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Abstract

A Multivalent entity, which could represent a protein, nanoparticle, polymer, virus or a
lipid bilayer, has the ability to form multiple bonds to a substrate. Hence, a multivalent
interaction can be strong, even if the individual bonds are weak. However, much more
interestingly, multivalency enables the design of highly specific interactions using non-
specific individual bonds. We attempt to rationalise multivalent effects using simple
physical models complemented with numerical simulations. Based on physiochemical
characteristics of multivalent binders, we aim to predict the overall strength of interaction
and its sensitivity to variation in parameters.

We start with a simple model of homo-multivalency, where all bonds are equivalent.
Such systems can exhibit a super-selective response, which denotes the high sensitivity of
the strength of multivalent binding to the number of accessible binding sites on the target
surface. We present a theoretical analysis of systems of multivalent particles and show
that a certain degree of disorder is necessary for super-selective behaviour. Moreover,
we formulate a set of simple design rules for multivalent interactions that yield optimal
selectivity.

In the second stage, we expand the model to hetero-multivalency, accounting for
multiple distinct types of binding partners. We consider targeting of cells based on a
density profile of different membrane receptors types and demonstrate, that specificity
towards a desired receptor density profile can be obtained. Hence, cells can be reliably
targeted in the absence of specific markers. Crucially, we show that for optimal selectivity,
individual bonds must be weak.

Finally, we add information about specific geometry and positions of binding sites on
the multivalent entity. We focus on molecular imprinting; the process whereby a polymer
matrix is cross-linked in the presence of template molecules. The cross-linking process
endows the polymer matrix with a chemical ‘memory’, such that the target molecules
can subsequently be recognised by the matrix. We show how the binding multivalency
and the polymer material properties affect the efficiency and selectivity of molecular
imprinting.
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1

Introduction

Pluralitas non est ponenda sine necessitate ("plu-
rality should not be posited without necessity"),
Occam’s razor

– William of Ockham

This thesis presents theoretical and computational effort in modelling multivalent
interactions in supramolecular chemistry and biochemistry. We will not focus on any
particular system in a great detail, instead we try to uncover general behaviour and
emergent properties of multivalent interactions. We make extensive use of Occam’s razor;
trimming away the unnecessary and less important aspects to obtain a simple, clean
explanation of the observed phenomena. We also make sure to define the boundaries and
applicability of a simple model, and expand on it when deemed necessary.

A prototypical example of a valency limited interaction is a receptor-ligand pair or an
antibody-antigen interaction. These interactions are not fundamental - instead they are a
consequence of a multitude of weak supramolecular interactions between 2 entities, such
as Van der Waals, hydrogen bonding or screened electrostatics. Due to steric repulsion
only a single ligand can bind to a single receptor. The interactions have been well studied
due to their importance in molecular biology [1–5]. Further examples of valency limited
interactions include binding between peptides and nucleic acids [6, 7], or between nucleic
acids themselves [8, 9], in which they are known as base pairing interactions.

A supramolecular (e.g. ligand-receptor) valence limited bond is our basic building
block. We then explore what properties emerge when multiple such bonds act simultane-
ously. We assume that interaction strength of a single bond is given; either determined
experimentally from binary association of moieties in solution, or calculated from detailed
atomistic simulations. In our meso-scopic modelling we neglect all atomistic details
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1.1 Background: Ultra-sensitive response

and only consider the relevant information of the ligand-receptor bond: its binding
strength and the valence-limited nature of the bond. We then explore the behaviour of
multivalent interactions, i.e. how does a simultaneous action of many valence-limited
bonds differ from an action of an individual bond. What kind of properties or features
emerge when a multitude of interactions act in parallel. Some examples of multivalent
systems on a nanoscale include: multivalent nanoparticles [10, 11], polymers [12–16],
nested dendrimers [17], or cells and viruses [2, 18–21].

The thesis material is largely self contained and our aim is to understand universal
behaviour of multivalent systems, for example, the super-selective response to a variation
of system parameters. By comparing our model predictions to experimental and simula-
tion data we show that prototypical simple models can have a surprisingly wide range of
applicability: from multivalent particles to polymers and DNA-peptide complexes.

1.1 Background: Ultra-sensitive response

Many processes in biology depend ultra sensitively on variations in one or more of
the parameters that control the process. Such ultra-sensitivity manifests itself as an
almost switch-like, sigmoidal change in the ‘output’ when the control parameter crosses
a threshold value. Understanding such switch-like behaviour is obviously important to
understand many regulatory processes in living systems, but such understanding will
also help us design synthetic systems that combine weak supramolecular interactions
with high selectivity.

The best known example of ultra sensitivity is attributed to a A. V. Hill, who, in
the beginning of the twentieth century, studied the binding of oxygen to haemoglobin.
He found the relation between bound oxygen and partial pressure to be sigmoidal [22].
Today this phenomena is explained in terms of allosteric cooperativity whereby the 4
binding sites on haemoglobin do not act independently but are "cooperative", i.e. binding
of the first oxygen molecule increases the probability that the second oxygen molecule
will bind. Hence, haemoglobin is likely to be either fully loaded with oxygen or empty,
which makes haemoglobin an efficient transporter of oxygen between lungs and peripheral
tissues. Other examples of ultra sensitivity include the switch-like response of bacterial
motors [23], or the switch-like behaviour in gene regulation due to positive feedback loops
in nucleosome modification [24]. For more information on this broad topic, the reader is
referred to a review by Ferrell [25–27] and references therein.
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1.1 Background: Ultra-sensitive response

Ultra sensitive response is usually characterised by a so-called Hill curve:

Output = Inputn

Kn + Inputn , (1.1)

where the Hill coefficient n quantifies the cooperativity of the process: the higher the
Hill coefficient, the more sensitive the response.

Due to cooperativity, building blocks that, individually, have limited selectivity can
form units that interact selectively. For example, DNA base pairing is highly specific, even
though underlying interactions (hydrogen bonding and stacking) are not. Multivalent
(or polyvalent) interactions can also lead to an ultra-sensitive response, for example,
aggregation of multivalent DNA coated colloids depends sensitively on temperature [11].
Moreover, ligand-receptor or antibody-antigen interactions, are very sensitive to tem-
perature, but also to ion concentration and pH. Internal protein interactions are also
multivalent, protein folding and unfolding depends critically on temperature and other
external conditions. The functioning of the biochemical machinery in cells relies (mostly)
on multivalent supra-molecular interactions. These interactions are very sensitive to
external conditions which helps explain reason why living matter (cells, tissues) tends to
be very sensitive to temperature, while ‘formerly living’ matter (say, a piece of wood) is
not.

Imagine two multivalent entities at a fixed distance that are connected by a number
of bonds (say k). The two entities can dissociate only when all k bonds are broken. We
denote the probability that an individual bond is broken by punbound

1 and the probability
that all k bonds are broken by punbound

k . If different bonds do not influence each other,
the probability of unbinding is

punbound
k ∼

(
punbound

1

)k
. (1.2)

Note that for large ‘valencies’ k, the relation between punbound
1 and punbound

k is highly
non-linear. In fact, the expression for the ratio between probability punbound

k /pbound
k has a

form reminiscent of the Hill equation:

punbound
k

pbound
k

∼

(
punbound

1

)k

1 − (punbound
1 )k , (1.3)

where the exponent k plays a role similar to that of the Hill coefficient (1.1). The
probability of a single bond spontaneously breaking punbound

1 will depend not only on
control parameters such as bond strength, temperature, pH of the solution etc., but also
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1.2 Cell targeting

on the number of possible bonding arrangements. Clearly, the unbinding probability (1.2)
tends to be very sensitive to any parameter that influences punbound

1 . This example
illustrates the physical origins of ultra-sensitive response in multivalent interactions.
We shall see below that competition between different bonds modifies the response but
retains ultra-sensitivity.

1.2 Cell targeting

The fact that most cells can be recognised from the outside is advantageous for the
normal functioning of an organism, but it can be a disadvantage when specific cells are
being targeted by pathogens. Cells betray their identity (and state of health) by the
composition profile of molecules that are exposed on their outer surface. In what follows,
we will call these molecules ‘receptors’, irrespective of whether they are receptors in
the biological sense (they are receptors for the ligands that will be used to recognise
them). It would clearly be advantageous if diseased cells could be selectively targeted
by a drug-delivery vehicle on the basis of its receptor profile. Here, the crucial word
is ‘selective’: we wish to target only those cells that have the correct receptor profile -
binding of drug-delivery vehicles to other cells leads to undesired side-effects.

Targeted drug delivery is based on identifying a specific marker (peptide, sugar) that
is unique to the targeted group of cells. Binding to a single marker type can be effective
if this molecule is presented in sufficient quantities on the outer surface of the targeted
cell. However, in many cases of practical importance (e.g. many types of cancer), the
markers that are known are not unique to cancer cells, but just over-expressed. In the
past 20 years many nanoparticle-based targeting methods have been developed. However,
thus far, effective tumour drug delivery is hampered by the lack of reliable, unique
markers [28, 29]. As we will show, the use of multivalent drugs drugs greatly increases
the selectivity such that cells can be reliably targeted even when the cognate receptors
are only slightly over-expressed on a targeted cell [10, 18]. Multivalent glyco-polymers
have been used as selective probes for protein-carbohydrate interactions in a biochemical
setting [12–14]. More recently, super-selective targeting was demonstrated in a synthetic
system based on host-guest chemistry [15, 16].

The use of multivalent particles coated with a single type of ligand is very effective,
provided that a cognate receptor has been identified that is sufficiently over-expressed
in targeted cells. But often the situation may not be that clear cut due to variation in
expression level of receptors within a population of cells. In general, it is essential to
exploit all the information that we have about the concentration of various receptors on
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1.3 Molecular imprinting

the cell surface and then design guest particles that target this specific receptor profile.
In order to recognise the simultaneous presence of a mixture of different receptors on
the host surface, we need to use a ‘guest’ particle (e.g. drug-delivery vehicle) that is
coated with a mixture of cognate ligands. In its simplest form (the binding of dimeric
bi-specific antibodies as compared to monomeric antibodies), this problem has been
studied theoretically [30] and experimentally [31]. The in-vitro experiments showed
that the use of bi-specific antibodies lead to a higher specificity than can be achieved
with their standard, monomeric counterparts. However, antibodies are not very good
at distinguishing between surfaces that have different receptor concentrations. Such
selectivity can be achieved by exploiting multi-valency.

1.3 Molecular imprinting

The term ‘Molecularly Imprinted Polymers’ (MIPs) is used to denote polymer matrices
that have been “imprinted”, i.e. cross-linked in the presence of a template molecule,
thereby acquiring selective affinity towards its template. MIPs are usually made by free-
radical co-polymerisation of ligands and cross-linkers in the presence of template molecules.
The molecule-matrix interaction may exploit covalent binding, ionic interactions [32],
hydrogen bonding [33], π − π stacking interactions [34], hydrophobic interactions [35],
and metal-ion chelation [36]. In 1930 Polyakov introduced this technique [37] to imprint
silica matrices with benzene. However, the technique has only become widely used in
recent decades [38–41]. The use of MIPs is related to the fact that they can be designed
for highly selective recognition. Moreover, they combine thermal and chemical stability
with ease of preparation, and hence low production costs.

MIPs have been used in applications such as solid-phase extraction [42], chiral
separation [43], and catalysis [44]. They can act as molecular sensors [39, 41, 45], and
mimic antibodies or enzymes [39]. They can selectively bind drugs [46–48], proteins [49],
or even whole bacteria [50, 51]. Figure 4.1 shows a schematic representation of the
imprinting and subsequent recognition process. The efficiency of the molecular recognition
process depends on a number of parameters: 1) the initial ligand concentration c, 2) the
template-ligand binding affinity KD, and 3) the stiffness of the polymer matrix kh.

Clearly, it is important to maximize the selectivity of MIPs, but in experiments MIPs
are often optimized by trial and error. In fact, the theoretical picture is rather fragmented
as existing theoretical models for MIPs do not consider the imprinting process as a whole,
but rather tend to focus on individual steps in their mode of action [52–58]. Moreover,
the atomistic and coarse-grained simulations of molecular imprinting that have been
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1.4 Note on nomenclature and terminology

reported [59–64] focused mostly on specific MIPs and did not explore generic trends that
would allow us to arrive at general design principles.

We will apply our multivalent theoretical framework to study molecular imprinting
and obtain general design rules for optimal imprinting protocols.

1.4 Note on nomenclature and terminology

We make liberal use of the terms “ligand” and “receptor” with which we shall denote
individual binding partners. In our language “receptors” will be found on the substrate
surface whilst individual “ligands” are attached to the multivalent entity (say, a nano-
particle or a polymer) that binds to the substrate, shown on Figure 1.1. We use the term
“multivalent entity” to denote any moiety that is able to form multiple bonds. The term
’binding site’ always denotes an individual monovalent interaction site, equivalent to a
single “ligand” or “receptor”.

𝐾"#$𝐾"
𝑞=𝑒'(/*+,𝑒'-/*+,

Single bond
Total multivalent 
interaction

ligands

receptors

Fig. 1.1 Cartoon representing a multivalent interaction between a nanoparticle with
grafted polymeric arms and surface attached receptors. Individual ligand-receptor bond
strength is denoted by the free energy f , or equivalently the affinity constant KA. Most of
the work in this thesis focuses on calculating the total multivalent interaction (the binding
free energy F , or equivalently the avidity association constant Kav

A ) via evaluation of the
bound partition function qb.

The binding strength of individual ligand-receptor bonds is characterised by the
equilibrium affinity constant KA or the dissociation constant KD = 1/KA. The equilib-
rium constant can be equivalently represented by the dimerisation free energy ∆G =
kBT log(KD/ρ0) with kB the Boltzmann constant, T the absolute temperature and
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1.4 Note on nomenclature and terminology

ρ0 = 1M is the standard concentration. We assume these are known, or can be in
principle calculated experimentally, and serve as an input to our modelling. We shall
also use the internal equilibrium constant Kintra to characterise the strength (or the
probability) of forming a bond within a multivalent complex. Kintra = KAEM includes
the monomeric affinity KA but also the so called “effective molarity” EM which was
defined as an empirical quantity characterising the efficacy of multivalent interactions.
EM can be calculated theoretically as the ratio of the configuration partition func-
tions of the bound/unbound states. Equivalently, we can use the binding free energy
f = −kBT log(Kintra), where f includes ∆G but also configurational terms related to a
bond formation within a multivalent complex. All of these quantities can (and will) be
used to characterise individual bonds. Additionally, we shall use ϵ to denote the binding
strength when using coarse-grained models with Monte Carlo simulations.

On the other hand, the avidity equilibrium constant Kav
A , or the overall binding free

energy F = −kBT log(Kav
A ρ0) measures the strength of the overall multivalent interaction,

say the interaction between a nanoparticle and a substrate shown in Figure 1.1. Avidity
can be seen as the accumulated strength of individual affinities. We shall use nR and
k to denote the number of receptors and ligands, respectively, that can simultaneously
participate in the multivalent interaction. The work in this thesis primarily attempts to
calculate the avidity Kav

A of a multivalent interaction using the knowledge of affinities
KA and the physical properties of the multivalent binders.

We use chemical equilibrium units and statistical mechanics units interchangeably.
The modelling and our results can be presented with either notation. However, in the
later chapters we shall primarily use statistical mechanics notation as we find its use
clearer and resulting expressions more elegant.

The main part of this work is divided into three chapters. On every stage we formulate
simple design rules of how to optimise selectivity and specificity of multivalent interactions.
In what follows, we shall first focus on the ultra sensitivity of multivalent interaction
to the density of “receptors” on a substrate surface. We show how the description of
simple chemical equilibria and Langmuir adsorption can be extended to multivalent
interactions. In particular, we will derive expressions that show how the binding strength
of a multivalent entity (say a ligand-decorated nanoparticle or a multivalent polymer)
changes sharply with the concentration of receptors on the substrate surface. We will
also present numerical simulations that validate the simple analytical expressions.

Further on we expand our model to multiple ligand/receptor types and consider
targeting of cells based on a density profile of different receptors types. We demonstrate
that using weak multivalent interactions, the specificity towards a desired receptor density
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1.4 Note on nomenclature and terminology

profile can be obtained. Hence, we show how cells can be targeted in the absence of
specific biological markers.

Finally, we focus on rigid multivalency in the context of molecular imprinting, where
not only different types of binders, but also their specific location on a multivalent entity,
play a role. We show how the binding multivalency and the polymer material properties
affect the efficiency and selectivity of molecular imprinting.

Tedious mathematical derivations and evaluation of the integrals has been moved to
the appendix to make the main part of the thesis more balanced and readable.
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2

Super selectivity

One of the principle objects of theoretical research in
any department of knowledge is to find the point of view
from which the subject appears in its greatest simplicity.

– J.W. Gibbs

2.1 An emergent property of multivalency

We start our focus on super-selectivity, which denotes the high sensitivity of the strength
of multivalent binding to the number of accessible binding sites on the target surface,
shown schematically on Figure 2.1. For example, the docking of a multivalent particle
to a cell-surface can become very sensitive (super-selective) to the concentration of the
receptors to which the multiple ligands can bind.

Selectivity

Fig. 2.1 Selectivity denotes the ability of multivalent entities to distinguish between
substrates depending on the surface density of binding sites.
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2.1 An emergent property of multivalency

We consider a prototypical system of multivalent particles in solution that can adsorb
to a receptor-decorated surface. For simplicity, we assume that the surface is flat and
much larger than the multivalent particles. Furthermore we assume that these particles
are larger than the surface receptors such that each particle can be in range of many
receptors sites simultaneously. Adsorption of particles is governed by the well-known
Langmuir isotherm which states that the fraction of the surface occupied by particles is

θ = ρKav
A

1 + ρKav
A

, (2.1)

with ρ the molar concentration of particles in solution 1, Kav
A is the equilibrium avidity

association constant of particles adsorbing to a surface. Note that Kav
A is different from

the affinity equilibrium constant KA which specifies chemical equilibria of individual
ligand-receptor binding. Avidity (functional affinity) is the accumulated strength of
multiple affinities [65].

We aim to understand how the overall avidity constant Kav
A depends on the properties

of the system, i.e. individual bond affinities KA, the ligand valency k and number of
receptors nR. The avidity constant includes all possible bound states, and is written as a
sum over all possible bonds

Kav
A = Ω1KA + Ω2KAKintra + Ω3KAKintra

2 + ... (2.2)

assuming all bonds are equivalent and independent. Later (Chapter 3) we will generalise
this expression to different bond types. The first term on the right hand side takes into
account all states with a single formed bond with KA the standard monomeric affinity
constant 2. The second term on the right represents all doubly bound states where Kintra

is a constant specifying the internal equilibrium between singly and doubly bonded states,
the same reasoning applies to triply and other multivalent bonded states. The nature
of Kintra is further elucidated in Section 2.7 on effective molarity. To obtain the above
expression we have assumed that individual bonds are equivalent and form independently,
therefore, Kintra is a constant, i.e. we ignore (allosteric) cooperative effects where Kintra

depends on the number of formed bonds. We do this to clearly distinguish multivalent
effects (the subject of this chapter) from cooperative effects [66], we note that some
authors [67] use the term “chelate cooperativity” to denote multivalent effects.

1For non-ideal solutions the density ρ in the Langmuir isotherm (2.1) should be replaced by the
fugacity.

2KA is the association equilibrium constant between a monovalent particle (a single ligand attached
to a particle) and a single receptor, we assume it can be determined experimentally
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2.1 An emergent property of multivalency

Ωλ is the degeneracy pre-factor, it measures the number of ways in which λ bonds can
be formed between two multivalent entities, see Figure 2.2 for representative cartoons.
Degeneracy Ω is often labelled as a “statistical pre-factor” which denotes something
that should be included for rigour but is otherwise not essential. However, as we will
show, it is precisely this degeneracy that gives rise to super-selectivity. The focus of the
majority of theoretical papers is on the calculation of the internal equilibrium constant
Kintra [65, 67–70]. Here, instead, we focus on the degeneracy Ω. We will simply assume
that Kintra is (or can be) known.

!"!"#"
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Fig. 2.2 Entropic origin of super selectivity. The pictures show the binding of mono-valent
(A) and multi-valent (B) ligands (represented as a blue bar with attached flexible ligands).
Receptors are shown as red spheres tethered to the bottom surface. The left panels show
a low receptor density (nR = 3) and the panels on the right show a receptor density
that is twice as large (nR = 6). In the mono-valent case the number of distinct ways
(Ω) to link ligands and receptors grows linearly with the number of receptors nR, while
multivalent ligands show a highly non-linear response: changing nR from 3 to 6 increases
Ω by a factor of 20. In general, the number of binding combinations (degeneracy) Ω is
calculated using (2.3).

The degeneracy Ω depends on the spatial arrangement of both ligands and receptors.
However, it is instructive to consider first the binding of flexible ligands, where all
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2.1 An emergent property of multivalency

k ligands on a particle can bind to nR receptors (Figure 2.2B). The number of ways
(degeneracy) to form λ bonds is

Ωλ =
(

nR

λ

)(
k

λ

)
λ! = nR! k!

(nR − λ)! (k − λ)! λ! (2.3)

because we need to choose λ ligands out of k and choose λ receptors out of nR, then
there are λ! ways of binding the chosen ligands/receptors together. The degeneracy (2.3)
becomes a very steep and non-linear function of k and nR. This form was first considered
by Kitov and Bundle [71] and has been applied, among others, to nanoparticle targeting
of cells [10] and modelling the adhesion of influenza virus [18].

The avidity constant (2.2), using degeneracy (2.3), can be well approximated by a
binomial expansion series [10] when we can approximate nR!

nR−λ
≈ nλ

R for all significant
terms in (2.2). This condition is satisfied when the fraction of bound receptors is low
λ

nR
≪ 1, which arrises if the number of receptors is greater than the number of available

ligands nR ≫ k or individual bonds are sufficiently weak Kintra ≪ 1/k 3. The binomial
expansion is summed to yield a simple form:

Kav
A ≈ KA

Kintra

k∑
λ=1

(
k

λ

)
(nRKintra)λ = KA

Kintra

[
(1 + nRKintra)k − 1

]
, (2.4)

where, as before, KA is the monomeric single-bond affinity constant, Kintra the internal
association constant, and nR and k are the number of receptors and ligands, respectively.
For our purpose it is important to note that for multivalent binding (k > 1), Kav

A is a
steep, non-linear function of nR (see Figure 2.3).

In a practical system the bond strength Kintra will not be a constant because the
polymeric ligand arm stretching penalty depends on the exact position of the receptor.
Bonds are harder (impossible) to form for receptors far away from the particle. However,
to make the problem analytically tractable we will, at this stage, approximate the distance
dependant stretching with a step function: within a lattice site ligands can bind the any
receptor nR with equilibrium constant Kintra, but cannot bind to receptors outside of the
site, see Figure 2.4.

Eq. (2.4) could have also been obtained directly by reasoning that for non-saturated
receptors (fraction of bound receptors is low), competition for the same receptor can
be ignored. Each ligand can independently bind to any of the nR receptors (weight

3The largest term in (2.2) is obtained by Ω(λ)Kintra
λ ≈ Ω(λ + 1)Kintra

λ+1, which results in Kintra ≈
λ

(k−λ)(nR−λ) . If the bonds are sufficiently weak: Kintra < 1/k, the largest term will always arise when
the fraction of occupied receptors is low λ

nR
< 0.5.
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Fig. 2.3 Adsorption profile of multi-valent particles computed using Eqs. (2.1, 2.4).
Monovalent adsorption (black circles) k = 1 yields the familiar Langmuir isotherm. In
contrast, multivalent particles display a steep, sigmoidal response. In the case shown
we have chosen the dimensionless activity in solution to be z ≡ ρ KA

Kintra
= 0.001, the

binding affinity of individual bonds decrease as the valency increases from mono-valent
to 10-valent: log(Kintra) = −βf = 5, 1.5, -1, -2, such that the overall avidity Kav

A at 50%
bound fraction (θ = 0.5) is kept constant for all valencies.
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2.1 An emergent property of multivalency

lattice sites

receptors
surface

𝐾"
𝐾#$%&'

𝐾#$%&'

site effective 
volume: veff

ligands

Multivalent entity 
in solution

Fig. 2.4 Cartoon showing the multivalent adsorption model. Multivalent entities (particles)
adsorb to lattice sites, we assume that within each site the ligands can independently
bind to surface attached receptors, but cannot reach any receptor from neighbouring
sites. The equilibrium constant for an unbound particle to adsorb from the solution to
one of the sites is KA

Kintra
= veff , which is related to the effective volume of the site veff .

Once the particle is adsorbed within the site, the ligands can independently form bonds
with the surface attached receptors with equilibrium constant Kintra.

nRKintra) within the site, alternatively the ligand can be unbound (weight 1). Hence,
for systems with a low fraction of bound receptors, the factor (1 + nRKintra)k accounts
(approximately) for all possible states. Furthermore, we subtract 1 because we use the
convention that at least a single bond needs to be formed for the multivalent particle
to be considered bound. Finally, to obtain the avidity constant Kav

A , we multiply our
expression the equilibrium constant of adsorbing a non-bound particle to the lattice site:
the ratio KA

Kintra
, which also returns the correct monomeric behaviour (for monomeric

binding (k = 1) we must have Kav
A = nRKA).

We note that in an idealised system, the ratio KA

Kintra
= veff is related to the effective

volume veff that an unbound particle must enter in order to be able to start forming
bonds, see Figure 2.4. The form of equation (2.4) suggest that we can view the multivalent
particle adsorption as a 2 step process. First, the particle adsorbs from the solution to
the surface and comes into a position to start forming bonds, the equilibrium constant of
this process is given by the ratio KA

Kintra
. Once the particle is in this position, all of the k

ligands can independently form bonds with surface receptors.
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2.1 An emergent property of multivalency

In the monovalent case (k = 1) the avidity constant (2.4) reduces to Kav
A = nRKA

and the standard Langmuir isotherm is obtained. Furthermore, expanding (2.4) in a
binomial series and using a maximum term approximation we can insert the maximum
term in (2.1) and obtain the phenomenological Hill equation (1.1). In the case of very
strong individual bonds (nRKintra ≫ 1) virtually all k bonds are formed and the avidity
becomes Kav

A ≈ nk
RKAKintra

k−1 4.
We started by using equilibrium constants as our quantities of choice. However, later

we shall switch to statistical mechanics notation using partition function and free energies.
We stress that so far both languages are equivalent and interchangeable. Here we provide
a translation cheat-sheet between the chemical and statistical mechanical language;

• Monomeric Gibbs hybridisation free energy: e−β∆G = KAρ0

• Binding free energy per single bond once the first bond has been formed: e−βf =
Kintra

• Bound state partition function: qb = Kav
A

Kintra

KA
, we note that Kintra

KA
= veff can be

represented with a configurational “volume” that a multivalent entity must enter
from a solution in order to start forming bonds, see Figure 2.4

• Dimensionless activity of multivalent ligands in solution: z = ρveff = ρ KA

Kintra

with β ≡ 1/kBT the inverse temperature. Using these identifications, we can rewrite the
Langmuir isotherm (2.1)

θ = zqb

1 + zqb

, (2.5)

where the bound partition function is given by

qb =
(
1 + nRe−βf

)k
− 1 . (2.6)

This dimensionless notation was used in Refs. [10, 15, 16, 72] and is a more convenient
language for theoretical modelling. From now on we shall primarily use this notation.

We have shown how combinatorial entropy (2.3) (also called “avidity entropy” [65])
gives rise to sharp switching behaviour upon a change in receptor concentration nR

(Figure 2.3). Next, we introduce a measure of the sensitivity of the binding of multi-
valent particles to the surface concentration of receptors:

α = d log θ

d log nR

. (2.7)

4this holds for nR ≫ k when (2.4) is applicable even for strong bonds, in general (using (2.2)) the
expression would be Kav

A = nR!
(nR−k)! KAKintra

k−1
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Fig. 2.5 Selectivity. A) shows the log-log plot of Figure 2.3, and B) shows its slope,
i.e. the selectivity α = d log θ

d log nR
. We observe that selectivity is typically less than one

for mono-valent ligands indicating at most linear response. Multi-valent ligands, on
the other hand, exhibit a region with values of α significantly greater than one, thus
demonstrating that the number of adsorbed ligands increases faster than linearly with
the receptor concentration: in this regime, the system is super-selective.

α is the slope of the adsorption profile in a log-log plot (see Figure 2.5). For mono-valent
binding the selectivity α is never larger than one, while in the multi-valent case the
selectivity can reach values greater than one, indicating a supra-linear response. Note that
for low surface coverage (ρKav

A ≪ 1) the selectivity α is equivalent to the effective Hill-
coefficient (1.1). However, because we consider all terms (all possible number of bonds)
in calculating avidity (2.2), α is not a constant. At very low receptor concentrations
the avidity shows a linear dependence on nR, and α ≈ 1 5. Selectivity then grows with
increasing receptor concentration nR until reaching a peak just before the saturation of
the surface (ρKav

A ≈ 1). We refer to the region with α > 1 as the ‘super-selective’ region.
In this region, a small change in the receptor density nR causes a faster-than-linear change
in adsorption θ.

2.2 Multivalent polymer adsorption

To validate the model for super-elective adsorption described above, we now compare its
predictions with experimental data on polymer adsorption. Multivalent glyco-polymers
have been used as selective probes for protein-carbohydrate interactions in a biochemical

5At sufficiently low receptor concentration, when nRkKintra ≪ 1 holds, we expand (2.4) to first order
and obtain Kav

A ≈ nRkKA.
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site effective 
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surface surface
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a
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Fig. 2.6 Cartoon showing the multivalent polymer model. A) Flexible multivalent
polymer close to the receptor decorated surface is modelled as B) uncorrelated ligands
within a lattice site with volume veff = a3NA and a the linear lattice size. The ligands
can move and bind to receptors independently within the lattice site, but cannot escape
the site individually. The model is equivalent to the general multivalent adsorption model
(Figure 2.4). However, in the case of flexible polymers we can also analytically estimate
the effective volume veff = a3NA = 4π

3NA
R3

g, with Rg the polymer radius of gyration in
solution.

setting [12–14]. More recently, super-selective targeting was demonstrated in a synthetic
system based on host-guest chemistry [15, 16]. We describe multi-valency effects in the
case of polymers functionalised with many ligands.

We consider a flexible polymer with a contour length much larger than the persistence
length. Ligands are randomly attached along the polymer chain (see Figure 2.6. Similar
to the nano-particles case above, a reasonable first assumption is that, due to polymer-
chain flexibility, all k ligands on a polymer can bind to any of the nR receptors within
a domain on the surface with lateral dimensions comparable to those of the polymer.
For simplicity, we describe the surface as a square lattice. The cells of the lattice have
linear dimensions similar to the radius of gyration Rg of the polymer. As in the case of
soft multivalent particles, any ligand on the polymer can bind to any receptor in one
(and only one) lattice cell. The number of receptors that a polymer can see is then
nR = ΓNAa2, where Γ denotes the molar surface density of receptors.

The calculation of the bound partition function (or the avidity constant) is the same
for multivalent polymers or particles (2.4). In the case of flexible polymers we can also
estimate the intra association constant as Kintra = KA/veff , with the effective volume
veff ≈ NAa3, the lattice size a = Rg(4π/3)1/3 and Rg the polymer radius of gyration in
solution. This model (and the choice of effective concentration) effectively describes a
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2.2 Multivalent polymer adsorption

multivalent polymer as a “cloud” of ideal gas ligands, i.e. ligands are uncorrelated (can
bind independently) but unbound ligands are confined to the lattice site with volume
veff , see Figure 2.6. The model is expected to offer a faithful description of the real
system if the mean distance between ligands is larger than the Kuhn segment length such
that even consecutive ligands along the polymer chain can be treated as uncorrelated.

Using the above definitions, we find the following expression for the avidity constant
of a multivalent polymer:

Kav
A = a3NA

(1 + ΓKA

a
e−βUpoly

)k

− 1
 , (2.8)

where we have added a correction term Upoly which takes into account the deviation of the
real system to our “cloud of ideal ligands” approximation, Figure 2.6. This approximation
neglects the polymeric degrees of freedom and, consequently, any spatial correlations
between ligands. Moreover, we ignore the fact that the binding free energy of ligands
to receptors is changed by the coupling of the ligands to the polymer backbone. These
approximations will results in an error of order kBT and we expect Upoly to be O(kBT ).

The analytical model (2.8) captures the scaling relations and design guidelines of mul-
tivalent polymer adsorption. However, to obtain the result on Figure 2.7 interpenetration
of polymer chains must also considered. To capture the effect of polymer interpenetration
the Langmuir expression needs to be extended to include the possible many polymer
chains per lattice site. We will switch to the statistical mechanics notation now. The
effective bond strength can be obtained using

f = −kBT ln(Kintra) = kBT ln
(

a3NA

KA

)
+ Upoly . (2.9)

We focus on the polymer adsorption dependence on the surface receptor density,
therefore we write a grand-canonical partition function Ξ(nR) for a single surface lattice
site as

Ξ(nR) = 1 +
∞∑

i=1
ziqi (2.10)

where i is the number of polymers that are adsorbed at the site, z is the activity of
the polymers in solution and qi is the single site bound state partition function with i

polymers occupying the site.
The bound state partition function qi counts all possible combinations of ligand-

receptor bonds. For a single bound polymer the partition function reduces to the familiar
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Fig. 2.7 Multivalent polymer adsorption. A) Schematic representation of a flexible
polymer with attached ligands (blue) that can bind to surface receptors (red blobs). B)
Experimental adsorption profiles (points) for hyaluronic acid polymers functionalised
with β-cyclodextrin hosts (HA-β-CD) binding to surface attached adamantane (affinity
KD = 1/KA = 10µM) or ferrocene (KD = 200µM) guests, data obtained from Dubacheva
et. al. [15, 16]. As can be seen, the theoretical adsorption profiles (dashed lines) match
the experimental data well for all valencies (k), affinities (KD) and polymer concentration
studies. In the Figure, “lc” next to orange data points denotes lower concentration of
polymers in solution. The value Upoly = 4.6kBT was fitted globally. The theoretical
curves overshoot at high surface polymer density because the model of polymer-polymer
overlapping repulsion, Eq. (2.12), fails at high polymer densities.
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2.2 Multivalent polymer adsorption

expression (2.3)

q1 = e−βU1
min (k,nR)∑

λ=1
e−λβf

(
nR

λ

)(
k

λ

)
λ! (2.11)

where λ is the number of formed bonds, βf is the free energy gain by forming a single
bond and U1 is the free energy of polymer confinement to the lattice site explained below.
The combinatorial factor counts all possible distinct ways of binding together k ligands
with nR receptors using λ bonds. The maximum number of bonds λmax = min (k, nR) is
limited by either the number of ligands or receptors, whichever is lower.

We have also added a free energy cost of polymer interpenetration and steric repulsion
from the surface, for i polymers in the lattice site the cost is

Ui = AdGi9/4 + Ulati. (2.12)

where the first term is the des-Cloiseaux law [73] approximation for the free energy
of overlapping self-avoiding walk polymers in the semi-dilute regime, AdG is a fitting
constant of order unity, on Figure 2.7 the constant was fitted to AdG = 0.35. This law
fails for large number of polymers, i ≫ 1, which is the reason why theoretical curves on
Figure 2.7 overshoot in the saturated regime at high polymer density. This high polymer
density regime is not super-selective, i.e. the surface is saturated, therefore, we did not
focus on obtaining a correct theoretical description for the saturated regime.

The second term in (2.12), Ulat, captures the the mean field polymer-surface repulsion.
The potential of mean force between a self-avoiding-walk polymer and an impenetrable
wall is very well approximated up to 10kBT by an exponential function [74, 75]

Vps(r) = Ae−B(r/Rg−C), (2.13)

with the constants A = 3.2kBT , B = 4.17 and C = 0.5, r is the distance between the
surface and polymer centre-of-mass and Rg the polymer radius of gyration. In our theory
we divide the surface into cubic sites with size a = Rg(4π/3)1/3. We now calculate the
average potential of mean force acting on a polymer when the polymer is within the
lattice site

e−βUlat = ⟨e−βVps(r)⟩ = 1
a

∫ a

0
exp(−βVps(r))dr = 0.436 (2.14)

and therefore Ulat = −kBT log(0.436) = 0.83kBT . In other words, Ulat represents a
mean-field entropic penalty for the polymer to be located in a lattice site at the surface.

When 2 polymers occupy the same lattice site the first can bind to any of the nR

receptors but the second polymer has less receptors available to it. We write the 2
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2.2 Multivalent polymer adsorption

polymer bound-state partition function as

q2 = e−βU2

2!

λmax∑
λ1=1

e−λ1βf k!nR!
(k − λ1)!λ1!(nR − λ1)!

λ′
max∑

λ2=1
e−λ2βf k!(nR − λ1)!

(k − λ2)!(λ2)!(nR − λ1 − λ2)!
,

(2.15)
where λ1 and λ2 count the number of bonds formed with the first and second polymer
respectively and λ′

max = min (nR − λ1, k) is the maximum number of bonds available
to the second polymer. The 2 polymer overlap term βU2 takes into account the free
energy penalty due to polymer excluded volume and the permutation factor 2! accounts
for the indistinguishability of the 2 polymer chains. The permutation factor must be
included (even if the polymers are not indistinguishable per se) because we assume
a grand canonical description for the unbound polymers in solution, i.e. a chemical
potential, which implicitly includes the permutation factor in the unbound partition
function.

We notice that with 2 polymers we have effectively 2k ligands in a lattice site so the
partition function can be rewritten as

q2 = e−βU2

2!

min (2k,nR)∑
λ=1

e−λβf (2k)!nR!
(2k − λ)!λ!(nR − λ)! − 2

min (k,nR)∑
λ=1

e−λβf k!nR!
(k − λ)!λ!(nR − λ)!

 ,

(2.16)
where the right hand sum has to be subtracted because each of the polymers needs at
least a single bond present to be considered bound. The equality of Eqs. (2.15, 2.16) can
be proven by applying the Chu-Vandermonte identity [76]. Inserting (2.11) into (2.16)
we find

q2 = e−βU2

2!

min (2k,nR)∑
λ=1

e−λβf (2k)!nR!
(2k − λ)!λ!(nR − λ)! − 2q1

 . (2.17)

For the range of parameters studied the number of surface receptors per site nR

will always be much larger then the number of available ligands ik. In limit nR ≫ ik

Eq. (2.11) can be simplified (similarly to (2.4)) to

q1 ≈ e−βU1
k∑

λ=1

(
nRe−βf

)λ (k)!
(ik − λ)!λ! = e−βU1

[(
1 + nRe−βf

)k
− 1

]
. (2.18)

Following the same procedure also (2.17) can be simplified to

q2 ≈ e−βU2

2!

[ 2k∑
λ=1

(
nRe−βf

)λ (2k)!
(2k − λ)!λ! − 2q1

]
= e−βU2

2!

[(
1 + nRe−βf

)k
− 1

]2
. (2.19)
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Extending to any number of polymer we find a simple analytical expression for the bound
partition function of i polymers

qi ≈ e−βUi

i!

[(
1 + nRe−βf

)k
− 1

]i

(2.20)

providing a practical route for the calculation of multivalent polymer interaction. The
expression is valid as long as the fraction of bound receptors remains low, i.e. analogous
to Eq. (2.4) when ik ≪ nR or Kintra ≪ 1/ik. This condition was satisfied for all results on
Figure 2.7. From experimental data, the surface saturated when the number of polymers
per site reached about imax ≈ 4.

We now have the necessary tools to calculate the grand partition function for a single
lattice site (2.10) from which the average number of bound polymers θ(nR) can be easily
calculated as

θ(nR) = ∂ ln Ξ(nR)
∂(βµ) =

∑∞
i=1 iziqi

1 +∑∞
i=1 ziqi

, (2.21)

with µ the chemical potential of polymers in solution. However, we note that a surface
is a collection of lattice sites and in general not all sites are equal. It is reasonable to
assume that the distribution of receptors on a surface is uniformly random, therefore the
number of receptors per lattice site follows a Poisson distribution

p(nR, Γ) = ΓnR

nR! e−Γ, (2.22)

with Γ the average number of receptors per site. If the surface is composed of N

independent lattice sites, the grand partition function for the whole surface Ξ(Γ) reads

Ξ(Γ) =
∞∏

nR=1
Ξ(nR)p(nR,Γ)N (2.23)

and the average surface coverage is then given by

⟨θ⟩ =
∞∑

nR=1
p(nR, Γ)θ(nR). (2.24)

We stress that for the range of parameters studied (Figure 2.7) the number of receptors
per site was always large nR > 100 and the Poisson distribution (2.22) is highly peaked
around nR = Γ. Therefore the relative fluctuations in the surface receptor density are
small and we have approximately ⟨θ⟩ ≈ θ(Γ) . We have included Poisson fluctuations
when calculating the theoretical adsorption curves on Figure 2.7.
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2.2 Multivalent polymer adsorption

2.2.1 Simulations

Monte Carlo simulations are performed using a soft-blob model for polymers [77] described
in more detail in the Methods chapter. Briefly, the model represents flexible polymers in
a good solvent by a series of Gaussian soft blobs connected via harmonic springs. This
model accurately describes polymers in the scaling regime, it also assumes that each
individual blob represents a polymer in the scaling regime, hence blobs must be large
enough to contain at least a few polymer Kuhn segments. On the other hand the model
only considers pairwise interactions and does not take into account any 3-body effects.
Therefore, the model is appropriate for studying dilute and semi-dilute polymer solutions
where the blob density does not exceed 1 blob per blob volume ρblob < 3/(4πr3

b ), with rb

the blob radius of gyration, in which case 3-body effects can be neglected.
A great feature of the soft blob model are the transferable potentials, we can represent

a given polymer by series of many small blobs, a few larger ones or a single large blob
and the form of the interaction potentials does not change [77, 78]. The universal form
of the interaction follows because the interpenetration and surface repulsion of flexible
polymers converges to a well defined form when the number of Kuhn segments in the
polymer is large [73], the effective potentials are described in the Methods chapter. The
radius of gyration of such a polymer is given by

Rg = rbN
ν
b , (2.25)

with rb the blob radius of gyration, Nb the number of blobs per polymer and ν = 0.588
the scaling exponent of a 3D self-avoiding random walk [73].

The ligand-receptor bonding free energy is denoted by ϵ. This includes the pure
ligand-receptor interaction, but it also depends on the size of the blob rb and on the linker
properties. We assume that when a ligand is unbound it can explore all of the space
within a blob and different ligands in a blob are uncorrelated. We effectively use the same
rationale to calculate the single bond strength as in the analytical theory above (2.9),
except that now we apply it to individual blobs within a polymer

ϵ = kBT ln
(

4πr3
b NA

3KA

)
+ Upoly(rb), (2.26)

where we find the familiar Upoly term which takes into account (i) the correction to our
approximation that ligand positions are uncorrelated within each blob and (ii) the effects
of the linker between the ligand and the polymer backbone.
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2.2 Multivalent polymer adsorption

Upoly will depend on the chosen size of the blob rb. The larger the blob the more
coarse-grained the polymer representation is and the corrections in (i) become larger,
hence we expect Upoly to increase with increasing blob size. In the simulation model only
receptors within a cut-off distance rb of a blob centre-of-mass can bind to the ligands of
that particular blob. Choosing to represent the polymer with a single blob Nb = 1 we
obtain rb = Rg and the expression for the bond free energy (2.26) becomes identical to
the one used in analytical theory (2.9) . We expect that theory and simulations will give
very similar results. There are still differences between analytical theory and simulations
at Nb = 1 in that simulations are off-lattice and the simulation model also provides a
more accurate account of the blob-surface repulsion.

We show the simulation results and compare them to experimental data on polymer
adsorption by Dubacheva et. al. [15, 16]. All parameters in the simulation are determined
to correspond to the experimental system: The polymer radius of gyration is assumed to
be Rg = 45nm, the average number of ligands per polymer is klow = 27 for low valency
polymer and khigh = 187 for the high valency polymer, the chemical potential µ of the
reservoir is set such as to result in a polymer concentration in bulk solution ρ = 0.12µM
which corresponds to a rescaled density of ρ∗ = 0.025/a3.

First we systematically vary the number of blobs per polymer Nb the ligand-receptor
binding energy ϵ and the receptor surface density ΓG. The results for the low valency
polymer (k = 27) are summarised in the plots on Figure 2.8. Figure 2.9 also shows
matching simulation snapshots.

Each simulation was initiated with an empty box and ran for ∼ 1011 MC cycles.
The equilibrium number of polymers was determined by averaging over the number of
adsorbed polymers in the second half of the simulation run. We tested for convergence by
considering the average number of polymers in intervals of 1010 MC cycles. Simulations
were not considered converged as long as this number was increasing over subsequent
intervals; when the averaged number of polymers started fluctuating around a given
value, we considered the simulations sufficiently equilibrated. We also monitored the
relaxation of the average number of bonds per polymer, which is related to the brush
conformation. Simulations with Nb = 20 blobs per polymer reached equilibrium. Using
longer polymers (Nb = 50) simulations at the largest polymer coverages did not reach
equilibrium within 2·1011 MC cycles. However, simulations did converge for lower polymer
coverages (polymer density < 100 fmol/cm2) and the snapshots shown in Figure 2.9 are
representative of an equilibrium configuration.

The agreement between simulations and theory is quite remarkable taking into account
that the only free parameter in linking simulations and experiments is Upoly which simply

24



2.2 Multivalent polymer adsorption

0.1 1 10 100 1000
receptor density [ pmol/cm2 ]

1

100

po
ly

m
er

 d
en

si
ty

 [ 
fm

ol
/c

m
2  ]

CDp0.03 Fc
CDp0.03 AD
ε=8
ε=6
ε=4

(a) Nb = 1

0.1 1 10 100 1000
receptor density [ pmol/cm2 ]

1

100

po
ly

m
er

 d
en

si
ty

 [ 
fm

ol
/c

m
2  ]

CDp0.03 Fc
CDp0.03 AD
ε=4
ε=2
ε=0
ε=-2

(b) Nb = 10

0.1 1 10 100 1000
receptor density [ pmol/cm2 ]

1

100

po
ly

m
er

 d
en

si
ty

 [ 
fm

ol
/c

m
2  ]

CDp0.03 Fc
CDp0.03 AD
ε=+2
ε=0
ε=-2
ε=-4

(c) Nb = 20
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(d) Nb = 50

Fig. 2.8 Polymer adsorption simulations. Varying the chain length Nb, while keeping the
polymer size Rg fixed. Binding isotherms obtained from simulations at polymer valency
k = 27 and various chain lengths Nb and ligand-receptor binding free energies ϵ. Separate
curves on individual plots correspond to different bond strengths ϵ incremented in steps of
1kBT (only every second curve is labeled). Experimental data [16] on β-Cyclodextrin (CD)
functionalised polymers binding to Ferrocene (Fc) or adamantane (AD) functionalised
surface is represented with solid points and error bars. Simulation results are shown as
solid lines, each data point (circle) corresponds to an individual simulation runs.
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2.2 Multivalent polymer adsorption

(a) 1 chain, nR = 244, top view (b) 1 chain, nR = 244, side view

(c) 3 chains, nR = 403, top view (d) 3 chains, nR = 403, side view

(e) 12 chains, nR = 1808, top view (f) 12 chains, nR = 1808, side view

Fig. 2.9 Polymer simulation snapshots. The snapshots of system configurations for
Nb = 50, ϵ = −3kBT and k = 27 (corresponding to a curve on Figure 2.8d)). Different
snapshots show different surface densities of receptors in the system, left panel is the
top view, and right panel the side view. The colour code is the following: Unbound
blobs (red), bound blobs (blue), unbound blobs carrying at least a single ligand (yellow).
Receptors are represented as small white points on the surface, bound receptors are pink.
The system size is 3Rg in lateral directions.
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2.2 Multivalent polymer adsorption

shifts adsorption curves to higher or lower receptor densities. The vertical position of the
plots, the slope (selectivity) and the saturation plateau are all accurately predicted by
the model. Also the shift in the adsorption isotherm between the high and low affinity
polymer is accurately predicted to be 3kBT .

We observe that the results for different chain lengths (Nb) are fairly consistent
which is to be expected. The simulations capture the plateau in the polymer adsorption
which the theory does not. Simulations also overshoot the plateau when we represent
the polymer with only a single blob (Nb = 1). In this case the blob density is outside
the blob-model range ρ > 3/(4πr3

b ) for high polymer coverage, the simulation model
underestimates the polymer-polymer repulsion. The single blob simulations also fail to
take into account the correct polymer conformation at the surface.

On the other hand representing the polymer with large number of blobs also approaches
the limits of the model validity because we assume that each blob represents a segment
of the polymer which is itself in a scaling regime. With Nb = 50 blobs per polymer each
blob represents less then 2 Kuhn segments (assuming 64 Kuhn segments per polymer,
obtained from experimental data [16] of the contour length lc = 900nm and the Kuhn
segment b = 14nm) which approaches the the limit of the model validity.

Simulation results consistently show higher selectivity than theoretical data. Fig-
ure 2.10 shows the selectivity α (2.7) obtained from the analytical model (Figure 2.7) and
simulations (Figure 2.8c)). Simulations consistently predict a higher selectivity than the
theory. To explain the discrepancy we perform free-energy calculations of the simulated
system.

2.2.2 Free energy calculations

Using the soft blob model described above we can perform free energy calculations using
the Wang-Landau technique [79] and determine the free energy Fwl(λ) as a function
of the number of formed bonds λ. By comparing the result to the analytical theory
we obtain the polymeric degrees of freedom contribution to the free energy per bond:
Upoly(λ) and its dependence on the number of formed bonds λ for various number of
blobs per polymer Nb. Using this technique we can only calculate the configurational
part Upoly(λ)c, i.e. the polymer backbone degrees of freedom effect, of the free energy

Upoly(λ) = U c
poly(λ) + Ulinker . (2.27)

We cannot calculate any effects of the chemical linker between the ligand the polymer
backbone, however, the linker contribution Ulinker, which captures the effects of the linker
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Fig. 2.10 Selectivity comparison between simulations and theory. The curves show the
selectivity α (2.7) obtained from theoretical (Figure 2.7) and simulation (Figure 2.8c))
data. Simulations (solid lines) consistently predict higher selectivity than the analytical
model (dashed lines).

on the single bond strength, is a trivial constant which does not depend on the number
of formed bonds.

The configurational contribution measures the effects of additional polymeric degrees
of freedom when we change from a single blob picture of the polymer (Upoly(λ; Rg),
captured by the analytical theory), to a more detailed picture Upoly(λ; rb), where the
polymer is represented by a series of Nb blobs, each of radius rb:

U c
poly(λ) = Upoly(λ; Rg) − Upoly(λ; rb) . (2.28)

Moreover, we cannot calculate any effects of Upoly on a length-scale smaller than the
blob size rb, however we expect Upoly → const., a constant independent of the number of
formed bonds λ, as the blob size is decreased sufficiently (Nb > k). In order to have a
consistent comparison with the theory 6, the free energy calculations are performed on a
polymer whose centre-of-mass is constraint to lie within a = Rg(4π/3)1/3 = 1.61Rg of
the surface. The particular choice will not affect the free energy profile, it will only affect
the free energy of forming the first bond compared to zero bonds F (1) − F (0), as once
the polymer is bound the surface, the probability of the polymer centre of mass position
spontaneously increasing to beyond 1.61Rg of the surface, is negligible.

6In the analytical theory (Figure 2.6) we require that an unbound polymer first adsorbs within a
lattice site of linear dimension a, in order to start forming bonds.
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2.2 Multivalent polymer adsorption

Once we obtain the free energy profile Fwl(λ) from simulations we compare it to
the full partition function of the analytical theory (2.11). The free-energy calculations
were performed at blob-receptor binding energy ϵ = 0, we need to take account of this
energy as it depends on the blob size ϵ(rb) = ln (KDNA(4πrb/3)3) + Upoly(rb). We are
only interested in how the configurational cost of binding changes with the number of
formed bonds. For a given number of formed bonds λ we equate the free energy obtained
from simulations, Fwl(λ), with the analytical expression (2.11), we obtain

e−β[Fwl(λ)+λϵ(rb)] =
(

nR

λ

)(
k

λ

)
λ! e−βλϵ(Rg) . (2.29)

We remember nR is the number receptors per lattice area a2, k the number of ligands on
the polymer and ϵ the bond free energy (2.26). We rewrite the above equality using (2.26-
2.28) and the self avoiding walk relation Rg = rbN

ν
b , with the scaling exponent ν = 0.588,

as
βU c

poly(λ) = 1
λ

Fwl(λ) + 1
λ

ln
(

nR!k!
(nR − λ)!(k − λ)!λ!

)
− 3ν ln(Nb). (2.30)

U c
poly depends on three terms, the first term on the right is the free energy calculated from

simulations, the second term takes into account all possible configurations considered
by the theory (2.11) and the third term takes into account the blob size chosen in
simulations.

The free energy calculations were performed for various chain lengths Nb, each was
averaged over 30 different random realisations of the ligand positions on a chain. The
calculated results for U c

poly are shown on Figure 2.11. The first thing we observe is that
U c

poly is not a constant as we assumed in analytical theory, rather it is monotonically
decreasing with the number of formed bonds λ. This means that subsequent ligand-
receptor binding is “cooperative-like” – individual bonds become stronger the more bonds
form. The added cooperativity increases the selectivity α of the multivalent polymer
binding and explains why the simulations predict higher selectivity then analytical theory
(Figure 2.10). This suggests that polymers are inherently more selective then equivalently
designed nanoparticles coated with independent ligand arms, for which we expect the
configurational cost to be linear7 in the number of formed bonds. The variation of Upoly

implies a variation in f and Kintra with the number of formed bonds, this means that
our initial model (2.2) is only approximate. However, the non constant f does not affect
general rules about designing selectivity discussed below, rather it only affects the exact
shape of the adsorption curve.

7The configurational cost can be written as: U c
poly(λ) = λU c

poly(1)
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Fig. 2.11 U c
poly(λ) calculated from simulations for various chain lengths Nb and two

different numbers of ligands per chain: k = 27 (full lines), and k = 187 (dashed lines).
(a) shows U c

poly calculated from (2.30), which corresponds to the average free energy
per bond formed. (b) Alternatively we can represent a “marginal” Umar

poly (λ) defined as∑λ
i=1 Umar

poly (i) = λU c
poly(λ), that is the free energy of forming a next bond when there

are already λ bonds present. This data is noisier because we essentially take a finite
difference derivative of the data in (a). In other words, U c

poly(λ) is a cumulative average
of Umar

poly (λ).

Furthermore we observe that U c
poly depends slightly on the blob size rb = RgN ν

b (via
keeping Rg fixed and changing Nb). If only a single blob is used Nb = 1 there can be no
cooperative behaviour. The more “polymer-like” the model (larger the number of blobs
in a chain), the large the cooperative effect is. The free energy of the first bond formation
depends only on the number of blobs and is logarithmic U c

poly(1) ∝ log(Nb) [80].
The calculated U c

poly decreases slightly with increasing valency, It appears that this
could be the explanation for why the analytical theory cannot accurately predict the
shift for the high valency polymer, Figure 2.7. The error in analytical theory is ≈ 0.7kBT

which corresponds to the difference in U c
poly between low and high valency on Figure 2.11.

2.3 Which systems are super-selective ?

The discussion thus far focused on selective adsorption of multivalent particles and
polymers. We now generalize our treatment and discuss various practical systems. In
particular, we will discuss the key role of disorder that is needed to observe super-selective
behaviour in multivalent interactions. Specifically, what is needed is that a multivalent
entity can bind in many different ways to a receptor-decorated substrate. This kind of
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2.3 Which systems are super-selective ?

disorder is usually not possible for multivalent interactions on the angstrom or nanometer
scale, as the interacting units tend to be effectively rigid on that scale. In contrast,
larger supramolecular systems (e.g. the binding of a multivalent polymer to a receptor
decorated membrane) can sustain the ‘disordered’ interactions.

2.3.1 Rigid geometry interactions

A prototypical example of multivalent interactions is the fixed (rigid) geometry multiva-
lency shown in Figure 2.12. Two rigid, multivalent entities bind via multiple bonds: as
the geometry is fixed the individual bonds either fit together, or they do not. Examples
of this kind of interaction include base pairing interaction in DNA.

Another well-known example of a rigid multivalent interaction is the binding between
an enzyme and a substrate. The interaction between a pair of proteins is multivalent, as it
involves a number of local interactions of various types (hydrogen bonding, hydrophobic,
Van der Waals, electrostatic etc). To a first approximation the enzyme and substrate can
be described as rigid objects. This is a simplification as proteins, even in their native
state, are not entirely rigid. In any given relative orientation of the ligand to a substrate
we find a 2D equivalent of the Figure 2.12. We name this class of multivalent interactions
“rigid geometry multivalency”.

Due to the lack of flexibility of individual bonds, rigid multivalency will generally not
show super-selective behaviour. To understand this, consider a simple one-dimensional
example of a sequence of rigidly positioned ligands that bind to a commensurate sequence
of receptors. One cannot increase the binding site density on the substrate without
breaking the commensurability of the binding. Hence, increasing the receptor density
will normally decrease the binding strength. In other words: commensurate lock-and-
key interactions are not super-selective. Interestingly, it seems that the ability of rigid
multivalent particles to detect commensurate structures is exploited in nature, for instance
in the activation of certain Toll-like receptors [72]. We will explore rigid multivalency in
the context of molecular imprinting in Chapter 4.

The simplest mean-field model for the commensurable binding case (Figure 2.12)
is that every bond pair is equivalent and can be either formed (weight e−f/kBT ) or not
(weight 1), and all l bond pairs are independent. The avidity constant Kav

A
fix of the

multivalent interaction is proportional to the bound partition function qfix
b taking into

account all possible states

Kav
A

fix ∝ qfix
b ≈

(
1 + e−f/kBT

)l
. (2.31)
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Fixed geometry 

Fig. 2.12 Rigid geometry multivalency. The cartoon presents a prototypical fixed geometry
interaction where bonds are commensurate (e.g. DNA base pairing or enzyme-substrate
interactions). Such systems generally do not exhibit super-selective behaviour as we
cannot increase the (binding site) density on one multivalent entity (substrate) without
breaking the commensurability of the bonds. See also Eq. (2.31) and the discussion in
the corresponding box.

Evidently the avidity constant is very sensitive to the number of possible bond pairs l,
the temperature T and the individual bond strength f . The number of possible pairs l

will depend on the geometry of the system. In the simplest model the number of pairs is
given by l = min[nR, k], it is limited by whichever, substrate or the multivalent ligand
has a smaller number of sites. [10]. Hence, rigid geometry multivalent interactions can
show super-selective behaviour, but only when the multivalent construct initially had an
excess number of binding sites compared to the substrate. Furthermore, when increasing
the number of binding sites on the substrate, geometric constraints (commensurability)
must be obeyed.

2.3.2 Disordered multivalency

Super-selective behaviour can be exhibited by multivalent systems that can increase the
number of possible bonds as the density of receptors increases. As we saw above, fully
ordered multivalent systems only bind optimally to commensurate receptor arrangements.
To achieve super-selectivity, we typically need some kind of disorder or randomness in
the geometry of binding. The ability to increase the number of bonds with increasing
receptor density can be due to: (i) long, flexible binders, (ii) mobile receptors, or (iii)
random binder positions. Figure 2.13 shows schematic examples of these three cases.
Different types of bond disorder will result in different expressions for the bound partition
functions (and therefore, for the avidity constants), see Eqs. (2.32 - 2.34). However, they
all show similar super-selective behaviour (see Figure 2.14).
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Long, flexible ligands A	
   B	
  

Disordered ligand positions C	
  

Mobile	
  receptors	
  

Fig. 2.13 Disordered multivalent systems. Three characteristic types of multivalent
interactions are shown: A) long, flexible binders, B) mobile receptors, C) disordered,
random positions of individual binders. Different types can behave slightly differently,
see the adsorption profiles in Figure 2.14. However, they all exhibit super-selectivity,
and consequently, any practical system that is similar to at least one of them, will be
super-selective.

Different forms of disorder may cause super-selective behaviour in multivalent systems.
The theoretical expressions for the partition function (and hence the avidity constant) of
the bound state will depend on the nature of the disorder. Below, we list a few examples:

• Long flexible ligands, Figure 2.13A); the number of ligands and receptors is fixed
and all k ligands can reach any of the nR receptors

qb(nR, k) =
min(nR,k)∑

λ=1

(
nR

λ

)(
k

λ

)
λ! e−βλf , (2.32)

which is the expression that we have already used above (see Eqs. (2.2,2.3)).

• Mobile receptors (Figure 2.13B)); the number nR of accessible receptors fluctuates
and, neglecting receptor-receptor interactions, will be Poisson distributed with
mean ñR. Poisson averaging of (2.32) over nR, we find

qb(ñR, k) =
(
1 + ñRe−βf

)k
− 1 , (2.33)
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Fig. 2.14 Adsorption profile for different disordered systems, depicted in Figure 2.13.
Systems show qualitatively similar behaviour, all are super-selective. For large number of
bonds the adsorption profiles converge. We used expressions (2.32,2.33, 2.34) with k = 5
and βf = 0 to compute adsorption isotherm (2.5) in the case of a few strong bonds (solid
lines). To represent the case of many weak bonds (dashed lines), we assumed the case of
weak binding, we used the same equations but assumed k = 25 βf = 5. The activity was
kept fixed at z = 0.001.

which is the same equation that we obtained as an approximation before (2.2, 2.6).
Mathematical derivation of (2.33) will be provided in the next chapter.

• Colloids, nanoparticles (or cells) with disordered or mobile ligand positions (Fig-
ure 2.13C)); a random grafting process of a nanoparticle will result in an approxi-
mately Poisson spatial distribution of the grafted ligand positions. Both the number
of ligands and the number of receptors are Poisson distributed with mean k̃ and ñR

respectively. Poisson averaging (2.33) over k, we find

qb(ñR, k̃) = eñRk̃e−βf − 1 . (2.34)

A comparison between the predicted behaviour of these different systems is shown in
Figure 2.14. In the limit of weak bonds nRe−βf < 1, the behaviour of all systems converge
to the same form. Mathematical derivation of the above expressions is presented in the
following chapter.
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2.3.3 Receptor mobility

At first sight, it would seem that the case of mobile receptors shown in Figure 2.13B)
should be rather different from the immobile case. However, since the receptors are
mobile, each ligand can, in principle, bind to any receptor. In this light the two problems
become very similar. Another way of looking at the system with mobile receptors is to
consider the receptors as a (two-dimensional) ‘ideal gas’ of particles that can bind to
the ligands with an interaction strength f . Up to a concentration-independent term µ0

R,
the chemical potential of these receptors is given by µR ≈ kBT log(nR). A small change
in the receptor concentration nR will lead to small change in the chemical potential
µR, which will alter the probability of each and every individual ligand binding. For
multivalent particles a small change per ligand adds up to a large change per particle.
If we assume that there are many more receptors than ligands, we can then write the
bound-state partition function for k ligands as qb ≈

(
1 + CnRe−βf

)k
− 1 , where the

constant C depends only on the concentration-independent part of µR; (C = −kBT ln µ0
R).

Clearly, the binding probability depends on nR, see Refs. [72, 81] for practical examples
of super-selectivity with mobile receptors. We note that for dilute receptors the chemical
potential is dominated by the translational entropy. Hence, the origin of super-selectivity
is entropic, also for mobile receptors.

In the case of many weak binders, CnRe−βf ≪ 1 and hence we can write qb ≈
eCknRe−βf − 1 , obtaining a double exponential dependence on the bond strength f . This
highly non-linear dependence can be exploited for immune amplification [72] where the
immune response is regulated via TLR9 receptor activation binding to DNA-peptide
clusters. Changing the properties of the DNA-peptide cluster (the spacing between DNA
helices) causes only a small change in the TLR9 to DNA single bond strength f . However,
due to the double exponential dependance, the binding of the whole multivalent cluster,
and hence the immune activation, becomes extremely sensitive to small changes in f .

We stress that the relevant number density of mobile receptors nR is actually the
concentration of free (unbound) receptors. Hence, nR = ntot

R −nb
R is not a constant, rather,

it depends on the concentration of bound receptors nb
R (i.e. the number of bound receptors

per lattice site area), where the total number ntot
R is a constant. The concentration of

bound receptors can be obtained by noting that the derivative ∂qb

∂βµR
returns the average

number of bonds per adsorbed particle, therefore, the number of bound receptors is

nb
R = θ

∂qb

∂(βµR) , (2.35)

35



2.3 Which systems are super-selective ?

0.01 0.1 1
receptor density nR

0.001

0.01

0.1

1
ad

so
rb

ed
 fr

ac
tio

n 
 θ

,  
se

le
ct

iv
ity

 α
 

 θ  ref
 θ  depletion
 α  ref
 α  depletion

Fig. 2.15 Effect of receptor depletion. Red curves show the reference adsorption profile
(solid line) and selectivity (dashed line) where receptors are not depleted nR = ntot

R .
Blue curves show that receptor depletion leads to reduced selectivity. In the depletion
limited regime each additional multivalent particles binds approximately a fixed amount
of receptors. Hence, the relation between the number of adsorbed particles and total
number of receptors becomes linear in the depletion limited regime. Parameters: k = 9,
f = −3, ln(z) = −15.

with the chemical potential ln(βµR) ∝ ntot
R −nb

R and qb the bound partition function (2.33).
The above equation must be solved self consistently for the number of formed bonds
nb

R. This leads to anti-cooperative behaviour; adsorbed particles recruit and deplete
receptors, inhibiting the adsorption of further particles. Figure 2.15 shows a comparison
between adsorption with and without receptor depletion. At higher surface densities of
adsorbed multivalent entities the receptors are depleted and selectivity is suppressed. Our
previous calculation shown on Figure 2.14 corresponds to a situation where the number
of receptors is sufficiently large such that the depletion effects can be neglected ntot

R ≫ nb
R.

Depletion effect will be strong when the fraction of bound receptors is appreciable.
Finally, for many immobile, but randomly distributed binders, shown in Figure 2.13C)

the intuitive reasoning for super-selectivity follows from our initial discussion in the intro-
duction (1.2). Let us consider two ligand/receptor-decorated multivalent nanoparticles,
A and B that can attach through ligand-receptor binding. The binding moieties are
randomly distributed on both nanoparticles. From a point of view of a particular ligand
on particle A, the probability of it binding, denoted by p1A, is to a first approximation
linear in the density nR of complementary receptors on particle B. The number of possible
bonds in the contact area is proportional to the number of ligands k in that area. The
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net result is that the binding probability depends exponentially on the product knR, as
would follow from (2.34).

We note that in the cases of fixed short ligands we have only illustrated and discussed
the two limiting cases: (i) the perfectly complementary rigid interaction (Figure 2.12)
and (ii) Poisson randomly distributed case (Figure 2.13C). Practical systems will fall
between these two extremes. As a rule of thumb, small molecules and macromolecules,
such as DNA or proteins, or virus capsids have a rather well defined geometry and we
expect their interactions to be closer to the rigid geometry case. On the other hand, the
spatial distribution of binders (ligands) on entities larger than a few nano-metres is, in
general, more disordered; be they man-made such as DNA coated colloids [82–84], or
natural such as cells.

We have presented simple analytical models that can be used to rationalise and
understand super-selectivity in various multivalent systems. In the case of polymers, the
simple model works very well (see Figure 2.7). However, certain systems have been studied
in a greater detail. For these cases, more sophisticated (and more complex) models have
been developed. For example, cell endocytosis of a virus is mediated by a multivalent
interaction between membrane proteins (receptors) and virus capsid proteins (ligands).
But to model the process, one should account for membrane elasticity and, in some cases,
also for active processes [85]. More detailed models of multivalent polymer adsorption
have recently been developed [80, 86]. A theory of valence-limited interactions explicitly
taking into account specific positions and different types of tethered binders requires the
self-consistent solution of a system of equations [9, 87], the framework was also extended
to mobile ligands [88] and multimeric complexes [89]. A complementary approach is
based on a saddle-point approximation for the binding free energy [90]. We note that the
results presented in these papers support the conclusions about super-selective behaviour
that we have obtained here using much simpler models.

2.4 Design principles for super-selective targeting

Clearly, super-selective targeting has important practical applications (as even viruses
seem to ‘know’). It is therefore important to formulate design principles for achieving
optimal super-selectivity. To formulate design rules, we start once again from the simple
model described above (2.5): multivalent particle docking to a receptor-decorated surface
(e.g. a cell). The density of receptors on the surface is again measured by nR, the mean
number of receptors in the contact area (i.e. the area accessible to a docked particle). In
many cases of practical interest, we aim to target only those surfaces (e.g. a cell surface)
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2.4 Design principles for super-selective targeting

that have a receptor concentration above a certain threshold. How should we design the
particle to target this surface optimally? Our control parameters are the valency k, the
ligand-receptor binding strength f , and the activity of particles in solution z.

In terms of the theoretical expressions (2.5) (2.6), we aim to maximise the selectivity

α(nR) = ∂ log θ

∂ log nR

. (2.36)

at a given desired receptor density nR. We note that qb (2.6) and its derivative are
increasing functions of nR, k and −f . Hence, we expect the selectivity (slope) to be the
highest just before denominator in (2.5) becomes important and the maximal selectivity
will be found when zqb ≈ 1. Using (2.6) we can solve this equation, which yields a
relation between k and f

k = − log(z)
log (1 + nRe−βf ) . (2.37)

When zq ≈ 1 we also have approximately θ ≈ 1
2zq and the selectivity becomes

α ≈ k
nRe−βf

1 + nRe−βf
= − log(z) nRe−βf

(1 + nRe−βf ) log (1 + nRe−βf ) , (2.38)

where, in the last step, we used (2.37).
Expanding the above function to first order for weak/strong binding we find the

characteristic behaviour: (i) In the case of strong binding the selectivity is

α(nRe−βf > 1) ≈ − log(z)
−βf + log(nR) , (2.39)

and in the weak binding limit

α(nRe−βf < 1) ≈ − log(z) . (2.40)

Clearly, the selectivity is maximal in the weak-binding limit and is determined by the
logarithm of the activity, see landscape plots in Figure 2.16. In the strong-binding limit,
the selectivity decreases with increasing strength of the individual bonds. We remember
that z = ρ KA

Kintra
and e−βf = Kintra.

The landscape plots of selectivity as a function of the valency k and bond strength
f are shown in Figure 2.16. We immediately notice three features: (i) High selectivity
appears only in a small region of the parameter space, along the curve predicted by (2.37).
(ii) The selectivity reaches a plateau value at large valencies k and weak individual bonds.
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Fig. 2.16 The selectivity landscape as function of the valency k and the rescaled binding
strength −βf + log(nR). The landscape was obtained by calculating the selectivity α
using (2.36). The activity of multivalent particles was chosen as: A) z = exp(−5), and
B) z = exp(−10). Both plots use the same colour scale. The dashed curves represent the
approximate optimal selectivity relation (2.37), which rather accurately fits the maximum
selectivity region.
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2.4 Design principles for super-selective targeting

(iii) Maximum selectivity is limited by the activity z; lowering the activity (or density)
of multivalent particles yields a higher selectivity.

The dimensionless activity z = ρ KA

Kintra
depends on the density ρ, but also on the ratio

of the equilibrium constants for the formation of the first bond and for the formation
of subsequent ligand-receptor bonds in a particle-substrate complex (see Eqn. 2.2).
Therefore, even at large densities, selectivity can be substantial if the ratio KA

Kintra
is

small. This can be achieved by adding a non-specific repulsion between the multivalent
entities (for instance, by coating the particle with inert polymer that provides steric
repulsion [91]). Such a repulsion would present a barrier to particle association but would
not prevent additional bonds from forming once the barrier is overcome: the result would
be a reduction in KA due to repulsion, but as Kintra would be less affected, this steric
repulsion would decrease the ratio KA

Kintra
.

Our calculations show that selectivity is suboptimal when using high affinity bonds.
However, strong affinity multivalent constructs can still behave super-selectively (α > 1)
if their activity (concentration) in the solution is low enough (2.39). This suggests that
in principle it is possible to design a super-selective system based on very strong affinity
interactions, such as the biotin-streptavidin pair. However, extremely low required
concentrations and slow kinetics (due to strong affinity and large activation barriers for
bond formation and breaking) are likely to be prohibitive for practical applications.

Multivalency leads to super-selectivity, but it also leads to high sensitivity of binding
to the variation in other relevant quantities (1.2). Therefore, in practical applications, it
is important to control (or, at least know) parameters such as temperature, pH, ionic
binding strength when using multivalent particles for selective targeting. The parameter
range that yields high selectivity is rather small, see Figure 2.16B). A brute-force ‘random’
search in design-parameter space is, therefore, unlikely to find the optimal selectivity
region. We hope that the theoretical guidelines and design principles set forth in this
chapter will enable a more rational design of particles for super-selective targeting.

We condense the results shown in Figure 2.16 and our theoretical considerations (2.38),
in a set of simple design rules for multivalent binding that yield maximum selectivity. We
use our dimensionless statistical mechanics notation which is straightforwardly converted
to chemical equilibrium units using z = ρ KA

Kintra
and e−βf = Kintra.

1. The maximal possible selectivity α is limited by the activity of multivalent particles
in solution: αmax ∼ − log(z) so the activity z of multivalent binders should be
small.
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2.5 Langmuir raft

2. Many weak bonds are better than few strong ones. The selectivity is determined by
the valency k, until a point of saturation given by k ∼ − log(z). Hence, the valency
k should be larger 8 than the negative logarithm of the activity: k > − log(z) .

3. the relationship between the ligand number k and binding strength f should be
obeyed: k = − log(z)

log (1+nRe−βf ) . Together with the above rule, this one states that to
achieve maximal selectivity individual bonds should be very weak Kintra = e−βf <

1/nR. In other words, the fraction of bound receptors/ligands should always remain
small.

We restate the main assumptions used to arrive at these design rules: (i) ligands
are identical and bind independently, (ii) all ligands of a (surface bound) multivalent
construct can reach all surface attached receptors, within a lattice site, but cannot bind to
any receptor outside of the site (see Figure 2.4). (iii) Receptors, ligands or particles have
no interactions except for the steric (hard-core) repulsion and ligand-receptor affinity.

2.5 Langmuir raft

The selectivity can also be increased by a different mechanism to multivalency. In the case
of attractive interactions between adsorbing particles, the particles will aggregate and
form a raft. We assume that the attractive interactions are too weak to affect or cause
aggregation in the bulk solution (bulk density is below the critical micelle concentration).
However, upon particle adsorption, the 2D surface density is sufficiently increased for
the weak attractive interactions to become important. The simplest way to account for
interactions between the nano-particles is to assume a 2D van der Waals-like contribution
to the partition function

qvdW = e−βavdW N2/A = e−βa∗
vdW θ2 (2.41)

with N the number of adsorbed particles per area A and avdW is the van der Waals
attraction parameter. This equation can be rewritten using the surface coverage θ =
a2N/A and the rescaled parameter a∗

vdW = avdW
A
a2 . We have already used a to denote

the lattice size, for historical reasons we use the same letter avdW to denote the van der
Waals parameter. The advantage of the van der Waals equation of state is that it can
describe a liquid-vapour transition, which, in this context, could be very interesting, as

8the first two design rules state that the maximal selectivity is limited by either the valency k or the
− log(z), whichever is smaller.
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Fig. 2.17 Attractive interactions between adsorbing particles increase the selectivity. The
solid lines correspond to the adsorption profile and the dashed lines its derivative – the
selectivity α. a) shows the monovalent (k = 1) and b) multivalent (k = 5) particle
adsorption. a∗

vdW = 0 corresponds to the reference adsorption profile (Figure 2.3).
The activity of the particles in solution was set at z = 10−5. We observe that added
attraction increases the selectivity but only in the regime where the surface density is
appreciable. The selectivity diverges when we approach the critical point of a lattice
gas-solid transition.

the ‘response’ of the system (adsorbed nano-particle concentration θ) in relation to a
‘signal’ (f , ρ or nR) would diverge at the critical point.

We incorporate the van der Waals attraction simply by multiplying the bound
partition function (2.6) with the van der Waals term (2.41). The equation must be
solved self-consistently because the surface coverage θ appears in (2.41). The adsorption
profiles on Figure 2.17 show an increase in selectivity as compared to the reference case
(a∗

vdW = 0). The selectivity diverges when approaching the critical point.
The behaviour of our system is somewhat similar to the 2D Ising model-like transition

that can be used to model the effects of receptor cooperativity [92]. The combination of
multivalency and inter particle attraction seems to offer the highest selectivity.

2.6 Summary: it is interesting, but is it useful ?

We have shown that weak, multivalent interactions can result in a super-selective be-
haviour where the overall interaction strength becomes very sensitive to the concentration
of individual binders (receptors). We presented a simple yet powerful analytical model
that possess good predictive power for designing multivalent interactions. We expect
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that, even in cases where the simple model fails quantitatively, the above design rules will
still provide a good starting point for designing super-selectivity in practical multivalent
systems. Figure 2.18 summarises advantages of weak multivalent interactions in selective
targeting.

T, pH, E, hv, … Reversible

Super-selective

Strong

Fig. 2.18 Advantages of many weak bonds. Contrary to strong monovalent antibody-
antigen interactions and covalent bonds, multiple weak complexes can be disassembled
(one by one) using different environmental stimuli (Temperature, Potential, pH, light),
which provides flexibility and reversibility, for example dendrimers [93], stimuli responsive
coatings [94], renewable sensors for biomolecules [95], reversible gels [96] or gel-particle
glue [97]. Due to multivalency effect the binding of the whole multivalent entity remains
strong even when individual bonds are weak. The environmental stimuli can also be
used to tune the super-selectivity region to the desired surface density of receptors. For
example, we could exploit the acidic extracellular environment of the tumour tissue for
drug targeting using multivalent particles.

We can imagine effective purification devices where nano objects of different valencies
are passed through super-selective sieves. In the field of material self-assembly, multivalent
supramolecular entities could be designed to hierarchically assemble depending on the
valency, thus enhancing the precision of self-assembled constructs [83].

The ability to target diseased cells pathogens based on the surface concentration of
certain (over)expressed receptors would be of huge practical importance [28]. At present,
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2.6 Summary: it is interesting, but is it useful ?

the delivery of pharmaceutical compounds to specific cells is usually targeted based on
the existence of a specific marker (e.g. a sugar or a peptide fragment) that is unique to
the targeted cell type. The current wisdom seems to be to functionalise drugs or drug
carriers such that they bind strongly to the specific marker. This strategy is fine if the
target cells (e.g. bacteria) are very different from the cells of the ligand, and carry very
different markers.

However, the strong-binding strategy becomes problematic if one wishes to target
say, cancerous cells, which are usually very similar to our healthy cells and, typically
over-express markers that are also present, be it in smaller quantities, on healthy cell
surfaces. Examples are the CD44 (‘don’t eat me’ receptor) or the folic receptor. In such
cases, a compound that binds strongly to the over-expressed marker will also bind to
(and kill) healthy cells. The insensitivity of strong binders to the surface concentration of
markers is one of the main reasons why antibiotics can be efficient with few side effects
(in most patients), while chemotherapy is directly harmful to our body.

As this chapter outlined, carefully designed multivalent drugs could be targeted super-
selectively only to cells with cognate receptor concentration above a certain threshold
value [10, 98]. Furthermore, in a living cell, receptor interactions and signalling also play
a role which can further enhance the non-linear response of the system [21, 92, 99–102]
and shearing, for example blood flow, enriches the system further [103, 104].

In a nutshell, multivalency extends the sensitivity of interactions into the receptor
density domain. Moreover, it enables the design of specific, highly selective interactions
based on the concentration of ligands or binders, as well as on their chemical nature,
thus opening up the possibility for selective targeting with minimal side effects.
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2.7 Intermezzo: What is effective molarity ?

Effective molarity (EM) is an empirical concept that is commonly used to relate the
kinetics and equilibria of intramolecular and intermolecular reactions [65–67]. It is defined
as

EM = KA
intra

KA
inter , (2.42)

where KA
intra and KA

inter are the equilibrium association constants. EM has units of
molar concentration and is a useful measure of multivalent interactions efficacy, see
Figure 2.19. For example, when the concentration ρ of multivalent ligands in solution
is high ρ ≫ EM multivalent effects are suppressed and ligands will bind monovalently.
On the other hand when ρ ≪ EM multivalent interactions dominate over monovalent
binding. Additionally, EM allows us to de-convolute the intra equilibrium constant into
a simple part (KA) due to bond formation, and a complicated part (EM) related to the
change of conformational entropy and free energy upon binding, see Refs. [65–69] for
more discussion.

However, it is important not to over-interpret the meaning of “effective” concentrations.
The name suggests that we can calculate the internal chemical equilibria of multivalent
interactions simply by using some effective concentrations of ligands. That, however, is
not quite the case, as the expressions for association equilibrium between two compounds
do not carry over to the situation when the numbers involved are small.

Let us consider a prototypical system: Only two particles (ligands) in a box with
volume V . The particles can associate with an equilibrium constant KA that was
predetermined for us, see Figure 2.20. We wish to calculate the association probability of
these two particles. To obtain the correct result we can calculate the partition functions
of the bound/unbound state.

The unbound (configurational) partition function of two molecules in the box is

qu = V 2 , (2.43)

since we assume both particles are non-interacting and can independently explore the
entire box volume V . The bound partition function is

qb = V v0e
−β∆G , (2.44)

with e−β∆G = KAρ0 the dimerisation free energy and v0 = 1
ρ0NA

the microscopic volume
of the bond and ρ0 = 1M the standard concentration. The ratio of the partition functions
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B!

B!

B!
A!

B!

A!
B!B!

A! A!

A!
B!

B!

A!

KA   

KA EM   

 EM   

Fig. 2.19 The concept of effective molarity. The above cycle shows the 3 different states
that divalent ligands (BB) can bind to two receptors (AA) (unbound state is omitted).
We have 3 distinct states and, therefore, need 2 equilibrium constants to characterise the
equilibrium properties of the system: KA and EM . A product of the two is often called an
intra association constant Kintra

A = KAEM . A useful reference point is that for a divalent
ligand/receptor system and saturated receptors, EM determines the concentration of
divalent ligands [BB] in solution at which we expect equal number of singly and doubly
bonded ligands.

KA   

B!

A!

A  B!

Fig. 2.20 Dimerisation reaction in a small box. We have two particles (a single A-type
and a single B-type) in a box with volume V . We assume that, although the particles
can bind, they do otherwise behave as an ideal gas. We wish to calculate the relation
between probability of dimerisation and equilibrium association constant KA. Simply
calculating effective concentrations of [A], [B] and [AB], and using standard chemical
equilibrium equation [AB]

[A][B] = KA gives a wrong answer.
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determines the probability that a dimer is formed.

1 − pu

pu

= qb

qu

= KA

V NA

, (2.45)

with pu denoting the unbound probability and the probability that two particles are
bound is simply pb = 1 − pu.

On the other hand, if we naively make use of the expression for chemical equilibrium
in a bulk mixture binary chemical equilibrium, we do not reproduce the correct result.
We could simply rationalise that the effective (time averaged) concentration of unbound
chemicals is

[A] = [B] = pu

V NA

, (2.46)

where pu is the probability that A and B are unbound, V is the box volume and we have
added the Avogadro’s number NA to make [A] and [B] a molar concentration. Similarly
for the dimerised state [AB] = 1−pu

V NA
. Hence, in line with standard chemical dimerisation

reaction, we could reason that

KA = [AB]
[A][B] = 1 − pu

p2
u

V NA , (2.47)

which is clearly different from the correct expression (2.45).
Treating the system as a bulk binary reaction is not valid for only two dimerising

particles. The approach is valid in the thermodynamic limit where the chemical potential
of a molecular species can be related to the logarithm of its concentration. What it
boils down to is that Stirling’s approximation is valid only for large number of particles
log N ! ≈ N log N −N , it is clearly wrong when N equals 1 or 2. The same problem occurs
when trying to calculate equilibrium constant from molecular dynamics simulations using
small system sizes [105]

The above example might seem rather abstract. However, it exposes a potential pitfall
of misusing “effective” concentrations. The same pitfall is encountered when calculating
binding probabilities of multivalent ligands, because the reactions shown in Figures 2.20
and 2.19 are very similar. For example, one could naively argue that both the unbound
ligand (A) and receptor (B) in Figure 2.19 are flexible and can explore some effective
volume V and have some effective concentration within this volume. One then applies a
"Local chemical equilibrium" (LCE) assumption [82, 106] which, in our simple system is
given by Eqs. (2.46, 2.47). But this procedure does not generally give a correct result. It
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becomes a good approximation only in the limit of weak binding9 or a very large valency
where the Stirling’s approximation becomes applicable.

It should be clear that effective molarity is not really a concentration 10. Rather, it is
a quantity with the dimensions of concentration, defined by Eqn. 2.42. We can view the
effective molarity as a measure for the probability that an unbound ligand and receptor
would overlap in space (and hence come into position to bind). In an idealised system,
neglecting the effects of the linker and orientational correlations in the unbound state,
this probability is related to an effective concentration of, say, a ligand (B) as experienced
by its complementary receptor (A) [65, 68, 70]. This is exactly the “cloud of ideal ligands”
approximation we have used as a starting point for our theory of multivalent polymer
adsorption (2.8).

In the case of our simplified system of 2 dimerizing particles (Figure 2.20) the effective
concentration ceff of type-A, as experienced by type-B, (or vice versa) is

ceff = 1/(V NA) , (2.48)

where we recall that V is the box volume. We can think of particle A adsorbing to
particle B and the ratio of probabilities of being bound to unbound becomes

pb = KAceffpu , (2.49)

which is consistent with our correct result (2.45). We could view ceffpu as the concentra-
tion of unbound A.

Applying this concept to dimer adsorption (Figure 2.19) we would find that the
empirically calculated effective molarity (2.42) is similar to the theoretical effective
concentration EM ∼ ceff (in our idealised system they are equal). Therefore, effective
concentration, when applied properly, is a useful concept when attempting to theoretically
predict equilibria of multivalent binding.

9for weak binding pu ≈ 1 and Eq. (2.47) becomes a very good approximation to (2.45)
10The effective molarity can be calculated via relative concentrations of singly and doubly bound

states in solution, see Figure 2.19, but EM as such is a property only of the multivalent construct itself,
or a pair of interacting constructs
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3

Multicomponent targeting

This fundamental law [⟨A⟩ = ∑
i Aie

−βEi ] is the summit of statisti-
cal mechanics, and the entire subject is either the slide-down from
this summit, as the principle is applied to various cases, or the
climb-up to where the fundamental law is derived.

– R.P. Feynman

In the preceding chapter we have shown that multivalent carriers (nano-particles or
polymers) can distinguish target surfaces (cells) on the basis of their receptor concen-
tration, rather than just on the basis of the presence of a suitable receptor. Here we
extend our modelling to multiple ligand and receptor types. Our picture remains the
same, see Figure 3.1. We essentially extend the number of receptors nR to a receptor
composition vector n, equivalently the number of ligands k is extended into a vector
specifying a ligand profile on a particle k. Moreover, the binding strength f or the
equilibrium constant Kintra is extended to an interaction matrix K specifying the binding
strengths between all ligand/receptor types.

In this chapter we mainly focus on a complementary problem to super-selectivity: the
total concentration of all receptors is kept fixed and the composition (the relative fractions
of different receptor types is varied). We show that the design rules for such multi-
component targeting are surprisingly simple, and therefore hopefully useful. Specifically,
we show that individual ligand-receptor binding strength needs to be weak, such that
when the guest particle is within interaction range of the surface, each ligand is unbound
30% of the time. To target a specific receptor composition selectively, many weak ligands
work better than a few strong ones. We derive our results using a simple analytical
theory and validate our approach using coarse-grained simulations.
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Cell membrane!

(a)

Cell A! Cell C!Cell B!

(b)

Fig. 3.1 Cartoon pictures representing the multicomponent nano-particle targeting a
receptor decorated membrane. b) The challenge: How to target cell B in the presence of
cells A and C ?

The simulation snapshots of multivalent nanoparticle targeting in Figure 3.2 give a
pictorial illustration of the effect of optimising the ligand concentration profile to target
a mixed receptor surface. We use analytical theory and simulations to rationalise under
what conditions a selectivity towards a specific receptor composition can be obtained.
We focus our attention to multicomponent targeting of surfaces, however, the model can
also be used to illuminate the mechanism behind the sorting ability of cell imprinted
polymers [51, 107].

3.1 Model

Multivalent particle carries ligands of different types i and the particle is characterised
by the ligand profile (vector ki). Similarly, the membrane surface is characterised by its
membrane receptor composition, i.e. number concentrations of different receptor types
on the membrane cj. Upon particle docking to a cell membrane, ligands can bind to the
receptors (see Figure 3.1), the interaction matrix Kij specifies the interaction strength
between different ligand - receptor types. The binding is valence limited, only a single
ligand can bind to a receptor and vice versa. The particle itself has no interactions with
the membrane or the receptors bar the hard sphere repulsion. The model is essentially an
extension of the work presented in the previous chapter, generalised to include different
ligand/receptor types.

We aim to calculate the binding free energy of a multivalent guest nano-particle to a
host membrane and use this knowledge to design a guest particle that can target a specific
receptor concentration profile. The binding free energy can be calculated analytically
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Fig. 3.2 Simulated composition targeting. We perform Grand canonical Monte Carlo
simulation results of ligand functionalised nanoparticles adsorbing to a receptor decorated
flat surface. The surface has 2 different types of receptors embedded (coloured blue and
cyan respectively). The total concentration of receptors is kept fixed, but the composition
is varied across the three snapshots from a) 10% of type 1 receptor (and hence, 90% of
type 2) to b) 20% type 1 and c) 50%, plot on d) shows the corresponding adsorption
profile. The nanoparticle (NP) has 10 ligands with a profile of p1 = p2 = 0.5, and bond
strength ϵ = −3.5kBT . The NPs chemical potential is set to give a volume bulk NP
volume fraction of 10−5. Even though total concentration of receptors is constant, the
particle preferentially targets the surface with a matching composition. The simulation
model used is an extension of Ref. [10]; hard-core nanoparticles with attached soft-blob
ligands.
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3.1 Model

if we assume that ligand binding is uncorrelated (different ligands do not interact) and
receptors are approximated as point-like particles diffusing on a 2D membrane. We
will first describe the analytical theory and later validate its results in comparison to
simulations where ligand arms are modelled explicitly as self avoiding polymers.

3.1.1 Multicomponent theory

To obtain the binding free energy we need to calculate the partition function counting all
possible bonding combinations between receptors and ligands. To simplify the description,
we neglect the interactions between different receptors and we assume that different
ligands bind independently (expect that no two ligands can bind to the same receptor).

The probability that a singe ligand i and a single receptor j form a bond depends
on the equilibrium constant Kij

A for the association reaction in solution, and on the
free-energy cost ∆Gcnf

i , which is due to the loss of configurational entropy of the ligand
upon binding. The value of ∆Gcnf

i depends on the distance between the receptor and the
grafting point of the ligand. However, in the description that we use this is unimportant:
as shown in the Supplementary Information, we can treat ∆G̃cnf

i as if it is constant for
all receptors that are within the range of the ligands, and infinite elsewhere.

For a given ligand grafted within interaction distance of the receptor decorated
surface, the ratio between the probabilities of being in the bound (to receptor type j)
and unbound states is

Pbound

Punbound
= cjK

ij
A

e−β∆G̃cnf
i

h0
≡ cjKij (3.1)

where cj is the surface concentration of receptors, h0 is the interaction range determined
by the length of the polymeric linker. We have defined the effective association constant
matrix Kij, which includes the configurational contribution ∆G̃cnf

i . Note that the first
index in Kij always refers to a ligand i, and the second j always to a receptor. For
instance, Kii describes the equilibrium constant for binding between ligand i and its
cognate receptor i. Emphatically, it does not mean that ligand i and receptor i are the
same species. Similarly, Kij describes the ‘cross’ binding of ligand i with the receptor
cognate to ligand j. Kij is, in general, not the same as Kji, which describes the ‘cross’
binding of ligand j with receptor cognate to ligand i.

Let us first focus on a single ligand of type i. In the case of mobile receptors, the
chemical potential of the various receptors is fixed and we can write the ligand partition
function (i.e. semi-grand canonical partition function normalised by the unbound state)
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as
qi,1 ligand = 1 +

∑
j

e−β(∆Gij+∆G̃cnf
i −µR,j) = 1 +

∑
j

cjKij. (3.2)

as the ligand can be either unbound (weight 1) or bound to any receptor type j with
bond energy ∆Gij , ∆G̃cnf

i is the configurational contribution discussed above and µR,j =
kBT log(cj/h0ρ0) is the chemical potential of receptor type j. For convenience we chose
to operate with concentrations cj and equilibrium constants Kij; matrix Kij has useful
properties as we shall see below.

We assume that different ligands are uncorrelated, hence the partition function of
the ligands of the guest particle at the membrane is simply a product over all ligands.
As shown in the section on free-energy derivation, the fact that the receptors do not
interact and are in contact with a reservoir (the remainder of the cell surface) simplifies
the expression of the partition function for ki ligands of type i: qi =

(
1 +∑

j cjKij

)ki .
If there are several different ligands, the total partition function (again at constant

chemical potential of the receptors) is a product of the expression for the individual types

Qb =
∏

i

qi =
∏

i

1 +
∑

j

cjKij

ki

. (3.3)

The binding free energy for a guest particle near the cell surface is denoted by
∆Fb ≡ −kBT ln(Qb). We can also express the average binding free-energy per ligand as

fb = β∆Fb

k
= −

∑
i

pi ln
1 +

∑
j

cjKij

 , (3.4)

where k = ∑
i ki is the total number of ligands. fb is simply a sum of the contributions of

the individual ligand-receptor types due to chemical recognition. pi = ki

k
is the particle

profile, i.e. specifying the fraction of ligand types on the guest particle.
When computing the binding free energy of a particle to a cell surface, we must also

include the free-energy cost ∆F0 of bringing the host particle sufficiently close to the
surface to allow ligand-receptor binds to form. Then the total binding free energy is of
the form:

∆F = ∆Fb + ∆F0, (3.5)

where the first term on the right hand side accounts for the free energy due to ligand-
receptor bond formation. ∆F0 will include any non-specific interactions ∆Fns and will
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depend on the details of the cell membrane and the guest particle

∆F0 = ∆Fns − kBT log(a2h0ρ0NA) . (3.6)

a2h0 can be recognised as an ‘effective volume’ that a guest particle must enter from
solution in order to be able to start forming bonds, a is the particle size and h0 the
interaction distance discussed above.

In order to directly relate to experimental observations we write the ‘avidity’ equilib-
rium constant of a multivalent nanoparticle adsorbing to a receptor decorated surface

Kav
A = e−β∆F

ρ0
= Qb

e−β∆F0

ρ0
. (3.7)

To successfully apply our theory to a general multivalent system, two constants would,
most probably, need to be determined experimentally. The first one is the configurational
contribution to a single bond e

−β∆G̃
cnf
i

h0
, the second constant is F0 which essentially

determines the free energy of a host-guest interaction without forming any bonds. Both
constants can be straightforwardly determined by measuring the avidity Kav

A (or the
apparent host/guest equilibrium constant), details are provided in the section on fitting
experiments.

For what follows F0 (3.6) is unimportant, because we assume that it is the same
irrespective of the ligand composition of the guest particle. In that case F0 drops out of
the expressions that determine the selectivity. We expect the constant F0 assumption
to hold as long as the physical properties of different ligands are not too dissimilar, for
example, the assumption would break if the disparity polymeric linker length (connecting
ligands to the particle) is large.

The probability that a ligand of type i is un-bound is given by

pu
i =

1 +
∑

j

cjKij

−1

, (3.8)

With this definition, Eqn. (3.4) can be written as

fb =
∑

i

pi ln pu
i . (3.9)

We note that this expression could be interpreted as (minus) the cross-entropy between
the two distributions pi and pu

i .
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3.1 Model

Next, we consider what is the optimal functionalisation for a guest particle to bind to
a cell surface with receptor concentrations cj.

3.1.2 Selectivity optimisation

A necessary condition for a particle to binds preferentially to a cell with a specific receptor
density profile ci, is that the free energy (3.9) is lower for the target host cell than for a
cell with any other receptor composition. To make a meaningful comparison, we compare
hosts with the same total receptor concentration cT ≡ ∑

i ci, because the binding can
always be made stronger by increasing the total receptor concentration as we have shown
in the context of super-selectivity in the preceding chapter.

We then have to minimise the binding free energy

fb = −
∑

i

pi ln
1 +

∑
j

cjKij

 (3.10)

subject to two constraints ∑
j

cj = cT ,
∑

i

pi = 1 . (3.11)

Obviously, all concentrations and equilibrium constants must be non-negative: cj ≥ 0,
pi ≥ 0, Kij ≥ 0. The total binding free energy kfb is trivially proportional to the total
number of ligands k (3.4), hence the overall binding strength can be controlled by varying
k.

We first consider which host profile binds most strongly to a guest particle, that is,
we need to determine the receptor profile c0 that minimizes the binding free energy. This
problem is trivially solved using Lagrange multipliers.

∇(fb + λccT ) = 0 (3.12)

which becomes
∂fb

∂cl

= −λc (3.13)

with λc the Lagrange multiplier. Inserting (3.10) into the above and differentiating we
find ∑

i

piKil

1 +∑
j cjKij

= λc (3.14)

which must hold for every index l. Given arbitrary c0 we can chose any p and K that
satisfy the above equation, and by definition the c0 will be a minimum.
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3.1 Model

At this point the problem is under constrained, there are infinitely many possible
choices of pi and Kij that satisfy the above set of equations. We will additionally require
that the minimum is as sharp as possible in order to bind specifically to a chosen receptor
profile. Hence we will define the selectivity S as the second derivative (i.e. the Gaussian
curvature or, generally, the determinant of a Hessian matrix) at c0

S(c0) = det
(

H(fb(c))c0

|fb(c0)|

)
, (3.15)

here H(fb(c))c0 is a Hessian matrix (matrix of second derivatives) evaluated at c0. The
free energy is also a convex function of c, therefore H is positive and we used an absolute
value of the free energy |fb(c0)| in the denominator to define selectivity as the relative
curvature of the free energy. It is important to define the selectivity as the relative, rather
than the absolute, curvature. The absolute value of the free energy can be controlled
by the number of ligands k (3.4), therefore, by optimising for the relative curvature, we
obtain the largest possible curvature at an arbitrarily chosen value of the free energy
∆Fb. As one would intuitively expect, a diagonal interaction matrix Kij = 0, i ̸= j gives
the maximum selectivity (see below). However, the optimal values of diagonal elements
Kii or ligand composition pi are not a trivial function of the composition c0.

In general, finding the maximal selectivity by solving ∇S(c0) = 0 is non-trivial, see
section on numerical optimisation below. However, we can greatly simplify the solution
by sacrificing a small amount of selectivity. We achieve this by also requiring that the
binding free energy is optimised with respect to the ligand profile p. This is not a
necessary condition as we wish to target host cells with guest particles, not target the
guest particles with host cells. However, by imposing this additional condition, we greatly
simplify the problem, whilst the optimal selectivity only decreases marginally as will be
shown below. The condition that the binding free energy is a minimum with respect to
the ligand composition profile on a guest particle p is, again imposed using a Lagrange
multiplier λp:

∂fb

∂pi

= − ln
1 +

∑
j

cjKij

 = −λp, (3.16)

which must hold for every i. Using (3.8) we find a simple result

pu
i = e−λp . (3.17)

We recall that pu
i is the probability that a ligand of type i is not bound. The fact that

λp in Eq. (3.17) is a constant implies that all ligands should have the same probability

56



3.1 Model

to be bound pb
i = 1 − pu

i . Hence, any ligand profile p will yield the same fb = −λp. In a
sense, this result is trivial: it simply states that if all ligands are equally likely to bind,
then a small change in the ligand profile will not change the overall host-guest binding
free energy. This results is emphatically not a design rule to ‘target’ guest particles
by cells (in fact, the rule states that, in the optimal case, the cells cannot distinguish
between different particles). But luckily we are interested in the opposite problem, namely
the targeting of cells by guest particles. That problem does have a unique, non-trivial
solution.

We shall define relative cross-binding terms κij which are determined by the specificity
of the ligands and receptors:

κij = Kij

Kii

= e−(∆Gij−∆Gii)/kBT . (3.18)

We remember ∆Gij as the Gibbs free energy of monomeric ligand-receptor dimerisation in
solution. The configurational term ∆Gcnf

i in the definition of Kij (Eq. (3.1)) is the same
for all receptors j and cancels out in the above expression. Therefore κij are constants
determined by the association matrix ∆Gij, i.e. constants determined by the choice of
ligands. We assume that the overall strength of the interaction can be tuned by changing
∆Gcnf

i via, for example, the polymer linker length.
Inserting (3.16) into (3.14) we find that the solution must satisfy

∑
i

piKij = λce
λp , ∀j, (3.19)

additionally (3.16) can be rearranged to

∑
j

cjKij = eλp − 1, ∀i. (3.20)

There are 2d equations and 2d+1 unknowns (taking into account that relative off diagonal
elements are constants (3.18) and ∑i pi = 1) and the “dimensionality” d = rank(K) is
determined the rank of matrix K or, equivalently, the number of distinct ligand types.
Therefore, the above equations determine the ligand profile p and all interaction strengths
Kii up to a constant λp.

If K is a diagonal matrix (only cognate interaction) or, more generally, a symmetric
matrix (Kij = Kji, i.e. the off diagonal equilibrium constant for the cross-binding of
ligand i and receptor j is the same as that between ligand j and receptor i) the above
equations imply that the profile of the particle p must match the composition of the

57
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receptors c
pi = ci

cT

(3.21)

and the Lagrange multipliers are related

λc = 1 − e−λp

cT

(3.22)

with cT = ∑
j cj the total receptor density. In general, for non-symmetric matrices K,

the optimal ligand profile p can be calculated by simultaneously solving the above set
of equations (3.19,3.20). However, Eq. (3.21) will provide a very good approximation
whenever cross-binding is weak and cognate interaction dominates: Kii ≫ ∑

j ̸=i Kij.
The only remaining step is to determine the optimal strength of the interaction

captured by the constant λp. We optimise the selectivity (3.15) given by the determinant of
the Hessian matrix. An element of the Hessian matrix is obtained by twice differentiating
the free energy (3.10)

Hkl = ∂2fb

∂ck∂cl

=
∑

i

piKikKil

(1 +∑
j cjKij)2 . (3.23)

Using Eq. (3.18) we rewrite Eq. (3.20) in the form Kii = eλp −1∑
j

cjκij
. Inserting this

expression and Eqs. (3.20,3.18) into the above equation we find that every element of the
Hessian matrix decouples into a term that depends only on λp and the remainder Ĥkl

Hkl =
(
1 − e−λp

)2∑
i

piκikκil

(∑j cjκij)2 = (1 − e−λp)2Ĥkl . (3.24)

We have defined the remainder Ĥkl = ∑
i

piκikκil

(
∑

j
cjκij)2 which does not depend on λp, in

fact the values of all Ĥkl are at this point already determined by the solution to Eqs.
(3.19,3.20) above. Since λp is a constant for the whole matrix H, the determinants are
related by a factor: det(H) = (1 − e−λp)2d det(Ĥ).

We use the above relation and fb(c0) = −λp from Eq. (3.16) to express the selectiv-
ity (3.15) in terms of the Lagrange multiplier λp

S = det(H(fb))
|fb(c0)|

=


(
1 − e−λp

)2

λp


d

det(Ĥ) , (3.25)

we remember that d denotes the number of distinct ligands. Evidently, the optimal λp is
given by ∂S

∂λp
= 0. Since Ĥ does not depend on λp the derivative is simple to work out.
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The non-trivial solution satisfies

eλp − 2λp + 1 = 0, (3.26)

and is given by the −1st branch of the Lambert W function

λp = −W−1

(
−1
2
√

e

)
− 1

2 ≈ 1.25643 · · · (3.27)

approximated to the first 6 digits. This is our most important result. It states that the
binding free energy of each ligand to the surface should be fb ≈ −1.3kBT irrespective of
the details of the system.

Figure 3.3 shows the variation of the binding free energy with changing receptor
composition obtained from the analytical model. To derive this result we have assumed
that the interaction matrix is diagonal. Furthermore, Figure 3.4 shows that optimal λp

is independent of the value of the cross-binding terms in K. The selectivity, however,
diminishes with added cross-binding. Figure 3.4b) also shows how the optimal ligand
profile differs from our simple design rule (3.21) if the cross-binding is strong and the
interaction matrix K is not symmetric. In the particular example on Figure 3.4b), the
type 1 ligand can bind to both receptor types, but the type 2 ligand can only bind to
receptor type 2.

In practice we might wish to distinguish a surface with 20%-80% composition (c1 = 0.2)
form a surface with inverted 80%-20% composition. From Figure 3.3 we see that the
difference in the free energy is about ∆fb ∼ 0.5kBT per ligand. This does not appear
much, however, particles can easily have 10-20 ligands (or more) if we require a total
binding strength in the region of 10 − 25kBT . The difference in the total thus becomes
substantial ∆∆F ∼ 5−10kBT . Furthermore, Figure 3.5 demonstrates that increasing the
number of targeted types increases the selectivity because the optimal region becomes a
smaller fraction of the total space with increasing dimensionality.

In the treatment presented we have optimised the curvature of fb which results in
generally applicable design rules. However, knowing in advance exactly the composition
c of possible surfaces, the selectivity can be optimised further. Let us reuse the example
above, if we consider only two types of surfaces 20%-80% and 80%-20%, then optimal
targeting results from optimising the free energy difference between these two surfaces.
This will in principle yield a different result from optimising the curvature at a targeted
surface. We will illustrate this in greater detail in the following chapter on molecular
imprinting.
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Fig. 3.3 Binding free energy per ligand as a function of the cell receptor composition.
Different curves correspond to different particle profiles p ≡ p1 = 1 − p2 refers to the
the fraction of type 1 ligands. We have used (3.10) to calculate the free energy with our
design rules (3.19 - 3.22, 3.27). We have 2 ligand and 2 receptor types and only consider
cognate interaction Kij = 0, for i ̸= j.
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Fig. 3.4 Selectivity of targeting with 2 ligand types and the effect of cross-binding. a)
The selectivity S (3.15) as a function of bond strength (Lagrange multiplier) λp for
different magnitudes of cross binding κ12, with fixed κ21 = 0. Cross binding diminishes
the selectivity, but the optimal λopt

p ≈ 1.25643 remains constant. b) The selectivity S at
optimal λopt

p (the peak value in a)) decreases monotonically with cross binding terms κ12.
We also plot the optimal ligand profile p1, calculated by solving (3.19,3.20), as function of
the cross binding term κ12. Parameters: c1 = 0.3cT , κ21 = 0, κii = 1 by definition (3.18).
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(a) p1 = 0.33, p2 = 0.33
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Fig. 3.5 Binding free energy as a function of the composition of ligands on a cell - 3
different ligand-receptor species. Contour plots as a function of the composition of
membrane receptors c1 and c2, with c3 = 1 − c1 − c2 given implicitly, we have assumed
cT = 1. The plots were generated using (3.10) and the optimal selectivity rules (3.19
- 3.22, 3.27).

3.1.3 Cross entropy analogy

The expression for the binding free energy (3.9) is very similar to the cross entropy
between distributions pi and pu

i , however, pu
i is not a true probability distribution as

it is not properly normalised. By defining a normalised distribution p̂u
i = pu

i /a, with
a = ∑

i pu
i the normalisation constant, the binding free energy becomes

∆fb =
∑

i

pi ln p̂u
i + log

∑
i

pu
i = −H(p, p̂u) + E(pu), (3.28)

where H(pi, p̂u
i ) is the cross entropy and E = log∑i pu

i is a "cost function" analogous
to energy, it measures the overall strength of a bond. If bonds are weak then pu

i ∼ 1
and E > 0 . Conversely, with strong bonds pu

i ∼ 0 and E will be negative. The cross
entropy can further on be written as the sum of Shannon entropy and Kullback-Leibler
divergence

H(pi, p̂u
i ) = −

∑
i

pi ln pi +
∑

i

pi ln pi

p̂u
i

= H(p) + DKL(p||p̂u). (3.29)

Such that the binding free energy per ligand becomes

∆fb = E(pu) − H(p) − DKL(p||p̂u). (3.30)
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The first term E(pu) captures the overall bond strength ("energy"), the second H(p)
is the Shannon entropy of the ligands, it measures the diversity of the ligands on the
particle. The Kullback-Leibler divergence DKL(p||p̂f ) is measure of the difference between
the two distributions p and pu. Hence, to minimize the free energy: Energy favours
strong individual bonds pu ≪ 1, Entropy favours uniformity pi ∼ 1/d, with d the number
of ligand types, finally, the Kullback-Leibler divergence favours the two distributions to
be as different as possible. The interplay and competition between the three different
terms results in simple design principles for optimal targeting.

3.2 Design rules

Our analytical calculations suggest simple design rules to make multi-valent guest particles
that target a particular receptor composition.

• pi = ci/cT , the profile of the nanoparticle should match the density composition of
the targeted cell. As shown in the section on Poisson fluctuations below, this is
not a condition on the average ligand profile. It really means that, ideally, every
guest particle should have precisely the optimal ligand profile. In fact, if only the
averages are fixed and the number of ligands is Poisson distributed, the selectivity
is lost.

• It is useful to avoid cross-binding (i.e. Kii should be diagonal) and the value
of Kii = eλp−1

ci
should be inversely proportional to the density ci: The constant

λp = 1.256, which states that ligand binding should be weak, with each ligand
independently having the probability of being bound at most 70%.

• the greater the number of ligand types, the higher the potential selectivity.

• The overall binding free energy ∆F of the particle is proportional to the number
of ligands per particle (valency k). Valency should be chosen such to give a desired
absolute of value host-guest interaction, for Langmuir adsorption the optimal overall
free energy will be close to the chemical potential of the guest particles in solution
∆F ∼ µ. This would ensure that a targeted surface would be appreciably covered,
but not yet saturated, with multivalent particles.

For clarity, we restate the main model assumptions used to arrive at these design
rules: (i) ligands bind independently and are physically equivalent, i.e. all unbound
ligands behave exactly the same, the only difference between ligand types is their affinity
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to receptors. (ii) all ligands of a (surface bound) particle can reach surface attached
receptors, (iii) the surface bound receptors are mobile and their number density is
sufficiently large such that the fraction of bound receptors always remains low. Therefore,
we treat the membrane as a reservoir for receptors with a constant chemical potential
(or a constant density) of unbound receptors. (iv) receptors, ligands or particles have no
interactions except for the steric (hard-core) repulsion and ligand-receptor affinity.

3.3 Further numerical optimisations

In our analytical treatment we have over-constrained the binding free energy (3.16);
specifying that it must be a minimum with respect to the variation of the ligand profile
on the particle. This might be desirable in practice, but is in principle not a necessary
constraint. We introduced the constraint to simplify the analytical derivation, removing
it increases the selectivity somewhat. However, the result cannot be cast in terms of
simple design rules. Figures 3.6 and 3.7 shown the comparison between our reference
solution determined by our design rules (using the constraint (3.16)) and the optimal
unconstrained solution obtained numerically. Furthermore, Figure 3.6 shows that the
numerically optimised solution results in a more skewed optimal ligand profile and binding
strengths. This solution might be unpractical and harder to realise in a fabrication
process.

3.4 Derivation of the simple analytical model

In the case of mobile receptors the expression for the bound partition function of a
multivalent particle to the receptor decorated membrane is given approximately by (3.3):

Qb =
∏

i

1 +
∑

j

cjKij

ki

. (3.31)

which we used to derive our design rules for composition targeting. We remember that
cj is the receptor type j concentration on the host, ki = kpi is the number of ligands of
type i on the guest particle and Kij is the interaction matrix.

We will start from basic statistical mechanics and show what approximations are
necessary to arrive at our simplified expression (3.31). We assume that receptors are non-
interacting and mobile on the flat host surface and can, therefore, be effectively described
as solutes in a 2D ideal solution. Below we also provide a more tedious derivation showing
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Fig. 3.6 Optimising selectivity, 2 ligand/receptor types. The plot shows the binding
free energy fb/fmin

b normalised by the minimum, the targeted composition is at c0 =
[0.25, 0.75]. The standard result for the design of the particle is pstd

1 = 0.25 Kstd
11 =

10, Kstd
22 = 3.34. The optimal numerically obtained solution is more skewed copt

1 = 0.07
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11 = 26.3, Kopt
22 = 0.34.
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Fig. 3.7 Optimising selectivity, 3 ligand/receptor types. These landscape plots show
the relative binding free energy fb/fmin

b . Selectivity S can be further increased (beyond
our standard design rules) by optimising the compositions pi of particles and binding
strengths. Targeted composition is c0 = [0.2, 0.2, 0.6].
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that the same result is expected for immobile receptors with fixed but random positions
on the host surface. We treat the host membrane as a flat hard surface and the particle
coated with flexible polymeric arms, each carrying a ligand. A model where the ligands
are rigidly attached to a particle, but the host membrane is flexible (either because the
membrane is deformable or receptors themselves are flexible polymeric entities), will
show qualitatively very similar results. It is important to somehow introduce flexibility in
ligand-receptor bonding; multiple possible combinations of forming bonds are necessary
for selectivity. However, the bonding flexibility can be achieved in many different ways:
flexible ligands, flexible receptors or a deformable membrane with mobile receptors.

In our theoretical analysis the guest particle is treated as a hard sphere with attached
polymeric ligand arms, shown schematically on Figure 3.1. The particle is grafted with a
total of k polymer linkers, each linker caries a ligand at the tip. The host surface is a
flat hard surface with mobile receptors. This is exactly our model used in simulations of
multivalent particle adsorption. To arrive at our simple theory, we make a number of
approximations: (i) ligand binding is uncorrelated; bound/unbound state of a ligand will
not affect the probability that another ligands binds, bar the restriction that at most
a single ligand can bind to a receptor. (ii) Ligands themselves are non-interacting and
their positions are independent, for this to hold we must assume that ligand grafting
points are mobile on a particle surface.

We fix the position of the particle at a height h above the surface. The configurational
free energy ∆Gcnf (ri′ , ra

i′) captures the, mainly entropic, effects of displacing the ligand
ri′ with respect to the anchor (grafting) point on the particle ra

i′ . We use primes i′ to
denote a specific single ligand, while a standard index i denotes the ligand type, we also
implicitly assume an existence of an indicator function that maps every ligand i′ and
receptor j′ to its type i or j, respectively. If the polymer linker is a flexible polymer the
∆Gcnf (ri′ , ra

i′) will be approximately a quadratic function of the distance |ri′ − ra
i′|. For

brevity, we neglect any angular contribution to ∆Gcnf (ri′ , ra
i′), we also neglect the effects

of the chemical coupling of ligands to the polymer linker and the interactions between
the ligand and the particle. All of these contributions will uniformly change ∆Gcnf by a
constant value and can be fitted from experiments as discussed below.

The bound partition function of a specific ligand i′ with its grafting point at position
ra

i′ reads
qb(ra

i′) =
∑

j

e−β∆Gij cj

∫
S

e−β∆Gcnf (ri′ ,ra
i′ ;zi′=0)δ(zi′)dri′ , (3.32)

where we remember e−β∆Gij as the Gibbs free energy interaction matrix from solution,
cj is the surface concentration of receptor type j, the integration is performed over the
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3.4 Derivation of the simple analytical model

surface section S, which must be large enough such that ∆Gcnf is negligible outside of
this area. δ(zi′) is the Dirac delta function constraining the zi′ coordinate of the ligand
to lie on the surface zi′ = 0. We proceed by integrating the ligand anchor point over the
colloid surface, the bound partition function of ligand i′ with a particle at height h is

qi
b(h) =

∫
C

qb(ra
i′)dra

i′ =
∑

j

e−β∆Gij cj

∫
C

dra
i′

∫
S

e−β∆Gcnf (ri′ ,ra
i′ ;zi′=0)δ(zi′)dri′ , (3.33)

with
∫

C an integral over the particle surface. Note that we have used a normal index
i denoting a ligand type. For every particular ligand i′ that is of the same type i, this
integral returns the same value.

The unbound partition function of the same ligand is

qi
u = 4πr2

npqu(ra
i′) = 4πr2

npρ0

∫
V

e−β∆Gcnf (ri′ ,ra
i′ )dri′ , (3.34)

where the 4πr2
np comes from integrating over the particle surface, with rnp the (nano)particle

radius, because for noninteracting unbound ligands the volume integral
∫

V of the ligand
position ri′ does not depend on ra

i′ . Also qi
u does not depend particle height h. ρ0 = 1M

is the standard concentration with respect to the interaction matrix ∆Gij.
The ratio of the partition functions determines the ratio or probabilities of finding a

ligand i in the bound to unbound state

pi
bound

pi
unbound

= qi
b(h)
qi

u

= K̃i(h)
∑

j

e−β∆Gij cj . (3.35)

The ligand can be attached to any receptor type j, hence the sum. We have introduced

K̃i(h) =
∫

C dra
i′
∫

S e−β∆Gcnf (ri′ ,ra
i′ ;zi′=0)δ(zi′)dri′

4πr2
npρ0

∫
V e−β∆Gcnf (ri′ ,ra

i′ )dri′
, (3.36)

which measures the configurational (mostly entropic) cost of localising a ligand i at a
surface with the particle at height h above the surface. We expect this cost to increase
with increasing height h due to the polymeric linker stretching penalty captured by
∆Gcnf (ri′ , ra

i′). Therefore, the ligand will have an appreciable probability of being bound
only when the particle is within an interaction distance h0 of the surface and binding
probability vanishes for large h as qi

b(∞) = 0.
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3.4 Derivation of the simple analytical model

The partition function of the whole particle at height h is, for noninteracting ligands,
simply a product over all ligand types

Q(h) =
∏

i

(
qi

u + qi
b(h)

)ki

, (3.37)

because each ligand can independently be in either a bound or unbound state and we
remember ki as the number of ligands of type i. In order to obtain meaningful predictions
for the binding free energy of particle attachment, we must take a ratio of bound to
unbound partition function

e−β∆Fb(h) = Qb(h) = Q(h)
Q(∞) =

∏
i

(
1 + qi

b(h)
qi

u

)k

i

=
∏

i

1 + K̃i(h)
∑

j

e−β∆Gij cj

ki

,

(3.38)
which determines the free energy difference ∆Fb(h) or the normalised partition function
Qb(h) for a particle at height h with respect to a particle free in a solution. Eq. (3.35)
shows that this free energy difference is related only to the probabilities of individual
ligands being bound or unbound.

In practice, the relevant measure is the free energy of a bound particle at a surface,
hence, the above equation needs to be integrated over h. We need some sort of a cutoff
specifying how we determine a bound particle. One possibility is to consider only particles
with at least a single bound ligand

e−β∆Fb = 1
h0

∫ ∞

0
Qb(h) − 1 dh =

∫ ∞

0

∏
i

1 + K̃i(h)
∑

j

e−β∆Gij cj

ki

− 1

 dh , (3.39)

another option is to consider all particles within a cutoff height hcutoff

e−β∆Fb = 1
h0

∫ hcutoff

0
Qb(h) dh =

∫ hcutoff

0

∏
i

1 + K̃i(h)
∑

j

e−β∆Gij cj

ki

dh . (3.40)

For sufficiently large hcutoff such that Qb(h > hcutoff) ≈ 1 and dilute solutions (negligible
probability to find a particle with no formed bonds within hcutoff ) the two forms
will return the same value for ∆Fb. We chose the second expression (3.40) as our
definition of choice because it conveniently enables writing the free energy as a sum
over individual ligand contributions. In the preceding chapter on super-selectivity an
alternative definition (3.39) was used. The constant h0 reflects the interaction range
and must be included for dimensionality consistency and our choice of definition of
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3.4 Derivation of the simple analytical model

Fb. The same constant is also present in the zero-bond free energy reference of an
adsorbed particle ∆F0 = ∆Fns − kBT log(a2h0ρ0NA) with Fns including any non-specific
interactions between a particle and the host surface and a2 is the excluded area; i.e. the
surface area occupied by the particle. The total free energy of a guest particle adsorbed
to a host surface

∆F = ∆Fb + ∆F0 = ∆Fb + ∆Fns − kBT log(a2h0ρ0NA) (3.41)

is, therefore, independent of the somewhat arbitrary h0.
To arrive at the expression so far we have only assumed that individual ligands

bind independently and are non-interacting. In order to obtain our simple analytical
model (3.31) we must also approximate K̃i(h) with a step function

K̃i(h) =


e

−β∆G̃
cnf
i

ρ0h0
; h ≤ h0

0 ; h > h0

(3.42)

where e−β∆G̃cnf
i is the mean configurational cost of binding a ligand to a surface, formally

we define it as
e−β∆G̃cnf

i

ρ0
=
∫ ∞

0
K̃i(h) dh . (3.43)

The value of h0 should reflect the interaction range such that K̃i(h) is well approximated
by a constant value within h0, but is negligible otherwise. A choice of

h0 ≈
√

⟨h2⟩ (3.44)

would yield a good estimate. The mean square height
√

⟨h2⟩ is calculated from the
distribution K̃i(h) using a weighted average for different ligand types i. If the same
polymeric linker is used for all ligands, K̃i(h) = K̃(h) will be the same for all ligand
types i.

Inserting the above approximation (3.42) into Eq. (3.40) the integration becomes
trivial and we obtain

e−β∆Fb = Qb =
∏

i

1 + e−β∆G̃cnf
i

ρ0h0

∑
j

e−β∆Gij cj

ki

+ hcutoff − h0

h0
. (3.45)

In what follows, we chose the cutoff height equal to the interaction range hcutoff = h0.
In a practical experiment the cutoff will most probably be determined by a particular
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3.5 Guide to fitting experiments

technique used to measure the surface density of adsorbed particles. hcutoff should not
be smaller than the interaction range h0, on the other hand for very large hcutoff the
term hcutoff−h0

h0
cannot be neglected. However, this term will be important only at high

concentrations of particles in solution in which case it will introduce a small offset in the
measured adsorbed density.

Finally, we define the equilibrium constant

Kij = K̃ie
−β∆Gij = e−β∆G̃cnf

i

ρ0h0
e−β∆Gij , (3.46)

which includes both the configurational (3.43) and the association ∆Gij terms. The
bound partition function can now be written in the simple form (3.31)

e−β∆Fb = Qb =
∏

i

1 +
∑

j

cjKij

ki

. (3.47)

3.5 Guide to fitting experiments

In a practical multivalent system (e.g. a multivalent particle, linear polymer, star polymer,
etc.), we assume that the Gibbs free energy of binding between individual ligand-receptor
types in solution, ∆Gij or equivalently the association constant Kij

A = e−β∆Gij , is known.
In principle we could then calculate the binding free energy, or equivalently, the avidity
association constant of an adsorbing multivalent entity

Kav
A ρ0 = e−β∆F = e−β∆F0 ×

∏
i

1 +
∑

j

cjKij

ki

. (3.48)

In practice, however, both the zero-bond free energy ∆F0 and the configurational
contribution e

−β∆G̃
cnf
i

ρ0h0
might be difficult to calculate. But, they could simply be fitted

from experiments.
A natural starting point is to neglect non-specific interactions and assume that the

multivalent guest can be described using the “cloud of ideal ligands” approximation. This
approximation only takes into account translational entropy contribution and assumes
that unbound ligands can freely explore the entire volume a3 that is occupied by the
multivalent guest; a3 is the volume of the ligand ‘cloud’. For example, in the case of
flexible multivalent polymers this volume is equal to the effective volume of the polymer
a3 = 4π

3 R3
g, with Rg the polymer radius of gyration. In the case of a particle based
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3.6 Poisson fluctuations undermine specificity

multivalent guests the volume a3 should match the excluded volume of the particle.
Within the “ideal ligand cloud” approximation we obtain h0 = a and ∆G̃cnf

i = 0.
Using this approximation and Eq. (3.46) we rewrite the expression for the binding

avidity of a multivalent guest

Kav
A = Azeroa

3NA

∏
i

1 + Acnf

a

∑
j

cjK
ij

A

ki

. (3.49)

We remind ourselves that a is the lateral size of the multivalent guest, cj the surface molar
concentration of receptor type j on the host, Kij

A the interaction matrix specifying affinity
equilibrium constants between a ligand type i and receptor type j from solution and ki is
the ligand valency; the number of ligands of type i on the multivalent guest. The above
expression, therefore, predicts the binding avidity depending on the physico-chemical
properties of the multivalent guest and the surface concentration of receptors.

The two dimensionless fitting constants Azero and Acnf capture the deviation of the
real system from our “cloud of ideal ligands” estimate. Both fitting constants should be
viewed as simple correction factors. Furthermore, the values of the correction factors
need not be close to unity. Experiments on hyaluronic acid based multivalent polymers
presented in the previous chapter (Refs. [15, 16]) determined the equivalent correction
factor Upoly = 4.6kBT , which is related to Acnf = e−Upoly/kBT .

Moreover, the ratio Acnf

a
is related to the widely used “effective molarity” approach

in rationalising multivalent interactions (see section on effective molarity in the previous
chapter or Refs. [66–68, 70]). The number of receptors within interaction area a2 that
a multivalent guest “sees” is nj = a2NAcj, therefore, the second term in (3.49) can be
rewritten by defining the effective molarity EM = Acnf

a3NA
which measures the configurational

contribution to binding between a ligand and a particular receptor within interaction
distance a. Equivalently, some authors fit the effective volume Veff = 1/EM and the
0-valency dissociation constant KD0 = 1

Azeroa3NA
[18].

3.6 Poisson fluctuations undermine specificity

We expect that, in practice, any nanoparticle fabrication technique will introduce some
heterogeneity or polydispersity of the multivalent guest properties. For example, if the
ligands are grafted to the particle or polymer by a purely random (Poisson) process, the
ligand positions will be distributed on the particle uniformly at random. Moreover, the
number of ligands of a specific type per particle will also vary and we expect it to be
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3.6 Poisson fluctuations undermine specificity

Poisson distributed. Multivalent guests will, therefore, exhibit heterogeneous binding. In
this case it is instructive to calculate the expected value for the bound partition function.
We average our expression for the partition function (3.47) over the Poisson distribution
of the ligands on the particles

Qb(k̃, c, K) =
∞∑

k=0

∏
i

e−k̃i k̃ki
i

ki!

Qb(k, c, K)
 , (3.50)

where Qb(k, c, K) is the bound partition function from (3.47) and we explicitly write
it as a function of the ligand profile k, the receptor composition c and the interaction
matrix K. We assume that every ligand type valency ki is Poisson distributed with mean
k̃i, k̃ denotes the mean ligand profile vector and ∑∞

k=0[·] ≡ ∑∞
k1=0

∑∞
k2=0 . . . [·] is a nested

sum over all ki.
Inserting Eq. (3.47) into the expression above and swapping the product and summa-

tion order we get

Qb(k̃, c, K) =
∏

i

e−k̃i

∞∑
ki=0


[
k̃i

(
1 +∑

j cjKij

)]ki

ki!


 , (3.51)

where the inner sum can be recognised as the Taylor expansion for the exponential function.
Therefore, the final result can be written as a product of independent exponential functions

Qb(k̃, c, K) =
∏
i,j

e−k̃iKijcj . (3.52)

We call this form the double exponential form because inserting Eq. (3.46) would yield a
double exponential dependance on the bond free energy ∆Gij.

The total binding free energy of this system becomes simply a sum over all possible
bond pairs

∆Fb = −kBT log Qb(k̃, c, K) = kBT
∑
i,j

k̃icjKij = kBT k̃T Kc , (3.53)

in the last form on the right we have cast the expression in terms of matrix algebra with
k̃T being the transpose of vector k̃.

We stress that in this case the binding free energy is evidently linear in the receptor
composition c. Therefore, the binding free energy can never exhibit a minimum at
an arbitrarily chosen composition c0, regardless of the the ligand profile k and the
interaction matrix K. Hence, for composition specific targeting we need a precise control
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3.7 Free energy derivation for immobile receptors

over multivalent guest fabrication process and synthesis. Multivalent guests must have a
well-defined ligand profile with fluctuations in the profile much smaller than the expected
Poisson fluctuations. An ensemble of guests with Poisson distributed ligands is not
sufficiently selective. Therefore, it appears that DNA origami constructs [108], where the
geometry of the nano-construct can be almost exactly controlled, would be best suited
for receptor composition targeting.

3.7 Free energy derivation for immobile receptors

In the case of mobile receptors the expression for the bound partition function of a
multivalent particle to the receptor decorated membrane is given by (3.47). Here we
show that the same expression is obtained as an expected value even when receptors have
fixed positions (for example, due to being attached to the cytoskeleton), provided that
receptors are randomly distributed and the surface coverage with guest is small. The
canonical partition function (fixed number of both ligands and receptors) has previosly
been derived by Angioletti-Uberti et. al. [87]. We re-derive the canonical result and use
Poisson averaging to obtain our simple expression (3.47).

We start with the bound partition function of a multicomponent guest binding to a
receptor decorated host surface. The positions of receptors and ligands are designated
with vectors rR and rL, respectively, nR and k are the total number of receptors and
ligands, respectively. As before, we will denote individual ligands with a prime i′ and
individual receptors with j′ , therefore, rj′ designates a position of receptor j′ and ri′

a ligand i′ position. We will use a convention that a prime on a script i′ denotes a
particular binder, while a standard subscript i refers to the type of a binder.

The partition function counting all possible binding configurations for fixed positions
of receptors and ligands is a sum over all possible number of bonds λ, and a sum
over all possible configurations with λ bonds, s(λ). The ∏{i′j′}(s) e−β∆Gij e−β∆Gcnf (ri′ ,ra

i′ )

is the Boltzmann factor, with ∆Gcnf(ri′ , ra
i′) the configurational contribution to the

bond already discussed in detail above. We have assumed that individual bonds are
uncorrelated and the Boltzmann factor is factorised by individual bonds {i′j′}(s) present
in the given binding configuration s. The pair {i′j′} defines a bond. We implicitly assume
an existence of an indicator function mapping any individual i′ or j′ to their type i or j;
we write ∆Gij, not ∆Gi′j′ .

72



3.7 Free energy derivation for immobile receptors

The bound partition function of a single ligand linker grafted at position ra
i′ and

bound to a specific receptor j′ is

qb(ra
i′ ; rj′) = e−β∆Gij e−β∆Gcnf (rj′ ,ra

i′ ). (3.54)

In the bound state the location of the ligand position ri′ = rj′ is the same as the location
of the receptor. Similarly to the mobile receptor case above (3.33), we proceed by
integrating the ligand anchor point over the particle surface, the bound partition function
of a ligand of type i bound to receptor j′ with the (nano)particle at position rnp is

qi
b(rnp; rj′) =

∫
C

qb(ra
i′ ; rj′)dra

i′ = e−β∆Gij

∫
C

e−β∆Gcnf (rj′ ,ra
i′ )dra

i′ , (3.55)

with
∫

C an integral over the particle surface and an index i only means that, when
integrated over the particle surface, any ligand of type i will yield identical bound
partition function. The unbound partition function qi

u is not affected by receptor mobility
and is given by Eq. (3.34) derived above for the mobile receptors case. The ratio of
partition functions determines the ratio of probabilities of ligand i being bound to a
particular receptor j′, to being unbound

pij′

bound
pi

unbound
= qi

b(rnp; rj′)
NAqi

u

= e−β(∆Gij+∆G̃cnf (rj′ ,rnp)) . (3.56)

Note that this ratio depends on the exact position of the particle rnp, not only on the
particle height h. We have used the Avogadro’s number NA in the denominator because
qi

u was defined with molar units (3.34) via the standard concentration ρ0. e−β∆G̃cnf (rj′ ,rnp)

is the integrated configurational cost of forming a bond to a receptor j′, with respect to
the unbound state, for a particle at position rnp.

The partition function of the whole particle at position rnp, normalised by the unbound
particle in the solution can be written as

Q(rnp, rR)
Q(h = ∞) = Qb(rnp, rR) =

k∑
λ=0

∑
s(λ)

exp
 ∑

{i′j′}(s)
−β

(
∆Gij + ∆G̃cnf (rj′ , rnp)

) , (3.57)

a sum over all possible number of bonds λ, a sum over all possible bonding configuration
s(λ) specifying which ligand is bound to which receptor, and finally a sum inside
the exponential over all formed bonds {i′j′} to obtain the free energy of the bonding
configuration, relative to the unbound state.
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3.7 Free energy derivation for immobile receptors

Integrating over lateral positions of the particle we obtain the average bound partition
function for fixed receptors and a particle at height h above the surface

Qb(h, rR) = 1
S

∫
S

Qb(rnp, rR)δ(znp − h)drnp (3.58)

= 1
S

∫
S

k∑
λ=0

∑
s(λ)

exp
 ∑

{i′j′}(s)
−β

(
∆Gij + ∆G̃cnf (rj′ , rnp)

) δ(znp − h)drnp ,

where the delta function δ(znp − h) keeps the particle at specified height h. This is a
very hard expression to evaluate: firstly, we must explicitly consider all possible bonding
arrangements for each and every particle position rnp, we cannot assume independent
binding as in the mobile case (3.38) because a ligand bound to specific receptor j′ will
prevent another ligand from binding to the same receptor. Secondly, we must integrate
over the whole surface.

To form a connection between mobile and immobile receptors we essentially make
use of the ergodic hypothesis: the time average of mobile receptors binding to a guest
particle (and hence the spatial average over all receptor positions) will be the same as
the spatial average over all possible particle positions on the surface with immobile, but
randomly distributed receptor positions

1
Sn

∫
Sn

(drR)nQb(rnp, rR) ≈ 1
S

∫
S

drnpQb(rnp, rR) , (3.59)

with n the total number of receptors within the surface S. For an infinitely large surface
the two integrals will yield an identical result, on the other hand, in a finite sized system
with a given rR the relation is only approximate. However, the integral over mobile
receptors (left hand side of (3.59)) will always yield an expected value for ⟨Qb(h, rR)⟩
if only the number density of immobile receptors, but not their exact positions rR, is
known.

In the following, we will focus on evaluating the left hand side integral (3.59) for an
infinitely large surface and prove that it equals to Eq. (3.38), in this way we also show
how a mobile receptor system can be derived by starting from fixed receptor positions rR.
The integral over all receptor positions factorises

Qb(h) = 1
Sn

∫
Sn

(drR)nQb(rnp, rR) (3.60)

=
m∑

λ=0

∑
s(λ)

∏
{i′j′}(s)

e−β∆Gij
1
S

∫
S

e−β∆G̃cnf (rj′ ,rnp)drj′ ,

74



3.7 Free energy derivation for immobile receptors

we have used Eq. (3.57) and converted a sum in the exponential into a product of
exponentials. Because the integral over receptor positions decouples, we only need to
consider the bound receptors, all unbound receptors contribute a factor of 1 as we use
a normalised (3.57) partition function. Using Eq. (3.56) we recognise the integral on
the right hand side is the same as Eq. (3.36) defining K̃i(h). Hence, we can write the
partition function as

Qb(h) =
k∑

λ=0

∑
s(λ)

∏
{ij}(s)

K̃i(h)
NAS

e−β∆Gij , (3.61)

which returns a similar expression to (3.57), however, explicit dependance on the guest
particle and specific receptor positions has been integrated out. The product can now
be factorised over types {ij}. The surface area S should be large enough such that the
probability of a particle forming bonds outside this area is negligible, as we shall see
below, the expected value of Qb(h) depends on the receptor density n

S
, and not on the

value of S used in the calculation. Eq. (3.61) is still very hard to evaluate because we
must consider all possible bonding arrangements between n receptors.

The total number of possible bonding arrangements s(λ) can be written in terms
of the multinomial distribution. We define the number of states Ω for a given number
of formed bonds between ij ligand/receptor types λij. Note that λ is a matrix. The
partition function is a sum over all possible matrices λ

Qb(h) =
k∑

λ=0
Ω(λ)e−

∑
ij

βϵijλij . (3.62)

where, for clarity of expressions below, we have defined an effective bond strength as

e−βϵij ≡ K̃i(h)
NAS

e−β∆Gij (3.63)

and the sum represents a nested sum over all distinct receptor ligand pairs {ij}

k∑
λ=0

[·] =
k1∑

λ11=0

k2∑
λ12=0

· · ·
k1∑

λ21=0

k2∑
λ22=0

. . . [·] (3.64)

to account for all possible states of distinct bonding arrangements. We note that the
maximum term in each sum is set to ki the number of ligands of type i on the particle,
this choice was made for later convenience. As we will see below the density of states Ω
will be defined to vanish whenever the number of bonds exceeds the number of receptors;
Ω = 0, if there exists a type j such that ∑i λij > nj.

75



3.7 Free energy derivation for immobile receptors

Single bond type

Let us first solve the problem in the case of a single ligand and receptor type and calculate
the bound partition function

Qb(n, k, ϵ) =
k∑

λ=0
Ω(λ)e−βϵλ (3.65)

we have dropped the functional dependance on h for clarity and write it as a function of
the number of receptors n and ligands k, and the bond strength ϵ. The dependance on
guest height h is implicitly accounted for through ϵ, which is itself a function of h (3.63).
The density of states is given in terms of binomial coefficients

Ω(λ) =
(

n

λ

)(
k

λ

)
λ! (3.66)

because we need to choose λ bonds out of n receptors, λ bonds out of k ligands and there
are λ! ways of binding the chosen receptors/ligands together. We are focusing on the
case of a guest particle binding to a host cell, cell being much larger than the particle.
The most unbiased assumption we can make for randomly distributed receptors on a
host cell, is that the distribution of receptors will be Poisson 1 distributed within every
chosen surface area S. Therefore, we now Poisson average the partition function (3.65)
over the number of receptors

Qb(ñ, k, ϵ) =
∞∑

n=0

e−ññn

n! Q(n, k, ϵ)

= e−ñ
∞∑

n=0

ñn

n!

k∑
λ=0

(
k

λ

)
e−βλϵ n!

(n − λ)!

= e−ñ
k∑

λ=0

(
k

λ

)
e−βλϵ

∞∑
n=0

ñn

(n − λ)! , (3.67)

where in the second line we have inserted (3.66) and in the third line we have swapped
the summation order, which is allowed as the variables n and λ are independent. ñ = cS

denotes the mean number of receptors in area S and c is the overall concentration.
The last sum can be rewritten by introducing x = n − λ

∞∑
n=0

ñn

(n − λ)! = ñλ
∞∑

x=−λ

n̄x

x! = ñλeñ (3.68)

1strictly, the distribution will be binomial
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3.7 Free energy derivation for immobile receptors

which is simply a Taylor expansion for the exponential function because terms with
negative x are automatically zero by the definition of the factorial (or Γ) function.
Inserting into (3.67) we get

Qb(ñ, k, ϵ) =
k∑

λ=0

(
k

λ

)
ñλe−βλϵ , (3.69)

a binomial expansion for the function

Qb(ñ, k, ϵ) = (1 + ñe−βϵ)k . (3.70)

Using our definition of ϵ (3.63) we find

Qb(h) =
(
1 + cK̃(h) e−β∆G

)k
, (3.71)

which is precisely the expression we have obtained in the mobile receptor case above,
Eq (3.38), applied to a single ligand/receptor type.

Multiple components general derivation

We now derive a general expression for the bound state partition function for any number
of different ligand/receptor types. The procedure will be very similar to the one presented
above for a single component case. We will show that

Qb(ñ, k, ϵ) =
∏

i

1 +
∑

j

ñje
−βϵij

ki

= ⟨Qb(n, k, ϵ)⟩n (3.72)

where ⟨·⟩n denotes a Poisson average over all elements in n and ñ = ⟨n⟩ is the average of
receptor compositions. We continue from (3.62)

Qb(n, k, ϵ) =
k∑
λ

Ω(λ)e−
∑

ij
βϵijλij , (3.73)

where the sum represents nested sums

k∑
λ=0

[·] =
k1∑

λ11=0

k2∑
λ12=0

· · ·
k1∑

λ21=0

k2∑
λ22=0

. . . [·] (3.74)

with the number of states Ω given by a product of multinomial distributions because for
each receptor type j we need to choose how many will bind to different ligand types i.

77



3.7 Free energy derivation for immobile receptors

Equivalently, we need to choose among ki ligands how many will get attached to given
receptor types i, and repeat the process for each ligand type. Finally, we need to bind
ligands and receptors together and there are ∏ij λij distinct ways of connecting them.
The density of states is

Ω(λ) =
∏
j

(
nj!∏

i(λij!) (nj −∑
i λij)!

)∏
i

(
ki!∏

j(λij!) (ki −∑
j λij)!

)∏
ij

λij!

=
∏
j

(
nj!

(nj −∑
i λij)!

)∏
i

(
ki!∏

j(λij!) (ki −∑
j λij)!

)
. (3.75)

In the second line we have cancelled out ∏ij λij which will be convenient later. A similar
form for the density of states has been derived by Angioletti-Uberti et. al. [87] in the
context of interacting DNA coated colloids.

The Poisson average is a product of Poisson averages over individual receptor types

Q(ñ, k, ϵ) = ⟨Q(n, k, ϵ)⟩n =
∞∑

n=0

∏
j

(
e−ñj ñ

nj

j

nj!

)
Q(n, k, ϵ)

 (3.76)

where ∑∞
n=0[·] = ∏

j

∑∞
nj=0[·] represents a nested sum over all receptor types j and ñj

denotes the mean number of receptors. Inserting (3.73) and (3.75) into the above equation
we obtain a long expression
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∑
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(3.77)
where we can swap the order of summation over n and λ, regroup the terms and cancel
out nj! in the innermost sum to find

Q(ñ, k, ϵ) =
k∑

λ=0

e−
∑

ij
βϵijλij

∏
i

(
ki!∏

j(λij!) (ki −∑
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 ∞∑
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[
e−ñj ñ
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j

(nj −∑
i λij)!

] .

(3.78)
Now we have made progress, the innermost sum can be evaluated as the Taylor

expansion for the exponential function eñj by making use of the substitution xj =
nj −∑

i λij, similarly to (3.68) the sum simply reduces to

∞∑
nj=0

[
eñj ñ

nj

j

(nj −∑
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j
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]
=
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i

ñ
λij

j (3.79)
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as the terms in the sum with negative xj vanish. Inserting this result into (3.78) and
rearranging the terms we find

Q(ñ, k, ϵ) =
k∑

λ=0

∏
i

(
ki!∏

j(λij!) (ki −∑
j λij)!

)∏
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∏
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)

=
∏

i

1 +
∑

j

nje
−βϵij
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(3.80)

which upon swapping the summation and product can be recognised as the multinomial
expansion. Finally, inserting our definition of ϵ (3.63), we obtain precisely the expression
for the partition function that we have previously found (3.38) directly in the grand
canonical ensemble for mobile receptors

Q(h; c, k, K̃) =
∏

i

1 +
∑

j

cjK̃i(h)e−β∆Gij

ki

(3.81)

We must now only follow the procedure laid out after (3.38) to show that multicom-
ponent binding to immobile (but Poisson distributed) receptors is governed by the same
simple expression (3.47).

3.8 Particle endocytosis

The above analytical model is highly idealised. Therefore we also perform explicit
simulation of a membrane and nanoparticle endocytosis. We perform Monte Carlo
simulations with a coarse-grained membrane model [109] and a patchy hard-sphere
model [110] for the nanoparticle. The nanoparticle has 2 different types of circular
patches modelling coverage with 2 different ligand types. The membrane is composed
of individual beads which can be either inert (representing normal lipids) or “receptor”
beads that bind to the cognate patches on the particle, but are otherwise identical to
the inert beads. The receptor beads can interact with the patches via a square well
attraction with width σ equal to the size of individual beads σ, ϵ denotes the well depth.
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The simulations are performed using standard Monte Carlo translational moves in
a 2D NpT ensemble and no applied external pressure 2. The box size is 40σ · 40σ with
periodic boundary conditions in lateral directions. The box size in the vertical z-direction
is sufficiently large such that none of the particles ever interacted with the hard ceiling
or the floor. The simulations started with the particle right above the membrane and
were run for 6 · 106 cycles where in each cycle on average one translational/rotational
more per every bead is attempted.

We must stress that we only consider a simple coarse-grained model of passive particle
endocytosis. For example, we did not consider any active (irreversible) processes that
are also present in vitro cell endocytosis [85]. Moreover, we do not take into account
any details of receptor activation, receptor clustering and signalling pathways. These
additional details should be taken into account in a practical application of drug delivery
to specific living cells.

3.9 Summary

Both the simulation results of particle endocytosis (Figure 3.8) and of the adsorption
(Figure 3.2) support the predictions of our analytical model. Simulations clearly show
that our design rules, even though derived from a simple model, are nevertheless directly
applicable to more complicated and realistic systems where ligand interactions, correla-
tions and membrane elasticity cannot be neglected. We observe that with the chosen
parameters the particle is only endocytosed if the receptor composition closely matches
the particle ligand profile. Note that the interaction strength in endocytosis simulations
(Figure 3.8) was −ϵ ≈ −5kBT , however, we can not directly compare it with the free
energy per bond fb as the latter also includes the cost of recruiting receptor beads and
bending the membrane. Both of which will contribute an order of kBT and we expect
the actual fb in simulations to be close to our −fb ∼ λp = 1.3kBT design rule.

Cells can often be recognised by the concentrations of receptors expressed on their
surface. For better (targeted drug treatment) or worse (targeted infection by pathogens),
it is clearly important to be able to target cells selectively. A good targeting strategy
would result in strong binding to cells with the desired receptor profile, and barely to
other cells. Using a simple model, we formulated optimal design rules for multivalent
particles that allows them to distinguish target cells based on their receptor profile. We

2Strictly, our membrane system is only metastable at no applied external pressure, the thermody-
namically stable configuration is an infinitely large box. However, on a simulation timescale, a flat
membrane is stable.
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Fig. 3.8 Simulation results of nanoparticle endocytosis. Nanoparticle is covered with 40
randomly distributed patches. There are 2 patch types and 2 cognate receptor types.
The total concentration of receptors is kept fixed at cT = 0.4, but the composition is
varied as c∗

1 = c1/cT . The curves in a) show the coverage of the particle with membrane
beads. When the coverage exceeds 1 the particle is fully covered and has, therefore, been
endocytosed. Snapshots from b) to g) correspond to the bold curve in a) with circular
symbols. The inert beads are coloured yellow, the 1st receptor type is red and the 2nd

receptor type is blue. Total coverage of the nanoparticle with circular patches is 0.5, with
a ‘ligand’ profile p1 = 1 − p2 = 0.3. The particle radius is R = 4σ and the interaction
strength of patch i s determined as ϵi = ϵ∗ − ln(pi), i.e. the more numerous the patches,
the weaker the interaction as per our design rule from section 3.2.
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found that: 1) it is not a good idea to aim for very strong binding between the guest
(delivery vehicle) and the host (cell). Rather, one should exploit multivalency: high
sensitivity to the receptor density on the host can be achieved by coating the guest
with many ligands that bind only weakly to the receptors on the cell surface, 2) the
concentration profile of the ligands on the guest should closely match the composition of
the cognate membrane-receptors on the target surface and 3) irrespective of all details,
the effective strength of the ligand-receptor interaction should be of the order of the
thermal energy kBT , where T is the absolute temperature and kB is Boltzmann’s constant.
Our coarse-grained simulations of guest particle adsorption and endocytosis support the
theoretical predictions. We speculate that, using the above design rules, it should be
possible to achieve targeted drug delivery with a greatly reduced incidence of side effects.

Prevalent paradigm in specific interactions in biology is the single ligand-receptor
(antigen-antibody) specificity that is used for recognition at the cell level. With multivalent
interactions (forming multiple simultaneous ligand-receptor bonds) the specificity is
extended to the receptor density, where only cells with cognate receptor concentrations
above a certain threshold are targeted. Here we have shown that properly designed
multivalent targeting of multiple cognate receptor types results in specificity towards
a chosen receptor density profile, thus demonstrating a general route, and limits, of
targeting cells without specific markers. In developing the theory we mainly considered
the targeting of cells, however, our model can also be used to illuminate the mechanism
behind the sorting ability of cell imprinted polymers [51, 107], discussed in detail in the
following chapter.
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4

Molecularly Imprinted Polymers

Let us descent further...
– a curious mountaineer

The simple multivalent model is now further extended to include the knowledge of
specific positions of ligands and receptors. In the preceding chapter we focused on multi-
component targeting with flexible geometry, i.e. specific positions of ligands/receptors
are unimportant because the nature of the system is such (either flexible ligands or
mobile receptors) that the bonding is flexible. We now turn to what was defined in
the introductory chapter as the “rigid geometry” multivalency, where specific positions
of binding sites on the multivalent entity are important (think interaction between 2
polymers, or between 2 DNA sequences). We apply the theory to study the selectivity of
molecularly imprinted polymers.

4.1 Introduction

The term ‘Molecularly Imprinted Polymers’ (MIPs) is used to denote polymer matrices
that have been “imprinted”, i.e. cross-linked in the presence of a template molecule,
thereby acquiring selective affinity towards its template. MIPs are usually made by free-
radical co-polymerisation of ligands and cross-linkers in the presence of template molecules.
The molecule-matrix interaction may exploit covalent binding, ionic interactions [32],
hydrogen bonding [33], π − π stacking interactions [34], hydrophobic interactions [35],
and metal-ion chelation [36]. In 1930 Polyakov introduced this technique [37] to imprint
silica matrices with benzene. However, the technique has only become widely used in
recent decades [38–41]. The use of MIPs is related to the fact that they can be designed
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Fig. 4.1 Schematic representation of the molecular imprinting process: A)
binding of ligands (functional monomers) from the solution to the template with specific
receptors (binding sites), B) cross-linking and extracting of the template to create an
imprinted cavity with ligands attached to the polymer matrix, and C) re-binding of an
analyte to the cavity.

for highly selective recognition. Moreover, they combine thermal and chemical stability
with ease of preparation, and hence low production costs.

MIPs have been used in applications such as solid-phase extraction [42], chiral
separation [43], and catalysis [44]. They can act as molecular sensors [39, 41, 45], and
mimic antibodies or enzymes [39]. They can selectively bind drugs [46–48], proteins [49],
or even whole bacteria [50, 51]. Figure 4.1 shows a schematic representation of the
imprinting and subsequent recognition process. The efficiency of the molecular recognition
process depends on a number of parameters: 1) the initial ligand concentration c, 2) the
template-ligand binding affinity KD, and 3) the stiffness of the polymer matrix kh.

Clearly, it is important to maximize the selectivity of MIPs, but in experiments MIPs
are often optimized by trial and error. In fact, the theoretical picture is rather fragmented
as existing theoretical models for MIPs do not consider the imprinting process as a whole,
but rather tend to focus on individual steps in their mode of action [52–58]. Moreover,
the atomistic and coarse-grained simulations of molecular imprinting that have been
reported [59–64] focused mostly on specific MIPs and did not explore generic trends that
would allow us to arrive at general design principles.

Here, we present a generic, coarse-grained statistical mechanics model that captures
the key features of molecular recognition. The model provides an integrated description
of the MIP formation process and of the subsequent binding of analytes. For the simplest
case of divalent particles (i.e. particles with 2 receptors), we derive analytical expressions
for the binding free energy and, from that, the adsorption isotherm of analytes on a
MIP. For the general case of multivalent particles, we use Monte Carlo simulations to
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obtain the adsorption isotherms. Two important measures of the quality of a MIP are:
i) how much more efficient is binding of a given analyte to imprinted (MIP) than to a
non-imprinted matrix (NIP), and ii) how well can we separate two analytes that are only
slightly different (e.g., of the same size and with the same number - but different spatial
pattern - of the receptors). In order to address these questions, we evaluate standard
measures of MIP specificity, such as the imprinting factor (IF ) and the separation factor
(SF ), as a function of matrix and analyte properties and identify the optimal range of
the control parameters such as template and ligand concentrations and polymer matrix
stiffness. Our work provides insight into the generic features of MIPs operation and leads
to a set of simple design principles.

4.2 Model

To construct a simple model for MIPs we describe the template and analyte molecules as
impenetrable spheres with a diameter σ. At fixed (but otherwise arbitrary) positions on
the surface of these spheres there are binding sites (referred to as ‘receptors’) that can
bind to the functional monomers (referred to as ligands), see Figure 4.1. In step A of the
MIPs formation, the template receptors bind ligands from the solution, while in step B
the ligands are tethered via cross-linking, i.e. the polymer network is formed and ligands
attached to the dangling ends of the network. In a MIP application C the receptors on
analyte molecules bind to matrix-grafted ligands. The interactions between ligands and
receptors are assumed to be valence limited: each receptor can bind to at most one ligand
with a ‘hybridization free energy’ ∆G. Moreover, we assume that individual binding
events are uncorrelated, i.e. we do not consider allosteric effects between different binding
events1. We use the term “hybridization free energy" for binding of individual ligands to
distinguish it from the free energy change associated with the binding of entire analyte
to the cavity. We essentially consider templates and analytes as multivalent entities and
our model approach is similar to that of Whitesides et. al. [65]. We treat templates
and analytes as shapeless hard spheres, however, the chirality can be encoded by the
specific positions of the distinguishable binding sites, see Appendix A for an example of
the model application to enantiomeric separation.

In what follows we use the standard notation for the inverse temperature: β ≡ 1/kBT

with kB the Boltzmann constant and T the absolute temperature. Hybridization free
1The assumption of no correlations is no longer valid if the two ligands are imprinted very close to

each other in a soft matrix, their movement and binding will be correlated. These effects can be added
to the model if necessary.
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energies for ligand-receptor bonds can be deduced from experimental data on binary
association in solution, which yield the dissociation constant KD = ρ0e

β∆G, where ρ0 = 1
M is the standard concentration. We note that the ligand-receptor dissociation constant
in the pre-polymerization solution K̃D can in principle be different from the one in a
formed MIP KD if the conditions such as solvent, pH, salt concentration, or temperature
are different. Corrections for the fact that the ligands and receptors have an excluded
volume and are tethered to a surface, can be computed (see refs. [111, 9]).

Using standard chemical equilibrium theory we can compute the amount of ligands
adsorbing to the templates in step A, which depends on the ligand dissociation constant
at the conditions of the imprinting phase, K̃D, on the concentrations of templates CT

and on c, the original concentration of ligands in solution (see Appendix). The fractional
occupancy of receptors fr (the probability that a given receptor is bound to a ligand) is

fr =
K̃D + nrCT + c −

√
(K̃D + nrCT + c)2 − 4cnrCT

2nrCT

, (4.1)

with nr the number of receptors per template particle. If there are different types
of ligand-receptor pairs, and no cross-binding, (4.1) should be applied to each type
separately. Subsequent cross-linking (Figure 4.1B)) ensures that the adsorbed ligands
remain tethered to the matrix after the template has been extracted, resulting in a
population of cavities with “imprinted” ligands. Depending on the conditions, the
cavities can contain as many ligands as there are receptors on the template surface
(fr ∼ 1), or fewer in case the ligand-template binding was not saturated (or more when
we consider also free non-bound ligands to be part of a cavity).

4.2.1 Polymer matrix elasticity

In our model we must account for the effect of the deformability of the matrix and for
the directionality of the ligand-template interaction. To this end, we model MIPs as soft,
deformable matrices that contain cavities imprinted by specific ligands (Figure 4.1C).
The ligands grafted to the matrix can fluctuate around their equilibrium positions due to
the thermal fluctuations. We call the equilibrium positions of the imprinted ligands their
"anchors". In order to bind to receptors on the analyte, the ligands need to be displaced
from their anchors, which increases the elastic free-energy of the matrix by an amount
Uh. Following Rubinstein and Colby [112], we assume that the ligand-matrix interaction
only depends on the distance between the receptor and the anchor and that it can be
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replaced by a harmonic spring:

Uh = kh

2
∣∣∣rlig − ranc

∣∣∣2 , (4.2)

where ranc is the anchoring position of the ligand and rlig its actual position. Assuming
that the matrix is a linearly elastic medium, we can use the normal mode analysis and
relate the effective spring constant kh to directly measurable macroscopic quantities, viz.
the bulk modulus B and the shear modulus G.

The deformation energy density of a wave with wave-vector k and amplitude xk in
an isotropic, homogeneous, elastic medium follows from linear elasticity theory

E

V
= 1

2M⟨x2
k⟩κ2, (4.3)

E/V is the energy per volume, M the effective elastic modulus, ⟨x2
k⟩ the mean square

amplitude of the wave and κ = [kx, ky, kz] is the wave vector. M is determined by the
bulk B and shear G moduli of the polymer matrix: M∥ = B + 4

3G for longitudinal
waves and M⊥ = G for transverse waves. Using equipartition, we can rewrite the above
equation as

⟨x2
κ⟩ = kBT

MV κ2 , (4.4)

and find the contribution to the mean square displacement for a single normal mode
with wave vector κ.

We are interested in the fluctuations in the relative distance between 2 ligands that
are anchored at a distance rij. The mean square fluctuation in the relative displacement
of 2 points i and j at distance rij is given by

⟨x2
κ,ij⟩ = 2kBT

MV κ2 cos(1 − κ · rij). (4.5)

This holds for both longitudinal and transverse modes, in the following we will demonstrate
the calculation for longitudinal modes, the calculation for transverse modes is identical
except the we replace the modulus M∥ with M⊥. To find the mean square displacement
contributed by all longitudinal waves we simply sum over all modes as different modes
are orthogonal to each other (uncorrelated)

⟨∆R2
∥,ij⟩ =

∑
κ

⟨x2
κ⟩ =

∑
κ

2kBT

M∥V κ2 cos(1 − κ · rij). (4.6)
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Converting the sum over wave vectors to an integral, we get

⟨∆R2
∥,ij⟩ = kBT

M∥(2π)3

∫ kmax

kmin

2(1 − cos (κ · rij))
κ2 dκ, (4.7)

kmax and kmin are short and long wavelength cut offs for the elastic modes. The upper
limit (the ultraviolet cut off) kmax = π

ℓ
is determined by the smallest spacing in the

medium ℓ. The meaning of ℓ depends on the nature of the polymeric material: for
cross linked gels, ℓ denotes the average distance between adjacent cross-links. For a
glassy polymer, ℓ should be of the order of the contact distance between two non-bonded
monomers. The lower cutoff kmin = 2π/L is determined by the system size L. The
integral above can be solved evaluated analytically to yield

⟨∆R2
∥,ij⟩ = kBT

M∥(2π)3 8π

[
kmax − kmin − Si(kmaxrij) − Si(kminrij)

rij

]
, (4.8)

where Si denotes the sine integral. In a large system we can neglect kmin as kmin ≪ kmax

and Si(kminrij) = 0. We therefore obtain:

⟨∆R2
∥,ij⟩ = kBT

M∥π2

[
π

ℓ
− Si(πrij/ℓ)

rij

]
. (4.9)

It is instructive to consider a few limiting cases of Eqn. (4.9). First, we consider the
case that the distance between the ligands is larger than the mesh size (rij ≫ ℓ). In
that case Si(πrij/ℓ) ≈ Si(∞) = π/2 and we find that ⟨∆R2

∥,ij⟩ = kBT
M∥π

[
1
ℓ

− 1
2rij

]
. In the

opposite limit (rij ≪ ℓ), we can expand the sine integral to third order Si(πrij/ℓ) ≈
πrij/ℓ + 1

18

(
πrij

ℓ

)3
and the first terms cancel out ⟨∆R2

∥,ij⟩ ≈ πkBT
18M∥ℓ3 r2

ij. The relative
fluctuations are proportional to the relative distance.

Adding the longitudinal (∥) and transverse (⊥) contributions, we get

⟨∆R2
ij⟩ = ⟨∆R2

∥ij⟩ + 2⟨∆R2
⊥ij⟩, (4.10)

The longitudinal and transverse components depend on the elastic properties of the
material: the mean square amplitude of parallel fluctuations is ⟨∆R2

∥ij⟩ ∝ M−1
∥ =

(B + 4G/3)−1, which is smaller than the transverse fluctuations ⟨∆R2
⊥ij⟩ ∝ M−1

⊥ = G−1.
In what follows, we will use an isotropic average of Eq. (4.10) to describe the continuum
fluctuations

⟨∆R2
ij⟩ = 3 kBT

Meπ

[
1
ℓ

− Si(πrij/ℓ)
πrij

]
(4.11)
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with the effective modulus Me given by

Me = 3
(

1
B + 4G/3 + 2

G

)−1

.

For flexible gels we can also use ideal-chain statistics to compute the mean-squared
amplitude of the fluctuations of polymer strands between anchoring points. In a polymer
gel with a Kuhn segment b much smaller than the cross-linking distance b ≪ ℓ, the
cross-linking distance is related to the number n of Kuhn segments of the cross-linking
chain by ℓ2 ≃ nb2. On very short length scales rij ≪ ℓ the gel structure is unimportant
and only the single chain statistics is relevant. In this case the fluctuations are found to
be of the order

⟨∆R2
c,ij⟩ ≈ r2

ij. (4.12)

Let us compare this result with elastic fluctuations in a gel (Eq. 4.9). The shear
modulus of a gel is G ≃ kBT/ℓ3, assuming a phantom network model [112], we remember
ℓ is the mean distance between cross-links. For a gel with a Poisson ratio close to zero,
we have B = 2G/3 and hence the effective modulus becomes Me ≃ 6

5kBT/ℓ3. On short
length scales rij ≪ ℓ we expand the sine integral to third order and Eq. (4.11) reduces to

⟨∆R2
ij⟩ = 5π

36 r2
ij. (4.13)

Comparing the equation above and (4.12) we observe that the result obtained are the
same except for a pre-factor of order 2. This validates the use of (4.11) for polymer gels.

Now we only need to relate the total fluctuations to the effective spring constant
kh = 3kBT

⟨∆R2⟩ . Individual fluctuations of a ligand are half of the relative ones between
2 ligands ⟨∆R2⟩ = 1

2⟨∆R2
ij⟩, because we assumed, in our model, that each ligand is

independent from the rest. For brevity we also approximate rij ≈ σ the distance between
ligands of interest will be about the template (cavity) size, hence the effective spring
constant is

kh = πMe

[
1
ℓ

− Si(πσ/ℓ)
πσ

]−1

. (4.14)

This result can be further simplified, the sine integral function is well approximated by a
polynomial Si(x) ≈ x − x3/18; x ≪ π and a constant Si(x) ≈ π/2; x ≫ π. Hence, the
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effective spring constant is approximately

kh = πMe

[1
ℓ

− 1
2σ

]−1
; σ > ℓ (4.15)

kh = 18Meℓ
3

πσ2 ; σ < ℓ (4.16)

We recall that the effective modulus is Me = 3
(

1
B+4G/3 + 2

G

)−1
, therefore, kh is fully

determined by the properties of the polymer matrix: The bulk B and shear G modulus,
the mesh size ℓ and the cavity (template) size σ.

We see that kh depends weakly on the template (cavity) size σ because the relative
fluctuations of 2 ligands will decrease if the two ligands are closer than the mesh size
ℓ. For flexible polymer gels Me ≈ kBT/ℓ3 [112] and large particles σ > ℓ the spring
constant is determined simply by the cross-linking distance kh ≈ πkBT/ℓ2. Eqn. (4.14)
is important because, as we show below, it allows us to predict the effect of the stiffness
of the matrix on the selectivity of MIPs. We will focus on the case where particles are
rigid, however, the present model can be applied also to soft particles (such as proteins)
where receptor positions on the particle itself are fluctuating (fluctuations characterised
by spring constant kpart

h ). In this case we could map (to the first order) a soft particle
and a soft matrix to the current model of a hard particle and an "effective" softer matrix
keff

h =
(

1
kh

+ 1
kpart

h

)−1
.

In what follows we first focus on a single cavity system and calculate the free energy
of binding an analyte. Afterwards we extend the picture to the whole polymer matrix
and calculate corresponding binding affinities and adsorption isotherms.

4.3 Binding free energy

The binding free energy F for the analyte-cavity system can be decomposed into a
specific interaction part F cav due to the bond formation and a non-specific part Fns,
which includes other possible contributions to particle adsorption such as excluded volume,
hydrophobic, electrostatic or van der Waals interactions between the particle and the
polymer matrix. The non-specific term depends on the particle size, shape and is thus
similar for similar analytes. These terms add to the binding free energy, however as we
will show below, they cancel out in the ratios defining the imprinting and separation
factors – as long as the analyte particles are similar-enough [54]. For differently shaped
analytes a study by Simon et. al. [113] concluded that the effect of the analyte shape
becomes less important when the number of binding sites (receptors) on the analyte is
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larger than 2. Therefore, we only evaluate the specific part of the binding free energy due
to bond formation. In the divalent case the specific F cav

2 can be calculated analytically.
The position rp and orientation Ωp of a rigid particle uniquely define the positions

of all binding sites on its surface rbs
i . When the particle approaches the cavity, bonds

between the binding sites i and the ligands j can be formed - forming a bond results
in a lowering of the free energy by an amount equal to the hybridization free energy
∆Gij, but forming a bond also costs free energy because (in general) the ligand must be
displaced from its equilibrium position ranc

j to rlig
j = rbs

i : the corresponding free energy
cost is given by (4.2). To compute the overall binding free energy, we need to compute
the ratio of the partition function for the case where one or more ligands are bound to
the particle, to the one for the case with no ligands bound.

This expression does not yet include the partition function of the unbound particles:
this will later be accounted for through the chemical potential of the free particles. The
partition function depends on the distribution of the binding sites on the particle rbs and
on the arrangement of ligand anchors in the cavity ranc. To obtain the partition function
we must sum over all particle positions and orientation and over all possible bonding
arrangements:

R ≡ Qb

Qfree
=

κmax∑
κ=1

(NAρ0)1−κ

8π2

(
βkh

2π

) 3κ
2 ∑

s(κ)

∫
drpdΩpe−β

∑
ij

(∆Gij+ kh
2 |ranc

i −rbs
j |2) ≡

κmax∑
κ=1

qκ ,

(4.17)
where NA denotes Avogadro’s constant. The full bound state partition function has been
decomposed to a sum over partition functions qκ for a subset of configurations with κ

bonds formed, s(κ) denotes all distinct configurations (bonding arrangements) with κ

bonds. The maximum number of bonds, κmax, is defined by the total number of binding
sites or adjacent ligands, whichever is lower. The partition function R is directly related
to the specific part of the binding free energy:

F cav = −kBT ln R . (4.18)

In (4.17), the terms with κ = 1 and κ = 2 can be evaluated analytically:

q1 =
∑
ij

e−β∆Gij , (4.19)

where the sum is over all possible ligand - receptor pairs i, j that can form a single bond.
As a single bond cannot create a static stress in the matrix, q1 does not depend on

the matrix stiffness kh. A similar result was reported by Tanaka et. al. for the case of
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4.3 Binding free energy

imprinted hydrogels [56]. The simplest non-trivial term is the two-bond partition function.
For any chosen combination of two binding sites rbs

i , rbs
i′ and two ligands ranc

j , ranc
j′ , there

are two possible ways of forming two bonds. The total two-bond partition function in
a system where there is more than one way to make two bonds is a sum of all possible
two-bond pairs ij, i′j′,

q2 ≡
∑

ij,i′j′
q̃2(aii′ , bjj′)e−β(∆Gij+∆Gi′j′ ) , (4.20)

with bii′ = |rbs
i − rbs

i′ | the distance between the binding sites, and ajj′ = |ranc
j − ranc

j′ | the
distance between the two ligand anchors (see inset of Figure 4.2a)). The configurational
part of the partition function q̃2(a, b) is a solution of a coupled Gaussian integral and
can be calculated analytically (see Appendix A):

q̃2(a, b) = (βkh)
1
2

4π
3
2 NAρ0

sinh
(

1
2βkhab

)
ab

e− βkh
4 (a2+b2) . (4.21)

Eqn. (4.21) can be rewritten in terms of affinity constants, which is useful in order to
connect to the previous wor on multivalent binding [65, 66] and to most of the experimental
literature. For a system with two ligands and two binding sites (for simplicity we assume
that all bonds are equal: ∆Gij ≡ ∆G), the analyte - cavity equilibrium association
constant is Kcav

A = e−βF cav
/ρ0 = 4/KD + 2Kintra/KD, where KD = ρ0e

β∆G is the single
bond dissociation constant. Note that we have used a symbol Kcav

A to denote the binding
to the cavity, however, this is equivalent to the avidity constant KA discussed in the
preceding chapters. The internal equilibrium constant (the facilitation of forming the
second bond once the first one is present) is Kintra = q̃2(a, b)ρ0/KD, with q̃2(a, b) precisely
the configurational part of the partition function given by (4.21). Our analytical approach
thus enables us to calculate the internal association constant Kintra for divalent binding.
This result goes beyond the scope of molecular imprinting, it is a general solution and
applicable to any divalent entity binding within the harmonic approximation (4.2).

In the limit of soft matrices kh ≪ kBT/b2, where thermal fluctuations are greater
then the analyte size, the specificity towards analyte geometry is lost q̃2 = (βkh)3/2

8π3/2ρ0NA
. This

is the regime where only the number of ligands in the cavity (or the number of receptors
on the analyte) remain important, not their spatial positions. In this limit the rotational
degrees of freedom can be neglected, such a model of molecular imprinting has been
considered in [56, 57]. This regime is equivalent to the all-to-all binding we focused on
the previous chapter.
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4.4 Cavity binding results and discussion

If we assume that all binding cavities are identical and independent, the number
of adsorbed analyte particles is determined by the binding free energy F and by the
chemical potential µ of the analyte. We recover the simple Langmuir expression for the
fraction of occupied cavities:

fcav = eβ(µ−F )

1 + eβ(µ−F ) = eβ(µ′−F cav)

1 + eβ(µ′−F cav) (4.22)

where µ′ ≡ µ − Fns is the rescaled chemical potential incorporating the non-specific
analyte-matrix interactions. In practice, we can either first evaluate the binding free
energy F cav (i.e. in the case of divalent binding ) and from it the adsorption isotherm fcav,
or vice versa (in all other cases). Since higher order partition function integrals, q3, q4 etc.,
become increasingly complex and are only analytically tractable in rather special (and
not very realistic) cases; we use numerical simulations (Grand Canonical Monte Carlo
simulations) to compute the binding probability fcav, following the approach of ref. [9],
and then invert (4.22) to compute the binding free energy βF cav = βµ′ − log fcav

1−fcav
. The

simulation code to compute the binding free energies for arbitrary template and analyte
parameters is freely available online at github.com/tc387/mipsp.

4.4 Cavity binding results and discussion

In order to cast our results in the most general form, we introduce the following dimen-
sionless quantities: matrix stiffness k∗

h = khσ2/kBT , dissociation constant K∗
D = KDNAσ3,

concentrations c∗ = cNAσ3, distances a∗ = a/σ and analyte-cavity binding free en-
ergy ∆F ∗ = F/kBT + ln(σ3NAρ0). The single bond hybridization free energy then
follows ∆G∗ = ln(K∗

D) = ∆G/kBT + ln(σ3NAρ0). For example, if the template size is
σ = (ρ0NA)−1/3 = 1.18 nm the rescaled and standard values of equilibrium constant,
concentration and free energy remain the same. For dilute solutions of analytes we can
assume an ideal solution and the chemical potential becomes µ = kBT ln (CA

ρ0
), with CA

the molar concentration of analytes, rescaling µ∗ = ln(C∗
A)

MIPs that have been cross-linked in the presence of specific template particles will
adsorb analytes that have a structure similar to the template: the greater the similarity
between template and target particle, the larger the average occupancy fcav of the cavities
imprinted by the template particles. In the case of particles with two binding sites,
we can compute fcav analytically (Eqs. 4.17-4.22). In Figure 4.2a) we compare these
analytical calculations with Monte Carlo simulations. The good agreement between
analytical result and simulations allows us to validate the Monte Carlo approach. For
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Fig. 4.2 a) Multivalency. The cavity occupancy fcav as a function of the imprinting
mismatch b/a. The red solid line represents analytical calculations (4.17-4.22). The
symbols depict the results of Monte Carlo simulations: blue circles for divalent, green
squares for hexavalent case. Parameters: matrix stiffness k∗

h = 100, analyte concentration
in solution C∗

A = 3 · 10−4, and the bond energies in the divalent/hexavalent case ∆G∗
2b =

−5.4, ∆G∗
6b = 0. b) Incomplete cavities. The specific binding free energy F ∗cav

6 of a
hexavalent analyte as a function of the number of ligands imprinted in the cavity. The
results are for two values of k∗

h (red: soft gel, green: stiff gel) and for two values of ligand
binding strength ∆G∗ (circles: weaker bonds, squares: stronger bonds).

a particle with 6 binding sites, the analytical calculations are no longer tractable, but
the MC simulations in Figure 4.2 show that imprinting with a higher valency leads to a
much stronger discrimination. In both cases, the cavities have a fixed ligand distribution
that is imprinted by the template particle. The analytes are assumed to have the same
geometry as the template but their sizes are rescaled by a factor b/a (the "imprinting
mismatch"), see inset of Figure 4.2a). Not surprisingly, the average occupancy fcav has
a maximum at b/a ≃ 1. The difference between two and six binding sites shows up
when we increase the mismatch: for the case of two binding sites, a mismatch of 30%
decrease fcav only by a factor two. In contrast, for particles with six binding sites, a 30
% mismatch leads to a decrease of fcav by more than an order of magnitude.

Finally, Figure 4.2b) illustrates how the binding depends on the number of ligands
in the cavity. There are many practical examples where the number of ligands in the
cavity is less than the number of receptors on the template. Obviously, we expect to
observe ‘under-coordinated’ cavities in case the cavities are only partially formed. But
even if cavities are initially well formed, they may become under-coordinated if the MIP
is ground after imprinting (during the grinding, which is a common procedure to enhance
the accessibility of cavities in stiff matrices [48], a fraction anchored ligands is likely to be
detached from the cavities). Not surprisingly, we find that the binding strength increases
with the number of ligands. The dependence is steepest for stiffer matrices (larger kh).
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4.5 MIP characterization

4.5 MIP characterization

Having derived the coarse-grained elastic model of the polymer matrix and calculated
the binding free energy of analytes to imprinted cavities, we now focus on characterizing
MIPs with measures used in most of the literature: The binding affinity, the imprinting
factor and the separation factor. A formed MIP in principle consists of heterogeneous
cavities, therefore a MIP is fully characterized by a binding isotherm (Figure 4.3) or an
affinity distribution of cavities, e.g. ref. [48, 114]. However, it is useful to have a single
number measure of MIPs. Following Tanaka [56] we define the dimensionless binding
affinity as the product of the concentration of cavities Ccav and the average equilibrium
association constant of binding an analyte to a cavity

BAcav ≡ Ccav⟨Kcav
A ⟩ (4.23)

where the equilibrium association constant Kcav
A = e−βF cav

/ρ0 is determined by the
binding free energy of an analyte binding to the cavity (4.18). The bracket denote a
(number weighted) average over all cavities in a MIP taking into account the heterogeneous
distribution of cavities where applicable. A MIP is a collection of imprinted cavities, but
in principle also other non-imprinted ligands

BAmip = BAcav + O . (4.24)

The term O includes corrections due to binding to non-imprinted ligands outside cavities
as well as cross-cavity binding (analyte binding to two or more cavities simultaneously).
If we assume that cavities are randomly distributed throughout the MIP, the correction
term becomes closely related to the binding affinity for non-imprinted polymers (NIPs)
described below O ≈ BAnip. In chromatography experiments the binding affinity is
expressed in terms of the retention factor of the analytes in the column. The retention
factor and equilibrium constant are monotonically related [115, 116].

In case of NIPs, there are no imprinted cavities and the average in (4.23) must be
taken over a random distribution of ligands in the cross-linked matrix. The result derived
in the Appendix A is

BAnip
nr

=
(

1 + c

KD

)nr

− 1 (4.25)

for a single ligand-receptor type. We remember that c and KD are the ligand concentration
and ligand-receptor dissociation constant respectively. Heuristically, each receptor can
be either free (weight 1), or bound (weight c

KD
) and there are nr independent receptors

on the particle. This result and its derivation is conceptually similar to the theory
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describing multivalent particles binding to a surface [10]. We observe that, for strong
enough binding c

KD
> 1 the binding affinity will scale as BAnip

nr
∼
(

c
KD

)nr , while for weak
binding c

KD
< 1 it is approximately linear BAnip

nr
∼ nr

c
KD

. Such scaling has been observed
experimentally for collapsed and swollen hydrogels respectively [56, 57].

In the divalent case we can evaluate the free energy - and thus the binding affinities
- analytically (Eqs. 4.17-4.21, 4.25). Assuming that imprinted cavities are randomly
distributed throughout the MIP the cross-cavity term becomes equal to BAnip

2 , however,
single bond terms need to be subtracted to prevent double counting. If the template ex-
traction process is efficient the cavity concentration is equal to the template concentration
in imprinting phase Ccav = CT . The MIP binding affinity becomes

BAmip
2 = 2q̃2CT f 2

r ρ0

K2
D

+ BAnip
2 , (4.26)

with q̃2 the 2 bond partition function (4.21) and fr the receptor occupancy fraction (4.1).
Heuristically, the first term on the right takes into account divalent binding to cavities,
the concentration of doubly functionalized cavities being f 2

r CT . The second term BAnip
2

takes into account all single bond states and divalent binding to all pairs of ligands that
do not belong to the same cavity.

In the more general case κ > 2, BAmip can be computed by numerical simulations.
From Eqs. (4.22,4.23) we observe that for low concentrations the binding affinity
essentially determines the ratio of concentrations of bound analytes CB to analytes free
in solution CA

BA = CB

CA

. (4.27)

On Figure 4.3 we show adsorption isotherms of divalent analytes binding to a MIP and
NIP along with representative simulation snapshots. At low concentrations, we observe a
good agreement between analytical isotherms (4.25-4.27) and isotherms obtained from
numerical simulations. The small discrepancy at low concentration arises because in
calculating (4.26) we have assumed that cavities are randomly distributed in the MIP,
however, that is only approximate as cavities cannot overlap in our simulations. At
higher concentrations the polymer matrix saturates i.e. nearly all ligands are bound.
Interestingly, in this regime the non-imprinted matrix can support a slightly greater
number of adsorbed analytes than the imprinted matrix. We explain this by observing
that in the non-imprinted polymer ligands are mostly far apart and, therefore, act as
single binding sites. On the other hand, imprinted ligands tend to be found in pairs
(sharing a cavity) and analyte-analyte repulsion makes binding of 2 analytes to a single
cavity unfavourable.
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Fig. 4.3 Simulation snapshots. a) Imprinting phase: ligands (small balls, red when
free and blue when bound) are binding to the divalent templates (orange balls with cyan
receptors). The ligand positions are subsequently frozen and templates extracted to form
the cavities (MIP) shown on b) and c) as transparent blobs. b) Re-binding of templates
to MIP. c) Binding of templates to non-imprinted matrix (NIP). Snapshots show only
a small part of the simulated system. d) Adsorption isotherms. Average number of
bound divalent (tetravalent in the inset) analytes C∗

B depending on the concentration of
analytes in solution C∗

A. Solid lines depict the analytical prediction (4.25-4.27), and the
symbols are for simulation results (black circles: re-binding of templates (b = a) to MIP
as on snapshot b), green diamonds: binding of different analytes (b = a/

√
2) to MIP,

and red squares: binding of templates to a NIP – as on snapshot c)). The parameters:
k∗

h = 100, c∗ = 0.02, CT = 0.01, K∗
D = 0.001. The snapshots represent a configuration

of bound analytes at C∗
A = 10−5 with the system size V = (12.6σ)3. Inset in d) shows

isotherms of tetravalent particles binding at c∗ = K∗
D = 0.1.
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The binding affinities BAnip and BAmip can be used to evaluate two key quantities
used to assess the performance of MIPs in the literature: the imprinting factor IF (a),
which is the ratio of the binding affinity of a template a to a MIP and to a NIP, and the
separation factor SF (b1, b2; a) measuring the ability of a MIP (imprinted by a template
a) to distinguish between two different analytes b1 and b2:

IF (a) ≡ BAmip(a; a)
BAnip

, SF (b1, b2; a) ≡ BAmip(b1; a)
BAmip(b2; a) . (4.28)

BAmip(b; a) here denotes the affinity of the analyte b to the matrix imprinted by the
template a. In calculating the binding affinities above we have assumed that all cavities
and non-imprinted ligands in the matrix are accessible. For very dense matrices only
surface cavities and ligands are accessible, in this case the effective concentrations, and
therefore, binding affinities, will be lower. However, this effect is expected to largely
cancel out in the ratios defining the imprinting and separation factors.

4.6 Design Principles

We can now return to the original question: how to design the imprinting process to
achieve optimal sensitivity for the desired application? To arrive at a set of rules, we
have summarized the results of our model calculations into a ‘phase diagram’ that shows
the regime where MIPs should function most efficiently (see Figure 4.4a)). The control
parameters in the phase diagram are the stiffness of the polymer matrix and the concen-
tration of the ligands that are incorporated in the matrix. For generality, we will again
use dimensionless quantities defined above. This phase diagram suggests three general
design rules for efficient molecular imprinting:

MIP formation. In the MIP formation process (step A on Figure 4.1) the ligands
should bind to the template in sufficient numbers. The binding of ligands can be
calculated assuming chemical equilibrium between ligands and receptors (4.1), a simple
rule of thumb would be that the concentration of ligands should be similar or greater
than the bond dissociation constant

c∗ > c∗
form = K̃∗

D . (4.29)

Moreover, ligands and template receptors should be in approximately stoichiometric
ratio, c∗ ≈ nrC

∗
T , with nr the number of receptors per template. This rule, which
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Fig. 4.4 MIPs design principles. a) Schematic phase diagram of MIPs efficiency,
summarizing the design principles. The ligand concentration for which MIPs are efficient
lies between the two limits: c∗ < c∗

bind (4.30) and c∗ > c∗
form = K̃∗

D (4.29). The dashed
line drawn somewhat arbitrarily at k∗

h = 5 is separating the regions of bond selectivity
and geometrical recognition. In b) and c) the imprinting factor calculated for divalent
templates is shown as a function of k∗

h and c∗ at a stoichiometric ratio of ligands-receptors
c∗ = 2C∗

T (b), and as a function of C∗
T and c∗ at fixed matrix stiffness k∗

h = 100
(c). We have assumed an equal binding strength in the imprinting and binding stage
K̃∗

D = K∗
D = 0.001.
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is supported by the data in Figure 4.4 c), provides an optimal tradeoff between the
formation of multi-ligand cavities on the one hand, and the minimization of the number
of non-imprinted ligands on the other hand. A similar empirical observation was reported
in systematic experiments by Kim and Spivak [58], and also in lattice model simulations
by Shimizu et. al. [64]. If there are many different types of ligands in the solution
(binding to different receptors), the rule above should be applied to each of them. The
"Poor MIP formation" region c∗ < c∗

form is shaded on the phase diagram in Figure 4.4a).

MIP binding. Imprinting should make a difference, i.e. templates should predomi-
nantly bind to the imprinted cavities rather then across them or to randomly distributed
ligands, BAcav > BAnip. For a divalent template this results in a condition for the
concentration of ligands:

c∗ < c∗
bind =

√
k∗

h(1 − e−k∗
h)/8π3/2 . (4.30)

The curve c∗(k∗
h) = c∗

bind sets the upper bound for the yellow region of efficient MIPs in
Figure 4.4a). Additionally, the receptor-ligand binding in step C should be strong-enough
such that predominantly multiple bonds are formed (q2 > q1), which results in a similar
condition: K∗

D < c∗
bind.

Cross-linking strength. The matrix stiffness plays a crucial role in the performance
of MIPs, the higher the stiffness k∗

h the greater the MIP selectivity, this has also been
observed experimentally [117]. In order to separate analytes based on the geometry
(receptor patterns) – the polymer matrix has to be stiff enough: k∗

h > ∆b−2, where ∆b∗

is a measure for the difference in geometry. For divalent particles it is the difference
between the receptor distances ∆b = b2 − b1 on the 2 analytes we wish to separate. For
example, if the relative difference is ∆b = 0.1 then the stiffness should be greater then
k∗

h > 100. This is marked as geometry selectivity in Figure 4.4a) and supported by
calculations in Figure 4.4c). For example, enantiomeric discrimination of analytes is only
possible in the regime of geometric selectivity.

In some applications it is desirable to separate analytes according to receptor composi-
tion but not according to the geometry. For instance, if targeting a whole class of analytes
with similar receptor composition but varying (or unknown) patterns (e.g., viruses with
high mutation rates), geometrical selectivity is unwanted. The optimal regime of matrix
stiffness for such applications is the regime of bond selectivity: k∗

h ≈ 1. In this regime
imprinting makes a difference, however, the substrate is too flexible to allow for efficient
recognition of the geometrical patterns. Hence, MIPs can only discriminate analytes
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Fig. 4.5 a) Separation Factor. The separation factor SF (b1, b2; a) for the imprinted
template b1 = a and an analyte with slightly larger inter-receptor distance b2 = 1.1a
as a function of the parameters k∗

h and c∗. b) Enhancing the selectivity. The best
separation is achieved when the imprinting is slightly mismatched relative to the analyte.
The separation factor SF (b1, b2; aopt) at the optimal value of the imprinted distance aopt

as a function of k∗
h and c∗. Parameters are the same as on Figure 4.4b).

with different ligand composition.

In order to test the predictions that follow from Figure 4.4a), we compared them to
the analytical results for the divalent binding model (4.25,4.26). To this end, we evaluated
the imprinting factor IF (a) for a broad range of ligand concentrations c∗, binding affinities
K∗

D, and matrix elasticities k∗
h. Figure 4.4b) shows the dependence of IF (a; a) on the

matrix stiffness and on the ligand concentration at fixed stoichiometric ratio of ligands
and templates in the imprinting phase c∗ = 2C∗

T . Furthermore Figure 4.4c) shows
the dependence of IF on the stoichiometry at fixed matrix stiffness, showing that the
stoichiometric ratio is close to optimal, the optimal concentrations being c∗opt = 2.4K∗

D

and C∗opt
T = 1.7K∗

D. We have assumed that the dissociation constants for individual
bonds remain the same in the imprinting and binding phase K̃∗

D = K∗
D = 10−3.

In accordance with our tentative design rules (Figure 4.4), we observe a sharp increase
in the imprinting quality in the parameter region where MIPs should function optimally,
i.e. for intermediate values of ligand concentrations (c∗ ≈ 2K∗

D) and stiff matrices
(k∗

h ≳ 1).
Within the same parameter space we also computed the separation factor SF (a, b; a)

for two slightly different analytes (b1 = a and b2 = 1.1a) on MIPs imprinted by a template
with a separation a between the two receptors (Figure 4.5a)). The analyte separation
is effective for matrix stiffness k∗

h ≳ 100. This range can be extended if we compare
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analytes that are less similar. Again, the region where analyte separation is most efficient,
roughly coincides with the onset of geometrical recognition in Figure 4.4 a).

Somewhat surprisingly, we find that the optimal separation of two analytes, say
b1 = 1 and b2 = 1.1, is not best achieved by imprinting with a template identical to the
first analyte (a = b1). Rather, the separation factor SF (b1, b2; a) can be maximized by
designing the cavity with an optimal imprinted distance aopt < b1. This result can be
intuitively understood by noting that the binding free energy is approximately a quadratic
function of the mismatch close to the minimum. If the imprinting is slightly mismatched,
the binding affinity of the chosen analyte is slightly smaller, but at the same time it
increases relative to the binding affinity of the other particle resulting in better separation
capacity of the MIP. Figure 4.5b) displays the separation factor SF (b1, b2; aopt) for the
same analytes as in Figure 4.5a) but with the template size a optimized at each point
in the parameter space (Appendix A). We can clearly see an increase in the separation
capability, however, the qualitative features of the phase diagram in Figure 4.4a) remain
valid.

4.7 Summary

We have developed a theoretical model of molecular imprinting, which allows us to
calculate the performance of imprinted polymers depending on parameters, such as
polymer material properties, choice of a template and ligand (functional monomer)
concentration. We have explored various factors that determine the quality of molecular
imprinting and derived a set of general design principles that can be applied to rationalize
specific applications. Our predictions could be studied on a well-defined and tuneable
supramolecular system, such as a solution of tetravalent DNA constructs (e.g. Holliday
junctions or DNA tetrahedra [118]), which can bind to complementary ‘receptor’ strands
that can be cross-linked into a gel.

The first key observations is that the quality of imprinting depends on the concen-
tration of ligands and templates in the imprinting phase and on the binding strength
between them: the optimal imprinting is achieved with a nearly stoichiometric ratio of
ligands vs. template receptors, e.g. for tri-valent templates the stoichiometric ratio of
templates:ligands should be 1:3. Additionally, initial ligand concentration should be of
similar value as the corresponding bond dissociation constant. This provides the optimal
tradeoff between, on the one hand efficient cavity formation, and on the other hand
selective re-binding of analytes to imprinted cavities.
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The second key observation is that stiffer matrices are more selective – suggesting
that it should be beneficial to make the gel as rigid as possible. Consequently, polymer
gels are not a suitable matrix for efficient molecular imprinting of small molecules: when
geometrical recognition is required, stiffer systems such as glassy polymers should be
considered. However, the non-specific terms in the free energy – which are not explicitly
considered here – will have an opposite effect upon increasing the stiffness of the matrix:
slowing down of the kinetics and impeding the particles’ access to the cavities. A
commonly implemented solution for this problem is grinding the stiff gels in order to
expose the imprinted ligands. In this case, much stiffer matrices can be used, however, the
procedure inevitably reduces the imprinting quality by grinding-off a fraction of ligands
in the cavities. In specific MIP systems, it is likely that the opposing thermodynamic
and kinetic trends result in an application-specific optimum gel stiffness.

Moreover, when imprinting soft macromolecules such as proteins or biopolymers
onto a hard matrix, the intrinsic softness of the template has a similar effect as a
reduced matrix stiffness (within our coarse-grained model a soft template on a hard
substrate resembles a hard template on a softer substrate). Extremely large values of the
matrix stiffness k∗

h in our model are therefore unlikely to be relevant for experimental
realizations. A reasonable choice of the matrix stiffness to design applications seems to be
between 10 ≲ k∗

h ≲ 100, i.e. fluctuations of the ligand position relative to the size of the
template between 10% and 30%. In such case, for imprinting to work, the strength of the
individual ligand-receptor bonds needs to be strong enough. Divalent templates cannot
be imprinted effectively unless the bond dissociation constant is K∗

D ≲ 10−3 M. This
changes considerably if the templates are multivalent: in the tetravalent case imprinting
can be achieved with relatively weak bonds (K∗

D ∼ 0.1M), while in the hexavalent case
the bonds can be extremely weak (K∗

D ∼ 1M), which is in the realm of hydrogen bonds
in aqueous solutions. This suggests that it should be possible to efficiently imprint
molecules, such as proteins or drugs, onto polymers in aqueous solutions.
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Methods

A paradox is simply an error out of control; i.e. one
that has trapped so many unwary minds that it has gone
public, become institutionalized in our literature, and
taught as truth

– E.T. Jaynes

Monte Carlo (MC) methods for numerical sampling of equilibrium distributions are
used throughout this work. Methods are described in this chapter for completeness and
self-containment of the thesis material. Most MC sampling techniques used are covered
in a well-known textbook [119] and will be described only briefly. However, two of the
methods employed were customised and optimised for a particular problem: (i) application
of the Wang-Landau sampling for the free energy calculations of polymer adsorption,
(ii) efficient sampling of valence-limited interactions integrated with translational moves.
Therefore, these two methods are described in a greater detail.

All of the simulation algorithms were written by the author in Fortran90 programming
language, except for the simulation of particle endocytosis presented in Chapter 3, where
the simulation code originally written by Anđjela Šarić in C programming language was
used. Python programming language was also used for data analysis. Visual Molecular
Dynamics [120] was used for visualisation and production of simulation snapshots. Plots
were mostly made with xmGrace and Mathematica.

5.1 Metropolis Monte Carlo

Metropolis Monte Carlo is a Markov chain Monte Carlo scheme for sampling of equilibrium
distributions; the appropriate sampling is achieved by accepting or rejecting randomly
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proposed moves. Monte Carlo is a very useful method for the study of any equilibrium
observables, e.g. thermodynamic quantities like pressure, density etc., of classical many
body systems.

The Metropolis algorithm is based on detailed balance, which is a property of
equilibrium distributions

piΠi→j = pjΠj→i, (5.1)

where pi is the probability to find a system in state i and Πi→j is the probability of
transition from state i to state j. Hence, the expected number of transition from state
i → j is the same as the reverse transition j → i.

For a an equilibrium system with a constant number of particles (N), volume (V )
and at fixed temperature (T ), the probability of a given micro-state i with energy
Ei is proportional to the Boltzmann factor pi ∝ e−βEi , with β = 1/kBT the inverse
temperature and kB the Boltzmann constant. Using the detailed balance condition (5.1)
we find the ratio of probabilities must satisfy

pi

pj

= Πj→i

Πi→j

= e−β(Ei−Ej) . (5.2)

The upper equations is satisfied if we use a Metropolis acceptance criterion

Πi→j = min(1, e−β(Ej−Ei)) . (5.3)

The Metropolis choice, however, is not unique; it is the choice of an acceptance rule that
results (generally) in the fastest diffusion of the system in the phase space. For particular
applications different acceptance schemes become more appropriate. For example, Bennet
acceptance ratio can be used for free energy calculations, or the Wang-Landau method
described below are both cases of a modified Metropolis scheme that is optimised for the
sampling of a particular energy landscape.

In a grand canonical ensemble the entropic (ideal gas) contribution due to having a
different number of particles in the system must also be included. The probability to
add a particle

ΠN→N+1 min
(

1,
V

Λ3(N + 1)eβµe−β(EN+1−EN )
)

(5.4)

and to delete a particle

ΠN→N−1 = min
(

1,
Λ3N

V
e−βµe−β(EN−1−EN )

)
, (5.5)
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where µ is the chemical potential and Λ is the thermal De Broglie wavelength.

5.2 Polymer simulations

For the study of multivalent polymer adsorption we use a coarse-grained polymer
model [77]. A polymer is represented with a series of Gaussian soft blobs connected with
harmonic springs. Each polymer chain is represented by Nb soft repulsive blobs with
radius of gyration rb that are connected via harmonic springs

Uch = 0.534 kBT (r/rb − 0.730)2, (5.6)

with kBT the thermal energy and r the centre-to-centre distance. The blob-blob interac-
tion is described as a Gaussian repulsion

Ubb = 1.75 kBT e−0.80(r/rb)2
, (5.7)

while the blob-surface interaction is modelled as an exponential repulsion:

Ubs = 3.20 kBT e−4.17(r/rb−0.50). (5.8)

This model accurately describes flexible self-avoiding-walk (SAW) polymers in the scaling
regime, we also assume that each individual blob represents a polymer in the scaling
regime, hence blobs must be large enough to contain at least a few polymer Kuhn
segments. Additionally, polymer must be solvated in a sufficiently good solvent such that
the polymer chain can be accurately modelled as a self avoiding walk. On the other hand
the model only considers pairwise interactions and does not take into account any 3-body
effects. Therefore, the model is appropriate for studying dilute and semi-dilute polymer
solutions where the blob density does not exceed 1 blob per blob volume ρ < 3/(4πr3

b )
(in this case 3-body effects will be negligible).

A great feature of the soft blob model are the transferable potentials, we can represent
a given polymer by many small blobs, a few larger ones or a single large blob and the
interaction potentials do not change. The radius of gyration of such a polymer (isolated
in space) is given by

Rg = rbN
0.588
b , (5.9)

with rb the blob radius of gyration and Nb number of blobs per polymer.
Polymer conformations are sampled using standard single-blob translational moves.

The grand-canonical part of the algorithm (insertion and deletion of polymers in the
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system) is employed via Rosenbluth-sampling with configurational bias [119, 121]. The
bonding with surface-attached receptor is discussed bellow. Only polymers with no
formed bonds can be inserted/deleted.

5.2.1 Valence-limited interactions

It is rather straightforward to include valence limited interaction in a Monte-Carlo
scheme, see Refs. [9, 10, 80, 87]. It is much less straightforward to employ with molecular
dynamics simulation, which is the reason why we use Monte Carlo as our method of
choice.

Each ligand (and each receptor) is represented as a non-interacting point and can
be in either of the two states, bound or unbound. First we discuss the application to
multivalent polymer adsorption [16].

We simply add ligands to the polymer model discussed above, see Figure 5.1. Assuming
we randomly add Nligand ligands per polymer, randomly chosen blobs will carry ligands
and others will not. The ligands are assumed to be randomly distributed along the
polymer chain and the number of ligands per polymer is Poisson distributed. Blobs can
carry more than 1 ligand, where ligand carrier blobs can bind to surface receptors that are
within a distance of blob radius rb. The binding is valence limited, one receptor can bind
to only a single ligand and vice versa. Different ligands within a blob are distinguishable.
Receptors are modelled as immobile point-like objects that are randomly distributed
on the hard surface, there are no interactions between blobs and receptors other then
ligand-receptor binding.

5.2.2 Monte Carlo sampling of multivalent polymers

We perform Grand canonical Monte Carlo simulations of polymers using the soft blob
model and determine the equilibrium number of polymers bound to the surface. We
simulate a box with periodic boundary conditions in x and y directions with the hard
surface containing immobile receptors at z = 0. The box height was large enough
Lz > 3Rg so that bound polymers were never constrained by the box ceiling (results
were independent of the box height for Lz > 3Rg), typical lateral dimensions were
Lx = Ly ≈ 5Rg. We imagine the simulation box in contact with solution of polymers
with a fixed chemical potential µ.

A particular state in our simulations is determined by the vector positions of all blobs
and arrangement of ligand-receptor bonds. For efficient sampling of states we employ
two types of Monte Carlo moves: polymer insertion/deletion moves, and single blob
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Fig. 5.1 Snapshot of Monte Carlo simulations of a soft blob polymer adsorbing to a surface.
Randomly distributed immobile surface receptors (in the xy plane) are represented with
grey spheres, the receptors that are currently bound to ligands on a polymer have a pink
shade. There is a single polymer in this system, it is represented with blobs of three
different colours: (i) normal (inert) blobs are red, (ii) ligand carrying blobs are yellow
and (iii) blobs that cary a ligand and are currently bound to a receptor on a surface are
blue. The blobs are connected into a chain with turquoise rods.

translational moves integrated with ligand-receptor binding. The polymers are generated
or deleted using Rosenbluth sampling with configurational bias [119], only non-bound
polymers (without any bonds) can be inserted or deleted. Each simulation started with
an empty box and lasted for about ≈ 1011 MC cycles, where in each cycle we randomly
select to either insert or delete a polymer (with probability pins−del = 1/(Nb +1)) or move
a single blob (with probability phop = Nb/(Nb + 1)). The average acceptance rate for blob
displacement was pacc

hop ≈ 0.08 and for polymer insertion/deletion pacc
ins−del ≈ 0.01. The

average number of bound polymers (polymers attached to the surface via at least one
ligand-receptor bond) was determined by averaging over the second half of the simulation
run time.

5.2.3 Optimisation of valence limited polymer sampling

In order to speed up the sampling of the polymer conformations the binding between
ligands and receptors is integrated within the blob translational moves. This overcomes
the bottleneck which arises when individual blobs are strongly bound to surface receptors.

A blob is chosen uniformly at random and all its ligands are made unbound. The
binding partition function which counts all possible ways to make λ bonds is then
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calculated
qλ = e−λβϵ k!nf !

(k − λ)!λ!(nf − λ)! , (5.10)

we arrive at the above expression by noting that we have nf free receptors within reach
(i.e. within blob radius rb) of the k ligands that the blob carries, we then consider all
possible ways of binding then together with λ bonds. The total binding partition function
considers all possible numbers of bonds

qb =
min (k,nf )∑

λ=0
qλ. (5.11)

The above expression is essentially the same as the exact binding partition function used
in analytical theory. A new trial position for the given blob is considered and its new
internal binding partition function qn

b is calculated. The move is then accepted with
probability

po→n = min
[
1,

qn
b

qo
b

eβ(Uo−Un)
]

, (5.12)

where Uo and Un are the old and new potential energies of the system determined by
Eqs. (5.6, 5.7, 5.8).

Regardless of whether the move was accepted or not the blob of interest still has all
ligands unbound. We now randomly choose how many bonds to form, the probability to
form λ bonds is

pλ = qλ

qb

(5.13)

where we use the partition functions we calculated for the new (old) blob position (Eq.
5.10,5.11) if the translation move was accepted (not-accepted). Say we chose to form
λ∗ bonds, we now randomly chose λ∗ ligands and λ∗ receptor and randomly bind them
together. The probability to choose a particular state (bonding arrangement) with λ∗

bonds is then

ps = e−βλ∗ϵ

qb

(5.14)

This algorithm takes advantage of the fact that we can explicitly calculate the partition
functions of a blob and it provides a substantial speed up compared to just using the
standard translational and single ligand-receptor bind/unbind MC moves. We now show
that the algorithm obeys detailed balance. A particular state is determined by the vector
positions of all blobs in the system and a particular ligand-receptor bonding arrangement.
The equilibrium probability for the system to be in state (1), with potential energy U1
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and number of ligand-receptor bonds λ1, is proportional to the total (free) energy of that
state

p1 ∝ e−β(U1+λ1ϵ) (5.15)

The transition probability going from state (1) to state (2) (with potential energy U2

and λ2 bonds) is

Π1→2 = min
[
1,

qb2

qb1
eβ(U1−U2)

]
× e−βλ2ϵ

qb2
(5.16)

where the first factor corresponds to the probability of moving the blob to a new position
(Eq. 5.12) which is multiplied by the probability that we choose a particular bond
arrangement at the new position (Eq. 5.14). The reverse transition probability is

Π2→1 = min
[
1,

qb1

qb2
eβ(U2−U1)

]
× e−βλ1ϵ

qb1
(5.17)

and the ratio between the two is obtained by noting that the value of qb2
qb1

eβ(U1−U2) can
be either greater or smaller then 1, both cases give the same result

Π1→2

Π2→1
= e−β(U2+λ2ϵ)

e−β(U1+λ1ϵ) = p2

p1
(5.18)

which proves that the algorithm obeys detailed balance. The method was also tested to
provide the same equilibrium result when compared to standard MC moves.

5.3 Wang-Landau technique

The Wang-Landau algorithm is a very convenient method to calculate the free energy of
a simulated system. The method was initially developed for the sampling of the density
of states as a function of the energy [79]. However, the method is much more general
and can be extended to the sampling of any order parameter.

The Wang-Landau method works by modifying the Metropolis acceptance scheme;
introducing a biasing function which is dynamically built and updated during the sim-
ulation run in such a way to achieve a uniform sampling of states. Once the uniform
sampling in the chosen order parameter is achieved, the biasing function will asymptoti-
cally approximate the free energy as a function of that order parameter. This method is
very useful for efficient calculations of the free energy, as long as the order parameter is
reasonable. By reasonable we mean that the system can diffuse and sample that order
parameter.
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Consider an ensemble of states with Γ denoting a particular micro-state (configuration)
and X is any function of Γ. X could be for example a number density, box volume,
position of a designated particle, bond order parameter, or any thermodynamic variable
or order parameter. In our application to polymer adsorption X will stand for the number
of formed bonds between ligands on the polymer and surface attached receptors. The
probability to find our system in a particular configuration Γ given a particular value of
X is p(Γ|X). The equilibrium probability distribution of X can be obtained by summing
the micro-states that yield a particular X

p(X) =
∑

Γ
p(Γ|X). (5.19)

We now introduce a biased probability distribution

pB(Γ|X) = p(Γ|X)
p(X) , (5.20)

which results in a uniform probability distribution pB(X) = ∑
Γ pB(Γ, X) = 1 . We can

perform Monte Carlo calculations in the biased ensemble. Detailed balance condition for
Monte Carlo (5.1) implies that each pair of states Γi and Γj must satisfy

pB(Γi|Xi) ΠB
i→j = pB(Γj|Xj) ΠB

j→i , (5.21)

where ΠB is the acceptance probability that gives a biased (uniform) probability distri-
bution of the observable X. We now apply the Metropolis acceptance criterion in the
biased ensemble

ΠB
i→j = min

[
1,

pB(Γj|Xj)
pB(Γi|Xi)

]
= min

[
1,

p(Γj|Xj)
p(Γi|Xi)

p(Xi)
p(Xj)

]
. (5.22)

Defining the free energy F (X) via the partition function (summing the probabilities
of micro-states), the probability of observing X is

p(X) ∝
∑
Γ|X

e−βEΓ = e−βF (X) , (5.23)

we can write p(Xi)
p(Xj) = e−β(F (Xi)−F (Xj)) and the acceptance criterion in the biased (uniform)

ensemble is
ΠB

i→j = min
[
1,

p(Γj|Xj)
p(Γi|Xi)

eβ(F (Xj)−F (Xi))
]

. (5.24)
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The normal (unbiased) MC acceptance probability (using Eq. 5.3) would be Πi→j =
min

[
1, p(Γj |Xj)

p(Γi|Xi)

]
. Hence in order to get a uniform distribution in X we need to multiply

the normal (unbiased) MC acceptance probability with the exponential of the free energy
difference between the old and new state. This is a general result and therefore it holds
for any equilibrium ensemble (e.g. canonical, grand canonical, isothermal isobaric).

We do not know the free energy F (X) of the system in advance, this is precisely the
quantity that we are trying to calculate. What the above equations tell us is that if
we find a biasing function that will give us a uniform sampling, that biasing function
must be −F (X). Wang-Landau algorithm iteratively searches for the biasing function
resulting in a uniform sampling.

5.3.1 The iterative algorithm

The practical implementation of the algorithm is obtained by introducing a biasing
function in the form eΨ(X), where X is a discrete variable and Xi denotes a value of
variable X with the system in state i. We then use the standard Metropolis acceptance
scheme, the acceptance probability from state i to j is

ΠB
i→j = min

[
1,

p(Γj|Xj)
p(Γi|Xi)

eΨ(Xj)−Ψ(Xi)
]

. (5.25)

The unbiased (Ψ(X) = 0) MC acceptance ratio was Πi→j = min
[
1, p(Γj |Xj)

p(Γi|Xi)

]
. In general,

our best initial guess at the initial biasing function is Ψ(X) = 0, however, any prior
knowledge about the free-energy of a particular system can be included. The system is
forced into uniform sampling by updating the biasing function on every step in such a
way as to make the current state less probable

Ψn(Xi) = Ψo(Xi) − f, (5.26)

where f is a parameter specifying how much the biasing function is adjusted on a single
step.

We can imagine the workings of the method with a simple 1D picture. We walk on
a rough landscape in direction X. On every step we lay a brick with height f and we
prefer to walk down rather than up. Repeating this process we would first sample the
valleys and lowlands which would be built up by layers of bricks. Once we cover the
highest peak of our landscape, we have constructed a brick wall that is roughly flat on
the top. Now, simply counting the number of bricks we have used at each point X will
tell us the original height of the landscape. The only difference to a high dimensional
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picture, is that we need a function that projects every point to some value of X. We
walk on a high dimensional landscape, but lay bricks only in X.

The algorithm breaks detailed balance on every step, but at this stage we only wish
to build up a biasing function, not simulate the equilibrium distribution of states in the
system. The value of f chosen (the brick height) determines the accuracy of the biasing
function in kBT as ϵi/kBT ≈ O(fni→) , where kB is the Boltzmann constant and ni→ is
average acceptance ratio from state i to any other state. The smaller the value of f the
better the accuracy, but on the other hand a large f quickly builds up a biasing function.

We usually initialise f = 1, then we continuously check the histogram of all visited
states H(X), once this histogram is sufficiently flat (say max[H(X)]

min[H(X)] ≤ 1.5), we assign a
smaller value to f (e.g. the new fn = fo/2 is the half of the old fo) and start the counting
of the histogram again, in this way we gradually improve accuracy on Ψ(X). We continue
with this scheme until the desired accuracy is reached, in our case this was f0 = 10−6.

Once we obtain a flat histogram H(X) with the desired accuracy the algorithm
terminates. At this point we perform a long simulation with a static final value of the
biasing function Ψfin, this scheme obeys detailed balance. We record the final histogram
Hfin(X) of this simulation which should yield a nearly flat distribution in X. If the
final distribution is not flat: either the Ψfin has not converged, in which case we need to
repeat the Wang-Landau scheme, or the final simulation was not long enough and the
final sampling was not sufficient. The expectation value for the final histogram is

Hfin(X) ∝ pfin(X) ∝ e−βF (X)eΨfin(X), (5.27)

Hence, we obtain the free energy of the system up to a constant

βF (X) = Ψf (X) − ln (Hf (X)) + C . (5.28)

We applied this algorithm to calculate the free energy of a multivalent polymer as
function of the number of formed bonds λ presented in the 2nd Chapter.

5.4 Molecular imprinting simulations

We performed equilibrium Monte Carlo simulations using the “spring" model described
in the Chapter 4. We simulate both the imprinting process, and rebinding of analytes
into formed mips. The simulated system was a cubic box (volume V ) with periodic
boundary conditions. In the imprinting phase we perform canonical simulations with
fixed number of point-like ligands and hard-sphere template particles. Both template
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Fig. 5.2 Simulation snapshot. Ligand anchors are represented with red blobs, particles
are the big spheres and binding sites on particles are shown as white blobs. In this
particular system the ligand anchors are randomly distributed in space and all of the
ligands are complementary in binding to all of the binding sites.

particles and ligands are allowed to diffuse around and ligands can bind to the receptors
on the template. Ligands and binding sites can be of different types and the interaction
matrix ∆G̃ defines the hybridization free energies between different types of ligands and
binding sites. After this system has equilibrated, we fix the positions of ligands, which
we call ligand anchors, and remove the particles, thus an imprinted configuration was
formed.

In the analyte binding phase we do not simulate the positions of ligands explicitly, in
a given binding event we treat the loss of configurational entropy implicitly using Eq.
(A15). We perform Grand-canonical MC simulations where hard-sphere analytes, with
specific binding sites on their surface, are inserted into the system from the reservoir with
a fixed chemical potential µ (see Figure 5.2 and 4.3 for a depictive simulation snapshot).
Analytes are moved around using standard displacement MC moves. We then determine
the average number of bound analytes (analytes attached to the ligands with at least
one bond) in the system. When simulating the binding of analytes into non-imprinted
polymers (NIPs) the ligands are randomly distributed.

In any given Monte Carlo (MC) step a random choice is made between: (i) particle
translation and rotation, (ii) particle insertion/deletion move or (iii) binding/unbinding
event between ligands and binding sites. The probabilities to chose particular moves
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are: 0.4 for translation/rotation, 0.1 for insertion/deletion and 0.5 for binding/unbinding.
These numbers were found to give a reasonably good overall performance of Monte Carlo
sampling, their exact values are unimportant as we perform equilibrium simulations.
The particles are moved around using standard translational moves [119]. Rotations of
individual particles are implemented using quaternion algebra, Marsaglia’s method [122] is
used to generate random quaternions for generating candidate MC moves. The translation
and rotation moves are always performed jointly, a translation/rotation is considered a
single MC move. Bonds between ligands and binding sites on particles can be made or
broken using configurational bias Monte Carlo; a random binding site is chosen, then all
possible ligands within a cut-off distance are considered and their Boltzmann weights
computed. A binding/unbinding event is chosen with a probability proportional to the
weight.

When calculating the free energy of binding we simulated a single cavity site with
a restriction that at most a single particle can be present in the system. We calculate
the average occupancy of the cavity fb (the fraction of time the particle is bound in
the cavity with at least one bond) and obtain the binding free energy by inverting the
Langmuir adsorption isotherm

e−βF = KAρ0 = (e−βµ + V ρ0NA) fb

1 − fb

. (5.29)

In our simulations, the chemical potential µ was chosen such to obtain good statistics.
V = (10σ)3 is the volume of the simulation box (σ is the particle diameter), the term
V ρ0NA in the above equation takes into account the probability of finding a non-bound
particle in the system.

5.4.1 Configurational bias

Here we expand on the configurational bias technique. To simulate binding and unbinding
events we could use simple Metropolis acceptance criterium, however, for strong bonds,
the acceptance ratio would be quite low.

The configurational bias method [119, 121] overcomes this. The idea of the configu-
rational bias method is that for a randomly chosen subset of the system, we consider
all possible MC moves and compute all corresponding Boltzmann factors associated
with these moves. We then choose a MC move with the probability proportional to
this Boltzmann factor. By construction the method is rejection free. Say there are x

possible states the subsystem can evolve to, we then we have x possible MC moves, the
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probability of a particular move i is

pi = e−β∆Ei∑
i e−β∆Ei

, (5.30)

where ∆Ei is the energy difference associated with an i-th move. The drawback of this
method is that we have to compute all Boltzmann factors of all possible MC moves.
Therefore, the method works well when the set of possible moves is not too large. In our
system this was the case, the number of possible binding partners was usually at most 4.
For the same reason there was no need to implement more sophisticated MC schemes
such as “waste recycling” [123].

For our valence limited interaction sampling, a chosen binding site (receptor) can
be bound to any of the nearby ligands or it can be free. We can only consider ligands
that are not already bound to another binding site. So we consider all free ligands
within some cutoff distance of the binding site. The cutoff distance is chosen such that
the total binding energy to any ligand outside of it would be grater than 20kBT , and
therefore the probability for any such bond to form is negligible. We then compute the
probabilities using Eq. (5.30) for all possible binding re-arrangement of a chosen binding
site. Irrespective of the initial arrangement, the new state of the binding site is chosen
proportionally to the computed probability.

In order to correctly describe the equilibrium properties, the detailed balance needs
to be preserved within each MC move. If at some point a chosen binding site was bound
to a ligand from outside of the distance cutoff, we need to leave them bound and continue
with MC sampling, otherwise the detailed balance would be violated. The reason for the
violation being that there is no reverse move since for binding moves we only consider
binding sites within a distance cutoff.
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Appendix A

Molecular imprinting derivations

Any model for molecular imprinting should offer a description of the step in which free
ligands undergo equilibrium binding to the template, and of the step in which analytes
binds to these ligands, once they have been permanently tethered to the polymer matrix
by cross linking. In this Appendix, we provide the statistical mechanical background for
both theoretical descriptions.

A.1 Cavity formation theory

We consider a volume V containing a solution of various types of ligands. The number
of ligands of type α is denoted by Mα. Before cross-linking, the ligands are free to move.
To this solution we add N template particles. Each template particle has various binding
sites (receptors) on its surface. In what follows, we will designate ligand types with
greek letters j = {α, β, · · · }, and the complementary binding sites with i = {α′, β′, · · · ).
The number of binding sites of type α′ is denoted by nα′ . The spatial extent of binding
sites and ligands is assumed to be smaller than the template particle, such that different
ligands bound to the same particle do not interact with each other. We also assume
that ligand binding will not induce conformational changes in the template particles,
which would introduce a correlation between different binding events. In equilibrium, an
average number mα ligands of type α will bind to the complementary binding sites on a
template particle, as depicted in figure A1.

All binding sites of the same type are equivalent. In thermodynamic equilibrium
there will be a chemical equilibrium between the number of free ligands in the solution
and the number of ligands bound to the particles. We can easily calculate the occupancy
fractions of individual sites. We first write a single-site grand-canonical partition function
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A.1 Cavity formation theory

for binding site of type i:
ζi = 1 +

∑
j

eβ(µj−∆G̃ij), (A1)

where the sum goes over all types of ligands present in the system. ∆G̃ij is an interaction
matrix that specifies the hybridization free energies between a ligand of type j and a
binding site of type i in the pre-polymerization solution, µj is the chemical potential of
ligand type j and β ≡ 1/kBT , where kB is the Boltzmann constant and T the absolute
temperature. At a given density of ligands in the solution, the average occupancy of a
binding sites of type i with a ligand of type j will be

f j
i = eβ(µj−∆G̃ij)

ζi

. (A2)

In what follows, we will assume that the total density of ligands in a solution is sufficiently
low that we can assume the solution to be ideal. Extension to non-ideal solution is
straightforward but the notation is more cumbersome. For dilute solutions the chemical
potential is proportional to the logarithm of the density, therefore

eβµj ≈ cf
j /ρ0 (A3)

with cf
j the molar concentration of free ligands in solution and ρ0 = 1M the reference

concentration. By binding to the particles the number density of ligands in the bulk is
depleted

cf
j = cj − CT

∑
i

nif
j
i . (A4)

This equation states that the average number density of free ligands of type j in the
solution is equal to the total concentration cj = Mj/(V NA) of ligands minus the average
number of ligands that are bound to the templates, CT = N/(V NA) is the template
concentration and NA the Avogadro’s constant. We have assumed that the system is large
(macroscopic) such that the fluctuations in the number of free ligands can be neglected
cf

j = ⟨cf
j ⟩. Inserting (A1), (A2), (A3) into (A4) we arrive at a system of equations

cf
j = cj − CT

∑
i

ni

cf
j e−β∆G̃ij

ρ0 +∑
j′ cf

j′e−β∆G̃ij′
, (A5)

which can be solved self-consistently for the densities of free ligands cf
j .

We now assume that each ligand can bind only to a complementary binding site. For
example a ligand of type α can only bind to a binding sites of type α′. This assumption
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A.1 Cavity formation theory

α 

α 

α 

β 

β 

β 

γ 

α’ β’ 

γ’ 

Fig. A1 Free ligand binding. Template particles (big green) are mixed with ligands in a
solution, ligands of different types (α, β, γ) can reversibly bind to the specific binding
sites on a particle (α′, β′, γ′). Here we show only a single particle in the box.

implies that ∆G̃ is a diagonal matrix. The set of equations (A5) then decouple:

cf
α = cα − CT nα′

cf
αe−β∆G̃α′α

ρ0 + cf
αe−β∆G̃α′α

(A6)

This is a quadratic equation that can be solved to yield the ligand concentration cf
α. The

solution of this equation gives us the bulk densities from which it is straightforward to
obtain average occupancy fractions fα

α′ with Eq. (A2) and (A3), because f j
α′ = 0 for

j ̸= α,

fα
α′ =

K̃αα′
D + nα′CT + cα −

√
(K̃αα′

D + nα′CT + cα)2 − 4cαnα′CT

2nα′CT

, (A7)

with K̃αα′
D = ρ0e

β∆G̃αα′ the equilibrium dissociation constant of α − α′ binding.
Eq. (A6) can be written in a somewhat more transparent form using the standard

chemical equilibrium notation

[α] = [α0] − [T ]nα′fα
α′ , (A8)

where [α0] = cα and [α] = cf
α are, respectively, the initial and final concentrations of

ligand of type α, [T ] = CT is the concentration of the template particles, nα′ denotes the
number of α′ binding sites per template particle. The occupancy fraction of α′ binding
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A.1 Cavity formation theory

sites
fα

α′ = [α]
[α] + K̃αα′

D

, (A9)

Inserting the above equation into (A8) we find a quadratic equation in [α] that can be
solved to yield

[α] =
−K̃αα′

D − nα′ [T ] + [α0] +
√

(K̃αα′
D + nα′ [T ] − [α0])2 + 4[α0]K̃αα′

D

2 (A10)

Finally, inserting this expression for [α] in (A9), the occupancy fractions fα
α′ follow.

The imprinted polymer is created by cross-linking the polymer matrix and removing
the bound template particles. In our model, the cross-linking process fixes the average
positions of the ligands in the (flexible) matrix. If the occupancy fractions in the pre-
polymerization solution are close to unity, the resulting imprinted polymer will only
contain cavities that contain a number of ligands equal to the number of binding sites
on the template. In contrast, for low occupancy fractions, the matrix will contain
heterogeneous cavities. In that case we would need to evaluate the expected distribution
of different cavities formed and calculate properties of each family separately. For example
if f = 0.5 and we have 2 binding sites on a particle there will be about 25% of cavities
with 2 ligands, 50% with just one and 25% with none. Also the ligands that did not
bind to the particle in the pre-polymerization complex will be randomly distributed
throughout the polymer matrix and can be treated equivalently to ligands distributed in
a NIP (non-imprinted polymer). Therefore to characterize such a MIP, a free energy of
binding should be computed for the different cavities expected to form. This process is
tractable if the number of receptors on the template is low (say 2 or 3). Alternatively,
we can perform Monte Carlo simulations of the pre-polymerization matrix and then
calculate the adsorption isotherm of analyte binding, as shown on Figure 4.3.

Heterogeneity of cavities will always diminish the selectivity of MIPs. Therefore, the
cavity distribution should be made as homogeneous as possible, i.e f ≈ 1. A simple rule
of thumb would be that the initial concentration of ligands should be at least the sum of
the dissociation constant and the concentration of receptors

[α0] > K̃αα′

D + nα′ [T ] . (A11)

This will ensure that the average occupancy of binding sites is greater than fα′ > 1
2 .
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A.2 Ligand binding

In the polymer matrix the ligands fluctuate around their "anchor" positions and we define
ranc

i = ⟨rlig
i ⟩. the potential of mean force is, within the harmonic approximation

Uh = kh

2
(
rlig − ranc

)2
. (A12)

with kh the effective "spring" constant derived in Chapter 4.
We introduce a hard-sphere like particle with specific binding sites on its surface.

Ligands and binding sites can bind together, when they do the system is constrained by
rlig

i = rbs
j , the position of the ligand i is equal to the position of the binding site j on a

particle. There is no preferred bond directionality as discussed above; the probability
that a ligand binds depends only on the relative distance between the binding site and
the ligand anchor. Upon a bond formation the system gains the hybridization free energy
∆Gij it has to pay the harmonic penalty Uh and looses some conformational entropy
because of the constraint rlig

i = rbs
j .

For a given position rp and orientation Ωp of the particle we can calculate the
probability that a bond is formed. The non-binding partition function (for a single free
ligand) is an integral over all possible ligand positions

Qu
i (rp, Ωp) =

∫
drlig

i e− βkd
2 |rlig

i −ranc
i |2 ≈

(
2π

βkh

)3/2

, (A13)

is a constant. The solution of this Gaussian integral is only approximate due to the fact
the volume of the phase space accessible to a fluctuating ligand is reduced if a hard-sphere
particle is present in the vicinity (the ligand cannot penetrate into the particle). In
performing this approximation we neglect excluded volume effects between particles and
free ligands. However, corrections are rather small, for example if a particle surface is
located exactly at the free ligand anchoring point, we overestimate Q0 by about a factor
of 2 (because almost half of the available volume is excluded). This in turn translates
into the free energy correction of about ln 2 ≈ 0.7kBT . We stress that this approximation
only applies to cases when the particle is partially bound to the cavity (i.e. not all ligands
are bound, but the particle is present in the cavity).

The ligand-to-binding-site bound state partition function is

Qb
ij(rp, Ωp) = v0e

− βkh
2 |rbs

j −ranc
i |2e−β∆Gij , (A14)

131



A.3 Analytical free energy calculations

where v0 ≡ 1/(ρ0NA) defined as the standard volume, ρ0 = 1M the standard concentration
and NA the Avogadro’s number. v0 can be recognised as the available volume per solute
particle in a solution with concentration ρ0 = 1M. We remember that the position of the
binding site is determined by the position and orientation of the particle rbs = rbs(rp, Ωp).

Using (A14) and (A13) the ratio of probabilities of being bound to non-bound is

pij(rp, Ωp)
p0

=
Qb

ij(rp, Ωp)
Qu

i

= v0

(
βkh

2π

)3/2

e− βkh
2 |rbs

j −ranc
i |2 e−β∆Gij (A15)

which depends only on the hybridization free energy ∆Gij and the position of the binding
site relative to the ligand anchor.

Following the same procedure as outlined above for one ligand, we can find the
probability that two ligands are bound to two binding sites

pij,i′j′(rp, Ωp) = pij(rp, Ωp)pi′j′(rp, Ωp), (A16)

which is simply a product of individual binding probabilities as we assume that different
binding events are uncorrelated. This assumption should hold as long as: (i) the distance
between ligand anchors is greater than the standard deviation due to fluctuations
a > ( 2π

βkh
)1/2 and (ii) the binding sites on a particle are independent, i.e. binding of one

site does not introduce conformational (or other) changes in the particle that would
affect the binding of a second site.

Further generalization to any number of ligands and binding sites is straightforward
and follows the same procedure as described above.

A.3 Analytical free energy calculations

The bound partition function of a particle in a cavity counts all possible states of a
particle in a cavity

Qb =
κmax∑
κ=1

(qu
l )nl−κvκ

0
∑
s(κ)

∫
drpdΩpe

−β
∑

ij(s)

[
∆Gij+ kh

2 |ranc
i −rbs

j |2
] , (A17)

where outer the sum goes over all possible number of bonds κ and all bonding arrangements
s(κ) of κ bonds. qu

l = ( 2π
βkh

)3/2 is the phase volume of a non-bound ligand (A13), nl is
the total number of ligands in the cavity. The inner ∑ij(s)(...) sums the potential and
bonding energy of all bound pairs ij(s) of the particular bonding arrangement s.
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For an empty cavity, when the particle is free in the solution, all ligands are unbound
and the partition function is trivial

Qu = 8π2v0(qu
l )nl ; , (A18)

where 8π2 comes from integrating over the solid angle and rotations and v0 = 1/(ρ0NA)
is the microscopic volume related to the choice of a standard concentration ρ0. The
binding free energy of a particle (from solution to a cavity) is determined by the ratio of
the above partition functions

Qcav ≡ Qb

Qu
=

κmax∑
κ=1

qκ = q1 + q2 + ... , (A19)

so that the binding free energy of an analyte-cavity system is simply

F cav = −kBT ln(Qcav) , (A20)

or the equivalent equilibrium association constant is simply KA = ρ0Q. Each term in
the above sum

qκ = vκ−1
0
8π2

(
2π

βkh

)−3κ/2 ∑
s(κ)

∫
drpdΩpe

−β
∑

ij(s)

[
∆Gij+ kh

2 |ranc
i −rbs

j |2
]

, (A21)

is a partition function of a particle in a cavity with κ formed bonds.
We now proceed to determine each qκ separately. A single bond partition function is

q1 = 1
8π2

(
2π

βkh

)−3/2∑
ij

∫
drpdΩpe−β∆Gij+ βkh

2 |ranc
i −rbs

j |2 . (A22)

We only need to evaluate a Gaussian integral, while integration over orientations gives∫
dΩp = 8π2, hence, all pre-factors cancel out and we simply get

q1 =
∑
ij

e−β∆Gij (A23)

a sum goes over all possible (distinct) pairs: j stands for binding sites and i for ligands.
For example if there are 5 ligands in the cavity and 3 binding sites on a particle we have
in general 15 possible combination of how to form a single bond.
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A.3.1 Evaluation of q2

In the evaluation of q2, the imprinting properties and selectivity start emerging. Similar
to the one-bond scenario described above, we write the partition function as an integral
over all positions rp and rotations Ωp of a particle, and additionally summed over all
possible combinations of 2 bound pairs ij, i′j′, where i, i′ stand for ligands and j, j′ for
binding sites.

q2 = A
∑

ij,i′j′

(
e−β(∆Gij+∆Gi′j′ )

∫
drpdΩp e

βkh
2 (|ri−rj |2+|ri′ −rj′ |2)

)
. (A24)

with pre-factor A = v0
8π2

(
2π

βkh

)−3
. For later convenience we will generalize q2 to include

all possible positions of the ligand anchors.

q2 = A
∑

ij,i′j′

(
e−β(∆Gij+∆Gi′j′ )

∫
drpdΩpdridri′ e

βkh
2 (|ranc

i −rbs
j |2+|ranc

i′ −rbs
j′ |2)

p(ri, ri′)
)

. (A25)

where p(ri, ri′) stands for the joint probability to find a ligand anchor i at position ri

and a ligand anchor i′ at ri′ . Since the only important variables are the relative distances
between binding sites and ligand anchors, we only need to account for all possible relative
translations and rotations. There is translational and orientational symmetry in the
position and orientation of the particle, in other words, for every arbitrary position and
orientation of the particle, the integral over ligand anchor position is the same. Hence
we can integrate out the particle’s degrees of freedom

q2 = 8π2V A
∑

ij,i′j′

(
e−β(∆Gij+∆Gi′j′ )

∫
dridri′ e

βkh
2 (|ri−rj |2+|ri′ −rj′ |2)p(ri, ri′)

)
, (A26)

because
∫

drdΩ = 8π2V , V being the volume of the cavity, we will later elucidate on V .
We focus on 2 limiting cases. Either there are no correlations between different

ligand anchor positions, or the positions are sharply defined. If a polymer matrix is not
imprinted that in turn means that there are no correlations between different ligand
positions p(ri, ri′) = 1/V 2, i.e. the positions of the ligand anchors are random, this is the
case of a non-imprinted polymer (NIP). The integral in Eq. (A26) can be separated into
two independent 3D Gaussian integrals which are trivial to solve

qnip
2 = v0

V

∑
ij,i′j′

e−β(∆Gij+∆Gi′j′ ). (A27)
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The partition function is inversely proportional to the volume. This makes sense intuitively
because the larger the volume the less likely it is that the distance between two random
points will match the distance between the two binding sites on a particle. We stress that
Eq. (A27) is a mean-field prediction which gives us the average q2 in a NIP. In deriving
(A27) we have assumed that kh is a constant, but in fact the relative fluctuations of 2
ligands will, in principle, also depend on their relative distance (4.11). However, the
regime we are interested in is the regime of geometrical selectivity βkhσ2 > 1 (fluctuations
are smaller than the template/cavity size σ). In this case the largest contribution to the
integral in (A26) comes when the inter ligand anchor distance is similar to the inter binding
site distance on the particle. Hence, we approximate kh(|ri −ri′|) ≈ kh(|rj −rj′|) ≃ kh(σ),
where in the last step we approximated that the inter binding site distance is given by
the particle size σ.

On the other hand, an imprinted cavity has well defined distances between ligand
anchoring points. Due to translational and orientational symmetry, the positions of the
ligand anchors ri and ri′ are arbitrary as long as we keep a fixed distance between them
|ri − ri′ | = aii′ , the arrangement of the ligand anchors matches a template molecule with
which the cavity was imprinted. The probability to find ligand anchors at given positions
is

p(ri, ri′) = 1
4πa2

ii′V
δ(|ri − ri′ | − aii′), (A28)

with δ(x) a Dirac delta function. The 1/(4πa2
ii′V ) pre-factor comes in due to normalization∫

p(ri, ri′)dridri′ = 1. Inserting Eq. (A28) into Eq. (A26) we write the partition function
as

q2 = 2πA

a2
ii′

∑
ii′,jj′

e−β(∆Gij+∆Gi′j′ )J(aii′ , bjj′), (A29)

where J(aii′ , bjj′) is the configurational integral we need to solve

J(aii′ , bjj′) =
∫

dridri′ e
βkh

2 (|ri−rj |2+|ri′ −rj′ |2)δ(|ri − ri′| − aii′), (A30)

which, as we will see later, depends only on the relative distances between binding sites
(bjj′ = |rj − rj′ |) and between ligand anchors (aii′). This is a Gaussian integral with
non-linear coupling, however, in this case it can be solved analytically, we write

J(aii′ , bjj′) =
∫

V
drie

βkh
2 |ri−rj |2

∮
S

dri′ e
βkh

2 |ri′ −rj′ |2δ(|ri − ri′ | − aii′), (A31)

where the innermost integral is a Gaussian (which is centered around rj′) integrated over
a surface of a sphere, the sphere centre being located at ri. It can be solved by switching
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to spherical coordinates

∮
S

dri′ e
βkh

2 |ri′ −rj′ |2δ(|ri − ri′| − aii′) = 4πaii′

βkh

e− βkh
2 (|aii′ |2+|ri−rj′ |2)

|ri − rj′ |
sinh (βkhaii′|ri − rj′|),

(A32)
where sinh(x) denotes the hyperbolic sine function. Inserting into (A31) we find

J(aii′ , bjj′) = 4πaii′

βkh

e− βkh
2 |aii′ |2

∫
V

dri
e− βkh

2 (|ri−rj |2+|ri−rj′ |2)

|ri − rj′|
sinh (βkhaii′|ri − rj′ |). (A33)

We extend the limits of integration to infinity, transform to spherical coordinates, complete
a perfect square in the exponent and it turns out that the integral can be written as a
sum of definite Gaussian integrals (error function integrals) which partly cancel out and
the final result is

J(aii′ , bjj′) = 8
(

π

βkh

)5/2
aii′e

− βkh
4 (d2

ii′ +b2
jj′ )

bjj′
sinh (βkhaii′bjj′/2). (A34)

Finally, by inserting Eq. (A34) into (A29), we find the configurational part of the two
bond partition function

q̃2(aii′ , bjj′) = v0(βkh)1/2

4π3/2
e

− βkh
4 (a2

ii′ +b2
jj′ )

aii′bjj′
sinh (βkhaii′bjj′/2) , (A35)

which is a function only of the distances between the two ligands anchors (aii′) and two
binding sites on a particle (bjj′). q2 is then obtained by summing over all possible 2 bond
configurations

q2 =
∑

ij,i′j′
e−β(∆Gij+∆Gi′j′ )q̃2(aii′ , bjj′) (A36)

To analyze this result we consider a special case with only 2 ligands and 2 binding
sites with a = aii′ = bjj′ , i.e. the imprinted site perfectly matches the particle, the
partition function (A35) is simplified to

q̃2(a = b) = v0(βkh)1/2

8π3/2
1 − e−βkha2

a2 . (A37)

Now we distinguish two limits:

1. βkha2 ≪ 1 ; the thermal fluctuations in position of a free ligand are much grater
than the particle size, we expand the exponential to first order, a cancel out and
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we find
q̃2(a = b; βkha2 ≪ 1) = v0(βkh)3/2

8π3/2 , (A38)

a constant, which is to be expected, since in this limit the particle effectively feels
two springs pulling in the same direction. v0(βkh)3/2

8π3/2 is the reduction of phase space
when joining together ends of two springs.

2. βkha2 ≫ 1 ; in the opposite limit the two bonds effectively (translationally and
orientationally) confine the particle. The exponential in (A37) is neglected and we
find

q̃2(a = b; βkha2 ≫ 1) = v0(βkh)1/2

8π3/2a2 . (A39)

The partition function falls off with the square of the distance between ligands a.
Such scaling is also to be expected because the greater the distance the smaller
the orientational fluctuations of the particle. Say S is a surface of a particle that a
ligand can explore, the solid angle of possible particle orientations is then Ω ∝ S/a2

for a spherical particle.

A.3.2 Evaluation of q3 and beyond

Similar to 2 bond case above, we write the 3 bond partition function as an integral
over all possible positions of the 3 ligand anchors and a sum over all possible 3 bond
(ij, i′j′, i′′j′′) combinations,

q3 = 8π2V B
∑

ij,i′j′,i′′j′′

(
e−β(∆Gij+∆Gi′j′ +∆Gi′′j′′ )

∫
dridri′dri′′ e

βkh
2 (|ri−rj |2+|ri′ −rj′ |2+|ri′′ −rj′′ |2)p(ri, ri′ , ri′′)

)
,

(A40)
with a constant B = v2

0
8π2

(
2π

βkh

)−9/2
. In the case when the ligand anchors are randomly

distributed p(ri, ri′ , ri′′) = 1/V 3 the calculation is simple as we only need to calculate 3
independent Gaussian integrals, similar to procedure for qnip

2 we find

qnip
3 = v2

0
V 2

∑
ij,i′j′,i′′j′′

e−β(∆Gij+∆Gi′j′ +∆Gi′′j′′ ). (A41)

In the imprinted case the relative positions of anchors are well defined

p(ri, ri′ , ri′′) = Aδ(|ri − ri′| − aii′)δ(|ri − ri′′ | − aii′′)δ(|ri′ − ri′′ | − ai′i′′) = Aδ3
ii′i′′ ,

(A42)
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here A is the normalization factor

A =

8π2a2
ii′V

√√√√a2
ii′′ −

(
a2

ii′ + a2
ii′′ − a2

i′i′′

2aii′

)2


−1

. (A43)

We have not found a general analytical solution of the integral (A40), nor for the cases
with more than 3 ligand-receptor pairs.

A.3.3 Non-imprinted polymers

For a non-imprinted polymer (NIP) we have calculated the 2 and 3 bond partition
function above, a general expression for κ bonds is

qnip
κ = (V ρ0NA)1−κ

∑
s(κ)

e
−β∆Gtot

s(κ) . (A44)

We have used the relation that the microscopic volume is determined by the reference
density v0 = 1/(ρ0NA), V is the “volume" of the cavity and the sum goes over all possible
combinations s(κ) of κ bonds. As the non-imprinted polymer has no cavities per se, V

can be chosen arbitrarily. We assume that the ligands (regions in the polymer matrix)
accessible to the particles are the same for NIPs and MIPs. For weakly cross-linked
matrices nearly all of the ligands should be accessible, while for very dense matrices (mesh
size much smaller than the particle size) only the cavities and ligands near the surface
will be accessible, as the particles cannot easily diffuse inside the matrix. Therefore,
accessibility depends largely on the cross-linking distance and it will be similar for
similarly prepared MIPs and NIPs.

If there is only a single type of ligands and receptors in the system (type α) the
expected number of ligands in volume V is Nα = V cαNA with cα the ligand concentration
in the NIP. As all bonds are equal ∑s(κ) e

−β∆Gtot
s(κ) = s(κ)e−βκ∆G. For a particle with nα

receptors, the number of possible combinations of κ bonds is given by combinatorial. We
need to choose κ ligands out of Nα, κ receptors out of nα and there are κ permutations
of binding them together

s(κ) =
(

Nα

κ

)(
nα

κ

)
κ! = Nα!nα!

(Nα − κ)!(nα − κ)!κ! ≈ (Nα)κ

(
nα

κ

)
. (A45)

Choosing a large volume V we have Nα ≫ nα ≥ κ and the above can be well approximated
with

(
Nα

κ

)
≈ (Nα)κ. The total NIP partition function is a sum over all possible number
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of bonds κ

Qnip
tot =

nα∑
κ=1

qnip
κ = V ρ0NA

nα∑
κ=1

(
nα

κ

)[
Nαe−β∆G

V ρ0NA

]κ

= V ρ0NA

[(
1 + cαe−β∆G

ρ0

)nα

− 1
]

,

(A46)
which is obtained by summing over all binomial coefficients. This is the partition function
of 1 particle in a non-imprinted polymer matrix with volume V . We note that the above
result and its derivation is similar to the theory of ligand-decorated nanoparticles binding
to receptor-decorated surfaces [10], the two problems are conceptually similar.

It is convenient to express the partition function per individual ligand for easier
comparison to MIPs, as there are Nα = V cαNA ligands in volume V , the mean partition
function per ligand is

Qnip = ρ0

cα

[(
1 + cαe−β∆G

ρ0

)nα

− 1
]

. (A47)

If the particle has different receptors types j and there are different ligand types i in the
NIP, the generalized expression becomes

Qnip = ρ0

ctot

∏
j

(
1 +

∑
i

cie
−β∆Gij

ρ0

)nj

− 1
 , (A48)

with ctot = ∑
i ci the total ligand concentration. We stress that the above is strictly true

only for a single particle in the NIP, as it neglects particle-particle interactions and the
effect of limited valency. The difficulty is that in a NIP we cannot really talk about
independent ‘cavities’. However, if the number of particles is small enough such that
the fraction of bonded ligands is small, the above expression is correct and it provides a
useful analytical way of characterising NIPs (as shown on Figure 4.3).

A.3.4 Summary of analytical results

We write the analyte-cavity bound state partition function as a sum over all possible
number of bonds κ as

Qcav =
κmax∑

κ

qκ . (A49)

The binding free energy of analyte to a cavity is

F cav = −kBT ln(Qcav) (A50)
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In the case of a single bond we trivially find

q1 =
∑
ij

e−β∆Gij . (A51)

The imprinted two bond partition function is analytical and is written as a function of
the distances between ligand anchors (aii′) and binding sites (bjj′)

q2 =
∑

ij,i′j′
e−β(∆Gij+∆Gi′j′ )q̃2(aii′ , bjj′) (A52)

with configurational part

q̃2(aii′ , bjj′) = (βkh)1/2

4π3/2ρ0NA

e
− βkh

4 (a2
ii′ +b2

jj′ )

aii′bjj′
sinh (βkhaii′bjj′/2) . (A53)

For higher number of simultaneous bonds (κ > 2) we have not found a way to analytically
compute the partition functions qκ.

The general result for a partition function with random distribution of ligand anchors
(NIP) is simply a product of independent Gaussian integrals, as there are no cavities in a
NIP we normalise the partition function by the concentration of ligands:

Qnip = ρ0

ctot

∏
j

(
1 +

∑
i

cie
−β∆Gij

ρ0

)nj

− 1
 , (A54)

with ci the molar concentration if ligand type i, ctot = ∑
i ci the total concentration of

ligands and nj denotes the number of receptors of type j on a particle.

A.4 Binding affinity calculations

We calculate the binding affinity to NIPs using (A48)

BAnip = cα⟨Knip
A ⟩ =

(
1 + cα

KD

)nα

− 1 (A55)

for a single ligand-receptor type. In deriving the above we have used KA = Q/ρ0 and
the single bond dissociation constant is KD = ρ0e

−β∆G. The above result is trivially
extended to multiple bond types

BAnip = ctot⟨Knip
A ⟩ =

∏
j

(
1 +

∑
i

ci

Kij
D

)nj

− 1 , (A56)
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with i and j denoting ligand and bond types respectively and Kij
D = ρ0e

β∆Gij is the
interaction matrix.

For imprinted polymers the binding affinity is a sum of two contributions: binding
to single cavities, and binding to non-imprinted ligands within a MIP or cross-cavity
binding (to 2 cavities simultaneously, if they are close enough)

BAmip = BAcav + O (A57)

where the cavity binding term is determined by the concentration Ccav and free energy
F cav of analyte-cavity binding

BAcav = Ccav⟨Kcav
A ⟩ = Ccav

ρ0
⟨e−βF cav⟩ . (A58)

The ‘other’ contribution O includes all possible terms of analyte binding to a MIP
that are not included in a single cavity - single analyte picture, namely cross-cavity and
binding to non-imprinted ligands within a MIP. This contribution will be substantial
if the ligand density is high ctotNA ≳ (βkh)3/2. Assuming that imprinted cavities are
randomly distributed throughout a MIP, we find

O ≈ BAnip . (A59)

Heuristically, from a ligand’s point of view, other ligands belonging to the same cavity
have well defined positions, but distances to all ligands in other cavities are random as
the cavity positions are random.

For divalent analytes we can calculate the total MIP binding affinity BAmip
2 analytically,

starting from Eqs. (A26, A27, A28) and considering the ligand probability distribution
in the whole MIP, not just in a single cavity. For an imprinted ligand the probability
distribution is simply a sum of a delta function (because the other ligand in the same
cavity is at a well defined distance) and a constant (all other ligands). The total binding
affinity to MIP imprinted by a divalent template is

BAmip
2 = BAcav

2 + BAnip
2 − ⟨q1⟩

Ccav

ρ0
(A60)

the sum of single cavity binding BAcav and to ligands outside cavities or across 2 cavities
BAnip. The average single bond contribution ⟨q1⟩Ccav

ρ0
needs to be subtracted due to

double counting in the first two terms. We expand the single cavity binding affinity as
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the sum over single and double bond contributions, using Eqs. (A49, A50,A58),

BAcav
2 = Ccav

ρ0
(⟨q1⟩ + ⟨q2⟩) (A61)

If both bonds are equal and independent and template extraction process is efficient, we
can write the average 2 bond partition function as

⟨q2⟩ = 2q̃2

(
fρ0

KD

)2

(A62)

with f the occupancy fractions of receptors on a template (given by Eq. A7) that
is determined by the chemical equilibrium between ligands and templates in the pre-
polymerization solution. In the above q̃2 is the configurational part of the 2 bond partition
function (A52,A53), f is a fraction of doubly functionalized cavities and a factor of 2
comes because there are 2 ways to bind 2-receptor analyte to a 2-ligand cavity, if both
bonds are equal. If we have 2 different ligand - receptor pairs α − α′ and β − β′, and no
cross binding between them, we only need to remove the factor 2 in (A62)

⟨qdiff
2 ⟩ = q̃2ρ

2
0

fα
α′f

β
β′

Kαα′
D Kββ′

D

. (A63)

Inserting (A61) and (A62) into (A60) we find the binding affinity of a divalent analyte
into a MIP imprinted with a divalent template and single ligand-receptor bind type (both
bonds are equal)

BAmip
2 = BAnip

2 + 2CT q̃2f
2ρ0

K2
D

. (A64)

To clarify, BAnip
2 is given by (A55), assuming efficient template extraction Ccav ≈ CT

cavity concentration is given by the template concentration in the MIP formation step, q̃2

is given by (A53), f by (A7) and KD = ρ0e
β∆G is the single bond dissociation constant.

We have used this expression for the binding affinity to calculate the imprinting and
separation factor landscapes shown on Figures 4.4 and 4.5 in the main text.

Stoichiometric ratio of ligands to templates in the pre-polymerization solution is close
to optimal. On Figure A2 we show Imprinting factor depending on the ligand c and
template CT concentrations in the pre-polymerization phase. We keep the matrix stiffness
kh and the ligand-receptor dissociation constant KD fixed. The bond strength is the same
in the mip formation and analyte binding phase K̃D = KD. For divalent templates with
2 equal receptors the optimal imprinting is achieved at ligand concentration c∗ = 2.38K∗

D

and template concentration C∗
T = 1.69K∗

D, regardless of the matrix stiffness kh. If the
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Fig. A2 Imprinting factor IF = BAmip
2

BAnip
2

for divalent templates as a function of ligand and
template concentrations at fixed matrix stiffness k∗

h and bond strength K∗
D. We use

rescaled units, described in the main text, such that the phase diagram is valid for any
template size. The imprinting factor is calculated using (A55) and (A64). The landscape
in a) is the same as on Figure 4.4c) of the main text. In b) we show the imprinting
factor for 2 different bonds calculated with (A56, A60,A61,A63), but otherwise identical
parameters as a), the ligand concentration axis denotes the total ligand concentration
c∗

2 = c∗
α = c∗

β and both bonds are of equal strength K∗
D. c) and d) show the effect of

changing the bond strength or matrix stiffness relative to a).
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two receptors on the template are different (and there is no cross binding) the highest
imprinting factor is obtained at the same values, but applied to each type separately:
c∗

α = c∗
β = 2.38K∗

D and C∗
T = 3.38K∗

D.
In summary we make 5 points:

1. We observe that ligands and templates should be in approximately stoichiometric
ratio (2 ligands to 1 template for divalent templates).

2. Further on, the ligand concentration should be similar to the ligand-receptor
dissociation constant, as discussed in the main text. If the concentration is too low,
the MIP formation is inefficient, while for high concentrations analytes (templates)
bind strongly already to non-imprinted polymers NIPs.

3. We also observe that using 2 different ligand-receptor types does not bring any ben-
efit over a single type (comparing Figures A2a) and b)). For example, keeping the
overall ligand concentration the same and using 2 distinguishable bonds decreases
the binding affinity to NIPs by a factor between 2-4 (A55,A56). However, it also
reduces the binding affinity to MIPs (by a factor 2, comparing Eqs. A62 and A63)
and it decreases the occupancy fractions in the MIP formation phase (A7). The
final result seems to be that using distinguishable ligand-receptor pairs leads to
the same imprinting efficiency if the overall ligand and template concentrations are
increased by a factor 2.

4. Increasing the bond strength increases the imprinting factor (comparing Figures
A2a) and c)).

5. Changing the matrix stiffness k∗
h does not influence the shape of the phase diagram,

it merely rescales the imprinting factor (comparing Figures A2a) and d)), stiffer
matrices offer higher imprinting factors.

A.4.1 Separation factor optimization

Two analytes (say b1 = σ and b2 = 0.8σ) can be separated if the matrix is imprinted with
one of them (say a = b1). Figure A3a) depicts the separation factor as a function of the
imprinted distance a for three different values of matrix stiffness (binding free energies
are plotted on the inset). Only for very stiff matrices the optimal value is aopt ≈ b1,
while for softer gels the values are around a ≈ 1.5 > b1. This result can be intuitively
understood by noting that the binding free energy is approximately a quadratic function
of the mismatch close to the minimum. If the imprinting is slightly mismatched, the
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Fig. A3 Enhancing the specificity. a) The separation factor for two particles with
sizes b∗

1 = 1 and b∗
2 = 0.8 as a function of the imprinted distance in the cavity a∗ for

different values of the gel stiffness k∗
h. The best separation is achieved when the imprinting

is slightly mismatched relative to the analyte. The specific part of the binding free energy
βF cav

2 (a) is shown in the inset for each particle. K∗
D = 0.001 and we only considered

binding to fully functionalized cavities. b) Optimal template choice for separation.
Landscape of the optimal inter-receptor distance on the template aopt/σ when we wish
to separate an analyte with b∗

1 = 1 from another analyte b∗
2 = 1.1 (used for SF landscape

shown on Figure 4.5b)).

binding affinity of the chosen analyte is slightly smaller, but at the same time it increases
relative to the binding affinity of the other particle resulting in better separation capacity
of the MIP.

On Figure 4.5 in the main part we show separation factors between 2 divalent analytes
that have a different inter-receptor distance: b1 = σ, b2 = 1.1σ. On Figure 5a) we have
assumed that matrix was imprinted with a template with interceptor distance a = σ,
while on Figure 5b) the choice of a template (aopt) was optimized to obtain the largest
possible separation factor between the 2 analytes. Here (Figure A3b)) we show the
optimal aopt yielding that separation factor. For stiff matrices (large k∗

h) the optimal
imprinted distance is close the analyte parameter aopt ≃ b1 and this analyte can be
effectively also used as a template in imprinting process. In the case of soft matrices,
on the other hand, the optimal imprinted distance is lower. Therefore, for efficient
separation, a template different then the analyte should be considered.
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Fig. A4 Binding isotherms obtained from simulations for binding of 4 receptor templates
to NIPs (red) and MIPs (black and green). The 4 binding sites are either all equal
(circles) or there are 4 distinguishable ligand-receptor pairs (squares), there is no cross
binding. Solid red line represents the analytical result (A55), dashed black and green
lines are fitted to simulation results in the linear regime. Parameters: K∗

D = 0.1, k∗
h = 100,

C∗
T = 0.025, c∗ = 0.1. In the case of different bonds each ligand type has the same

concentration c∗
i = 0.1.
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A.4.2 Binding affinities from simulations

In Figure 4.3 we showed binding isotherms of divalent analytes into imprinted and
non-imprinted polymers. On Figure A4 we also show the binding isotherms for analytes
with 4 binding sites (receptors) arranged on a particle on the vertices of a square along
a great circle (see Figure A5 below, or Figure 4.3 ). Even though individual bonds are
very weak K∗

D = 0.1, the resulting imprinting factors are substantial IF > 20. Using 4
distinguishable ligand-receptor pairs does not seem to offer increased selectivity, in fact
imprinting factor is decreased in the case shown.

A.5 Enantiomeric separation

Figure A5 illustrates how the binding free energy to a fully functionalized cavity depends
on the spatial distribution of the binding sites. The figure shows the results of MC
simulations for particles and cavities that have four distinct bonds arranged at the corners
of a square. The ligands αβγδ are arranged clockwise. We compare binding of two
versions of particles: the matching particle has binding sites α′β′γ′δ′ arranged clockwise
as well, while on the non-matching particle the order is switched to α′β′δ′γ′. Clearly, the
matching particle shows greater affinity to the cavity and by choosing an appropriate
regime of the chemical potential µ the two could be effectively separated. This particular
example can be viewed as prototypical for enantiomeric separation. Interestingly, non-
matching analytes bind strongest to the intermediate matrix stiffness (when the analyte is
still able to deform the matrix and satisfy all bonds), while matching analytes (templates)
bind more strongly to stiffer matrices.
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Fig. A5 Enantiomer separation. Specific binding free energy βF ∗cav
4 for analyte
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polymer gel stiffness k∗

h. At k∗
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