )B1...Bp = ∂A(TB1...Bp) −
p∑

i=1
/ΓC

ABi
TB1...B̂iC...Bp

. (2.8.15)

where B̂i denotes removing the ith index and replacing it by C.

Finally this subsection concludes with the following commutation lemma

Lemma 2.8.4 (Commutation Lemma). Let T be a p-covariant Sn−2
u,v -tensor field. Then in double

null Eddington–Finkelstein coordinates on the n-dimensional Schwarzschild–Tangherlini exterior
one has

( /∇3 /∇BT − /∇B /∇3T )A1...Ap =
Tr/gχ

n− 2
/∇BTA1...Ap , (2.8.16)

( /∇4 /∇BT − /∇B /∇4T )A1...Ap = −
Tr/gχ

n− 2
/∇BTA1...Ap , (2.8.17)

( /∇3 /∇4T − /∇4 /∇3T )A1...Ap = ω̂( /∇3T + /∇4T )A1...Ap , (2.8.18)

or equivalently,

[ /∇3, r /∇B]T = 0, [ /∇4, r /∇B]T = 0, [Ω /∇3,Ω /∇4]T = 0. (2.8.19)

2.9 The Kerr Exterior in Double Null Canonical Coordinates

The Schwarzschild–Tangherlini solution sits as a 1-parameter subfamily of a (⌊n−1
2 ⌋+1)-parameter

family of rotating black holes known as the Myers–Perry solutions [41] which was first written
down in 1986. These generalised, to arbitrary dimension, the 4-dimensional Kerr black hole
spacetimes (Kerr4, gK) written down in 1963 by Roy Kerr [106]. So for n = 4, the Schwarzschild
black hole family sits as a 1-parameter subfamily of a 2-parameter family of rotating black holes.
The Kerr family verifies the vacuum Einstein equation (I.2) and also gives rise to the black hole
phenomena (as does the Myers–Perry family). It arises dynamically as the maximal Cauchy
development of suitable initial data (Σ0, hK ,KK). This spacetime is stationary, asymptotically
flat and axisymmetric. The following Penrose diagram is for the submanifold of the spacetime
corresponding to the axis of symmetry (θ = 0 or θ = π) arising from initial data, restricted to the
future of Σ0.
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Fig. 2.3 The Penrose diagram for the submanifold corresponding to the axis of symmetry of the
Kerr spacetime. The notation here is completely analogous to the Schwarzschild case described
in section 1.1.1.

The metric on its exterior EA in traditional Boyer-Lindquist coordinates [107] (t, r, θ, φ) is

gK = −
(
1 − 2Mr

Σ(r, θ)
)
dt⊗ dt+ Σ(r, θ)

∆(r) dr ⊗ dr +R(r, θ)2 sin2 θdφ⊗ dφ (2.9.1)

+ Σ(r, θ)dθ ⊗ dθ − 2Mar sin2 θ

Σ(r, θ) (dt⊗ dφ+ dφ⊗ dt),

where

Σ(r, θ) .= r2 + a2 cos2 θ, R(r, θ)2 .= r2 + a2 + 2Ma2r sin2 θ

Σ(r, θ) (2.9.2)

and

∆(r) .= r2 − 2Mr + a2. (2.9.3)

The coordinate ranges are t ∈ [0,∞), r ∈ (r+
.= M+

√
M2 − a2,∞), θ ∈ (0, π) and φ ∈ [0, 2π).

Even more remarkably (than the Schwarzschild case), one can construct (see [108] or appendix
A of [109] or section 9.1 of [110]) a set of double null coordinates (u, v, ϑ1, ϑ2) for the whole
exterior of the Kerr spacetime Kerr4. The construction goes through defining a tortoise coordinate
r⋆(r, θ) and the coordinate ϑ1(r, θ) such that hypersurfaces given by the level sets of

u
.= 1

2(t− r⋆) v = 1
2(t+ r⋆) (2.9.4)
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are characteristic. The Boyer-Lindquist coordinates (r, θ) are now interpreted as functions of
(u, v, ϑ1). In particular,

r = r(r⋆ = u− v, ϑ1), θ = θ(r⋆ = u− v, ϑ1). (2.9.5)

The coordinate ϑ2 is constructed from φ by defining

ϑ2 .= φ− h(v − u, ϑ1), (2.9.6)

such that h satisfies

∂uh = 2Mar

Σ(r, θ)R(r, θ)2 = −∂vh. (2.9.7)

In other words, h is defined by solving the ODE (for every fixed ϑ1 ∈ (0, π))

dh

dr⋆
(r⋆, ϑ

1) = − 2Mar

Σ(r, θ)R(r, θ)2 , (2.9.8)

with initial data h(r⋆ = 0, ϑ1) = 0.

The Kerr metric in double null form is the following

g = −2Ω2
K(du⊗ dv + dv ⊗ du) + (/gK)AB(dϑA − bA

Kdv) ⊗ (dϑB − bB
Kdv) (2.9.9)

with

Ω2
K = ∆(r)

R(r, θ)2 , b1
K = 0, b2

K = 4Mar

Σ(r, θ)R(r, θ)2 , (2.9.10)

/gK
.=

[L(r, θ)2

R(r, θ)2 +
( ∂h

∂ϑ1

)2
R(r, θ)2 sin2 θ

]
dϑ1 ⊗ dϑ1 +R(r, θ)2 sin2 θdϑ2 ⊗ dϑ2 (2.9.11)

+
( ∂h

∂ϑ1

)
R2 sin2 θ(dϑ1 ⊗ dϑ2 + dϑ2 ⊗ dϑ2),

and

L
.= −aG(r, θ)

√(
sin2 ϑ1 − sin2 θ

)(
(r2 + a2)2 − a2∆(r) sin2 ϑ1)

, (2.9.12)

G(r, θ) .= ∂

∂ϑ1

∣∣∣
(r, θ) fixed

F (ϑ1; r, θ), (2.9.13)

F (ϑ1; r, θ) .=
∫ ∞

r

dr′√
((r′)2 + a2)2 − a2∆(r′) sin2 ϑ1

+
∫ θ

ϑ1

dθ′

a
√

sin2 ϑ1 − sin2 θ′
. (2.9.14)

At this point one can indeed compute (implicitly) the Ricci coefficients and curvature com-
ponents associated to the double null foliation. One finds that none vanish. However, in these



2.9 The Kerr Exterior in Double Null Canonical Coordinates 81

coordinates the stationarity and axisymmetry of the spacetime is encoded now in the fact that
the metric coefficients only depend on r⋆ = u− v and ϑ1, not t = u+ v or ϑ2. Therefore, one
can derive a set of relations between Ricci coefficients and between curvature components due to
these symmetries.

2.9.1 The Algebraically Special Frame

Instead of choosing a double null foliation of the Kerr exterior one could choose the ‘algebraically
special frame’ of Kerr. This frame arises naturally in the Petrov classification of 4-dimensional
black holes which states that there are 6 types of algebraic symmetry associated to Weyl tensor
of a 4-dimensional spacetime [111]. The Kerr spacetime is Petrov type D. This frame can be
defined (up to rescaling) with respect to Boyer–Lindquist coordinates as

e3
.= r2 + a2√

∆(r)Σ(r, θ)
∂t −

√
∆(r)

Σ(r, θ)∂r + a√
∆(r)Σ(r, θ)

∂φ, (2.9.15)

e4
.= r2 + a2√

∆(r)Σ(r, θ)
∂t +

√
∆(r)

Σ(r, θ)∂r + a√
∆(r)Σ(r, θ)

∂φ, (2.9.16)

for the null vectors and

e1
.= 1√

Σ(r, θ)
∂θ, e2

.= a sin θ√
Σ(r, θ)

∂t + 1
sin θ

√
Σ(r, θ)

∂φ, (2.9.17)

for the horizontal subspace. This frame arises by defining coordinates u and v, called the
Eddington–Kerr or simply Kerr coordinates which can be introduced by defining the coordinate
one-forms

du .= dt− r2 + a2

∆(r) dr,

dv .= dt+ r2 + a2

∆(r) dr,

dΞu
.= dφ− a

∆(r)dr,

dΞv
.= dφ+ a

∆(r)dr,
(2.9.18)

It is important to note that a hypersurfaces of constant u or v are spacelike if a ̸= 0 and not
null.a Moreover, one can check that

[e1, e2] = a cos θ
√

∆(r)
Σ(r, θ)

3
2

(e3 + e4) − (r2 + a2) cot θ
Σ(r, θ)

3
2

e2. (2.9.19)

Therefore, the frame is non-integrable and not tangent to the (Boyer–Lindquist) spheres. One
can generalise the definition 2.2.1 to deal with this case.b

Definition 2.9.1 (Connection coefficients II). Suppose that (e3, e4) are a null pair normalised
such that g(e3, e4) = −2 and that (eA)A=1,2 is a basis for the horizontal subspace, span(e3, e4)⊥g .

aOne can make a consistent choice of Ξ to provide a coordinate system (u, v, θ, Ξ); see section 4.6.2 in [112].
bThe formalism described here is a relabelling of the usual Geroch–Held–Penrose formalism [113]; see section 2

of [114].
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Then one can define the following horizontal tensor fields:

χAB
.= g(∇Ae4, eB),

ηA
.= 1

2g(∇3e4, eA),

ξA
.= 1

2g(∇4e4, eA),

ω̂
.= −1

2g(∇4e4, e3),

χ
AB

.= g(∇Ae3, eB),

η
A

.= 1
2g(∇4e3, eA),

ξ
A

.= 1
2g(∇3e3, eA),

ω̂
.= −1

2g(∇3e3, e4)

(2.9.20)

and

ζA
.= 1

2g(∇Ae4, e3). (2.9.21)

If one uses a non-integrable frame in this definition (such as the algebraically special frame
of Kerr) instead of the normalised null frame associated to the double null gauge, one has two
‘extra’ horizontal one-forms (ξ, ξ), which previously vanished, and that χ and χ are no longer
symmetric (in contrast to proposition 2.2.2).

If one now calculates the Ricci coefficients and curvature components of Kerr with respect to
the algebraically special frame using definitions 2.9.1 and 2.3.1 respectively, one finds that the
only non-vanishing Ricci-coefficients are

χ[AB] = χ[AB], Trχ = −Trχ, η, η, ω̂ = −ω̂ (2.9.22)

and the only non-vanishing null curvature components are the scalars ρ and σ.

Remark 2.9.1. The reader should note that in the Schwarzschild case, the algebraically special
frame coincides with the normalised null frame of the double null Eddington–Finkelstein foliation
(if one takes an orthonormal basis on the sphere) as one can see by taking a = 0 in the above
equations.

2.10 Linearisation in Double Null Gauge

To linearise the null structure equations and Bianchi equations of sections 2.6 and 2.7, consider a
one-parameter family of metrics g(ϵ) in double null canonical coordinates of the form

g(ϵ) = −2Ω2(ϵ)(du⊗ dv + dv ⊗ du) + bA
/gAB

(ϵ)(dθB ⊗ dv + dv ⊗ dθB) (2.10.1)
+ bA(ϵ)bB(ϵ)/gAB

(ϵ)dv ⊗ dv + /gAB
(ϵ)dθA ⊗ dθB
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where Ω(0), /g(0) and b(0) are the background values for the spacetime one wants to linearise
around. Therefore, one takes

Ω(ϵ) = Ω(0) + ϵ
(1)
Ω, /g(ϵ) = /g(0) + ϵ/h, b(ϵ) = b(0) + ϵ

(1)
b (2.10.2)

where the quantities with a superscript ‘(1)’ denote linear perturbations. In general, the metric to
linear order becomes

g(ϵ) = g(0) + ϵh+ O(ϵ2),

where h ∈ sym(T ⋆M ⊗ T ⋆M) given by

h
.= −4Ω

(1)
Ω(du⊗ dv + dv ⊗ du) +

(
2bA

(1)
bB
/gAB

+ bAbB/hAB

)
dv ⊗ dv (2.10.3)

− (bA/hAB +
(1)
bA
/gAB

)(dθB ⊗ dv + dv ⊗ dθB) + /hABdθ
A ⊗ dθB.

where one uses the abuse of notation that Ω = Ω(0), b = b(0) and /g = /g(0). This leads to the
following definition of what it means for a linearised metric h to be in double null gauge:

Definition 2.10.1 (Double Null Gauge for h). A solution h ∈ sym(T ⋆M ⊗ T ⋆M) to the
linearised vacuum Einstein equation (I.5) is said to be in double null gauge if there exists a
function

(1)
Ω : M → R, a vector

(1)
bA ∈ X(Su,v) and a symmetric 2-tensor /h ∈ sym(T ⋆Su,v ⊗T ⋆Su,v)

such that

h = −4
(1)
Ω
Ω (f3 ⊗ f4 + f4 ⊗ f3) −

(1)
bA

Ω (f4 ⊗ fA + fA ⊗ f4) + /hABf
A ⊗ fB, (2.10.4)

in the dual basis to (e3, e4, eA) for the background metric g(0).

Remark 2.10.1. The paper [28] uses the notation
(1)

/gAB
for /hAB.

One can work out the linear perturbation to the inverse metric in the following manner. Recall
that

(g−1(ϵ))abgbc(ϵ) = δa
c , (2.10.5)

where, in particular the right-hand side is independent of ϵ. Now, to O(ϵ)

(
gab + ϵ(h−1)ab)(

gbc + ϵhbc

)
= δa

c , =⇒ (h−1)ab = −gacgbdhcd. (2.10.6)

Similarly, the inverse of /h is

(/h−1)AB = −/gAC
/g

BD/hCD. (2.10.7)



84 The Einstein Equation in Double Null Gauge

Recall that the normalised null frame is given by

e3 = 1
Ω(ϵ)∂u, e4 = 1

Ω(ϵ)(∂v + bA(ϵ)eA), eA(ϵ) = ∂θA . (2.10.8)

So, to linear order, the normalised frame is

e3(ϵ) = e3 − ϵ
((1)

Ω
Ω

)
e3 + O(ϵ2), e4(ϵ) = e4 + ϵ

((1)
bA

Ω eA −
((1)

Ω
Ω

)
e4

)
+ O(ϵ2). (2.10.9)

Remark 2.10.2. One should note that the covariant derivative associated to g(0) is not the same
as the covariant derivative associated to g(ϵ), i.e., ∇(ϵ)

a ̸= ∇a.

2.10.1 The Linearised Null Structure Equations Around Schwn

In this section the formal linearisation of the null structure equations in propositions 2.6.1-2.10.17
around the Schwarzschild–Tangherlini is performed. Recall that the non-vanishing background
metric quantities are

Ω2 = Dn(r), /g = r2
/̊γn−2, (2.10.10)

the non-vanishing Ricci coefficients are

(ΩTr/gχ) = (n− 2)Dn(r)
r

= −(ΩTr/gχ), ω = (n− 3)M
rn−2 = −ω, (2.10.11)

and the non-vanishing curvature components are

ρ = −(n− 2)(n− 3)M
rn−1 ,

/Scal(/g) = (n− 2)(n− 3)
r2 ,

/Ric(/g) = (n− 3)
r2 /g,

/RABCD = 1
r2 (/gAC/gBD

− /gAD/gBC
)

(2.10.12)

and

RABCD = − 2ρ
(n− 2)(n− 3)(/gAC/gBD

− /gAD/gBC
). (2.10.13)

In the following, it will be assumed that h in double null gauge satisfies the linearised vacuum
Einstein equation (I.5) on Schwn. Additionally, recall that Ric = 0 for the Schwarzschild–
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Tangherlini metric. Therefore, to formally linearise, one takes

Ω(ϵ) = Ω + ϵ
(1)
Ω,

b(ϵ) = 0 + ϵ
(1)
b,

ω(ϵ) = ω + ϵ
(1)
ω,

(ΩTr/gχ)(ϵ) = (ΩTr/gχ) + ϵ
(1)

(ΩTr/gχ),

η(ϵ) = 0 + ϵ
(1)
η,

χ̂(ϵ) = 0 + ϵ
(1)
χ̂,

τ̂(ϵ) = 0 +
(1)
τ̂,

β(ϵ) = 0 + ϵ
(1)
β,

α(ϵ) = 0 + ϵ
(1)
α,

ν(ϵ) = 0 + (1)
ν,

/Scal(ϵ) = /Scal(/g) + ϵ
(1)

/Scal,

RABCD(ϵ) = RABCD + ϵ
(1)
RABCD,

/g(ϵ) = /g + ϵ/h,

ω(ϵ) = ω + ϵ
(1)
ω,

(ΩTr/gχ)(ϵ) = (ΩTr/gχ) + ϵ
(1)

(ΩTr/gχ),

η(ϵ) = 0 + ϵ
(1)
η,

χ̂(ϵ) = 0 + ϵ
(1)
χ̂,

ρ(ϵ) = ρ+ ϵ
(1)
ρ

ς(ϵ) = 0 + ϵ
(1)
ς

β(ϵ) = 0 + ϵ
(1)
β,

α(ϵ) = 0 + ϵ
(1)
α,

ν(ϵ) = 0 +(1)
ν,

/̂Ric(ϵ) = 0 + ϵ

(1)

/̂Ric,

/RABCD(ϵ) = /RABCD + ϵ
(1)

/RABCD,

(2.10.14)

where linearised quantities are denoted with ‘(1)’.

Remark 2.10.3. If h in double null gauge solves the linearised vacuum Einstein equation (I.5), then
(1)

Ric = 0 and
(1)

Scal = 0 and the linearised null structure equations (and linearised Bianchi equations)
in the following propositions 2.10.7-2.10.20 are satisfied. Conversely, if one has a solution to the
linearised null structure equations and linearised Bianchi equations in propositions 2.10.7-2.10.20
then, in particular, one has a h ∈ sym(T ⋆M ⊗ T ⋆M) in double null gauge. The linearised null
structure equations of propositions 2.10.7-2.10.17 imply that this h solves the linearised vacuum
Einstein equation (I.5). In the rest of this thesis, the terminology that h ∈ sym(T ⋆M ⊗ T ⋆M)
solves the linearised vacuum Einstein equation (I.5) in double null gauge will be used synonymously
with the terminology that h ∈ sym(T ⋆M⊗T ⋆M) satisfies definition 2.10.1 and solves the linearised
null structure equations of propositions 2.10.7-2.10.17 and the linearised Bianchi equations of
proposition 2.10.20.

Remark 2.10.4. Rather than linearising the propositions 2.6.1-2.6.8 directly, there is an alternative
(but equivalent) route to obtain propositions 2.10.7-2.10.17 below from the linearised vacuum
Einstein equation (I.5). First, one should note the perturbations to the normalised double null basis
in equation (2.10.9). Then from directly linearising the connection coefficients via definition 2.2.1
with the basis independent formula for the linearised Christoffel symbols given in proposition 1.2.2
one will arrive at the proposition 2.10.7. Additionally, from substituting h in double null gauge
into the linearised vacuum Einstein equation (I.5) and from directly linearising the curvature
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components via definition 2.3.1 with the basis independent formula for the linearised Riemann
tensor given in proposition 1.2.3, one will arrive at the rest of the linearised null structure equations
in propositions 2.10.8-2.10.17.

Direct linearisation of the null structure equations in propositions 2.6.1-2.10.17 around the
Schwarzschild–Tangherlini is fairly trivial since so many of the background quantities vanish.
However, to be clear the general procedure for derivatives is the following. If one has a p-covariant
tensor T which does not necessarily vanish on the background then to linearise /∇3T one expands
(Ω /∇3T ) using proposition 2.5.2 as

(Ω /∇3T )A1...Ap = ∂u(TA1...Ap) − p

n− 2(ΩTr/gχ)TA1...Ap −
p∑

i=1
Ωχ̂B

Ai
TA1...ÂiB...Ap

(2.10.15)

where all quantities here are associated to g(ϵ) of equation (2.10.1). Since χ̂
AiB

vanishes on the
background the last term picks up no linear contribution from Ω, /g−1 or T . Hence (using the
abuse of notation where T now denotes the background quantity),

(1)

( /∇3T )A1...Ap
= ( /∇3

(1)
T )A1...Ap −

((1)
Ω
Ω

)
/∇3T −

p∑
i=1

(1)
χ̂B

Ai
TA1...ÂiB...Ap

(2.10.16)

− p

(n− 2)Ω
(1)

(ΩTr/gχ)TA1...Ap .

For /∇4 one similarly has

(1)

( /∇4T )A1...Ap
= ( /∇4

(1)
T )A1...Ap −

((1)
Ω
Ω

)
/∇4T −

p∑
i=1

((1)
χ̂B

Ai
− 1

Ω
/∇Ai

(1)
bB

)
TA1...ÂiB...Ap

(2.10.17)

− p

(n− 2)Ω
(1)

(ΩTr/gχ)TA1...Ap

where /∇Ai
is the background covariant derivative associated to /g. Finally, if T vanishes for the

background (which will usually be the case of interest for linearising around Schwn) one simply
has

(1)

( /∇AT )A1...Ap
= ( /∇A

(1)
T )A1...Ap . (2.10.18)

Note that for Schwn one does not have to be very careful with linearising contractions, i.e.,
one usually does not need to account for linear perturbations to the inverse metric, since most
Sn−2

u,v -tensors for the background vanish.

If one assumes h satisfies the linearised vacuum Einstein equation (I.5) this implies
(1)

Ric = 0
(see equation (1.2.6)) and, therefore, combining this fact with proposition 2.3.2 gives the following
linearised identities:
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Proposition 2.10.5. Suppose h is a solution to the linearised vacuum Einstein equation (I.5) in
double null gauge on Schwn. Then one has the following linearised identities:

Tr/g
(1)
α = 0,

(1)
βA = (1)

νAB

B
,

(1)
ν[ABC] = 0,
(1)
νA[BC] = 1

2νCBA,

Tr/g
(1)
α = 0,

(1)
β

A
= −(1)

νAB

B
,

(1)
ν(AB)C = 0,

(1)
νABC = 4

3
(1)
νA(BC) + 2

3
(1)
νC(BA)

(2.10.19)

and identically for (1)
ν.

The following proposition details the reduction to 4D as in proposition 2.3.3:

Proposition 2.10.6. Suppose h is a solution to the linearised vacuum Einstein equation (I.5) in
double null gauge on Schw4. Then the following relations are satisfied by the linear perturbations
of ν, ν, β, β and σ:

(1)
νBCA = /gAB

(1)
β

C
− /gAC

(1)
β

B
,

(1)
νBCA = /gAC

(1)
βB − /gAB

(1)
βC , (2.10.20)

along with
(1)
τ̂ = 0 and (1)

ς = (1)
σ/ε.

The linearisation of propositions 2.6.1-2.6.8 around (Schwn, gs) are now stated below. It
should be stressed that the linearised vacuum Einstein equation (I.5) is assumed.

Proposition 2.10.7 (Linearised First Variation Formulas). The linearised metric coefficients
(1)
Ω,

(1)
b

and /h satisfy:

/∇3(Tr/g/h) = 2
Ω

(1)

(ΩTr/gχ),

/∇3 /̂hAB = 2
(1)
χ̂

AB
,

e3
((1)

Ω
Ω

)
= 1

Ω
(1)
ω,

∂u

(1)
bA = 2Ω2((1)

η −(1)
η)A,

/∇4(Tr/g/h) = 2
Ω

( (1)

(ΩTr/gχ) − /div
(1)
b
)

/∇4 /̂hAB = 2
(1)
χ̂AB + 2

Ω(/D⋆
2
(1)
b)AB,

e4
((1)

Ω
Ω

)
= 1

Ω
(1)
ω,

/∇
((1)

Ω
Ω

)
= 1

2((1)
η +(1)

η).

(2.10.21)
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Proposition 2.10.8 (Linearised Transversal Propagation Equations for Expansions). The linearised

expansions
(1)

(ΩTr/gχ) and
(1)

(ΩTr/gχ) satisfy

/∇4
(1)

(ΩTr/gχ) = 2Ω
[
/div(1)
η +

((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)]
−

Tr/gχ

(n− 2)
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
, (2.10.22)

/∇3
(1)

(ΩTr/gχ) = 2Ω
[
/div(1)
η +

((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)]
−

Tr/gχ

(n− 2)
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
. (2.10.23)

Proposition 2.10.9 (Linearised Raychauduri Equations). The linearised expansions
(1)

(ΩTr/gχ) and
(1)

(ΩTr/gχ) satisfy

/∇4
(1)

(ΩTr/gχ) = −
2Tr/gχ

(n− 2)
(1)

(ΩTr/gχ) + 2(1)
ωTr/gχ+ 2

Ωω
(1)

(ΩTr/gχ), (2.10.24)

/∇3
(1)

(ΩTr/gχ) =
2Tr/gχ

(n− 2)
(1)

(ΩTr/gχ) − 2(1)
ωTr/gχ− 2

Ωω
(1)

(ΩTr/gχ). (2.10.25)

Proposition 2.10.10 (Linearised Equations for the Shears). The linearised shears
(1)
χ̂ and

(1)
χ̂ satisfy

/∇4
(1)
χ̂ =

(
ω̂ −

2Tr/gχ

n− 2
)(1)
χ̂− (1)

α, (2.10.26)

/∇3
(1)
χ̂ = −

(
ω̂ −

2Tr/gχ

n− 2
)(1)
χ̂− (1)

α, (2.10.27)

/∇4
(1)
χ̂ = −

(1)
τ̂ − 2/D⋆

2
(1)
η +

Tr/gχ

n− 2
((1)
χ̂−

(1)
χ̂

)
− ω̂

(1)
χ̂, (2.10.28)

/∇3
(1)
χ̂ = −

(1)
τ̂ − 2/D⋆

2
(1)
η +

Tr/gχ

n− 2
((1)
χ̂−

(1)
χ̂

)
+ ω̂

(1)
χ̂, (2.10.29)

where
(1)
τ̂ = 0 if n = 4.

Proposition 2.10.11 (Linearised Torsion Propagation Equations). The linearised torsions (1)
η and

(1)
η satisfy

/∇4
(1)
η = −

(1)
β − 1

n− 2Tr/gχ((1)
η −(1)

η),

/∇3
(1)
η = 2

Ω
/∇(1)
ω + 2

n− 2(Tr/gχ)(1)
η −

(1)
β,

/∇3
(1)
η =

(1)
β − 1

n− 2Tr/gχ((1)
η −(1)

η),

/∇4
(1)
η = 2

Ω
/∇(1)
ω − 2

n− 2(Tr/gχ)(1)
η +

(1)
β.

(2.10.30)

Remark 2.10.12. The reader may notice that one has two extra linearised equations here for the
torsions (1)

η and (1)
η. This has resulted from considering

/∇3((1)
η +(1)

η) = 2 /∇3 /∇
((1)

Ω
Ω

)
(2.10.31)
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and applying the commutation lemma 2.8.4 and propositions 2.10.7 and the first two equations
of 2.10.11.

Proposition 2.10.13. The functions (1)
ω and (1)

ω satisfy

/∇4
(1)
ω = −Ω

(
2
((1)

Ω
Ω

)
ρ+ (1)

ρ
)
, /∇3

(1)
ω = −Ω

(
2
((1)

Ω
Ω

)
ρ+ (1)

ρ
)
. (2.10.32)

Proposition 2.10.14 (Linearised Torsion Constraints). For n > 4, the linearised torsions (1)
η and (1)

η

satisfy

/d
(1)
η = −(1)

ς, /d
(1)
η = (1)

ς. (2.10.33)

For n = 4, the linearised torsions (1)
η and (1)

η satisfy

/curl(1)
η = −(1)

σ, /curl(1)
η = (1)

σ. (2.10.34)

Proposition 2.10.15 (Linearised Gauss Equations). The linearised scalar curvature satisfies

(1)

/Scal = −2(1)
ρ− n− 3

(n− 2)ΩTr/gχ
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2(n− 3)
n− 2 (Tr/gχ)2

((1)
Ω
Ω

)
(2.10.35)

and the linearised Ricci curvature satisfies
(1)

/̂Ric =
(1)
τ̂ − n− 4

2(n− 2)Tr/gχ
((1)
χ̂−

(1)
χ̂

)
, (2.10.36)

where
(1)
τ̂ = 0 if n = 4.

Corollary 2.10.16. The linearised metric coefficent /̂h satisfies

/∆/̂h =
2 /Scal(/g)

(n− 2)(n− 3)
/̂h− 2

(1)
τ̂ + n− 4

n− 2
[
Tr/gχ

((1)
χ̂−

(1)
χ̂

)
+ (/D⋆

2 /∇Tr/g/h)
]

− 2(/D⋆
2 /div/̂h) (2.10.37)

and

/div /div/̂h = −2(1)
ρ+ n− 3

(n− 2)ΩTr/gχ
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2(n− 3)
n− 2 (Tr/gχ)2

((1)
Ω
Ω

)
(2.10.38)

+ n− 3
n− 2

/∆Tr/g/h+ 1
n− 2

/Scal(/g)Tr/g/h,

where
(1)
τ̂ = 0 if n = 4.



90 The Einstein Equation in Double Null Gauge

Proof. Recall the formula for the linearised Ricci curvature in proposition 1.2.4. Using the
background values for /R and /Ric for Schwn gives

(1)

/RicAB = −1
2

(
( /∆/h)AB − 2 /∇(A( /div/h)B) + /∇A /∇BTr/g/h

)
+

/Scal
n− 3

/̂hAB. (2.10.39)

Decomposing h into its trace and trace-free parts gives

−2
(1)

/RicAB = ( /∆/̂h)AB + 1
n− 2( /∆Tr/g/h)/gAB

− 2 /∇(A( /div/̂h)B) + n− 4
n− 2

/∇A /∇BTr/g/h (2.10.40)

− 2 /Scal
n− 3

/̂hAB.

Noting that

(1)

/Ric =
(1)

/̂Ric + 1
n− 2

(1)

/Scal/g + 1
n− 2

/Scal/h, (2.10.41)

gives that

(̂1)

/Ric =
(1)

/̂Ric +
/Scal

n− 2
/̂h, Tr/g(

(1)

/Ric) =
(1)

/Scal + 1
n− 2

/ScalTr/g/h. (2.10.42)

Using equation (2.10.41) and proposition 2.10.15 gives the results.

Proposition 2.10.17 (Linearised Codazzi Constraints). The linearised shears
(1)
χ̂ and

(1)
χ̂ satisfy

/div
(1)
χ̂ = n− 3

(n− 2)Ω
/∇

(1)

(ΩTr/gχ) − n− 3
n− 2Tr/gχ

(1)
η −

(1)
β, (2.10.43)

/div
(1)
χ̂ = n− 3

(n− 2)Ω
/∇

(1)

(ΩTr/gχ) + n− 3
n− 2Tr/gχ

(1)
η +

(1)
β. (2.10.44)

Additionally, one has that that
(1)
χ̂ and

(1)
χ̂ satisfy

/∇[A
(1)
χ̂B]C = 1

(n− 2)Ω/gC[A
/∇B]

(1)

(ΩTr/gχ) + 1
2

(1)
νABC −

Tr/gχ

n− 2/gC[A
(1)
η

B], (2.10.45)

/∇[A
(1)
χ̂

B]C = 1
(n− 2)Ω/gC[A

/∇B]
(1)

(ΩTr/gχ) + 1
2

(1)
νABC +

Tr/gχ

n− 2/gC[A
(1)
ηB]. (2.10.46)

Corollary 2.10.18. The linearised shears
(1)
χ̂ and

(1)
χ̂ satisfy

/∆
(1)
χ̂ = (̂ /div(1)

ν) + /D⋆
2

(1)
β + Tr/gχ/D

⋆
2
(1)
η − 1

Ω
/D⋆

2 /∇
(1)

(ΩTr/gχ) +
/Scal

n− 3
(1)
χ̂, (2.10.47)

/∆
(1)
χ̂ = (̂ /div(1)

ν) − /D⋆
2

(1)
β − Tr/gχ/D

⋆
2

(1)
η − 1

Ω
/D⋆

2 /∇
(1)

(ΩTr/gχ) +
/Scal

n− 3
(1)
χ̂. (2.10.48)
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Proof. To prove this statement apply /∇A to the latter two equations of proposition 2.10.17.
At this point one can use the Ricci identity for /R and substitute in the first two equations of
proposition 2.10.17. The proof then concludes by taking the symmetric traceless part of the
resulting equation.

Remark 2.10.19. One can also linearise the Gauss constraint for /RABCD but this will not be
required in this work.

2.10.2 The Linearised Bianchi Identities

Proposition 2.10.20. Suppose h in double null gauge satisfies the linearised vacuum Einstein
equation (I.5). Then, the linearised null Weyl curvature components satisfy the following
alterations of the usual n = 4 (null-decomposed) linearised Bianchi identities on Schwn:

/∇4
(1)
ρ = −

(n− 1
n− 2

)((1)
ρTr/gχ+ 1

Ωρ
(1)

(ΩTr/gχ)
)

+ /div
(1)
β, (2.10.49)

/∇3
(1)
ρ =

(n− 1
n− 2

)((1)
ρTr/gχ− 1

Ωρ
(1)

(ΩTr/gχ)
)

− /div
(1)
β, (2.10.50)

/∇4
(1)
β = ω̂

(1)
β + /div(1)

α− n

n− 2(Tr/gχ)
(1)
β, (2.10.51)

/∇3
(1)
β = ω̂

(1)
β − /div(1)

α− n

n− 2Tr/gχ
(1)
β, (2.10.52)

/∇4
(1)
β = n− 4

n− 2Tr/gχ
(1)
β − 2(n− 1)

n− 2 ρ
(1)
η − 2(n− 3)

n− 2
/∇(1)
ρ− /div((1)

ς +
(1)
τ̂) −

(2Tr/gχ

n− 2 + ω̂
)(1)
β, (2.10.53)

/∇3
(1)
β = 2(n− 1)

n− 2 ρ
(1)
η − n− 4

n− 2Tr/gχ
(1)
β + 2(n− 3)

n− 2
/∇(1)
ρ− /div((1)

ς −
(1)
τ̂) +

(2Tr/gχ

n− 2 + ω̂
)(1)
β, (2.10.54)

/∇3
(1)
α =

(
2ω̂ + 1

2(Tr/gχ)
)(1)
α− /D⋆

2
(1)
β − 1

2(Tr/gχ)
(1)
τ̂ − n− 1

n− 3ρ
(1)
χ̂− (̂ /div(1)

ν), (2.10.55)

/∇4
(1)
α = −

(
2ω̂ + 1

2Tr/gχ
)(1)
α+ /D⋆

2
(1)
β − 1

2(Tr/gχ)
(1)
τ̂ − n− 1

(n− 3)ρ
(1)
χ̂− (̂ /div(1)

ν), (2.10.56)

/∇4
(1)
ς = −/d

(1)
β − 3

n− 2(Tr/gχ)(1)
ς, (2.10.57)

/∇3
(1)
ς = −/d

(1)
β + 3

n− 2(Tr/gχ)(1)
ς (2.10.58)
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where, if n = 4, then
(1)
τ̂ = 0, (1)

ς = (1)
σ/ε, /d

(1)
β = /curl

(1)
β/ε, /d

(1)
β = /curl

(1)
β/ε and

(̂ /div(1)
ν) = −/D⋆

2
(1)
β, (̂ /div(1)

ν) = /D⋆
2

(1)
β, /div(1)

ς = −/D⋆
1(±(1)

ρ,
(1)
σ) ∓ /∇(1)

ρ. (2.10.59)

Further, if n > 4, one has the following additional (null-decomposed) linearised Bianchi identities
for the null decomposed linearised Weyl curvature components,

/∇4
(1)
τ̂ = /D⋆

2
(1)
β − (n− 4)

2(n− 2)Tr/gχ
(1)
α+ (n− 4)(n− 1)

(n− 2)(n− 3)
(1)
χ̂ρ− (̂ /div(1)

ν) −
n(Tr/gχ)
2(n− 2)

(1)
τ̂, (2.10.60)

/∇3
(1)
τ̂ = −/D⋆

2
(1)
β − (n− 4)

2(n− 2)Tr/gχ
(1)
α+ (n− 4)(n− 1)

(n− 2)(n− 3)
(1)
χ̂ρ− (̂ /div(1)

ν) +
n(Tr/gχ)
2(n− 2)

(1)
τ̂, (2.10.61)

( /∇3
(1)
ν)ABC = 2 /∇[B

(1)
αA]C + 2

n− 2Tr/gχ/gC[B

(1)
β

A] − 3
n− 2Tr/gχ

(1)
νABC + ω̂

(1)
νABC , (2.10.62)

( /∇4
(1)
ν)ABC = 2 /∇[B

(1)
αA]C − 2

n− 2Tr/gχ/gC[B

(1)
βA] − 3

n− 2Tr/gχ
(1)
νABC + ω̂

(1)
νABC , (2.10.63)

( /∇3
(1)
ν)ABC =

(
ω̂ + 2

n− 2Tr/gχ
)(1)
νABC −

Tr/gχ

n− 2
(1)
νABC + 4ρ(n− 1)

(n− 2)(n− 3)
(1)
η[A/gB]C (2.10.64)

−
2Tr/gχ

n− 2
(1)
β[A/gB]C + 4

n− 2
/∇[A

(1)
ρ/gB]C − 2 /∇[A((1)

ς +
(1)
τ̂)B]C ,

( /∇4
(1)
ν)ABC = −

(
ω̂ + 2

n− 2Tr/gχ
)(1)
νABC +

Tr/gχ

n− 2
(1)
νABC + 4ρ(n− 1)

(n− 2)(n− 3)
(1)
η[A/gB]C (2.10.65)

−
2Tr/gχ

n− 2
(1)
β[A/gB]C + 4

n− 2
/∇[A

(1)
ρ/gB]C − 2 /∇[A(

(1)
τ̂ − (1)

ς)B]C ,

which are automatically satisfied when n = 4 due to the above linearised Bianchi identities.

Remark 2.10.21. One can additionally derive linearised equations for /∇3
(1)
R and /∇4

(1)
R.

One can also derive the following linearised constraint for curvature which is trivially satisfied
when n = 4:

Proposition 2.10.22. Suppose h in double null gauge satisfies the linearised vacuum Einstein
equation (I.5). Then the curvature component τ̂ is constrained to satisfy

/div
(1)
τ̂ − (n− 4)

2(n− 2)Tr/gχ(
(1)
β +

(1)
β) + n− 4

(n− 2)
/∇(1)
ρ = 0, (2.10.66)

where
(1)
τ̂ = 0 if n = 4.
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2.10.3 Residual Gauge Freedom in Double Null Gauge

Restricting the coordinates to ensure the metric is of double null form (2.10.1) is not sufficient
to uniquely determine coordinates on an abstract Lorentzian manifold. In linearised theory, this
non-uniqueness manifests itself with the existence of residual pure gauge solutions that preserves
double null form for a solution h to the linearised vacuum Einstein equation (I.5) in double null
gauge. In the following the residual gauge freedom is identified.

Proposition 2.10.23 (Residual Pure Gauge Freedom). Suppose h is a solution in double null
gauge to the linearised vacuum Einstein equation (I.5) on Schwn. Further, let hpg be a pure
gauge solution to the linearised vacuum Einstein equation (I.5) such that h+ hpg is a solution
in double null gauge. Then, in double null Eddington–Finkelstein coordinates (u, v, φ) on the
Schwn exterior, the one-form ξ generating hpg can be written as

ξu = f3(u, φ), (2.10.67)
ξv = f4(v, φ), (2.10.68)
ξA = fA(v, φ) + 2r/gAB∂B

(
f4(v, φ)

)
, (2.10.69)

for some arbitrary smooth functions (f3, f4, fA) on the exterior of Schwn such that (Ω2f3, f4, fA)
extend smoothly to H+. Moreover, the pure gauge solution has a double null decomposition as

((1)
Ωpg
Ω

)
= 1

2Ω2

(
∂u(Ω2f3) + ∂v(Ω2f4)

)
, (2.10.70)

(
(1)
bpg)A = 2Ω2∂A(f3) − /gAB

∂v(ξB), (2.10.71)
(/hpg)AB = /∇AξB + /∇BξA + (ΩTr/gχ)(f4 − f3)/gAB

, (2.10.72)
(Tr/g/h)pg = 2 /div/ξ + 2(ΩTr/gχ)(f4 − f3), (2.10.73)

(/̂hpg)AB = −2(/D⋆
2/ξ)AB, (2.10.74)

where the notation /ξ .= (ξ1, ...ξn−2) has been introduced. Henceforth, (f3, f4, fA) will be referred
to as residual pure gauge functions, and any pure gauge solution arising from (f3, f4, fA) will be
referred to as a residual pure gauge solution.

Proof. Recall that a linearised metric is in double null gauge if it is of the form:

h = −4
((1)

Ω
Ω

)(
f3 ⊗ f4 + f4 ⊗ f3)

−
(1)
bA

Ω
(
f4 ⊗ fA + fA ⊗ f4)

+ /hABf
A ⊗ fB. (2.10.75)

In preserving this form one must have

∇3ξ3 = 0, ∇4ξ4 = 0. (2.10.76)
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These conditions give

∂u

( 1
Ωξ3

)
= 0 =⇒ ξ3 = −2Ωf4(v, φ), (2.10.77)

∂v

( 1
Ωξ4

)
= 0 =⇒ ξ4 = −2Ωf3(u, φ). (2.10.78)

Recalling that ξv = 1
−2Ω2 ξu and that ξ3 = 1

Ωξu and similarly for ξu one finds

ξu = f3(u, φ), ξv = f4(v, φ). (2.10.79)

Further, using the proposition 2.8.2, one must also have

∇3ξA + ∇Aξ3 = 0 =⇒ e3(ξA) + eA(ξ3) + 2
n− 2Tr/gχξA = 0. (2.10.80)

One can write that r2e3
(

1
r2

)
= 2

n−2Tr/gχ gives

∂u

(ξA

r2

)
= − Ω

r2 eA

(
ξ3

)
= 2Ω2

r2 eA

(
f4(v, φ)

)
. (2.10.81)

One can check

ξA(u, v, φ) = /gAB
fB(v, φ) + 2reA

(
f4(v, φ)

)
(2.10.82)

is the solution. Raising the index gives

ξA = fA(v, φ) + 2r/gAB∂B

(
f4(v, φ)

)
. (2.10.83)

Now, using the relations in proposition 2.2.3, for a pure gauge solution that preserves double null
form, one has that

((1)
Ωpg
Ω

)
= −1

4
(
∇3ξ4 + ∇4ξ3

)
= −1

4
(
e3(ξ4) + e4(ξ3) + ω̂(ξ3 − ξ4)

)
, (2.10.84)

(
(1)
bpg)A

Ω = −
(
∇Aξ4 + ∇4ξA

)
= −eA(ξ4) − e4(ξA) + 2

n− 2Tr/gχξA, (2.10.85)

(/hpg)AB = /∇AξB + /∇BξA − 1
n− 2Tr/gχ(ξ3 − ξ4)/gAB

, (2.10.86)

which simplifies to the relations stated.
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Remark 2.10.24. The requirement of (Ω2f3, f4, fA) to extend smoothly to H+ comes from
observing that ( 1

Ωe3,Ωe4, eA) extends regularly to the future event horizon. Hence,

ξ
( 1
Ωe3

)
= 1

Ωξ3 ∝ f4 (2.10.87)

ξ
(
Ωe4

)
= Ωξ4 ∝ Ω2f3 (2.10.88)

shows that Ω2f3 and f4 have to be a regularly extendible gauge functions.

The following two subsets of residual pure gauge solutions will be useful in chapter 3 (see
section 3.4.4). The residual pure gauge solution arising from (f3, f4, fA) = (0, f(v, φ), 0) gives
the following solution to the linearised vacuum Einstein equation (I.5) in double null gauge:

Lemma 2.10.25. Let f = f(v, φ) be smooth and (f3, f4, fA) = (0, f(v, φ), 0) then the residual
pure gauge solution arising from these residual gauge functions is

((1)
Ω
Ω

)
pg

= 1
2Ω2∂v

(
Ω2f

)
,

(
(1)
bpg)♭ = −2r2/d

(
∂v

(f
r

))
,

(1)

(ΩTr/gχ)pg = ∂v
(
ΩTr/gχf

)
,

((1)
ηpg) = Ω2

r
/df,

(1)
ρpg = −3

2ρ(ΩTr/gχ)f,

(Tr/g/h)pg = 4r /∆f + 2(ΩTr/gχ)f,

/̂hpg = −4r(/D⋆
2 /∇f),

(1)

(ΩTr/gχ)pg = 2Ω2
((Tr/gχ)2

n− 2 + 2ρ
)
f + 2Ω2 /∆f,

(1)
ηpg = r

Ω2 /d
[
∂v

(Ω2

r
f

)]
,

(1)
χ̂pg = −2Ω(/D⋆

2 /∇f),
(1)
βpg = −2(n− 1)Ω

n− 2 ρ/df,

(2.10.89)

and

(1)

/Scalpg =
(ΩTr/gχ)
n− 2

[(
nρ− 2(n− 3)

(n− 2) (Tr/gχ)2
)
f − 2(n− 3) /∆f

]
, (2.10.90)

with
(1)
χ̂pg = 0,

(1)
βpg = 0, (1)

ςpg = 0,
(1)
τ̂pg = 0, (1)

αpg = 0 and (1)
αpg = 0.

Proof. The explicit computation of all linearised Ricci coefficients can be performed with proposi-
tion 2.10.23 and 2.10.7. After obtaining the Ricci coefficients, the curvature components can be
computed from propositions 2.10.8-2.10.17.

The residual pure gauge solution arising from (f3, f4, fA) = (f(u, φ), 0, 0) gives the following
solution to the linearised vacuum Einstein equation (I.5) in double null gauge:

Lemma 2.10.26. Let f = f(u, φ) be smooth such that Ω2f extends regularly to the future
event horizon H+ and (f3, f4, fA) = (f(u, φ), 0, 0) then the residual pure gauge solution arising
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from these residual gauge functions is

((1)
Ωpg
Ω

)
= 1

2Ω2∂u
(
Ω2f

)
,

(
(1)
bpg)♭ = 2Ω2/df,

(1)

(ΩTr/gχ)pg = −∂u

(
(ΩTr/gχ)f

)
,

(1)
ηpg = −Ω2

r
/df,

(1)
ρpg = 3

2ρ(ΩTr/gχ)f,

(Tr/g/h)pg = −2(ΩTr/gχ)f,
(1)

(ΩTr/gχ)pg = 2Ω2
((Tr/gχ)2

n− 2 + 2ρ
)
f + 2Ω2 /∆f,

(1)
χ̂pg = −2Ω(/D⋆

2 /∇f),
(1)
ηpg = r

Ω2 /d
[
∂u

(Ω2

r
f

)]
,

(1)
βpg = 2(n− 1)Ω

n− 2 ρ/df,

(2.10.91)

and

(1)

/Scalpg =
(ΩTr/gχ)
n− 2

[(2(n− 3)
(n− 2) (Tr/gχ)2 − nρ

)
f + 2(n− 3) /∆f

]
, (2.10.92)

with /̂hpg = 0,
(1)
χ̂pg = 0,

(1)
βpg = 0, (1)

ςpg = 0,
(1)
τ̂pg = 0, (1)

αpg = 0 and (1)
αpg = 0.

Proof. The explicit computation of all linearised Ricci coefficients can be performed with proposi-
tion 2.10.23 and 2.10.7. After obtaining the Ricci coefficients, the curvature components can be
computed from propositions 2.10.8-2.10.17.

2.10.4 The Teukolsky and Regge–Wheeler Equations on Schwn

This section studies the partial decoupling (or full decoupling for n = 4) of linearised curvature
components on the Schwarzschild–Tangherlini spacetime. In particular, the Teukolsky system
of equations is derived for the Schwn. This for all intents and purpose reproduces the results
of [86, 87] (or [12, 13, 28] for n = 4) in the double null gauge and associated notation. Note
that the relation between the ‘WAND frame’ (l, n,mi) used for the higher-dimensional Geroch–
Held–Penrose formalism (introduced in [89]) of [86] and the double null frame is

l = − 1
Ωe3, n = Ω

2 e4, (2.10.93)

and that mi are the unit vectors on Sn−2
r . As [87], the obstruction to decoupling for n >

4 is found.c This section concludes with a discussion of the physical space ‘Chandrasekhar
transformation’ introduced for n = 4 in [28] in arbitrary dimension.

cIn the work [87], the authors prove that for a Teukolsky type equation to decouple the background spacetime
has to be of Kundt type (see chapter 31 of [115] and [116]). Unfortunately, black hole spacetimes are not Kundt.
However, if the black hole is extreme, then its ‘near-horizon geometry’ is Kundt. This was exploited in [117] to
study instability.



2.10 Linearisation in Double Null Gauge 97

The Teukolsky (System of) Equation(s) on Schwn

For n > 4 decoupling of the null curvature components (1)
α and (1)

α fails. One can derive a coupled
system of equations for

(1)
τ̂ , (1)
α and (1)

α. The main result of this section is the following proposition:

Proposition 2.10.27 (The Teukolsky (System of) Equation(s)). The null curvature components
(1)
α and (1)

α satisfy

/∇4 /∇3
(1)
α = /∆(1)

α+
(
2ω̂ + 1

2(Tr/gχ)
)
/∇4

(1)
α−

( 6 + n

2(n− 2)Tr/gχ− ω̂
)
/∇3

(1)
α (2.10.94)

+
[ 2(n− 4)2

(n− 3)(n− 2)ρ− 4ω̂2 +
2(Tr/gχ)2

(n− 2) −
/Scal(/g)

(n− 3)
](1)
α−

(Tr/gχ)2

(n− 2)
(1)
τ̂,

/∇3 /∇4
(1)
α = /∆(1)

α−
(
2ω̂ + 1

2(Tr/gχ)
)
/∇3

(1)
α+

( 6 + n

2(n− 2)Tr/gχ− ω̂
)
/∇4

(1)
α (2.10.95)

+
[ 2(n− 4)2

(n− 3)(n− 2)ρ− 4ω̂2 +
2(Tr/gχ)2

(n− 2) −
/Scal(/g)

(n− 3)
](1)
α−

(Tr/gχ)2

(n− 2)
(1)
τ̂.

Additionally the linearised curvature component
(1)
τ̂ satisfies

/∇3 /∇4
(1)
τ̂ = /∆

(1)
τ̂ +

( n+ 2
2(n− 2)Tr/gχ+ ω̂

)
/∇4

(1)
τ̂ − n+ 2

2(n− 2)(Tr/gχ) /∇3
(1)
τ̂ (2.10.96)

+
(n(Tr/gχ)

(n− 2) + 2(n− 4)(n− 1)
(n− 3) ω̂

) Tr/gχ

n− 2
(1)
τ̂ −

(n− 4)(Tr/gχ)2

2(n− 2)2
((1)
α+ (1)

α
)

and an angular commuted version

/∇3 /∇4 /∆
(1)
τ̂ = /∆ /∆

(1)
τ̂ +

( n+ 6
2(n− 2)Tr/gχ+ ω̂

)
/∇4 /∆

(1)
τ̂ − n+ 6

2(n− 2)(Tr/gχ) /∇3 /∆
(1)
τ̂ (2.10.97)

+
(3(n+ 2)(Tr/gχ)2

(n− 2)2 − 2(n2 − 3n− 2)
(n− 3)(n− 2) ρ

)
/∆

(1)
τ̂ −

(n− 4)(Tr/gχ)2

2(n− 2)2
/∆

((1)
α+ (1)

α
)
.

Proof. Taking /∇4 of /∇3
(1)
α in proposition 2.10.20 gives

/∇4 /∇3
(1)
α = e4

(
2ω̂ + 1

2(Tr/gχ)
)(1)
α+

(
2ω̂ + 1

2(Tr/gχ)
)
( /∇4

(1)
α) − n− 1

n− 3e4(ρ)
(1)
χ̂ (2.10.98)

− 1
2e4(Tr/gχ)

(1)
τ̂ + 1

n− 2Tr/gχ/D
⋆
2

(1)
β + 1

n− 2Tr/gχ(̂ /div(1)
ν)

− (/D⋆
2 /∇4

(1)
β) − n− 1

n− 3ρ( /∇4
(1)
χ̂) − ̂( /div /∇4

(1)
ν) − 1

2(Tr/gχ) /∇4
(1)
τ̂

where one uses the commutation lemma 2.8.4. One can substitute the other linearised Bianchi
equations and linearised null structure equations in propositions 2.10.20 and 2.10.7-2.10.17



98 The Einstein Equation in Double Null Gauge

respectively to give

( /∇4 /∇3
(1)
α)AB =

[n− 1
n− 3ρ+ e4

(
2ω̂ + 1

2(Tr/gχ)
)

− (n− 4)
4(n− 2)(Tr/gχ)2

](1)
α (2.10.99)

+
(
2ω̂ + 1

2(Tr/gχ)
)
( /∇4

(1)
α)AB + /∆(1)

α− n− 2
r2

(1)
α

+
( 6 + n

2(n− 2)Tr/gχ− ω̂
)[
/D⋆

2
(1)
β + (̂ /div(1)

ν) + n− 1
n− 3ρ

(1)
χ̂

]
+

[ n

4(n− 2)(Tr/gχ)2 − 1
2e4(Tr/gχ)

](1)
τ̂,

where one uses that,

/∇D /∇(A
(1)
αB)D = −(/D⋆

2 /div(1)
α)AB + 1

n− 2
/div /div(1)

α/gAB
+ n− 2

r2
(1)
αAB, (2.10.100)

by the Ricci identity for /R. The linearised Bianchi equations in proposition 2.10.20 give

/D⋆
2

(1)
β + n− 1

n− 3ρ
(1)
χ̂+ (̂ /div(1)

ν) = − /∇3
(1)
α+

(
2ω̂ + 1

2(Tr/gχ)
)(1)
α− 1

2(Tr/gχ)
(1)
τ̂. (2.10.101)

So,

/∇4 /∇3
(1)
α = /∆(1)

α+
(
2ω̂ + 1

2(Tr/gχ)
)
/∇4

(1)
α−

( 6 + n

2(n− 2)Tr/gχ− ω̂
)
/∇3

(1)
α (2.10.102)

+
( 6 + n

2(n− 2)Tr/gχ− ω̂
)(

2ω̂ + 1
2(Tr/gχ)

)(1)
α−

(Tr/gχ)2

(n− 2)
(1)
τ̂

+
[n− 1
n− 3ρ+ e4

(
2ω̂ + 1

2(Tr/gχ)
)

− (n− 4)
4(n− 2)(Tr/gχ)2 − n− 2

r2

](1)
α.

Using that

e4
(
2ω̂ + 1

2Tr/gχ
)

= 2ρ− 2ω̂2 + 1
2 ω̂Tr/gχ− 1

2(n− 2)(Tr/gχ)2, (2.10.103)

simplifies equation (2.10.102) to the desired result.

Turning to the
(1)
τ̂ equation and computing directly from proposition 2.10.20 (using the

commutation lemma 2.8.4) gives

/∇3 /∇4
(1)
τ̂ = (/D⋆

2 /∇3
(1)
β) +

Tr/gχ

n− 2(/D⋆
2

(1)
β) + (n− 4)

2(n− 2)e3(Tr/gχ)(1)
α+ (n− 4)

2(n− 2)Tr/gχ/∇3
(1)
α (2.10.104)

+ (n− 4)(n− 1)
(n− 2)(n− 3)e3(ρ)

(1)
χ̂+ (n− 4)(n− 1)

(n− 2)(n− 3)ρ
/∇3

(1)
χ̂− ̂( /div /∇3

(1)
ν)

−
Tr/gχ

n− 2 (̂ /div(1)
ν) − n

2(n− 2)(Tr/gχ) /∇3
(1)
τ̂ − n

2(n− 2)e3(Tr/gχ)
(1)
τ̂.
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From the linearised Bianchi equation for /∇3
(1)
ν in proposition 2.10.20, one can then compute that

/̂div( /∇3
(1)
ν) =

(
ω̂ + 2

n− 2Tr/gχ
)
/̂div(1)
ν −

Tr/gχ

n− 2
/̂div(1)
ν + 2ρ(n− 1)

(n− 2)(n− 3)
/D⋆

2
(1)
η (2.10.105)

−
Tr/gχ

n− 2
/D⋆

2
(1)
β + 2

n− 2
/D⋆

2 /∇
(1)
ρ− /∆

(1)
τ̂ − /D⋆

2( /div((1)
ς +

(1)
τ̂)) +

Scal(/g)
n− 3

(1)
τ̂.

So substituting this relation along with the linearised Bianchi identities 2.10.20 and then the
linearised constraint of proposition 2.10.22 gives

/∇3 /∇4
(1)
τ̂ = /∆

(1)
τ̂ +

( n+ 2
2(n− 2)Tr/gχ+ ω̂

)(
/D⋆

2
(1)
β − /̂div(1)

ν + (n− 4)(n− 1)
(n− 2)(n− 3)ρ

(1)
χ̂

)
(2.10.106)

+
Tr/gχ

n− 2
(
/̂div(1)
ν + /D⋆

2
(1)
β − (n− 4)(n− 1)

(n− 2)(n− 3)ρ
(1)
χ̂

)
− n

2(n− 2)(Tr/gχ) /∇3
(1)
τ̂

−
((n− 4)(n− 1)

(n− 2)(n− 3)ρ+ n

2(n− 2)e3(Tr/gχ) + (n− 4)
4(n− 2)(Tr/gχ)2 +

Scal(/g)
n− 3

)(1)
τ̂

+ (n− 4)
2(n− 2)

[
e3(Tr/gχ) +

(
2ω̂ + 1

2(Tr/gχ)
)
Tr/gχ

](1)
α,

One can now substitute the expressions for /∇3
(1)
τ̂ and /∇4

(1)
τ̂ from linearised Bianchi (proposi-

tion 2.10.20), i.e.,

(/D⋆
2

(1)
β) + (n− 4)(n− 1)

(n− 2)(n− 3)
(1)
χ̂ρ− (̂ /div(1)

ν) = ( /∇4
(1)
τ̂) + (Tr/gχ)

( n

2(n− 2)
(1)
τ̂ − (n− 4)

2(n− 2)
(1)
α

)
,

(2.10.107)
(n− 4)(n− 1)
(n− 2)(n− 3)

(1)
χ̂ρ− (̂ /div(1)

ν) − (/D⋆
2

(1)
β) = ( /∇3

(1)
τ̂) + (Tr/gχ)

( (n− 4)
2(n− 2)

(1)
α− n

2(n− 2)
(1)
τ̂

)
,

(2.10.108)

to gives the first result.

To obtain the angular commuted version, note that two applications of the commutation
lemma gives

/∇4 /∆
(1)
τ̂ = /∆ /∇4

(1)
τ̂ −

2Tr/gχ

n− 2
/∆

(1)
τ̂ (2.10.109)

and therefore

/∇3 /∇4 /∆
(1)
τ̂ = /∆ /∇3 /∇4

(1)
τ̂ +

2Tr/gχ

n− 2
(
/∆ /∇4

(1)
τ̂ − /∆ /∇3

(1)
τ̂

)
− 2
n− 2ρ

/∆
(1)
τ̂ −

6(Tr/gχ)2

(n− 2)2
/∆

(1)
τ̂. (2.10.110)



100 The Einstein Equation in Double Null Gauge

Hence,

/∇3 /∇4 /∆
(1)
τ̂ = /∆ /∆

(1)
τ̂ +

( n+ 6
2(n− 2)Tr/gχ+ ω̂

)
/∆ /∇4

(1)
τ̂ − n+ 6

2(n− 2)(Tr/gχ) /∆ /∇3
(1)
τ̂ (2.10.111)

+
((n− 6)(Tr/gχ)2

(n− 2)2 − 2(n2 − 4n+ 1)
(n− 3)(n− 2) ρ

)
/∆

(1)
τ̂ −

(n− 4)(Tr/gχ)2

2(n− 2)2
/∆

((1)
α+ (1)

α
)
.

Commuting once again so that its an equation for /∆
(1)
τ̂ gives the result.

A Brief Note on the Regge–Wheeler Equation on Schwn

It turns out that, even in the n = 4 case, the Teukolsky equation is difficult to analyze directly
due to problematic first order t-derivative of (1)

α or (1)
α appearing in the second and third terms

on the right hand of proposition 2.10.4. In n = 4, the work [28] introduced so-called ‘Regge–
Wheeler’ unknowns (P, P ) via a physical space interpretation of the ‘Chandrasekhar transformation’
(see [15] for the mode decomposed version). The unknowns (P, P ) satisfy the Regge-Wheeler
equation (initially found for metric perturbations [36]) that can be treated with methods employed
for the wave equation. This section turns to the possibility of a generalisation of (P, P ) to
higher-dimensions. The unknowns (P, P ) should allow one to recover control on (1)

α, (1)
α and

(1)
τ̂

from control on Regge–Wheeler variable. In 4D, (P, P ) transform solutions (1)
α and (1)

α of the
Teukolsky equations of proposition 2.10.4 to solutions of the (tensorial) Regge–Wheeler equation.
In particular, the transformation is

P
.= 1

Ωr3 /∇3(Ωr3ψ),

P
.= − 1

Ωr3 /∇4(Ωr3ψ),

ψ
.= − 1

2rΩ2 /∇3(rΩ2(1)
α),

ψ
.= 1

2rΩ2 /∇4(rΩ2(1)
α).

(2.10.112)

The unknown P satisfies an equation of the form

/∇3 /∇4P + /∇4 /∇3P − 2 /∆P + f( /∇3 − /∇4)P + gP = R[(1)
α] (2.10.113)

where R[(1)
α] is some error term depending on (1)

α and the unknown P satisfies an analogous equation
with R[(1)

α] on the right-hand side. Whilst not immediately obvious, it is the second order operator
acting on (1)

α or (1)
α in the transformation that gets rid of the problematic t-derivative of (1)

α or (1)
α

appearing in the second and third terms on the right hand of proposition 2.10.4. Remarkably,
in n = 4, P and P satisfy completely decoupled equations, i.e. R[(1)

α] ≡ 0! This particular
property seems to be peculiar to 4-dimensional Schwarzschild. Indeed, in the case of Kerr [29] or
Reissner–Nordström [118] such complete decoupling does not occur.
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A naive generalisation to higher dimensions would be to modify the r-weights in the definition
of P and P . In particular, the one could take the ansatz for the generalisation of P and P to be

P .= 1
Ωrq

/∇3(ΩrqΨ) = −
( q

n− 2Tr/gχ+ ω̂
)
Ψ + /∇3Ψ, (2.10.114)

P .= − 1
Ωrq

/∇4(ΩrqΨ) = −
( q

n− 2Tr/gχ+ ω̂
)
Ψ − /∇4Ψ, (2.10.115)

with

Ψ .= − 1
2rpΩ2 /∇3(rpΩ2(1)

α) =
( p

2(n− 2)Tr/gχ+ ω̂
)(1)
α− 1

2
/∇3

(1)
α, (2.10.116)

Ψ .= 1
2rpΩ2 /∇4(rpΩ2(1)

α) =
( p

2(n− 2)Tr/gχ+ ω̂
)(1)
α+ 1

2
/∇4

(1)
α. (2.10.117)

Hence,

P = −
( (q − 1)p

2(n− 2)2 (Tr/gχ)2 + n− 2 − (p+ q)
n− 2 ρ

)(1)
α+

( p+ q

2(n− 2)Tr/gχ+ 3
2 ω̂

)
/∇3

(1)
α (2.10.118)

− 1
2
/∇3 /∇3

(1)
α.

Motivated by the form of equation (2.10.113) in the n = 4 case with p = 1 and q = 3, this
section is dedicated to looking for a P in n > 4 which satisfies an equation of the form

/∇3 /∇4P + /∇4 /∇3P − 2 /∆P + f( /∇3 − /∇4)P + gP = R (2.10.119)

where R is an error term independent of P which ideally vanishes. In particular, one has the
following proposition:

Proposition 2.10.28. Let P be defined as

P .= c(r)(1)
α+ d(r) /∇3

(1)
α− 1

2
/∇3 /∇3

(1)
α. (2.10.120)

Then P satisfies

/∇3 /∇4P + /∇4 /∇3P − 2 /∆P + f
(
/∇3P − /∇4P

)
+ gP = 2R[(1)

α,
(1)
τ̂ ], (2.10.121)

where

f
.= n+ 6
n− 2Tr/gχ+ ω̂, (2.10.122)

g
.= 2 /∇4d + 2ω̂d − ω̂2 −

(n2 + 8n+ 44)(Tr/gχ)2

4(n− 2)2 + (n2 + 3n− 22)ρ
(n− 3)(n− 2) (2.10.123)
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and the error term R[(1)
α,

(1)
τ̂ ] is of the form

R[(1)
α,

(1)
τ̂ ] .= /q(r) /∆(1)

α+
(Tr/gχ)2

2(n− 2)
/∇3 /∇3

(1)
τ̂ + q1,α

(r) /∇3
(1)
α+ q1,α(r) /∇4

(1)
α+ q0,α(r)(1)

α (2.10.124)

+ q1,τ (r) /∇3
(1)
τ̂ + q0,τ (r)

(1)
τ̂,

where /q, q1,α are given by

/q
.= /∇3d −

2Tr/gχ

(n− 2)d + ω̂d +
n(Tr/gχ)2

2(n− 2)2 + 3(n− 4)ρ
2(n− 2) − 3ω̂2, (2.10.125)

q1,α
.= Ω2

r4 /∇3
( r4

Ω2

[
c − 1

2
(
6ω̂2 +

n(Tr/gχ)2

4(n− 2) − 7ρ
2

)
+ d

(
2ω̂ + 1

2(Tr/gχ)
)])

(2.10.126)

and q1,α
, q0,α, q1,τ and q0,τ can written in terms of d, c and background Ricci coefficients (see

equations (2.10.146-2.10.149)). Additionally, a completely analogous proposition holds for P with
the relevant quantities ‘barred’ and e3 7→ e4. In particular, if P is given by equation (2.10.118)
with p = n−2

2 and q = n+2
2 then /q = 0, q1,α = 0 and

g = 2(n2 − n− 8)
(n− 2)(n− 3)ρ− 3n+ 4

(n− 2)2 (Tr/gχ)2, (2.10.127)

q1,α
= n− 4

2(n− 2)ρTr/gχ, (2.10.128)

q0,α = n− 4
n− 2ρ

(
ρ−

n(Tr/gχ)2

2(n− 2)
)
, (2.10.129)

q1,τ =
Tr/gχ

2(n− 2)
(
7ρ−

n(Tr/gχ)2

(n− 2)
)
, (2.10.130)

q0,τ = 4ρ2

n− 2 +
n(Tr/gχ)4

8(n− 2)2 −
4ρ(Tr/gχ)2

(n− 2)2 . (2.10.131)

If n = 4, then
(1)
τ̂ = 0 and, therefore, R[(1)

α,
(1)
τ̂ ] ≡ 0.

Proof. Computing naively gives

/∇4P = ( /∇4c)
(1)
α+ c /∇4

(1)
α+ ( /∇4d) /∇3

(1)
α+ d /∇4 /∇3

(1)
α− 1

2
/∇4 /∇3 /∇3

(1)
α (2.10.132)

Now by the commutation relations in lemma 2.8.4

/∇4 /∇3 /∇3
(1)
α = /∇3 /∇4 /∇3

(1)
α− ω̂( /∇3 /∇3

(1)
α+ /∇4 /∇3

(1)
α). (2.10.133)
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So,

/∇4P = ( /∇4c)
(1)
α+ c /∇4

(1)
α+ ( /∇4d) /∇3

(1)
α+

(
d + 1

2 ω̂
)
/∇4 /∇3

(1)
α (2.10.134)

+ 1
2 ω̂

/∇3 /∇3
(1)
α− 1

2
/∇3 /∇4 /∇3

(1)
α.

From the Teukolsky equation in proposition (2.10.4) and the commutation lemma 2.8.4 one can
calculate

/∇3 /∇4 /∇3
(1)
α = /∆ /∇3

(1)
α+

2(Tr/gχ)
n− 2

/∆(1)
α−

( 6 + n

2(n− 2)Tr/gχ− ω̂
)
/∇3 /∇3

(1)
α (2.10.135)

+
(
2ω̂ + 1

2(Tr/gχ)
)
/∇4 /∇3

(1)
α+

(
4ω̂2 +

(Tr/gχ)2

2(n− 2) − 2ρ
)
/∇4

(1)
α

+
[(n− 10)(Tr/gχ)2

2(n− 2)2 − 8n− 28
(n− 3)(n− 2)ρ− ω̂2

]
/∇3

(1)
α−

(Tr/gχ)2

(n− 2)
/∇3

(1)
τ̂

+
[2(n3 − 7n2 + 16n− 8)

(n− 3)(n− 2)2 ρTr/gχ− 8ω̂3 + 8ω̂ρ+
2(Tr/gχ)3

(n− 2)2

](1)
α

−
2(Tr/gχ)
(n− 2)

[(Tr/gχ)2

n− 2 + ρ
](1)
τ̂.

Hence,

/∇4P = −1
2
/∆ /∇3

(1)
α+

[
d − 1

2
(
ω̂ + 1

2(Tr/gχ)
)]
/∇4 /∇3

(1)
α−

(Tr/gχ)
n− 2

/∆(1)
α (2.10.136)

+
[ 6 + n

4(n− 2)Tr/gχ
]
/∇3 /∇3

(1)
α+

[
c − 1

2
(
4ω̂2 +

(Tr/gχ)2

2(n− 2) − 2ρ
)]
/∇4

(1)
α

+
[
( /∇4d) − 1

2
((n− 10)(Tr/gχ)2

2(n− 2)2 − 8n− 28
(n− 3)(n− 2)ρ− ω̂2

)]
/∇3

(1)
α+ 1

2
(Tr/gχ)2

(n− 2)
/∇3

(1)
τ̂

+
[
( /∇4c) + −1

2
(2(n3 − 7n2 + 16n− 8)

(n− 3)(n− 2)2 ρTr/gχ− 8ω̂3 + 8ω̂ρ+
2(Tr/gχ)3

(n− 2)2

)](1)
α

+
(Tr/gχ)
(n− 2)

((Tr/gχ)2

n− 2 + ρ
)(1)
τ̂.

One can use the Teukolsky equation in proposition 2.10.4 and

/∇3 /∇3
(1)
α = 2c(1)

α+ 2d /∇3
(1)
α− 2P, (2.10.137)

to produce

/∇4P = −1
2
/∆ /∇3

(1)
α+

[
d − 1

2
(
ω̂ +

(n+ 2)Tr/gχ

2(n− 2)
)]
/∆(1)
α−

(n+ 6)Tr/gχ

2(n− 2) P (2.10.138)

+ f1,α /∇4
(1)
α+ f1,α

/∇3
(1)
α+ f0,α

(1)
α+

(Tr/gχ)2

2(n− 2)
/∇3

(1)
τ̂ + f0,τ

(1)
τ̂,
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where

f1,α
.= c − 1

2
(
6ω̂2 +

n(Tr/gχ)2

4(n− 2) − 7ρ
2

)
+ d

(
2ω̂ + 1

2(Tr/gχ)
)
, (2.10.139)

f1,α

.= /∇4d + ω̂d − 1
2

(
ω̂2 +

2(10 − n)(Tr/gχ)2

4(n− 2)2 + 4ρ
(n− 3)(n− 2)

)
, (2.10.140)

f0,α
.= /∇4c +

[ 2(n− 4)2

(n− 3)(n− 2)ρ− 4ω̂2 +
2(Tr/gχ)2

(n− 2) −
/Scal(/g)

(n− 3)
]
d +

(n+ 6)Tr/gχ

2(n− 2) c (2.10.141)

+ 6ω̂3 − 3n3 − 24n2 + 65n− 50
2(n− 2)2(n− 3) ρTr/gχ− 6n2 − 32n+ 44

(n− 2)(n− 3) ω̂ρ−
(n+ 2)(Tr/gχ)3

4(n− 2)2 ,

f0,τ
.=

(Tr/gχ)2

2(n− 2)
((n+ 2)(Tr/gχ)

2(n− 2) − ω̂
)

− d
(Tr/gχ)2

(n− 2) . (2.10.142)

One can now compute using the commutation lemma 2.8.4,

−1
2
/∆ /∇3 /∇3

(1)
α = −c /∆(1)

α− d /∆ /∇3
(1)
α+ /∆P, (2.10.143)

−1
2
/∇3 /∇3

(1)
α = −c

(1)
α− d /∇3

(1)
α+ P, (2.10.144)

and that /∆ /∇3
(1)
α can be expressed in terms of /∇4P to show

/∇3 /∇4P = /∆P + ω̂ /∇4P −
(n+ 6)Tr/gχ

2(n− 2)
(
/∇3P − /∇4P

)
− gP (2.10.145)

+ /q /∆
(1)
α+

(Tr/gχ)2

2(n− 2)
/∇3 /∇3

(1)
τ̂ + q1,α

/∇3
(1)
α+ q1,α /∇4

(1)
α+ q0,α

(1)
α

+ q1,τ /∇3
(1)
τ̂ + q0,τ

(1)
τ̂,

where

q1,α

.= ( /∇3f1,α
) + f0,α + 2df1,α

−
(n+ 6)Tr/gχ

2(n− 2)
(
f1,α

+ f1,α
)

+ 2ω̂(f1,α − f1,α
), (2.10.146)

q0,α
.= /∇3f0,α + 2cf1,α

−
(
ω̂ +

(n+ 6)Tr/gχ

2(n− 2)
)
f0,α (2.10.147)

+ f1,α

[ 2(n− 4)2

(n− 3)(n− 2)ρ− 4ω̂2 +
2(Tr/gχ)2

(n− 2) −
/Scal(/g)

(n− 3)
]
,

q1,τ
.= f0,τ + 1

2e3
((Tr/gχ)2

(n− 2)
)

− 1
2

(
ω̂ +

(n+ 6)Tr/gχ

2(n− 2)
)(Tr/gχ)2

(n− 2) , (2.10.148)

q0,τ
.= ( /∇3f0,τ ) − f0,τ

(
ω̂ +

(n+ 6)Tr/gχ

2(n− 2)
)

− f1,α

(Tr/gχ)2

(n− 2) . (2.10.149)

If P is given by equation (2.10.118) then one can compute directly from equation (2.10.146)–
(2.10.149) the concluding result in the proposition.
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2.10.5 Recovering the Newman–Penrose Teukolsky Equation

For later use and the reader familiar with the Newman–Penrose formalism [102] the relation
between the Teukolsky equation (arising in the double null gauge) derived above in proposi-
tion 2.10.4 and the traditional Teukolsky equation of [13] is given here. To be clear, this section
only applies to 4-dimensional Schwarzschild spacetime.

The traditional Teukolsky equation (or Bardeen–Press equation) [13, 12] on Schw4 is

□gα
[s] + 2s

r2 (r −M)∂rα
[s] + i

2s cos θ
r2 sin2 θ

∂φα
[s] + 2s

r2

( M

D(r) − r
)
∂tα

[s] (2.10.150)

+ 1
r2

(
s− s2 cot2 θ

)
α[s] = 0,

where α[s] is a smooth complex-valued spin s-weighted function on the exterior E of the
Schwarzschild spacetime (see section 2.2.1 of [29] or section 2.2 of [33] for a precise defini-
tion and discussion of smooth complex-valued spin s-weighted functions). One can consider this
equation for arbitrary s ∈ 1

2Z. For s = 0, equation (2.10.150) reduces to the wave equation on
Schw4. For s = ±1 one can show that equation (2.10.150) governs the extreme components of
the Maxwell equations on Schw4. For s = ±2, the equation (2.10.150) governs the extremal
curvature components of the metric in the Newman–Penrose formalism [102]. There is a precise
relation between equation (2.10.150) for s = ±2 and the Teukolsky equation(s) written down in
proposition 2.10.4 for n = 4 as shall now be elaborated on.

In the Newman–Penrose (NP) formalism one takes a arbitrary null pair (l, n) normalised such
that

g(l, n) = −1, (2.10.151)

and two orthonormal vectors (m1,m2) for the space ⟨l, n⟩⊥. One then constructs a (complex)
null tetrad by complexifying the space ⟨l, n⟩⊥ by taking m .= 1√

2(m1 + im2).d The metric is then
given by

gab = −l(anb) +m(am̄b), (2.10.152)

where m̄ is the complex conjugate of m. One then defines the following complex Weyl NP scalars

Ψ0
.= Rabcdl

amblcmd,

Ψ2
.= Rabcdl

ambm̄cnd,

Ψ1
.= Rabcdl

anblcmd,

Ψ3
.= Rabcdl

anbm̄cnd,
(2.10.153)

dThe original convention of Newman and Penrose was to use signature (+, −, −, −) and therefore, the convention
g(l, n) = 1 [102].
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and

Ψ4
.= Rabcdn

am̄bncm̄d. (2.10.154)

Using the conventions of [13], the complex null tetrad on Schw4 is

l
.= 1

Ωe4 = 1
Ω2∂v n

.= Ωe3 = 1
2∂u m

.= 1
r
√

2

(
∂θ + i

sin θ∂φ

)
. (2.10.155)

The frame written here in equation (2.10.155) is not regular at H+. Denoting the linearised ver-
sions of ΨA as

(1)
ΨA (A = 1, ..., 4), the papers [12] and [13] showed, working in the frame (2.10.155),

that α[+2] =
(1)
Ψ0 and α[−2] = r4

(1)
Ψ4 satisfiy the equation (2.10.150).

With the frame (2.10.155) relations, the relation of Ψ0 and Ψ4 to the S2
u,v-tensors α and α is

now straightforward

Ψ0 = 1
r2Ω2

(
αθθ + i

sin θαθφ

)
, Ψ4 = Ω2

r2

(
αθθ − i

sin θαθφ

)
, (2.10.156)

where the trace-free property of α and α has been used. Therefore, under linearisation around
the Schw4 background one has

(1)
Ψ0 = 1

r2Ω2

((1)
αθθ + i

sin θ
(1)
αθφ

)
,

(1)
Ψ4 = Ω2

r2

((1)
αθθ − i

sin θ
(1)
αθφ

)
. (2.10.157)

Using (2.10.157), the relation between equation (2.10.150) and proposition 2.10.4 for n = 4 can
be stated. One can show using proposition 2.10.4 that

α[+2] = 1
r2Ω2

((1)
αθθ + i

sin θ
(1)
αθφ

)
, (2.10.158)

α[−2] = Ω2r2
((1)
αθθ − i

sin θ
(1)
αθφ

)
, (2.10.159)

satisfy the equation (2.10.150). Conversely, if α[±2] satisfy the equation (2.10.150) for s = ±2
respectively then one can show that

(1)
α = Ω2r2

(
R(α[+2])(dθ ⊗ dθ − sin2 θdφ⊗ dφ) + sin θI(α[+2])(dθ ⊗ dφ+ dφ⊗ dθ)

)
,

(2.10.160)
(1)
α = 1

Ω2r2

(
R(α[−2])(dθ ⊗ dθ − sin2 θdφ⊗ dφ) − sin θI(α[−2])(dθ ⊗ dφ+ dφ⊗ dθ)

)
,

(2.10.161)

satisfies proposition 2.10.4 for n = 4.



Chapter 3

Weak Stability of Schwarzschild from
Canonical Energy

3.1 Introduction

The main topic of this chapter is the study of the linear stability problem for the exterior of the
4-dimensional Schwarzschild black hole spacetime [1]. The aim of this chapter is to establish the
‘weak’ linear stability of the 4D Schwarzschild black hole exterior spacetime using the canonical
energy conservation law of Hollands and Wald [65]. The main step in achieving this aim is to
establish a explicit connection between the conservation laws of Holzegel [90] and the conservation
law for the canonical energy. This work also acts as a blueprint for exploring the use of the
canonical energy to prove weak stability results on other spacetimes; for example the Kerr black
hole spacetime [106].

3.1.1 Previous Works and Context

The definitive result on the linear stability of the Schwarzschild spacetime was published in 2019
in the monumental work of Dafermos, Holzegel and Rodnianski [28] (the reader should also note
the definitive work of Dafermos, Holzegel, Rodnianski and Taylor [35] on the non-linear problem).
Their result can be stated roughly as follows

Theorem 3.1.1 (Linear Stability of the Schwarzschild Solution [28]). All solutions to the linearised
vacuum Einstein equation (I.5) (in double null gauge) around Schwarzschild arising from regular
asymptotically flat initial data remain uniformly bounded on the exterior and (after adding a
pure gauge solution which can be estimated by the size of the data) decay inverse polynomially
(through a suitable foliation) to a linearised Kerr solution.

Remark 3.1.2. This statement is the best one could expect for the linearised vacuum Einstein
equation (I.5) on the Schwarzschild exterior; in view of the existence of the Kerr solution, the
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best one can expect of general solutions to the linearised vacuum Einstein equation (I.5) on the
Schwarzschild exterior is that the decay to a linear combination of a pure gauge solution and a
linearised Kerr solution.

This result came approximately 60 years after the seminal results of Regge and Wheeler [36]
on the mode stability of the Schwarzschild black hole spacetime in 1957. In the successive decades
there were numerous works studying linear perturbations of the Schwarzschild and Kerr spacetimes
(see for example [10–18]) which led to the conjecture that the Schwarzschild spacetime and Kerr
spacetime are (linearly) stable. From this early literature, the proof of theorem 3.1.1 exploits the
celebrated (tensorial) Teukolsky equations for the (residually) gauge invariant quantities (1)

α and (1)
α

which decouple from the full system of linear equations [13]. The work [28] finds a transformation
from (1)

α and (1)
α to solutions P and P of the (tensorial) Regge–Wheeler equation by a physical

space interpretation of the Chandrasekhar transformation [15] (for a derivation of the Teukolsky
equations and Regge–Wheeler equations see the discussion in section 2.10.4). Additionally, the
proof of theorem 3.1.1 relies on more recent work which advanced the understanding of ways to
produce robust boundedness and decay statements for the scalar wave equation on black hole
exteriors [19–28]. These recent advances for the scalar wave equation can be applied in the
proof of theorem 3.1.1 to produce robust decay estimates for P and P . Through a hierarchical
structure in the linearised system, that the authors identify, the rest of the linearised system can
be estimated through transport equations.

Despite the above theorem 3.1.1, it is still of interest to study alternative methods to approach
the problem of linear stability of the Schwarzschild spacetime. Amongst possible others, there are
two important reasons that are of relevance in this chapter:

(1) It is useful to have a method to investigate stability of a black hole spacetime which
avoids the physical space Chandrasekhar transformation theory and, ideally, the use of the
decoupled Teukolsky equations. This is because decoupling of the linearised system on other
black hole backgrounds is not always possible, let alone a transformation to an equation
which can be treated with the methods available for the wave equation. As illustrated
by section 2.10.4 on the Teukolsky equation on n-dimensional Schwarzschild–Tangherlini,
decoupling often fails in higher dimensions, even in highly symmetric spacetimes.

(2) The proof of [28] requires initial boundedness of (up to) second derivatives of curvature
to obtain control of some linearised Ricci coefficients (the linearised shear) on the future
event horizon, it is therefore of interest to investigate methods which require less control
on initial data to produce such estimates.

One such method was suggested by Holzegel [90] which relies upon a conservation law inherent in
the system of gravitational perturbations on Schwarzschild in double null gauge. The conservation
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law holds on a characteristic rectangle on the exterior of the 4D Schwarzschild spacetime as
depicted in blue in the following Penrose diagram:

I+H+

I−H−

i+

i0◦

◦

◦

◦
Cu1

Cu0
Cv0

Cv1

R

Fig. 3.1 A region R bounded by a characteristic rectangle on the Schwarzschild exterior.

Here Cu and Cv are the null hypersurfaces given by the level sets of the double null Eddington–
Finkelstein coordinates, i.e., {u = const.} and {v = const.} respectively. Define the following
‘modified T -canonical energies’ (in terminology that will become apparent in the body of the
work) on Cu and Cv respectively

ET
u [h](v0, v1) .=

∫ v1

v0

[
|Ω

(1)
χ̂|2 + 2|Ω(1)

η|2 − 2(1)
ω

(1)

(ΩTr/gχ) − 1
2

(1)

(ΩTr/gχ)2 + 4ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
]
dv/ε,

(3.1.1)

ET
v [h](u0, u1) .=

∫ u1

u0

[
|Ω

(1)
χ̂|2 + 2|Ω(1)

η|2 − 2(1)
ω

(1)

(ΩTr/gχ) − 1
2

(1)

(ΩTr/gχ)2 − 4ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
]
du/ε,

(3.1.2)

where /ε is the volume form on S2
u,v. The work [90] then shows directly from the linearised null

structure equations (see section 2.10.1) that one has a conservation law for these fluxes (3.1.1)
and (3.1.2). Using this conservation law together with an understanding of the pure gauge
solutions Holzegel proves the following statement (stated here roughly):

Theorem 3.1.3 (Holzegel). Let h be a smooth solution of the linearised vacuum Einstein
equation (I.5) in double null gauge. Then the modified canonical energies in equations (3.1.1)
and (3.1.2) satisfy the following conservation law:

ET
v0 [h](u0, u1) + ET

u0 [h](v0, v1) = ET
v1 [h](u0, u1) + ET

u1 [h](v0, v1). (3.1.3)
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Further, suppose h arises from suitably normalised asymptotically flat (see section 3.4.3) initial
data. Then there exists a constant KM > 0 independent of u such that along any outgoing cone
Cu with u ≥ u0 ∫ ∞

v0

∫
S2

u,v

|Ω
(1)
χ̂|2(u, v)dv/ε ≤ KM Edata (3.1.4)

for some suitable initial data energy Edata. Moreover, the total energy fluxes along the future
horizon H+ and future null infinity I+ are bounded by initial data, i.e.,∫

H+
|Ω

(1)
χ̂|2dv/ε +

∫
I+

|
(1)
χ̂|2du/ε ≤ Edata (3.1.5)

for some suitable initial data energy Edata[h].

Remark 3.1.4. The initial data energy Edata[h] as identified in Holzegel’s work is not manifestly
positive but the bound (3.1.5) proves positivity of the energy assigned to the initial data a
posteriori.

The boundedness of these fluxes in theorem 3.1.3 can be viewed as a weak stability statement.
In particular, the interpretation of the estimate (3.1.5) is that the sum of the energy leaving the
exterior region through the horizon H+ and the energy radiated to null infinity I+ is bounded by
initial data.

Remark 3.1.5. It is evident that a growing mode ansatz for the shear would contradict the
uniform bound (3.1.4). What is non-trivial to show (and will be shown in section 3.5.3 of this
chapter) is that, by commuting the bound in the estimate (3.1.5) with the T Killing field, one
can rule out solutions of the linearised vacuum Einstein equation (I.5) of the form

h = e−iωteimφHαβ(r, θ) (3.1.6)

with Im(ω) ≥ 0 for the metric.

The method of Holzegel [90] addresses both points (1) and (2) above, i.e., it does not rely on
the decoupled Teukolsky equations for (1)

α and (1)
α or the associated Chandrasekhar transformation

theory and it only requires initial boundedness of Ricci coefficients to produce such estimates.
However, [90] gives no systematic method to derive the conservation law in equation (3.1.3).
Incredibly, he spots them by eye in the linearised null structure equations! Hence, it is unclear what
their generalisation to other spacetimes is, for example to the Kerr spacetime or Schwarzschild–
Tangherlini spacetimes.

Recall from section 1.1.5, Hollands and Wald [65] gave another alternative approach to
general linear stability problems for stationary, axisymmetric vacuum black holes with their
criterion associated to the ‘canonical energy’. One may wonder if the canonical energy can be
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used to prove a weak stability statement for the 4-dimensional Schwarzschild black hole. As
mentioned in section 1.1.5 of chapter 1, this has remained an open problem until now. The
present chapter rectifies this issue by showing that, after considering the canonical energy locally
and exploiting a double null decomposition, the canonical energy conservation law allows one to
derive Holzegel’s conservation laws and, therefore, one can infer the positivity of the (modified)
canonical energy. Due to the generality of the canonical energy method, it is clear how to apply
it to other spacetimes (see section 3.1.3 for more discussion). Hence, it becomes clear from the
present work how to derive useful conservation laws from the canonical energy in double null
gauge.

Remark 3.1.6. There has been progress towards establishing the positivity of the canonical
energy on Schwarzschild by Prabu and Wald [119] who prove that the canonical energy of a
metric perturbation of Schwarzschild that is generated by a ‘Hertz potential’ is positive. They
conjecture (but do not prove) that any real, smooth metric perturbation of Schwarzschild can
be obtained as the real part of a metric perturbation generated by a smooth Hertz potential.
Initial data giving rise to a Hertz potential is unconstrained and thus gets around point (i) of
Hollands and Wald’s admissibility criterion. Moreover, they relate the energy quantity associated
to the Regge–Wheeler equation arising in the linear stability proof of Dafermos, Holzegel and
Rodnianski [28] to the canonical energy of an associated metric perturbation generated by a Hertz
potential. This conservation law occurs at the level of (up to) three derivatives of curvature. In
contrast, Holzegel’s weak stability result relies upon a conservation law that occurs at a much
lower regularity. In particular, the conservation law in question is at the level of Ricci coefficients.

3.1.2 Overview and Main Results: Theorems 3.1.7-3.1.13

This section contains a brief overview and outline of the main results of the chapter. The
main body of the chapter starts with section 3.2 which discusses the canonical energy in detail.
However, the exposition in this chapter will be slightly different to the original work of Hollands
and Wald [65]; rather than viewing the canonical energy as a constrained variational principle
evaluated on Cauchy hypersurfaces, the canonical energy is simply viewed as a quantity for
the linearised metric h arising from a ‘vector field current’ which can be evaluated locally. In
particular, for a vector field X the X-canonical energy will be associated to a current J [h]X

which is divergence free if X is Killing and h satisfies the linearised vacuum Einstein equation (I.5).
The X-canonical energy on some hypersurface Σ with unit normal nΣ will then be

EX
Σ [h] =

∫
Σ
nΣ(J [h]X)dvolΣ. (3.1.7)

Now, since J [h]X if divergence free is X is Killing, one can construct conservation laws for EX [h]
associated to the boundary of some spacetime region and the Killing symmetries of the spacetime.
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Section 3.3 contains the main body of the author’s original work. By evaluating the canonical
energy associated to the Killing field T .= ∂t for the Schwarzschild spacetime on the characteristic
rectangle depicted in figure 3.1 and choosing the metric perturbation h to be in double null gauge
(see definition 2.10.1), a double null decomposition of the canonical energy is achieved. Since T
is a Killing vector field one obtains a conservation law for the T -canonical energy

ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1) = ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1), (3.1.8)

where, to ease notation, one denotes

ET
u [h](v0, v1) .= ET

Cu∩{v0≤v≤v1}[h], ET
v [h](u0, u1) .= ET

Cv∩{u0≤u≤u1}[h]. (3.1.9)

A natural question to ask is: is this conservation law for the T -canonical energy related to
Holzegel’s conservation law of equation (3.1.3)? One of the main results of section 3.3 is to prove
the following precise relation between these conservation laws.

Theorem 3.1.7. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the Schwarzschild black hole exterior. Then the T -canonical energy of h
on the null cones Cu ∩ {v0 ≤ v ≤ v1} and Cv ∩ {u0 ≤ u ≤ u1} is given by

ET
u [h](v0, v1) = 2ET

u [h](u0, u1) − 2
∫
S2

u,v

A[h](u, v, θ, φ)/ε
∣∣∣v1

v0
, (3.1.10)

ET
v [h](u0, u1) = 2ET

v [h](v0, v1) + 2
∫
S2

u,v

A[h](u, v, θ, φ)/ε
∣∣∣u1

u0
. (3.1.11)

where ET
u [h] and ET

v [h] are defined in equations (3.1.1) and (3.1.2) and with

A[h] .=1
4((1)
ω − (1)

ω)Tr/g/h− 1
4((1)
η −(1)

η)(
(1)
b) + 1

8
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]
Tr/g/h− Ω

4 ⟨
(1)
χ̂−

(1)
χ̂, /̂h⟩ (3.1.12)

+ 3
2

((1)
Ω
Ω

)[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

+ 1
2(ΩTr/gχ)

((1)
Ω
Ω

)(
Tr/g/h− 4

((1)
Ω
Ω

))
.

Moreover, the modified T -canonical energies satisfy

ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1) = ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1). (3.1.13)

Remark 3.1.8. The last part of this theorem (equation (3.1.13)) follows the from the equa-
tions (3.1.10) and (3.1.11) in conjunction with the conservation law for the canonical energy (3.1.8).
Therefore, one can view this theorem as a proof that the canonical energy conservation law implies
Holzegel’s conservation law in equation (3.1.3).

The proof of theorem 3.1.7 (which can be found in section 3.3.3) relies upon using the
linearised null structure equations in propositions 2.10.7-2.10.17 (but not the linearised Bianchi
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equations in proposition 2.10.20) to integrate by parts and produce the boundary term A. More-
over, in proving this result the linearised Gauss and Codazzi constraint equations are key (see
proposition 2.10.15 and see proposition 2.10.17). This directly relates to point (i) of Hollands
and Wald’s admissible data criterion (see section 1.1.5). However, one advantage of using the
double null decomposition is that one can readily use these linearised constraint equations.

Section 3.3.4 constructs a ‘higher order’ T -canonical energy conservation law associated to
LΩih

a where {Ωi}3
i=1 are the Killing vector fields associated to the SO(3) symmetry of the

Schwarzschild spacetime (see equations (3.3.11)-(3.3.13) for explicit expressions for {Ωi}3
i=1).

For convenience, define the following ‘modified higher order T -canonical energies’:

/E
T

u [h](v0, v1) .=
∫ v1

v0

(Ω2r2

2 |
(1)
β|2 + 3Ω2r2ρ

2 |(1)
η|2 + Ω2r2

2
(
|(1)
σ|2 + |(1)

ρ|2
)

− 3r2ρ

2
(1)
ω

(1)

(ΩTr/gχ) (3.1.14)

− 3r2ρ

2
[1
2(ΩTr/gχ) − 2ω

]((1)
Ω
Ω

) (1)

(ΩTr/gχ)
)
dv/ε,

/E
T

v [h](u0, u1) .=
∫ u1

u0

(Ω2r2

2 |
(1)
β|2 + 3Ω2r2ρ

2 |(1)
η|2 + Ω2r2

2
(
|(1)
σ|2 + |(1)

ρ|2
)

− 3r2ρ

2
(1)
ω

(1)

(ΩTr/gχ)

(3.1.15)

+ 3r2ρ

2
[1
2(ΩTr/gχ) − 2ω

]((1)
Ω
Ω

) (1)

(ΩTr/gχ)
)
du/ε,

With these definitions in hand, the following theorem is proved in section 3.3.

Theorem 3.1.9. Suppose h is a smooth solution of the linearised vacuum Einstein equation (I.5)
in double null gauge on the Schwarzschild black hole exterior. The T -canonical energy of LΩk

h

satisfies

∑
k

ET
u [LΩk

h](v0, v1) = 8/E
T

u [h](v0, v1) + 4ET
u [h](v0, v1) − 2

∫
S2

u,v

B(u, v, θ, φ)/ε
∣∣∣v1

v0
, (3.1.16)

∑
k

ET
v [LΩk

h](u0, u1) = 8/E
T

v [h](u0, u1) + 4ET
v [h](u0, u1) + 2

∫
S2

u,v

B(u, v, θ, φ)/ε
∣∣∣u1

u0
. (3.1.17)

with

B[h] .= r2
( (1)

(ΩTr/gχ) /div(1)
η −

(1)

(ΩTr/gχ) /div(1)
η − (1)

ρ
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)

+ 2ΩTr/gχ
((1)

Ω
Ω

)(1)
ρ (3.1.18)

+ (ΩTr/gχ)⟨(1)
η,

(1)
η⟩ +

[ ω
Ω2 −

Tr/gχ

2Ω
] (1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)
)

+
∑

k

A[LΩk
h],

aNote that, by proposition C.1.4 in appendix C.1, if k is a Killing vector field and h solves the linearised vacuum
Einstein equation (I.5) then Lkh also solves the linearised vacuum Einstein equation (I.5).
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where A[LΩk
h] results from expressing A[h] in equation (3.1.12) in terms of h and replacing it

with LΩk
h. Moreover, the modified higher order T -canonical energies satisfy

/E
T

u1 [h](v0, v1) + /E
T

v1 [h](u0, u1) = /E
T

u0 [h](v0, v1) + /E
T

v0 [h](u0, u1). (3.1.19)

The reader should note that Holzegel also identified the conservation law (3.1.19) in [90] by
eye (see equations (82) and (83) and proposition 8.1 in [90]).

Section 3.3.5 constructs an additional ‘higher order’ T -canonical energy conservation law
associated to LTh. For convenience define the following ‘modified higher order T -canonical
energies’:

ĖT
u [h](v0, v1) .=

∫ v1

v0

(Ω4

4 |(1)
α|2 + 3

2Ω4(
|(1)
ρ|2 + |(1)

σ|2 + |
(1)
β|2

)
+ Ω4

2 |
(1)
β|2 + f2|

(1)
χ̂|2 + f1|

(1)
χ̂|2 (3.1.20)

+ f3|(1)
η|2 − 1

Ω2 f3
(1)
ω

(1)

(ΩTr/gχ) + 2
Ω2

(
ωf3 + 2ΩTr/gχf2

)((1)
Ω
Ω

) (1)

(ΩTr/gχ)

− f1
2Ω2

(1)

(ΩTr/gχ)2 − f2
2Ω2

[ (1)

(ΩTr/gχ) + 2(ΩTr/gχ)
((1)

Ω
Ω

)]2)
dv/ε,

ĖT
v [h](u0, u1) .=

∫ u1

u0

(Ω4

4 |(1)
α|2 + 3

2Ω4(
|(1)
ρ|2 + |(1)

σ|2 + |
(1)
β|2

)
+ Ω4

2 |
(1)
β|2 + f1|

(1)
χ̂|2 + f2|

(1)
χ̂|2 (3.1.21)

+ f3|(1)
η|2 − f3

Ω2
(1)
ω

(1)

(ΩTr/gχ) − 2
Ω2

(
ωf3 + 2ΩTr/gχf2

)((1)
Ω
Ω

) (1)

(ΩTr/gχ)

− f1
2Ω2

(1)

(ΩTr/gχ)2 − f2
2Ω2

[ (1)

(ΩTr/gχ) − 2(ΩTr/gχ)
((1)

Ω
Ω

)]2)
du/ε,

with

f1
.= −Ω2

(
ω2 + 5

4Ω2ρ
)
, f2

.= −3
4Ω4ρ, f3

.= 2Ω2(Ω2ρ− ω2). (3.1.22)

Additionally, the following theorem is proved in section 3.3.5:

Theorem 3.1.10. Suppose h is a smooth solution of the linearised vacuum Einstein equation (I.5)
in double null gauge on the Schwarzschild black hole exterior. Then the modified higher order
T -canonical energies satisfy

ĖT
u1 [h](v0, v1) + ĖT

v1 [h](u0, u1) = ĖT
u0 [h](v0, v1) + ĖT

v0 [h](u0, u1). (3.1.23)

Remark 3.1.11. To the best of the authors knowledge, no such local conservation law for (1)
α and

(1)
α has been derived.



3.1 Introduction 115

This chapter then concludes with a discussion of the energy boundedness statements that can
be derived from these conservation laws as well as a proof of mode stability. For this purpose,
the restrictions on initial data, along with the gauge freedom are discussed in section 3.4. For
completeness section 3.5.2 reproves the boundedness statement in [90] which was stated roughly
in theorem 3.1.3. Additionally, two other energy boundedness statements are proved. These can
be stated roughly as the following:

Theorem 3.1.12. Let h be a smooth solution of the linearised vacuum Einstein equation (I.5)
in double null gauge which is suitably normalised and asymptotically flat. Then there exists a
constant KM > 0 independent of u such that along any outgoing cone Cu with u ≥ u0∫ ∞

v0

∫
S2

u,v

|Ω
(1)
β|2(u, v)dv/ε ≤ KM /Edata (3.1.24)

for some suitable initial data energy /Edata (independent of u). Moreover, the following fluxes
along the future horizon H+ and future null infinity I+ are bounded by initial data:∫

H+
|Ω

(1)
β|2dv/ε +

∫
I+

|
(1)
β|2du/ε ≤ /Edata (3.1.25)

for some suitable initial data energy /Edata.

With the success of the conservation laws in theorems 3.1.7 and 3.1.9 producing L2-
boundedness statements for the shears (

(1)
χ̂,

(1)
χ̂) and (

(1)
β,

(1)
β), the reader may be wondering about if one

can use the local conservation law (3.1.23) in theorem 3.1.10 for ((1)
α,

(1)
α) to produce the analogue

of theorems 3.1.3 and 3.1.12? In particular, can the conservation law arising in theorem 3.1.10
produce a boundedness statement for |(1)

α|2 on any outgoing cone Cu and |(1)
α|2 at null infinity I+.

However, at the time of writing, any attempt to produce such an estimate has failed. However,
one does have a commuted estimate arising from theorem 3.1.3:

Theorem 3.1.13. Let h be a smooth solution of the linearised vacuum Einstein equation (I.5) in
double null gauge which is suitably normalised and asymptotically flat. Then the following fluxes
along the future horizon H+ and future null infinity I+ are bounded by initial data:∫

H+
|Ω2(1)

α|2dv/ε +
∫

I+
|(1)
α|2du/ε ≤ Ėdata (3.1.26)

for some suitable initial data energy Ėdata.

As mentioned in remark 3.1.5, section 3.5.3 will establish mode stability for solutions h to
the linearised vacuum Einstein equation (I.5) on the Schwarzschild black hole exterior. It is, in
fact, this last energy boundedness theorem for Ω2(1)

α and (1)
α in conjunction with some asymptotic

ODE analysis for the Teukolsky equation (2.10.150) that allows one to prove the following mode
stability statement:



116 Weak Stability of Schwarzschild from Canonical Energy

Corollary 3.1.14. Let h be a smooth solution to the linearised vacuum Einstein equation (I.5)
on the Schwarzschild black hole exterior of the form,

hαβ = e−iωteimφHαβ(r, θ), (3.1.27)

with Im(ω) ≥ 0 and which obeys suitable boundary conditions at the future event horizon and
future null infinity (in particular, boundary conditions consistent with finite energy on a suitable
hypersurface). Then it is the sum of a pure gauge and linearised Kerr solution.

3.1.3 Outlook

In this subsection, a few ideas for extensions to the work presented here are outlined.

The Extension to Kerr

It is conjectured that the subextremal Kerr black hole spacetime is asymptotically stable as
a solution to the vacuum Einstein equation (see section IV of the introduction of [35] for a
precise formulation of this conjecture). In view of the works [29] and [33] on quantitative
boundedness and decay for the Teukolsky equation on subextremal Kerr, the full linear stability
of the subextremal Kerr spacetime is within reach in analogy with [28]. Alternatively, one could
follow the weak stability path in analogy with the work in this chapter and attempt a energy
boundedness statement for the subextremal Kerr spacetime as shall be elaborated on in this section.

As was discussed in section 2.9 of chapter 2, the exterior of the Kerr spacetime can be
covered globally by double null coordinates. These coordinates were originally introduced in [108].
Naturally, one can consider the T -canonical energy on the exterior of Kerr to give a local conser-
vation law on a characteristic rectangle. Due to the reduced symmetry, most of the background
quantities are non-zero (and only implicitly defined). This is in stark contrast to the Schwarzschild
case where all but a few Ricci coefficients and curvature components are zero for the normalised
null frame associated with the double null coordinate chart. Therefore, the expressions resulting
for the T -canonical energy on the exterior of Kerr are far more complicated but, of course, can
be derived. The reader should note that here is where the canonical energy has a significant
advantage over the direct method of Holzegel [90]; since one starts with a conservation law that
can be manipulated rather than having to spot the conservation law in the relevant linearised null
structure equations.

Once the conservation law on the exterior of Kerr is derived, it is then very probable that the
method of obtaining ‘weak’ stability results (similar to theorem 3.1.3) presented in this chapter
would naturally extend to the Kerr spacetime albeit with some caveats and an increase in technical
complexity. Indeed, the main caveat is that one cannot expect to exploit the limits and the
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residual pure gauge freedom to produce a positive quantity at the horizon for arbitrary linear
perturbations to the Kerr spacetime due to the issue of superradiance. The expectation in the
Kerr case is that one could prove a restricted weak stability result for axisymmetric perturbations.
This is the topic of work in progress of the author with Holzegel. One should also note the work
of Moncrief and Gudapati [120] in this direction.

Remark 3.1.15. Instead of choosing a double null foliation of the Kerr exterior, one could
choose the ‘algebraically special null frame’ of Kerr to compute the local conservation law (see
section 2.9). The algebraically special frame is advantageous since more of the Ricci coefficients
and curvature components vanish identically and one has explicit expressions for them in terms
of (r, θ). The complexity of the problem is pushed into the null structure equations since the
space span(e3, e4)⊥ is not integrable (see, for example, [114]). This complexity manifests itself
as additional equations for the quantities such as the twist: the anti-symmetric part of the null
second fundamental form χ. Additionally the non-integrability of the frame means that the
ability to integrate by parts is obscure and ultimately results in one having to understand the
relation between the double null foliation and the algebraically special frame. There are none of
these issues for the Schwarzschild case since the algebraically special frame coincides with the
normalised null frame of the double null foliation.

The Extension to Reissner–Nordström

The canonical energy arises naturally from the Einstein–Hilbert action for the Einstein vacuum
equation by considering antisymmetrised variations of the action. The notion of canonical energy
extends naturally to many theories with a Lagrangian formulation (see Keir [96]). In particular,
the Einstein–Maxwell system is a natural candidate for investigating the canonical energy outside
vacuum.

A natural starting place for investigating the canonical energy for Einstein–Maxwell would be
the Reissner–Nordström spacetime [121, 122]. Due to its spherical symmetry, the computations
should be reasonably tractable and allow one to investigate how the canonical energy behaves
when gravitational and electromagnetic perturbations are coupled. One should note that the full
linear stability in analogy with [28] has been established in [123].
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3.2 Canonical Energy

When trying to prove boundedness and decay for hyperbolic equations on black hole backgrounds
energy estimates have proved invaluable [19–28, 124]. In many cases, one can view such estimates
as arising from applications of the divergence theorem to energy currents. If one has an energy–
momentum tensor, T, associated to a theory, it provides a natural way to construct such energy
currents. In particular, if one has an energy–momentum tensor one can define an X-energy
current associated to a vector field X by

JX
a

.= TabX
b (3.2.1)

and, from this current, an ‘X-energy’ on a hypersurface Σ

EX
Σ

.=
∫

Σ
nΣ(JX)dvolΣ, (3.2.2)

where nΣ is the (future-directed) unit normal to Σ and dvolΣ is the induced volume form
associated to Σ. One can readily show that

div(JX) = TabΠX
ab, (3.2.3)

where ΠX .= 1
2LXg is called the deformation tensor. Applying the divergence theorem on a region

R bounded by two homologous hypersurfaces, Σ1 and Σ2, gives

EX
Σ1 =

∫
R
TabΠX

abdvol + EX
Σ2 , (3.2.4)

where n is the future-directed unit normal to the relevant hypersurface. Note that

div(JX) = 0, (3.2.5)

when X is Killing. Therefore, applying the divergence theorem gives a conservation law.

Famous examples of theories with energy-momentum tensors are the scalar wave equation
and Maxwell’s equations. Sadly, in the case of the linearised vacuum Einstein equation (I.5), no
such energy momentum tensor exists.b Nevertheless, there is an alternative way to construct
currents associated to some vector field X based on symplectic structure of the space of solutions
to the linearised vacuum Einstein equation (I.5). When one has a stationary spacetime and uses
the Killing field associated to stationarity T , this method of constructing currents gives rise to
the current which generates the ‘canonical energy’ of Hollands and Wald [65]. In this case, there

bFor linearised theory around the Minkowski spacetime there are various notions of energy–momentum pseudo-
tensors (see for example sections 20.3 and 20.4 in [125] or sections 6.3 and 7.5 in [92] for more discussion on this
topic).
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is no bulk term and one obtains a conservation law.

In this section a pedestrian approach to the canonical energy is presented. In sections 3.2.1
and 3.2.2, the idea of a canonical energy based on symplectic structure is motivated using the
wave equation and Maxwell’s equations. The canonical energy for the linearised vacuum Einstein
equation (I.5) is defined in section 3.2.3. Note that the exposition in this section gives a different
viewpoint on the canonical energy from that of the original work of Hollands and Wald. In
particular, the canonical energy is simply viewed as a quantity for the linearised metric h arising
from a ‘vector field current’ which can be evaluated locally. This section does not discuss the
nice connection of the canonical energy to black hole thermodynamics or the stability criterion
associated to the canonical energy when evaluated on Cauchy hypersurfaces. The interested
reader should consult [65] and the introductory section 3.1.1 of chapter 1.

3.2.1 Canonical Energy for the Wave Equation

A classic toy model for the Einstein equation (in harmonic coordinates) is the the wave equation

□gΨ = 0, (3.2.6)

for Ψ ∈ C∞(M) on a spacetime (M, g). The energy-momentum tensor for this theory is

T[Ψ]ab = ∇aΨ∇bΨ − 1
2gab|∇Ψ|2g. (3.2.7)

For a vector field X ∈ X(M) one has the associated current

(JX [Ψ])a = ∇XΨ∇aΨ − 1
2Xa|∇Ψ|2g. (3.2.8)

However, one can also define a current based on symplectic structure:

Definition 3.2.1 (Symplectic Current Associated to the Wave Equation). Let Φ,Ψ ∈ C∞(M).
Then the symplectic current associated to Φ and Ψ is defined as

w[Φ,Ψ]a .= gab(Φ∇bΨ − Ψ∇bΦ). (3.2.9)

Proposition 3.2.1. Suppose Φ,Ψ ∈ C∞(M) satisfy the wave equation (3.2.6) then w[Φ,Ψ] is
divergence free.

Proof. The result of this proposition follows from a direct computation of div(w[Φ,Ψ]) and
substitution of the wave equation (3.2.6).

This leads to a definition of a ‘canonical energy’ for the wave equation:
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Definition 3.2.2 (Canonical Energy for the Wave Equation). Let Ψ ∈ C∞(M) satisfy the wave
equation (3.2.6). Further, let X be a vector field and Σ be a hypersurface in (M, g) with (unit)
normal n. One defines the X-canonical energy current for the wave equation as

J X [Ψ] .= w[Ψ,LXΨ]. (3.2.10)

The X-canonical energy for the wave equation on Σ is defined as

EX
Σ [Ψ] .=

∫
Σ
n(J X [Ψ])dvolΣ. (3.2.11)

Proposition 3.2.2. Suppose Ψ ∈ C∞(M) satisfies the wave equation (3.2.6) and X is a vector
field. Then,

div(w[Ψ,LXΨ]) = −ΨgabKX
abc∇cΨ − 2ΨΠX

ab∇a∇bΨ (3.2.12)

where

KX
abc

.= ∇aΠX
bc + ∇bΠX

ac − ∇cΠX
ab, ΠX

ab
.= 1

2(LXg)ab (3.2.13)

Proof. One can calculate directly that

div(w[Ψ,LXΨ]) = −Ψ□g(LXΨ). (3.2.14)

Using proposition C.1.2 in appendix C.1 one sees ∇aLXΨ = LX(∇Ψ)a and therefore,

∇a∇bLXΨ = LX(∇∇Ψ)ab + KX
abc∇cΨ. (3.2.15)

One has that (LXg
−1)ab = −2ΠX

ab and, therefore, using that Ψ satisfies the wave equation (3.2.6),
one has

□gLXΨ = gabKX
abc∇cΨ + 2ΠX

ab∇a∇bΨ. (3.2.16)

Suppose one applies the divergence theorem to w[Ψ,LXΨ] in some region of a vacuum
spacetime depicted in the following diagram:

N 2 N2

N1 N 1

R

Σ1

Σ2
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If X is not a Killing vector field, then the right-hand side of equation (3.2.12) appears as the
bulk term. If one wanted to produce a Morawetz-type [124] spacetime estimate such a bulk term
seems undesirable since the right-hand side of equation (3.2.12) is not a quadratic expression
in derivatives of Ψ. On the other hand, if X is Killing then LXΨ is also a solution to the wave
equation (3.2.6) and therefore the bulk vanishes to yield the conservation law

EX
Σ1 [Ψ] + EX

N1 [Ψ] + EX
N 1

[Ψ] = EX
Σ2 [Ψ] + EX

N2 [Ψ] + EX
N 2

[Ψ], (3.2.17)

associated to the boundary of the region R depicted above.

For a general vector field X, it seems reasonable to expect that the X-canonical energy for a
spacetime is related to the standard X-energy constructed from the energy momentum tensor.
The following proposition confirms this expectation.

Proposition 3.2.3. Suppose X is a Killing field for a vacuum spacetime (M, g) and Ψ ∈ C∞(M)
solves the wave equation (3.2.6). Then the X-canonical energy current satisfies

(J X [Ψ])a = 2(JX [Ψ])a + (jX [Ψ])a (3.2.18)

where (JX [Ψ])a is defined in equation (3.2.8) as the standard X-current associated to the
energy-momentum tensor and

(jX [Ψ])b
.= ∇aAab, Aab

.= X[a∇b]Ψ2, (3.2.19)

i.e., J X [Ψ] and JX [Ψ] are related by a divergence. Moreover, jX [Ψ] is divergence free.

Proof. By the identity in proposition C.1.1 in appendix C.1 one has

(J X [Ψ])a = LXΨ∇aΨ − ΨLX(∇Ψ)a (3.2.20)

which can be expressed as

(J X [Ψ])a = 2LXΨ∇aΨ − (LXω)a (3.2.21)

for ωa
.= Ψ∇aΨ. Now, by the Killing property of X,

(LXω)a = (divQ)a + ωb∇aX
b (3.2.22)

= (∇bQ)ba + (divω)Xa − (∇bQ)ab (3.2.23)

for Qab
.= ωbXa. By the wave equation (3.2.6), divω = |∇Ψ|2g and hence the result.
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Remark 3.2.4. The fact that jX is a total divergence will be important in proposition 3.3.1
below which states the analogous result of theorem 3.1.7 for the wave equation (3.2.6) on the
Schwarzschild black hole.

Remark 3.2.5. As will be discussed in chapter 4 (see proposition 4.3.1), the above proposition
has an interesting generalisation to the linearised vacuum Einstein equation (I.5) despite the fact
that there is no energy-momentum tensor for the theory.

3.2.2 Canonical Energy for Maxwell’s Equations

Another well studied example of a field theory is Maxwell’s equations in the absence of sources for
a vector potential A ∈ Ω1(M) on a spacetime background. Maxwell’s equations can be written
neatly as

⋆(d ⋆ F ) = 0, dF = 0, (3.2.24)

where F .= dA is the Maxwell tensor. One has the following energy momentum tensor for the
potential A ∈ Ω1(M)

T[A]ab
.= FacFb

c − 1
4gab|F |2g. (3.2.25)

For identifying the symplectic current associated to Maxwell’s equations it turns out to be
useful to rewrite them in terms of the one form Aa as

P a
b
cd∇a∇cAd = 0, (3.2.26)

with

P abcd .= gacgbd − gadgbc. (3.2.27)

Definition 3.2.3 (Symplectic Current Associated to the Maxwell’s Equations). Let A1, A2 ∈
Ω1(M). Then the symplectic current associated to A1 and A2 is defined as

w[A1, A2]a .= P abcd((A1)b∇c(A2)d − (A2)b∇c(A1)d), (3.2.28)

with P abcd defined in equation (3.2.27).

Proposition 3.2.6. Suppose A1, A2 ∈ Ω1(M) satisfy the Maxwell’s equations (3.2.26) then
w[A1, A2] is divergence free.

Proof. This result follows from a direct computation of div(w[A1, A2]) with the Maxwell equa-
tion (3.2.26).
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Once again this leads to the definition of ‘canonical energy’ for Maxwell’s equations:

Definition 3.2.4 (Canonical Energy for the Maxwell’s Equations). Suppose A ∈ Ω1(M) satisfies
Maxwell’s equations (3.2.26). Further, let X be a vector field and Σ be a hypersurface in (M, g)
with (unit) normal n. One defines the X-canonical energy current for Maxwell’s equations as

J X [A] .= w[A,LXA]. (3.2.29)

The X-canonical energy for Maxwell’s equations on Σ is defined as

EX
Σ [Ψ] .=

∫
Σ
n(J X [A])dvolΣ. (3.2.30)

One again, one can apply the divergence theorem to J X [A] in some region of a vacuum
spacetime depicted in the following diagram:

N 2 N2

N1 N 1

R

Σ1

Σ2

As with solutions to the the wave equation (3.2.6), if X is Killing then LXA is also a solution to
the Maxwell’s equation (3.2.26) and therefore, by proposition 3.2.6, one obtains a conservation
law

EX
Σ1 [A] + EX

N1 [A] + EX
N 1

[A] = EX
Σ2 [A] + EX

N2 [A] + EX
N 2

[A], (3.2.31)

associated to the boundary of the region R depicted above.

3.2.3 Canonical Energy for the Linearised Einstein Vacuum Equation

It turns out to be convenient to rewrite the linearised vacuum Einstein equation (I.5) (plus its
trace) in the following form:

Proposition 3.2.7. Suppose (M, g) satisfies the vacuum Einstein equation (I.2) and h satisfies
the linearised vacuum Einstein equation (I.5). Then

P a
(bc)

def ∇a∇dhef = 0, (3.2.32)

where P is defined as

P abcdef .= gaegbfgcd − 1
2g

adgbegcf − 1
2g

abgefgcd − 1
2g

aegdfgbc + 1
2g

adgefgbc. (3.2.33)
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Proof. Computing directly, using equation (3.2.33), gives

P a
(bc)

def ∇a∇dhef = ∇a∇(chb)a − 1
2□ghbc − 1

2∇b∇cTrgh (3.2.34)

− 1
2div(divh)gbc + 1

2(□gTrgh)gbc.

The last two terms are the trace of the linearised vacuum Einstein equation (I.5) and therefore
cancel. Moreover, one can apply the Ricci identity to the the first term to give

P a
(bc)

def ∇a∇dhef = ∇(cdivhb) −R(b
a

c)
dhad − 1

2□ghbc − 1
2∇b∇cTrgh, (3.2.35)

where one uses Ric(g) = 0. Therefore, using the symmetries of the Riemann tensor and the
linearised vacuum Einstein equation (I.5) one has the result.

One can define the following symplectic current on sym(T ⋆M ⊗ T ⋆M):

Definition 3.2.5 (Symplectic Current). Let h1, h2 ∈ sym(T ⋆M ⊗ T ⋆M). Then the symplectic
current w associated to h1 and h2 is defined by

w[h1, h2]a .=P abcdef
(
(h2)bc∇d(h1)ef − (h1)bc∇d(h2)ef

)
, (3.2.36)

where P is defined in equation (3.2.33) of proposition 3.2.7.

Proposition 3.2.8. Suppose (M, g) satisfies the vacuum Einstein equation and h1 and h2 satisfy
the linearised vacuum Einstein equation (I.5). Then the symplectic current w[h1, h2] is divergence
free.

Proof. Computing directly once again gives

div(w[h1, h2]) = P abcdef ∇a(h2)bc∇d(h1)ef − P abcdef ∇a(h1)bc∇d(h2)ef (3.2.37)
+ P abcdef (h2)bc∇a∇d(h1)ef − P abcdef (h1)bc∇a∇d(h2)ef . (3.2.38)

Noting that P has the symmetry

P abcdef = P dfeacb, (3.2.39)

shows the first two terms in (3.2.38) cancel and proposition 3.2.7 shows that the last two
vanish.

Remark 3.2.9. As Hollands and Wald illustrate in [65], the current w[h1, h2] arises naturally
by considering antisymmeterised second variations of the Einstein–Hilbert action for a vacuum
spacetime (M, g) which has Lagrangian density

L = 1
16πScal(g)ε, (3.2.40)



3.2 Canonical Energy 125

where Scal(g) is the Ricci scalar of g and ε is the volume form associated to g.

Definition 3.2.6 (Canonical Energy). Let (M, g) be a spacetime satisfying the vacuum Einstein
equation (I.2) and h be a solution to the linearised vacuum Einstein equation (I.5). Let X be a
vector field and Σ be a hypersurface in (M, g) with (unit) normal n. The X-canonical energy on
Σ is defined as

EX
Σ [h] .=

∫
Σ
n(J X [h])dvolΣ, (3.2.41)

where J X [h] .= w[h,LXh].

Remark 3.2.10. This definition extends the definition of the canonical energy given by Hollands
and Wald in the sense that they consider the case only where (M, g) is stationary with stationary
Killing field T and then take X = T .

Proposition 3.2.11. Suppose (M, g) satisfies the vacuum Einstein equation and h satisfies the
linearised vacuum Einstein equation (I.5). Then the symplectic current J X [h] satisfies

div(J X [h]) = − hbcP
abcdef

(
KX

adp∇phef + KX
aep∇dh

p
f + KX

afp∇dh
p

e

)
(3.2.42)

− hbcP
abcdef

(
∇aKX

deph
p

f + KX
dep∇ah

p
f + ∇aKX

dfph
p

e + KX
dfp∇ah

p
e

)
+ (LXP )abcdefhbc∇a∇dhef ,

where

KX
abc

.= ∇aΠX
bc + ∇bΠX

ac − ∇cΠX
ab, ΠX

ab
.= 1

2(LXg)ab (3.2.43)

and (LXP )abcdef can be expressed in terms of ΠX
ab and the inverse metric.

Proof. This follows from a direct computation with the results in appendix C.1 and noting that

(LXP )abcdef ∇a∇dhef = −P abcdef LX(∇∇h)adef , (3.2.44)

by proposition 3.2.7.

Suppose one applies the divergence theorem to J X [h] in some region of a vacuum spacetime.
One gets the following proposition:

Proposition 3.2.12. Let h be a smooth solution to the linearised vacuum Einstein equation (I.5),
X a Killing vector field and R be a region of the vacuum spacetime (M, g) with boundary
depicted in the following diagram,
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N 2 N2

N1 N 1

R

Σ1

Σ2

where Σi are spacelike and Ni and N i are null. Then the X-canonical energy satisfies

EX
N1 [h] + EX

N 1
[h] + EX

Σ1 [h] = EN2 [h] + EX
N 2

[h] + EX
Σ2 [h]. (3.2.45)

Proof. This result follows from proposition 3.2.8 and proposition C.1.4 in appendix C.1.

If X is not a Killing vector field then the above proposition 3.2.12 can be modified to include
the expression in equation (3.2.42) appearing as a spacetime bulk term. If one wanted to produce
a Morawetz-type [124] spacetime estimate such a bulk term seems undesirable since the right-hand
side of equation (3.2.42) is not a quadratic expression in derivatives of h.

3.2.4 Higher Order Canonical Energies

Suppose the stationary spacetime (M, g) has a Killing field k (not necessarily the stationary
Killing vector field T ). By proposition C.1.4, if h is a solution to the linearised vacuum Einstein
equation (I.5) then Lkh is also a solution i.e. one can commute as many Lie derivatives Lk

through the linearised vacuum Einstein operator as one likes. Hence, one can consider a ‘higher
order’ X-canonical energy EX

Σ [Lm
k h] resulting from

(J X [Lm
k h])a = P abcdef

(
(LXLm

k h)bc∇d(Lm
k h)ef − (Lm

k h)bc∇d(LXLm
k h)ef

)
. (3.2.46)

For the 4-dimensional Schwarzschild solution one has the Killing fields associated to spherical
symmetry Ωi i = 1, 2, 3. In sections 3.3.4 and 3.3.5, the T -canonical energies of LΩih and LTh

will be evaluated.

Remark 3.2.13. Recall, more generally, that any two solutions of the linearised vacuum Einstein
equation (I.5) define a conserved quantity resulting from w ∈ X(M) of the form

w[h1, h2]a = P abcdef
(
(h1)bc∇d(h2)ef − (h2)bc∇d(h1)ef

)
. (3.2.47)

Hence, one could conceivably get conservation laws resulting from arbitrary combinations of Lie
derivatives with respect to Killing fields.
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3.3 Canonical Energy in Double Null Gauge

In this section, the proofs of theorems 3.1.7, 3.1.9 and 3.1.10 are given. In section 3.3.1 the
computation of the canonical energy in double null gauge is setup with a motivational example of
the main computation with the wave equation (3.2.6). Section 3.3.2 collects some preliminary
computations which will be useful in the proof of the theorems 3.1.7-3.1.10. The intensive
parts of the computations for the canonical energy in double null gauge are then given in
sections 3.3.3, 3.3.4 and 3.3.5 as the proofs of theorems 3.1.7, 3.1.9 and 3.1.10.

3.3.1 The Setup

Consider the exterior of Schw4 in double null Eddington–Finkelstein coordinates as defined in
equation (2.8.3). Consider a characteristic rectangle bounded by surfaces of constant u and v
on the exterior with vertices (u0, v0), (u1, v0), (u0, v1) and (u1, v1) as depicted in blue in the
following diagram:

I+H+

I−H−

i+

i0◦

◦

◦

◦
Cu1

Cu0
Cv0

Cv1

R

Fig. 3.2 The Penrose diagram depicting the setup up for the computation of the canonical energy
on the exterior of the Schw4 spacetime.

In the dual basis to e3 = 1
Ω∂u, e4 = 1

Ω∂v e1 = ∂θ and e2 = ∂φ the metric is

g = −2(f3 ⊗ f4 + f4 ⊗ f3) + /g (3.3.1)
= −2Ω2(du⊗ dv + dv ⊗ du) + /g. (3.3.2)

where /g = r2 /̊γ2. The volume form for the Schwarzschild black hole exterior is

ε = 2Ω2du ∧ dv ∧ /ε (3.3.3)
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where /ε is the induced volume form on S2
u,v. The induced volume forms on the surfaces of

constant u and v are given by

dvolCu = 2Ω2dv ∧ /ε, dvolCv = 2Ω2du ∧ /ε, (3.3.4)

respectively. To simplify notation, let

ET
u [h](v0, v1) .= ET

Cu∩{v0≤v≤v1}[h], ET
v [h](u0, u1) .= ET

Cv∩{u0≤u≤u1}[h]. (3.3.5)

By proposition 3.2.12 one has the following canonical energy conservation law for a smooth
solution h of the linearised vacuum Einstein equation (I.5):

ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1) = ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1). (3.3.6)

One can write the terms in this conservation law (3.3.6) explicitly as

ET
u [h](v0, v1) = 2

∫ v1

v0

∫
S2

u,v

du(J T [h])Ω2dv/ε = 2
∫ v1

v0

∫
S2

u,v

(J T [h])3Ωdv/ε, (3.3.7)

ET
v [h](u0, u1) = 2

∫ u1

u0

∫
S2

u,v

dv(J T [h])Ω2du/ε = 2
∫ u1

u0

∫
S2

u,v

(J T [h])4Ωdu/ε, (3.3.8)

where J T [h] is the vector defined in definition 3.2.5. For clarity, recall that

(J T [h])a = P abcdef ·
[
(LTh)bc∇dhef − hbc∇d(LTh)ef

]
, (3.3.9)

with P is defined as

P abcdef .= gaegbfgcd − 1
2g

adgbegcf − 1
2g

abgefgcd − 1
2g

aegdfgbc + 1
2g

adgefgbc. (3.3.10)

Recall that the Schwarzschild black hole spacetime Schw4 has three additional Killing fields
associated to the spherical symmetry of the spacetime. Let Ωk be the Killing fields on the
sphere S2, i.e.

Ω1 = ∂φ, (3.3.11)
Ω2 = sinφ∂θ + cot θ cosφ∂φ, (3.3.12)
Ω3 = cosφ∂θ − cot θ sinφ∂φ. (3.3.13)

As discussed in section 3.2.4, one has a canonical energy conservation law for LΩk
h for each

k = 1, 2, 3. In fact, the more appropriate conservation law is the sum of ET [LΩk
h]. Denote

/ET
u [h](v0, v1) .=

3∑
i=1

Eu[LΩih](v0, v1), /ET
u [h](v0, v1) .=

3∑
i=1

Ev[LΩih](u0, u1). (3.3.14)
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Then /ET satisfies

/ET
u0 [h](v0, v1) + /ET

v0 [h](u0, u1) = /ET
u1 [h](v0, v1) + /ET

v1 [h](u0, u1). (3.3.15)

One can write the terms in this conservation law (3.3.6) explicitly as

/ET
u [h](v0, v1) = 2

3∑
i=1

∫ v1

v0

∫
S2

(J [LΩih])3Ωdv/ε, (3.3.16)

/ET
v [h](u0, u1) = 2

3∑
i=1

∫ u1

u0

∫
S2

(J [LΩih])4Ωdu/ε. (3.3.17)

In the following sections the currents J T [h], ∑
k J T [LΩk

h] and J T [LTh] are computed in
explicitly. The reader should note that the proof of the statements in theorems 3.1.7-3.1.10 are
extremely computationally involved. As a instructive first step, the following argument for the
wave equation illustrates the key ideas of the proofs.

In double null Eddington–Finkelstein coordinates on the exterior the wave equation (3.2.6)
for Ψ ∈ C∞(Schw4) reduces to

− 1
Ω2∂u∂vΨ + 1

r
(∂v − ∂u)Ψ + /∆Ψ = 0 (3.3.18)

where /∆ is the Laplacian on S2
u,v. Define the following energies on Cu and Cv respectively

(which are the usual T -energies arising from the current in equation (3.2.8) defined using the
energy-momentum tensor):

ET
u [Ψ](v0, v1) .= 1

2

∫ v1

v0

∫
S2

(
| /∇4Ψ|2 + | /∇Ψ|2

)
Ω2dv/ε, (3.3.19)

ET
v [Ψ](u0, u1) .= 1

2

∫ u1

u0

∫
S2

(
| /∇3Ψ|2 + | /∇Ψ|2

)
Ω2dv/ε. (3.3.20)

For brevity, introduce the following notation for the T -canonical energy for the wave equation

ET
u [Ψ](v0, v1) .= ET

Cu∩{v0≤v≤v1}[Ψ], ET
v [Ψ](u0, u1) .= ET

Cv∩{u0≤u≤u1}[Ψ]. (3.3.21)

Since T is Killing, J T [Ψ] is divergence-free (see proposition 3.2.1). Therefore, the T -canonical
energy for the wave equation satisfies:

ET
u0 [Ψ](v0, v1) + ET

v0 [Ψ](u0, u1) = ET
u1 [Ψ](v0, v1) + ET

v1 [Ψ](u0, u1). (3.3.22)

The analogous result to theorem 3.1.7 for the wave equation is then the following:
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Proposition 3.3.1. Let Ψ be a smooth solution to the wave equation (3.2.6) on the Schwarzschild
black hole exterior. Then the T -canonical energy for the wave equation of Ψ on the null cones
Cu ∩ {v0 ≤ v ≤ v1} and Cv ∩ {u0 ≤ u ≤ u1} satisfies

ET
u [Ψ](v0, v1) = 2ET

u [Ψ](v0, v1) −
∫
S2

u,v

F [Ψ](u, v, θ, φ)/ε
∣∣∣v1

v0
(3.3.23)

ET
v [Ψ](u0, u1) = 2ET

v [Ψ](u0, u1) +
∫
S2

u,v

F [Ψ](u, v, θ, φ)/ε
∣∣∣u1

u0
(3.3.24)

with F .= 1
4Ψ(∂vΨ − ∂uΨ). Hence,

ET
u0 [Ψ](v0, v1) + ET

v0 [Ψ](u0, u1) = ET
u1 [Ψ](v0, v1) + ET

v1 [Ψ](u0, u1). (3.3.25)

Proof. Now since LT Ψ = T (Ψ) = 1
2(∂uΨ + ∂vΨ) and guv = − 1

2Ω2 one has

J X [Ψ]u = 1
4Ω2

(
∂uΨ∂vΨ + |∂vΨ|2 − Ψ∂2

vΨ − Ψ∂u∂vΨ
)
, (3.3.26)

J X [Ψ]v = 1
4Ω2

(
∂uΨ∂vΨ + |∂uΨ|2 − Ψ∂2

uΨ − Ψ∂u∂vΨ
)
. (3.3.27)

Using the decomposed wave equation (3.3.18) one finds

J X [Ψ]u + 1
Ω2r2∂v(r2F ) = 1

2Ω2

(
|∂vΨ|2 − Ψ∂u∂vΨ + Ω2

r
Ψ(∂vΨ − ∂uΨ)

)
(3.3.28)

= 1
2Ω2

(
|∂vΨ|2 + Ω2| /∇Ψ|2/g

)
− 1

2
/div

(
Ψ(/dΨ)♯) (3.3.29)

J X [Ψ]v − 1
Ω2r2∂u(r2F ) = 1

2Ω2

(
|∂uΨ|2 − Ψ∂u∂vΨ + Ω2

r
Ψ(∂vΨ − ∂uΨ)

)
(3.3.30)

= 1
2Ω2

(
|∂uΨ|2 + Ω2| /∇Ψ|2/g

)
− 1

2
/div

(
Ψ(/dΨ)♯). (3.3.31)

Therefore,

J X [Ψ]u = 1
2

(
|e4(Ψ)|2 + | /∇Ψ|2/g

)
− 1

2
/div

(
Ψ(/dΨ)♯) − 1

Ω2r2∂v(F ) (3.3.32)

J X [Ψ]v = 1
2

(
|e3(Ψ)|2 + | /∇Ψ|2/g

)
− 1

2
/div

(
Ψ(/dΨ)♯) + 1

Ω2r2∂u(F ). (3.3.33)

If one integrates equations (3.3.32) and (3.3.33) over the sphere, the /div terms vanish since ∂S2 = /0.
Hence, the result.

The key points that this proof illustrates is:

(i) The equation for the scalar field, i.e., the wave equation (3.2.6), in conjunction with
integration by parts over S2

u,v can be used to simplify the fluxes. In this case the wave
equation can be used to remove ∂u∂vΨ in exchange for first order derivative terms and an
angular Laplacian of the solution, which can be integrated by parts.
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(ii) If one adds 1
Ω2r2∂v(r2F) to (J T )u then subtracting 1

Ω2r2∂u(r2F) from (J T )v for some F

then one maintains a conservation law on hypersurfaces since the terms on the spheres at
the corners of the characteristic rectangle cancel.

(iii) There are second order derivatives of Ψ that cannot be exchanged for first order derivative
terms via the wave equation (as in point (i)). For example Ψ∂2

vΨ appears in J T . One can
use point (ii) to remove these terms. This is precisely what allows one to identify F = F .

With this discussion of the wave equation in hand, some intuition for why the main result in
theorem 3.1.7 is true can be given. First one should note that the Schwarzschild spacetime only
has a limited number of symmetries so there cannot be arbitrarily many independent conservation
laws. This means there is likely some relation between the canonical energy conservation law and
Holzegel’s conservation law (3.1.3). Further, observe that the linearised null structure equations
of section 2.10.1 have the form

∇h =
(1)
Γ, (3.3.34)

∇
(1)
Γ = Γ

(1)
Γ +

(1)
W, (3.3.35)

where Γ is the background Ricci coefficients and
(1)
Γ is the linear perturbations to the Ricci

coefficients and
(1)
W denotes the linearised Weyl curvature. Therefore, the flux densities J T [h]

involved in the canonical energy of h are of the schematic form

J T [h] = LTh · ∇h− h · ∇LTh =
(1)
Γ ·

(1)
Γ + Γh ·

(1)
Γ + h ·

(1)
W. (3.3.36)

It turns out that, in analogy with proposition 3.3.1 for solutions of the wave equation, by us-
ing only the linearised null structure equations (2.10.1), this last term involving curvature in
equation (3.3.36) can be replaced (exactly like Ψ∂u∂vΨ, Ψ∂2

vΨ and Ψ∂2
uΨ for the wave equation)

by the boundary term ±A (defined in theorem 3.1.7) on the spheres S2
u0,v0 , S2

u1,v0 , S2
u0,v1 and

S2
u1,v1 .

The intuition behind theorem 3.1.9 is the following. From the discussion in remark 2.10.3
combined with proposition C.1.4 that if h in double null gauge solves the linearised vacuum Einstein
equation (I.5) then so does LΩk

h. So if one writes the conservation law for the modified T -
canonical energy (see equations (3.1.1) and (3.1.2)) in terms of h then one can replace it everywhere
with LΩk

h. Effectively due to [T,Ωk] = 0 for all k = 1, 2, 3 and therefore LT LΩk
h = LΩk

LTh,
it turns out that this operation commutes through each term in equations (3.1.1) and (3.1.2) so
one can replace each linearised Ricci coefficient

(1)
Γ with LΩk

(1)
Γ. Roughly speaking, ∑

k /LΩk

(1)
χ̂ is

similar to the divergence operator /div on S2
u,v acting on the linearised shear

(1)
χ̂. From linearised
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Codazzi equations in proposition 2.10.17 one can see that

/div
(1)
χ̂ = −

(1)
β + . . . , /div

(1)
χ̂ =

(1)
β + . . . . (3.3.37)

Using the linearised null structure equations of propositions 2.10.7-2.10.17 in section 2.10.1, the
linearised Bianchi equations of proposition 2.10.20 and integration by parts one can then establish
theorem 3.1.9.

Finally, the intuition behind theorem 3.1.10 is the following. Following the same reasoning as
discussed above for theorem 3.1.9 one can replace each metric coefficient h and each linearised
Ricci coefficient

(1)
Γ in equations (3.1.1) and (3.1.2) with LTh and LT

(1)
Γ respectively. From linearised

shear equations in proposition 2.10.10 one can see that

/LT

(1)
χ̂ = /∇3

(1)
χ̂+ /∇4

(1)
χ̂ = −(1)

α+ . . . , (3.3.38)

/LT

(1)
χ̂ = /∇3

(1)
χ̂+ /∇4

(1)
χ̂ = −(1)

α+ . . . . (3.3.39)

Using the linearised null structure equations of propositions 2.10.7-2.10.17 in section 2.10.1, the
linearised Bianchi equations of proposition 2.10.20 and integration by parts one can then establish
theorem 3.1.10.

Remark 3.3.2. The conservation law (3.1.23) in theorem 3.1.10 arises from the solution LTh to
the linearised vacuum Einstein equation (I.5). One can consider the conservation laws for the
solution Lk

Th. Following the same reasoning as discussed above for theorem 3.1.9 one can replace
each metric coefficient h and each linearised Ricci coefficient

(1)
Γ in equations (3.1.1) and (3.1.2)

with Lk
Th and Lk

T

(1)
Γ respectively. Taking k = 4, and by naively considering /L4

T

(1)
χ̂ and /L4

T

(1)
χ̂ with

equations (3.3.38) and (3.3.39) one has

/L4
T

(1)
χ̂ = −/L3

T

(1)
α+ . . . = −( /∇3 + /∇4)3(1)

α+ . . . = /∇4P + . . . , (3.3.40)

/L4
T

(1)
χ̂ = −/L3

T

(1)
α+ . . . = −( /∇3 + /∇4)3(1)

α+ . . . = /∇3P + . . . , (3.3.41)

where one (P, P ) are solutions to the Regge–Wheeler equation in proposition 2.10.28 with n = 4.
Therefore, by replacing

(1)
χ̂ and

(1)
χ̂ by /L4

T

(1)
χ̂ and /L4

T

(1)
χ̂ in equations (3.1.1) and (3.1.2), one sees that

this will produce a conservation law that involves | /∇4P |2 in the flux on Cu and | /∇3P |2 in the
flux on Cv at top order. It seems likely that this conservation law is related to the conservation
law in proposition 11.1.1 in Dafermos–Holzegel–Rodnianski [28].
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3.3.2 Preliminary Computations

One should note that from the definition of double null Eddington–Finkelstein coordinates in
section 2.8 one has the following relations

1
r2 /∇3r

2 = −(Tr/gχ), 1
r2 /∇4r

2 = (Tr/gχ). (3.3.42)

From the null structure and Bianchi equations in sections 2.6 and 2.7.3 one has the following
relations for the background Ricci coefficients and curvature components of definitions 2.2.1
and 2.3.1 respectively:

/∇4Ω = ω,

/∇4(ΩTr/gχ) = 2ωTr/gχ− Ω
2 (Tr/gχ)2,

/∇4ρ = −3
2ρTr/gχ,

/∇4ω = Ωρ,

/∇3Ω = −ω,

/∇3(ΩTr/gχ) = Ω
2 (Tr/gχ)2 − 2ωTr/gχ,

/∇3ρ = 3
2ρTr/gχ,

/∇3ω = −Ωρ

(3.3.43)

and

ρ = −ω̂Tr/gχ. (3.3.44)

These relations in equations (3.3.42), (3.3.43) and (3.3.44) will be used liberally throughout the
rest of this section and the next.

For the canonical energy calculation one needs to compute ∇αhβγ and ∇α(LTh)βγ in the
double null basis. The following lemma is useful for this.

Lemma 3.3.3. Let S ∈ sym(T ⋆M ⊗ T ⋆M) on the Schwarzschild black hole exterior Schw4 with

S44 = S33 = S3A = 0, (3.3.45)

in the normalised null basis (e3, e4, ∂A) associated to the double null Eddington–Finkelstein
coordinates. Further, denote vS

A
.= S4A and /SAB

.= SAB which are considered as the components
of a S2

u,v-covector and symmetric S2
u,v 2-tensor. Then the non-zero components of (∇αS)βγ have

the following decomposition:

(∇3S)43 = e3(S43),

(∇4S)A4 = /∇4vS
A − ω̂vS

A,

(∇AS)44 = −(Tr/gχ)vS
A,

(∇4S)AB = ( /∇4/S)AB,

(∇4S)43 = e4(S43),

(∇3S)A4 = /∇3vS
A − ω̂vS

A,

(∇AS)34 = ∂A(S34) + 1
2(Tr/gχ)vS

A,

(∇3S)AB = ( /∇3/S)AB,

(3.3.46)
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and

(∇AS)3B = 1
2(Tr/gχ)

(
SAB + 1

2S34/gAB

)
, (3.3.47)

(∇AS)4B = /∇AvS
B − 1

2(Tr/gχ)
(
SAB + 1

2S34/gAB

)
, (3.3.48)

(∇AS)BC = ( /∇A/S)BC + 1
4(Tr/gχ)/gAC

vS
B + 1

4(Tr/gχ)/gAB
vS

C . (3.3.49)

Proof. One can calculate the above results using the formula

(∇µS)αβ = eµ(Sαβ) − S(∇µeα, eβ) − S(eα,∇µeβ), (3.3.50)

in conjunction with the proposition 2.8.2.

It will turn out that for calculating the canonical energy in double null gauge only the following
non-zero components of ∇αhβγ will be required:

Proposition 3.3.4. Let h ∈ sym(T ⋆M ⊗ T ⋆M) be a smooth solution to the linearised vacuum
Einstein equation (I.5) in double null gauge on the 4-dimensional Schwarzschild exterior. Then,
in the normalised null basis (e3, e4, ∂A) associated to the double null Eddington–Finkelstein
coordinates, one has

(∇3h)43 = − 4
Ω

(1)
ω,

(∇4h)A4 = − 1
Ω( /∇4

(1)
b)A + 2ω̂

(1)
bA

Ω ,

(̂∇4h)AB = 2
(1)
χ̂AB + 2

Ω(/D⋆
2
(1)
b)AB,

(∇4h)43 = − 4
Ω

(1)
ω,

(∇3h)A4 =
(1)
bA

2Ω(Tr/gχ) − 2((1)
η −(1)

η)A,

(̂∇3h)AB = 2
(1)
χ̂

AB
.

(3.3.51)

Proof. To prove this statement note that for h in double null gauge

h44 = h33 = h3A = 0, h34 = −4
((1)

Ω
Ω

)
, vh

B = h4B = −
(1)
bB

Ω , hAB = /hAB. (3.3.52)

The results follow directly from lemma 3.3.3 and the linearised null structure equations (in
particular, proposition 2.10.7). The reader should note the decomposition

( /∇3/h)AB = /∇3(Tr/g/h)/gAB
+ ( /∇3 /̂h)AB, (3.3.53)

( /∇4/h)AB = /∇4(Tr/g/h)/gAB
+ ( /∇4 /̂h)AB. (3.3.54)

The following computation gives the components of LTh in the normalised null frame.



3.3 Canonical Energy in Double Null Gauge 135

Proposition 3.3.5. Let T .= ∂t be the Killing field associated to stationarity of Schw4. Further,
let h ∈ sym(T ⋆M ⊗ T ⋆M) a smooth solution to the linearised vacuum Einstein equation (I.5) in
double null gauge on the 4-dimensional Schwarzschild exterior. Then, in the basis (e3, e4, ∂A)
associated to the double null Eddington–Finkelstein coordinates, LTh has the following components

(LTh)44 = 0, (LTh)33 = 0, (LTh)A3 = 0, (LTh)34 = −2((1)
ω + (1)

ω), (3.3.55)

(LTh)4A = vLT h
A = −1

2( /∇4
(1)
b)A − Ω((1)

η −(1)
η)A + 1

4(Tr/gχ)
(1)
bA, (3.3.56)

(LTh)AB = (/LT /h)AB = 1
2(LT Tr/g/h)/gAB

+ Ω
(1)
χ̂AB + Ω

(1)
χ̂

AB
+ (/D⋆

2
(1)
b)AB. (3.3.57)

Proof. First note that since t = u+ v and r⋆ = v − u one has T = Ω
2 (e3 + e4). From this one

can compute ∇4T = ωe4, ∇3T = −ωe3 and ∇AT = 0. Also,

(∇Th)αβ = Ω
2 (∇3h)αβ + Ω

2 (∇4h)αβ. (3.3.58)

Hence, one can use proposition 3.3.4 to compute (∇Th)αβ . Finally one can finish the calculations
by using the formula

(LTh)αβ = (∇Th)αβ + hγβ(∇αT )γ + hγα(∇βT )γ (3.3.59)

in conjunction with lemma 3.3.3 for h in double null gauge and proposition 3.3.4.

Proposition 3.3.6. Let h ∈ sym(T ⋆M ⊗ T ⋆M) be a smooth solution to the linearised vacuum
Einstein equation (I.5) in double null gauge on the 4-dimensional Schwarzschild exterior expressed
in double null Eddington–Finkelstein coordinates. Then, in the basis (e3, e4, ∂A),

(∇3(LTh))43 = 2Ω
((1)
ρ+ 2ρ

((1)
Ω
Ω

))
− 2

Ω∂u
(1)
ω, (3.3.60)

(∇4(LTh))43 = − 2
Ω∂v

(1)
ω + 2Ω

((1)
ρ+ 2ρ

((1)
Ω
Ω

))
, (3.3.61)

(∇3(LTh))A4 = 1
4(Tr/gχ)

(
/∇4

(1)
b− 1

2(Tr/gχ)
(1)
b
)

A
+ 2 /∇A((1)

ω − (1)
ω) + 2Ω(

(1)
β +

(1)
β)A (3.3.62)

− 1
2(ΩTr/gχ)((1)

η + 3(1)
η)A,

( ̂∇3(LTh))AB = ( ̂/∇3(/LTh))AB = 1
2(ΩTr/gχ)(

(1)
χ̂+

(1)
χ̂) − 2Ω/D⋆

2
(1)
η − 2ω

(1)
χ̂− Ω(1)

α, (3.3.63)

( ̂∇4(LTh))AB = ( ̂/∇4(/LTh))AB (3.3.64)

= /D⋆
2( /∇4

(1)
b) − 1

2Tr/gχ/D
⋆
2
(1)
b− 1

2(ΩTr/gχ)(
(1)
χ̂+

(1)
χ̂) − 2Ω/D⋆

2
(1)
η + 2ω

(1)
χ̂− Ω(1)

α. (3.3.65)
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Proof. To prove these relations one uses lemma 3.3.3 and proposition 3.3.5 to double null
decompose the above quantities. The results above then follow from an application of the
commutation lemma 2.8.4 and the linearised null structure equations of section 2.10.1.

Proposition 3.3.7. Let h ∈ sym(T ⋆M ⊗ T ⋆M) be a smooth solution to the linearised vacuum
Einstein equation (I.5) in double null gauge on the 4-dimensional Schwarzschild exterior. Then
one has the following relations

/LT Tr/g/h =
(1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ) − /div
(1)
b, (3.3.66)

/∇3(/LT Tr/g/h) = 1
Ω

(
2Ω2 /div(1)

η + 2Ω2
((1)
ρ+

(1)
Ω
Ωρ

)
+ 1

2(ΩTr/gχ)
( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)

(3.3.67)

− 2ω
(1)

(ΩTr/gχ) − 2(ΩTr/gχ)(1)
ω

)
,

/∇4(/LT Tr/g/h) = 1
Ω

(
2Ω2 /div(1)

η + 2Ω2
((1)
ρ+

(1)
Ω
Ωρ

)
− 1

2(ΩTr/gχ)
( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)

(3.3.68)

+ 2ω
(1)

(ΩTr/gχ) + 2(ΩTr/gχ)(1)
ω − Ω /div( /∇4

(1)
b) + 1

2(ΩTr/gχ) /div
(1)
b
)
.

Proof. The first equation follows from proposition 2.10.7. The rest of the results then follow
from the linearised Raychauduri equations in proposition 2.10.9 and propagation equations for
the expansions in proposition 2.10.8. Note that for the last equation one uses the commutation
lemma 2.8.4.

3.3.3 Proof of Theorem 3.1.7

In the following subsection the main computation is performed. Many of the details are provided
to leave the reader with no illusion as to the technical nature of the manipulations.

Proof of theorem 3.1.7. In this proof the following convention is adopted. The symbol ≡ will
denote equality under integration by parts on S2

u,v.

Recall that the T -canonical energy current J T [h]a is given by

J T [h]a =P abcdef
[
(LTh)bc∇dhef − hbc∇d(LTh)ef

]
, (3.3.69)

with

P abcdef .= gaegbfgcd − 1
2g

adgbegcf − 1
2g

abgefgcd − 1
2g

aegdfgbc + 1
2g

adgefgbc. (3.3.70)

The inverse metric has a very simple form in the dual basis to the normalised null frame
(e3, e4, ∂θ, ∂φ) associated to double null Eddington–Finkelstein coordinates. In particular, its
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non-zero components are

g34 = −1
2 , gAB = /g

AB. (3.3.71)

Recall that solution h to the linearised vacuum Einstein equation (I.5) in double null gauge is
given by

h44 = 0 = h33 = h3A, h34 = −4
((1)

Ω
Ω

)
, h4A = −

(1)
bA

Ω , hAB = /hAB, (3.3.72)

in the basis (e3, e4, ∂θ, ∂φ). Further by proposition 3.3.5, the vanishing components of LTh are

(LTh)44 = 0, (LTh)33 = 0, (LTh)A3 = 0. (3.3.73)

When calculating J T [h]4 one should note that /∇3/g = 0 and hence [Tr/g, /∇3] = 0. From
lemma 3.3.3 one has

(∇DS)3F = 1
2(Tr/gχ)(/SDF + 1

2S34/gDF
) (3.3.74)

for S = h or S = LTh. Hence,

/g
DF (∇DS)3F = 1

2(Tr/gχ)(Tr/g/S + S34), (3.3.75)

for S = h or S = LTh. Further, one can decompose (LTh)AB into its trace and symmetric
traceless part as

(LTh)AB = 1
2(LT Tr/g/h)/g + /̂LThAB, (3.3.76)

∇3(LTh)AB = 1
2
/∇3(LT Tr/g/h)/g + /̂∇3/LThAB, (3.3.77)

where one uses that (LTh)AB = (/LT /h)AB and /LT /g = 0. Combining these facts gives that
J T [h]4 can be written in a decomposed form as

J T [h]4 = 1
4

(
⟨ /̂LT /h, /̂∇3/h⟩ − ⟨/̂h, /̂∇3/LT /h⟩

)
+ 1

8
(
LT (Tr/g/h)e3(h34) − (Tr/g/h)e3((LTh)34)

)
+ 1

8
(
/∇3(LT Tr/g/h)Tr/g/h− (LT Tr/g/h) /∇3(Tr/g/h)

)
− 1

8
/∇3LT (Tr/g/h)h34 (3.3.78)

+ 1
8
/∇3(Tr/g/h)(LTh)34 + 1

8(Tr/gχ)
(
h34LT (Tr/g/h) − (LTh)34(Tr/g/h)

)
.

Similarly, noting the relations derived above in lemma 3.3.3 and that

1
4/g

ABvLT h
A

/∇BTr/g/h− 1
4/g

ABvh
A /∇BLT Tr/g/h ≡ −1

4
/divvLT hTr/g/h+ 1

4
/divvhLT Tr/g/h, (3.3.79)
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the component J T [h]3 can be calculated as

J T [h]3 ≡ 1
4

(
⟨ /̂LT /h, /̂∇4/h⟩ − 1

4⟨/̂h, ̂/∇4(/LT /h)⟩
)

+ 1
8

(
/∇4(LT Tr/g/h)Tr/g/h− (LT Tr/g/h) /∇4(Tr/g/h)

)
+ 1

8
(
LT (Tr/g/h)e4(h34) − (Tr/g/h)e4((LTh)34) − /∇4LT (Tr/g/h)h34 + /∇4(Tr/g/h)(LTh)34

)
− 1

8(Tr/gχ)
(
h34LT (Tr/g/h) − (LTh)34(Tr/g/h)

)
(3.3.80)

− 1
4(LTh)34 /divvh + 1

4h34 /divvLT h − 1
2⟨ /̂LTh, /̂∇v

h
⟩ + 1

2⟨/̂h, /̂∇v
LT h

⟩

+ 1
4

(
/g

ABvLT h
A (∇3h)4B − /g

ABvh
A(∇3LTh)4B − /divvLT hTr/g/h+ /divvhLT Tr/g/h

)
,

where vS
B = S4B (for S = h or S = LTh) is considered as a covector.

Further, using proposition 2.10.7, one has

/∇Avh
B = − 1

Ω
/∇AbB, (3.3.81)

/∇AvLT h
B = −1

2
/∇A( /∇4

(1)
b)B − Ω /∇A((1)

η −(1)
η)B + 1

2Tr/gχ/∇A

(1)
bB. (3.3.82)

So,

/̂∇vh = 1
Ω
/D⋆

2
(1)
b, /̂∇vLT h = 1

2
/D⋆

2( /∇4
(1)
b) + Ω( /D⋆

2
(1)
η − /D⋆

2
(1)
η) − 1

2Tr/gχ/D
⋆
2
(1)
b, (3.3.83)

/divvh = − 1
Ω
/div

(1)
b, /divvLT h = −1

2
/div( /∇4

(1)
b) − Ω /div(1)

η + Ω /div(1)
η + 1

2Tr/gχ /div
(1)
b. (3.3.84)

Therefore, exploiting these relations and propositions 3.3.4-3.3.7, one can write two complicated
expressions for J T [h]4 and J T [h]3:

J T [h]4 ≡ Ω
2 |

(1)
χ̂|2 − ω

Ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 1
2Ω

(1)
ω

(1)

(ΩTr/gχ) − 1
4Ω

(1)

(ΩTr/gχ)2 + Ω
2 ⟨

(1)
χ̂,

(1)
χ̂⟩ (3.3.85)

− Ω
2 ⟨(1)
η,

(1)
η +(1)

η⟩ − 1
4Ω

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) − 1
2Ω

(1)
ω

(
2

(1)

(ΩTr/gχ) − /div
(1)
b
)

− 1
2Ω

(1)
ω

(1)

(ΩTr/gχ)

+ Ω
2 ⟨ /div/̂h,(1)

η⟩ + Ω
4 ⟨/̂h,(1)

α⟩ + 1
2

(1)
β(

(1)
b) −

(ΩTr/gχ)
8 ⟨

(1)
χ̂+

(1)
χ̂, /̂h⟩ + 1

2ω⟨/̂h,
(1)
χ̂⟩ − 1

4Tr/gχ
(1)
η(

(1)
b)

+
Tr/gχ

16
[ (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
](

Tr/g/h− 4
((1)

Ω
Ω

))
− 1

4Ω
((1)

Ω
Ω

)(
4∂u

(1)
ω + 4(ΩTr/gχ)(1)

ω
)

+ 1
16Ω

(
4Ω2 /div(1)

η − 4ω
(1)

(ΩTr/gχ) + 4(∂u
(1)
ω) + 4(ΩTr/gχ)(1)

ω
)
Tr/g/h,
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J T [h]3 ≡ Ω
2 |

(1)
χ̂|2 − 1

4Ω
(1)

(ΩTr/gχ)2 − 1
2Ω

(1)

(ΩTr/gχ)(1)
ω + ω

Ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) + Ω
2 ⟨

(1)
χ̂,

(1)
χ̂⟩ (3.3.86)

+ Ω
2 |(1)
η|2 + 1

8Tr/gχ⟨
(1)
b,

(1)
η +(1)

η⟩ + 1
4⟨

(1)
b,

(1)
β −

(1)
β⟩ + 1

8(ΩTr/gχ)⟨/̂h, (
(1)
χ̂+

(1)
χ̂)⟩/g − 3

2Ω⟨(1)
η,

(1)
η⟩

− 1
4Ω

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) − 1
Ω

(1)

(ΩTr/gχ)(1)
ω − 1

2Ω
(1)

(ΩTr/gχ)(1)
ω + 1

2Ω
/div

(1)
b

(1)
ω

− 1
2ω⟨/̂h,

(1)
χ̂⟩ + Ω

4 ⟨/̂h, (1)
α⟩ + Ω

2 ⟨ /div/̂h,(1)
η⟩ + 1

4
(
⟨( /∇4

(1)
b), ((1)

η −(1)
η)⟩ + ⟨

(1)
b, /∇4

(1)
η⟩ − ⟨

(1)
b, /∇3

(1)
η⟩

)
+ 1

Ω
((1)

Ω
Ω

)(
(ΩTr/gχ)(1)

ω − ∂u
(1)
ω

)
+

ΩTr/gχ

16
[ (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
](

4
((1)

Ω
Ω

)
− Tr/g/h

)
+ 1

4Ω
(
Ω2 /div(1)

η + ∂v
(1)
ω + ω

(1)

(ΩTr/gχ) − (ΩTr/gχ)(1)
ω

)
Tr/g/h,

where the following relation has been employed

2
((1)

Ω
Ω

)
/div(1)
η ≡ −⟨(1)

η,
(1)
η +(1)

η⟩ (3.3.87)

and similarly for (1)
η. Also, note that in simplifying these expressions one uses the linearised Codazzi

equations in proposition 2.10.17 to give that

⟨/D⋆
2
(1)
b, 2

(1)
χ̂⟩ ≡ 2⟨

(1)
b, /div

(1)
χ̂⟩ = Tr/gχ⟨

(1)
b,

(1)
η⟩ + 2⟨

(1)
b,

(1)
β⟩ − 1

Ω
(1)

(ΩTr/gχ) /div
(1)
b, (3.3.88)

⟨/D⋆
2
(1)
b, 2

(1)
χ̂⟩ ≡ 2⟨

(1)
b, /div

(1)
χ̂⟩ = −Tr/gχ⟨

(1)
b,

(1)
η⟩ − 2⟨

(1)
b,

(1)
β⟩ − 1

Ω
(1)

(ΩTr/gχ) /div
(1)
b. (3.3.89)

The function A can be identified by the following observations:

(1) If one considers the wider problem of interest, namely the conservation law on the boundary
of a characteristic rectangle on the exterior EA of Schw4 then if one can write

J T [h]3 = J T [h]3 − 1
r2 /∇4F, J T [h]4 = J T [h]4 + 1

r2 /∇3F, (3.3.90)

for some function F , then one has a cancellation of F at the spheres at the corners of the
characteristic rectangle.

(2) There are terms in J 4 and J 3 which appear with the correct derivative (∂u for J 4 and ∂v

for J 3) to integrate by parts but one has no expression for them in terms of the null structure
equations. For example ∂u

(1)
ωTr/g/h and ⟨ /∇4

(1)
b, ((1)
η − (1)

η)⟩. However, one has expressions for

∂v
(1)
ω and ∂u

(1)
bA from propositions 2.10.13 and 2.10.7 respectively. So, with point (1) in

mind, expressing such terms as total derivative and adding and subtracting such terms is
advantageous to manipulate the expressions for J 3 and J 4.
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The function A (defined in theorem 3.1.7) can be written as

A[h] = 1
r2

(
A1 − A2 − A3 − A4 + A5 − A6 − A7 + A8 + A9 − A10

)
(3.3.91)

with
A1

.= 1
4r

2(1)
ωTr/g/h,

A3
.= r2

4 ⟨
(1)
b,

(1)
η −(1)

η⟩,

A5
.= r2

8
(1)

(ΩTr/gχ)Tr/g/h,

A7
.= 3

2r
2
((1)

Ω
Ω

) (1)

(ΩTr/gχ),

A9
.=
r2(ΩTr/gχ)

2
((1)

Ω
Ω

)
Tr/g/h,

A2
.= 1

4r
2(1)
ωTr/g/h,

A4
.= r2

8
(1)

(ΩTr/gχ)Tr/g/h,

A6
.= r2Ω

4 ⟨
(1)
χ̂−

(1)
χ̂, /̂h⟩,

A8
.= 3r2

2
((1)

Ω
Ω

) (1)

(ΩTr/gχ),

A10
.= 2r2(ΩTr/gχ)

((1)
Ω
Ω

)2
.

(3.3.92)

One can check that using proposition 2.10.7 that

1
r2 /∇3A1 = −1

4(Tr/gχ)(1)
ωTr/g/h+ 1

4Ω∂u
(1)
ωTr/g/h+ 1

2Ω
(1)
ω

(1)

(ΩTr/gχ), (3.3.93)

1
r2 /∇4A1 = 1

4
(
(Tr/gχ)(1)

ω + 1
Ω∂v

(1)
ω

)
Tr/g/h+

(1)
ω

2Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)
, (3.3.94)

1
r2 /∇3A2 = −1

4(Tr/gχ)(1)
ωTr/g/h+ 1

4Ω∂u
(1)
ωTr/g/h+ 1

2Ω
(1)
ω

(1)

(ΩTr/gχ), (3.3.95)

1
r2 /∇4A2 = 1

4
(
(Tr/gχ)(1)

ω + 1
Ω∂v

(1)
ω

)
Tr/g/h+

(1)
ω

2Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)
. (3.3.96)

Using propositions 2.10.7 and 2.10.11 one has

1
r2 /∇3A3 = −1

4(Tr/gχ)⟨
(1)
b,

(1)
η −(1)

η⟩ + Ω
2 |(1)
η −(1)

η|2 + 1
4⟨

(1)
b, /∇3

(1)
η⟩ − 1

4⟨
(1)
b,

(1)
β⟩, (3.3.97)

1
r2 /∇4A3 =

Tr/gχ

8 ((1)
η −(1)

η)(
(1)
b) + 1

4
[
((1)
η −(1)

η)( /∇4
(1)
b) − ⟨

(1)
b, /∇4

(1)
η⟩ −

(1)
β(

(1)
b)

]
. (3.3.98)

Using propositions 2.10.7, 2.10.8 and 2.10.9 gives

1
r2 /∇3A4 = 1

4Ω
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + Ω
4 Tr/g/h /div(1)

η − 1
4Ω(∂u

(1)
ω)Tr/g/h (3.3.99)

− 1
16ΩTr/g/h(ΩTr/gχ)

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)
,

1
r2 /∇4A4 = 1

4Ω
(1)

(ΩTr/gχ)2 + 1
4ΩTr/g/h

(
ω

(1)

(ΩTr/gχ) + (ΩTr/gχ)(1)
ω

)
(3.3.100)

− 1
4Ω

(1)

(ΩTr/gχ) /div
(1)
b
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and

1
r2 /∇3A5 = 1

4Ω
(1)

(ΩTr/gχ)2 − 1
4ΩTr/g/h

(
ω

(1)

(ΩTr/gχ) + (ΩTr/gχ)(1)
ω

)
, (3.3.101)

1
r2 /∇4A5 = 1

4Ω
(1)

(ΩTr/gχ)
( (1)

(ΩTr/gχ) − /div
(1)
b
)

− 1
4Ω(∂v

(1)
ω)Tr/g/h (3.3.102)

+
Tr/gχ

16 Tr/g/h
[ (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
]

+ Ω
4
/div(1)
ηTr/g/h.

Using propositions 2.10.7 and 2.10.10 gives

1
r2 /∇3A6 = 1

8(ΩTr/gχ)⟨
(1)
χ̂+

(1)
χ̂, /̂h⟩ − Ω

2 ⟨
(1)
χ̂,

(1)
χ̂⟩ + Ω

2 |
(1)
χ̂|2 + Ω

2 ⟨(1)
η, /div/̂h⟩ (3.3.103)

− 1
2ω⟨

(1)
χ̂, /̂h⟩ − Ω

4 ⟨(1)
α, /̂h⟩,

1
r2 /∇4A6 ≡

ΩTr/gχ

8 ⟨
(1)
χ̂+

(1)
χ̂, /̂h⟩ + Ω

2 ⟨
(1)
χ̂,

(1)
χ̂⟩ − Ω

2 |
(1)
χ̂|2 − Ω

2 ⟨(1)
η, /div/̂h⟩ (3.3.104)

− 1
2ω⟨

(1)
χ̂, /̂h⟩ + Ω

4 ⟨(1)
α, /̂h⟩ + 1

2(
(1)
β +

(1)
β)(

(1)
b) +

Tr/gχ

4 ((1)
η +(1)

η)(
(1)
b)

− 1
4Ω

( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
/div

(1)
b.

With propositions 2.10.7, 2.10.8 and 2.10.9 one has

1
r2 /∇3A7 = 3

2Ω
(1)
ω

(1)

(ΩTr/gχ) − 3
Ω

((1)
Ω
Ω

)(
ω

(1)

(ΩTr/gχ) + (ΩTr/gχ)(1)
ω

)
, (3.3.105)

1
r2 /∇4A7 ≡ 3

2Ω
(1)
ω

(1)

(ΩTr/gχ) − 3
2Ω⟨(1)

η,
(1)
η⟩ − 3Ω

2 Ω|(1)
η|2 − 3

Ω
((1)

Ω
Ω

)
∂v

(1)
ω (3.3.106)

+ 3
4Ω

((1)
Ω
Ω

)
(ΩTr/gχ)

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)
.

Analogously, with propositions 2.10.7, 2.10.8 and 2.10.9 one has

1
r2 /∇3A8 = 3

2Ω
(1)
ω

(1)

(ΩTr/gχ) − 3
2Ω|(1)

η|2 − 3
2Ω⟨(1)

η,
(1)
η⟩ − 3

Ω
((1)

Ω
Ω

)
∂u

(1)
ω (3.3.107)

− 3
4

((1)
Ω
Ω

)
(Tr/gχ)

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)
,

1
r2 /∇4A8 = 3

2Ω
(1)
ω

(1)

(ΩTr/gχ) + 3
Ω

((1)
Ω
Ω

)(
ω

(1)

(ΩTr/gχ) + (ΩTr/gχ)(1)
ω

)
. (3.3.108)
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Using proposition 2.10.7 gives

1
r2 /∇3A9 = −Ω

4 (Tr/gχ)2
(1)
Ω
ΩTr/g/h− ωTr/gχ

(1)
Ω
ΩTr/g/h+ 1

Ω(ΩTr/gχ)
(1)
Ω
Ω

(1)

(ΩTr/gχ) (3.3.109)

+ 1
2(Tr/gχ)(1)

ωTr/g/h,

1
r2 /∇4A9 = 1

2(Tr/gχ)(1)
ωTr/g/h+ 1

4
[
ΩTr/gχ+ 4ω

]
Tr/gχ

((1)
Ω
Ω

)
Tr/g/h (3.3.110)

+ Tr/gχ
((1)

Ω
Ω

) (1)

(ΩTr/gχ) + 1
2Tr/gχ((1)

η +(1)
η)(

(1)
b),

1
r2 /∇3A10 = −Ω(Tr/gχ)2

((1)
Ω
Ω

)2
− 4ω(Tr/gχ)

((1)
Ω
Ω

)2
+ 4(ΩTr/gχ)

((1)
Ω
Ω

)(1)
ω, (3.3.111)

1
r2 /∇4A10 = Tr/gχ

[
ΩTr/gχ+ 4ω

]((1)
Ω
Ω

)2
+ 4(ΩTr/gχ)

((1)
Ω
Ω

)(1)
ω. (3.3.112)

Therefore, denoting (J T [h])3 = (J T [h])3 + 1
r2 /∇4(r2A) and (J T [h])4 = (J T [h])4 − 1

r2 /∇3(r2A),
one can calculate that

(J T [h])3 ≡ Ω|
(1)
χ̂|2 − 1

2Ω
(1)

(ΩTr/gχ)2 − 2
Ω

(1)

(ΩTr/gχ)(1)
ω + 4

Ω
((1)

Ω
Ω

)
ω

(1)

(ΩTr/gχ) + 2Ω|(1)
η|2 (3.3.113)

+
((1)

Ω
Ω

){ 2
Ω∂v

(1)
ω − Ω

(
/div /div/̂h− 1

2
/∆Tr/g/h

)
−

Tr/gχ

2
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)

+
Tr/gχ

4
(
ΩTr/gχ+ 4ω

)(
Tr/g/h− 4

((1)
Ω
Ω

))}
,

(J T [h])3 ≡ Ω|
(1)
χ̂|2 − 4

Ωω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 2
Ω

(1)
ω

(1)

(ΩTr/gχ) − 1
2Ω

(1)

(ΩTr/gχ)2 + 2Ω|(1)
η|2 (3.3.114)

+
((1)

Ω
Ω

){ 2
Ω∂u

(1)
ω − Ω

(
/div /div/̂h− 1

2
/∆Tr/g/h

)
−

Tr/gχ

2
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)

+
Tr/gχ

4
(
ΩTr/gχ+ 4ω

)(
Tr/g/h− 4

((1)
Ω
Ω

))}
,

where one uses that

〈(1)
η +(1)

η, /div/̂h− 1
2
/∇Tr/g/h

〉
≡ −2

((1)
Ω
Ω

)[
/div /div/̂h− 1

2
/∆Tr/g/h

]
. (3.3.115)

Using the linearised Gauss equation in proposition 2.10.15 gives the result stated in theorem 3.1.7.
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3.3.4 Proof of Theorem 3.1.9

Proof of theorem 3.1.9. In this proof the following convention is adopted. The symbol ≡ will
denote equality under integration by parts of S2

u,v.

Now rather than go through the direct computation as in section 3.3.3 one can use the
following idea to avoid (some of) the long computations. By propositions C.1.4 and the discussion
in remark 2.10.3, if h satisfies the linearised null structure equations then LΩk

h does. Note
further that one can establish

(LΩk
h)33 = 0 = (LΩk

h)44 = (LΩk
h)3A. (3.3.116)

Therefore, if one expresses (J T [h])4 − 1
r2 /∇3(r2A[h]) and (J T [h])3 + 1

r2 /∇4(r2A[h]) in terms
of h, then replacing with LΩk

h will result in a simpler form for the components of (J T [LΩk
h])

(plus a boundary term). One can check that this yields

(J T [LΩk
h])4 = 1

Ω
(
Ω2|/LΩk

(1)
χ̂|2 + 2Ω2|/LΩk

(1)
η|2 − 4ωΩk

((1)
Ω
Ω

)
Ωk(

(1)

(ΩTr/gχ)) (3.3.117)

− 2Ωk((1)
ω)Ωk(

(1)

(ΩTr/gχ)) − 1
2

(
Ωk

(1)

(ΩTr/gχ)
)2)

+ 1
r2 /∇3(r2A[LΩk

h]),

(J T [LΩk
h])3 = 1

Ω
(
2Ω2|/LΩk

(1)
η|2 + Ω2|/LΩk

(1)
χ̂|2 + 4ωΩk

((1)
Ω
Ω

)
Ωk

( (1)

(ΩTr/gχ)
))

(3.3.118)

− 2Ωk

( (1)

(ΩTr/gχ)
)
Ωk((1)

ω) − 1
2

(
Ωk

(1)

(ΩTr/gχ)
)2 − 1

r2 /∇4(r2A[LΩk
h]).

For simplicity, denote /J a .=
∑

k(J T [LΩk
h])a and /A .=

∑
k A[LΩk

h]. Now, note that {Ωk}k

satisfy the following identities
∑

k

ΩA
k ΩB

k = r2
/g

AB, (3.3.119)

/D⋆
2Ωk = 0 = /divΩk, (3.3.120)

where the latter two identities follow from the Killing property. Next from lemma 2.4.3, a covector
ξ ∈ Ω1(S2

u,v) satisfies

|/LΩk
ξ|2 = | /∇Ωk

ξ|2 + 1
4( /curlΩk)2|ξ|2 + ( /curlΩk)/ε(ξ, /∇Ωk

ξ). (3.3.121)

One can check that
∑

k

( /curlΩk)Ωk = 0. (3.3.122)
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Using equation (3.3.119) and that ∑
k( /curlΩk)2 = 4 one finds

∑
k

|/LΩk
ξ|2 = r2| /∇ξ|2 + |ξ|2. (3.3.123)

Similarly, using lemma 2.4.3, for Θ ∈ symtr(T ⋆S2
u,v ⊗ T ⋆S2

u,v) one has
∑

k

|/LΩk
Θ|2 = r2| /∇Θ|2 + 4|Θ|2. (3.3.124)

Then, using the above results with ξ ∈ {(1)
η,

(1)
η} and Θ ∈ {

(1)
χ̂,

(1)
χ̂} gives

/J 4 ≡ 1
Ω

(
Ω2r2| /∇

(1)
χ̂|2 + 4Ω2|

(1)
χ̂|2 + 2Ω2r2| /∇(1)

η|2 + 2Ω2|(1)
η|2 − 1

2r
2∣∣ /∇ (1)

(ΩTr/gχ)
∣∣2 (3.3.125)

− 4r2ω⟨ /∇
((1)

Ω
Ω

)
, /∇(

(1)

(ΩTr/gχ))⟩ − 2r2⟨ /∇((1)
ω), /∇(

(1)

(ΩTr/gχ))⟩
)

+ 1
r2 /∇3(r2 /A),

/J 3 ≡ 1
Ω

(
2Ω2r2| /∇(1)

η|2 + 2Ω2|(1)
η|2 + Ω2r2| /∇

(1)
χ̂|2 + 4Ω2|

(1)
χ̂|2 − 1

2r
2∣∣ /∇ (1)

(ΩTr/gχ)
∣∣2 (3.3.126)

− 2r2⟨ /∇
(1)

(ΩTr/gχ), /∇((1)
ω)⟩ + 4r2ω⟨ /∇

((1)
Ω
Ω

)
, /∇

(1)

(ΩTr/gχ)⟩
)

− 1
r2 /∇4(r2 /A).

Recall that, from propositions 2.10.7, 2.10.11, 2.10.14, and lemma 2.4.3

/d
((1)

Ω
Ω

)
= 1

2((1)
η +(1)

η),

/d
(1)
ω = Ω

2
(
/∇3

(1)
η − Tr/gχ

(1)
η +

(1)
β

)
,

| /∇Θ|2 ≡ 2| /divΘ|2 − Scal(/g)|Θ|2,

/curl(1)
η = (1)

σ = − /curl(1)
η,

/d
(1)
ω = Ω

2
(
/∇4

(1)
η + Tr/gχ

(1)
η −

(1)
β

)
,

| /∇ξ|2 ≡ | /curlξ|2 + | /divξ|2 −
Scal(/g)

2 |ξ|2.

(3.3.127)

Combining these results with ξ ∈ {(1)
η,

(1)
η} and Θ ∈ {

(1)
χ̂,

(1)
χ̂} and the commutation lemma 2.8.4 gives

/J 4 ≡ 1
Ω

(
2Ω2r2| /div

(1)
χ̂|2 + 2Ω2|

(1)
χ̂|2 + 2Ω2r2| /div(1)

η|2 + 2Ω2r2|(1)
σ|2 − 1

2r
2∣∣ /∇ (1)

(ΩTr/gχ)
∣∣2 (3.3.128)

+ 2r2ω /div((1)
η +(1)

η)
(1)

(ΩTr/gχ) + r2Ω /∇3( /div(1)
η)

(1)

(ΩTr/gχ) − 3
2r

2Ω(Tr/gχ) /div((1)
η)

(1)

(ΩTr/gχ)

+ r2Ω /div(
(1)
β)

(1)

(ΩTr/gχ)
)

+ 1
r2 /∇3(r2 /A),

/J 3 ≡ 1
Ω

(
2Ω2r2( /div(1)

η)2 + 2Ω2r2|(1)
σ|2 + Ω2r2| /div

(1)
χ̂|2 + 2Ω2|

(1)
χ̂|2 − 1

2r
2∣∣ /∇ (1)

(ΩTr/gχ)
∣∣2 (3.3.129)

+ r2Ω
(1)

(ΩTr/gχ) /∇4( /div(1)
η) + 3

2r
2Tr/gχΩ

(1)

(ΩTr/gχ) /div((1)
η) − r2Ω

(1)

(ΩTr/gχ) /div(
(1)
β)

− 2r2ω /div((1)
η +(1)

η)
(1)

(ΩTr/gχ)
)

− 1
r2 /∇4(r2 /A).



3.3 Canonical Energy in Double Null Gauge 145

Using the linearised Codazzi equations in proposition 2.10.17 one has

2Ω2r2| /div
(1)
χ̂|2 ≡ r2

2 | /∇
(1)

(ΩTr/gχ)|2 +
Ω2r2(Tr/gχ)2

2 |(1)
η|2 + 2Ω2r2|

(1)
β|2 (3.3.130)

+ 2Ω2r2(Tr/gχ)⟨(1)
η,

(1)
β⟩ − Ωr2Tr/gχ

(1)

(ΩTr/gχ) /div(1)
η − 2Ωr2

(1)

(ΩTr/gχ) /div
(1)
β,

2Ω2r2| /div
(1)
χ̂|2 ≡ r2

2 | /∇
(1)

(ΩTr/gχ)|2 +
Ω2r2(Tr/gχ)2

2 |(1)
η|2 + 2Ω2r2|

(1)
β|2 (3.3.131)

+ 2Ω2r2(Tr/gχ)⟨(1)
η,

(1)
β⟩ + Ωr2Tr/gχ

(1)

(ΩTr/gχ) /div(1)
η + 2Ωr2

(1)

(ΩTr/gχ) /div
(1)
β.

Substituting into /J a gives

/J 4 ≡ 1
Ω

(
2Ω2|

(1)
χ̂|2 + 2Ω2r2| /div(1)

η|2 + 2Ω2r2|(1)
σ|2 + Ω2r2

2 (Tr/gχ)2|(1)
η|2 + 2Ω2r2|

(1)
β|2 (3.3.132)

+ 2r2ω /div((1)
η +(1)

η)
(1)

(ΩTr/gχ) + r2Ω /∇3( /div(1)
η)

(1)

(ΩTr/gχ) + r2Ω /div(
(1)
β)

(1)

(ΩTr/gχ)

− 3
2r

2Ω(Tr/gχ) /div((1)
η)

(1)

(ΩTr/gχ) + 2Ω2r2(Tr/gχ)⟨(1)
η,

(1)
β⟩ − Ωr2Tr/gχ

(1)

(ΩTr/gχ) /div(1)
η

− 2Ωr2
(1)

(ΩTr/gχ) /div
(1)
β

)
+ 1
r2 /∇3(r2 /A),

/J 3 ≡ 1
Ω

(
2Ω2r2( /div(1)

η)2 + 2Ω2r2|(1)
σ|2 + 2Ω2|

(1)
χ̂|2 + Ω2r2

2 (Tr/gχ)2|(1)
η|2 + 2Ω2r2|

(1)
β|2 (3.3.133)

+ r2Ω
(1)

(ΩTr/gχ) /∇4( /div(1)
η) + 3

2r
2Tr/gχΩ

(1)

(ΩTr/gχ) /div((1)
η) − r2Ω

(1)

(ΩTr/gχ) /div(
(1)
β)

+ 2Ω2r2(Tr/gχ)⟨(1)
η,

(1)
β⟩ + Ωr2Tr/gχ

(1)

(ΩTr/gχ) /div(1)
η + 2Ωr2

(1)

(ΩTr/gχ) /div
(1)
β

− 2r2ω /div((1)
η +(1)

η)
(1)

(ΩTr/gχ)
)

− 1
r2 /∇4(r2 /A).

By considering similar ideas to the points (1) and (2) around equation (3.3.90) in the proof of
theorem 3.1.7 in section 3.3.3 one can identify a boundary term. To this end, define

B1
.= r4

( (1)

(ΩTr/gχ) /div(1)
η −

(1)

(ΩTr/gχ) /div(1)
η

)
,

B3
.= 2r4ΩTr/gχ

((1)
Ω
Ω

)(1)
ρ,

B5
.= r4

2ΩTr/gχ
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ),

B2
.= r4(1)

ρ
( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
,

B4
.= r4(ΩTr/gχ)⟨(1)

η,
(1)
η⟩,

B6
.= r4 ω

Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ).

(3.3.134)
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Computing /∇3B1 and /∇4B1 with propositions 2.10.9, 2.10.11 and 2.10.8 gives

1
r2 /∇3B1 ≡ 2r2Tr/gχ

(1)
ω /div(1)

η − 3
2r

2(Tr/gχ)
(1)

(ΩTr/gχ) /div(1)
η + 2r2Ω( /div(1)

η)2 + 2Ωr2(1)
ρ /div(1)

η (3.3.135)

− 2Ωr2ρ|(1)
η|2 − 2Ωr2ρ⟨(1)

η,
(1)
η⟩ + r2

(1)

(ΩTr/gχ) /∇3 /div(1)
η − r2

(1)

(ΩTr/gχ) /div
(1)
β

+ 2r2ω

Ω
(1)

(ΩTr/gχ) /div(1)
η,

and

1
r2 /∇4B1 ≡ 2r2Tr/gχ

(1)
ω /div(1)

η − 3
2r

2(Tr/gχ)
(1)

(ΩTr/gχ) /div(1)
η − 2r2Ω( /div(1)

η)2 − 2Ωr2(1)
ρ /div(1)

η (3.3.136)

+ 2Ωr2ρ|(1)
η|2 + 2Ωr2ρ⟨(1)

η,
(1)
η⟩ − r2

(1)

(ΩTr/gχ) /∇4 /div(1)
η − r2

(1)

(ΩTr/gχ) /div
(1)
β

+ 2r2ω

Ω
(1)

(ΩTr/gχ) /div(1)
η.

Again using propositions 2.10.9, 2.10.8 and the Bianchi equation for (1)
ρ in proposition 2.10.20 one

has that

1
r2 /∇3B2 ≡ r2( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
/div

(1)
β + 3

2r
2 ρ

Ω
(1)

(ΩTr/gχ)2 + 2Ωr2|(1)
ρ|2 (3.3.137)

− 3
2r

2 ρ

Ω
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + 2Ωr2(1)
ρ /div(1)

η + 4Ωr2ρ
((1)

Ω
Ω

)(1)
ρ

− r2Tr/gχ
(1)
ρ

(1)

(ΩTr/gχ) + 2r2 ω

Ω
(1)
ρ

(1)

(ΩTr/gχ) + 2r2Tr/gχ
(1)
ρ

(1)
ω,

1
r2 /∇4B2 ≡ r2( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
)
/div

(1)
β − 3

2r
2 ρ

Ω
(1)

(ΩTr/gχ)2 − 2Ωr2|(1)
ρ|2 (3.3.138)

+ 3
2r

2 ρ

Ω
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) − 2Ωr2(1)
ρ /div(1)

η − 4Ωr2ρ
((1)

Ω
Ω

)(1)
ρ

− r2Tr/gχ
(1)
ρ

(1)

(ΩTr/gχ) + 2r2 ω

Ω
(1)
ρ

(1)

(ΩTr/gχ) + 2r2Tr/gχ
(1)
ρ

(1)
ω.

Further, from propositions 2.10.7 and the Bianchi equation for (1)
ρ in proposition 2.10.20 one has

1
r2 /∇3B3 ≡ 2r2(Tr/gχ)(1)

ω
(1)
ρ+ r2(ΩTr/gχ)⟨

(1)
β,

(1)
η⟩ + r2(ΩTr/gχ)⟨

(1)
β,

(1)
η⟩ + 4r2ρ

((1)
Ω
Ω

)(1)
ρ (3.3.139)

− 3r2ρ(Tr/gχ)
((1)

Ω
Ω

) (1)

(ΩTr/gχ),

1
r2 /∇4B3 ≡ 2r2(Tr/gχ)(1)

ω
(1)
ρ− r2(ΩTr/gχ)⟨

(1)
β,

(1)
η⟩ − r2(ΩTr/gχ)⟨

(1)
β,

(1)
η⟩ − 4r2ρ

((1)
Ω
Ω

)(1)
ρ (3.3.140)

− 3r2ρ(Tr/gχ)
((1)

Ω
Ω

) (1)

(ΩTr/gχ).
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Noting that r2ρTr/gχ = −4Ωω = −4ω
Ω (1 + r2ρ) one can show, using proposition 2.10.11 that

1
r2 /∇3B4 ≡ −2r2(Tr/gχ)(1)

ω /div(1)
η + 2r2ρΩ

(
⟨(1)
η,

(1)
η⟩ − |(1)

η|2
)

− 2Ω|(1)
η|2 (3.3.141)

+ r2(ΩTr/gχ)⟨(1)
η −(1)

η,
(1)
β⟩,

1
r2 /∇4B4 ≡ −2r2(Tr/gχ)(1)

ω /div(1)
η − 2r2ρΩ⟨(1)

η,
(1)
η⟩ + 2Ω|(1)

η|2 + 2r2Ωρ|(1)
η|2 (3.3.142)

+ r2(ΩTr/gχ)⟨(1)
η −(1)

η,
(1)
β⟩.

Noting that (Tr/gχ)2 = 4
r2 + 4ρ and ωTr/gχ = −Ωρ with propositions 2.10.9 and 2.10.8 gives

1
r2 /∇3B5 ≡ r2(Tr/gχ)

(1)

(ΩTr/gχ)( /div(1)
η + (1)

ρ) − 8ωΩ
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 8ωΩρr
2
((1)

Ω
Ω

) (1)

(ΩTr/gχ) (3.3.143)

− 1
Ω

(1)

(ΩTr/gχ)2 − r2ρ

Ω
(1)

(ΩTr/gχ)2 + r2ρ

Ω
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) − 4
Ω

(1)
ω

(1)

(ΩTr/gχ)

− 4r2

Ω ρ
(1)
ω

(1)

(ΩTr/gχ),

1
r2 /∇4B5 ≡ r2(Tr/gχ)

(1)

(ΩTr/gχ)( /div(1)
η + (1)

ρ) − 8ωΩ
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 8ωΩρr
2
((1)

Ω
Ω

) (1)

(ΩTr/gχ) (3.3.144)

+ 1
Ω

(1)

(ΩTr/gχ)2 + r2ρ

Ω
(1)

(ΩTr/gχ)2 − r2ρ

Ω
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + 4
Ω

(1)
ω

(1)

(ΩTr/gχ)

+ 4r2

Ω ρ
(1)
ω

(1)

(ΩTr/gχ).

Finally, one can check that using propositions 2.10.9 and 2.10.8 that

1
r2 /∇3B6 ≡ − r2

2Ωρ
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + 2ωr2

Ω
(1)

(ΩTr/gχ) /div(1)
η + 2r2ω

Ω
(1)
ρ

(1)

(ΩTr/gχ) (3.3.145)

+ 4r2ωρ

Ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) + 1
2r

2 ρ

Ω
(1)

(ΩTr/gχ)2 + 2r2ρ

Ω
(1)
ω

(1)

(ΩTr/gχ),

1
r2 /∇4B6 ≡ r2

2Ωρ
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + 2ωr2

Ω
(1)

(ΩTr/gχ) /div(1)
η + 2r2ω

Ω
(1)
ρ

(1)

(ΩTr/gχ) (3.3.146)

+ 4r2ωρ

Ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 1
2r

2 ρ

Ω
(1)

(ΩTr/gχ)2 − 2r2ρ

Ω
(1)
ω

(1)

(ΩTr/gχ).

By writing that

B = 1
r2

(
B1 − B2 + B3 + B4 − B5 + B6

)
+

3∑
k=1

A[LΩk
h] (3.3.147)

one can now calculate ∑
(J [LΩih])4 − 1

r2 /∇3(r2B) and ∑
(J [LΩih])3 + 1

r2 /∇4(r2B) to show the
desired result.
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3.3.5 Proof of Theorem 3.1.10

Proof of Theorem 3.1.10. In this proof the following convention is adopted. The symbol ≡ will
denote equality under integration by parts of S2

u,v.

There are two methods to derive the conservation law of theorem 3.1.10. One can compute
directly using the linearised Bianchi identities (proposition 2.10.20) and linearised null structure
equations (propositions 2.10.7-2.10.17) that the fluxes appearing in the statement are conserved.
More precisely, one can compute that

0 ≡ 1
r2 /∇3

[
r2

(Ω4

4 |(1)
α|2 + 3

2Ω4(
|(1)
ρ|2 + |(1)

σ|2 + |
(1)
β|2

)
+ Ω4

2 |
(1)
β|2 + f2|

(1)
χ̂|2 + f1|

(1)
χ̂|2 (3.3.148)

+ f3|(1)
η|2 − 1

Ω2 f3
(1)
ω

(1)

(ΩTr/gχ) + 2
Ω2

(
ωf3 + 2ΩTr/gχf2

)((1)
Ω
Ω

) (1)

(ΩTr/gχ)

− f1
2Ω2

(1)

(ΩTr/gχ)2 − f2
2Ω2

[ (1)

(ΩTr/gχ) + 2(ΩTr/gχ)
((1)

Ω
Ω

)]2)]
+ 1
r2 /∇4

[
r2

(Ω4

4 |(1)
α|2 + 3

2Ω4(
|(1)
ρ|2 + |(1)

σ|2 + |
(1)
β|2

)
+ Ω4

2 |
(1)
β|2 + f1|

(1)
χ̂|2 + f2|

(1)
χ̂|2

+ f3|(1)
η|2 − f3

Ω2
(1)
ω

(1)

(ΩTr/gχ) − 2
Ω2

(
ωf3 + 2ΩTr/gχf2

)((1)
Ω
Ω

) (1)

(ΩTr/gχ)

− f1
2Ω2

(1)

(ΩTr/gχ)2 − f2
2Ω2

[ (1)

(ΩTr/gχ) − 2(ΩTr/gχ)
((1)

Ω
Ω

)]2)]
.

Therefore, if one integrates over the spacetime region [u0, u1] × [v0, v1] × S2
u,v then one obtains

the conservation law in the statement of theorem 3.1.10. Given the fluxes, this is perhaps the
simplest way to prove the conservation law.

The second way is more constructive proof and is completely analogous to the proof of
theorem 3.1.9 where one computes the canonical energy of LTh and then manipulates the fluxes
into a ‘satisfactory’ form. This was how the author originally derived the conservation law. This
is illustrated below, however, many explicit computations are left out for brevity in the main body
of the work but can be found in appendix C.1.

Again rather than go through the direct computation of (J T [LTh])a as in section 3.3.3 one
can use the same idea as in the proof of theorem 3.1.9 to avoid (some of) the long computations.
Recall, by propositions C.1.4 and the discussion in remark 2.10.3, if h satisfies the linearised
null structure equations then LTh does. Therefore, if one expresses (J T [h])4 − 1

r2 /∇3(A[h]) and
(J T [h])3 + 1

r2 /∇4(A[h]) in terms of h, then replacing with LTh will result in a simpler form for
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the components of (J T [LTh]) (plus a boundary term). One can check that this yields

(J T [LTh])4 ≡ 1
Ω

(
Ω2|/LT

(1)
χ̂|2 + 2Ω2|/LT

(1)
η|2 − 4ωT

((1)
Ω
Ω

)
T (

(1)

(ΩTr/gχ)) (3.3.149)

− 2T ((1)
ω)T (

(1)

(ΩTr/gχ)) − 1
2

(
T

(1)

(ΩTr/gχ)
)2)

+ 1
r2 /∇3A(LTh),

(J T [LTh])3 ≡ 1
Ω

(
2Ω2|/LT

(1)
η|2 + Ω2|/LT

(1)
χ̂|2 + 4ωT

((1)
Ω
Ω

)
T

( (1)

(ΩTr/gχ)
)

(3.3.150)

− 2T
( (1)

(ΩTr/gχ)
)
T ((1)
ω) − 1

2
(
T

(1)

(ΩTr/gχ)
)2)

− 1
r2 /∇4A(LTh).

Calculating using the proposition 2.10.10 gives:

/LT

(1)
χ̂ = −Ω

2
(1)
α− ω

(1)
χ̂− Ω/D⋆

2
(1)
η + 1

4(ΩTr/gχ)
((1)
χ̂+

(1)
χ̂

)
, (3.3.151)

/LT

(1)
χ̂ = −Ω

2
(1)
α+ ω

(1)
χ̂− Ω/D⋆

2
(1)
η − 1

4(ΩTr/gχ)
((1)
χ̂+

(1)
χ̂

)
. (3.3.152)

Further, from proposition 2.10.11

/LT
(1)
η = /∇(1)

ω + 1
4ΩTr/gχ((1)

η +(1)
η) − Ω

2
((1)
β +

(1)
β

)
, (3.3.153)

/LT
(1)
η = /∇(1)

ω − 1
4ΩTr/gχ((1)

η +(1)
η) + Ω

2
((1)
β +

(1)
β

)
. (3.3.154)

One can additionally compute T (
(1)

(ΩTr/gχ)), T (
(1)

(ΩTr/gχ)), T ((1)
ω) and T ((1)

ω) from propositions 2.10.9,
2.10.8 and 2.10.13. Note that under integration by parts on the spheres and using the torsion
equations in proposition 2.10.11:

|/D⋆
2
(1)
η|2 ≡ 1

2 |(1)
σ|2 −

[1
4(ΩTr/gχ) + ω

]Tr/gχ

Ω |(1)
η|2 + 1

2 | /div(1)
η|2, (3.3.155)

and analogously for |/D⋆
2

(1)
η|2. This allows one to compute two (rather horrendous) expressions

for (J T [LTh])4 − 1
r2 /∇3(A[LTh]) and (J T [LTh])3 + 1

r2 /∇4A[LTh] where A[LTh] results from
expressing A[h] above in terms of h and replacing it with LTh. These can be found in section C.2
of appendix C.1.
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At this point one can then (arduously) identify the following boundary term to use in the
manipulation of the resulting flux densities:

C[h] .= Ω2

2
(1

4(ΩTr/gχ) − ω
)[

|
(1)
χ̂|2 + |

(1)
χ̂|2

]
+ Ω2

4 (ΩTr/gχ)⟨
(1)
χ̂,

(1)
χ̂⟩ − Ω3

[
⟨
(1)
β,

(1)
η⟩ + ⟨

(1)
β,

(1)
η⟩

]
(3.3.156)

+ (1)
ωT (

(1)

(ΩTr/gχ)) − (1)
ωT (

(1)

(ΩTr/gχ)) + (ΩTr/gχ)(1)
ω

(1)
ω − 2Ω2ω

((1)
Ω
Ω

)(1)
ρ+ Ω2ω⟨(1)

η,
(1)
η⟩

+ 1
4Ω2(ΩTr/gχ)

[
|(1)
η|2 + |(1)

η|2
]

+ 1
4

(
ω − 1

4(ΩTr/gχ)
)[ (1)

(ΩTr/gχ)2 +
(1)

(ΩTr/gχ)2
]

− 1
8(ΩTr/gχ)

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) +
(
2ω2 − 3

2Ω2ρ
)((1)

Ω
Ω

)[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

−
(
4Ω2ωρ+ 3

2Ω2(ΩTr/gχ)ρ
)((1)

Ω
Ω

)2
+

∑
k

A[LTh].

Therefore, computing (as in section C.2 of appendix C.1) (J T [LTh])4− 1
r2 /∇3(r2C) and (J T [LTh])3+

1
r2 /∇4(r2C) allows one to show T -canonical energy of LTh satisfies

ET
u [LTh](v0, v1) = 2ĖT

u [h](v0, v1) − 2
∫
S2

u,v

C[h](u, v, θ, φ)/ε
∣∣∣v1

v0
, (3.3.157)

ET
v [LTh](u0, u1) = 2ĖT

v [h](u0, u1) + 2
∫
S2

u,v

C[h](u, v, θ, φ)/ε
∣∣∣u1

u0
. (3.3.158)

By the conservation of the canonical energy and the cancellation of the boundary terms on the
spheres S2

u,v gives the result stated in theorem 3.1.10.
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3.4 Restrictions and Normalisation of Initial Data

In this section the restrictions on initial data required to prove the energy boundedness statements
in theorems 3.1.3, 3.1.12 and 3.1.13 are discussed. In particular, this section reviews asymptotic
flatness and the relation between restricting to ℓ ≥ 2 spherical harmonics and the linearised
Schwarzschild and Kerr solutions. Additionally, particular gauge conditions at the future event
horizon H+ are defined which prove useful in later sections.

3.4.1 Support on the ℓ = 0, 1 Spherical Harmonics

The spherical harmonics functions Y ℓ
m on the unit sphere where ℓ ∈ N0 and m ∈ {−ℓ, ..., ℓ} verify

the equation

/̊∆Y ℓ
m = −ℓ(ℓ+ 1)Y ℓ

m, (3.4.1)

where /̊∆ is the Laplacian on the unit sphere S2. Further, the explicit form of the ℓ = 0, 1 spherical
harmonics are

Y ℓ=0
m=0 = 1√

4π
,

Y ℓ=1
m=−1 =

√
3

4π sin θ cosφ, Y ℓ=1
m=0 =

√
3

4π cos θ, Y ℓ=1
m=1 =

√
3

4π sin θ sinφ.
(3.4.2)

The spherical harmonics from an orthonormal basis for L2(S2). With this very brief review in
hand one can make the following definition:

Definition 3.4.1 (Function Supported on ℓ ≥ 2). A function f on Schw4 is said to be supported
on ℓ ≥ 2 if ∫

S2
sin θfY ℓ

mdθdφ = 0, (3.4.3)

for ℓ = 0,m = 0 and ℓ = 1,m = −1, 0, 1.

One can also extend this definition to one-forms. First, recall from the Hodge decomposition
theorem that any one-form ξ ∈ Ω1 on a compact Riemannian manifold can be decomposed as

ξ = df + δβ + γ, (3.4.4)

where f is a function, β ∈ Ω2 and γ is a harmonic one-form. Now for S2 there are no non-trivial
harmonic one-forms. Moreover, all two-forms are proportional to the volume form on the sphere,
i.e., all two-forms can be written as β = g/ε for g ∈ C∞(S2). Hence, any one-form on S2 has a
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representation in terms of two functions f and g on the unit sphere as

ξA = − /∇Af + /̊εAB /̊γ
BC
2

/∇Cg. (3.4.5)

Note that f and g are uniquely defined up to constants so one can specify that their spherical
means vanishes. With a rescaling, a S2

u,v one-form ξ has a unique representation in terms of two
functions f and g with vanishing spherical mean as

ξ = r /D⋆
1(f, g), (3.4.6)

This allows one to decompose any smooth S2
u,v one-form ξ as

ξ = ξℓ=1 + ξℓ≥2, (3.4.7)

where

ξℓ=1
.= r /D⋆

1(fℓ=1, gℓ=1). (3.4.8)

Note that

/divξℓ=1 = −r /∆fℓ=1, /curlξℓ=1 = r /∆gℓ=1. (3.4.9)

So, ∫
S2
r /divξℓ=1Y

ℓ
m sin θdθdφ = −

∫
S2
r2 /∆fℓ=1Y

ℓ
m sin θdθdφ (3.4.10)

= ℓ(ℓ+ 1)
∫
S2
fℓ=1Y

ℓ
m sin θdθdφ

and ∫
S2
r /curlξℓ=1Y

ℓ
m sin θdθdφ =

∫
S2
r2 /∆gℓ=1Y

ℓ
m sin θdθdφ (3.4.11)

= −ℓ(ℓ+ 1)
∫
S2
gℓ=1Y

ℓ
m sin θdθdφ.

Hence the functions r /divξℓ=1 and r /curlξℓ=1 are in the span of the ℓ = 1 spherical harmonics.
This motivates the following definition:

Definition 3.4.2 (One-form supported on ℓ ≥ 2). A smooth one-form ξ ∈ Ω1(S2
u,v) on Schw4 is

supported on ℓ ≥ 2 if the functions ( /divξ, /curlξ) are supported on ℓ ≥ 2.

One also has the following proposition concerning symmetric, traceless S2
u,v-tensors:
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Proposition 3.4.1. Let Θ ∈ symtr(T ⋆S2
u,v ⊗ T ⋆S2

u,v) be a smooth symmetric, traceless S2
u,v

2-tensor. Then Θ can be written as

Θ = r2 /D⋆
2 /D

⋆
1(f, g), (3.4.12)

where f and g are supported on ℓ ≥ 2. In this sense, any symmetric traceless 2 tensor on S2
u,v is

supported on ℓ ≥ 2.

Proof. One can find a proof of this statement in proposition 4.4.1 of section 4.4.2 of [28].

Definition 3.4.3 (Solution Supported on ℓ ≥ 2). A smooth solution h to the linearised vacuum
Einstein equation (I.5) in double null gauge on the Schwarzschild black hole exterior is supported
on ℓ ≥ 2 if any function, one-form or symmetric traceless 2-tensor constructed from h is supported
on ℓ ≥ 2.

It will become clear in the next subsection that solutions supported on ℓ ≥ 2 cannot be a linearised
Kerr or Schwarzschild solution.

There is one last technical result that the reader should note for later use:

Proposition 3.4.2. Let h be a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the Schwarzschild black hole exterior in double null Eddington–Finkelstein
coordinates. Then

(1)
Kℓ=1 = 0.

Proof. Note that from the computation in corollary 2.10.15,

2
(1)
K = /div /div/̂h− 1

2
/∆Tr/g/h+

[
ρ− 1

4(Tr/gχ)2
]
Tr/g/h. (3.4.13)

Projecting onto ℓ = 1 and noting proposition 3.4.1 gives

2
(1)
Kℓ=1 =

( 1
r2 +

[
ρ− 1

4(Tr/gχ)2
])

(Tr/g/h)ℓ=1. (3.4.14)

Using the Schwarzschild values for ρ and Tr/gχ one can compute

[
ρ− 1

4(Tr/gχ)2
]

= − 1
r2 . (3.4.15)

Hence the result.

3.4.2 The Linearised Schwarzschild and Kerr Solutions

In view of the Schwarzschild black hole family being a subfamily of the Kerr black hole family
one cannot expect the stability statement that all linearised perturbations of the Schwarzschild
exterior decay to a residual pure gauge solution. Indeed, the best that can be hoped for is that
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gravitational perturbations of the Schwarzschild black hole decay to a linearised Kerr solution
plus a pure gauge solution. Therefore, it is paramount to identify the linearised Kerr solution so
that the choice of data can be restricted appropriately. The following discussion is based upon
section 6.2 of [28].

By rescaling the null coordinates as u = 2Mû and v = 2Mv̂ (as well as r = 2Mx) one can
write the metric on the Schwarzschild exterior as

gS = 4M2
[

− 2
(
1 − 1

x

)
(dû⊗ dv̂ + dv̂ ⊗ dû) + x2

/̊γ2

]
. (3.4.16)

Taking M 7→ M + ϵm and expanding in ϵ gives a linearised metric h in double null gauge with
non-vanishing double null components

(1)
Ω
Ω = m

M
, Tr/g/h = 4 m

M
. (3.4.17)

Proposition 3.4.3. For every m
M ∈ R, the following is a spherically symmetric smooth solution

to the linearised vacuum Einstein equation (I.5) in double null gauge on the Schwarzschild black
hole exterior. The non-vanishing metric components are:

(1)
Ω
Ω =

(1)
ΩS
Ω

.= m
M
, Tr/g/h = Tr/g/hS

.= 4 m
M
. (3.4.18)

The non-vanishing curvature components are

(1)
ρ = (1)

ρS
.= 4m
r3 ,

(1)
K =

(1)
KS

.= − 2m
Mr2 . (3.4.19)

This 1-parameter family will be referred to as the reference ℓ = 0 linearised Schwarzschild
solutions.

The Kerr solution in double null gauge is written in equation (2.9.9) of section 2.9. To see
the linearised metric components it is also useful to have the Boyer–Lindquist form (2.9.1) of the
Kerr metric to O(a) in mind. Expanding to O(a) gives

gK =gS − 2Ma sin2 θ

r
(dt⊗ dφ+ dφ⊗ dt) + O(a2), (3.4.20)

where gS is the standard metric on the exterior of Schw4. This allows us to identify that there is
no O(a) perturbation to the null lapse Ω or to the induced metric /g, i.e.,

(1)
ΩK = 0, /hK = 0. (3.4.21)
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One can then read off from the Kerr metric in double null form (2.9.9) that the perturbation to
bA is

bA =
(
0, 0 + 4Ma

r3 + O(a2)
)
. (3.4.22)

So one has
(1)
b = 4Ma

r3 ∂φ. (3.4.23)

Now the Schwarzschild spacetime is spherically symmetric so there is no preferred axis! This
differs significantly from when one is linearising around a a ̸= 0 Kerr solution, where one picks an
axis to write down the solution. Hence, one picks up two other ‘basis’ solutions associated with
using the SO(3) symmetry group action on the S2

u,v-vector in equation (3.4.23):

LΩ2

(1)
b = −4Ma

r3 Ω3, (3.4.24)

LΩ3

(1)
b = 4Ma

r3 Ω2. (3.4.25)

One can write this compactly as

(1)
bA = 4Ma

r
/εAB∂BY

l=1
m . (3.4.26)

for m = −1, 0, 1. Note that change in overall constant is ineffectual due to linearity.

Proposition 3.4.4. Let Y ℓ=1
m for m = −1, 0, 1 denote the spherical harmonics in equation (3.4.2).

For any a ∈ R, the following is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the Schwarzschild black hole exterior. The non-vanishing metric coefficients
are

(1)
bA =

(1)
bA

K
.= 4Ma

r
/εAB∂BY

l=1
m . (3.4.27)

The non-vanishing Ricci coefficients are

(1)
ηA = (1)

ηA
K
.= 3Ma

r2 /εAB∂BY
l=1

m ,
(1)
ηA = −(1)

ηA
K . (3.4.28)

The non-vanishing curvature components are

(1)
β =

(1)
βK = Ω

r

(1)
ηK,

(1)
β = −

(1)
βK,

(1)
σ = (1)

σK = 6Ma
r4 Y ℓ=1

m . (3.4.29)

The 3-parameter family spanned by the above solutions (m = −1, 0, 1) will be referred to as the
reference ℓ = 1 linearised Kerr solutions.
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Remark 3.4.5. Notice that, if one restricts attention to solutions of the linearised vacuum Einstein
equation (I.5) in double null gauge which are supported on ℓ ≥ 2, one avoids the linearised
Schwarzschild and Kerr solutions since these are supported purely on ℓ = 0, 1 spherical harmonics.
This relates directly to Hollands and Wald’s restriction on the canonical energy that the linearised
ADM charges must vanish.

3.4.3 Asymptotic Flatness and Extendibility to Null Infinity

Under the asymptotic flatness assumptions imposed at the level of initial data of [28] (see section
8.3 in [28]) one gets a collection of r-weighted estimates for the quantities arising from a solution
to the linearised vacuum Einstein equation (I.5) in double null gauge. In particular, one finds
that the quantities in the following definition admit regular limits along any cone Cv as v → ∞:

Definition 3.4.4 (Solution Extendible to Null Infinity). A smooth solution h to the linearised
vacuum Einstein equation (I.5) in double null gauge on the Schwarzschild exterior is said to be
extendible to null infinity if the following quantities resulting from a solution h have well-defined
limits as v → ∞ along any cone Cu with u ≥ u0 for some s ∈ (0, 1]

E∞ .=
{(1)

Ω
Ω , r

2
(1)

(ΩTr/gχ), r
(1)

(ΩTr/gχ), r2+s(1)
ω,

(1)
ω, r

(1)
η, r2(1)

η, r2
(1)
χ̂, r

(1)
χ̂

}
(3.4.30)

∪
{
r3(1)
ρ, r3(1)

σ, r2
(1)
K, r3+s

(1)
β, r2

(1)
β, r3+s(1)

α, r
(1)
α, r2 /div(1)

η, r3 /div(1)
η

}
.

Moreover, for any element q ∈ E∞ and fixed u0 < uf < ∞ one has

sup
[u0,uf ]×{v≥v0}×S2

u,v

|q| ≤ Kuf
(3.4.31)

for a constant Kuf
depending on uf and initial data only.

This condition is the analogue of the finiteness and regularity conditions at infinity of point
(iv) Hollands and Wald’s admissible data (see section 1.1.5). This assumption on regularity will
allow one to take the limit of the canonical energies to the future null infinity I+.

3.4.4 Gauge Conditions

To study the linear stability of the Schwarzschild black hole exterior, it is very useful to impose
specific gauge conditions on the solution h to the linearised vacuum Einstein equation (I.5) in
double null gauge. For the following discussion, one should have in mind the following Penrose
diagram depicting the characteristic initial value problem:
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I+H+

I−H−

i+

i0

◦

◦

◦

Cu0
Cv0

Fig. 3.3 The characteristic initial value problem on the exterior of Schw4.

Definition 3.4.5 (Partially Initial Data Normalised Gauge). Let Cu0 ∪ Cv0 be the initial data
cone depicted in blue in the Penrose diagram 3.3. A smooth solution h to the linearised vacuum
Einstein equation (I.5) in double null gauge on the Schwarzschild exterior satisfies

(i) the first horizon gauge condition if

(1)

(ΩTr/gχ)(∞, v0, θ, φ) = 0, (3.4.32)

(ii) the second horizon gauge condition if

( /div(1)
η + (1)

ρ)(∞, v0, θ, φ) = (1)
ρℓ=0(∞, v0, θ, φ), (3.4.33)

(iii) and the basic round sphere condition at infinity if

lim
v→∞

r2
(1)
Kℓ≥2(u0, v, θ, φ) = 0 (3.4.34)

where
(1)
Kℓ≥2 is the restriction of the linearised Gauss curvature to its ℓ ≥ 2 spherical

harmonics.

A h that satisfies (i), (ii) and (iii) will be referred to as in partially initial data normalised gauge.

Remark 3.4.6. The use of the word ‘partially’ in definition 3.4.5 stems from the fact that there
is still residual gauge freedom after the above conditions have been imposed. In contrast, the
initial data gauge of definition 9.1 of section 9.1 in [28] fixes the gauge completely.

The rest of this section is devoted to the implementation of conditions (i) and (ii) of
definition 3.4.5 by using lemmas 2.10.25 and 2.10.26 of section 2.10.23. This is achieved in the
following lemma:
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Lemma 3.4.7. Let h be a smooth solution to the linearised vacuum Einstein equation (I.5) in
double null gauge on the exterior of Schw4. There exists a residual pure gauge solution hpg

such that h′ .= h− hpg is in double null gauge and the solution satisfies the partially initial data
normalised gauge of definition 3.4.5.

Proof. The implementation of point (iii) of definition 3.4.5 is deferred to [28]: under the asymp-
totic flatness assumptions of [28], the basic round sphere condition at infinity can consistently be
imposed, see definition 9.1 and theorem 9.1 of [28].

From lemmas 2.10.25 and 2.10.26, a general residual pure gauge solution with f1 = 0 = f2

has expansion given by

(1)

(ΩTr/gχ)pg = (ΩTr/gχ)∂vf
4 + 2Ω2 /∆f3 + 1

2(ΩTr/gχ)
(
4ω − (ΩTr/gχ)

)
(f4 − f3). (3.4.35)

Therefore,

(1)

(ΩTr/gχ)pg(∞, v) = 1
2M2

(
/̊∆ − 1

)
(Ω2f3)

∣∣∣
u=∞

. (3.4.36)

Now one can check, from lemmas 2.10.25 and 2.10.26, that for a general residual pure gauge
solution with f1 = 0 = f2 one also has

( /div(1)
η + (1)

ρ)pg = Ω2

r3
/̊∆f4 − 1

rΩ2
/̊∆

[
∂u

(Ω2

r
f3

)]
+ 6MΩ2

r4 (f4 − f3). (3.4.37)

Let h1 = h1(θ, φ) and h2 = h2(θ, φ) be smooth functions on the unit sphere, m̂ be a constant
and pick

f3(u, θ, φ) =
[
r(u, v0)

(
1 − r(u0, v0)

r(u, v0)
)

+ r(u0, v0)2

2M
(
1 − 2M

r(u0, v0)
)] h2(θ, φ)

Ω2(u, v0) (3.4.38)

+ h1(θ, φ) − m̂
2Ω(u, v0)2

(
r(u, v0) − r(u0, v0)

)
,

f4(v, θ, φ) = r(u0, v0)
(
1 − r(u0, v0)

r(u0, v)
) h2(θ, φ)

Ω2(u0, v) + h1(θ, φ) (3.4.39)

+ m̂
2Ω(u0, v)2

(
r(u0, v) − r(u0, v0)

)
.

With this choice one can check that the residual pure gauge expansion at S2
∞,v0 is given by

(1)

(ΩTr/gχ)pg(∞, v0) = 1
4M3 (r(u0, v0) − 2M)2( /̊∆ − 1)h2 − m̂

4M2
(
r(u0, v0) − 2M

)
(3.4.40)
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and

( /div(1)
η + (1)

ρ)pg(∞, v0, θ, φ) = r(u0, v0)
4M3

(r(u0, v0)
4M − 1

)
/̊∆h2 − 1

8M3
/̊∆h1 (3.4.41)

− 3
4M2

(r(u0, v0)
2M − 1

)2
h2 − 3m̂

16M3
(
r(u0, v0) − 2M

)
.

Since r(u0, v0) > 2M , one can take h2 supported on ℓ ≥ 1 and then decompose in terms of
spherical harmonics to solve the equation

(1)

(ΩTr/gχ)pg(∞, v0) = F (θ, φ), (3.4.42)

for an arbitrary smooth function F (θ, φ) on the sphere S2
∞,v0 , where one uses m̂ to solve for the

ℓ = 0 part of F (θ, φ). Having solved for m̂ and h2, one can solve

( /div(1)
η + (1)

ρ)pg(∞, v0, θ, φ) = G(θ, φ) − 3m̂
16M3

(
r(u0, v0) − 2M

)
, (3.4.43)

for any arbitrary smooth function G(θ, φ) on the sphere S2
∞,v0 supported on ℓ ≥ 1 by taking

using h1. Note that the ℓ = 0 projection of the pure gauge solution picked here is

((1)
ρpg)ℓ=0(∞, v0) = − 3m̂

16M3
(
r(u0, v0) − 2M

)
. (3.4.44)

Given a solution h to the linearised vacuum Einstein equation (I.5) in double null gauge one
can consider h′ = h − hpg, where hpg is the pure gauge solution defined by f3 and f4 above.
Therefore, picking

F =
(1)

(ΩTr/gχ)(∞, v0), (3.4.45)

G = ( /div(1)
η + (1)

ρ)ℓ≥1(∞, v0), (3.4.46)

gives conditions (i) and (ii) in definition 3.4.7.

Proposition 3.4.8. The partially initial data normalised gauge conditions of definition 3.4.5 are
evolutionary. More precisely, if the basic round sphere condition holds on Cu0 as v → ∞ it holds

along any cone Cu. If
(1)

(ΩTr/gχ)(∞, v0, θ, φ) = 0 then

(1)

(ΩTr/gχ)(∞, v, θ, φ) = 0, (3.4.47)

for all v ∈ [v0,∞). Similarly, if ( /div(1)
η + (1)

ρ)(∞, v0, θ, φ) = 0 then

( /div(1)
η + (1)

ρ)(∞, v, θ, φ) = 0, (3.4.48)

for all v ∈ [v0,∞).
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Proof. The statement about the basic round sphere condition can be found in corollary A.1 of [28].

The Raychauduri equation for
(1)

(ΩTr/gχ) on the future event horizon H+ gives

∂v

(1)

(ΩTr/gχ) = 1
2M

(1)

(ΩTr/gχ), (3.4.49)

since

(ΩTr/gχ)|H+ = 2
r

(
1 − 2M

r

)∣∣∣
H+

= 0 and ω|H+ = M

r2

∣∣∣
H+

= 1
4M . (3.4.50)

One can check that
(1)

(ΩTr/gχ) = A(∞, θ, φ)e
1

2M
v, (3.4.51)

is the solution to equation (3.4.49). The initial condition gives that

A(∞, θ, φ)e
1

2M
v0 = 0 =⇒ A(∞, θ, φ) ≡ 0. (3.4.52)

Note that from the commutation lemma 2.8.4, the linearised transport equations for torsion
(proposition 2.10.11) and the linearised Bianchi equations (proposition 2.10.20) one finds

Ω /∇4( /div(1)
η + (1)

ρ) = −(ΩTr/gχ) /div(1)
η + 1

2(ΩTr/gχ) /div(1)
η − 3

2ρ
(1)

(ΩTr/gχ) − 3
2(ΩTr/gχ)(1)

ρ.

Evaluating on the future event horizon gives

∂v( /div(1)
η + (1)

ρ)|H+ = 0, (3.4.53)

since
(1)

(ΩTr/gχ)|H+ = 0 and (ΩTr/gχ)(2M) = 0. The unique solution for the initial data ( /div(1)
η +

(1)
ρ)(∞, v0, θ, φ) = 0 is ( /div(1)

η + (1)
ρ)(∞, v, θ, φ) = 0 for all v ∈ [v0,∞).

3.4.5 Extendibility to the Future Event Horizon

Whilst not strictly speaking a restriction on the data one has to understand the regular quantities
at the future event horizon H+ when working with double null Eddington–Finkelstein coordinates.
As noted in section 2.8 the double null Eddington–Finkelstein coordinates do not cover the future
event horizon of the Schwarzschild spacetime. This means that the frame (e3 = 1

Ω∂u, e4 =
1
Ω∂v, eA) does not extend regularly to the horizon. However, by transforming to Kruskal–Szekeres
coordinates [103, 104] one can show that the re-scaled frame ( 1

Ωe3,Ωe4, e1, e2) does extend
regularly to a non-vanishing null frame on H+. It will be necessary to take the limit of the
canonical energy to the future event horizon H+ to understand the regular quantities there.
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Hence, one has the following proposition for the regular linearised quantities at the future event
horizon H+:

Proposition 3.4.9. For a smooth solution h to the linearised vacuum Einstein equation (I.5) in
double null gauge on the Schwarzschild exterior. Define

E+ .=
{(1)

Ω
Ω ,Tr/g/h,

(1)
b, /̂h,

(1)

(ΩTr/gχ),

(1)

(ΩTr/gχ)
Ω2 ,

(1)
ω,

(1)
ω

Ω2 ,
(1)
η,

(1)
η,Ω

(1)
χ̂,

(1)
χ̂

Ω ,
(1)
ρ,

(1)
σ,

(1)
K,Ω

(1)
β,

(1)
β

Ω ,Ω
2(1)
α,

(1)
α

Ω2

}
.

(3.4.54)

Then any q ∈ E+ extends smoothly to H+ in the sense that for any n1, n2, n3 ∈ N ∪ {0}

( 1
Ω2∂u

)n1
∂n2

v ∂n3
A q (3.4.55)

extends continuously to H+.

Proof. The method to identify the regularity is the following. From the discussion on the formal
linearisation of the metric in double null form (see section 2.10) around Schwarzschild one has

h
( 1

Ωe3,Ωe4
)

= −4
((1)

Ω
Ω

)
, h(Ωe4, eA) = −

(1)
bA, h(eA, eB) = /̂hAB + 1

2Tr/g/h/gAB
. (3.4.56)

The quantities on the LHS extend regularly to H+ since they are written in the frame that extends
regularly, so the quantities on the RHS must extend regularly to H+.

Next from the linearised equations for the metric coefficients (proposition 2.10.7) around
Schwarzschild one has:

Ωe4(Tr/g/h) = 2
( (1)

(ΩTr/gχ) − /div
(1)
b
)
,

1
Ω(̂ /∇3/h)AB = 2

Ω
(1)
χ̂

AB
,

1
Ω2∂u

(1)
bA = 2((1)

η −(1)
η)A,

Ωe4
((1)

Ω
Ω

)
= (1)
ω,

1
Ωe3(Tr/g/h) = 2

Ω2

(1)

(ΩTr/gχ),

Ω(̂ /∇4/h)AB = 2Ω
(1)
χ̂AB + 2(/D⋆

2
(1)
b)AB,

/∇A

((1)
Ω
Ω

)
= 1

2((1)
η +(1)

η)A,

1
Ωe3

((1)
Ω
Ω

)
= 1

Ω2
(1)
ω.

(3.4.57)

Again, the quantities on the LHS extend regularly to H+ since they are written in the frame that
extends regularly, so the quantities on the RHS must also extend regularly to H+.
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Next from the linearised null structure equations (propositions 2.10.10, 2.10.14, 2.10.11,
2.10.13 and 2.10.15) around Schwarzschild one has:

(1)
α

Ω2 = − 1
Ω
/∇3

((1)
χ̂

Ω
)

−
(Tr/gχ)

Ω

(1)
χ̂

Ω ,

Ω
(1)
β = −Ω /∇4

(1)
η + 1

2(ΩTr/gχ)((1)
η − (1)

η),

(1)
ρ = −2

((1)
Ω
Ω

)
ρ− 1

Ωe3((1)
ω),

Ω2(1)
α = −Ω /∇4

(
Ω

(1)
χ̂

)
+ 2ωΩ

(1)
χ̂− (ΩTr/gχ)Ω

(1)
χ̂,

1
Ω

(1)
β = 1

Ω
/∇3

(1)
η + 1

2Ω(Tr/gχ)((1)
η − (1)

η),
(1)
σ = −curl(1)

η,

(3.4.58)

and

(1)
K =

(1)
Ω
2Ω(ΩTr/gχ)

(Tr/gχ)
Ω − (1)

ρ− 1
4

(
(ΩTr/gχ)

(1)

(ΩTr/gχ)
Ω2 +

(1)

(ΩTr/gχ)
(Tr/gχ)

Ω
)
. (3.4.59)

The RHS of these equations extends regularly to H+ and, therefore, so does the LHS.

3.4.6 The Generality of Solutions

In the next section all solutions of the linearised vacuum Einstein equation (I.5) will be assumed
to be in partially initial data normalised gauge, supported on ℓ ≥ 2 and extendible to null infinity.
The reader may worry about a loss of generality of the solutions considered here. However, one
should note the following theorem from [28]:

Theorem 3.4.10 ([28]). Under a suitable assumption for asymptotic flatness on the initial data
for a smooth solution h to the linearised vacuum Einstein equation (I.5), one can construct
a residual pure gauge solution hpg to the linearised vacuum Einstein equation (I.5) in double
null gauge and a linearised Kerr solution hK, both explicitly computable and controllable from
initial data, such that h′ = h + hpg − hK is a (partially) initial data normalised solution (see
definition 9.1 in [28]) supported on ℓ ≥ 2 which is extendible to null infinity.

3.4.7 The Limits of the Canonical Energy Fluxes for Restricted Data

The Future Event Horizon Limit

Proposition 3.4.11. Suppose h is a smooth solution to the linearised vacuum Einstein equa-
tion (I.5) in double null gauge on the Schwarzschild black hole exterior that satisfies the first
horizon gauge condition (see definition 3.4.5). Let

EH+ [h](v0, v) .= lim
u→∞

Eu[h](v0, v), (3.4.60)

/EH+ [h](v0, v) .= lim
u→∞

/Eu[h](v0, v), (3.4.61)

ĖH+ [h](v0, v) .= lim
u→∞

Ėu[h](v0, v). (3.4.62)
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Then for all v > v0, the modified (higher order) T -canonical energy on the future event horizon
H+ is given by

EH+ [h](v0, v) =
∫ v

v0

∫
S2

∞,v

|Ω
(1)
χ̂|2dv/ε, (3.4.63)

/EH+ [h](v0, v) =
∫ v

v0

∫
S2

∞,v

r2

2 |Ω
(1)
β|2dv/ε, (3.4.64)

ĖH+ [h](v0, v) =
∫ v

v0

∫
S2

∞,v

1
4 |Ω2(1)

α|2dv/ε. (3.4.65)

Proof. Recall from proposition 3.4.9 in section 3.4.5 that the relevant regular weighted quantities
on the future event horizon H+ are

{(1)
Ω
Ω ,

(1)

(ΩTr/gχ), 1
Ω2

(1)

(ΩTr/gχ),(1)
ω,

(1)
η,Ω

(1)
χ̂,

1
Ω

(1)
χ̂,

(1)
ρ,

(1)
σ,Ω

(1)
β,Ω2(1)

α
}
. (3.4.66)

Writing the ET
u [h](v0, v1) flux in terms of regular quantities gives

ET
u [h](v0, v1) =

∫ v1

v0

∫
S2

u,v

(
|Ω

(1)
χ̂|2 + 2Ω2|(1)

η|2 − 1
2

(1)

(ΩTr/gχ)2 (3.4.67)

+ 4ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 2Ω2(1)
ω

(1)

(ΩTr/gχ)
Ω2

)
dv/ε.

Now the flux is written in terms of smooth functions which smoothly extend to the future
event horizon H+. Hence, the integrand is bounded by some constant depending on v0, v1 but
independent of u. Since [v0, v1]×S2

u,v is compact, one can apply Lebesgue’s bounded convergence
theorem (see chapter 2, theorem 1.4 of [126]) to pass the limit through the integral and conclude

ET
H+ [h](v0, v1) =

∫ v1

v0

∫
S2

u,v

[
2|Ω

(1)
χ̂|2 −

(1)

(ΩTr/gχ)2 + 8ω
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
]∣∣∣

H+
dv/ε. (3.4.68)

The result then follows by recalling that from proposition 3.4.7 that if a smooth solution satisfies
the first initial horizon gauge condition then

(1)

(ΩTr/gχ)|H+ = 0. The limit of the other fluxes is
analogous.

The Null Infinity Limit

Proposition 3.4.12. Suppose h is a smooth solution to the linearised vacuum Einstein equa-
tion (I.5) in double null gauge on the Schwarzschild black hole exterior that is extendible to null
infinity, satisfies the partial initial data normalised gauge conditions (see definition 3.4.5) and is
supported on ℓ ≥ 1. Let EI+ [h](u0, u) .= limv→∞ Ev[h](u0, u). Then for all u > u0 one has that
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the modified T -canonical energy on null infinity is given by

EI+ [h](u0, uf ) = lim
v→∞

∫ uf

u0

∫
S2

u,v

|Ω
(1)
χ̂|2du/ε + lim

v→∞

∫
S2

u,v

r

2
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)/ε
∣∣∣u1

u0
. (3.4.69)

Proof. In this proof the notation ≡ will be used to denote a formula that holds under integration
over S2

u,v.

Fix u0 ≤ u1 < ∞ a v large. Now note that using the linearised torsion equations and linearised
metric equations 2.10.7 of propositions 2.10.11 and 2.10.7 respectively one has

r2(1)
ω

(1)

(ΩTr/gχ) ≡ ∂u

[
r2

((1)
Ω
Ω

) (1)

(ΩTr/gχ)
]

+ r
((1)

Ω
Ω

) (1)

(ΩTr/gχ) + r2|(1)
η|2 + O

(1
r

)
, (3.4.70)

using the definition of extendibility to null infinity. Therefore, using this manipulation and making
further use of the extendibility to null infinity one finds

Ev[h](u0, u1) =
∫ u1

u0

∫
S2

u,v

[
|Ω

(1)
χ̂|2 − 2

r

((1)
Ω
Ω

) (1)

(ΩTr/gχ) − 1
2

(1)

(ΩTr/gχ)2 + O
( 1
r3

)]
du/ε (3.4.71)

− 2
∫
S2

u,v

((1)
Ω
Ω

) (1)

(ΩTr/gχ)/ε
∣∣∣u1

u0
.

From the linearised Gauss equations (proposition 2.10.15) one has

r2
(1)
K = −r2(1)

ρ− r

2
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2Ω2
((1)

Ω
Ω

)
. (3.4.72)

Using that the solution is extendible to null infinity and the round sphere condition gives:

4
((1)

Ω
Ω

)
= r2

(1)
Kℓ=0 − r

(1)

(ΩTr/gχ) + O
(1
r

)
, (3.4.73)

since
(1)
Kℓ=1 = 0 identically (see proposition 3.4.2). Substituting this relation above and using that

the solution has support on ℓ ≥ 1 gives

Ev[h](u0, u1) =
∫ u1

u0

∫
S2

u,v

[
|Ω

(1)
χ̂|2 + O

( 1
r3

)]
du/ε (3.4.74)

+
∫
S2

u,v

[r
2

(1)

(ΩTr/gχ) + O
(1
r

)] (1)

(ΩTr/gχ)/ε
∣∣∣u1

u0
.

Since, cu0,u1,v0r ≤ v ≤ Cu0,u1,v0r in the region EA ∩ {v ≥ v0} ∩ {u0 ≤ u ≤ u1} the limit is as
stated.



3.4 Restrictions and Normalisation of Initial Data 165

Proposition 3.4.13. Suppose h is a solution to the linearised vacuum Einstein equation (I.5) in
double null gauge that is extendible to null infinity on the Schwarzschild black hole exterior. Let

/EI+ [h](u0, u) .= lim
v→∞

/Ev[h](u0, u), (3.4.75)

ĖI+ [h](u0, u) .= lim
v→∞

Ėv[h](u0, u). (3.4.76)

Then for all u > u0, the modified higher order T -canonical energies on null infinity are given by

/EI+ [h](u0, u) = lim
v→∞

∫ u1

u0

∫
S2

u,v

r2

2 |Ω
(1)
β|2du/ε, (3.4.77)

ĖI+ [h](u0, u) = lim
v→∞

∫ u1

u0

∫
S2

u,v

1
4 |Ω2(1)

α|2du/ε. (3.4.78)

Proof. Fix u0 ≤ uf < ∞ a v large. Note that v ∼ r in the region EA ∩{v ≥ v0}∩{u0 ≤ u ≤ uf }.
Then writing the fluxes in terms of quantities extendible to null infinity (see definition 3.4.4), one
has

/E
T

v [h](u0, u1) =
∫ u1

u0

∫
S2

u,v

(Ω2

2 |r2
(1)
β|2 + 3Ω2r2ρ

2 |r(1)
η|2 + Ω2r4

2r6
(
|r3(1)
σ|2 + |r3(1)

ρ|2
)

(3.4.79)

− 3r2ρ

2
(1)
ω

(
r2

(1)

(ΩTr/gχ)
)

+ 3r3ρ

2
[1
2(ΩTr/gχ) − 2ω

]((1)
Ω
Ω

)(
r

(1)

(ΩTr/gχ)
))
dů/ε,

where /̊ε is the volume form on the unit sphere. Doing the same for the ĖT
v [h](u0, u1) gives the

limits as stated.

3.4.8 Boundary Conditions for Mode Solutions to the Teukolsky ODE

In this section mode solutions for the traditional Teukolsky equation (2.10.150) in the Newman–
Penrose formalism are studied. The reader should see section 2.10.5 for further details on the
connection between the Newman–Penrose formalism of the Teukolsky equation and the Teukolsky
equation for ((1)

α,
(1)
α).

The equation (2.10.150) is fully separable so one can study fixed frequency fully separated
mode solutions of the form

α[s] = e−iωteimφS
[s]
mλ[s](θ)R[s](r), (3.4.80)

where S[s]
mλ[s] is a smooth spin s-weighted spheroidal harmonic which satisfies the angular ODE

− 1
sin θ

d

dθ

(
sin θ

dS
[s]
mλ[s]

dθ

)
(θ) +

((m+ s cos θ)2

sin2 θ
− s

)
S

[s]
mλ[s](θ) = λ[s]S

[s]
mλ[s](θ). (3.4.81)



166 Weak Stability of Schwarzschild from Canonical Energy

The reader should consult proposition 2.1 in the work [32] for further information on the
angular ODE and the smooth spin s-weighted spheroidal harmonics S[s]

mλ[s] . The Teukolsky
equation (2.10.150) then implies that R[s](r) satisfies the radial ODE

1
(r2D(r))s

d

dr

(
(r2D(r))s+1dR

[s]

dr

)
(r) +

(ω2r2 − 2iωs(r −M)
D(r)

)
R[s](r) (3.4.82)

+
(
4isωr − λ[s]

)
R[s](r) = 0,

for R[s](r) where λ[s] = ℓ(ℓ+ 1)−s(s+ 1) (from section 6.2.1 in [29]) is the separation constant.c

The section now embarks upon the asymptotic analysis of the radial ODE (3.4.82). In particular,
a basis of solution to the ODE (3.4.82) associated with the points r = 2M and r → ∞ are
identified (see proposition 3.4.14).

The radial ODE (3.4.82) can be written in a more practical form for asymptotic ODE analysis
as

d2R[s]

dr2 (r) + P[s](r)dR
[s]

dr
(r) + Q[s]

ω,m,λ(r)R[s](r) = 0, (3.4.83)

with

P[s](r) .= 2(s+ 1)(r −M)
r2D(r) , Q[s]

ω,m,λ(r) .= ω2r2 − 2iωs(r −M)
r2D(r)2 + 4isωr − λ[s]

r2D(r) . (3.4.84)

The function (r − 2M)P[s](r) has a power series expansion,

(r − 2M)P[s](r) =
∞∑

n=0
pn(r − 2M)n, (3.4.85)

with p0 = (s+ 1) and

pn = (s+ 1)(−1)n−1

(2M)n
, (3.4.86)

for n ≥ 1 which converges for all r < 4M (by the ratio test). The function (r − 2M)2Q[s]
ω,m,λ(r)

has the power series expansion

(r − 2M)2Q[s]
ω,m,λ(r) =

∞∑
n=0

qn(r − 2M)n, (3.4.87)

cThis form of the radial ODE here and in [32] differs from the original paper of Whiting [17]. The relation
between the R[s] here and the R̃[s] in [17] is R[s] = (r(r − 2M))− s

2 R̃[s].



3.4 Restrictions and Normalisation of Initial Data 167

with

q0 = 4M2ω2 − 2iMsω, q1 = 8M2ω2 + 4iMsω − λ[s]

2M , q3 = λ[s]

4M2 + ω2 (3.4.88)

and

qn = λ[s](−1)n

(2M)n
, (3.4.89)

for n ≥ 4 which converges for r < 4M .

The indicial equation (see appendix A.2) for this ODE is

I [s](α) .= α(α− 1) + (s+ 1)α+ 2Mω(2Mω − is). (3.4.90)

The polynomial I [s] has roots

α1 = −2iMω − s, α2 = 2iMω. (3.4.91)

An exceptional set of roots of I [s] for applying Frobenius’s theorem A.2.3 occurs when

α1 − α2 = −4iMω − s ∈ Z. (3.4.92)

This requires R(ω) = 0, and 4MI(ω) ∈ Z. Therefore, provided

ω ̸∈ Υ .=
{ ik

4M : k ∈ Z
}
, (3.4.93)

Frobenius’s theorem A.2.3 gives a basis of solution to the ODE (3.4.83) associated to r = 2M of
the form

ρ
[s]
2M,+(r) = (r − 2M)−2iMω−s

∞∑
j=0

b
[s]
j,+(r − 2M)j , (3.4.94)

ρ
[s]
2M,−(r) = (r − 2M)2iMω

∞∑
j=0

b
[s]
j,−(r − 2M)j , (3.4.95)

where b[s]
j,± can be calculated recursively (from equation (A.2.10)) and b[s]

0,± = 1 without loss of
generality. If ω ∈ Υ then theorem A.2.5 gives an altered form for the basis solution ρ

[s]
2M,±. This

needs to be examined case by case. The exceptional cases for I(ω) = k
4M ≥ 0 are then the

following:
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(1) If s = −2 and I(ω) ≥ 0, then, α1 = k
2 + 2 > −k

2 = α2. So α+ = α1 and α− = α2 and
theorem A.2.5 gives

ρ
[−2]
2M,+(r) = (r − 2M)2+ k

2

∞∑
j=0

b
[−2]
j,+ (r − 2M)j , (3.4.96)

ρ
[−2]
2M,−(r) = (r − 2M)− k

2

∞∑
j=0

b
[−2]
j,− (r − 2M)j + Ck+2ρ

[−2]
2M,+(r) ln(r − 2M), (3.4.97)

where a[−2],±
0 = 1.

(2) If s = +2, I(ω) ≥ 0 and k > 1, then, α1 = k
2 − 2 ≥ −k

2 = α2. So α+ = α1 and α− = α2

and theorem A.2.5 gives

ρ
[+2]
2M,+(r) = (r − 2M)

k
2 −2

∞∑
j=0

b
[+2]
j,+ (r − 2M)j , (3.4.98)

ρ
[+2]
2M,−(r) = (r − 2M)δ2,k− k

2

∞∑
j=0

b
[+2]
j,− (r − 2M)j + Ck−2ρ

[+2]
2M,+(r) ln(r − 2M), (3.4.99)

where C0 ̸= 0 (see remark A.2.6 and end of page 155 in [97]).

(3) If s = +2, I(ω) ≥ 0 and k = 1, then, α1 = −3
2 ≤ −1

2 = α2. So α+ = α2 and α− = α1

and theorem A.2.5 givesd

ρ
[+2]
2M,+(r) = (r − 2M)− 1

2

∞∑
j=0

b
[+2]
j,+ (r − 2M)j , (3.4.100)

ρ
[+2]
2M,−(r) = (r − 2M)− 3

2

∞∑
j=0

b
[+2]
j,− (r − 2M)j + C1ρ

[+2]
2M,−(r) ln(r − 2M). (3.4.101)

From the remark A.2.6 following theorem A.2.5, the co-efficient C1 vanishes if, and only if,

(
− 3

2p1 + q1
)

= 0 =⇒ −λ[+2] + 7
2M = 0 (3.4.102)

Since λ[+2] = ℓ(ℓ+ 1) − 6 and ℓ ≥ 2, C1 ̸= 0.

The point r = ∞ is a irregular singular point of the ODE (3.4.83) since P[s](r) and Q[s]
ω,m,λ(r)

admit convergent power series expansions in some annulus (thinking of r as a complex variable)

P[s](r) =
∞∑

n=0

pn

rn
, Q[s]

ω,m,λ(r) =
∞∑

n=0

qn

rn
, (3.4.103)

dOne should note that definition 2.3 in the work [32] uses the opposite notation for these solutions (and drops
the logarithmic term), i.e., in the notation of [32] R

[+2]
H± = ρ

[+2]
2M,∓ for ω = i

4M
. However, as will be shown in

proposition 3.4.14, if one wants the ± notation to denote the basis element that is smoothly extendible to H±

then this is the correct convention.
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with

p0 = 0, p1 = 2(1 + s), q0 = ω2, q1 = 2iωs+ 4Mω2. (3.4.104)

The constants λ± and µ± appearing in theorem A.2.7 can be calculated to be

λ+ = iω,

µ+ = −1 − 2s+ 2Miω,

λ− = −iω,

µ− = −1 − 2Miω.
(3.4.105)

Now provided 1
4p2

0 ̸= q0, which is equivalent to ω ̸= 0, one can use theorem A.2.7 to construct
a basis of solution (ρ[s]

∞,+, ρ
[s]
∞,−) to the ODE (3.4.83) associated to the irregular singular point

r = ∞.e Theorem A.2.7 gives that these solutions satisfy

ρ
[s]
∞,+ = eiωrr−1−2s+2Miω

(
1 + O

(1
r

))
, (3.4.106)

ρ
[s]
∞,− = e−iωrr−1−2Miω

(
1 + O

(1
r

))
. (3.4.107)

With the asymptotic analysis in hand, the remaining issue to address is what boundary
conditions to impose at r = 2M and r = ∞ on α[s] for s = ±2. The key proposition is the
following:

Proposition 3.4.14 (Admissible Boundary Conditions for a Real/Growing Mode). Let s = ±2,
I(ω) ≥ 0 and ω ̸= 0. Let ρ[s]

2M,± be the basis for the space of solutions to the radial ODE (3.4.83)
as defined in equations (3.4.94)–(3.4.101) and ρ

[s]
∞,± be the basis for the space of solutions to the

radial ODE (3.4.83) as defined in equations (3.4.106) and (3.4.107). In particular, to any solution
R[s] of the radial ODE (3.4.83) one can ascribe four numbers a[s]

2M,+, a
[s]
2M,−, a

[s]
∞,+, a

[s]
∞,− ∈ C

defined by

R[s] = a
[s]
2M,+ρ

[s]
2M,+ + a

[s]
2M,−ρ

[s]
2M,−, (3.4.108)

R[s] = a
[s]
∞,+ρ

[s]
∞,+ + a

[s]
∞,−ρ

[s]
∞,−. (3.4.109)

Let α[s] be a solution of the traditional Teukolsky equation (2.10.150) associated to R[s](r) a
solution of the radial ODE (3.4.83) through equation (3.4.80). Further, let ((1)

α,
(1)
α) be associated to

α[s] through the equations (2.10.160) and (2.10.161). Then the admissible boundary conditions
for the radial ODE (3.4.83) are defined by the requirement that (1)

α and (1)
α extend regularly to H+

and are extendible to null infinity I+. One can characterise this requirement with the following
statements:

(i) If I(ω) > 0 then ((1)
α,

(1)
α) that are extendible to null infinity if, and only if, a[s]

∞,− = 0.
eIn the case where ω = 0, q1 = 0 also. This, in fact, turns r = ∞ into a regular singular point (see Olver [97]

chapter 7 section 1.3) One can construct a basis of convergent series solutions associated to r = ∞.
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(ii) If I(ω) = 0 then (1)
α is extendible to null infinity if a[−2]

∞,− = 0.

(iii) If I(ω) = 0 then (1)
α is extendible to null infinity if, and only if, a[+2]

∞,− = 0.

(iv) 1
Ω2

(1)
α smoothly extends to the future event horizon if, and only if, a[−2]

2M,− = 0.

(v) Ω2(1)
α smoothly extends to the future event horizon if, and only if, a[+2]

2M,− = 0.

Henceforth, a solution to traditional Teukolsky equation (2.10.150) obeying the boundary condi-
tions in (i)-(v) will be referred to as an ‘outgoing mode solution’.f

Proof. Starting with r = 2M and restricting for the moment to ω ̸∈ Υ, recall that (1)
α and (1)

α

do not extend regularly to the future event horizon H+ due to the use of the irregular frame
(e3 = 1

Ω∂u, e4 = 1
Ω∂v). However, as discussed in section 3.4.5 one can show that Ω2(1)

α and
(1)
α

Ω2

extend regularly to the future event horizon. Using the relations (2.10.158) and (2.10.159), this
translates to the conditions that D(r)2α[+2] and α[−2]

D(r)2 should extend regularly to the future event
horizon. At the level of mode solutions this imposes that

D(r)2α[+2] = eiωr(r − 2M)2Miω+2

r2 R[+2](r)e−iωṽeimφS[+2](θ), (3.4.110)

α[−2]

D(r)2 = r2eiωr(r − 2M)2Miω−2R[−2](r)e−iωṽeimφS[−2](θ), (3.4.111)

should be smooth at the future event horizon, where (ṽ, r, θ, φ) with ṽ = t+ r⋆(r) and r⋆(r) .=
r + 2M ln |r − 2M | are ingoing Eddington–Finkelstein coordinates (these coordinates are well
defined at the future event horizon). By substituting ρ

[s]
2M,± from equations (3.4.94) and (3.4.95)

into the equations (3.4.110) and (3.4.111) one can see that for a[s]
2M,− = 0 and a[s]

2M,+ ̸= 0,

D(r)2α[+2] = a
[+2]
2M,+

eiωr

r2 e−iωṽeimφS[+2](θ)
∞∑

j=0
b

[+2]
j,+ (r − 2M)j , (3.4.112)

α[−2]

D(r)2 = a
[−2]
2M,+r

2eiωre−iωṽeimφS[−2](θ)
∞∑

j=0
b

[−2]
j,+ (r − 2M)j (3.4.113)

and for a[s]
2M,− ̸= 0 and a[s]

2M,+ = 0,

D(r)2α[+2] = a
[+2]
2M,−

eiωr(r − 2M)4Miω+2

r2 e−iωṽeimφS[+2](θ)
∞∑

j=0
b

[+2]
j,− (r − 2M)j , (3.4.114)

α[−2]

D(r)2 = a
[−2]
2M,−

r2eiωr(r − 2M)4Miω

(r − 2M)2 e−iωṽeimφS[−2](θ)
∞∑

j=0
b

[−2]
j,− (r − 2M)j . (3.4.115)

Equations (3.4.112) and (3.4.113) allow one to conclude that, for a2M,− = 0 and a2M,+ ̸= 0,
D(r)2α[+2] and α[−2]

D(r)2 smoothly extend to r = 2M . In contrast, equations (3.4.114) and (3.4.115)
fFor further motivation see section 3.3 of [127], definition 2.4 of [32] and appendix D of [26].
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allow one to conclude that, for a2M,− ̸= 0 and a2M,+ = 0, D2α[+2] extends smoothly if
2 + 4Miω ∈ Z≥0 and 1

D2α
[−2] extends smoothly if 4Miω − 2 ∈ Z≥0. If I(ω) ≥ 0 and ω ̸∈ Υ

then this gives D2α[+2] and 1
D2α

[−2] never extend smoothly for a2M,− ̸= 0 and a2M,+ = 0.

For the exceptional set ω ∈ Υ ∩ {I(ω) ≥ 0} one has ω = ik
4M with k ∈ Z+ ∪ {0}. This

means

D(r)2α[+2] = e− kr
4M (r − 2M)2− k

2

r2 R[+2](r)e−iωṽeimφS[+2](θ), (3.4.116)

α[−2]

D(r)2 = r2e− k
4M

r(r − 2M)− k
2 −2R[−2](r)e−iωṽeimφS[−2](θ), (3.4.117)

should be smooth at the future event horizon, where (ṽ, r, θ, φ) with ṽ = t+ r⋆(r) and r⋆(r) .=
r + 2M ln |r − 2M | are ingoing Eddington–Finkelstein coordinates (these coordinates are well
defined at the future event horizon). The exceptional cases are then the following:

(1) If s = −2 and ω = ik
4M with k ≥ 0 then from equations (3.4.96) and (3.4.97) one has

α[−2]

D(r)2 = a
[−2]
2M,+r

2e− k
4M

re−iωṽeimφS[−2](θ)
∞∑

j=0
b

[−2]
j,+ (r − 2M)j , (3.4.118)

α[−2]

D(r)2 = a
[−2]
2M,−

r2e− k
4M

r

(r − 2M)
k
2 +2

e−iωṽeimφS[−2](θ)
[ ∞∑

j=0
b

[−2]
j,− (r − 2M)j− k

2 (3.4.119)

+ Ck+2ρ
[−2]
2M,+(r) ln(r − 2M)

]
.

Therefore, to extend smoothly (and be non-trivial) a[−2]
2M,+ ̸= 0 and a[−2]

2M,− = 0.

(2) If s = +2 and ω = ik
4M with k > 1 then from equations (3.4.98) and (3.4.99) one has

D(r)2α[+2] = e− kr
4M

r2 e−iωṽeimφS[+2](θ)
∞∑

j=0
b

[+2]
j,+ (r − 2M)j , (3.4.120)

D(r)2α[+2] = a
[+2]
2M,−

(r − 2M)2− k
2

e
kr

4M r2
e−iωṽeimφS[+2](θ)

[ ∞∑
j=0

b
[+2]
j,− (r − 2M)j

(r − 2M)
k
2 −δ2,k

(3.4.121)

+ Ck−2ρ
[+2]
2M,+(r) ln(r − 2M)

]
.

If k = 2 then C0 ̸= 0 and therefore D(r)2α[+2] has an essential singularity if a[+2]
2M,− ̸= 0

(by virtue of the ln term). If k > 2 then the leading order behaviour in (r − 2M) is at
least (r − 2M)−1 and therefore, not smoothly extendible if a[+2]

2M,− ̸= 0.
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(3) If s = +2 and ω = i
4M then from equations (3.4.100) and (3.4.101) one has

D(r)2α[+2] = a
[+2]
2M,+

e− r
4M (r − 2M)

r2 e−iωṽeimφS[+2](θ)
∞∑

j=0
b

[+2]
j,+ (r − 2M)j , (3.4.122)

D(r)2α[+2] = a
[+2]
2M,−

(r − 2M)
3
2

e
r

4M r2
e−iωṽeimφS[+2](θ)

[ ∞∑
j=0

b
[+2]
j,− (r − 2M)j− 3

2 (3.4.123)

+ C1ρ
[+2]
2M,+(r) ln(r − 2M)

]
.

Above it was noted that C1 ̸= 0, so to extend smoothly to the future event horizon a[+2]
2M,− =

0.

Turning to r = ∞, recall that section 3.4.3 on extendibility to null infinity imposed that r|(1)
α| and

r3+w|(1)
α| for w ∈ (0, 1] should have a limit on any outgoing cone. Using the equations (2.10.158)

and (2.10.159), one can compute that

|(1)
α|2 = 2

Ω4r8 |α[−2]|2, |(1)
α|2 = 2Ω4|α[+2]|2. (3.4.124)

Hence, the extendiblity to null infinity condition, translates to the conditions that r3+w|α[+2]| and
|α[−2]|

r3 should have finite limits on null infinity. At the level of mode solutions this imposes that

r3+wα[+2] = r3+we−iωr

(r − 2M)2Miω
R[+2](r)e−iωũeimφS[+2](θ), (3.4.125)

α[−2]

r3 = e−iωr

r3(r − 2M)2Miω
R[−2](r)e−iωũeimφS[−2](θ), (3.4.126)

should extend to future null infinity, where (ũ, r, θ, φ) with ũ = t − r⋆(r) and r⋆(r) .= r +
2M ln |r − 2M | are outgoing Eddington–Finkelstein coordinates. By substituting the asymptotic
behaviour ρ[s]

∞,+ from equations (3.4.106) and (3.4.107) into the equations (3.4.125) and (3.4.126)
one can see that for a[s]

∞,− = 0 and a[s]
∞,+ ̸= 0,

r3+wα[+2] = a
[+2]
∞,+r

−2+we−iωũeimφS[+2](θ)
(
1 + O

(1
r

))
, (3.4.127)

α[−2]

r3 = a
[−2]
∞,+e

−iωũeimφS[−2](θ)
(
1 + O

(1
r

))
(3.4.128)

and for a[s]
∞,− ̸= 0 and a[s]

∞,+ = 0,

r3+wα[+2] = a
[+2]
∞,−

r2+we−2iωr

r4Miω
e−iωũeimφS[+2](θ)

(
1 + O

(1
r

))
, (3.4.129)

α[−2]

r3 = a
[−2]
∞,−

e−2iωr

r4+4Miω
e−iωũeimφS[−2](θ)

(
1 + O

(1
r

))
. (3.4.130)
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Therefore, for a[s]
∞,− = 0 and a

[s]
∞,+ ̸= 0, r3+wα[+2] and 1

r3α
[−2] always has finite limit at null

infinity. In contrast, if I(ω) > 0 then, for a[s]
∞,− ̸= 0 and a[s]

∞,+ = 0 one can see that r3+wα[+2]

and 1
r3α

[−2] have exponential growth in r.

For the case where I(ω) = 0 then r3+wα[+2] grows only if a[+2]
∞,− = 0 and is extendible to

null infinity if a[+2]
∞,−. For |α[−2]|

r3 one can readily see that both branches allow |α[−2]|
r3 to extend to

null infinity. Hence, the lack of ‘only if’ in the statement of (ii) in the proposition.

One of the most important things to notice about the proof of this proposition 3.4.14 is that,
if there exist non-trivial outgoing mode solutions to the traditional Teukolsky equation (2.10.150),
the limits of (the regular versions of) α[+2] are non-zero on the future event horizon, except for
ω = i

4M . For this frequency one has could have growing outgoing mode solution for which (the
regularised version of) α[+2] vanishes at the future event horizon. This will be slightly problematic
later in this chapter where L2-boundedness of (1)

α on the future event horizon is exploited to rule
out the existence of outgoing mode solutions for (1)

α. The proof runs into difficulty for ω ̸= i
4M

since this could in theory give rise to a zero flux mode.

Fortunately, there is a correspondence between solutions of the s = ±2 radial Teukolsky
ODE (3.4.83) given by the so-called Teukolsky–Starobinsky identites. These were originally proved
in [128, 129] for s = ±1,±2 and extended to general s ∈ 1

2Z in [130]. This in conjunction with
a proof that the L2-boundedness of (1)

α on null infinity rules out the existence of outgoing mode
solutions (1)

α for all I(ω) ≥ 0 such that ω ̸= 0 saves the proof of mode stability. The relevant
lemma required is the following:

Lemma 3.4.15. Let s = +2 and ω = i
4M . Let ρ[s]

2M,± be the basis for the space of solutions to
the radial ODE (3.4.83) as defined in equations (3.4.94)–(3.4.101) and ρ

[s]
∞,± be the basis for the

space of solutions to the radial ODE (3.4.83) as defined in equations (3.4.106) and (3.4.107).
Let R[+2] be a solution to the radial ODE (3.4.83) such that R[+2] gives rise to a outgoing mode
solution (as identified in proposition 3.4.14), i.e., R[+2] has a representation as

R[+2](r) = a
[+2]
∞,+ρ

[+2]
∞,+(r) = a

[+2]
2M,+ρ

[+2]
2M,+. (3.4.131)

Define

R[−2] .= ∆s(D+
0 )2s(

∆sR[+2]), (3.4.132)

where

D+
0
.= d

dr
+ iωr2

∆ , (3.4.133)



174 Weak Stability of Schwarzschild from Canonical Energy

and ∆ .= r(r − 2M). Then R[−2] solves the radial ODE (3.4.14) with s = −2. Moreover, R[−2]

has the following representation

R[−2] = C i
4M
a

[+2]
2M,+ρ

[−2]
2M,+ = C

(1)
2 a

[−2]
∞,+ρ

[−2]
∞,+, (3.4.134)

where

C i
4M

.= M

3
(
81 + 57λ[+2] + 13(λ[+2])2 + (λ[+2])3

)
, C

(1)
2

.= (2iω)4. (3.4.135)

Proof. A proof of the fact that R[−2] solves the radial ODE (3.4.14) with s = −2 follows from the
lemmas 2.16 and 2.17 in [32] and were originally proved in [128–130]. The proof of the statement
that R[−2] = C

(1)
2 a∞,+ρ

[−2]
∞,+ can be found in proposition 2.14 in [32].g The representation

formula (3.4.134) at the future event horizon will be proved here.

Start by recalling that, for ω = i
4M ,

ρ
[+2]
2M,+(r) = (r − 2M)− 1

2

∞∑
j=0

b
[+2]
j,+ (r − 2M)j , (3.4.136)

where the superfluous subscripts and superscripts on b[+2]
j,+ will be dropped henceforth, i.e., bj

.=
b

[+2]
j,+ with b0 = 1. Using the recursion relation (A.2.10) combined with equations (3.4.86), (3.4.88)

and (3.4.89) one can compute that

b1 = 4 + λ[+2]

4M , b2 = 3 + 6λ[+2] + 2(λ[+2])2

96M2 , (3.4.137)

b3 = 57 − 6λ[+2] − 5(λ[+2])2 + (λ[+2])3

1152M3 . (3.4.138)

One can compute that

R̂[−2] .= ∆2(D+
0 )k(∆2ρ

[+2]
2M,−) =

∞∑
j=0

bjυk(r, j)r2(r − 2M)j+ 7
2 −k, (3.4.139)

with υk(r, j) for k ≥ 1 defined via the recursive formula,

υk(r, j) .= (r − 2M)dυk−1(r, j)
dr

+
[(
j + 3

2 − (k − 1)
)

− r

4M
]
υk−1(r, j), (3.4.140)

gNote that there are exceptional cases involving the horizon representation formulas not covered by proposi-
tion 2.14 in [32] For a = 0, these were identified above. These cases persist for the a ̸= 0. In particular, the
exceptional set Υ identified above where ω = ik

4M
for k ∈ Z generalises to I(ω) = i(r+−r−)k

4Mr+
with R(ω) = ma

2Mr+
,

where r± = M ±
√

M2 − a2.
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with υ0(r, j) .= r2. One can check that

υ1(r, j) =
(
j + 7

2
)
r2 − 4Mr − r3

4M , (3.4.141)

υ2(r, j) = r4

(4M)2 −
(
2j + 7

) r3

4M − 4M
(
2j + 5

)
r + 8M2 +

(
j2 + 6j + 45

4
)
r2, (3.4.142)

υ3(r, j) = 12(3 + 2j)M2 − 3(19 + 16j + 4j2)Mr + 1
8(259 + 202j + 60j2 + 8j3)r2 (3.4.143)

− 3(41 + 24j + 4j2)r3

16M + 3(7 + 2j)r4

32M2 − r5

64M3 ,

υ4(r, j) = 12(5 + 8j + 4j2)M2 − 2(55 + 70j + 36j2 + 8j3)Mr (3.4.144)

+
(1225

16 + 84j + 73j2

2 + 8j3 + j4
)
r2 − (199 + 178j + 60j2 + 8j3)r3

8M

+ (119 + 72j + 12j2)r4

32M2 − (7 + 2j)r5

32M3 + r6

256M4 .

Writing ξ(r, j) = r2υ4(r, j) and expressing ξ(r, j) as a polynomial in (r − 2M) gives

ξ(r, j) =
8∑

k=0
[ξ(j)]k(r − 2M)k, (3.4.145)

where the first few coefficients [ξ(j)]k are given by

[ξ(j)]0
.= 16(j − 2)(j − 1)j(1 + j)M4,

[ξ(j)]2
.= 2j(1 + j)(1 + 2j)(6j − 5)M2,

[ξ(j)]1
.= 16(j − 1)j(1 + j)(2j − 1)M3,

[ξ(j)]3
.= (1 + j)(8j3 − 20j − 13).

(3.4.146)

Now expressing R̂[−2] as a series in (r − 2M) one has

R̂[−2] = ∆2(D+
0 )4(∆2ρ

[+2]
2M,−) =

∞∑
j=0

cj(r − 2M)j− 1
2 . (3.4.147)

One can compute the first few coefficients, ci, of this series as

c0 = b0[ξ(0)]0 = 0, (3.4.148)
c1 = b0[ξ(0)]1 + b1[ξ(1)]0 = 0, (3.4.149)
c2 = b0[ξ(0)]2 + b1[ξ(1)]1 + b2[ξ(2)]0 = 0 (3.4.150)

and

c3 = b0[ξ(0)]3 + b1[ξ(1)]2 + b2[ξ(2)]1 + b3[ξ(3)]0 (3.4.151)

= M

3
(
81 + 57λ[+2] + 13(λ[+2])2 + (λ[+2])3

)
. (3.4.152)
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Since λ[+2] = ℓ(ℓ+ 1) − s(s+ 1) ≥ 0, c3 ̸= 0. Hence,

R̂[−2] = M

3
(
81 + 57λ[+2] + 13(λ[+2])2 + (λ[+2])3

)[
(r − 2M)

5
2 + O(r − 2M)

]
. (3.4.153)

Therefore, since R[−2] is a solution to the radial ODE with s = −2, it must be in the span of the
basis elements ρ

[−2]
2M,+ and ρ

[−2]
2M,− given by (3.4.96) and (3.4.97). By direct inspection one sees

that R[−2] cannot be in the span of ρ[−2]
2M,−. Therefore,

R[−2] = a
[+2]
2M,+C i

4M
ρ

[−2]
2M,+. (3.4.154)
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3.5 Weak Stability Statements from the Canonical Energy

In this section three weak stability theorems are proved. Define the following initial data energies
for a solution h of the linearised vacuum Einstein equation (I.5) in double null gauge that is
supported on ℓ ≥ 2, extendible to null infinity and satisfies the partially initial data normalised
gauge conditions:

ET
data[h](u) .= ET

v0 [h](u0, u) + ET
u0 [h](v0,∞) + lim

v→∞

∫
S2

u,v

r
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)/ε
∣∣∣
u0
, (3.5.1)

/Edata[h](u) .= /Ev0 [h](u0, u) + /Eu0 [h](v0,∞) + 3
2ET

data[h](u). (3.5.2)

By the fundamental theorem of calculus these energies are continuous. Further, Edata[h](u) is
uniformly bounded in u by the estimate

ET
v0 [h](u0, u) ≤ CM E(u) ≤ CM E(∞), (3.5.3)

where

E(u) .=
∫ u

u0

∫
S2

u′,v0

Ω2
[
|
(1)
χ̂|2 + |(1)

η|2 +
( (1)

(ΩTr/gχ)
Ω2

)2
+

( (1)
ω

Ω2

)2
+

(1)

(ΩTr/gχ)2 +
((1)

Ω
Ω

)2]
du′/ε. (3.5.4)

Since E(u) is written in terms of quantities that are smoothly extendible to the event horizon,
one has uniform boundedness of Edata[h](u) in u (assuming the L2-norms of the above quantities
are finite in the initial data). Similarly, /Edata[h](u) is uniformly bounded in u. Define also

ET
data[h] .= lim

u→∞
ET

data[h](u), (3.5.5)

/E
T

data[h] .= lim
u→∞

/E
T

data[h](u). (3.5.6)

Having established the (local) equivalence of the canonical energy to Holzegel’s conservation
laws [90], the stability theorem from the canonical energy arising from Holzegel’s work is the
following:

Theorem 3.5.1. Suppose h is a smooth solution to the linearised Einstein equation in double
null gauge on the Schwarzschild black hole exterior supported on ℓ ≥ 2, extendible to null infinity
and satisfies the partially initial data normalised gauge conditions. Then, for all uf > u0.∫ ∞

v0
|Ω

(1)
χ̂(uf , v)|2dv/ε +

∫ uf

u0
|
(1)
χ̂(u,∞)|2du/ε ≤ sup

uf ∈[u0,∞)
Edata[h](uf ) < ∞, (3.5.7)
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where Edata[h](uf ) .= ET
data[h](uf ) + R(uf , v0) and R(uf , v0) is defined in terms of initial data

as

R(uf , v0) .= 1
6M

∫
S2

uf ,v0

∣∣∣r3((1)
ρ+ /div(1)

η
)

− r3

2Ω2
/∆

[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]∣∣∣2/̊ε (3.5.8)

−
∫
S2

uf ,v0

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε.

Additionally,

lim
uf →∞

R(uf , v0) = 0. (3.5.9)

Moreover, ∫ ∞

v0
|Ω

(1)
χ̂(∞, v)|2dv/ε +

∫ ∞

u0
|
(1)
χ̂(u,∞)|2du/ε ≤ ET

data[h]. (3.5.10)

Hence, ET
data[h] ≥ 0.

For completeness, theorem 3.5.1 is reproved in section 3.5.2 of this work. The key ingredient
to the proof of this theorem is the conservation law (3.1.3) for the modified T -canonical energy.
However, as is evident from considering the fluxes in equations (3.1.1) and (3.1.2) the coercivity
properties are very obscure. There are two key ideas that allow one to gain some coercivity for
the fluxes and hence produce the energy estimates stated in theorem 3.5.1. First notice from
section 3.4.7 on the limits of the canonical energy fluxes that in taking the limit to null infinity of
the flux ET

vf
[h] in equation (3.1.2) that (up to the boundary terms on S2

uf ,∞ and S2
u0,∞) the flux

is now positive. Second is that one can manipulate the gauge on the final outgoing cone Cuf

using the theory developed in section 2.10.3. Using the residual gauge freedom in double null
gauge one can impose that the modified T -canonical energy of a solution h′ .= h− hpg on the
final cone is given by

ET
uf

[h′](v0, vf ) =
∫ vf

v0

(
|Ω

(1)
χ̂′|2 + 2|Ω(1)

η′|2
)
dv/ε, (3.5.11)

where
(1)
χ̂′ and (1)

η′ are associated to h′. On the face of it, this looks unhelpful since one now has two
solutions entering the problem, h and h′. However, it turns out that the change of gauge can be
chosen such that

(1)
χ̂′ =

(1)
χ̂. Additionally, it also turns out that the difference between ET

uf
[h′](v0, vf )

and ET
uf

[h](v0, vf ) is a boundary term on the spheres S2
uf ,vf

and S2
uf ,v0 . Miraculously, the former

boundary term cancels the boundary term coming from taking the limit of ET
vf

[h] to null infinity.
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Through a similar process, one can use the conservation law arising in theorem 3.1.9 to bound
|
(1)
β|2 on any outgoing cone Cu and |

(1)
β|2 at null infinity I+ by initial data. In particular, one has

the following theorem:

Theorem 3.5.2. Suppose h is a smooth solution to the linearised Einstein equation in double
null gauge on the Schwarzschild black hole exterior supported on ℓ ≥ 2, extendible to null infinity
that is in partially initial data normalised gauge. Then, for all uf > u0∫ ∞

v0

r2

2
(
|Ω

(1)
β(uf )|2 + |Ω(1)

σ(uf )|2
)
dv/ε +

∫ uf

u0

r2

2 |
(1)
β(u,∞)|2du/ε ≤ sup

uf ∈[u0,∞)
/Edata[h](uf ) < ∞,

(3.5.12)

where /Edata[h](uf ) .= /Edata[h](uf ) + /R(uf , v0) and /R(uf , v0) is defined in terms of initial data
as

/R(uf , v0) .= 3
2M

∫
S2

uf ,v0

(
1 − M

r

)∣∣∣r3((1)
ρ+ /div(1)

η) − r3

2Ω2
/∆F − 2M

Ω2 F
∣∣∣2/̊ε (3.5.13)

+
∫
S2

uf ,v0

[ 3M
4Ω4F

2 + 3
2r

∣∣∣r3((1)
ρ+ /div(1)

η
)

− 3M
Ω2 F − r3

2Ω2
/∆F

∣∣∣2 + 3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
]̊
/ε

+ 3M
2

∫
S2

uf ,v0

∣∣∣ /̊∇( F

2Ω2

)∣∣∣2
/̊γ
/̊ε −

∫
S2

uf ,v0

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε,

with

F(uf , θ, φ) .=
(
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
)∣∣∣

(uf ,v0)
. (3.5.14)

Additionally, /R(uf , v0) satisfies the limit

lim
uf →∞

/R(uf , v0) = 0. (3.5.15)

Moreover, ∫ ∞

v0

r2

2 |Ω
(1)
β(∞, v)|2dv/ε +

∫ ∞

u0

r2

2 |
(1)
β(u,∞)|2du/ε ≤ /E

T

data[h]. (3.5.16)

With the success of the conservation laws in theorems 3.1.7 and 3.1.9 producing L2-
boundedness statements for the shears (

(1)
χ̂,

(1)
χ̂) and (

(1)
β,

(1)
β), the reader may be wondering about

if one can use the local conservation law for ((1)
α,

(1)
α) to produce the analogue of theorems 3.5.1

and 3.5.2? In particular, can the conservation law arising in theorem 3.1.10 produce a boundedness
statement for |(1)

α|2 on any outgoing cone Cu and |(1)
α|2 at null infinity I+. However, at the time of

writing, any attempt to gain coercivity of the conservation law in theorem 3.5.2 by a limiting
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argument and a change of gauge to has failed. However, one does have a commuted estimate
arising from theorem 3.5.1:

Theorem 3.5.3. Suppose h is a solution to the linearised Einstein equation in double null gauge
on the Schwarzschild black hole exterior supported on ℓ ≥ 2, extendible to null infinity and
satisfies the partially initial data normalised gauge conditions. Then, ∃C > 0 such that∫ ∞

v0
|Ω2(1)

α(∞, v)|2dv/ε +
∫ ∞

u0
|(1)
α(u,∞)|2du/ε ≤ C

(
ET

data[LTh] + ET
data[h]

)
. (3.5.17)

It is this estimate that allows one to prove the following mode stability statement:

Corollary 3.5.4. Let h be a smooth solution to the linearised vacuum Einstein equation (I.5) of
the form

hµν = e−iωteimφSµν(θ)Rµν(r) (3.5.18)

with I(ω) ≥ 0 and let hpg be the pure gauge solution such that h′ .= h− hpg is in double null
gauge (as defined in definition 2.10.1). Construct α[±2] via proposition 2.10.7, proposition 2.10.10
and equations (2.10.158) and (2.10.159). If α[±2] defines outgoing mode solution to the Teukolsky
equation (2.10.150) as in proposition 3.4.14, then h has to be the sum of a pure gauge solution
and a linearised Kerr solution.

Remark 3.5.5. Its interesting to entertain the possibility that the estimate in theorem 3.5.3 could
be used to prove a spacetime integral estimate for the Teukolsky equation directly.

Theorems 3.5.2 and 3.5.3 are proved in section 3.5.2.

3.5.1 Manipulating the Double Null Gauge

As the discussion following theorem 3.5.1 eluded to, understanding how to manipulate the gauge
on the final outgoing cone Cuf

using the theory developed in section 2.10.3 will be essential to
establishing this result. The relevant lemma is the following:

Lemma 3.5.6 (Change of Double Null Gauge [90]). Let h be a smooth solution to the linearised
vacuum Einstein equation (I.5) in double null gauge on the Schwarzschild black hole exterior. Let
f(v, θ, φ) be a smooth function generating a residual pure gauge solution hpg as in lemma 2.10.25.
Let h′ = h − hpg which defines a new smooth solution to the linearised vacuum Einstein
equation (I.5) in double null gauge. Then,

ET
u [h′](v0, v) − ET

u [h](v0, v) = −
∫
S2

u,v

G(u, v, θ, φ)/ε
∣∣∣v
v0
, (3.5.19)

/Eu[h′](v0, v) − /Eu[h](v0, v) = −
∫
S2

u,v

/G(u, v, θ, φ)/ε
∣∣∣v
v0
, (3.5.20)
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with

G .= 6M(Ω2f)2

r4 − r

2Ω2

[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)′
] (1)

(ΩTr/gχ) + 2Ω2f
((1)
ρ′ − /div(1)

η′) (3.5.21)

− f

r2
(
r − 4M

) (1)

(ΩTr/gχ)′

and

/G .= −6M2(Ω2f)2

r5 + 3M
r

[((1)
Ω
Ω

) (1)

(ΩTr/gχ) −
((1)

Ω
Ω

)′ (1)

(ΩTr/gχ)′ − Ω2f
((1)
ρ′ + /div(1)

η′)]
(3.5.22)

− 3M2f

r3

(1)

(ΩTr/gχ)′ + 3M
2r2

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2 + 12M2

r4 fΩ2
((1)

Ω
Ω

)′
,

where ‘primed’ quantities are associated to h′ and ‘unprimed’ quantities are associated to h.

Proof. In this proof the notation ≡ will denote equality under integration over S2
u,v.

A proof of the first statement can be found in [90] as proposition 5.1. The second is stated
as proposition 8.2 in [90] but it is proved here for completeness. Recall the relevant fluxes are the
following:

/E
T

u [h′](v0, v1) =
∫ u1

u0

∫
S2

u,v

(Ω2r4

2 |
(1)
β|2 − 3MΩ2r|(1)

η′|2 + Ω2r4

2
(
|(1)
σ|2 + |(1)

ρ′|2
)

(3.5.23)

+ 3Mr
(1)
ω′

(1)

(ΩTr/gχ)′ + 3M
(
1 − 4M

r

)((1)
Ω
Ω

)′ (1)

(ΩTr/gχ)′
)
dů/ε,

/E
T

u [h](v0, v1) =
∫ u1

u0

∫
S2

u,v

(Ω2r4

2 |
(1)
β|2 − 3MΩ2r|(1)

η|2 + Ω2r4

2
(
|(1)
σ|2 + |(1)

ρ|2
)

(3.5.24)

+ 3Mr
(1)
ω

(1)

(ΩTr/gχ) + 3M
(
1 − 4M

r

)((1)
Ω
Ω

) (1)

(ΩTr/gχ)
)
dů/ε,

where one uses that
(1)
β =

(1)
β′ and (1)

σ = (1)
σ′. Now

(1)
ω = (1)

ω′ + ∂v

( 1
2Ω2∂v

(
Ω2f

))
,

((1)
Ω
Ω

)
=

((1)
Ω
Ω

)′
+ 1

2Ω2∂v
(
Ω2f

)
,

(1)
η

A
= (1)
η′

A
+ r

Ω2 /∇A

[
∂v

(Ω2

r
f

)]
,

(1)
ρ = (1)

ρ′ + 6MΩ2

r4 f,

(3.5.25)

and
(1)

(ΩTr/gχ) =
(1)

(ΩTr/gχ)′ + 2∂v

(Ω2

r
f

)
, (3.5.26)

(1)

(ΩTr/gχ) =
(1)

(ΩTr/gχ)′ + 2Ω2

r2

(
1 − 4M

r

)
f + 2Ω2 /∆f. (3.5.27)
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Denote δ/E = /E
T

u [h′](v0, v1) − /E
T

u [h](v0, v1) then decompose into pure gauge terms and mixed
terms as δ/E = δ/EM + δ/EP with

δ/EM =
∫ v1

v0

(
− 3Mr

{
∂v

( 1
2Ω2∂v

(
Ω2f

)) (1)

(ΩTr/gχ)′ + (1)
ω′ 2Ω2

r2

[(
1 − 4M

r

)
f + /̊∆f

]}
(3.5.28)

− 6M
[
Ω2(1)
ρ′ − Ω2

r2

((
1 − 4M

r

)((1)
Ω
Ω

)′
+ r2 /div(1)

η′
)]

(Ω2f)

− 3M
2Ω2

(
1 − 4M

r

) (1)

(ΩTr/gχ)′∂v
(
Ω2f

)
− 6M

r

[(
1 − 4M

r

)((1)
Ω
Ω

)′
+ r2 /div(1)

η′
]
∂v(Ω2f)

)
dv̊/ε,

δ/EP =
∫ v1

v0

(3Mr3

Ω2

∣∣∣ /∇[
∂v

(Ω2

r
f

)]∣∣∣2 − 3M
Ω2

(
1 − 4M

r

)
∂v

(
Ω2f

)
∂v

(Ω2

r
f

)
(3.5.29)

− Ω2r4

2

∣∣∣6MΩ2

r4 f
∣∣∣2 − 3Mr∂v

( 1
2Ω2∂v

(
Ω2f

))[2Ω2

r2

(
1 − 4M

r

)
f + 2Ω2

r2
/̊∆f

])
dv̊/ε.

Now first consider terms appearing in δ/EM and denote

δ/E
1
M

.= 3Mr∂v

( 1
2Ω2∂v

(
Ω2f

)) (1)

(ΩTr/gχ)′, (3.5.30)

δ/E
2
M

.= 3Mr
(1)
ω′

[2Ω2

r2

(
1 − 4M

r

)
f + 2Ω2

r2
/̊∆f

]
. (3.5.31)

Then

δ/E
1
M = ∂v

(3Mr

2Ω2 ∂v
(
Ω2f

) (1)

(ΩTr/gχ)′
)

− 3Mr

4Ω2 ∂v
(
Ω2f

)
(ΩTr/gχ)

(1)

(ΩTr/gχ)′ (3.5.32)

− 3Mr

2Ω2 ∂v
(
Ω2f

)(
2Ω2 /div(1)

η′ + 2Ω2(1)
ρ′ + 4Ω2ρ

((1)
Ω
Ω

)′)
and

δ/E
2
M ≡ ∂v

(((1)
Ω
Ω

)′ 6MΩ2

r

[(
1 − 4M

r

)
f + /̊∆f

])
(3.5.33)

+
[((1)

Ω
Ω

)′ 6MΩ2

r2

(
1 − 8M

r

)
+ /div((1)

η′ +(1)
η′)3MΩ2

]
(Ω2f)

−
[((1)

Ω
Ω

)′(6M
r

)(
1 − 4M

r

)
+ 3Mr /div((1)

η′ +(1)
η′)

]
∂v(Ω2f).
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Therefore,

δ/EM =
∫ v1

v0

∫
S2

u,v

(
− 6MΩ2

[(1)
ρ′ −

((1)
Ω
Ω

)′ 4M
r3 + 1

2
/div((1)

η′ −(1)
η′)

]
(Ω2f) (3.5.34)

+ 3M
[
r /div(1)

η′ + r
(1)
ρ′ − 4M

r2

((1)
Ω
Ω

)′
+ M

Ω2r

(1)

(ΩTr/gχ)′
]
∂v(Ω2f)

− ∂v

(((1)
Ω
Ω

)′ 6MΩ2

r

[(
1 − 4M

r

)
f + /̊∆f

])
− ∂v

(3Mr

2Ω2 ∂v
(
Ω2f

) (1)

(ΩTr/gχ)′
))
dv̊/ε.

Note that from proposition 2.10.11 and linearised Bianchi identities in proposition 2.10.20 one has

∂v

(
r /div(1)

η′ + r
(1)
ρ′

)
= −Ω2 /div((1)

η′ −(1)
η′) − 2Ω2(1)

ρ′ − 3
2ρr

(1)

(ΩTr/gχ)′. (3.5.35)

Therefore using linearised Raychauduri in proposition 2.10.9 one has

δ/EM =
∫ v1

v0

∫
S2

u,v

(
∂v

(
3M

[
r /div(1)

η′ + r
(1)
ρ′ − 4M

r2

((1)
Ω
Ω

)′
+ M

Ω2r

(1)

(ΩTr/gχ)′
]
Ω2f

)
(3.5.36)

− ∂v

(((1)
Ω
Ω

)′ 6MΩ2

r

[(
1 − 4M

r

)
f + /̊∆f

])
− ∂v

(3Mr

2Ω2 ∂v
(
Ω2f

) (1)

(ΩTr/gχ)′
))
dv̊/ε

=
∫
S2

u,v

3M
[ M
Ω2r

(1)

(ΩTr/gχ)′ − r /div(1)
η′ + r

(1)
ρ′ −

((1)
Ω
Ω

)′ 2Ω2

r

]
Ω2f/̊ε

∣∣∣v1

v0
(3.5.37)

−
∫
S2

u,v

3Mr

2Ω2 ∂v
(
Ω2f

) (1)

(ΩTr/gχ)′
)̊
/ε
∣∣∣v1

v0
.

Now consider the terms appearing in δ/EP . Denote

δ/E
1
P
.= 3M

r
∂v

( 1
Ω2∂v

(
Ω2f

))[(
1 − 4M

r

)
Ω2f + /̊∆(Ω2f)

]
, (3.5.38)

δ/E
2
P
.= 3M

Ω2

(
1 − 4M

r

)
∂v

(
Ω2f

)
∂v

(Ω2

r
f

)
, (3.5.39)

δ/E
3
P
.= 3Mr3

Ω2

∣∣∣ /∇[
∂v

(Ω2

r
f

)]∣∣∣2. (3.5.40)

Then,

δ/E
1
P ≡ ∂v

(3M
r
∂v

(
Ω2f

)[(
1 − 4M

r

)
f + /̊∆f

])
+ 3M

Ω2r

∣∣∣∂v(Ω2 /̊∇f)
∣∣∣2
/̊γ

(3.5.41)

− 3M
rΩ2

(
1 − 4M

r

)
|∂v

(
Ω2f

)
|2 + 6MΩ2

2r3

(
1 − 12M

r

)
|Ω2f |2

− 3MΩ2

r3

∣∣∣ /̊∇(
Ω2f

)∣∣∣2
/̊γ

+ ∂v

(3M
2r2

(
1 − 8M

r

)
|Ω2f |2 + 3M

2r2

∣∣∣ /̊∇(
Ω2f

)∣∣∣2
/̊γ

)
,
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δ/E
2
P = 3M

Ω2r

(
1 − 4M

r

)
|∂v

(
Ω2f

)
|2 − ∂v

(3M
2r2

(
1 − 4M

r

)(
Ω2f

)2)
(3.5.42)

+ ∂v

(3M
2r2

(
1 − 4M

r

))(
Ω2f

)2

and

δ/E
3
P = 3M

Ω2r

∣∣∣∂v(Ω2 /̊∇f)
∣∣∣2
/̊γ

− 3MΩ2

r3

∣∣∣ /̊∇(Ω2f)
∣∣∣2
/̊γ
. (3.5.43)

Combining gives

δ/EP =
∫ v1

v0

(
∂v

(3M
2r2

(
1 − 4M

r

)(
Ω2f

)2 − 3M
r
∂v

(
Ω2f

)[(
1 − 4M

r

)
f + /̊∆f

])
(3.5.44)

− ∂v

(3M
2r2

(
1 − 8M

r

)
|Ω2f |2 + 3M

2r2

∣∣∣ /̊∇(
Ω2f

)∣∣∣2
/̊γ

)
− ∂v

(3M
2r2

(
1 − 4M

r

))(
Ω2f

)2 − 3MΩ2

r3

(
1 − 6M

r

)
(Ω2f)2

)
dv̊/ε.

One can check the last line cancels and hence,

δ/EP =
∫
S2

(6M2

r3
(
Ω2f

)2 − 3M
2r2

∣∣∣ /̊∇(
Ω2f

)∣∣∣2
/̊γ

(3.5.45)

− 3M
r
∂v

(
Ω2f

)[(
1 − 4M

r

)
f + /̊∆f

])̊
/ε
∣∣∣v1

v0
.

Combining one has

δ/E =
∫
S2

u,v

(
3M

[ M
Ω2r

(1)

(ΩTr/gχ)′ − r /div(1)
η′ + r

(1)
ρ′ −

((1)
Ω
Ω

)′ 2Ω2

r

]
Ω2f + 6M2

r3
(
Ω2f

)2)̊
/ε
∣∣∣v1

v0
(3.5.46)

+
∫
S2

u,v

(
3Mr

[((1)
Ω
Ω

)′
−

((1)
Ω
Ω

)] (1)

(ΩTr/gχ) − 3M
2r2

∣∣∣ /̊∇(
Ω2f

)∣∣∣2
/̊γ

)̊
/ε
∣∣∣v1

v0
,

where one uses that

(1)

(ΩTr/gχ) =
(1)

(ΩTr/gχ)′ + 2Ω2

r2

[(
1 − 4M

r

)
f + /̊∆f

]
,

((1)
Ω
Ω

)
pg

=
((1)

Ω
Ω

)
−

((1)
Ω
Ω

)′
. (3.5.47)

Note that to obtain the precise expression for /G stated one can substitute

3Mr
((1)

Ω
Ω

)′ (1)

(ΩTr/gχ) ≡ 3Mr
((1)

Ω
Ω

)′ (1)

(ΩTr/gχ)′ + 6MΩ2

r

(1)

(ΩTr/gχ)′
(
1 − 4M

r

)
f (3.5.48)

+ 3MrΩ2 /div((1)
η +(1)

η)′f.
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In this work a different choice of gauge function to that of Holzegel (see section 6 of [90]) is
made to establish the desired weak stability statement. The reasons for this are two-fold: (1) this
choice generalises to the Kerr case, (2) it can be employed along with theorem 3.1.9 to prove the
stability statement in theorem 3.5.2. The relevant lemma is the following:

Lemma 3.5.7 (Choice of Gauge Function). Fix an outgoing null cone Cuf
and an incoming null

cone Cvf
for some uf > u0 and vf > v0. Let h be a smooth solution to the linearised vacuum

Einstein equation (I.5) in double null gauge. Let f(v, θ, φ) be a function generating a residual
pure gauge solution hpg as in lemma 2.10.25 given by

f(v, θ, φ) = 2
Ω(uf , v)2

∫ v

v0
Ω(uf , w)

(1)
Ω(uf , w, θ, φ)dw + F (θ, φ)

Ω2(uf , v) (3.5.49)

with

F (θ, φ) = 2r(uf , v0)
((1)

Ω
Ω

)
(uf , v0) − r2(uf , v0)

2Ω2(uf , v0)
(1)

(ΩTr/gχ)(uf , v0). (3.5.50)

Let h′ .= h− hpg be the new smooth solution of the linearised vacuum Einstein equation (I.5) in
double null gauge. Then,

((1)
Ω
Ω

)′
(uf , v, θ, φ) = 0, (1)

ω′(uf , v, θ, φ) = 0,
(1)

(ΩTr/gχ)′(uf , v) = 0 (3.5.51)

and

r3( /div(1)
η + (1)

ρ)′(uf , v) = r2( /div(1)
η + (1)

ρ)′(uf , v0). (3.5.52)

Proof. Recall that from lemma 2.10.25

((1)
Ω
Ω

)
pg

= 1
2Ω2∂v(Ω2f). (3.5.53)

Then with f defined as in the statement one has (suppressing the (θ, φ) dependence)

∂v(Ω(u, v)2f)
2Ω2(u, v) =

(1)
Ω(uf , v)
Ω(uf , v) + Ω2(uf , v)

2Ω2(u, v)∂v

( Ω(u, v)2

Ω(uf , v)2

)
f(v, θ, φ). (3.5.54)

Hence,

((1)
Ω
Ω

)′
(uf , v, θ, φ) = 0, (1)

ω′(uf , v, θ, φ) = 0. (3.5.55)
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Now, from lemma 2.10.25,

(1)

(ΩTr/gχ)′ =
(1)

(ΩTr/gχ) + 2Ω2

r2 (Ω2f) − 4Ω2

r

1
2Ω2∂v(Ω2f). (3.5.56)

Evaluating on Cuf
gives

(1)

(ΩTr/gχ)′(uf , v) =
(1)

(ΩTr/gχ)(uf , v) + 2Ω2

r2 (Ω2f)(uf , v) − 4Ω2

r

((1)
Ω
Ω

)
(uf , v). (3.5.57)

So inserting f and evaluating on the sphere S2
uf ,v0 gives

(1)

(ΩTr/gχ)′(uf , v0) = 0.

Now one has that
(1)

(ΩTr/gχ)′ satisfies the linearised Raychauduri equation of proposition 2.10.9
along Cuf

so

Ω2

r2 ∂v

( r2

Ω2

(1)

(ΩTr/gχ)′
)∣∣∣

u=uf

= 2(ΩTr/gχ)(1)
ω′|u=uf

= 0. (3.5.58)

Hence, r2

Ω2

(1)

(ΩTr/gχ)′(uf , v) = r2

Ω2

(1)

(ΩTr/gχ)′(uf , v0) = 0. Therefore,

(1)

(ΩTr/gχ)′(uf , v) = 0, (3.5.59)

on Cuf
.

Using the propagation equations for the linearised torsions (proposition 2.10.11) and the
Bianchi identities (proposition 2.10.20), one has the propagation equation for the combined
quantity:

∂v
(
r3( /div(1)

η′ + (1)
ρ′)

)
= r3(ΩTr/gχ) /∆

((1)
Ω
Ω

)′
− 3r3

2 ρ
(1)

(ΩTr/gχ)′. (3.5.60)

Evaluating on Cuf
gives

∂v
(
r3( /div(1)

η + (1)
ρ)′) = 0, (3.5.61)

since (
(1)
Ω
Ω)′(uf , v) =

(1)

(ΩTr/gχ)′(uf , v) = 0. Hence, integrating (suppressing angular dependence)
gives

r3( /div(1)
η′ + (1)

ρ′)(uf , v) = r3( /div(1)
η′ + (1)

ρ′)(uf , v0), (3.5.62)

as stated.
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3.5.2 Proof of the Weak Stability Statements

Proof of theorem 3.5.1. Fix uf > u0 and vf > v0. Let h′ = h − hpg where hpg is the residual
pure gauge solution generated (through lemma 2.10.3) by the residual gauge function f defined in
equation (3.5.49). The canonical energy conservation law implies the modified canonical energy
conservation law

ET
v0 [h](u0, uf ) + ET

u0 [h](v0, vf ) = ET
vf

[h](u0, uf ) + ET
uf

[h](v0, vf ). (3.5.63)

Start by writing

ET
vf

[h](u0, uf ) =
∫ uf

u0

∫
S2

u,vf

|Ω
(1)
χ̂|2du/ε +

∫
S2

u,vf

r

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)/ε
∣∣∣uf

u0
+ V(vf ), (3.5.64)

where limvf →∞ V(vf ) = 0. Note that

ET
uf

[h](v0, vf ) =
∫ vf

v0

∫
S2

uf ,v

(
|Ω

(1)
χ̂(uf , v)|2 + 2Ω2|(1)

η′|2(uf , v)
)
dv/ε, (3.5.65)

where one uses that
(1)
χ̂′ =

(1)
χ̂ from lemma 2.10.25 and

(1)

(ΩTr/gχ)′(uf , v) = 0 and (1)
ω′(uf , v) = 0

from lemma 3.5.7.

By lemma 3.5.6 one has

ET
uf

[h′](v0, vf ) = ET
uf

[h′](v0, vf ) +
∫
S2

uf ,v

G(uf , v, θ, φ)/ε
∣∣∣vf

v0
, (3.5.66)

with

G = 6M(Ω2f)2

r4 − r

2Ω2

[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)′
] (1)

(ΩTr/gχ) + 2Ω2f
((1)
ρ′ − /div(1)

η′) (3.5.67)

− (r − 4M)f
r2

(1)

(ΩTr/gχ)′.

Noting lemma 3.5.7, one has for all v ∈ [v0, vf ] and for all δ ∈ (0, 1] that

r2G(uf , v) =
(
δ

√
6M(Ω2f)

r
+ 1
δ
√

6M
[r3((1)

ρ′ + /div(1)
η′)](v0)

)2
+ 6M(1 − δ2)(Ω2f)2

r2 (3.5.68)

− 1
6Mδ2 [r3((1)

ρ′ + /div(1)
η′)]2(v0) − r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ),
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where one uses that /∆(
(1)
Ω
Ω)′ = /div((1)

η +(1)
η)′ = 0. Hence,

ET
uf

[h](v0, vf ) + ET
vf

[h](u0, uf ) =
∫ vf

v0

∫
S2

uf ,v

(
|Ω

(1)
χ̂(uf , v)|2 + 2Ω2|(1)

η′|2(uf , v)
)
dv/ε (3.5.69)

+
∫ uf

u0

∫
S2

u,vf

|Ω
(1)
χ̂|2(u, vf )du/ε + Qδ,

where Qδ is defined as

Qδ
.= V(vf ) −

∫
S2

u0,vf

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε +
∫
S2

uf ,v0

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε (3.5.70)

+
∫
S2

uf ,vf

{(
δ

√
6M(Ω2f)

r
+ 1
δ
√

6M
[r3((1)

ρ′ + /div(1)
η′)](v0)

)2
+ 6M(1 − δ2)(Ω2f)2

r2

}̊
/ε

−
∫
S2

uf ,v0

{(
δ

√
6M(Ω2f)

r
+ 1
δ
√

6M
[r3((1)

ρ′ + /div(1)
η′)](v0)

)2
+ 6M(1 − δ2)(Ω2f)2

r2

}̊
/ε.

First, one should note that

Qδ ≥ Q̄δ
.= −Rδ(uf , v0) + V(vf ) −

∫
S2

u0,vf

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε, (3.5.71)

with

Rδ(uf , v0) .=
∫
S2

uf ,v0

(
δ

√
6M(Ω2f)

r
+ 1
δ
√

6M
[r3((1)

ρ′ + /div(1)
η′)](v0)

)2
/̊ε (3.5.72)

+
∫
S2

uf ,v0

6M(1 − δ2)(Ω2f)2

r2 /̊ε −
∫
S2

uf ,v0

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε.

Noting that

f(v0) = 2r
Ω2

((1)
Ω
Ω

)
− r2

2Ω4

(1)

(ΩTr/gχ) (3.5.73)

gives

(1)
ρ′ = (1)

ρ− 3M
Ω2r3

[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]
, (3.5.74)

/div(1)
η′ = /div(1)

η − 1
2Ω2

/∆
[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]
, (3.5.75)
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on S2
uf ,v0 by lemma 2.10.25. So taking δ = 1 gives

R1(uf , v0) = 1
6M

∫
S2

uf ,v0

∣∣∣r3((1)
ρ+ /div(1)

η
)

− r3

2Ω2
/∆

[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]∣∣∣2/̊ε (3.5.76)

−
∫
S2

uf ,v0

r3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε,

which is precisely R(uf , v0) as stated in theorem 3.1.7. Therefore, one can estimate that∫ vf

v0

[
|Ω

(1)
χ̂|2 + 2Ω2|(1)

η′|2
]
dv/ε

∣∣∣
uf

+
∫ uf

u0
|Ω

(1)
χ̂|2du/ε

∣∣∣
vf

≤ ET
u0 [h](v0, vf ) + ET

v0 [h](u0, uf ) − Q1,

(3.5.77)

where the integral over S2
u,v on the left hand side is implicit. Since V(vf ) is a continuous function

that vanishes at infinity it is bounded. The other terms on the RHS of (3.5.77) are defined in the
initial data, so are bounded. Hence, ∃C > 0 independent of vf such that∫ vf

v0

∫
S2

uf ,v

(
2|Ω

(1)
χ̂|2 + 4Ω2|(1)

η′|2
)
dv/ε ≤ C. (3.5.78)

So, since the integrand is positive its integral defines a bounded monotone sequence of real
numbers and, therefore, by monotone convergence

lim sup
vf →∞

∫ vf

v0

∫
S2

uf ,v

(
|Ω

(1)
χ̂|2 + 2Ω2|(1)

η′|2
)
dv/ε =

∫ ∞

v0

∫
S2

uf ,v

(
|Ω

(1)
χ̂|2 + 2Ω2|(1)

η′|2
)
dv/ε. (3.5.79)

Note further that |rΩ
(1)
χ̂|2(vf , u) is a smooth function with finite limit as vf → ∞ by extendiblity

to null infinity. Additionally, recall that extendiblity to null infinity gives that

sup
[u0,uf ]×{v≥v0}×S2

u,v

|rΩ
(1)
χ̂|(vf , u) ≤ Cuf

(3.5.80)

for some Cuf
> 0 independent of vf . Therefore, since [u0, uf ] ×S2

u,v is a compact set, Lebesgue’s
bounded convergence theorem (see chapter 2, theorem 1.4 of [126]) lets one pass the limit through
the integral to give

lim sup
vf →∞

∫ uf

u0

∫
S2

u,vf

|Ω
(1)
χ̂|2du/ε =

∫ uf

u0

∫
S2

u,∞

|Ω
(1)
χ̂(u,∞)|2du/ε. (3.5.81)
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Taking the limit superior with respect to vf → ∞ of the right-hand side of (3.5.77) gives∫ ∞

v0

∫
S2

uf ,v

[
|Ω

(1)
χ̂|2 + 2Ω2|(1)

η′|2
]
dv/ε +

∫ uf

u0

∫
S2

u,∞

|Ω
(1)
χ̂|2(u,∞)du/ε ≤ ET

data[h](uf ) + R(uf , v0).

(3.5.82)

To establish that R(uf , v0) vanishes as uf → ∞, note that along the cone Cv0 one has that

∂u

(
r

(1)

(ΩTr/gχ) − 4Ω2
((1)

Ω
Ω

))
= −4MΩ2(1)

ω + 2Ω2r( /div(1)
η + (1)

ρ) − Ω2
(1)

(ΩTr/gχ). (3.5.83)

Integrating in a region close to the future event horizon H+, i.e., from u ≫ u0 to infinity and
using the horizon gauge conditions gives

[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]
(u, v0) =

∫ ∞

u
Ω4

[2r( /div(1)
η + (1)

ρ)
Ω2 −

(
4M

(1)
ω

Ω2 +

(1)

(ΩTr/gχ)
Ω2

)]
du. (3.5.84)

The horizon gauge condition ( /div(1)
η + (1)

ρ)(∞, v0) = (1)
ρℓ=0 = 0 and the smoothness of the solution

implies that for u ≫ u0 close to infinity

( /div(1)
η + (1)

ρ)(u, v0) = O(Ω2) =⇒ ( /div(1)
η + (1)

ρ)
Ω2 (u, v0) = O(1). (3.5.85)

So, for u ≫ u0 close to infinity

[
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
]
(u, v0) = O(Ω4). (3.5.86)

Moreover, commuting with angular operators yields

[
4Ω2 /̊∆

((1)
Ω
Ω

)
− r /̊∆

(1)

(ΩTr/gχ)
]
(u, v0) = O(Ω4), (3.5.87)

for u ≫ u0 close to infinity. Additionally, the gauge conditions on the future event horizon in
definition 3.4.5 give

lim
uf →∞

1
Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)
∣∣∣
(uf ,v0)

= 0. (3.5.88)

Hence, one has limuf →0 R(uf , v0) = 0.

Proof of theorem 3.5.2. Fix uf > u0 and vf > v0. Let h′ = h − hpg where hpg is the residual
pure gauge solution generated (through lemma 2.10.3) by the residual gauge function f defined in
equation (3.5.49). The canonical energy conservation law implies the modified canonical energy
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conservation law

/E
T

v0 [h](u0, uf ) + /E
T

u0 [h](v0, vf ) = /E
T

vf
[h](u0, uf ) + /E

T

uf
[h](v0, vf ). (3.5.89)

Note that

/E
T

uf
[h′](v0, v1) =

∫ v1

v0

(Ω2r2

2 |
(1)
β|2 − 3MΩ2

r
|(1)
η′|2 + Ω2r2

2
(
|(1)
σ|2 + |(1)

ρ′|2
))
dv/ε, (3.5.90)

where one uses that
(1)
β and (1)

σ are gauge invariant (by lemma 2.10.25) and
(1)

(ΩTr/gχ)′(uf , v) = 0
and (1)

ω′(uf , v) = 0 from lemma 3.5.7. Observe that one immediately runs into an issue, namely
/E

T

u [h′](v0, v1) is not necessarily positive. However, one can add ET
u [h′](v0, v1) to achieve positivity.

In particular, let κ ∈ [0,∞) and define

/E
T

κ,u[h](v0, v1) := /E
T

u [h](v0, v1) + κET
u [h](v0, v1) (3.5.91)

and similarly for /E
T

κ,v[h](u0, u1). From the conservation laws for the modified canonical energies
one the following conservation law

/E
T

κ,v0 [h](u0, uf ) + /E
T

κ,u0 [h](v0, vf ) = /E
T

κ,vf
[h](u0, uf ) + /E

T

κ,uf
[h](v0, vf ). (3.5.92)

One can compute that

/E
T

κ,uf
[h′](v0, v1) =

∫ v1

v0

(r2

2 |Ω
(1)
β|2 +

(
2κ− 3M

r

)
|Ω(1)
η′|2 + Ω2r2

2
(
|(1)
σ|2 + |(1)

ρ′|2
)

+ κ|Ω
(1)
χ̂|2

)
dv/ε.

(3.5.93)

Hence, /E
T

κ,u[h′](v0, v1) ≥ 0 for κ ≥ 3
4 . Additionally, as with the proof of theorem 3.1.7, one has

/E
T

κ,vf
[h](u0, uf ) =

∫ uf

u0

(Ω2r2

2 |
(1)
β|2 + κ|Ω

(1)
χ̂|2

)
du/ε +

∫
S2

u,vf

κr

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)/ε
∣∣∣uf

u0
+ /V(vf ),

(3.5.94)

where limvf →∞ /V(vf ) = 0.

By lemma 3.5.1 one has

/E
T

κ,uf
[h](v0, v1) = /E

T

κ,uf
[h′](v0, v1) +

∫
S2

uf ,v

/Gκ(uf , v, θ, φ)/ε
∣∣∣vf

v0
, (3.5.95)
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with /Gκ = /G + κG or explicitly for the gauge function in lemma 3.5.7, one has for all v ∈ [v0, vf ]
that

r2 /Gκ = 3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ) + [r3((1)
ρ′ + /div(1)

η′)](v0)
(
2κ− 3M

r

)Ω2f

r
(3.5.96)

+ 3M
2

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ

+
(
3κ− 3M

r

)2M(Ω2f)2

r2 − κr3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ).

Manipulation of this function is slightly subtle since the first term is merely bounded by extendibility
to null infinity so naively gives a boundary term (without sign) on S2

uf ,vf
. Recall that from the

expression for the Gauss curvature (proposition 2.10.15) and extendibility to null infinity

r
(1)

(ΩTr/gχ) = −4
((1)

Ω
Ω

)
+ O

(1
r

)
, (3.5.97)

so that for large vf

3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ) = −12M
((1)

Ω
Ω

)2
+ O

(1
r

)
, (3.5.98)

by extendibility to null infinity. Now from lemma 2.10.25 recall that

(1)

(ΩTr/gχ)′ =
(1)

(ΩTr/gχ) − 2
r
∂v(Ω2f) + 2Ω2

r2 (Ω2f). (3.5.99)

Evaluating this on Cuf
, noting, by lemma 3.5.7,

(1)

(ΩTr/gχ)′ = 0, gives

(1)

(ΩTr/gχ) − 4Ω2

r

((1)
Ω
Ω

)
+ 2Ω2

r2 (Ω2f) = 0, (3.5.100)

where one uses that

∂v(Ω2f) = 2Ω2
((1)

Ω
Ω

)
pg

= 2Ω2
((1)

Ω
Ω

)
, (3.5.101)

where the last equality follows from lemma 3.5.7. Additionally, this tells one that f = O(r) as

vf → ∞. On Cuf
one can now solve equation (3.5.100) for

(1)
Ω
Ω in terms of f which gives

((1)
Ω
Ω

)
= Ω2f

2r + r

4Ω2

(1)

(ΩTr/gχ). (3.5.102)
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Substituting into equation (3.5.98) gives

3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ) = −3M
r2 (Ω2f)2 + O

(1
r

)
, (3.5.103)

by the assumption of extendibility to null infinity. Hence,

r2 /Gκ(vf ) = [r3((1)
ρ′ + /div(1)

η′)](v0)
(
2κ− 3M

r

)Ω2f

r
+

(
3κ− 3

2 − 3M
r

)2M(Ω2f)2

r2 (3.5.104)

+ 3M
2

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ

− κr3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + O
(1
r

)
.

Equivalently for δ ∈ (0, 1]

r2 /Gκ(vf ) =
(
2κ− 3M

r

)( 1
δ
√

2M
[r3((1)

ρ′ + /div(1)
η′)](v0) + δ

√
2MΩ2f

r

)2
(3.5.105)

−
(
2κ− 3M

r

) 1
2Mδ2 [r3((1)

ρ′ + /div(1)
η′)]2(v0)

+
(
2κ− 3M

r

)2M(1 − δ2)(Ω2f)2

r2 +
(
κ− 3

2
)2M(Ω2f)2

r2

+ 3M
2

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ

− κr3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) + O
(1
r

)
.

Additionally, one can write r2 /Gκ(v0) in a comparable form

r2 /Gκ(v0) =
(
2κ− 3M

r

)( 1
δ
√

2M
[r3((1)

ρ′ + /div(1)
η′)](v0) + δ

√
2MΩ2f

r

)2
(3.5.106)

+ κ
2M(Ω2f)2

r2 −
(
2κ− 3M

r

) 1
2Mδ2 [r3((1)

ρ′ + /div(1)
η′)]2(v0)

+
(
2κ− 3M

r

)2M(1 − δ2)(Ω2f)2

r2 + 3M
2

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ

+ 3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ) − κr3

2Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ).

Taking κ = 3
2 , δ = 1 and defining

/ET [h](uf , vf ) .=
∫ vf

v0

(r2

2 |Ω
(1)
β|2 + Ω2r2

2 |(1)
σ|2

)
dv/ε +

∫ uf

u0

(Ω2r2

2 |
(1)
β|2 + 3

2 |Ω
(1)
χ̂|2

)
du/ε (3.5.107)

+
∫ vf

v0

(
2
(
1 − M

r

)
|Ω(1)
η′|2 + Ω2r2

2 |(1)
ρ′|2 + 3

2 |Ω
(1)
χ̂|2

)
dv/ε,

one has

/E
T
3
2 ,uf

[h](v0, vf ) + /E
T
3
2 ,vf

[h](u0, uf ) = /ET [h](uf , vf ) + /Q, (3.5.108)
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where

/Q .= /V(vf ) −
∫
S2

u0,vf

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε +
∫
S2

uf ,v0

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε (3.5.109)

+ 3
∫
S2

uf ,vf

(
1 − M

r

)( 1√
2M

[r3((1)
ρ′ + /div(1)

η′)](v0) +
√

2MΩ2f

r

)2
/̊ε

− 3
∫
S2

uf ,v0

(
1 − M

r

)( 1√
2M

[r3((1)
ρ′ + /div(1)

η′)] +
√

2MΩ2f

r

)2
/̊ε

+ 3M
2

∫
S2

uf ,vf

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ
/̊ε − 3M

2

∫
S2

uf ,v0

∣∣∣ /̊∇(Ω2f

r

)∣∣∣2
/̊γ
/̊ε

−
∫
S2

uf ,v0

[3M(Ω2f)2

r2 + 3
2r

[
r3((1)

ρ′ + /div(1)
η′)]2 + 3Mr

((1)
Ω
Ω

) (1)

(ΩTr/gχ)
]̊
/ε.

Now

/Q ≥ − /R(uf , v0) + /V(vf ) −
∫
S2

u0,vf

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε, (3.5.110)

where recall that /R(uf , v0) is defined as

/R(uf , v0) .= 3
2M

∫
S2

uf ,v0

(
1 − M

r

)∣∣∣r3((1)
ρ+ /div(1)

η) − r3

2Ω2
/∆F − 2M

Ω2 F
∣∣∣2/̊ε (3.5.111)

+
∫
S2

uf ,v0

[ 3M
4Ω4F

2 + 3
2r

∣∣∣r3((1)
ρ+ /div(1)

η
)

− 3M
Ω2 F − r3

2Ω2
/∆F

∣∣∣2 + 3Mr
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
]̊
/ε

+ 3M
2

∫
S2

uf ,v0

∣∣∣ /̊∇( F

2Ω2

)∣∣∣2
/̊γ
/̊ε −

∫
S2

uf ,v0

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε,

with

F(uf , θ, φ) .=
(
4Ω2

((1)
Ω
Ω

)
− r

(1)

(ΩTr/gχ)
)∣∣∣

(uf ,v0)
. (3.5.112)

Note that to produce /R(uf , v0) uses that on S2
uf ,v0

f(v0) = r

2Ω4F,
(1)
ρ′ + /div(1)

η′ = (1)
ρ+ /div(1)

η − 3M
Ω2r3F −

/∆F

2Ω2 . (3.5.113)
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Therefore, the key estimate is

/ET [h](uf , vf ) ≤ /E
T
3
2 ,u0 [h](v0, vf ) + /E

T
3
2 ,v0 [h](u0, uf ) + /R(uf , v0) (3.5.114)

+
∫
S2

u0,vf

3r3

4Ω2

(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)̊/ε − /V(vf ).

Arguing similarly to the proof of theorem 3.1.7,
∫ ∞

v0

(r2

2 |Ω
(1)
β|2 + Ω2r2

2 |(1)
σ|2

)
dv +

∫ uf

u0

Ω2r2

2 |
(1)
β(uf ,∞)|2du ≤ /ET

data(uf ) + /R(uf , v0). (3.5.115)

The conclusion about the limit of /R(uf , v0) follows analogously to the proof of theorem 3.5.1
since (from the proof of theorem 3.5.1) F ∼ O(Ω4) for uf >> u0 close to infinity. The only new

term arising is 3Mr(
(1)
Ω
Ω)

(1)

(ΩTr/gχ) integrated over S2
uf ,v0 . One just observes that

3M
∫
S2

uf ,v0

r
((1)

Ω
Ω

) (1)

(ΩTr/gχ)̊/ε = 3M
∫
S2

uf ,v0

rΩ2
((1)

Ω
Ω

) (1)

(ΩTr/gχ)
Ω2 /̊ε = O(Ω2) (3.5.116)

by considering regular quantities at the future event horizon H+ (see section 3.4.5).

Proof of theorem 3.5.3. Since h solves the linearised vacuum Einstein equation (I.5) so does
LTh. Therefore, one has the commuted estimate from theorem 3.5.1∫ ∞

u0
Ω2|/LT

(1)
χ̂|2dv/ε +

∫ ∞

v0
Ω2|/LT

(1)
χ̂|2du/ε ≤ ET

data[LTh]. (3.5.117)

From the linearised null structure equations of section 2.10.1 (in particular propositions 2.10.10)

r/LT

(1)
χ̂ = −Ωr

2
(1)
α− rω

(1)
χ̂− Ωr /D⋆

2
(1)
η + r

4(ΩTr/gχ)
((1)
χ̂+

(1)
χ̂

)
, (3.5.118)

Ω/LT

(1)
χ̂ = −Ω2

2
(1)
α+ Ωω

(1)
χ̂− Ω2 /D⋆

2
(1)
η − Ω

4 (ΩTr/gχ)
((1)
χ̂+

(1)
χ̂

)
. (3.5.119)

Therefore, restricting to null infinity and the horizon respectively one has

r/LT

(1)
χ̂

∣∣∣
v=∞

= −r

2
(1)
α, Ω/LT

(1)
χ̂

∣∣∣
u=∞

= −Ω2

2
(1)
α+ Ω

(1)
χ̂

4M , (3.5.120)

by the definition of extendiblity to future null infinity, the proposition 3.4.9 on extendiblity to the
future event horizon and that ω = 1

4M on the future event horizon. Hence, one has the bound for
(1)
α, ∫ ∞

u0

1
4 |(1)
α|2du/ε ≤ ET

data[LTh]. (3.5.121)
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Turning to the horizon and using Young’s inequality with 0 < δ < 1
2 gives

1 − 2δ
4

∫ ∞

v0
|Ω2(1)

α|2du/ε ≤ Edata[LTh] + 1 − 2δ
2δ

1
(4M)2

∫ ∞

v0
|Ω

(1)
χ̂|2du/ε. (3.5.122)

The term involving
(1)
χ̂ can now be bounded by ET

data[h] which establishes the desired estimate.

3.5.3 Mode Stability from Canonical Energy

Mode Type for Metric to Mode Type for Teukolsky

Lemma 3.5.8. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
on the Schw4 exterior is of mode type in usual Schwarzschild (t, r, θ, φ) coordinates, i.e.,

hαβ = e−iωtHαβ(r, θ, φ), (3.5.123)

then ((1)
α,

(1)
α) constructed from h by changing to double null gauge and then constructing

(1)
χ̂,

(1)
χ̂

from proposition 2.10.7 and (1)
α, (1)
α from proposition 2.10.10 is of mode type, i.e.,

(1)
α = e−iωt

(1)
A(r, θ, φ), (1)

α = e−iωt
(1)
A(r, θ, φ). (3.5.124)

Proof. Set µ = −iω. Start by expressing h in double null Eddington–Finkelstein coordinates
(u, v, θ, φ):

hαβ = eµ(u+v)Hαβ(v − u, θ, φ). (3.5.125)

An abuse of notation has been used here where one uses hαβ and Hαβ in both coordinate bases.
Let ξ be the one-form that generates the pure gauge solution hpg that takes h to double null
gauge, i.e., h′ = h− hpg satisfies definition 2.10 where (hpg)ab = 2∇(aξb).

Now in double null gauge h′
33 = 0 = h′

44, h′
3A = 0 and h′

4A = −
(1)
bA
Ω which implies (using

proposition 2.8.2) the relations

e3(ξ3) = −ω̂ξ3 − 1
2e

µ(u+v)H33, e4(ξ4) = ω̂ξ4 − 1
2e

µ(u+v)H44, (3.5.126)

( /∇3/ξ)A = −eµ(u+v)/vH

A
− ∂A(ξ3) − 1

2(Tr/gχ)/ξA, (3.5.127)

( /∇4/ξ)A = −
(1)
bA

Ω − eµ(u+v)/vH
A − ∂A(ξ4) + 1

2(Tr/gχ)/ξA, (3.5.128)
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where /ξA
.= ξA and /vH and /vH are S2

u,v co-vectors defined component-wise as /vH

A

.= H3A and
/vH

A
.= H4A. One can combine these results using the commutation lemma 2.8.4 to show

/∇3 /∇3/ξ = eµ(u+v)
(1

2
/d(H33) + 1

2Tr/gχ/vH − µ

Ω/v
H − ( /∇3/vH) − ω̂/vH

)
(3.5.129)

− ω̂( /∇3/ξ),

/∇4 /∇4/ξ = eµ(u+v)
(1

2
/d(H44) − 1

2Tr/gχ/vH − µ

Ω/v
H − ( /∇4/vH) + ω̂/vH

)
(3.5.130)

+ ω̂( /∇4/ξ) − 1
Ω( /∇4

(1)
b)A + 2ω̂

Ω
(1)
bA −

Tr/gχ

2Ω
(1)
bA

One can turn to computing the linearised shears (
(1)
χ̂,

(1)
χ̂) and the linearised null curvature

components ((1)
α,

(1)
α). Start by writing that

/̂h
′
AB = eµ(u+v) /̂HAB − 2(/D⋆

2/ξ)AB (3.5.131)

where /̂HAB
.= H(AB) − 1

2(Tr/gH)/gAB
. Now, proposition 2.10.7 gives

(1)
χ̂
.= 1

2( /∇3 /̂h
′), (3.5.132)

(1)
χ̂
.= 1

2( /∇4 /̂h
′) − 1

Ω
/D⋆

2
(1)
b. (3.5.133)

So, using the commutation lemma gives

(1)
χ̂ = 1

2
(µ

Ωe
µ(u+v) /̂H + eµ(u+v) /∇3 /̂H − 2(/D⋆

2 /∇3/ξ) − Tr/gχ(/D⋆
2/ξ)

)
, (3.5.134)

(1)
χ̂ = 1

2
(µ

Ωe
µ(u+v) /̂H + eµ(u+v) /∇4 /̂H − 2(/D⋆

2 /∇4/ξ) + Tr/gχ(/D⋆
2/ξ)

)
− 1

Ω
/D⋆

2
(1)
b. (3.5.135)

Further, proposition 2.10.10 gives

−(1)
α
.= /∇3

(1)
χ̂+

(
ω̂ − Tr/gχ

)(1)
χ̂, (3.5.136)

−(1)
α
.= /∇4

(1)
χ̂−

(
ω̂ − Tr/gχ

)(1)
χ̂. (3.5.137)

So,

−(1)
α
.= 1

2e
µ(u+v)

(µ2

Ω2 /̂H + 2µ
Ω
/∇3 /̂H + /∇3 /∇3 /̂H +

(
ω̂ − Tr/gχ

)(µ
Ω
/̂H + /∇3 /̂H

))
(3.5.138)

− (/D⋆
2 /∇3 /∇3/ξ) − ω̂(/D⋆

2 /∇3/ξ),

−(1)
α
.= 1

2e
µ(u+v)

(µ2

Ω2 /̂H + 2µ
Ω
/∇4 /̂H + /∇4 /∇4 /̂H −

(
ω̂ − Tr/gχ

)(µ
Ω
/̂H + /∇4 /̂H

))
(3.5.139)

− (/D⋆
2 /∇4 /∇4/ξ) + ω̂(/D⋆

2 /∇4/ξ) +
(2ω̂

Ω −
Tr/gχ

2Ω
)
/D⋆

2
(1)
b− 1

ΩD⋆
2 /∇4

(1)
b,
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Therefore, using equations (3.5.129) and (3.5.130) one has

(1)
α
.= −1

2e
µ(u+v)

(µ2

Ω2 /̂H + 2µ
Ω
/∇3 /̂H + /∇3 /∇3 /̂H +

(
ω̂ − Tr/gχ

)(µ
Ω
/̂H + /∇3 /̂H

))
(3.5.140)

+ eµ(u+v) /D⋆
2

(1
2
/d(H33) + 1

2Tr/gχ/vH − µ

Ω/v
H − ( /∇3/vH) − ω̂/vH

)
,

(1)
α
.= −1

2e
µ(u+v)

(µ2

Ω2 /̂H + 2µ
Ω
/∇4 /̂H + /∇4 /∇4 /̂H −

(
ω̂ − Tr/gχ

)(µ
Ω
/̂H + /∇4 /̂H

))
(3.5.141)

+ eµ(u+v) /D⋆
2

(1
2
/d(H44) − 1

2Tr/gχ/vH − µ

Ω/v
H − ( /∇4/vH) + ω̂/vH

)
,

as claimed.

Proof of Mode Stability

Proof of corollary 3.5.4. If h is a solution to the linearised vacuum Einstein equation (I.5) on the
Schwarzschild black hole exterior then by lemma 3.5.8 if h is of the form

h = e−iωteimφH(r, θ), (3.5.142)

then (1)
α and (1)

α are of the form

(1)
α = e−iωteimφ

(1)
A(r, θ), (1)

α = e−iωteimφ
(1)
A(r, θ). (3.5.143)

Let hpg be the pure gauge solution that takes h to double null gauge. By the equations (2.10.158)
and (2.10.159) one has that the complex scalars α[+2] and α[−2] are of the form

α[+2] = e−iωteimφA [+2](r, θ), (3.5.144)
α[−2] = e−iωteimφA [−2](r, θ). (3.5.145)

Any solution of the above form can be spanned by solutions of the form (see remark 2.3 of [32])

α[+2] = e−iωteimφR[+2](r)S[+2](θ), (3.5.146)
α[−2] = e−iωteimφR[−2](r)S[−2](θ). (3.5.147)

Therefore, by the traditional Teukolsky equation (2.10.150) one has that R[s](r) solves the
ODE (3.4.83). If I(ω) ≥ 0 and ω ̸= 0 proposition 3.4.14 gives that the s = ±2 solution should
be of the form,

R[s] = a
[s]
2M,+ρ

[s]
2M,+ = a

[s]
∞,+ρ

[s]
∞,+. (3.5.148)
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Theorem 3.5.3 proves that∫ ∞

u0
|(1)
α|2du/ε +

∫ ∞

v0
|Ω2(1)

α|2dv/ε ≤ C(ET
data[LTh] + ET

data[h]). (3.5.149)

Using the relations (2.10.160) and (2.10.161) this boundedness statement translates to the
following statement for the complex scalars α[+2] and α[−2]:∫ ∞

u0

2
Ω4r8 |α[−2]|2du/ε +

∫ ∞

v0
2Ω8|α[+2]|2dv/ε ≤ C(ET

data[LTh] + ET
data[h]). (3.5.150)

For a outgoing mode solution this bound implies that

|a[−2]
∞,+|2

∫ ∞

ũ(u0)
e2I(ω)ũ

∣∣∣S[−2](θ)
∣∣∣2dũ̊/ε ≲ ET

data[LTh] + ET
data[h] (3.5.151)

and, for ω ̸= i
4M ,

|a[+2]
2M,+|2

∫ ∞

ṽ(v0)
e2I(ω)ṽ

∣∣∣S[+2](θ)
∣∣∣2dṽ̊/ε ≲ ET

data[LTh] + ET
data[h], (3.5.152)

where one uses equations (3.4.112), (3.4.118), (3.4.120) and (3.4.128).

With I(ω) ≥ 0 and ω ̸= 0, the bound (3.5.151) is violated unless |a[−2]
∞,+| = 0 which

implies that a[−2]
∞,+ = 0. Therefore, R[−2] ≡ 0 ∀ω ̸= 0 with I(ω) ≥ 0 in some annulus

A
.= {r > a > 2M}. This means that for any r0 ∈ A, R[−2](r0) = 0 and dR[−2]

dr (r0) = 0.
By ODE uniqueness theory (for example, see theorem 1.1 of chapter 5 of [97]), R[−2] ≡ 0, for
all r ∈ (2M,∞).

With I(ω) ≥ 0 and ω ̸∈ {0, i
4M }, the bound (3.5.152) is violated unless |a[+2]

2M,+| = 0 which
implies a[+2]

2M,+ = 0. Therefore, R[+2] ≡ 0 ∀ω such that I(ω) ≥ 0 and ω ̸∈ {0, i
4M } in some

open set r ∈ (2M,R) with R > 2M . This means that for any r0 ∈ (2M,R), R[+2](r0) = 0
and dR[+2]

dr (r0) = 0. By ODE uniqueness theory (again, see theorem 1.1 of chapter 5 of [97]),
R[+2] ≡ 0, for all r ∈ (2M,∞).

For ω = i
4M , one does not have that the bound (3.5.152) is violated. This is because as

demonstrated by equation (3.4.122), Ω4α[+2] = 0 at r = 2M if one has an outgoing mode
solution. However, lemma 3.4.15 gives one that the solution

R[+2] = a
[+2]
2M,+ρ

[+2]
2M,+ = a

[+2]
∞,+ρ

[+2]
∞,+ (3.5.153)
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maps to a the solution

R[−2] = C i
4M
a

[+2]
2M,+ρ

[−2]
2M,+ = C

(1)
2 a

[+2]
∞,+ρ

[−2]
∞,+ (3.5.154)

to the radial ODE (3.4.83) with s = −2 and ω = i
4M . Since the existence of such solutions were

ruled out two paragraphs above, one must have a[+2]
2M,+ = 0 = a

[+2]
∞,+. Hence, R[+2] ≡ 0 ∀ω ̸= 0

with I(ω) ≥ 0.

Since R[−2] ≡ 0 ≡ R[+2] one has that Ω4α[+2] ≡ 0 and 1
Ω2r3α

[−2] ≡ 0 globally on the exterior
of Schw4 which translates through equations (2.10.160) and (2.10.161) to (1)

α = 0 = (1)
α on the

exterior. Theorem B.1 in appendix B.1 of [28] proves that if (1)
α = 0 = (1)

α then the solution
h′ = h−hpg is the sum of a residual pure gauge solution and a linearised Kerr solution. Therefore,
h itself must be sum of a pure gauge solution and a linearised Kerr solution.



Chapter 4

An Alternative Energy for the
Linearised Vacuum Einstein Equation

4.1 Introduction

The canonical energy of Hollands and Wald is undoubtedly a appealing construction to allow
for the study of linear stability of a black hole spacetime. One may wonder if there is an
alternative method of defining a useful energy in linearised theory. As discussed at the beginning
of section 3.2, for many field theories one can construct currents and therefore energies associated
to the energy–momentum tensor, Tab, of the theory. However, recall that for the linearised vacuum
Einstein equation (I.5) one immediately encounters the issue that there is no energy–momentum
tensor associated to a solution h. In this chapter, a resolution to this issue is suggested: a current
for the linearised vacuum Einstein equation (I.5) is constructed that is analogous to the usual
current

JX [Φ]a
.= T[Φ]abX

b = X(Φ)∇aΦ − Xa

2 |∇Φ|2g, (4.1.1)

constructed for a solution Ψ to the wave equation (3.2.6). It should be stressed that no symmetric
2-tensor T[h]ab is constructed for h.

A way around the problem of a lack of energy–momentum tensor is simply to abandon the
view point that these currents arise from a energy–momentum tensor and approach with a ‘vector
field multiplier’ method. This method proceeds as follows. Let X be a vector field and suppose f
is a scalar or a tensor on a spacetime (M, g) which solves some linear equation

Dgf = 0, (4.1.2)
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where Dg is some differential operator depending on the metric. Then one can try to construct
an ‘X-energy’ for the equation (4.1.2) by multiplying the equation by LX(f) and trying to write
the expression as a total divergence plus terms that vanish if X is a Killing symmetry of the
spacetime. For example, one can consider constructing an energy for solution Φ ∈ C∞(M) to
the wave equation

□gΦ = 0 (4.1.3)

in this manner. Let Y a .= Xa∇aΦ∇cΦ. Then multiplying the equation by LX(Φ) = X(Φ) gives

0 = X(Φ)□gΦ = Xa∇aΦgbc∇b∇cΦ = divY − (∇bXa)∇aΦ∇bΦ − 1
2∇X |∇Φ|2g (4.1.4)

= div(JX [Φ]) − (ΠX)ab
(
∇aΦ∇bΦ − 1

2gab|∇Φ|2g
)
, (4.1.5)

where JX [Φ]a is the usual current arising from the energy–momentum tensor in equation (4.1.1)
and ΠX

ab is the deformation tensor.

It turns out that for the linearised vacuum Einstein equation (I.5) one can perform an analogous
computation to this vector field multiplier view point by expressing the equation (plus its trace)
as in proposition 3.2.7, i.e.,

P a
(bc)

def ∇a∇dhef = 0, (4.1.6)

contracting with (LXh)bc and trying to write the expression as a total divergence plus terms
that vanish if X is a Killing symmetry of the spacetime. As will be proved in this chapter, this
procedure results in the following current (see proposition 4.2.1 of section 4.2):

(JX [h])a .= P abcdef (LXh)bc∇dhef − 1
2X

aP (∇h,∇h), (4.1.7)

with

P (∇h,∇h) .= P abcdef ∇ahbc∇dhef , (4.1.8)

where P is defined in equation (3.2.7).a This has a divergence of the form

div(JX [h]) = P · ΠX · (∇h)2 + P · ∇ΠX · h · ∇h. (4.1.9)

Hence, like the canonical energy, it also gives rise to a conservation law for a general solution to
the linearised vacuum Einstein equation (I.5) if X is Killing.

aTo the best of the author’s knowledge this current has not appeared in the literature prior to this chapter.
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There are a two main advantages to this current over the canonical energy current of
definition (3.2.6):

1. On hypersurface Σ with normal nΣ the flux density nΣ(JX [h]) always gives a conservation
law at the level of linearised Ricci coefficients, i.e., nΣ(JX [h]) never gives linearised curvature
since there are no second derivatives of h appearing in its definition. Note that in stark
contrast to the canonical energy current which will always yield linearised curvature due to
the second term term which is of the form

P abcdefhbc∇d(LXh)ef . (4.1.10)

2. From a practical standpoint JX [h] is easier to compute since only first covariant and Lie
derivatives of the linearised metric h are required to decompose the current. In the same
vein, if one wants to compute JX [h] for many different vector fields X ∈ X(M), one only
has to compute P (∇h,∇h) once. This is in contrast to the canonical energy current which
has to be re-computed from scratch for a new vector field.

Remark 4.1.1. The reader may wonder about attempting to prove a spacetime integral estimate
using either this current or the canonical energy current. The bulk resulting by taking the
divergence of the canonical energy current J [h]X for a general vector field X is the following:

div(J [h]X) = −P abcdefhbc∇a∇d(LXh)ef . (4.1.11)

The form of this divergence is slightly unfortunate since it will not lead directly to estimates
involving spacetime integrals of (∂αh)2 but rather h · ∂2

αβh. Therefore, the resulting estimates
are undesirable for proving a Morawetz-type estimate [124]. Now it is reasonable to expect with
some integration by parts that this could be rectified. As noted above the bulk arising from the
current J[h]X is of the form

div(JX [h]) = P · ΠX · (∇h)2 + P · ∇ΠX · h · ∇h (4.1.12)

which on the face of things seems more desirable. However, the reader should note that proving
a Morawetz-type estimate using either of these currents seems to be a tall order. Indeed, as was
examined in great detail in chapter 3, even the energies on hypersurfaces were not manifestly
positive. It seems unlikely then that a spacetime integral will yield anything easier to work with.

The rest of this chapter is structured as follows. In section 4.2 it is proven that the current
JX [h] in equation (4.1.7) is divergence free if X is a Killing symmetry of the background vacuum
spacetime and h is a solution the linearised vacuum Einstein equation (I.5). Section 4.3 derives
the explicit relation between the current JX [h] in equation (4.1.7) and the canonical energy
current J X [h] of definition 3.2.6. This chapter ends with section 4.4 which gives evidence of
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the usefulness of the current JX [h] in equation (4.1.7) by using it to derive the generalisation
of the local conservation law in theorem 3.1.7 to the n-dimensional Schwarzschild–Tangherlini
spacetime. The reader should note that the current JX [h] in equation (4.1.7) and the following
manipulations can also be used on the Kerr4 spacetime to produce the generalisation of the local
conservation law in theorem 3.1.7 to a ̸= 0.

4.2 The Current for the Linearised Vacuum Einstein Equation

The main proposition of this section is the following:

Proposition 4.2.1. Let g solve the vacuum Einstein equation (I.2) and h be a solution to the
linearised vacuum Einstein equation (I.5) and X a vector field. Let (JT [h])a be defined as in
equation (4.1.7). Then

div(JX [h]) = P abcdef
(
∇ah

p
cΠX

bp + ∇phbcΠX
ap + ∇ahb

pΠX
cp

)
∇dhef (4.2.1)

− 1
2g

abΠX
abP (∇h,∇h) + P abcdef

(
KX

abph
p

c∇dhef + KX
acph

p
b∇dhef

)
,

where

KX
abc

.= ∇aΠX
bc + ∇bΠX

ac − ∇cΠX
ab, ΠX

ab
.= 1

2(LXg)ab. (4.2.2)

In particular, when X is Killing then JX [h] is divergence-free.

Proof. Note that from proposition 3.2.7, P a(bc)def ∇a∇dhef = 0 if h satisfies the linearised
Einstein equation. Further, from appendix C.1,

∇a(LXh)bc = LX(∇h)abc + KX
acdhb

d + KX
abdh

d
c. (4.2.3)

This using the definition of the Lie derivative and writing ∇aXb = ΠX
ab + ∇[aXb] gives

∇a(LXh)bc = ∇X(∇ah)bc + ∇ahb
pΠX

cp + ∇phbcΠX
ap + ∇ahc

pΠX
bp + KX

acdhb
d (4.2.4)

+ KX
abdh

d
c + ∇ahb

p∇[cXp] + ∇phbc∇[aXp] + ∇ahc
p∇[bXp].

One can calculate that

P abcdef ∇ahb
p∇[cXp]∇dhef =

(
∇ahbc∇ch

p
b − 1

2(divh)p∇aTrh
)
∇[aXp], (4.2.5)

P abcdef ∇phbc∇[aXp]∇dhef =
(
∇phbc∇ch

a
b − 1

2∇phad∇dTrh
)
∇[aXp] (4.2.6)

− 1
2(divh)a∇pTrh∇[aXp],

P abcdef ∇ahc
p∇[bXp]∇dhef = −1

2∇ahpd∇dTrh∇[aXp]. (4.2.7)
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Therefore, by symmetry, the sum of these terms vanishes. Hence, denoting

Za = P abcdef (LXh)bc∇dhef , (4.2.8)

one has

div(Z) = P abcdef ∇X(∇ah)bc∇dhef + P abcdef
(
KX

acdhb
d + KX

abdh
d

c

)
∇dhef (4.2.9)

+ P abcdef
(
∇ahb

pΠX
cp + ∇phbcΠX

ap + ∇ahc
pΠX

bp

)
∇dhef .

Now, using that P abcdef ∇ahbc∇dhef = P defabc∇ahbc∇dhef one has

P abcdef LX(∇h)abc∇dhef = div
(X

2 P (∇h,∇h)
)

− 1
2(divX)P (∇h,∇h) (4.2.10)

+ P abcdef
(
KX

acdhb
d + KX

abdh
d

c

)
∇dhef

+ P abcdef
(
∇ah

p
cΠX

bp + ∇phbcΠX
ap + ∇ahb

pΠX
cp

)
∇dhef .

4.3 Relation to the Canonical Energy Current

For a general vector field X, it seems reasonable to expect that the X-canonical energy for the
linearised vacuum Einstein equation (I.5) on a spacetime is related to the X-energy associated to
the current JX [h] constructed here. The following proposition confirms this expectation.

Proposition 4.3.1. Suppose X is a Killing field for a vacuum spacetime (M, g) and h solves the
linearised vacuum equation (I.5). Then the X-canonical energy current defined in definition 3.2.6
can be expressed as

(J X [h])a = 2(JX [h])a + (jX [h])a, (4.3.1)

where (JX [h])a is defined in equation (4.1.7) and

(jX [h])a .= (∇hA)ah, Aah .= X [aP h]bcdefhbc∇dhef , (4.3.2)

i.e., J X [h] and JX [h] are related by a divergence. Moreover, (jX [h])a is divergence free.

Proof. Using that X is Killing in proposition C.1.2 in appendix C.1 gives

(J X [h])a = P abcdef
[
(LXh)bc(∇dh)ef − hbcLX(∇dh)ef

]
. (4.3.3)
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Using the Leibniz rule for the Lie derivative (and that X is Killing so LXP = 0) gives

(J X [h])a = 2P abcdef (LXh)bc(∇dh)ef − (∇XY − ∇Y X)a, (4.3.4)

with Y a = P abcdefhbc∇dhef . Therefore,

(J X [h])a = 2P abcdef (LXh)bc(∇dh)ef − ∇h(X ⊗ Y − Y ⊗X)ha − (divY )Xa. (4.3.5)

where one uses that divX = 0 since X is Killing. Now one can compute that

divY = P abcdef ∇ahbc∇dhef + P abcdefhbc∇a∇dhef = P abcdef ∇ahbc∇dhef , (4.3.6)

where the last equality is by the linearised vacuum Einstein equation (I.5). Now X⊗Y −Y ⊗X = A

as defined in the proposition statement so then

(∇a∇hA)ha = (∇[a∇h]A)ha = Rh
bahA

ba +Ra
bahA

hb = −2(Ric(g))abA
ab = 0. (4.3.7)

4.4 Application: A Conservation Law for Schwarzschild–Tangherlini

This section is concerned with the linear stability problem for the Schwarzschild–Tangherlini
black hole solution. In particular, this section provide a first step toward generalising the linear
stability results of section 3.5.2 to the n-dimensional case by providing the generalisation of the
conservation law in theorem 3.1.3 as theorem 4.4.3 below.

Recall from sections 1.1.1 and 2.8.3 that the Schwarzschild–Tangherlini spacetime is a n-
dimensional black hole solution to the vacuum Einstein equation (I.2) with metric on its exterior
region in double null Eddington–Finkelstein coordinates (u, v, θ, φ) given by

g = −2Ω(u, v)2(
du⊗ dv + dv ⊗ du

)
+ r(u, v)2

/̊γn−2, Ω(u, v)2 = 1 − 2M
r(u, v)n−3 , (4.4.1)

where (u, v) ∈ R2 and (θ, φ) are the standard coordinates on the (n− 2)-sphere (Sn−2, /̊γn−2).
The non-vanishing Ricci coefficients are

(ΩTr/gχ) = (n− 2)Dn(r)
r

= −(ΩTr/gχ), ω = (n− 3)M
rn−2 = −ω, (4.4.2)
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and the non-vanishing curvature components are

ρ = −(n− 2)(n− 3)M
rn−1 ,

/Scal(/g) = (n− 2)(n− 3)
r2 ,

/Ric(/g) = (n− 3)
r2 /g,

/RABCD = 1
r2 (/gAC/gBD

− /gAD/gBC
)

(4.4.3)

and

RABCD = − 2ρ
(n− 2)(n− 3)(/gAC/gBD

− /gAD/gBC
). (4.4.4)

In this chapter, the current (J[h]T )a as defined in equation (4.1.7) is evaluated in a region R
of exterior of the Schwarzschild–Tangherlini black hole spacetime bounded by a characteristic
rectangle, as shown in blue in the following Penrose diagram:

I+H+

I−H−

i+

i0◦

◦

◦

◦
Cu1

Cu0
Cv0

Cv1

R

Fig. 4.1 The Penrose diagram depicting the setup up for the computation of the (J[h]T )a current
on the exterior of the Schw4 spacetime.

Here Cu and Cv are the null hypersurfaces given by the level sets of the double null Eddington–
Finkelstein coordinates, i.e., {u = const.} and {v = const.} respectively. From proposition 4.2.1,
the divergence theorem then gives the following conservation law

ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1) = ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1), (4.4.5)

where

ET
u [h](v0, v1) .= 2

∫ v1

v0
(J[h]T )3Ωdv/ε, ET

v [h](u0, u1) .= 2
∫ u1

u0
(J[h]T )4Ωdu/ε, (4.4.6)

will, henceforth, be referred to as the ‘T -energies’ on subsets of the null hypersurfaces Cu and Cv.
Evaluating ET

u [h] and ET
v [h] for h in double null gauge on the Schwarzschild–Tangherlini black
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hole exterior is (as was true in the canonical energy case of chapter 3) an involved computation
and yields two expressions for the flux densities (J[h]T )3 and (J[h]T )4 in terms of the double null
decomposition which have obscure coercivity properties. As in section 3.3 in chapter 3, one can
simplify matters by integrating by parts on the spheres S2

u,v, and using the fact that if

(J[h]T )3 = (J[h]T )3 + 1
rn−2 e4

(
rn−2A

)
, (J[h]T )4 = (J[h]T )4 − 1

rn−2 e3
(
rn−2A

)
, (4.4.7)

then, conservation law (4.4.5), the modified T -energies

ET
u [h](u0, u1) .= 2

∫ v1

v0
(J[h]X)3Ωdv/ε = ET

u [h](v0, v1) − 2
∫
S2

u,v

A(u, v, θ, φ)/ε
∣∣∣v1

v0
, (4.4.8)

ET
v [h](v0, v1) .= 2

∫ u1

u0
(J[h]X)4Ωdu/ε = ET

v [h](u0, u1) + 2
∫
S2

u,v

A(u, v, θ, φ)/ε
∣∣∣u1

u0
, (4.4.9)

satisfy the equivalent conservation law,

ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1) = ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1). (4.4.10)

Using the above two points in conjunction with the linearised null structure equations and
linearised Bianchi equations in propositions 2.10.7-2.10.20 allows one to prove the following
theorem (which is proved in section 4.4.3):

Theorem 4.4.1. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on (Schwn, gs) and T is a Killing field for (Schwn, gs). Then one has the
following conservation law for linear perturbations of the Schwarzschild–Tangherlini spacetime:

ET
u0 [h](v0, v1) + ET

v0 [h](u0, u1) = ET
u1 [h](v0, v1) + ET

v1 [h](u0, u1), (4.4.11)

with

ET
v [h](u0, u1) ≡

∫ u1

u0

[
Ω2|

(1)
χ̂|2 + 2Ω2|(1)

η|2 −
(2(n− 4)

(n− 2) ΩTr/gχ+ 4ω
)((1)

Ω
Ω

) (1)

(ΩTr/gχ) (4.4.12)

− 2(1)
ω

(1)

(ΩTr/gχ) − (n− 3)
(n− 2)

(1)

(ΩTr/gχ)2 + Ω2

2 ⟨/̂h,
(1)

/̂Ric⟩ − Ω2(n− 4)
4(n− 2)

(1)

/ScalTr/g/h
]
du

and

ET
u [h](v0, v1) ≡

∫ v1

v0

[
Ω2|

(1)
χ̂|2 + 2Ω2|(1)

η|2 +
(2(n− 4)

(n− 2) ΩTr/gχ+ 4ω
)((1)

Ω
Ω

) (1)

(ΩTr/gχ) (4.4.13)

− 2(1)
ω

(1)

(ΩTr/gχ) − (n− 3)
(n− 2)

(1)

(ΩTr/gχ)2 + Ω2

2 ⟨/̂h,
(1)

/̂Ric⟩ − (n− 4)Ω2

4(n− 2)

(1)

/ScalTr/g/h
]
dv

where ≡ denotes an implicit integration over Sn−2
u,v .
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Remark 4.4.2. There are a few interesting points to note about this theorem:

1. As with the proof of theorem 3.1.9, the linearised Gauss and Codazzi constraint equations
are key to proving this result.

2. As the reader would expect this conservation law can be proved directly in a manner
analogous to Holzegel [90] from the linearised null structure equations in propositions 2.10.7-
2.10.17 and linearised Bianchi identities in proposition 2.10.20. The computation much
more involved than Holzegel’s 4-dimensional case and therefore, the conservation law would
be much more difficult to spot by eye. This is where having a current, such as JT in
equation (4.1.7) or the canonical energy current J T in definition 3.2.6 is invaluable; one
starts with a conservation law associated to JT or J T and one can compute and manipulate
the fluxes that arise from this current into a desirable form. However, for completeness,
there is a sketch of the direct proof of theorem 4.4.1 in section 4.4.3.

3. For n = 4,
(1)

/̂Ric = 0 so the fluxes ET
u [h](v0, v1) and ET

v [h](u0, u1) appearing here are
precisely the fluxes appearing in Holzegel’s conservation law in equation (3.1.3).

The rest of this section is structured as follows. Previous results on the stability problem
are reviewed briefly in the next section (section 4.4.1). Section 4.4.2 gives some technical
computations in preparation for the computation of the current JT [h] (defined in equation (4.1.7))
in double null gauge in section 4.4.3. Section 4.4.3 contains two proofs of the theorem 4.4.3.

4.4.1 Background on the Stability Problem for Schwn

Stability questions concerning the Schwarzschild–Tangherlini spacetime have been studied in the
works [54, 105, 131–134]. Of most relevance to the discussion here is the work of Ishibashi and
Kodama [131], which studied the linear stability of the Schwarzschild–Tangherlini spacetime. By
exploiting the spherical symmetry of the spacetime, they derive decoupled master equations for
the mode decomposed linear perturbations. By studying the spectral properties of these master
equations they prove that there are no growing modes. The reliance on spherical symmetry is
slightly unattractive. Indeed, outside of spherical symmetry, there are a number of very interesting
black hole solutions, for example, the Myers–Perry black hole [41] or Emparan–Reall black ring
solutions [80], whose stability problems remain largely open. Moreover, apart from the decreased
symmetry of these solutions, the decoupling of linear perturbations typically fails (see [87, 88] and
references therein). In deriving the T -energy associated to the current JT [h] in equation (4.1.7)
one does not need to decompose in modes or exploit spherical symmetry. Therefore, the T -energy
gives an attractive avenue to pursue in higher dimensions where decoupling fails and symmetry is
decreased. The natural place to initiate this investigation is with the ‘simplest’ higher-dimensional
black hole, the Schwarzschild–Tangherlini black hole.
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A related issue is that the true linear stability proof constructed in [28] does not extend readily
from the 4D Schwarzschild spacetime to the general Schwarzschild–Tangherlini spacetime. As
mentioned in the introduction of chapter 3, the linear stability proof of [28] relies upon exploiting
the existence of the Teukolsky equation for the null curvature components (1)

α and (1)
α which decouple

from the full system and are gauge invariant. However, even for this highly symmetric case
of Schwn the celebrated Teukolsky/Bardeen–Press equation fails to be a completely decoupled
equation for n > 4; see section 2.10.4. To produce the fluxes arising from the T -energy one
does not have to make use of the Teukolsky equations. Therefore, by using the decomposi-
tion of section 2 and the linearisation of the null structure equations in higher dimensions (see
section 2.10.1), it is reasonable to expect that the fluxes arising in the modified T -canonical
energy for the Schwarzschild–Tangherlini spacetime will be very similar to those appearing in
theorem 3.1.7. In this section, this expectation is confirmed. It seems likely that a stability (bound-
edness) statement from the T -energy also holds but at the time of writing this is still speculation.
Additionally, if one can understand how to improve the strength of such a stability statement,
the method has the potential to produce a result such as [28] for higher-dimensional Schwarzschild.

4.4.2 Preliminary Computations

Proposition 4.4.3. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the exterior of (Schwn, gs) in double null Eddington–Finkelstein coordinates,
i.e., in the basis (e3, e4, eA), h33 = 0 = h44 and

h34 = −4
((1)

Ω
Ω

)
, h4A = −

(1)
bA

Ω , hAB = /hAB. (4.4.14)

Then the non-zero components of (∇αh)βγ are

(∇3h)34 = − 4
Ω

(1)
ω,

(∇Ah)44 =
2(Tr/gχ)
(n− 2)Ω

(1)
bA,

(∇3h)4A = −2((1)
η −(1)

η)A +
(Tr/gχ)

(n− 2)Ω
(1)
bA,

(∇4h)34 = − 4
Ω

(1)
ω,

(∇Ah)34 = −2((1)
η +(1)

η)A −
Tr/gχ

(n− 2)Ω
(1)
bA,

(∇4h)4A = − 1
Ω( /∇4

(1)
b)A + 2ω

Ω2

(1)
bA,

(4.4.15)
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and

(∇Bh)3A = −
Tr/gχ

(n− 2)2

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
/gAB

+
Tr/gχ

n− 2
/̂hAB, (4.4.16)

(∇Bh)4A = 1
Ω(/D⋆

2
(1)
b)AB + 1

Ω
/∇[A

(1)
bB] −

Tr/gχ

n− 2
/̂hAB − 1

(n− 2)Ω
/div

(1)
b/gAB

(4.4.17)

+
Tr/gχ

(n− 2)2

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
/gAB

,

(∇3h)BC = 2
(1)
χ̂

BC
+ 2

(n− 2)Ω
(1)

(ΩTr/gχ)/gBC
, (4.4.18)

(∇4h)BC = 2
(1)
χ̂BC + 2

Ω(/D⋆
2
(1)
b)BC + 2

(n− 2)Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)
/gBC

, (4.4.19)

(∇Ah)BC = ( /∇A /̂h)BC + 1
(n− 2)

/∇A(Tr/g/h)/gBC
−

Tr/gχ

2(n− 2)Ω
(
/gAC

(1)
bB + /gAB

(1)
bC

)
. (4.4.20)

Proof. Follows from a direct computation using propositions 2.2.3 and 2.10.7 and

(∇αh)βγ = eα(hβγ) − h(∇αeβ, eγ) − h(eβ,∇αeγ). (4.4.21)

Proposition 4.4.4. Let T be the stationary Killing field on (Schwn, gs) where gs is given in
double null Eddington–Finkelstein coordinates. Then one has the following relations:

(∇3T )4 = 0,

(∇3T )3 = −ω,

(∇3T )A = 2/gAB(∇BT )4 = 0,

(∇4T )3 = 0,

(∇4T )4 = ω,

(∇4T )A = 2/gAB(∇BT )3 = 0

(4.4.22)

and (∇AT )B = 0.

Proof. This follows from writing

(∇αT )β = gβγ(∇αT )γ = gβγ(∇[αT )γ] (4.4.23)

by the Killing property of T .

Proposition 4.4.5. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the exterior of (Schwn, gs) in double null Eddington–Finkelstein coordinates
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and T is a Killing field for (Schwn, gs). Then (LTh)44 = 0, (LTh)3A = 0 and

(LTh)34 = −2((1)
ω + (1)

ω), (4.4.24)

(LTh)4A = −Ω((1)
η −(1)

η) + 1
2(n− 2)Tr/gχ

(1)
bA − 1

2( /∇4
(1)
b)A, (4.4.25)

(LTh)AB = Ω
((1)
χ̂+

(1)
χ̂

)
AB

+ (/D⋆
2
(1)
b)AB + 1

(n− 2)LT Tr/g/h/gAB
, (4.4.26)

LT Tr/g/h =
(1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ) − /div
(1)
b. (4.4.27)

Proof. This follows from writing

(LTh)αβ = Ω
2 (∇3h)αβ + Ω

2 (∇4h)αβ + (∇αT )γhγβ + (∇βT )γhγα (4.4.28)

and using propositions 4.4.3 and 4.4.4.

Proposition 4.4.6. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the exterior of (Schwn, gs) in double null Eddington–Finkelstein coordinates.
Then

∇3Trgh = 4
Ω

(1)
ω + 2

Ω
(1)

(ΩTr/gχ), (4.4.29)

∇4Trgh = 4
Ω

(1)
ω + 2

Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)
, (4.4.30)

∇ATrgh = 2((1)
η +(1)

η)A + /∇ATr/g/h, (4.4.31)

(divh)3 = 2
Ω

(1)
ω + 1

n− 2(Tr/gχ)
(
Tr/g/h− 2(n− 2)

((1)
Ω
Ω

))
, (4.4.32)

(divh)4 = 2
Ω

(1)
ω − 1

n− 2(Tr/gχ)
(
Tr/g/h− 2(n− 2)

((1)
Ω
Ω

))
− 1

Ω
/div

(1)
b, (4.4.33)

(divh)A = ((1)
η −(1)

η)A − n

2(n− 2)Ω(Tr/gχ)
(1)
bA + ( /div/̂h)A + 1

n− 2
/∇ATr/g/h. (4.4.34)

Proof. For the first three relations one writes

∇α(Trgh) = eα

(
4
((1)

Ω
Ω

)
+ Tr/g/h

)
(4.4.35)

and uses the equations for the linearised metric coefficients 2.10.7. The second three follow from
proposition 4.4.3.

Lemma 4.4.7. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5) in
double null gauge on the exterior of (Schwn, gs) in double null Eddington–Finkelstein coordinates.
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Then /̂h satisfies

/∇A /̂h
BC /∇C /̂hBA − 1

2 | /∇/̂h|2 ≡ − 1
n− 2

/Scal(/g)|/̂h|2 − ⟨/̂h,
(1)
τ̂⟩ + n− 4

2(n− 2)Tr/gχ⟨
(1)
χ̂−

(1)
χ̂, /̂h⟩ (4.4.36)

+ n− 4
2(n− 2)⟨ /div/̂h, /∇Tr/g/h⟩,

where ≡ denotes an implicit integration over Sn−2
u,v .

Proof. To prove this one integrates by parts on Sn−2
u,v , applies the Ricci identity and the corollary

of the linearised Gauss equations in proposition 2.10.15.

Proposition 4.4.8. Suppose h is a smooth solution to the linearised vacuum Einstein equation (I.5)
in double null gauge on the exterior of (Schwn, gs) in double null Eddington–Finkelstein coordinates.
Then

|∇h|2P ≡ 2|(1)
η|2 + 2|(1)

η|2 + 1
ΩTr/gχ((1)

η +(1)
η)(

(1)
b) + 2⟨

(1)
χ̂,

(1)
χ̂⟩ + 2(3 − n)

Ω2(n− 2)
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ) (4.4.37)

+ 1
Ω2

(1)

(ΩTr/gχ) /div
(1)
b+

2Tr/gχ

n− 2 ⟨/̂h,
(1)
χ̂−

(1)
χ̂− 1

Ω
/D⋆

2
(1)
b⟩ +

Tr/gχ

2Ω
(1)
b(Tr/g/h) −

/Scal(/g)
n− 2 |/̂h|2

− ⟨/̂h,
(1)
τ̂⟩ + n− 4

2(n− 2)Tr/gχ⟨
(1)
χ̂−

(1)
χ̂, /̂h⟩ − ⟨(1)

η −(1)
η, /∇Tr/g/h⟩ − 2

Ω2
(1)
ω

(1)

(ΩTr/gχ)

− 2
Ω2

(1)
ω

(1)

(ΩTr/gχ) +
2Tr/gχ

(n− 2)Ω((1)
ω − (1)

ω)
(
Tr/g/h− 2(n− 2)

((1)
Ω
Ω

))

− n− 4
(n− 2)2ΩTr/gχ

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ) − /div
(1)
b
)

+
[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( n− 3

(n− 2)ΩTr/gχ
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2(1)
ρ

)

+
[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( /Scal(/g)

n− 2 Tr/g/h− 2(n− 3)
n− 2 (Tr/gχ)2

((1)
Ω
Ω

))
.

Proof. One should note that |∇h|2P can be written more explicitly as

P (∇h,∇h) = gaegbfgcd∇ahbc∇dhef − 1
2 |∇h|2g − ⟨divh,∇Trgh⟩g + 1

2 |∇Trgh|2g. (4.4.38)

Denote the first two terms as P1. Then one can decompose P1 as

P1 = 1
4/g

AB(∇3h4A)(∇3h4B) − /g
BF
/g

AD∇3hBA∇Dh4F − /g
AE
/g

BF ∇Ah3B∇4hEF (4.4.39)

+ 1
2⟨∇3h,∇4h⟩/g + 1

2
[
∇3h4A − 1

2∇Ah34
]
/g

AB(∇Bh)34 − 1
2 |∇h|2/g

+ /g
AE
/g

BF
/g

CD∇AhBC∇DhEF .
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So, naively calculating using propositions 4.4.3 and 4.4.6, one finds

|∇Trgh|2g = − 16
Ω2

(1)
ω

(1)
ω − 4

Ω2

(1)

(ΩTr/gχ)
( (1)

(ΩTr/gχ) − /div
(1)
b
)

− 8
Ω2

(1)
ω

(1)

(ΩTr/gχ) (4.4.40)

− 8
Ω2

(1)
ω

( (1)

(ΩTr/gχ) − /div
(1)
b
)

+ 4|(1)
η +(1)

η|2 + | /∇Tr/g/h|2 + 4⟨(1)
η +(1)

η, /∇Tr/g/h⟩,

⟨divh,∇Trgh⟩g =
2Tr/gχ

(n− 2)Ω((1)
ω − (1)

ω)
(
Tr/g/h− 2(n− 2)

((1)
Ω
Ω

))
+ ⟨ /div/̂h, /∇Tr/g/h⟩ (4.4.41)

+ 1
n− 2 | /∇Tr/g/h|2 − 8

Ω2
(1)
ω

(1)
ω − 2(1)

ω

Ω2

( (1)

(ΩTr/gχ) − 2 /div
(1)
b
)

+ 2⟨(1)
η +(1)

η, /div/̂h⟩

+ n

n− 2⟨(1)
η, /∇Tr/g/h⟩ + 4 − n

n− 2⟨(1)
η, /∇Tr/g/h⟩ − n

2(n− 2)Ω(Tr/gχ)⟨
(1)
b, /∇Tr/g/h⟩

− 1
(n− 2)ΩTr/gχ

(
Tr/g/h− 2(n− 2)

((1)
Ω
Ω

))( (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ) − /div
(1)
b
)

− 2
Ω2

(1)
ω

(1)

(ΩTr/gχ) + 1
Ω2

(1)

(ΩTr/gχ) /div
(1)
b+ 2|(1)

η|2 − 2|(1)
η|2 −

nTr/gχ

(n− 2)Ω((1)
η +(1)

η)(
(1)
b),

and

P1 = 2|(1)
η|2 − 2|(1)

η|2 − 4⟨(1)
η,

(1)
η⟩ −

2Tr/gχ

(n− 2)Ω((1)
η +(1)

η)(
(1)
b) + 2⟨

(1)
χ̂,

(1)
χ̂⟩ + 2

Ω2(n− 2)
(1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)

+
2Tr/gχ

n− 2
〈
/̂h,

(1)
χ̂−

(1)
χ̂− 1

Ω
/D⋆

2
(1)
b
〉

−
2Tr/gχ

(n− 2)2Ω
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

) (1)

(ΩTr/gχ) (4.4.42)

+ 2
(n− 2)2ΩTr/gχ

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)( (1)

(ΩTr/gχ) − /div
(1)
b
)

−
Tr/gχ

(n− 2)Ω
(1)
b(Tr/g/h)

+ /∇A /̂h
BC /∇C /̂hBA − 1

2 | /∇/̂h|2 + 4 − n

2(n− 2)2 | /∇Tr/g/h|2 + 2
n− 2⟨ /div/̂h, /∇Tr/g/h⟩.

Combining and using lemma 4.4.7 and the linearised Gauss equation corollaries gives the result.
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4.4.3 Proof of the Conservation Law

Proof of Theorem 4.4.1. Let the symbol ≡ denote equality under integration by parts of Sn−2
u,v .

The currents decompose as

(JT )4 = 1
4⟨L̂Th, (̂ /∇3/h)⟩/g − 1

2/g
BF
/g

CD (̂LTh)BC (̂∇Dh)3F − Ω
4 |∇h|2P (4.4.43)

+ 1
8LT Tr/g/h

[
e3(h34) − 2(n− 3)

(n− 2) Tr/g(∇3h) + 2(n− 4)
(n− 2) /g

AB(∇Dh)3B

]
+ 1

8(LTh)34
[
/∇3Tr/g/h− 2/gDF (∇Dh)3F

]
,

(JT )3 = 1
4⟨L̂Th, (̂∇4h)⟩/g − 1

2/g
BF
/g

CD (̂LTh)BC(∇Dh)4F − Ω
4 |∇h|2P (4.4.44)

+ 1
8LT Tr/g/h

[
(∇4h)34 − 2(n− 3)

(n− 2) Tr/g(∇4h) + 2(n− 4)
(n− 2) /g

AB(∇Dh)4B

]
+ 1

8(LTh)34
[
Tr/g(∇4h) − 2/gDF (∇Dh)4F

]
+ 1

4(LTh)A
4

[
(∇3h)4A + Tr/g(∇Ah)

]
.

So, using propositions 4.4.3 and 4.4.5 one can compute

(JT )4 ≡ Ω
2 |

(1)
χ̂|2 + Ω

2 ⟨
(1)
χ̂,

(1)
χ̂⟩ −

Tr/gχ

2(n− 2)⟨Ω(
(1)
χ̂+

(1)
χ̂) + /D⋆

2
(1)
b, /̂h⟩ − 1

2Ω((1)
ω + 2(1)

ω)
(1)

(ΩTr/gχ) (4.4.45)

− 1
4Ω

(1)

(ΩTr/gχ)2 −
Tr/gχ

2(n− 2)((1)
ω + (1)

ω)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
− 1

2Ω
(1)
ω

( (1)

(ΩTr/gχ) − /div
(1)
b
)

− 1
4Ω

[ (1)

(ΩTr/gχ) + n− 4
n− 2

/div
(1)
b
] (1)

(ΩTr/gχ) + n− 3
2(n− 2)Tr/gχ

(1)
η(

(1)
b) + 1

2⟨
(1)
b,

(1)
β⟩ − Ω

4 |∇h|2P

− n− 4
8(n− 2)

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ) − /div
(1)
b
)( 2Tr/gχ

(n− 2)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
+ 2

Ω
(1)

(ΩTr/gχ)
)

and

(JT )3 ≡ 1
2Ω|

(1)
χ̂|2 + 1

2Ω⟨
(1)
χ̂,

(1)
χ̂⟩ + 1

2(n− 2)Tr/gχ⟨Ω(
(1)
χ̂+

(1)
χ̂) + /D⋆

2
(1)
b, /̂h⟩ − 1

2Ω
(1)
ω

(1)

(ΩTr/gχ) (4.4.46)

+ 1
2Ω

(1)
ω /div

(1)
b− 1

2Ω(2(1)
ω + (1)

ω)
(1)

(ΩTr/gχ) +
Tr/gχ

2(n− 2)((1)
ω + (1)

ω)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
+ 1

8(n− 2)Tr/gχ
(1)
b(Tr/g/h) − 1

4Ω
(1)

(ΩTr/gχ)
( (1)

(ΩTr/gχ) − /div
(1)
b
)

− 1
4Ω

( (1)

(ΩTr/gχ) − /div
(1)
b
)2

− 1
4Ω⟨(1)

η −(1)
η, /∇Tr/g/h⟩ −

Tr/gχ

4(n− 2)((1)
η −(1)

η)(
(1)
b) + 1

4⟨(1)
η −(1)

η, /∇4
(1)
b⟩ − 1

8⟨ /∇4
(1)
b, /∇Tr/g/h⟩

+ n− 4
8(n− 2)

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ) − /div
(1)
b
)( 2Tr/gχ

(n− 2)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
− 2

Ω
(1)

(ΩTr/gχ)
)

− n− 3
2(n− 2)Tr/gχ

(1)
η(

(1)
b) − n− 3

2(n− 2)Ω
(1)

(ΩTr/gχ) /div
(1)
b− 1

2⟨
(1)
b,

(1)
β⟩ + 1

2Ω|(1)
η −(1)

η|2 − Ω
4 |∇h|2P ,
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where one integrates by parts on Sn−2
u,v and uses the linearised Codazzi (proposition 2.10.17) for

the terms ⟨
(1)
χ̂, /D⋆

2
(1)
b⟩ and ⟨

(1)
χ̂, /D⋆

2
(1)
b⟩.

Adding the contribution for |∇h|2P gives

(JT )4 ≡ Ω
2 |

(1)
χ̂|2 −

ΩTr/gχ

(n− 2)⟨
(1)
χ̂, /̂h⟩ − 1

Ω
(1)
ω

(1)

(ΩTr/gχ) − Ω
2 |(1)
η|2 − Ω

2 |(1)
η|2 + 1

2Ω
(1)
ω /div

(1)
b (4.4.47)

− n− 3
2Ω(n− 2)

(1)

(ΩTr/gχ)2 −
Tr/gχ

(n− 2)
(1)
ω

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
+ Ω

4 ⟨/̂h,
(1)
τ̂⟩

− (n− 4)
8(n− 2)ΩTr/gχ⟨

(1)
χ̂−

(1)
χ̂, /̂h⟩ + Ω

4 ⟨(1)
η −(1)

η, /∇Tr/g/h⟩ +
Ω /Scal(/g)
4(n− 2) |/̂h|2

+ n− 4
4(n− 2)Tr/gχ

(1)
η(

(1)
b) − 1

4Tr/gχ
(1)
η(

(1)
b) + 1

2⟨
(1)
b,

(1)
β⟩ − 1

4Ω
(1)

(ΩTr/gχ) /div
(1)
b

− n− 4
2(n− 2)2 Tr/gχ

(1)

(ΩTr/gχ)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
−

Tr/gχ

8
(1)
b(Tr/g/h)

− Ω
4

[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( n− 3

(n− 2)ΩTr/gχ
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2(1)
ρ

)

− Ω
4

[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( /Scal(/g)

n− 2 Tr/g/h− 2(n− 3)
n− 2 (Tr/gχ)2

((1)
Ω
Ω

))
and

(JT )3 ≡ 1
2Ω|

(1)
χ̂|2 +

Tr/gχ

(n− 2)⟨Ω
(1)
χ̂+ /D⋆

2
(1)
b, /̂h⟩ + 1

2Ω
(1)
ω /div

(1)
b− 1

Ω
(1)
ω

(1)

(ΩTr/gχ) − Ω⟨(1)
η,

(1)
η⟩ (4.4.48)

+
Ω /Scal(/g)
4(n− 2) |/̂h|2 + Ω

4 ⟨/̂h,
(1)
τ̂⟩ − 1

2⟨
(1)
b,

(1)
β⟩ − n− 4

8(n− 2)ΩTr/gχ⟨
(1)
χ̂−

(1)
χ̂, /̂h⟩

−
(n− 1)Tr/gχ

4(n− 2)
(1)
η(

(1)
b) − 3(n− 3)

4(n− 2)Tr/gχ
(1)
η(

(1)
b) + 1

4⟨(1)
η −(1)

η, /∇4
(1)
b⟩ − 1

8⟨ /∇4
(1)
b, /∇Tr/g/h⟩

− n− 3
8(n− 2)Tr/gχ

(1)
b(Tr/g/h) − 1

4Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)2

− n− 4
4(n− 2)Ω

(1)

(ΩTr/gχ)2

+
(n− 4)Tr/gχ

2(n− 2)2

(1)

(ΩTr/gχ)
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
+

(n− 4)Tr/gχ

2(n− 2) ((1)
η +(1)

η)(
(1)
b)

−
(n− 4)Tr/gχ

2(n− 2)2

(1)
b(Tr/g/h) − 1

4Ω
(1)

(ΩTr/gχ) /div
(1)
b+

Tr/gχ

(n− 2)
(1)
ω

(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)

− Ω
4

[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( n− 3

(n− 2)ΩTr/gχ
[ (1)

(ΩTr/gχ) −
(1)

(ΩTr/gχ)
]

− 2(1)
ρ

)

− Ω
4

[
4
((1)

Ω
Ω

)
+ (n− 4)

2(n− 2)Tr/g/h
]( /Scal(/g)

n− 2 Tr/g/h− 2(n− 3)
n− 2 (Tr/gχ)2

((1)
Ω
Ω

))
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where one uses that

/div
(1)
b
(
2(n− 2)

((1)
Ω
Ω

)
− Tr/g/h

)
=

(1)
b(Tr/g/h) − (n− 2)((1)

η +(1)
η)(

(1)
b). (4.4.49)

Denote

A .= A1 − A2 + A3 + A4 − A5 − 1
n− 2A6 + 2A7 − A8, (4.4.50)

where

A1
.= rn−2

4 ((1)
η −(1)

η)(
(1)
b),

A3
.= rn−2

4(n− 2)(ΩTr/gχ)|/̂h|2,

A5
.= rn−2

((1)
Ω
Ω

) (1)

(ΩTr/gχ),

A7
.= rn−2(ΩTr/gχ)

((1)
Ω
Ω

)2
,

A2
.= rn−2

8
(1)
bA /∇ATr/g/h,

A4
.= rn−2

((1)
Ω
Ω

) (1)

(ΩTr/gχ),

A6
.= rn−2(ΩTr/gχ)

((1)
Ω
Ω

)
Tr/g/h,

A8
.= rn−2

8
n− 4

(n− 2)2 (ΩTr/gχ)(Tr/g/h)2.

(4.4.51)

One can then compute that using the linearised null structure equations of section 2.10.1
the /∇4 and /∇3 derivatives of each term. Explicitly, using the linearised torsion equations of
proposition 2.10.11 and linearised metric equations of proposition 2.10.7 one can compute that

1
rn−2 /∇4A1 = 1

4
(n− 3
n− 2

)
Tr/gχ((1)

η −(1)
η)(

(1)
b) + 1

4((1)
η −(1)

η)( /∇4
(1)
b) − 1

2
(1)
β(

(1)
b) + 1

2
(1)
ω /div

(1)
b (4.4.52)

+
Tr/gχ

2(n− 2)
(1)
η(

(1)
b),

1
rn−2 /∇3A1 =

Tr/gχ

4
((1)
η(

(1)
b) − (n− 4)

(n− 2)
(1)
η(

(1)
b)

)
− 1

2
(1)
β(

(1)
b) + Ω

2 |(1)
η −(1)

η|2 − 1
2Ω

(1)
ω /div

(1)
b. (4.4.53)

Using the linearised metric equations of proposition 2.10.7 one has

1
rn−2 /∇4A2 = 1

8
(n− 3
n− 2

)
Tr/gχ

(1)
b(Tr/g/h) − 1

4Ω
( (1)

(ΩTr/gχ) − /div
(1)
b
)
/div

(1)
b (4.4.54)

+ 1
8⟨ /∇4

(1)
b, /∇Tr/g/h⟩,

1
rn−2 /∇3A2 = −

Tr/gχ

8
(1)
b(Tr/g/h) + Ω

4 ⟨((1)
η −(1)

η), /∇Tr/g/h⟩ − 1
4Ω

(1)

(ΩTr/gχ) /div
(1)
b. (4.4.55)
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Similarly, using the linearised metric equation of proposition 2.10.7 one can compute that

1
rn−2 /∇4A3 = Ω

4(n− 2)
/Scal(/g)|/̂h|2 +

Tr/gχ

n− 2⟨/̂h,Ω
(1)
χ̂+ /D⋆

2
(1)
b⟩, (4.4.56)

1
rn−2 /∇3A3 = − Ω

4(n− 2)
/Scal(/g)|/̂h|2 +

ΩTr/gχ

n− 2 ⟨/̂h,
(1)
χ̂⟩. (4.4.57)

Using propositions 2.10.7, 2.10.8 and 2.10.9 one can compute

1
rn−2 /∇4A4 = 1

Ω
(1)
ω

(1)

(ΩTr/gχ) + 2Ω
((1)

Ω
Ω

)((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)
− Ω⟨(1)

η,
(1)
η⟩ − Ω|(1)

η|2 (4.4.58)

+
(n− 3
n− 2

)
Tr/gχ

((1)
Ω
Ω

) (1)

(ΩTr/gχ) + 1
n− 2Tr/gχ

((1)
Ω
Ω

) (1)

(ΩTr/gχ),

1
rn−2 /∇3A4 = 1

Ω
(1)
ω

(1)

(ΩTr/gχ) + 2Ω
((1)

Ω
Ω

)((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)
− Ω⟨(1)

η,
(1)
η⟩ − Ω|(1)

η|2 (4.4.59)

−
(n− 3
n− 2

)
Tr/gχ

((1)
Ω
Ω

) (1)

(ΩTr/gχ) − 1
n− 2Tr/gχ

((1)
Ω
Ω

) (1)

(ΩTr/gχ).

Similarly, using propositions 2.10.7, 2.10.8 and 2.10.9 one has

1
rn−2 /∇4A5 = 1

Ω
(1)
ω

(1)

(ΩTr/gχ) +
[n− 4
n− 2Tr/gχ+ 2ω

Ω
]((1)

Ω
Ω

) (1)

(ΩTr/gχ) + 2Tr/gχ
((1)

Ω
Ω

)(1)
ω, (4.4.60)

1
rn−2 /∇3A5 = 1

Ω
(1)
ω

(1)

(ΩTr/gχ) −
[n− 4
n− 2Tr/gχ+ 2ω

Ω
]((1)

Ω
Ω

) (1)

(ΩTr/gχ) − 2Tr/gχ
((1)

Ω
Ω

)(1)
ω. (4.4.61)

Using propositions 2.10.7 one has

1
rn−2 /∇4A6 = Ω /Scal(/g)

((1)
Ω
Ω

)
Tr/g/h+ Tr/gχ

((1)
ωTr/g/h+ 2

((1)
Ω
Ω

) (1)

(ΩTr/gχ) + ((1)
η +(1)

η)(
(1)
b)

)
, (4.4.62)

1
rn−2 /∇3A6 = −Ω /Scal(/g)

((1)
Ω
Ω

)
Tr/g/h+ Tr/gχ

(1)
ωTr/g/h+ 2Tr/gχ

((1)
Ω
Ω

) (1)

(ΩTr/gχ). (4.4.63)

Again, using propositions 2.10.7 one has

1
rn−2 /∇4A7 = Ω /Scal(/g)

((1)
Ω
Ω

)2
+ 2Tr/gχ

(1)
ω

((1)
Ω
Ω

)
, (4.4.64)

1
rn−2 /∇3A7 = −

(n− 3
n− 2

(ΩTr/gχ)2

Ω + 2ωTr/gχ
)((1)

Ω
Ω

)2
+ 2Tr/gχ

(1)
ω

((1)
Ω
Ω

)
(4.4.65)
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and

1
rn−2 /∇4A8 =

(n− 4)Ω /Scal(/g)
8(n− 2)2 (Tr/g/h)2 +

(n− 4)Tr/gχ

2(n− 2)2

(
Tr/g/h

(1)

(ΩTr/gχ) +
(1)
b(Tr/g/h)

)
, (4.4.66)

1
rn−2 /∇3A8 = − n− 4

8(n− 2)2 Ω /Scal(/g)(Tr/g/h)2 + n− 4
2(n− 2)2 Tr/gχTr/g/h

(1)

(ΩTr/gχ). (4.4.67)

Therefore, denoting

F3 = (JT )3 − 1
rn−2 /∇4A, (4.4.68)

F4 = (JT )4 + 1
rn−2 /∇3A, (4.4.69)

gives

F3 ≡ Ω
2 |

(1)
χ̂|2 + Ω|(1)

η|2 − 1
Ω

(1)
ω

(1)

(ΩTr/gχ) +
( n− 4

(n− 2)Tr/gχ+ 2ω
Ω

)((1)
Ω
Ω

) (1)

(ΩTr/gχ) (4.4.70)

− (n− 3)
2Ω(n− 2)

(1)

(ΩTr/gχ)2 + Ω
4 ⟨/̂h,

(1)

/̂Ric(/g)⟩ − (n− 4)Ω
8(n− 2)

(1)

/Scal(/g)Tr/g/h,

F4 ≡ Ω
2 |

(1)
χ̂|2 + Ω|(1)

η|2 − 1
Ω

(1)
ω

(1)

(ΩTr/gχ) −
(n− 4
n− 2Tr/gχ+ 2ω

Ω
)((1)

Ω
Ω

) (1)

(ΩTr/gχ) (4.4.71)

− n− 3
2Ω(n− 2)

(1)

(ΩTr/gχ)2 + Ω
4 ⟨/̂h,

(1)

/̂Ric(/g)⟩ − Ω(n− 4)
8(n− 2)

(1)

/Scal(/g)Tr/g/h,

where the linearised Gauss relations of proposition 2.10.15 have been used.

Sketch of Alternative Proof of Theorem 4.4.1. Let the symbol ≡ denote equality under integra-
tion by parts of Sn−2

u,v . The direct approach involves using propositions 2.10.7-2.10.20 to show
that

0 ≡ ∂v

(
rn−2

[
Ω2|

(1)
χ̂|2 + 2Ω2|(1)

η|2 −
(2(n− 4)

(n− 2) ΩTr/gχ+ 4ω
)((1)

Ω
Ω

) (1)

(ΩTr/gχ) (4.4.72)

− 2(1)
ω

(1)

(ΩTr/gχ) − (n− 3)
(n− 2)

(1)

(ΩTr/gχ)2 + Ω2

2 ⟨/̂h,
(1)

/̂Ric⟩ − Ω2(n− 4)
4(n− 2)

(1)

/ScalTr/g/h
])

+ ∂u

(
rn−2

[
Ω2|

(1)
χ̂|2 + 2Ω2|(1)

η|2 +
(2(n− 4)

(n− 2) ΩTr/gχ+ 4ω
)((1)

Ω
Ω

) (1)

(ΩTr/gχ)

− 2(1)
ω

(1)

(ΩTr/gχ) − (n− 3)
(n− 2)

(1)

(ΩTr/gχ)2 + Ω2

2 ⟨/̂h,
(1)

/̂Ric⟩ − (n− 4)Ω2

4(n− 2)

(1)

/ScalTr/g/h
])
.

Whilst many of the linearised null structure equations and linearised Bianchi equations in propo-
sitions 2.10.7-2.10.20 are required to show this, the corollary 2.10.18 of the linearised Codazzi
equations and the constraint in proposition 2.10.22 are key to this direct approach. As corol-
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lary 2.10.18 relates /̂div(1)
ν and /̂div(1)

ν to /∆
(1)
χ̂ and /∆

(1)
χ̂ respectively, this allows one to show, after

using propositions 2.10.7, 2.10.8, 2.10.9, 2.10.10, 2.10.20, significant amounts of algebra and
integration by parts on Sn−2

u,v , that

T
(1

2⟨/̂h,
(1)

/̂Ric⟩ − n− 4
4(n− 2)

(1)

/ScalTr/g/h
)

≡ 2⟨
(1)
χ̂+

(1)
χ̂,

(1)

/̂Ric⟩ − n− 4
n− 2

(1)

/Scal
Ω

( (1)

(ΩTr/gχ) +
(1)

(ΩTr/gχ)
)
,

(4.4.73)

where T .= ∂t = Ω
2 (e3 + e4) and ≡ denotes equality under integration over Sn−2

u,v . One requires
the constraint in proposition 2.10.22 here to compute that

⟨/D⋆
2
(1)
b,

(1)

/̂Ric⟩ ≡ − n− 4
2(n− 2)

(1)

/Scal /div
(1)
b. (4.4.74)

At this point, the equation (4.4.72) can be shown fairly straight forwardly by computing directly
with propositions 2.10.7-2.10.17 and equation (4.4.73).



Appendix A

Appendix for Chapter 1

A.1 Christoffel and Riemann Tensor Components for the Schw4 ×R

To compute □ghab one requires the Christoffel symbols and the Riemann tensor components; the
non-zero Christoffel symbols are listed below:

Γr
tt = M(r − 2M)

r3 ,

Γr
rr = −M

r(r − 2M) ,

Γr
θθ = (2M − r),

Γr
φφ = (2M − r) sin2 θ,

Γt
tr = M

r(r − 2M) ,

Γθ
rθ = 1

r
= Γφ

rφ,

Γθ
φφ = − sin θ cos θ,

Γφ
θφ = cot θ.

(A.1.1)

The others are obtained from symmetry of lower indices. Note, Rz
µαβ = Rµ

zαβ = Rµ
αzβ =

Rµ
αβz = 0. So the Riemann tensor components that are relevant are the ones with spacetime

indices µ ∈ {0, ..., 3} which are just the usual Schwarzschild Riemann tensor components; the
non-zero ones are listed below for completeness,

Rt
rtr = 2M

r2(r − 2M) ,

Rr
trt = −2M(r − 2M)

r4 ,

Rθ
tθt = M(r − 2M)

r4 ,

Rφ
tφt = M(r − 2M)

r4 ,

Rt
θtθ = −M

r
,

Rr
θrθ = −M

r
,

Rθ
rθr = − M

r2(r − 2M) ,

Rφ
rφr = − M

r2(r − 2M) ,

Rt
φtφ = −M sin2 θ

r
,

Rr
φrφ = −M sin2 θ

r
,

Rθ
φθφ = 2M sin2 θ

r
,

Rφ
θφθ = 2M

r
.

(A.1.2)

Any others can be found from the Ra
b(cd) = 0 symmetry.
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A.2 Singularities in Second Order ODE

This section is heavily based on the book of Olver [97]. In particular, see chapter 5 sections 4
and 5 and chapter 7 section 2.

Definition A.2.1 (Ordinary Point/Regular Singularity/Irregular Singularity). Let p and q be
meromorphic functions on a subset of C. Consider the linear 2nd order ODE

d2f

dz2 + p(z)df
dz

+ q(z)f = 0. (A.2.1)

Then z0 ∈ C is an ordinary point of this differential equation if both p(z) and q(z) are analytic
there. If z0 is not an ordinary point and both

(z − z0)p(z) and (z − z0)2q(z) (A.2.2)

are analytic at z0 then z0 is a regular singularity, otherwise z0 is an irregular singularity.

Remark A.2.1. The singular behavior of z = ∞ is determined by making the change of variables
z̃ = 1

z in the ODE (A.2.1). This case will be considered explicitly in section A.2.2.

In the following, general results for ODE are presented.

A.2.1 Regular Singularities

In this thesis solutions of a second order ODE in a neighbourhood |z − z0| < r of a regular
singular point are required. The classical method is to search for a convergent series solution in
such a neighbourhood.

Definition A.2.2 (Indicial Equation). Let p and q be meromorphic functions on a subset of C.
Consider the following 2nd-order ODE with a regular singularity at z0 ∈ C

d2f

dz2 (z) + p(z)df
dz

(z) + q(z)f(z) = 0. (A.2.3)

Assume that there exist a convergent power series,

(z − z0)p(z) =
∞∑

j=0
pj(z − z0)j , (z − z0)2q(z) =

∞∑
j=0

qj(z − z0)j ∀|z − z0| < r.(A.2.4)

The indicial equation is defined as

I(α) .= α(α− 1) + p0α+ q0 = 0. (A.2.5)
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Remark A.2.2. The indicial equation arises by considering the a solution of the form f(z) =
(z − z0)α to the ODE

d2f

dz2 (z) + p0
z − z0

df

dz
(z) + q0

(z − z0)2 f(z) = 0. (A.2.6)

The ODE (A.2.6) is the leading order approximation of the ODE (A.2.3). The function f(z) =
(z − z0)α solves the ODE (A.2.6) if the α satisfies the indicial equation.

The following two theorems deal with the asymptotic behaviour of solutions in the neighbourhood
of a regular singularity.

Theorem A.2.3 (Frobenius). Let p and q be meromorphic functions on a subset of C. Consider
the following 2nd-order ODE with a regular singularity at z0 ∈ C

d2f

dz2 (z) + p(z)df
dz

(z) + q(z)f(z) = 0, (A.2.7)

where

(z − z0)p(z) =
∞∑

j=0
pj(z − z0)j , (z − z0)2q(z) =

∞∑
j=0

qj(z − z0)j (A.2.8)

converge for all |z − z0| < r, where r > 0. Let α± be the two roots of the indicial equation.
Suppose further that α− ̸= α+ + s, where s ∈ Z. Then there exists a basis of solution to the
ODE (A.2.7) of the form

f+(z) = (z − z0)α+
∞∑

j=0
a+

j (z − z0)j , f−(z) = (z − z0)α−
∞∑

j=0
a−

j (z − z0)j (A.2.9)

where these series converge for all z such that |z − z0| < r. Moreover, a+
j and a−

j can be
calculated recursively by the formula

I(α± + j)a±
j + (1 − δj,0)

j−1∑
s=0

(
(α± + s)pj−s + qj−s

)
a±

s = 0. (A.2.10)

Remark A.2.4. If the roots of the indicial equation do not differ by an integer then theorem A.2.3
gives a basis of solutions for the ODE in a neighbourhood of the singular point. Equation (A.2.10)
determines the coefficients of the series expansion recursively from an arbitrarily assigned a0 ̸= 0,
which can be taken to be 1. This process runs into difficulty if, and only if, the two roots differ
by a positive integer. To see this, let α+ be the root of the indicial equation with largest real
part, the other root is then α+ −N for some N ∈ Z+. Then since I((α+ −N) +N) = 0 one
cannot determine aN via equation (A.2.10) for this power series. In this case, one solution can
be found with the above method by taking the root of the indicial equation with largest real part.
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The following theorem investigates the case where the roots differ by an integer. Let α+ be
the root of the indicial equation with largest real part, the other root is then α+ −N for some
N ∈ Z+ ∪ {0}.

Theorem A.2.5. Consider the ODE (A.2.7) as in theorem A.2.3 again satisfying (A.2.8). Let α+

and α− = α+ −N , with N ∈ Z+ ∪ {0}, be roots of the indicial equation. Then there exists a
basis of solutions of the form

f+(z) = (z − z0)α+
∞∑

j=0
a+

j (z − z0)j , (A.2.11)

f−(z) = (z − z0)γ
∞∑

j=0
a+

j (z − z0)j + CNf
+(z) ln(z − z0) (A.2.12)

with γ = α+ + 1 if N = 0 and γ = β− if N ̸= 0, where these power series are convergent for all
z such that |z− z0| < r. Moreover, the coefficients a+

j , a−
j and CN can be calculated recursively.

Remark A.2.6. If N = 0 then C0 ̸= 0. However, if N > 0, it can occur that CN = 0. This
happens if, and only if, the second term of equation (A.2.10) vanishes for j = N . At this
point one can take a−

N = 0 to construct another convergent series solution with no logarithmic
singularity. See section 5.2 of chapter 5 of [97] for more detail.

A.2.2 Irregular Singularities

This section summaries the key result for constructing a basis of solutions to the ODE (1.3.7)
associated to r → ∞. (The results presented can in fact be applied to any irregular singular point
of an ODE (A.2.1) since without loss of generality, the irregular singularity can be assumed to be
at infinity after a change of coordinates.) The following definition makes precise the notion of a
irregular singularity at infinity.

Definition A.2.3 (Irregular Singularity at Infinity). Let p and q be meromorphic functions on a
subset of C which includes the set {z ∈ C : |z| > a}. Consider the following 2nd-order ODE

d2f

dz2 + p(z)df
dz

+ q(z)f = 0. (A.2.13)

Assume for |z| > a, p and q may be expanded as convergent power series

p(z) =
∞∑

n=0

pn

zn
, q(z) =

∞∑
n=0

qn

zn
(A.2.14)

The ODE (A.2.13) has an irregular singular point at infinity if one of p0, q0 and q1 do not vanish.
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The main theorem A.2.7 of this section can be motivated by the following discussion. Consider
a formal power series

w = eλzzµ
∞∑

n=0

an

zn
. (A.2.15)

Substituting the expansions into the ODE and equating coefficients yields

λ2 + p0λ+ q0 = 0 (A.2.16)
(p0 + 2λ)µ = −(p1λ+ q1) (A.2.17)

and

(p0 + 2λ)nan = (n− µ)(n− 1 − µ)an−1 +
n∑

j=1
(λpj+1 + qj+1 − (j − n− µ)pj)an−j . (A.2.18)

Now, equation (A.2.16) has two roots

λ± = 1
2

(
− p0 ±

√
p2

0 − 4q0
)
. (A.2.19)

These give rise to

µ± = −p1λ± + q1
p0 + 2λ±

. (A.2.20)

The two values of a0, a±
0 can be, without loss of generality, set to 1 and the higher order

coefficients determined iteratively from equation (A.2.18) unless one is in the exceptional case
where p2

0 = 4q0 (for further information on this case see section 1.3 of chapter 7 in [97]). The
issue that arises is that in most cases the formal series solution (A.2.15) does not converge.
However, the following theorem characterises when (A.2.15) provides an asymptotic expansion for
the solution for sufficently large |z|.

Theorem A.2.7. Let p(z) and q(z) be meromorphic functions with convergent series expansions

p(z) =
∞∑

n=0

pn

zn
, q(z) =

∞∑
n=0

qn

zn
(A.2.21)

for |z| > a with p2
0 ̸= 4q0. Then the second order ODE

d2f

dz2 + p(z)df
dz

+ q(z)f = 0 (A.2.22)
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has unique solutions f±(z), such that in the regions{|z| > a} ∩ {|Arg((λ− − λ+)z)| ≤ π} (for f+)

{|z| > a} ∩ {|Arg((λ+ − λ−)z)| ≤ π} (for f−)
(A.2.23)

of the complex plane, f± is holomorphic, where λ± and µ± are defined in equations (A.2.19)
and (A.2.20). Moreover, for all N > 1, f±(z) satisfies

f±(z) = eλ±zzµ±
( N−1∑

n=0

a±
n

zn
+ O

( 1
zN

))
(A.2.24)

in the regions given in equation (A.2.23).
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A.3 Tranformation to Schrödinger Form

Proposition A.3.1. Consider the second order homogeneous linear ODE

d2u

dr2 + p(r)du
dr

+ q(r)u = 0, p, q ∈ C1(I), I ⊂ R. (A.3.1)

Suppose that there exists a sufficiently regular coordinate transformation s(r) and a function
w(r) such that

dw

dr
+ 1

2
( 1(

ds
dr

) d2s

dr2 + p
)
w = 0. (A.3.2)

Then the ODE (A.3.1) can be reduced to the form

−d2z

ds2 (s) + V (s)z(s) = 0, (A.3.3)

with

V (s) = 1
2
(

ds
dr

)2

(
dp

dr
− 3

2
(

ds
dr

)2

(d2s

dr2

)2
+ 1(

ds
dr

) d3s

dr3 + p2

2 − 2q
)
. (A.3.4)

Proof. The proof is a straight-forward calculation. Take u(s) = w(s)z(s), then

(ds
dr

)2
w
d2z

ds2 +
(

2
(ds
dr

)2dw

ds
+ w

d2s

dr2 + pw
ds

dr

)
dz

ds
+ q̄z = 0 (A.3.5)

where

q̄
.=

((ds
dr

)2d2w

ds2 + dw

ds

d2s

dr2 + p
dw

ds

ds

dr
+ qw

)
. (A.3.6)

To reduce this to symmetric form one can set

2
(ds
dr

)2dw

ds
+ w

d2s

dr2 + pw
ds

dr
= 0, (A.3.7)

which is equivalent to w(r) satisfying

dw

dr
+ 1

2
( 1(

ds
dr

) d2s

dr2 + p
)
w = 0. (A.3.8)

Hence,

d2w

dr2 = −1
2

(
df

dr
− 1(

ds
dr

)2

(d2s

dr2

)2
+ 1(

ds
dr

) d3s

dr3 − 1
2

( 1(
ds
dr

) d2s

dr2 + p

)2)
w. (A.3.9)
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Notice q̄ in the ODE for z reduces to

q̄ = d2w

dr2 + p
dw

dr
+ qw. (A.3.10)

Reducing this with the expressions for the derivatives of w gives the potential for −d2z
ds2 +V (s)z = 0

as

V (s) = 1
2
(

ds
dr

)2

(
dp

dr
− 3

2
(

ds
dr

)2

(d2s

dr2

)2
+ 1(

ds
dr

) d3s

dr3 + p2

2 − 2q
)
. (A.3.11)

Remark A.3.2. Applying this to s = r∗(r) = r + 2M log |r − 2M | gives

V (r(r∗)) = (r − 2M)2

2r2

(
df

dr
+ 2M(2r − 3M)

r2(r − 2M)2 + p2

2 − 2q
)
. (A.3.12)
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A.4 Useful Results From Analysis

A.4.1 Sobolev Embedding

Theorem A.4.1 (Local Compactness of the Hs Sobolev Injection). Let d ≥ 1, s > 0 and

pc =


2d

d−2s s < d
2

∞ otherwise.
(A.4.1)

Then the embedding Hs(Rd) ↪→ Lp
loc(Rd) is compact ∀1 ≤ p < pc. In otherwords, for (fn)n ⊂

Hs(Rd) bounded, there exists f ∈ Hs(Rd) and a subsequence (fnm)m such that

fnm ⇀ f Hs(Rd), (A.4.2)
fnm → f Lp

loc(R
d) ∀1 ≤ p < pc. (A.4.3)

Proof. This result can be found in any text on Sobolev spaces, for example Brezis [135].

A.4.2 The Multiplication Operator is Compact from Hs to L2

Proposition A.4.2. Let q ∈ C0(Rn,R) with lim|x|→∞ q(x) = 0 and s > 0. Then Mq : u → qu

is a compact operator from Hs(Rn,R) to L2(Rn,R).

Proof. The function q is continuous and decays, hence it is bounded. Let ϵ > 0, then, by
assumption, ∃R > 0 such that

|q(x)| ≤ ϵ if |x| ≥ R. (A.4.4)

Define, χR : R → R smooth by

χR(x) =

1 |x| ≤ R

0 |x| ≥ R+ 1.
(A.4.5)

Let (fn)n ⊂ Hs(Rn,R) be bounded, so local compactness of the Sobolev embedding (theo-
rem A.4.1) gives weak convergence in Hs(Rn,R) and strong convergence in L2

loc(Rn,R) up to a
subsequence. Let the limit be f ∈ Hs(Rn,R). Therefore,

||χRqfmn − χRqf ||2L2(Rn) = ||χRqfmn − χRqf ||2L2(BR+1(0)) (A.4.6)
≤ C sup

x∈R
|q(x)|2||fmn − f ||2L2(BR+1(0)) ≤ ϵ2. (A.4.7)

Further, consider the set SR
.= {χRqf : f ∈ Hs(Rn,R), ||f ||Hs(Rn) ≤ 1}. Then

||(1 − χR)qf ||L2(Rn) ≤ ϵ2||f ||L2(Rn) ≤ ϵ2. (A.4.8)
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Hence, S∞ is within an ϵ-neighbourhood of SR, which is compact, therefore S∞ is compact. By
the characterisation of compactness through weak convergence, qfm → qf in L2(Rn,R) up to a
subsequence.

A.4.3 A Regularity Result

Theorem A.4.3 (Regularity for the Schrödinger Equation). Let u ∈ H1(R) be a weak solution
of the equation (−∆ + V )u = λu where V is a measurable function and λ ∈ C. Then, if
V ∈ C∞(Ω) with Ω ⊂ R open, not necessarily bounded, then u ∈ C∞(Ω) also.

Proof. Reed and Simon volume II page 55 [136]. Note one can argue this from standard elliptic
regularity results and Sobolev embeddings. In this thesis, only the one-dimensional case of this is
applied, which is completely elementary.
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A.5 A Result on Stability in Spherical Gauge

This section contains a few technical results on where the instability may lie in frequency space.
This helped guide the search for a suitable test function and the subsequent instability.

Proposition A.5.1. Consider the quartic polynomial

P (x) = ax4 + bx3 + cx2 + dx+ e. (A.5.1)

Let ∆ denote its discriminant and define

∆0 = 64a3e− 16a2c2 + 16ab2c− 16a2bd− 3b4. (A.5.2)

If ∆ < 0, then P (x) has two distinct real roots and two complex conjugate roots with non-zero
imaginary part. If ∆ > 0 and ∆0 > 0, then there are two pairs of complex conjugate roots with
non-zero imaginary part.

Proof. See reference [137].

Proposition A.5.2 (Regions of Stability in Frequency Space). Let µ > 0 and k ̸= 0. There
does not exist a solution h of the ODE (1.3.7) with c1 = 0, k2 = 0 and k̂ ∈ R \ (−

√
2,

√
2) or

µ̂ ≥ 3
8

√
3
2 .

Proof. From proposition 1.3.15, the admissible boundary conditions for the solution are h(r) =
k1h

2M,+(r) at the future event horizon and h(r) = c2h
∞,−
z (r) at spacelike infinity. Without loss

of generality, take k1 > 0. Now, since the solution must decay exponentially towards infinity,
there must be maxima a ∈ (1,∞). At such a point, one has

d2h

dr2 (a) = a(µ̂2a+ k̂2(µ̂2a4 − 2a+ 2) + k̂4a3(a− 1))
(k̂2a3 + 1)(a− 1)2

h(a), (A.5.3)

with h(a) > 0. To derive a contradition, one must have

a(µ̂2a+ k̂2(µ̂2a4 − 2a+ 2) + k̂4a3(a− 1))
(k̂2a3 + 1)(a− 1)2

> 0. (A.5.4)

A sufficient condition for the numerator to be positive is

µ̂2a4 − 2a+ 2 ≥ 0. (A.5.5)

This has discriminant

∆ = 16µ̂4(128µ̂2 − 27), ∆0 = 128µ̂2. (A.5.6)
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Hence, if µ̂2 > 27
128 , then there are no real roots. Thus, because the polynomial is positive at

a point, say a = 1, it is positive everywhere. If ∆ = 0, there is a double real root and two
complex conjugate roots. The real roots can only occur at a stationary point of the polynomial
and therefore the polynomial cannot be negative anywhere. Since all other terms in the numerator
are positive, the prefactor of h also is. Hence, there can be no solution with the conditions k2 = 0
and c1 = 0 if µ̂ ≥ 3

8

√
3
2 .

Another sufficient condition for positivity of the numerator is

k̂2a3 − 2 ≥ 0. (A.5.7)

This polynomial has a single real root at a =
( 2

k̂2

) 1
3 . For positivity on a ∈ (1,∞), one requires

2
k̂2 ≤ 1 or k̂2 ≥ 2. Note that if µ̂ = 0 then this is precisely the polynomial that governs positivity.
Hence, this bound for k̂ is sharp.

Remark A.5.3. By an almost identical argument one can make the bound for µ̂ even sharper
and show that µ̂ < 1

4 and µ̂ ≤
√

2|k̂|.
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Appendix for Chapter 2

B.1 Derivation of the Null Structure Equations

In this section the results of section 2.6 are derived. Further, there is a useful trick when deriving
most of these equations. Namely, one can always swap e3 to e4 in the equations which results
in changes from ‘barred’ to ‘unbarred’ quantities and visa versa. One should note that a few
quantities also pick up a sign change. These are recorded here:

β 7→ −β, (B.1.1)
β 7→ −β, (B.1.2)
σ 7→ −σ, (B.1.3)
ζ 7→ −ζ. (B.1.4)

The general strategy for deriving these equations is as follows: denote Γ̌A1...Ap (p ≤ 2) as a
member of {

χ, χ, η, η, ω, ω
}
. (B.1.5)

One then computes as follows

( /∇4Γ̌)A1...Ap = e4(Γ̌A1...Ap) − Γ̌( /∇4e1, ..., ep) − ...− Γ̌(e1, ..., /∇4ep). (B.1.6)

Now by the definition 2.2.1 one can express any Γ̌A1...Ap in terms of g(∇eαeβ, eγ) for appropriate
α, β, γ,∈ {3, 4, A}. So the first term on the right-hand side of (B.1.6) can be expressed in the
form

e4(Γ̌A1...Ap) = g(∇4∇eαeβ, eγ) + g(∇eαeβ,∇4eγ), (B.1.7)
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for appropriate α, β, γ,∈ {3, 4, A}. One can then use the definition of the Riemann curvature
tensor,

R(X,Y )Z .= ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z (B.1.8)

to write the first term of the right-hand side of equation (B.1.7) as a

g(∇4∇eαeβ, eγ) = g(R(e4, eα)eβ, eγ) + g(∇eα∇4eβ, eγ) + g(∇[e4,eα]eβ, eγ). (B.1.9)

One can then compute [e4, eα] using that proposition 2.2.3 and the torsion-free condition on the
Levi-Civita connection

[e4, eα] = ∇4eα − ∇αe4. (B.1.10)

The first term of equation (B.1.9) can be decomposed using definition 2.3.1 and the second can
also be computed via proposition 2.2.3.

One more general remark before turning to proofs, its is very useful to spot quickly the
instances when g(ea, eb) vanishes for the double null frame:

g33 = g44 = g3A = g4A = 0. (B.1.11)

Proof of proposition 2.6.2. Start by writing

( /∇4χ)AB = e4(χAB) − χ( /∇4eA, eB) − χ(eA, /∇4eB). (B.1.12)

Using the definition of χ (see definition 2.2.1) and propositions 2.2.3 and 2.5.1 one has

( /∇4χ)AB = g(∇4∇Ae4, eB) − χ( /∇4eA, eB) (B.1.13)
= g(R(e4, eA)e4 + ∇A∇4e4 + ∇[e4,eA]e4, eB) − χ( /∇4eA, eB), (B.1.14)

where one uses the definition of the Riemann tensor in equation (B.1.8). Using propositions 2.2.3
and the definition 2.3.1 of the curvature components along with [e4, eA] = ∇4eA − ∇Ae4 one has

( /∇4χ)AB = −αAB + g(ω̂∇Ae4 + ∇ /∇4eA+η
A

e4−χC
AeC−ζAe4

e4, eB) − χ( /∇4eA, eB), (B.1.15)

which simplifies to

( /∇4χ)AB = −αAB + ω̂χAB − χC
AχBC . (B.1.16)

Taking the trace and the trace-free parts whilst noting proposition 2.3.2 gives the results.
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Proof of proposition 2.6.3. Start by writing

( /∇4η)A = e4(ηA) − η( /∇4eA). (B.1.17)

Using the definition of η (see definition 2.2.1) and propositions 2.2.3 and 2.5.1 one has

( /∇4η)A = 1
2g(∇4∇3e4, eA) = 1

2g(R(e4, e3)e4 + ∇3∇4e4 + ∇[e4,e3]e4, eA), (B.1.18)

where one uses the definition of the Riemann tensor in equation (B.1.8). Using propositions 2.2.3
and the definition 2.3.1 of the curvature components one has

( /∇4η)A = −βA + 1
2g(eA,∇3(ω̂e4)) + 1

2g(eA,∇∇4e3e4) − 1
2g(eA,∇∇3e4e4) (B.1.19)

= −βA + χAB(η − η)B. (B.1.20)

Proof of proposition 2.6.4 and 2.6.6. Using the strategy of the previous two proofs one can show

( /∇4χ)AB = 2(∇Aη)B − ω̂χ
AB

−R3B4A + 2(η ⊗ η)AB − (χ× χ)AB. (B.1.21)

Antisymmetrising gives the results in proposition 2.6.4. Symmetrising gives

( /∇4χ)AB = 2(∇(Aη)B) − ω̂χ
AB

−R3(B|4|A) + 2(η ⊗ η)AB − 1
2(χ× χ+ χ× χ)AB.

Taking the trace and trace-free parts whilst noting proposition 2.3.2 gives the results in proposi-
tion 2.6.6.

Proof of proposition 2.6.5. Using the strategy outlined in the above proofs. One has

∇3ω = ω̂ω − Ω
2 g(∇3∇4e4, e3) − Ω

2 g(∇4e4,∇3e3). (B.1.22)

Using the definition of the Riemann tensor and proposition 2.2.3 gives

∇3ω = 2ω̂ω − Ω
2 g(R(e3, e4)e4 + ∇2(η−η)AeA+ω̂e3−ω̂e4e4 + ∇4∇3e4, e3). (B.1.23)

Repeated application of proposition 2.2.3 and definition 2.3.1 gives

∇3ω = −2Ωρ+ 4Ω⟨η, η⟩ − Ω|η|2 − Ω|η|2 − ω̂ω − Ω∇4ω̂ (B.1.24)

which can be rearranged to show

2∇3ω = 4Ω⟨η, η⟩ − 2Ωρ− Ω|η|2 − Ω|η|2 − [e4, e3](Ω). (B.1.25)
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By noting [e4, e3] = −2(η − η)AeA − ω̂e3 + ω̂e4 and proposition 2.6.1 gives the result.

Before proving the Gauss constraint equations, the following definition is useful.

Definition B.1.1 (Second Fundamental Form). Let p ∈ S where S is a closed embedded
codimension-2 submanifold of a Lorentzian manifold M . Then the second fundamental form
IIp : TpS × TpS → (TpS)⊥ of S at p is defined as

IIp(X,Y ) = (∇XY )⊥, ∀X,Y ∈ TpS. (B.1.26)

Remark B.1.1. At p ∈ S one can decompose the covariant derivative as follows

(∇XY )p = ( /∇XY )p − 1
2gp(∇XY, e4)e3 − 1

2gp(∇XY, e3)e4 (B.1.27)

= ( /∇XY )p + IIp(X,Y ), (B.1.28)

where one extends II is extended to TpM by zero on (e3, e4). Therefore,

IIp(X,Y ) = −1
2gp(∇XY, e4)e3 − 1

2gp(∇XY, e3)e4 (B.1.29)

= 1
2gp(Y,∇Xe4)e3 + 1

2gp(Y,∇Xe3)e4 (B.1.30)

= 1
2χ(X,Y )e3 + 1

2χ(X,Y )e4. (B.1.31)

This leads one to refer to χ and χ as the null second fundamental forms of Su,v.

Proof of proposition 2.6.7. Let /R denote the induced Riemann curvature of Su,v. LetX,Y,W,Z ∈
TSu,v then note that

/R(X,Y )Z = /∇X /∇Y Z − /∇Y /∇XZ − /∇[X,Y ]Z (B.1.32)
/∇XY = ∇XY − II(X,Y ). (B.1.33)

Further

g(R(X,Y )Z,W ) = g(∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,W ) (B.1.34)
= g(∇X /∇Y Z + ∇X(II(Y, Z)) − ∇Y /∇XZ − ∇Y (II(X,Z)),W ) (B.1.35)

− g( /∇[X,Y ]Z,W ),

where one recalls that II : TS × S → (TS)⊥. Therefore,

g(R(X,Y )Z,W ) = g( /∇X /∇Y Z − ∇Y /∇XZ − /∇[X,Y ]Z,W ) + g(II(Y,Z),∇XW ) (B.1.36)
− g(II(X,Z),∇Y W )

= g(/R(X,Y )Z,W ) + g(II(Y,Z), II(X,W )) − g(II(X,Z), II(Y,W )).
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Recall that

II(X,Y ) = 1
2χ(X,Y )e3 + 1

2χ(X,Y )e4. (B.1.37)

So,

g(R(X,Y )Z,W ) = g(/R(X,Y )Z,W ) − 1
2χ(Y,Z)χ(X,W ) − 1

2χ(Y,Z)χ(X,W ) (B.1.38)

+ 1
2χ(X,Z)χ(Y,W ) + 1

2χ(X,Z)χ(Y,W ).

Hence, one has the first Gauss constraint equation of proposition 2.6.7:

/RABCD = RABCD − 1
2χDBχCA

− 1
2χDB

χCA + 1
2χCBχDA

+ 1
2χCB

χDA. (B.1.39)

One can trace this once and then twice to get the other two Gauss constraints whilst noting
proposition 2.3.2whilst noting proposition 2.3.2.

Before proving the Codazzi constraint equations, the following definition is useful.

Definition B.1.2 (Normal Connection). The normal connection of a submanifold S ⊂ M is a
map ∇⊥ : TS × (TS)⊥ → (TS)⊥ given by

∇⊥
XY = nor(∇XY ) ∀X ∈ TS, Y ∈ (TS)⊥ (B.1.40)

where nor(Z) denotes the normal projection of Z onto (TS)⊥.

Remark B.1.2. The following properties are immediate from the definition

∇⊥
fX+gY Z = f∇⊥

XZ + g∇⊥
Y Z, ∀f ∈ C∞(M), X, Y ∈ TS, Z ∈ (TS)⊥. (B.1.41)

∇⊥
XfY = X(f)Y + f∇⊥

XY, ∀f ∈ C∞(M), X ∈ TS, Y ∈ (TS)⊥ (B.1.42)
X(g(Y, Z)) = g(∇⊥

XY, Z) + g(Y,∇⊥
XZ), ∀X ∈ TS, Y ∈ (TS)⊥, Z ∈ (TS)⊥. (B.1.43)

One can extend this to general normal tensor fields on S. In particular, for the second fundamental
form one has

(∇⊥
XII)(Y, Z) = ∇⊥

X(II(Y, Z)) − II( /∇XY,Z) − II(Y, /∇XZ). (B.1.44)

Proof of proposition 2.6.8. Let X,Y, Z ∈ TSu,v. Taking the normal projection of the Riemann
tensor gives

nor(R(X,Y )Z) = nor(∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z). (B.1.45)
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Note that

nor(∇X∇Y Z) = nor( /∇X /∇Y Z + II(X, /∇Y Z) + ∇X(II(Y,Z))) (B.1.46)
= II(X, /∇Y Z) + ∇⊥

X(II(Y, Z)) (B.1.47)
nor(∇[X,Y ]Z) = II( /∇XY,Z) − II( /∇Y X,Z). (B.1.48)

Hence,

nor(R(X,Y )Z) = II(X, /∇Y Z) + ∇⊥
X(II(Y,Z)) − II(Y, /∇XZ) − ∇⊥

Y (II(X,Z)) (B.1.49)
− II( /∇XY, Z) + II( /∇Y X,Z)

= (∇⊥
XII)(Y, Z) − (∇⊥

Y II)(X,Z). (B.1.50)

Now

(∇⊥
XII)(Y,Z) = ∇⊥

X(II(Y,Z)) − II( /∇XY, Z) − II(Y, /∇XZ) (B.1.51)

= 1
2∇⊥

X(χ(Y, Z)e3 + χ(Y,Z)e4) − χ( /∇XY,Z)e3 − χ( /∇XY, Z)e4 (B.1.52)

− χ(Y, /∇XZ)e3 − χ(Y, /∇XZ)e4

= 1
2X(χ(Y, Z))e3 + 1

2X(χ(Y, Z))e4 + 1
2χ(Y, Z)∇⊥

Xe3 (B.1.53)

+ 1
2χ(Y,Z)∇⊥

Xe4 − 1
2χ( /∇XY, Z)e3 − 1

2χ( /∇XY,Z)e4

− 1
2χ(Y, /∇XZ)e3 − 1

2χ(Y, /∇XZ)e4,

since χ(X,Y ) ∈ C∞(S). Hence,

(∇⊥
XII)(Y, Z) = 1

2
/∇X(χ(Y,Z))e3 + 1

2
/∇X(χ(Y,Z))e4 + 1

2χ(Y,Z)∇⊥
Xe3 (B.1.54)

+ 1
2χ(Y, Z)∇⊥

Xe4 − 1
2χ( /∇XY,Z)e3

− 1
2χ( /∇XY,Z)e4 − 1

2χ(Y, /∇XZ)e3 − 1
2χ(Y, /∇XZ)e4

= 1
2( /∇Xχ)(Y, Z)e3 + 1

2( /∇Xχ)(Y,Z)e4 + 1
2χ(Y,Z)∇⊥

Xe3 (B.1.55)

+ 1
2χ(Y, Z)∇⊥

Xe4.

Now,

∇⊥
Xe3 = −1

2g(∇Xe3, e3)e4 − 1
2g(∇Xe3, e4)e3 = ζ(X)e3, (B.1.56)

∇⊥
Xe4 = −ζ(X)e4. (B.1.57)
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So,

(∇⊥
XII)(Y,Z) = 1

2( /∇Xχ)(Y, Z)e3 + 1
2( /∇Xχ)(Y,Z)e4 + 1

2χ(Y,Z)ζ(X)e3 (B.1.58)

− 1
2χ(Y,Z)ζ(X)e4.

Hence,

nor(R(X,Y )Z) = 1
2( /∇Xχ)(Y,Z)e3 + 1

2( /∇Xχ)(Y, Z)e4 + 1
2χ(Y, Z)ζ(X)e3 (B.1.59)

− 1
2χ(Y, Z)ζ(X)e4 − 1

2( /∇Y χ)(X,Z)e3 − 1
2( /∇Y χ)(X,Z)e4

− 1
2χ(X,Z)ζ(Y )e3 + 1

2χ(X,Z)ζ(Y )e4.

Therefore, since

g(nor(R(X,Y )Z), e3) = g(R(X,Y )Z, e3), (B.1.60)
g(nor(R(X,Y )Z), e4) = g(R(X,Y )Z, e4), (B.1.61)

one has

g(R(X,Y )Z, e4) = −( /∇Xχ)(Y, Z) − χ(Y,Z)ζ(X) + ( /∇Y χ)(X,Z) + χ(X,Z)ζ(Y ), (B.1.62)
g(R(X,Y )Z, e3) = −( /∇Xχ)(Y,Z) + χ(Y,Z)ζ(X) + ( /∇Y χ)(X,Z) − χ(X,Z)ζ(Y ). (B.1.63)

Alternatively in indices

R4CAB = −2( /∇[Aχ)B]C − χBCζA + χACζB, (B.1.64)
R3CAB = −2( /∇[Aχ)B]C + χ

BC
ζA − χ

AC
ζB. (B.1.65)

Using that R4CAB = −RABC4 (and similarly for R3CAB), the definitions of the curvature
components 2.3.1 and decomposing χ into its trace and trace-free part gives the result. To
get the equations for ( /divχ̂, /divχ̂) one simply traces over the (B,C) indices above and uses
proposition 2.3.2.

B.2 The Bianchi Identities in Double Null Gauge

Proof of proposition 2.7.1. One should note that this proof assumes that (M, g) satisfies the
vacuum Einstein equation (I.2).
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The general strategy is as follows: denote W̌A1...Ap (p ≤ 4) as a member of
{
β, β, τ, σ, α, α, ν, ν, RABCD

}
. (B.2.1)

The reader should note that if one computes an equation for τ then tracing gives the relevant
equation for ρ from proposition 2.3.2. One then computes as follows

( /∇4W̌)A1...Ap = e4(W̌A1...Ap) − W̌( /∇4e1, ..., ep) − ...− W̌(e1, ..., /∇4ep). (B.2.2)

Now by the definition 2.3.1 one can express any W̌A1...Ap in terms of Rαβγδ for appropriate
α, β, γ, δ ∈ {3, 4, A}. So the first term on the right-hand side of (B.2.2) can be expressed in the
form

e4(W̌A1...Ap) = (∇4R)αβγδ +R(∇4eα, eβ, eγ , eδ) + ...+R(eα, eβ, eγ ,∇4eδ), (B.2.3)

for appropriate α, β, γ, δ ∈ {3, 4, A}. Now the first term on the right-hand side of this equa-
tion (B.2.3) can be manipulated via either the second Bianchi identity

(∇aR)bcde + (∇dR)bcea + (∇eR)bcad = 0, (B.2.4)

or its first contracted version (assuming the vacuum Einstein equation (I.2))

(divR)abc = 0. (B.2.5)

One then decomposes either identity with proposition 2.2.3 and the definition 2.3.1 by writing

(∇αR)βγδµ = eα(Rβγδγ) −R(∇αeβ, eγ , eδ, eµ) − ...−R(eβ, eγ , eδ,∇αeµ), (B.2.6)

for appropriate α, β, γ, δ ∈ {3, 4, A}. The other terms on the right-hand side of equation (B.2.3)
can also be decomposed using proposition 2.2.3 and the definition 2.3.1 of the curvature compo-
nents.

The equation for /∇3RABCD: Using the outlined strategy one has

/∇3RABCD = ∇3RABCD − ηAνCDB + ηBνCDA − ηCνABD + ηDνABC . (B.2.7)

Note the Bianchi identity

∇3RABCD = ∇DRABC3 − ∇CRABD3 (B.2.8)
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and compute

∇CRABD3 = /∇CνABD + χC[AαB]D + χ
C[A(τB]D − σB]D) − χE

C
RABDE (B.2.9)

− ζCνABD + χ
CD

σAB.

Antisymmetrise over (C,D) and plug back in to give the stated equation:

/∇3RABCD = 2(ζ − η)[Cν|AB|D] − 2η[Aν|CD|B] − 2 /∇[Cν|AB|D] + 2χE
[CR|AB|D]E (B.2.10)

− χA[CαD]B + χB[CαD]A − χ
A[C(τD]B + σD]B) + χ

B[C(τD]A + σD]A).

The equation for /∇3τ̂ and /∇3ρ: By expressing (via proposition 2.3.2 under the assumption
of the vacuum Einstein equation (I.2))

τAB = /g
CDRCADB, (B.2.11)

one can use the equation (B.2.11) for /∇3RABCD in conjunction with proposition 2.3.2 to give

( /∇3τ)AB = −2ηDνD(BA) + 2(η ⊗ β)(AB) + χC
[AσB]C + χC

[AτB]C (B.2.12)

+ ( /∇Bβ)A + (α× χ)(AB) + χ
AB
ρ− (β ⊗ ζ)AB − ( /divν)AB

+ 1
2(Tr/gχ)(σAB − τAB) − 1

2(Tr/gχ)αAB + χCERCABE + ζCνCAB.

Tracing this equation and using proposition 2.3.2 gives the equation for /∇3ρ and taking the
symmetric trace-free part gives the equation for /∇4τ̂ . Antisymmetrising gives the constraint

( /divν)[AB] = χC
[A(σ + τ)B]C − 1

2(/dβ)AB − 1
2(β ∧ ζ)AB + 1

2(Tr/gχ)σAB + ζCνC[AB]. (B.2.13)

The equation for /∇3ν and /∇3β: Using the outlined strategy one has

( /∇3ν)ABC = ∇3RC3AB − ηAαBC + ηBαAC + ω̂νABC . (B.2.14)

The second Bianchi identity gives

∇3RC3AB = ∇BRC3A3 − ∇ARC3B3. (B.2.15)

One can compute that

∇BRC3A3 = /∇BαCA + χ
BC
β

A
+ χ

BA
β

C
− χD

B
νADC − χD

B
νCDA − 2ζBαCA. (B.2.16)



242 Appendix for Chapter 2

Antisymmetrising on (B,A) and substituting gives the result. Tracing the resulting equation on
(B,C) then gives the equation and using proposition 2.3.2 for /∇3β.

The equation for /∇4ν and /∇4β: Proceeding as above one finds

( /∇4ν)ABC = 2η
C
σBA + 2(τ + σ)C[AηB] + 2ηDRABCD − ω̂νABC (B.2.17)

+ g(eA, [∇4R](eC , e3)eB).

Now,

g(eA, [∇4R](eC , e3)eB) = g(eC , [∇4R](eA, eB)e3) = 2g(eC , [∇[AR](e4, eB])e3). (B.2.18)

Then

∇ARC34B = χABβC
− χ

AC
βB − χD

AνDBC + χD
A
νCDB − ( /∇A(σ + τ))CB. (B.2.19)

Hence,

2∇[AR|C34|B] = −2( /∇[A(τ − σ))B]C − 2χ
C[AβB] + 2χD

[AνB]DC + 2νCD[Bχ
D
A]. (B.2.20)

Combining gives the result. Tracing over (B,C) and using proposition 2.3.2 (in conjunction with
the vacuum Einstein equation (I.2)) gives the equation for /∇4β.

The equation for /∇3α and /∇4σ: By expressing α as in definition 2.3.1 one can use the
strategy outlined above to show

( /∇3α)AB = 2(η ⊗ β)AB + g(eA, [∇3R](eB, e4)e4) + 2(β ⊗ η)AB − 2ω̂αAB (B.2.21)
+ 2ηC(νACB + νBCA).

The second Bianchi identities give

g(eA, [∇3R](eB, e4)e4) + g(eA, [∇BR](e4, e3)e4) + g(eA, [∇4R](e3, eB)e4) = 0. (B.2.22)

Using the relations in proposition 2.2.3 and the definition 2.3.1 of curvature one has

g(eA, [∇BR](e4, e3)e4) =2ρχAB − 2( /∇Bβ)A − (τ × χ)AB + (α× χ)AB (B.2.23)
+ 3(σ × χ)AB − 2(β ⊗ ζ)AB.
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and

g(eA, [∇4R](e3, eB)e4) = ( /∇4(σ − τ))AB − 2ηCνCBA − 2(β ⊗ η)AB. (B.2.24)

Combining these results gives

( /∇3α)AB = 2(η ⊗ β)AB + 2(β ⊗ η)AB − 2ω̂αAB − 4ηCνC(AB) − ( /∇4(σ − τ))AB (B.2.25)
+ 2ηCνCBA + 2(β ⊗ η)AB − 2ρχAB + 2( /∇Bβ)A + (τ × χ)AB − (α× χ)AB

− 3(σ × χ)AB + 2(β ⊗ ζ)AB.

Antisymmetrising (B.2.26) gives and using proposition 2.3.2 gives

( /∇4σ)AB = ηCνABC + (β ∧ (η + ζ))AB − (/dβ)AB + (τ̂ ∧ χ̂)AB − (α ∧ χ̂)AB (B.2.26)

− 3(σ ∧ χ̂)AB − 3
n− 2(Tr/gχ)σAB,

where one defines (σ ∧ χ̂)AB := (σ × χ̂)[AB]. Tracing (B.2.26) and using proposition 2.3.2 gives

/∇4ρ = ⟨2η + ζ, β⟩ −
(n− 1
n− 2

)
ρTr/gχ+ /divβ + 1

2⟨τ̂, χ̂⟩ − 1
2⟨α, χ̂⟩. (B.2.27)

Finally, taking the symmetric-traceless part of (B.2.26) gives

( /∇3α)AB − ( /∇4τ̂)AB = ((2η + ζ)⊗̂β)AB − 4ηC(
νC(AB) − 1

n− 2βC/gAB

)
− 2ω̂αAB (B.2.28)

− 2(/D⋆
2β)AB + ̂(τ̂ × χ̂)AB + 1

n− 2(Tr/gχ)τ̂AB − 2ρ(n− 1)
(n− 2) χ̂AB

− ̂(α× χ̂)
AB

− 1
n− 2(Tr/gχ)αAB − 3 ̂(σ × χ̂)AB

+ 2ηC
(
νC(BA) − 1

n− 2βC/gAB

)
+ (β⊗̂η)AB.

Plugging in the equation for /∇4τ̂ gives

( /∇3α)AB =
((

2η + 1
2ζ

)
⊗̂β

)
AB

− 4ηC(
νC(AB) − 1

n− 2βC/gAB

)
− 2ω̂αAB (B.2.29)

− (/D⋆
2β)AB + ̂(τ̂ × χ̂)AB − 1

2(Tr/gχ)τ̂AB − ρ
n

(n− 2) χ̂AB

− 1
2(Tr/gχ)αAB + χ̂CERCABE − 3 ̂(σ × χ̂)AB − (̂ /divν)AB

− ζC
(
νC(AB) − 1

n− 2βC/gAB

)
+ 1
n− 2⟨τ̂, χ̂⟩/gAB

.
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Appendix for Chapter 3 and 4

C.1 Useful Identities

Proposition C.1.1. Let (M, g) be a spacetime which satisfies the vacuum Einstein equation (I.2)
and let X be a vector field. Then

∇a∇bXc = KX
abc +Rcba

dXd. (C.1.1)

where

KX
abc

.= ∇aΠX
bc + ∇bΠX

ac − ∇cΠX
ab, (C.1.2)

ΠX
ab

.= 1
2(LXg)ab. (C.1.3)

Proof. First we note that by definition:

2KX
abc = ∇a∇bXc + ∇a∇cXb + ∇b∇aXc + ∇b∇cXa − ∇c∇aXb − ∇c∇bXa. (C.1.4)

Further by the Ricci identity,

2KX
abc = 2∇a∇bXc −Rd

cbaXd −Rd
bacXd −Rd

abcXd. (C.1.5)

Using the first algebraic Bianchi identity and the symmetries of the Riemann tensor one has

∇a∇bXc = KX
abc +Rcba

dXd. (C.1.6)

Proposition C.1.2. Let T ∈
⊗n

i=1 T
∗M and X a vector field. Then

∇a(LXT )b1...bn = LX(∇T )ab1...bn + KX
ab1cT

c
b2...bn + ...+ KX

abncTb1...bn−1
c. (C.1.7)
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Proof. The proof of this follows from proposition C.1.1 and repeated use of the Ricci identity.

In the following, it will be established that if h is a solution to the linearised vacuum Einstein
equation I.5 and the background spacetime has a Killing field k then Lkh is also a solution to
the linearised vacuum Einstein equation (I.5). First the following lemma is established to simplify
the proof.

Lemma C.1.3. Let (M, g) be a spacetime with a Killing field k. Then

(LkR)abcd = 0. (C.1.8)

Proof. The formula for the Lie derivative of the Riemann tensor is the following:

(LkR)abcd = ke(∇eR)abcd +Rebcd(∇ak)e +Raecd(∇bk)e +Rabed(∇ck)e (C.1.9)
+Rabce(∇dk)e.

Using the second Bianchi identity one has

(LkR)abcd = −ke(∇cR)abde − ke(∇dR)abec +Rebcd(∇ak)e +Raecd(∇bk)e (C.1.10)
+Rabed(∇ck)e +Rabce(∇dk)e.

Now using the antisymmetry of the Riemann tensor in its last two indices one has

(LkR)abcd = ∇c(keRabed) + ∇d(keRabce) +Rebcd(∇ak)e +Raecd(∇bk)e. (C.1.11)

Now since k is Killing by using the Ricci identity one can establish

(∇a∇bk)c = Rc
badk

d. (C.1.12)

Therefore,

(LkR)abcd = −(∇c∇d∇bk)a + (∇d∇c∇bk)a +Rebcd(∇ak)e +Raecd(∇bk)e, (C.1.13)

which vanishes by the Ricci identity and the symmetries of the Riemann tensor.

Proposition C.1.4. Suppose h solves the linearised vacuum Einstein equation (I.5) on a vacuum
spacetime background (M, g) with Killing vector field k then Lkh is also a solution to the
linearised vacuum Einstein equation (I.5).

Proof. Using the Ricci identity and

∇a∇bk
c = Rc

badk
d, (C.1.14)
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one can establish that for arbitrary tensor Ta1...am
b1...bn one has

∇c(LkT )a1...am

b1...bn = Lk∇cTa1...am
b1...bn . (C.1.15)

Therefore, using Lkg
ab = 0, one finds

∆L(Lkh)ab = −2(LkR)a
c
b
dhcd = 0, (C.1.16)

by lemma C.1.3.

C.2 Details for Proof Theorem 3.1.10

For the enthusiastic reader, here are explicit details for the proof of theorem 3.1.10. Let
J̇ = (J T [LTh]), then using equations (3.3.149-3.3.155) and the discussion following them one
can compute

J̇ 4 ≡ Ω3

4 |(1)
α|2 + Ω3

2 |(1)
σ|2 + Ω2

(
ω − 1

4(ΩTr/gχ)
)
⟨
(1)
χ̂,

(1)
α⟩ + Ω3⟨(1)

η, /div(1)
α⟩ − Ω2

4 (ΩTr/gχ)⟨
(1)
χ̂,

(1)
α⟩

+ Ω
(
ω − 1

4(ΩTr/gχ)
)2

|
(1)
χ̂|2 + Ω

16(ΩTr/gχ)2|
(1)
χ̂|2 − Ω

2
(
ω − 1

4(ΩTr/gχ)
)
(ΩTr/gχ)⟨

(1)
χ̂,

(1)
χ̂⟩

− Ω2

2 (ΩTr/gχ)⟨
(1)
β +

(1)
β,

(1)
η⟩ + 2Ω2

(
ω − (ΩTr/gχ)

)
⟨
(1)
β,

(1)
η⟩ + Ω3(1)

ρ /div(1)
η + 2Ω2(1)

ω /div(
(1)
β +

(1)
β)

+ 2Ω| /∇(1)
ω|2 + Ω3

2
(
|
(1)
β|2 + |

(1)
β|2

)
+ Ω3⟨

(1)
β,

(1)
β⟩ − Ω(ΩTr/gχ)(1)

ω /div(1)
η − 2Ωω((1)

ω + (1)
ω) /div(1)

η

+
Tr/gχ

4
(
(ΩTr/gχ) − 2ω

)(1)
ω

(1)

(ΩTr/gχ) + 1
Ω

(1
4(ΩTr/gχ)2 − 3

2ω(ΩTr/gχ) + 2ω2
)(1)
ω

(1)

(ΩTr/gχ)

− ω

2Ω(ΩTr/gχ)(1)
ω

(1)

(ΩTr/gχ) − 2ω
Ω

(1
4(ΩTr/gχ) − ω

)(1)
ω

(1)

(ΩTr/gχ) + 2ω
Ω (ΩTr/gχ)((1)

ω + (1)
ω)(1)
ω

− 1
2Ω(ΩTr/gχ)2(1)

ω2 −
[
( /∇3

(1)
ω)T (

(1)

(ΩTr/gχ)) − ( /∇4
(1)
ω)T (

(1)

(ΩTr/gχ))
]

+ 3
2Ω3

((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)2

+ Ω
(
ω − 1

4(ΩTr/gχ)
)((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

) (1)

(ΩTr/gχ) − Ω
4 (ΩTr/gχ)

((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

) (1)

(ΩTr/gχ)

− 2ωΩ((1)
ω + (1)

ω)
((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)
+ ΩΩTr/gχ

((1)
ρ+ 2

((1)
Ω
Ω

)
ρ

)(1)
ω +

(Ω
8 (ΩTr/gχ)2 − Ω3ρ

)
|(1)
η|2

− 2Ω3ρ⟨(1)
η,

(1)
η⟩ +

(Ω
8 (ΩTr/gχ)2 + Ω3ρ

)
|(1)
η|2 −

Tr/gχ

4
(1

4(ΩTr/gχ) − ω
) (1)

(ΩTr/gχ)
(1)

(ΩTr/gχ)

− 1
32Ω(ΩTr/gχ)2

(1)

(ΩTr/gχ)2 − 1
2Ω

(1
4(ΩTr/gχ) − ω

)2 (1)

(ΩTr/gχ)2, (C.2.1)



248 Appendix for Chapter 3 and 4

and
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where the Codazzi constraint equations in proposition 2.10.17 have been used. Now define:
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So, for C1, C2 and C3 one uses the linearised shear equation in proposition 2.10.10 and the
linearised Codazzi constraints in proposition 2.10.17 to give
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For C4, C5 one uses the linearised torsion equations in proposition 2.10.11 and the linearised
Bianchi equations in proposition 2.10.20 to show
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Using propositions 2.10.7 and the linearised Bianchi equations in proposition 2.10.20 one can
show

1
r2 /∇3

(
r2C9

)
= Ωω(1)

ω
(1)
ρ− 2Ωω2

((1)
Ω
Ω

)(1)
ρ− 3

2ρΩ3
((1)

Ω
Ω

)(1)
ρ+ Ω2ω

2 ⟨(1)
η +(1)

η,
(1)
β⟩ (C.2.20)

− 3
2Ωρω

((1)
Ω
Ω

) (1)

(ΩTr/gχ),

1
r2 /∇4

(
r2C9

)
= Ωω(1)

ω
(1)
ρ+

[
2Ωω2 + 3

2ρΩ3
]((1)

Ω
Ω

)(1)
ρ− Ω2ω

2 ⟨(1)
η +(1)

η,
(1)
β⟩ (C.2.21)

− 3
2Ωρω

((1)
Ω
Ω

) (1)

(ΩTr/gχ).

Using the torsion propagation equations of proposition 2.10.11 one has
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with similar expressions (resulting from ‘barring’ these results and accounting for sign changes)
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with similar expressions (resulting from ‘barring’ these results and accounting for sign changes)
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r2 /∇4(r2C15). Finally, using the propositions 2.10.7, 2.10.8
and 2.10.9 gives

1
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, (C.2.29)

1
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(
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(
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Ω
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(
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1
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(
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)
=

[
8ωρΩ + 3(ΩTr/gχ)ρ
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Ω
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ω +
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)2
, (C.2.31)

with similar expressions (resulting from ‘barring’ these results and accounting for sign changes)
for 1

r2 /∇4(r2C16), 1
r2 /∇4(r2C17) and 1

r2 /∇4(r2C18). At this point one can check explicitly the
computation of (J T [LTh])4 − 1

r2 /∇3(r2C) and (J T [LTh])3 + 1
r2 /∇4(r2C). Note that

C = C3 + C7 + C8 + C10 + C11 + C12 + C17 + 1
4(C13 + C14) (C.2.32)

−
(
C1 + C2 + C4 + C5 + C6 + C16 + C18 + 2C9 + 1

8C15
)
.



References

[1] K. Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie,” Sitz. Akad. Wiss. Berlin, pp. 189–196, 1916.

[2] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitz. Akad. Wiss. Berlin, pp. 844–847,
1915.

[3] J. R. Oppenheimer and H. Snyder, “On continued gravitational contraction,” Phys. Rev.,
vol. 56, pp. 455–459, 1939.

[4] G. D. Birkhoff and R. E. Langer, Relativity and modern physics. Harvard University Press,
1923.

[5] J. T. Jebsen, “Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen
Gravitationsgleichungen im Vakuum,” Arkiv för Matematik, Astronomi och Fysik., vol. 15,
p. 1–9, 1921.

[6] Y. Fourès-Bruhat, “Théorème d’existence pour certains systèmes d’équations aux dérivées
partielles non linéaires,” Acta Math., vol. 88, pp. 141 – 225, 1952.

[7] Y. Choquet-bruhat and R. P. Geroch, “Global aspects of the Cauchy problem in general
relativity,” Commun. Math. Phys., vol. 14, pp. 329–335, 1969.

[8] J. Sbierski, On the initial value problem in general relativity and wave propagation in
black-hole spacetimes (Doctoral thesis). University of Cambridge, 2014.

[9] J. Sbierski, “On the existence of a maximal cauchy development for the einstein equations -
a dezornification,” Ann. Henri Poincaré, vol. 17, 2013.

[10] F. J. Zerilli, “Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation
Equations,” Phys. Rev. Lett., vol. 24, pp. 737–738, 1970.

[11] C. V. Vishveshwara, “Stability of the Schwarzschild Metric,” Phys. Rev. D, vol. 1, pp. 2870–
2879, 1970.

[12] J. M. Bardeen and W. H. Press, “Radiation fields in the Schwarzschild background,” J.
Math. Phys., vol. 14, no. 1, pp. 7–19, 1973.

[13] S. A. Teukolsky, “Perturbations of a Rotating Black Hole. I. Fundamental Equations for
Gravitational, Electromagnetic, and Neutrino-Field Perturbations,” Astrophys. J., vol. 185,
pp. 635–648, 1973.

[14] V. Moncrief, “Gravitational perturbations of spherically symmetric systems. I. The exterior
problem.,” Ann. Phys., vol. 88, pp. 323–342, 1974.



254 References

[15] S. Chandrasekhar, “On the equations governing the perturbations of the Schwarzschild
black hole,” Proc. Roy. Soc. (London) Ser. A, vol. 343, no. 1634, pp. 289–298, 1975.

[16] B. S. Kay and R. M. Wald, “Linear stability of Schwarzschild under perturbations which
are non-vanishing on the bifurcation 2-sphere,” Class. and Quantum Gravity, vol. 4, no. 4,
pp. 893–898, 1987.

[17] B. F. Whiting, “Mode stability of the Kerr black hole,” J. Math. Phys., vol. 30, no. 6,
pp. 1301–1305, 1989.

[18] S. Chandrasekhar, The Mathematical Theory of Black Holes. Int. Ser. Monogr. Phys.,
Oxford Univ. Press, New York, 1992.

[19] M. Dafermos and I. Rodnainski, “Lectures on Black Holes and Linear Waves,” Clay Math.
Proc., vol. 17, pp. 97–206, 2008.

[20] M. Dafermos and I. Rodnianski, “The red-shift effect and radiation decay on black hole
spacetimes,” Commun. Pure Appl. Math., vol. 62, no. 7, pp. 859–919, 2009.

[21] M. Dafermos and I. Rodnianski, “A new physical-space approach to decay for the wave
equation with applications to black hole spacetimes,” XVIth International Congress on
Mathematical Physics, 2009.

[22] M. Dafermos and I. Rodnianski, “Decay for solutions of the wave equation on Kerr exterior
spacetimes I-II: The cases |a| << M or axisymmetry,” 2010. arXiv:1010.5132.

[23] M. Dafermos and I. Rodnianski, “A proof of the uniform boundedness of solutions to the
wave equation on slowly rotating Kerr backgrounds,” Invent. Math., vol. 185, pp. 467–559,
2011.

[24] M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman, “Decay for solutions of the
wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M ,” 2014.
arXiv:1402.7034.

[25] L. Andersson and P. Blue, “Hidden symmetries and decay for the wave equation on the
Kerr spacetime,” Ann. Math., vol. 182, no. 3, pp. 787–853, 2015.

[26] Y. Shlapentokh-Rothman, “Quantitative mode stability for the wave equation on the Kerr
spacetime,” vol. 16, no. 1, pp. 289–345, 2015.

[27] M. Dafermos, I. Rodnianski, and Y. Shlapentokh-Rothman, “Decay for solutions of the
wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M ,” Ann.
Math., vol. 183, no. 3, pp. 787–913, 2016.

[28] M. Dafermos, G. Holzegel, and I. Rodnianski, “The linear stability of the Schwarzschild
solution to gravitational perturbations,” Acta Math., vol. 222, no. 1, pp. 1–214, 2019.

[29] M. Dafermos, G. Holzegel, and I. Rodnianski, “Boundedness and Decay for the Teukolsky
Equation on Kerr Spacetimes I: The Case |a| << M ,” Ann. PDE, vol. 5, no. 1, p. 2, 2019.

[30] T. W. Johnson, “The linear stability of the Schwarzschild solution to gravitational pertur-
bations in the generalised wave gauge,” Ann. PDE, vol. 5, no. 2, pp. 1–92, 2019.

[31] J. Szeftel and S. Klainerman, Global Nonlinear Stability of Schwarzschild Spacetime Under
Polarized Perturbations. Ann. Math. Stud., Princeton University Press, 2020.



References 255

[32] R. Teixeira da Costa, “Mode stability for the Teukolsky equation on extremal and subextremal
Kerr spacetimes,” Commun. Math. Phys., vol. 378, no. 1, pp. 705–781, 2020.

[33] Y. Shlapentokh-Rothman and R. Teixeira da Costa, “Boundedness and decay for the
Teukolsky equation on Kerr in the full subextremal range |a| < M : frequency space
analysis,” 2020. arXiv:2007.07211.

[34] P.-K. Hung, J. Keller, and M.-T. Wang, “Linear stability of Schwarzschild spacetime: decay
of metric coefficients,” J. Diff. Geom., vol. 116, no. 3, pp. 481–541, 2020.

[35] M. Dafermos, G. Holzegel, I. Rodnianski, and M. Taylor, “The non-linear stability of the
Schwarzschild family of black holes,” 2021. arXiv:2104.08222.

[36] T. Regge and J. A. Wheeler, “Stability of a Schwarzschild Singularity,” Phys. Rev., vol. 108,
pp. 1063–1069, 1957.

[37] R. Emparan and H. S. Reall, “Black Holes in Higher Dimensions,” Living Rev. Relativ.,
vol. 11, no. 1, p. 6, 2008.

[38] H. S. Reall, “Higher Dimensional Black Holes,” Int. J. Mod. Phys. D, vol. 21, no. 12,
p. 1230001, 2012.

[39] G. Horowitz et al., Black Holes in Higher Dimensions. Cambridge University Press, 2012.

[40] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cambridge
Monographs on Mathematical Physics, Cambridge University Press, 1973.

[41] R. Myers and M. Perry, “Black Holes in Higher Dimensional Space-times,” Ann. Phys.,
vol. 172, no. 2, p. 304, 1986.

[42] R. Emparan and H. S. Reall, “A Rotating Black Ring Solution in Five Dimensions,” Phys.
Rev. Lett., vol. 88, p. 101101, 2002.

[43] G. J. Galloway and R. Schoen, “A Generalization of Hawking’s Black Hole Topology
Theorem to Higher Dimensions,” Commun. Math. Phys., vol. 266, no. 2, p. 571, 2006.

[44] S. Hollands and S. Yazadjiev, “Uniqueness Theorem for 5-Dimensional Black Holes with
Two Axial Killing Fields,” Commun. Math. Phys., vol. 283, no. 3, p. 749, 2008.

[45] B. Carter, “Axisymmetric Black Hole Has Only Two Degrees of Freedom,” Phys. Rev. Lett.,
vol. 26, pp. 331–333, 1971.

[46] D. C. Robinson, “Uniqueness of the Kerr Black Hole,” Phys. Rev. Lett., vol. 34, pp. 905–906,
1975.

[47] S. Alexakis, A. D. Ionescu, and S. Klainerman, “Uniqueness of smooth stationary black
holes in vacuum: Small perturbations of the Kerr spaces,” Commun. Math. Phys., vol. 299,
pp. 89–127, 2010.

[48] R. Emparan and H. S. Reall, “Black Rings,” in Black Holes in Higher Dimensions (G. T.
Horowitz, ed.), p. 134, Cambridge University Press, 2012.

[49] R. Gregory and R. Laflamme, “Black strings and p-Branes are Unstable,” Phys. Rev. Lett.,
vol. 70, p. 2837, 1993.

[50] R. Gregory and R. Laflamme, “The Instability of Charged Black Strings and p-Branes,”
Nucl. Phys. B, vol. 428, no. 1, p. 399, 1994.



256 References

[51] H. S. Reall, “Classical and Thermodynamic Stability of Black Branes,” Phys. Rev. D, vol. 64,
p. 044005, 2001.

[52] S. S. Gubser and I. Mitra, “The Evolution of Unstable Black Holes in Anti-de Sitter Space,”
JHEP, vol. 2001, no. 08, p. 018, 2001.

[53] S. S. Gubser and I. Mitra, “Instability of Charged Black Holes in Anti-de Sitter Space,”
Clay Math. Proc., vol. 1, p. 221, 2002.

[54] G. Gibbons and S. A. Hartnoll, “Gravitational instability in higher dimensions,” Phys. Rev.
D, vol. 66, p. 064024, 2002.

[55] R. Emparan and R. C. Myers, “Instability of Ultra-spinning Black Holes,” JHEP, vol. 2003,
no. 09, pp. 025–025, 2003.

[56] O. J. C. Dias, “Superradiant Instability of Large Radius Doubly Spinning Black Rings,”
Phys. Rev. D, vol. 73, p. 124035, 2006.

[57] J. L. Hovdebo and R. C. Myers, “Black Rings, Boosted Strings, and Gregory–Laflamme
Instability,” Phys. Rev. D, vol. 73, p. 084013, 2006.

[58] L. Lehner and F. Pretorius, “Black Strings, Low Viscosity Fluids, and Violation of Cosmic
Censorship,” Phys. Rev. Lett., vol. 105, p. 101102, 2010.

[59] O. J. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, “An Instability of
Higher-dimensional Rotating Black Holes,” JHEP, vol. 05, p. 076, 2010.

[60] M. N. Durkee and H. S. Reall, “Perturbations of near-horizon geometries and instabilities
of Myers-Perry black holes,” Phys. Rev. D, vol. 83, p. 104044, 2011.

[61] P. Figueras, K. Murata, and H. S. Reall, “Black Hole Instabilities and Local Penrose
Inequalities,” Class. Quantum Gravity, vol. 28, no. 22, p. 225030, 2011.

[62] C.-M. Yoo, S. Tansawa, and M. Sasaki, “Gregory–Laflamme Instability of a Slowly Rotating
Black String,” Int. J. of Mod. Phys. D, vol. 20, no. 06, pp. 963–988, 2011.

[63] R. Gregory, “The Gregory–Laflamme Instability,” in Black Holes in Higher Dimensions
(G. T. Horowitz, ed.), p. 29, Cambridge University Press, 2012.

[64] L. Lehner and F. Pretorius, “Final State of Gregory–Laflamme Instability,” in Black Holes
in Higher Dimensions (G. T. Horowitz, ed.), p. 44, Cambridge University Press, 2012.

[65] S. Hollands and R. M. Wald, “Stability of Black Holes and Black Branes,” Commun. Math.
Phys., vol. 321, no. 3, p. 629, 2013.

[66] K. Prabhu and R. M. Wald, “Black Hole Instabilities and Exponential Growth,” Commun.
Math. Phys., vol. 340, no. 1, p. 253, 2015.

[67] J. E. Santos and B. Way, “Neutral Black Rings in Five Dimensions are Unstable,” Phys.
Rev. Lett., vol. 114, p. 221101, 2015.

[68] G. Benomio, “The stable trapping phenomenon for black strings and black rings and its
obstructions on the decay of linear waves,” Anal. PDE, vol. 14, no. 8, pp. 2427 – 2496,
2021.

[69] S. C. Collingbourne, “The Gregory–Laflamme instability of the Schwarzschild Black String
Exterior,” J. Math. Phys., vol. 62, no. 3, p. 032502, 2021.



References 257

[70] T. Kaluza, “Zum Unitätsproblem der Physik,” Sitz. Kön. Preuß. Akad. Wiss. (Berlin,
pp. 966–972, 1921.

[71] O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Zeit. Phys., vol. 37,
no. 12, pp. 895–906, 1926.

[72] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory: 25th Anniversary Edition,
vol. 1 of Cambridge Monographs on Mathematical Physics. Cambridge University Press,
2012.

[73] G. T. Horowitz and A. Strominger, “Black Strings and p-Branes,” Nucl. Phys. B, vol. 360,
p. 197, 1991.

[74] F. R. Tangherlini, “Schwarzschild field in n-dimensions and the dimensionality of space
problem,” Nuovo Cim., vol. 27, pp. 636–651, 1963.

[75] A. Einstein, “Näherungsweise Integration der Feldgleichungen der Gravitation,” Sitz. Akad.
Wiss. Berlin, pp. 688–696, 1916.

[76] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,”
Phys. Rev. Lett., vol. 116, p. 061102, 2016.

[77] J. E. Santos and B. Way, “Neutral Black Rings in Five Dimensions are Unstable,” Phys.
Rev. Lett., vol. 114, p. 221101, 2015.

[78] O. J. C. Dias, P. Figueras, R. Monteiro, J. E. Santos, and R. Emparan, “Instability and
New Phases of Higher-dimensional Rotating Black Holes,” Phys. Rev. D, vol. 80, p. 111701,
2009.

[79] O. J. C. Dias, P. Figueras, R. Monteiro, and J. E. Santos, “Ultraspinning Instability of
Rotating Black Holes,” Phys. Rev. D, vol. 82, p. 104025, 2010.

[80] R. Emparan and H. S. Reall, “A Rotating Black Ring Solution in Five Dimensions,” Phys.
Rev. Lett., vol. 88, p. 101101, 2002.

[81] A. A. Pomeransky and R. A. Sen’kov, “Black Ring with Two Angular Momenta,” 2006.
arXiv:hep-th/0612005.

[82] S. Aretakis, “Lecture Notes General Relativity Columbia University.” 2012.

[83] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski
Space. Martin Classical Lectures. New Series, Princeton University Press, 1993.

[84] D. Christodoulou, The Formation of Black Holes in General Relativity. EMS monographs
in mathematics, European Mathematical Society, 2009.

[85] I. Rodnianski and Y. Shlapentokh-Rothman, “The Asymptotically Self-Similar Regime for
the Einstein Vacuum Equations,” 2018. arXiv:1705.09674.

[86] M. Godazgar, “The perturbation theory of higher-dimensional spacetimes in the manner of
Teukolsky,” Class. Quantum Gravity, vol. 29, no. 5, p. 055008, 2012.

[87] M. Durkee and H. S. Reall, “Perturbations of higher-dimensional spacetimes,” Class.
Quantum Gravity, vol. 28, no. 3, p. 035011, 2011.

[88] M. N. Durkee, “ New approaches to higher-dimensional general relativity (Doctoral thesis),”
University of Cambridge, 2011.



258 References

[89] M. Durkee, V. Pravda, A. Pravdová, and H. S. Reall, “Generalization of the Ge-
roch–Held–Penrose formalism to higher dimensions,” Class. Quantum Gravity, vol. 27,
no. 21, p. 215010, 2010.

[90] G. Holzegel, “Conservation laws and flux bounds for gravitational perturbations of the
Schwarzschild metric,” Class. Quantum Gravity, vol. 33, no. 20, p. 205004, 2016.

[91] R. Wald, General Relativity. University of Chicago Press, 1984.

[92] H. Reall, “Mathematical Tripos Part III General Relativity,” 2012.

[93] R. Gregory and R. Laflamme, “Hypercylindrical Black Holes,” Phys. Rev. D, vol. 37, p. 305,
1988.

[94] D. J. Gross, M. J. Perry, and L. G. Yaffe, “Instability of Flat Space at Finite Temperature,”
Phys. Rev. D, vol. 25, p. 330, 1982.

[95] O. Aharony, J. Marsano, S. Minwalla, and T. Wiseman, “Black-hole–black-string Phase
Transitions in Thermal 1 + 1-dimensional Supersymmetric Yang–Mills Theory on a Circle,”
Class. Quantum Gravity, vol. 21, no. 22, p. 5169, 2004.

[96] J. Keir, “Stability, instability, canonical energy and charged black holes,” Class. Quantum
Gravity, vol. 31, no. 3, p. 035014, 2014.

[97] F. Olver, Asymptotics and Special Functions. Academic Press, 1974.

[98] N. Lebedev and R. Silverman, Special Functions and Their Applications. Dover Books on
Mathematics, Dover Publications, 1972.

[99] A. Cuyt, F. Backeljauw, V. Petersen, C. Bonan-Hamada, B. Verdonk, H. Waadeland, and
W. Jones, Handbook of Continued Fractions for Special Functions. SpringerLink: Springer
e-Books, Springer Netherlands, 2008.

[100] L. Childs, A Concrete Introduction to Higher Algebra 2nd ed. Undergraduate Texts in
Mathematics, Springer New York, 1995.

[101] F. Rindler, Calculus of Variations. Universitext, Springer International Publishing, 2018.

[102] E. Newman and R. Penrose, “An approach to gravitational radiation by a method of spin
coefficients,” J. Math. Phys., vol. 3, no. 3, pp. 566–578, 1962.

[103] M. D. Kruskal, “Maximal Extension of Schwarzschild Metric,” Phys. Rev., vol. 119,
pp. 1743–1745, 1960.

[104] G. Szekeres, “On the singularities of a Riemannian manifold,” Publ. Math. Debrecen, vol. 7,
pp. 285–301, 1960.

[105] V. Schlue, “Decay of linear waves on higher dimensional Schwarzschild black holes,” Anal.
Part. Diff. Eq., vol. 6, no. 3, pp. 515–600, 2013.

[106] R. P. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special
Metrics,” Phys. Rev. Lett., vol. 11, pp. 237–238, 1963.

[107] R. H. Boyer and R. W. Lindquist, “Maximal Analytic Extension of the Kerr Metric,” J.
Math. Phys., vol. 8, no. 2, pp. 265–281, 1967.



References 259

[108] F. Pretorius and W. Israel, “Quasi-spherical light cones of the Kerr geometry,” Class.
Quantum Gravity, vol. 15, no. 8, pp. 2289–2301, 1998.

[109] M. Dafermos and J. Luk, “The interior of dynamical vacuum black holes I: The C0-stability
of the Kerr Cauchy horizon,” 2017. arXiv:1710.01722.

[110] M. Dafermos, G. Holzegel, and I. Rodnianski, “A scattering theory construction of dynamical
vacuum black holes,” 2013. arXiv:1306.5364.

[111] A. Z. Petrov, “The classification of spaces defining gravitational fields,” Gen. Relativ.
Gravit., vol. 32, pp. 1665–1685, 1954.

[112] P. Chruściel, Geometry of Black Holes. International Series of Monographs on Physics,
Oxford University Press, 2020.

[113] R. Geroch, A. Held, and R. Penrose, “A space-time calculus based on pairs of null directions,”
J. Math. Phys., vol. 14, no. 7, pp. 874–881, 1973.

[114] E. Giorgi, S. Klainerman, and J. Szeftel, “A general formalism for the stability of Kerr,”
2020. arXiv:2002.02740.

[115] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of
Einstein’s Field Equations. Cambridge Monographs on Mathematical Physics, Cambridge
University Press, 2 ed., 2003.

[116] W. Kundt, “The plane-fronted gravitational waves,” Zeitschrift fur Physik, vol. 163, no. 1,
pp. 77–86, 1961.

[117] M. N. Durkee and H. S. Reall, “Perturbations of near-horizon geometries and instabilities
of Myers-Perry black holes,” Phys. Rev. D, vol. 83, p. 104044, 2011.

[118] E. Giorgi, “The Linear Stability of Reissner–Nordström Spacetime for Small Charge,” Ann.
PDE, vol. 6, no. 2, p. 8, 2020.

[119] K. Prabhu and R. M. Wald, “Canonical energy and Hertz potentials for perturbations of
Schwarzschild spacetime,” Class. Quantum Gravity, vol. 35, no. 23, p. 235004, 2018.

[120] V. Moncrief and N. Gudapati, “A Positive-Definite Energy Functional for the Axisymmetric
Perturbations of Kerr-Newman Black Holes,” 2021. arXiv:2105.12632.

[121] H. Reissner, “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen
Theorie,” Ann. Physik, vol. 355, no. 9, pp. 106–120, 1916.

[122] G. Nordström, “On the Energy of the Gravitation field in Einstein’s Theory,” Kon. Ned.
Akad. Weten. Proc. Ser. B, vol. 20, pp. 1238–1245, 1918.

[123] E. Giorgi, “The Linear Stability of Reissner–Nordström Spacetime: The Full Subextremal
Range |Q| < M ,” Commun. Math. Phys., vol. 380, no. 3, pp. 1313–1360, 2020.

[124] C. S. Morawetz, “Decay for solutions of the exterior problem for the wave equation,”
Commun. Pure Appl. Math., vol. 28, no. 2, pp. 229–264, 1975.

[125] C. Misner, K. Thorne, J. Wheeler, and D. Kaiser, Gravitation. Princeton University Press,
2017.

[126] E. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces.
Princeton lectures in analysis, Princeton University Press, 2005.



260 References

[127] G. Moschidis, “Superradiant instabilities for short-range non-negative potentials on Kerr
spacetimes and applications,” J. Funct. Anal., vol. 273, no. 8, pp. 2719–2813, 2017.

[128] S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III. Interaction
of the hole with gravitational and electromagnetic radiation,” Astrophys.J., vol. 193,
pp. 443–461, 1974.

[129] Starobinsky, A.A., Churilov, S.M., “Amplification of electromagnetic and gravitational
waves scattered by a rotating “black hole",” J. Exp. Theor. Phys., vol. 38(1), p. 3–11,
1974.

[130] E. G. Kalnins, J. Miller, W., and G. C. Williams, “Teukolsky-Starobinsky identities for
arbitrary spin,” J. of Math. Phys., vol. 30, no. 12, pp. 2925–2929, 1989.

[131] A. Ishibashi and H. Kodama, “Stability of Higher-Dimensional Schwarzschild Black Holes,”
Progress of Theoretical Physics, vol. 110, no. 5, pp. 901–919, 2003.

[132] M. Dafermos and G. Holzegel, “On the nonlinear stability of higher dimensional triaxial
Bianchi-IX black holes,” Adv. Th. Math. Phys., vol. 10, pp. 503–523, 2005.

[133] G. Holzegel, “Stability and decay rates for the five-dimensional Schwarzschild metric under
biaxial perturbations,” Adv. Th. Math. Phys., vol. 14, pp. 1245–1372, 2010.

[134] P.-K. Hung, J. Keller, and M.-T. Wang, “Linear Stability of Higher Dimensional
Schwarzschild Spacetimes: Decay of Master Quantities,” 2018. arXiv:1809.05144.

[135] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universi-
text, Springer New York, 2010.

[136] M. Reed and B. Simon, II: Fourier Analysis, Self-Adjointness. Methods of Modern Mathe-
matical Physics, Elsevier Science, 1975.

[137] R. Garver, “On the Nature of the Roots of a Quartic Equation,” Math. News Lett., vol. 7,
no. 4, p. 6, 1933.


	Table of contents
	Introduction
	Conventions
	1 The Gregory–Laflamme Instability of the Schwarzschild Black String Exterior
	1.1 Introduction
	1.1.1 Schwarzschild Black Holes, Black Strings and Black Branes
	1.1.2 Previous Works
	1.1.3 Statement of the Main Theorem: Theorem 1.1.2
	1.1.4 Difficulties and Main Ideas of the Proof
	1.1.5 The Canonical Energy Method
	1.1.6 Outlook

	1.2 Linear Perturbation Theory
	1.2.1 Linearised Vacuum Einstein Equation
	1.2.2 Pure Gauge Solutions in Linearised Theory

	1.3 Analysis in Spherical Gauge
	1.3.1 Consistency
	1.3.2 Reduction to ODE
	1.3.3 Excluding Pure Gauge Perturbations
	1.3.4 Admissible Boundary Conditions
	1.3.5 Reduction of Theorem 1.1.2 to Proposition 1.3.16

	1.4 The Variational Argument
	1.4.1 Schrödinger Reformulation
	1.4.2 Direct Variational Argument
	1.4.3 The Test Function and Existence of a Minimiser
	1.4.4 Proof of Proposition 1.3.16


	2 The Einstein Equation in Double Null Gauge
	2.1 Double Null Foliation and Canonical Coordinates
	2.2 Null Decomposition of Ricci Coefficients
	2.3 Null Decomposition of the Weyl Tensor
	2.4 Algebra Calculus of Su,v-Tensor Fields
	2.5 Computing in Double Null Coordinates
	2.6 Null Structure Equations
	2.7 The Bianchi Identities in Double Null Gauge
	2.7.1 The Bianchi Identities in Double Null Gauge in 4D

	2.8 The Double Null Foliation of the Schwn Exterior
	2.9 The Kerr Exterior in Double Null Canonical Coordinates
	2.9.1 The Algebraically Special Frame

	2.10 Linearisation in Double Null Gauge
	2.10.1 The Linearised Null Structure Equations Around Schwn
	2.10.2 The Linearised Bianchi Identities
	2.10.3 Residual Gauge Freedom in Double Null Gauge
	2.10.4 The Teukolsky and Regge–Wheeler Equations on Schwn
	2.10.5 Recovering the Newman–Penrose Teukolsky Equation


	3 Weak Stability of Schwarzschild from Canonical Energy
	3.1 Introduction
	3.1.1 Previous Works and Context
	3.1.2 Overview and Main Results: Theorems 3.1.7-3.1.13
	3.1.3 Outlook

	3.2 Canonical Energy
	3.2.1 Canonical Energy for the Wave Equation
	3.2.2 Canonical Energy for Maxwell's Equations
	3.2.3 Canonical Energy for the Linearised Einstein Vacuum Equation
	3.2.4 Higher Order Canonical Energies

	3.3 Canonical Energy in Double Null Gauge
	3.3.1 The Setup
	3.3.2 Preliminary Computations
	3.3.3 Proof of Theorem 3.1.7
	3.3.4 Proof of Theorem 3.1.9
	3.3.5 Proof of Theorem 3.1.10

	3.4 Restrictions and Normalisation of Initial Data
	3.4.1 Support on the =0,1 Spherical Harmonics
	3.4.2 The Linearised Schwarzschild and Kerr Solutions
	3.4.3 Asymptotic Flatness and Extendibility to Null Infinity
	3.4.4 Gauge Conditions
	3.4.5 Extendibility to the Future Event Horizon
	3.4.6 The Generality of Solutions
	3.4.7 The Limits of the Canonical Energy Fluxes for Restricted Data
	3.4.8 Boundary Conditions for Mode Solutions to the Teukolsky ODE

	3.5 Weak Stability Statements from the Canonical Energy
	3.5.1 Manipulating the Double Null Gauge
	3.5.2 Proof of the Weak Stability Statements
	3.5.3 Mode Stability from Canonical Energy


	4 An Alternative Energy for the Linearised Vacuum Einstein Equation
	4.1 Introduction
	4.2 The Current for the Linearised Vacuum Einstein Equation
	4.3 Relation to the Canonical Energy Current
	4.4 Application: A Conservation Law for Schwarzschild–Tangherlini
	4.4.1 Background on the Stability Problem for Schwn
	4.4.2 Preliminary Computations
	4.4.3 Proof of the Conservation Law


	Appendix A Appendix for Chapter 1
	A.1 Christoffel and Riemann Tensor Components for the Schw4R
	A.2 Singularities in Second Order ODE
	A.2.1 Regular Singularities
	A.2.2 Irregular Singularities

	A.3 Tranformation to Schrödinger Form
	A.4 Useful Results From Analysis
	A.4.1 Sobolev Embedding
	A.4.2 The Multiplication Operator is Compact from Hs to L2
	A.4.3 A Regularity Result

	A.5 A Result on Stability in Spherical Gauge

	Appendix B Appendix for Chapter 2
	B.1 Derivation of the Null Structure Equations
	B.2 The Bianchi Identities in Double Null Gauge

	Appendix C Appendix for Chapter 3 and 4
	C.1 Useful Identities
	C.2 Details for Proof Theorem 3.1.10

	References

