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Numerical study of the hydrodynamics of thin sheets and ribbons presents difficulties associated with resolving multiple length scales.
To circumvent these difficulties, asymptotic methods have been developed to describe the dynamics of slender fibres and ribbons.
However, such theories entail restrictions on the shapes that can be studied, and often break down in regions where standard
boundary element methods are still impractical. In this paper we develop a regularised stokeslet method for ribbons and sheets in
order to bridge the gap between asymptotic and boundary element methods. The method is validated against the analytical solution
for plate ellipsoids, as well as the dynamics of ribbon helices and an experimental microswimmer. We then demonstrate the versatility
of this method by calculating the flow around a double helix, and the swimming dynamics of a microscale “magic carpet”.

1 Introduction
At microscopic scales, fluid flow is governed by the Stokes flow
equations: inertialess, and kinematically reversible.1 The dynam-
ics of microscale objects in Stokes flow is highly dependent upon
their geometry; for example, the drag anisotropy of slender rods
can cause them to translate at an angle to gravity when settling,2

and is crucial for the swimming of microorganisms with flagellar
filaments.3,4 But for many systems of medical or industrial signif-
icance, this geometric dependence can be difficult to compute.

The Boundary Element Method (BEM)5,6 is commonly em-
ployed in studies of microscale biofluiddynamics.7–10 In BEM, the
Stokes flow equations are transformed into an integral of Green’s
functions over the domain boundaries.6 These boundaries are dis-
cretised or “meshed” into typically triangular elements (Fig. 1e),
and the boundary integral is then calculated over each mesh ele-
ment to form a linear system which can be solved.

However, when there is a separation of length scales in the ob-
ject being studied (Fig. 1), as with for instance the slender flag-
ellum of bacteria or spermatozoa, resolving each scale with the
boundary element method can result in very large linear systems.
Early work by Hancock11 treated the slender flagellum of sea-
urchin spermatozoa as a line of point forces, from which local
resistive force theories were derived,12,13, which could be gen-
eralised to any cross-sectional shape (Fig. 1b)14. However this
local treatment required the cross-sectional length scale of the fil-
ament, w, to be exponentially smaller than the centreline length,
` (1� 1/ log(`/w)), with small curvature.

Building on this work, Slender Body Theory (SBT) was devel-
oped to determine the flow from such filaments to algebraic ac-
curacy.15,16 These models describe the hydrodynamics of a fila-
ment, with circular cross section, by expanding the flow from a
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line of point forces placed along the filament’s centreline and has
been used extensively to examine swimming and pumping in mi-
croscale biological systems.17–20

Recently, slender-ribbon theory (SRT) was developed to ac-
curately explore the microscale hydrodynamics of slender rib-
bons.21,22 This method expanded on the work of Johnson16 and
so captures the non-local interactions of the shape and is accurate
to order w/`. The slenderness condition in SRT is contingent on
the assumption that all three internal length scales of the ribbon,
the length, `, width, w, and thickness, h, are separated `� w� h
(Fig. 1c), and the leading order flow is found by asymptotically
expanding the flow from a plane of point forces representing the
ribbon with respect to these length scales. The flow at the ribbon’s
surface is then given in terms of a line integral22 of unknown
forces, as in SBT, which can be inverted to determine the force
on the fluid. This technique allows the asymptotic exploration
of a range of ribbon structures, such as artificial microswimmers
comprising a magnetic head and a ribbon tail.23–25

While SRT captures the leading order behaviour of many rib-
bon shapes, it is unsuitable for highly-twisted ribbons, or those
with a very curved centreline. Similarly, the asymptotic treatment
of the “slender-ribbon” limit `�w� h prevents SRT from captur-
ing the dynamics of sheets26 with `∼w� h (Fig. 1d), and causes
the theory to break down before a standard boundary element
approach becomes practical.

In this paper we develop Ribbon-BEM (RiBEM), a method to
bridge the gap between SRT and BEM that is capable of solving
the dynamics of both highly twisted and curved ribbons as well
as sheets. Inspired by previous treatments of cilia and flagella as
line distributions of regularised forces27 and SRT, we generate a
two-dimensional manifold surface mesh representing the ribbon
centreplane, and account for the finite thickness of the sheet via
the regularisation parameter ε of a surface distribution of regu-
larised forces.

The method is validated against analytical solutions for a trans-
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Fig. 1 Classes of shapes in Stokes flow. (a) Slender Body Theory (SBT) is an appropriate choice for long, slender bodies of circular cross-section.
Examples are the flagella of bacteria or spermatozoa. (b) When this cross-section is flattened slightly, but the width and thickness are still comparable,
only local drag theory (RFT) has so far been developed 14; there is no non-local equivalent to SBT in this case, but though inefficient, boundary
element methods may still be employed. An example of such a squashed slender body is the trematode worm Schistosoma mansoni, responsible for
Schistosomiasis. (c) Slender Ribbon Theory (SRT) is appropriate when all three intrinsic length scales are separated `� w� h, which can occur in
artificial microswimmer design. (d) The current study sits in the domain between SRT and the Boundary Element Method (BEM) (e).

lating plate ellipsoid, and then compared with previous BEM28

calculations for the hydrodynamics of twisted helices and the re-
sistance matrix of an experimental ribbon-shaped artificial mi-
croswimmer.24 We then demonstrate the flexibility of the method
by calculating the flow around a sedimenting double helix with
a curved centreline, before finally considering the swimming dy-
namics of a finite waving sheet26 or “magic carpet”.

2 Mathematical model
We will consider microscale ribbons and sheets, for which the
dynamics of the surrounding fluid is well-modelled by the Stokes
flow equations

µ∇
2u−∇p = 0, ∇ ·u = 0, (1)

where u is the fluid velocity and p the dynamic pressure.

To solve these equations (1), we employ the regularised
stokeslet boundary element method.27,29 The velocity at a point
x0 in the domain is given by integrals of stokeslets S and stresslets
T over the swimmer surface, S,∫

V
u j(x)φε (x−x0)dVx =

∫
S
Sε

i j(x,x0) fi(x)

−ui(x)T ε
i jk(x,x0)nk(x)dSx, (2)

for unknown surface tractions, f, and surface velocity u. The left-
hand side is a volume integral over the fluid domain of the veloc-
ity multiplied by a ‘blob’ regularisation of the Dirac δ -function.

For rigid body motions, or where the volume of a swimmer is
constant over its beat, we have the condition6∫

S
u(x) ·n(x)dSx = 0. (3)

This condition also holds to a very good approximation for flexible

yet inextensible swimmers provided the thickness h� w, l, since
the volume of such swimmers varies only very slightly. Under
condition (3), the boundary integral equation (2) can then be
rewritten in terms of a modified force density

u j(x0) =
∫

S
Sε

i j(x,x0) fi(x)dSx, (4)

which reduces computational complexity significantly. In our
model, we will impose velocities at the depth midplane and use
the regularisation to account for the finite thickness of the swim-
mer in a similar manner to Smith’s treatment of slender bodies;27

we thus employ the “single layer” boundary integral equation (4).
The regularisation function for the blob driving forces is given
by29

φε (x−x0) =
15ε4

8πr7
ε

, r2
ε = r2 + ε

2, (5)

where ri = (x−x0)i,r = |x−x0| and ε � 1. For such a blob force,
the regularised stokeslet is then

Sε
i j(x,x0) =

δi j(r2 +2ε2)+ rir j

r3
ε

. (6)

We will discretise the boundary integral equation (4) over mesh of
geometrically piecewise-quadratic triangles. The unknown trac-
tions f will be discretised as piecewise-constant fi[1], . . . , fi[N] over
each element E[1], . . . ,E[N], where E = E[1]∪ . . .∪E[N] is the sur-
face mesh of N elements describing the ribbon or sheet. This
discretisation yields a matrix system of the form

u j(x0) =
N

∑
n=1

fi[n]
∫

E[n]
Sε

i j(x,x0)dSx, x0 ∈ E[m], (7)

where x0 is the centroid of element E[m], with m = 1, . . . ,N and
i, j,= 1,2,3. This yields 3N equations for the 3N unknown surface
tractions. Element integrals of the regularised stokeslets are per-



formed using adaptive Fekete quadrature. Code is implemented
in matlab, and adapted from the authors’ previous work.30 We
will now proceed with a validation of this method against previ-
ous analytical and numerical results.

3 Validation

3.1 Plate ellipsoids

We begin by considering the resistance of a plate ellipsoid to the
6 principal translations and rotations. The total drag F on an
ellipsoid with semi-axes {`,w,h}, where without loss of generality
`≥ w≥ h, translating at speed U in direction ` is given by31

F
πµU

=
16

φ +ζ``2 , (8)

while the torque T due to a rotation at rate Ω about ` is given by

T
πµΩ

=
16
3

w2 +h2

w2ζw +h2ζh
, (9)

where

φ =
∫

∞

0

dx√
(`2 + x)(w2 + x)(h2 + x)

, (10a)

ζ` =
∫

∞

0

dx

(`2 + x)
√

(`2 + x)(w2 + x)(h2 + x)
, (10b)

ζw =
∫

∞

0

dx

(w2 + x)
√
(`2 + x)(w2 + x)(h2 + x)

, (10c)

ζh =
∫

∞

0

dx

(h2 + x)
√

(`2 + x)(w2 + x)(h2 + x)
. (10d)

The regularisation ε is chosen such that the thickness of the semi-
axis h = ε, in the same way that ε is used as a proxy for filament
thickness in regularised stokeslet slender body theory27. In prac-
tice, provided `,w� h, the drag is fairly insensitive to this choice;
substituting values of `= 1,w = 0.1 then h = 0.001,0.0005 into the
above equations, we see less than a 0.3% difference in all 6 com-
ponents of the resistance matrix. Note that since we keep the
regularisation constant over the entire surface, our model in fact
represents an elliptical disk of finite thickness. Nonetheless, for
very thin discs, we expect this discrepancy to be small.

Figure 2a shows a particular drag component, the broadside
drag Fh, on a thin plate ellipsoid of semi-axis length ` = 1 and
thickness h = 0.005 as a function of varying width w. The an-
alytical solution is compared to numerical solutions calculated
via RiBEM, SRT, and SBT assuming the radius of the filament
is given by w. The RiBEM meshes for ellipse-based geometries
are generated using routines adapted from DistMesh32, with a
desired uniform mesh element edge length dependent upon the
area of the ellipse, A = π`w, so that El =

√
π`w/500. Since an

ideal mesh comprises equilateral triangles, which have an area
At =

√
3E2

l /4 ≈ E2
l /2, this choice results in uniform meshes with

approximately N = 1000 elements for each value of width w.

In the region 1≥w≥ 0.3, `∼w� h, and the geometry is a sheet
as in figure 1d. RiBEM performs very favourably in this régime,
while the asymptotic solutions of SRT and SBT significantly over-
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Fig. 2 (a) Comparing methods of evaluating the broadside drag (direc-
tion demonstrated on the inset ellipsoid) Fh on a plate ellipsoid of length
` = 1, thickness h = 0.005, and varying width w. RiBEM performs well
until w∼ 0.1 in a region roughly corresponding to figure 1d, whereafter it
because difficult to resolve meshes. SRT is thereafter very accurate for
this component in the region corresponding to figure 1c, but is finally su-
perceded by SBT once width and thickness are comparable (the region
of figure 1b). At the bottom of the range, w = h = 0.005 and SBT gives
the drag exactly. (b) The percentage error in the principal components of
the resistance matrix as calculated by RiBEM for slightly thicker plate el-
lipsoids with `= 1,h = 0.01 and varying w, showing good agreement with
analytical results.

estimate the drag. As w decreases, we begin to separate all three
length scales `� w� h (Fig. 1c), and for 0.3 ≥ w ≥ 0.1, SRT has
a similarly high accuracy to RiBEM, whereas SBT is still signif-
icantly off. At around w = 0.1, `� w, and it becomes increas-
ingly difficult to numerically resolve the geometry using RiBEM,
as retaining resolution in the w direction leads to a very fine
mesh in the ` direction. This results in large matrix systems with
RiBEM, and so SRT becomes the appropriate choice. At around
w = 0.01∼ h, we no longer have separation of scales between the
width and thickness `� w ∼ h and the slender ribbon assump-
tion is no-longer valid. In this régime, (Fig. 1a,b) SBT becomes
the current most accurate choice, finally recovering the drag ex-
actly when w = 0.005 = h. Theses results demonstrate the need



to choose the correct method based on the separation of length
scales in the geometry being considered, as shown in figure 1.

In figure 2b, we validate RiBEM for all 6 values of the resistance
matrix for a thicker ellipsoid with `= 1,h = 0.01, and w ∈ [1,0.1].
Finding all 6 diagonal values of the resistance matrix with ap-
proximately N = 1000 elements took approximately 15 seconds
for each value of w on a Dell Optiplex 9020 desktop computer.
Even for this relatively coarse discretisation, the error in the mo-
bility tensor is small, less than 3% for all components.

3.2 Helical ribbons

Recently, Keaveny and Shelley28 explored how a helical ribbon’s
configuration and aspect ratio, h/w, changed its propulsive ca-
pability. This investigation used a boundary element method
and considered ribbons with an ellipsoidal cross-section and the
parametrisation

r(s1) = {rh cos(ks1),rh sin(ks1),αs1} , (11)

T̂(s1) = cos(γ)b̂− sin(γ)n̂. (12)

Here, r(s1) is the helix centreline, rh is the helix radius, k = 4π

is the helix wavenumber, and α is the cosine of the helix angle.
The unit vector T̂(s1) points towards the major axis of the ribbon
cross-section, while γ is the angle between the helix axis and T̂.
Finally, n̂ and b̂ are the normal and binormal vectors to the helix
centreline. Figure 3a shows two example ribbons generated by
this parameterisation.

The thinnest of the ribbons considered by Keaveny and Shel-
ley28, with h/w = 1/4, lie at the borderline where traditional
boundary element techniques can become computationally infea-
sible. However, at these aspect ratios or finer, RiBEM is an effec-
tive alternative. Figure 3b shows the effect of varying 0≤ γ ≤ π/2
on configurations with α = 0.5, 0.75 and 0.9, with h/w = 1/4 for
Keaveny and Shelley’s results with an ellipsoidal cross-section
compared with RiBEM results for ε/w = 1/5 for a rectangular
cross-section; this aspect ratio is chosen such that the rectan-
gular cross section 4hw ≈ πhw the ellipsoidal cross-section, as
π/16 = 0.196≈ 1/5. These results are in very good agreement, in-
dicating that even for relatively thick ribbons, this choice of ε = h
provides a reasonable proxy for finite thickness with small devi-
ations arising from the difference in cross-sectional shape, which
reduce for thinner ribbons. Indeed, it should be noted that for
manufacturing purposes, a rectangular cross-section may in fact
be preferable, as in the following case.

3.3 A magnetic microhelix

Helical ribbons, similar to those considered above, have recently
been used in laboratory settings to create artificial bacterial flag-
ella (ABF).24 These ABFs comprise a magnetic head rigidly at-
tached to a helical ribbon tail, and swim when driven by an exter-
nal rotating magnetic field. The swimming behaviour has in turn
been used to experimentally determine the resistance coefficients
of such a swimmer,24 which have also been analysed theoreti-
cally using SRT21 and BEM.33 The flexibility of RiBEM allows
us generate a realistic computational mesh of the experimental
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Fig. 3 The dynamics of helical ribbons. (a) Ribbons given by the param-
eterisation Eqs. (11) and (12) with α = 0.5, and γ = 0 (left) and γ = π/4
(right). (b) The swimming velocity in response to a unit torque about
the helix axis for varying γ. The dashed lines are the results of Keav-
eny and Shelly 28 for ribbons with h/w = 1/4, while the solid lines are the
results from RiBEM for ribbons with ε/w = 1/5. The slight discrepancy
between these results is likely because the Keaveny results have an el-
liptical cross-section, where as the RiBEM results are for a flat cross-
section.

system (Fig. 4). Indeed, provided that the geometric condition
`/h,w/h & 5 holds, the approximate borderline as above between
RiBEM and BEM, RiBEM will be an effective method for the com-
putational design and optimisation of low Reynolds number arti-
ficial swimmers with ribbon or sheet-like geometries.

In the SRT study of this ABF, the ribbon was treated as asymp-
totically thin, with the head modelled as a plate ellipsoid without
non-local hydrodynamic interactions. In the BEM study, the as-
pect ratio of h/w = 1/4 overestimated the ribbon thickness by an
order of magnitude. We now attempt to use our model in or-
der to resolve differences between the previous studies and the
experimental data.

The experimental ABF considered had a slender ribbon tail
with an axial length of L = 38 µm, width w = 1.8 µm, and
thickness h = 42 nm, and a square magnetic head with dimen-
sions of 4.5 µm×4.5 µm ×200 nm. The ribbon was helical, as
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Fig. 4 Computational mesh of the magnetic helical microswimmer studied in Ref. 24 Note that this mesh differs from previous numerical studies as the
edges of the ribbon are not curved and the head is not approximated by an ellipsoid, however these differences do not have much of an effect on the
resistance matrix, with the present study agreeing with previous treatments using BEM for a significantly fatter mesh and SRT.

Exp SRT BEM RiBEM

Ra (10−7 N.s.m−1) 1.5 1.04 0.937 0.932
Rb (10−14 N.s) -1.6 -1.32 -1.63 -1.47
Rc (10−19 N.m.s) 2.3 6.81 10.1 9.91

Table 1 Hydrodynamic resistance coefficients for the ribbon microswim-
mer. Left: experimental measurements. 24 Middle-Left: SRT results as-
suming 2rh = 2.8 µm. 21 Middle-Right: the BEM model swimmer results
from Ref. 33 Right: RiBEM result assuming 2rh = 2.8 µm. The hydrody-
namic resistance coefficient Ra relates the drag force experienced par-
allel to the helical axis from translation in the same direction, whereas
Rb is the hydrodynamic force experienced parallel to the helix axis from
rotation around the helix axis, and Rc is the hydrodynamic torque experi-
enced around the helical axis from rotation around said axis of both the
head and the helix.

a ribbon wrapped around a pencil, and had a helix diameter of
2rh = 2.8 µm immediately after fabrication. We therefore describe
this ribbon using Eq. (11), but with T̂= ẑ, where ẑ is the helix axis.
The mesh used for the RiBEM calculations, generated using sim-
ple custom routines, is shown in figure 4. This mesh is closer to
the experimental system than those used in previous studies21,33,
since it does not exhibit the curved edges, which are not present
in the experiment, found from the ribbon parameterisation based
upon Eqs. (11) and (12).

Table 1 lists the experimentally-determined resistance coef-
ficients and the corresponding resistance coefficients of each
model. Significantly, we see that all independent theoretical mod-
els predict similar values for the resistance coefficients, with slight
variations likely due to the details of each model. This result
would seem to indicate that the discrepancy was not caused by
the approximations present in the previous SRT or BEM studies.
The drag coefficient Ra is underpredicted in all models, while the
coefficient coupling axial rotation and translation Rb is best cap-
tured using the boundary element method or the RiBEM code.
The rotational coefficient Rc is overestimated significantly by all
three models. Koens and Lauga21 hypothesised that the curved
edge of the SRT/Keaveny parameterisation might be responsible
for this discrepancy. However, since this approximation is not
present in our RiBEM model, the source of this discrepancy re-
mains unclear.

4 Results

4.1 A coiled double helix

The helix above is an experimental realisation of the bacterial
flagellum: a microscale chiral structure that couples rotation with
translation. In the example above, the centreline of the helix is
twisted about a central axis, but the ribbon itself is not twisted
about its centreline. Centreline twist is another fundamental chi-
rality which can couple rotation and translation, and is observed
in nature in, for instance, the double helix of of DNA.

In order to demonstrate the simplicity and flexibility of our
method, we now calculate the 6× 6 Grand Resistance Matrix
(GRM) of a rigid, coiled double helix, and the streamlines re-
sulting from uniform flow past it. The centreline we prescribe for
the double helix is given by two straight lines, folding over into
the lemniscate of Bernoulli, given by the parametric equation

x =

√
2cos t

sin2 t +1
, x =

±(t±π/2)√
2

, (13a)

y =

√
2sin t cos t
sin2 t +1

, y =
t±π/2√

2
, (13b)

t ∈(−π/2,π/2), t ∈ [−π,−π/2], t ∈ [π/2,π], (13c)

with z = 0.1t, t ∈ [−π,π] . We generate constant twist along this
centreline, with T̂ = cos(2πks/L)b̂ + sin(2πks/L)n̂ for centreline
binormal b̂ and normal n̂. Here, we denote the arclength of
the centreline by s, which differs from the parametric variable
t, the length of the centreline L, and the wavenumber k = 6. This
parametrisation, with a width of w = L/20, produces the folded
double helix shown in figure 5.

Setting an arbitrary small thickness of h = 0.01≈ w/35, the re-
sistance matrix for the double helix in this configuration, with a
resolution of N = 3200 elements, is given by

13.0274 0.0002 −0.0002 −0.1688 −0.0017 −0.0017
0.0002 14.0480 0.2342 0.0004 −0.1690 0.2704
−0.0002 0.2343 16.3583 0.0008 −1.4422 0.2710
−0.1688 0.0005 0.0009 11.8006 0.0008 0.0005
−0.0015 −0.1693 −1.4422 0.0004 21.0341 1.9619
−0.0018 0.2704 0.2706 0.0005 1.9623 24.4865


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Fig. 5 (a) Plan view of a double helix with straight ends, coiled over into
a half figure-of-eight. (b) Uniform flow past the double helix, showing
streamlines that are deflected as though by an equivalent cylinder, and a
few streamlines that follow the twisting surface more closely.

It is worth noting that this is remarkably similar to the resistance
matrix of a cylinder extruded along the same centreline, capped
by hemispheres, with radius w = L/40 (i.e. half the radius of the
ribbon)

12.7157 −0.0000 0.0000 0.1716 0.0000 0.0000
0.0000 13.6380 0.2477 0.0000 0.0891 −0.3409
0.0000 0.2476 16.0148 −0.0000 −0.9322 −0.2118
0.1716 0.0000 0.0000 11.5256 0.0000 0.0000
−0.0000 0.0891 −0.9325 −0.0000 20.2099 2.2285
−0.0000 −0.3407 −0.2120 0.0000 2.2281 24.4529


with only some very small off-diagonal elements arising from the
twisting of the helix not present. This supports previous obser-
vations21 that the GRM of a double helix is well-modelled by an
“average” cylinder. We note however that three of the terms in
the DNA coupling sub-matrix have the opposite sign to the cylin-
der case. This change in sign is due to the twisting of the ribbon’s
surface creating a different flow pattern. However as these terms
are two orders of magnitude smaller than the largest terms in

the GRM, only very accurate experiments will be able to measure
them.

The GRM only captures the trajectories of rigid objects, and
does not account for detailed flow structures at the ribbon sur-
face or the spatially-dependent force per unit area on the struc-
ture. Instantaneous flow streamlines for a sedimenting double
helix in the frame in which the body is stationary are shown in fig-
ure 5b, revealing intricate patterns and twisting streamlines near
the surface. A particularly interesting avenue of future research
will be to couple this fully-resolved flow and surface tractions to
a constitutive model for the double helix itself. Omori et al. 34

modelled the deformation of a red blood cell, a closed membrane
travelling through a micropore, by coupling the standard bound-
ary element method for flow to a finite element solution for a thin
hyperelastic membrane representing the cell. Finite element shell
computations for open membranes could be coupled to RiBEM in
an analogous way, indeed the flexibility of regularised stokeslet
methods makes them ideal for coupling with elastic models for
structures35.

4.2 Taylor’s magic carpet

G. I. Taylor’s model of a small-amplitude, infinite swimming
sheet36 is often used as an analytical means to study microscale
propulsion, and is increasingly being used to examine swimming
in non-Newtonian fluids.37,38 Furthermore, a finite-sized ana-
logue of Taylor’s sheet has recently been developed experimen-
tally,26 driven by an applied magnetic field as a means of achiev-
ing controlled locomotion at small scales.

Our method allows us to model a range of plate microswim-
mers exhibiting different dynamics. We consider an inextensible
plate ellipsoid of length L = 1, thickness h = 0.005, and variable
width w, propagating bending waves along its length. Let s= [0,1]
be the length coordinate relative to the head of the swimmer in an
undeformed configuration, and r = [−w/2,w/2] the width coordi-
nate. We model planar beating in the the length x- and thickness
z- plane, so that the tangent angle of the swimmer surface in this
plane is

ψ(s, t) = As1/2 cos2π(ks− t), (14)

giving body-frame surface coordinates

x =
∫ 1

0
cos(ψ(s, t))ds, z =

∫ 1

0
sin(ψ(s, t))ds, y = r, (15)

and body-frame velocity

u =
∫ 1

0
−ψ̇ sin(ψ(s, t))ds, w =

∫ 1

0
ψ̇ cos(ψ(s, t))ds, v = 0. (16)

This parameterisation results in the beat pattern shown in fig-
ure 6a. The two unknown swimming x and z translational ve-
locities and the rotational velocity about the y-axis are found by
enforcing the constraints that the swimmer is force and torque
free ∫

S
f(x, t)dSx = 0,

∫
S

x∧ f(x, t)dSx = 0, (17)

and the sheet’s mean progressive velocity determined from its lab-
oratory frame trajectory.17



An instantaneous configuration of a swimmer with w = 0.5,k =
5π/2, and A = π/3 at time t = 0 is shown in figure 6b, together
with the resultant flow streamlines, in the laboratory frame. The
streamlines reveal an intricate pattern of recirculating vortices at
the swimmer surface, as observed both with filament swimmers
and in two-dimensional (2D) infinite sheet models; this interme-
diate model retains many of the flow features of both limits.

We might also ask how the mean progressive velocity of such a
swimmer varies with width. Figure 6c shows the progressive ve-
locity of this sheet swimmer as the width varies from w= 0.3, . . . ,2
relative to the circular disk configuration. For the range consid-
ered, slender ribbons exhibiting the same kinematics swim more
quickly than broader swimmers. The hydrodynamic mechanism
for this reduction for these parameters can, somewhat crudely, be
understood in the following manner. The propulsive force that
the sheet exerts on the fluid is approximately proportional to the
area of the ellipse, which scales with w. The drag in the swimming
direction can be approximated by F̀ (8). The swimming velocity
is then such that drag and propulsion balance exactly, since the
swimmer is force-free. However, we can observe through simple
numerical evaluation of the integrals (10) that the drag force (8)
increases more rapidly with width than the surface area in this
régime; thus for an increase dw in width, the increase in drag
dD> dF the increase in propulsion, and the swimmer moves more
slowly.

It is interesting to ask if the increase in velocity continues as the
width decreases further. By modelling the swimmer centreline by
a line distribution of 3D regularised stokeslets, we obtained a rel-
ative swimming speed for the filament of U = 1.032. This result
suggests that there may exist an optimal cross-section which pro-
duces the fastest swimming speed in the nearly filament régime
(Fig. 1b) where there is currently no non-local theory, providing
further motivation for its development. However, it is important
to note that the regularised stokeslet slender body theory is a dif-
ferent method for simulating fundamentally different geometries;
whilst the relative error between two RiBEM solutions for simi-
lar geometries will be small, the absolute accuracy of RiBEM is
around 3% (Fig. 2), and as such further study in the nearly fila-
ment régime is required to verify the existence of this optimum.

We again note that RiBEM would be highly suited for future
coupling with a shell theory that incorporates elastic bending in
order to study actively bending plate swimmers, in an analoguous
manner to previous work with sperm-like flagellar swimmers.39

5 Discussion
We have demonstrated that the boundary element method with
regularised stokeslets is an effective means of calculating the dy-
namics of thin ribbons and sheets, where the regularisation pa-
rameter ε is used as a proxy for the sheet thickness. Tractions are
not resolved across the thickness of the sheet, but rather regu-
larised stokeslets are distributed across a 2D manifold of the rib-
bon’s centreline. The method is accurate in regions where asymp-
totic theories are not valid, and traditional boundary elements are
impractical.

The method was validated against the analytical solution for
the resistance matrices of various plate ellipsoids as well as previ-

(a) Magic carpet waveform

(b) Magic carpet flow
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Fig. 6 (a) Grayscale time-lapse of the planar waveform of the magic car-
pet as defined by the tangent angle (14). (b) Flow streamlines driven by
a magic carpet with w = L/2,k = 5π/2, and A = π/3 at time t = 0, demon-
strating similar vortices to those observed in 2D and 3D analogues. (c)
Swimming velocity of the magic carpet relative to a circular disk, demon-
strating that for finite swimmers, slender filament configurations are faster
than wide carpets exhibiting the same beat kinematics.

ous boundary element studies of ribbon helices, and shown to be
consistent with asymptotic and boundary element studies of an
experimental ribbon microswimmer. We then applied the method
to study the resistance and flow surrounding a coiled section of
double helix, finding that whilst the resistance matrix was very
similar to an equivalent cylinder, the flow streamlines showed an
interesting structure which would be important to resolve in fluid-
structure interaction models. We finally examined an inextensi-



ble, finite plate microswimmer or “magic carpet”, finding that for
the parameters considered, making the plate wider slowed the
swimmer considerably.

The diverse geometries of natural and artificial bodies that in-
teract with microscale flows drives the need for bespoke numeri-
cal schemes that can solve hydrodynamic problems efficiently and
accurately. By applying a regularised stokeslet method, we have
examined the dynamics of ribbons and sheets that will be effec-
tive for a range of problems where the body thickness is much
smaller than the other dimensions, and may provide a means to
couple flows with plate mechanics to study fluid structure inter-
action problems such as the sedimention of flexible pancake-like
structures, or the unfolding of chiral ribbons in ambient flow.
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