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Abstract 

Hollow bimetallic nanoparticles exhibit unique surface plasmonic properties, enhanced 

catalytic activities and high photo-thermal conversion efficiencies amongst other properties, 

however, their research and further deployment are currently limited by their complicated 

multi-step syntheses. This paper presents a novel approach for their continuous synthesis with 

controllable and tuneable sizes and compositions. This robust manufacturing tool, consisting 

of coiled flow inverter (CFI) reactors connected in series, allows for the first time the tempo- 

and spatial- separation of the initial formation of silver seeds and their subsequent galvanic 

displacement reaction in the presence of a palladium precursor, leading to the full control of 

both steps separately. We have also demonstrated that coupling the galvanic replacement and 

co-reduction leads to a great kinetic enhancement of the system leading to a high yield 

process of hollow bimetallic nanoparticles, directly applicable to other metal combinations. 
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1. Introduction 

Palladium nanoparticles have been widely used as catalysts for a variety of reactions 

including oxidation, hydrogenation, reduction, C-C coupling, among others1, 2, 3. Moreover, 

the applications of palladium-based bimetallic nanostructures, e.g. Pt/Pd and Au/Pd, for 

oxidation and reduction reactions have been widely reported4-8. Among various metals, silver 

has been a very promising choice to form Ag-Pd bimetallic nanostructures with improved 

catalytic performance due to the unique synergistic interaction between Ag and Pd9. It is well 

known that the catalytic performance of Ag-Pd NPs strongly depends on their size, 

composition, surface modification (i.e. surfactants, ligands, and coordinating solvents) and 

morphology (i.e. hollow and solid). In recent years, bimetallic nanomaterials with hollow 

structures have also attracted the research focus as they exhibit unique surface plasmonic and 

catalytic properties, which differ from their non-hollow counterpart structures10, 11. While 

bimetallic compositions allow for the combination and/or synergy of catalytic properties 

between their two metal components, their hollow interiors offer enhanced plasmonic 

properties, higher photo-thermal conversion and higher surface-to-volume ratios relative to 

solid structures12, 13. Galvanic replacement reaction has emerged as a powerful and versatile 

route for the synthesis of nanomaterials with hollow structures as the size and morphology of 

the final product can be readily manipulated by using different types of sacrificial templates 

and precisely controlling the extent of replacement14. Ag based nanocrystals have been 

frequently used as sacrificial templates to produce Au, Pd, and Pt hollow nanostructures1, 15. 

However, conventional synthesis of these hollow structures in batch processes present a 

number of difficulties to achieve a controlled system, especially in the case of bimetallic 

nanoparticles due to their multi-step synthetic methods. In addition, the presence of organic 

stabilizers or ligands, which are usually required in batch processes, limit the size control of 

the resulting particles as well as potentially interfering during their catalytic applications by 

blocking their active sites16. Consequently, reliable synthetic protocols for Ag-Pd bimetallic 

nanoparticles (NPs) with well-defined and tuneable size, composition, and morphology 

without any organic stabilizing agent are highly demanded.  
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In this context, microreactors are presented as a continuous manufacturing platform for the 

controllable synthesis of nanoparticles17. Nanoparticles with defined size, composition, and 

morphology can be synthesized by readily adjusting the operation parameters such as flow 

rate, reactor length, reactant concentration and reaction temperature. In addition, and even 

more importantly, we have recently demonstrated that the laminar flow regime characteristic 

of micro-devices allows the production of nanoparticles in the absence of steric stabilizing 

agents18.  In this paper, we present a new approach for the synthesis of Ag-Pd bimetallic 

hollow nanoparticles in a system consisting of a number of coiled flow inverter (CFI) 

microreactors connected in series. This approach allows the tempo and spatial separation of 

the formation of silver nanoparticles seeds with controllable sizes and the consequent 

galvanic replacement reaction in the presence of a palladium precursor. We also demonstrate 

that the co-presence of hydroquinone as mild reducing agent during the galvanic displacement 

step, leads to its kinetic enhancement due to the simultaneous co-reduction of silver and 

palladium. Finally, 4-nitrophenol reduction reaction was used to show the enhanced catalytic 

activity of the hollow Ag-Pd bimetallic nanoparticles respect to the monometallic and solid 

counterparts. 

 

 

2. Experimental procedures 

Reagents and chemicals used in this work, including silver nitrate solution (AgNO3, 0.1 M), 

palladium(II) nitrate solution (Pd(NO3)2, 10 wt. % in 10 wt. % nitric acid, 99.999% trace 

metals basis), potassium tetrachloropalladate(II) (K2PdCl4, 99.99% trace metals basis), 

trisodium citrate dihydrate (Na3CA, ≥99%, FG), sodium borohydride powder (NaBH4, 

ReagentPlus®, 99%), hydroquinone (HQ, ReagentPlus®, ≥99%), sodium borohydride 

solution (NaBH4, 12 wt. % in 14 M NaOH), 4-nitrophenol (4-NP, spectrophotometric grade), 

and bovine serum albumin (BSA) were all purchased from Sigma-Aldrich and used without 

further purification. Ultrapure water was obtained using an ELGA Maxima ultra-pure water 

system (18.2 MΩ cm resistivity). 
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2.1 Synthesis of Ag/Pd bimetallic nanoparticles 

Ag-Pd bimetallic nanoparticles (NPs) were synthesized in coiled flow inverter (CFI) 

microreactors consisting of PFA tubing (0.03” inner diameter and 1/16” outer diameter) 

coiled around a 3D-printed support (printed using a Form 1+ stereolithography printer from 

FormLabs). 3D printing technology was adopted here to provide a precise control of all the 

reactor’s geometric parameters, such as helix diameter (1 cm), pitch distance (1/π cm), and 

tubing length. Syringe pumps (Pump 11 Elite, Harvard Apparatus) were used to introduce the 

reactants at different points in the system. 

Hollow silver-palladium bimetallic nanoparticles were prepared by connecting three CFI 

microreactors in series. Firstly, silver seed particles were prepared in Reactor 1 at 60 °C by 

mixing a solution containing a mixture of freshly prepared NaBH4 (0.025 mM) and sodium 

citrate (0.35 mM) and AgNO3 (0.05 mM). Both solutions were introduced in the Reactor 1 at 

a volumetric flowrate of 0.25 ml min-1 with a residence time of 3 min. The resulting Ag seeds 

were introduced in a Reactor 2 for seed growth at 90°C by adding a mixture of AgNO3 (2 mM) 

and Na3CA (14 mM) at a flowrate of 0.025 ml min-1 with a residence time of 3 minutes. 

Finally, the resulting silver nanoparticles were introduced in Reactor 3 at 60°C and mixed 

with 0.125 ml min-1 of a HQ solution (4.725 mM) and 0.0125 ml min-1 of Pd(NO3)2 solution 

(4.7 mM in HNO3 solution, pH = 2). The residence time in this reactor was 12 min. The 

resulting Ag:Pd molar ratio was 1:4 and the Pd:HQ molar ratio was 1:10. 

In order to gain further understanding of the synthesis of hollow Ag-Pd nanoparticles, the 

simultaneous reduction of both metals was carried out in a single CFI reactor. For this, a 

silver precursor solution (0.061 mM AgNO3 and 0.427 mM Na3CA), Pd(NO3)2 solution (4.7 

mM in HNO3 solution, pH = 2) and HQ solution (49.5 mM) were mixed simultaneously with 

volumetric flow rates of 0.25 ml min-1, 0.125 ml min-1 and 0.125 ml min-1, respectively. The 

reaction temperature was controlled at 60 ˚C and the residence time in Reactor 1 was 12 

minutes. Final concentrations of Ag, Pd, and HQ were, respectively, 0.056 mM, 0.225 mM 

and 2.25 mM. 
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2.2 Reduction of 4-nitrophenol in aqueous solution 

The catalytic activities of synthesized Ag/Pd bimetallic nanoparticles were evaluated using 

the reduction of 4-nitrophenol with NaBH4 as a model reaction19. The reaction was carried out 

in 4.5 mL cuvettes with a path length of 1 cm. The total volume was fixed as 3 mL with 1mL 

4-nitrophenol concentration of 10-4 M and 2 mL NaBH4 concentration of 10-1 M. The reaction 

concentrations of 4-NP and NaBH4 were 3.3×10-5 M and 6.6×10-2 M, respectively. The 

reaction was started with the addition of 5 µL of as-prepared nanoparticles at room 

temperature. Immediately after particle addition, time-dependent ultraviolet-visible (UV-vis) 

absorbance spectra were recorded with a time interval of 8 seconds. The background 

correction was done with deionized water as reference. 

 

2.3 Characterization methods 

Ultraviolet-visible spectroscopy measurements were performed on an Agilent Cary 60 UV-vis 

spectrophotometer in the wavelength range from 200 to 800 nm, with a resolution of 1 nm. 

Transmission electron microscopy (TEM) images, EDX spectra and EDX line-scan profiles 

were obtained using a FEI Tecnai 20 transmission electron microscope (STEM mode) with a 

spot size of 6 and a resolution < 2nm. Specimens for TEM analysis were prepared according 

to Michen et al.'s protocol20 to avoid post-synthesis agglomeration. 

 

3. Results and discussion 

The synthesis of hollow Ag-Pd bimetallic nanoparticles was carried out using coiled flow 

inverter (CFI) microreactors connected in series as illustrated in Figure 1. The first two 

reactors in the system were used for the synthesis and growth respectively of silver 

nanoparticles used as seeds for the formation of Ag-Pd bimetallic particles in Reactor 3. 
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Figure 1. Synthesis of hollow Ag-Pd bimetallic nanoparticles using CFI reactors connected in series.  

 

We have recently demonstrated the continuous synthesis of narrow sized silver nanoparticles 

in the absence of organic capping ligands by exploiting the advantages of the laminar flow 

and the promotion of gentle secondary flows (Lagrarian turbulence) in helical reactors18. 

NaBH4 was used in Reactor 1 as a strong reducing agent of AgNO3 to promote a fast 

nucleation, leading to the formation of small particles with narrow size distribution thanks to 

the fluid dynamics within the helical reactors. We have also recently shown that selective 

growth of the seeds requires a drastic change in the chemical environment in Reactor 2 and 

the complete consumption of NaBH4 in the first reactor to avoid secondary nucleation and 

consequently a broad size distribution of particles 21. Thus, the NaBH4:AgNO3 ratio in 

Reactor 1 was optimised as 1:2 to ensure the synthesis of narrow sized silver seeds and the 

full consumption of NaBH4 by silver reduction and hydrolysis, reactions (1) and (2) 

respectively. 

8Ag++ BH4
-  + 8OH- → 8Ag + H2BO3

-  + 5H2O                                      (1) 

BH4
-
 + 2H2O → 2BO2

-
 + 4H2                                                     (2) 

 

Due to the absence of organic capping ligands, Na3CA was added in Reactor 1 to stabilize the 

silver seeds electrostatically. It is important to note that under these conditions (60°C), 

sodium citrate does not reduce silver however, it releases OH- ions due its dissolution in 
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water (Reaction 3), increasing the pH of the solution and promoting the nucleation by NaBH4 

(Reaction 1).    

C6H5O7
3- + H2O ↔ C6H6O7

2- + OH-                                                (3) 

In this way, silver seeds with particle size of 5.4 ± 1.0 nm (Figure 2a-c) were synthesized in 

Reactor 1 at 60 ˚C with a AgNO3:NaBH4:Na3CA ratio of 2:1:7. This initial seeds were grown 

in Reactor 2 at 90°C adopting a seed mediated method by mixing with additional AgNO3 

solution (2 mM ) and using Na3CA as mild reducing agent to avoid secondary nucleation. Ag 

NPs with particle size of 9.4 ± 1.8 nm were synthesised in Reactor 2 (Figure 2d-f). The Ag 

NPs size can be tuned by readily changing the concentration of AgNO3 added in Reactor 221. 

 

Figure 2. TEM and HRTEM images and the corresponding particle size distribution histogram of Ag nanoparticles 
formed in Reactor 1 (a-c) and after growth in Reactor 2 (d-f).   

 

 

K2PdCl4 as palladium precursor 

After the synthesis of narrow sized silver nanoparticles, a palladium precursor was introduced 

in Reactor 3 to promote the galvanic displacement of silver and thus, the formation of hollow 

nanoparticles. We started our investigations by using K2PdCl4 as palladium precursor, 

commonly used for this type of galvanic reactions where silver nanoparticles are re-dissolved 

facilitating the reduction of palladium. The structural variation taking place in Reactor 3 

could be verified by monitoring the absorption spectrum of the solution as the characteristic 

surface plasmon resonance bands of the Ag NPs and Ag-Pd NPs are sensitive to changes in 
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the composition of the particles. Indeed, after adding (PdCl4)
2- and HQ in  Reactor 3, the 

absorbance peak at ~390 nm corresponding to the Ag seeds formed in Reactor 2 disappeared 

and the new absorption peaks around 246 nm and 288 nm appear, characteristic of Ag-Pd NPs 

and HQ in solution respectively as shown in Figure 3. It is important to note that the standard 

electrode potential of PdCl4
2-/Pd (0.591 V vs SHE) is lower than that of Ag+/Ag (0.800 V vs 

SHE), and consequently Reaction (4) is not allowed energetically at ambient temperature. 

2 Ag(s) + PdCl4 
2- (aq) � Pd(s) + 2 Ag+ (aq) + 4Cl- (aq)   (4) 

However, PdCl4
2- ions can be thermally decomposed at high temperatures (e.g. 60°C) into 

Pd2+ and Cl- allowing Reaction (5) to take place due to the higher standard electrode potential 

of Pd2+/Pd (0.951 V vs SHE). 

2 Ag(s) + Pd 2+ (aq) � Pd(s) + 2 Ag+ (aq)   (5) 

As the galvanic displacement reaction (5) takes place in the presence of HQ, additional 

reduction of Pd2+ and re-dissolved Ag+ takes place simultaneously, further promoting the 

galvanic displacement reaction and leading to bimetallic particles through alloying and 

dealloying reactions (6-8). 

Agx(s)  + yPd(s) → AgxPdy(s)      (alloying)                                                  (6) 

AgxPdy(s) + zPd(s) → AgxPdy+z(s)	    (alloying)                                                (7) 

AgxPdy(s) + Pd2+(aq) → Agx-2Pdy+1(s) + 2Ag+(aq)     (dealloying)                      (8) 

 

In addition, re-dissolved Ag+ can rapidly react with Cl- ions to form AgCl precipitates 

following reaction (9), insoluble under the studied conditions. 

AgCl(s) + Cl- (aq) � AgCl2 – (aq)     (9) 
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Figure 3. UV-vis spectra of Ag nanoparticles formed after Reactor 2 and Ag/Pd bimetallic nanoparticles formed in 
Reactor 3 using K2PdCl4 as precursor. 

 

Figure 4 shows representative microscopy pictures of the resulting nanoparticles after Reactor 

3 when K2PdCl4 is used as palladium precursor. Although some hollow Ag-Pd NPs were 

observed as depicted in Figure 4b, most particles seemed to be solid, likely due to the 

formation of AgCl precipitates covering the surface of Ag-Pd NPs. The formation of AgCl, 

previously observed in galvanic displacement reactions, is normally removed by re-dissolving 

it by addition of NaCl concentrated solutions22, 23 However, in our system, due to the absence 

of organic capping ligands, addition of NaCl would strongly modify the ionic strength of the 

solution leading to agglomeration of the particles.  

 

 

Figure 4. (a) TEM image for Ag-Pd bimetallic NPs, (b) HRTEM image for hollow Ag-Pd NPs, and (c) HRTEM 
image for solid Ag-Pd NPs 

Page 9 of 20 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
18

. D
ow

nl
oa

de
d 

on
 1

5/
05

/2
01

8 
09

:5
3:

54
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/C8FD00001H

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8fd00001h


10 
 

 

Pd(NO3)2 as palladium precursor 

In order to avoid the formation of AgCl, Pd(NO3)2 was used as alternative palladium 

precursor in Reactor 3 where the galvanic displacement reaction (5) is favourable as well as 

the alloying and dealloying reactions (6-8). Similarly to the above observations, after addition 

of Pd(NO3)2 and HQ in Reactor 3, the absorbance peak at 402 nm characteristic of the Ag 

seeds formed after Reactor 2 disappeared, while a new sharp absorbance peak at around 246 

nm appears characteristic of Ag-Pd nanoparticles as shown in Figure 5. It is important to 

highlight the large increase in absorbance of the Ag-Pd nanoparticles, characteristic of hollow 

structures13 respect to solid particles.  

 

Figure 5. UV-vis spectra of Ag nanoparticles after Reactor 2 and Ag-Pd bimetallic nanoparticles after Reactor 3 
when Pd(NO3)2 is used as precursor. All the solutions were diluted 12 times. 

 

Figure 6 shows the representative transmission electron microscopy (TEM) and high 

resolution transmission electron microscopy (HRTEM) images of the prepared Ag-Pd 

nanoparticles using Pd(NO3)2 as precursor, showing an average diameter of 14.6 ± 2.0 nm. It 

can be observed that most Ag-Pd NPs present a hollow structure due to the galvanic reaction 

(5). The well-resolved fringes with a lattice spacing of 2.30 Å shown in Figure 6c can be 

indexed to the {111} planes of Ag-Pd alloy. 
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Figure 6. (a-c) TEM and HTEM images of Ag-Pd hollow NPs (after Reactor 3) synthesised using Pd(NO3)2 as 
precursor.   

 

The distribution of Ag and Pd in random hollow NPs (Figure 7) was explored by both EDS 

mapping and line-scan analysis through STEM-EDS. EDS element mapping (Figure 7c-d).  

Ag and Pd atoms were well-distributed over the hollow nanospheres with a higher 

concentration of palladium in agreement with the high Pd:Ag ratio of 4:1 as indicated by the 

higher intensity of the Pd (cps) than the Ag mapping. The Ag-Pd alloy composition of the 

shell is also supported by the EDS line-scan result (Figure 7b), where one can observed that 

the total metal (Ag and Pd) intensity decreases in the centre of the particle with two peaks at 

the edges in agreement with its hollow structure. 

 

Figure 7. (a-b) EDS line scan of the Ag-Pd hollow NPs, (c-d) EDS elemental mapping of Ag-Pd hollow NPs, (e) 
EDS spectra of the Ag-Pd hollow NPs after Reactor 3 using Pd(NO3)2 as precursor. 
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Separation of galvanic displacement and reduction steps in Reactor 3 

In order to gain further insights of the effect of coupling the galvanic displacement and co-

reduction reactions, an additional CFI microreactor was added into the system described 

above. In this case, silver seeds with average size of 9.4 ± 1.8 nm were formed in Reactors 1 

and 2 as described before. However, only Pd(NO3)2 was added into Reactor 3 (residence time 

12 min, 60°C) and HQ was added in the new Reactor 4 (residence time 12 min, 60°C) to 

separate the galvanic displacement reaction from further reduction respectively. The 

concentrations and flowrate of reactants were kept equal to the previous systems in all cases.  

The UV-vis spectra after Reactors 2, 3 and 4 are shown in (Figure 8). When Pd(NO3)2 was 

introduced in Reactor 3, the galvanic replacement reaction (5) took place as indicated by the 

disappearance of the absorbance peak at 402 nm characteristic of the Ag seeds formed in 

Reactor 2. The appearance of a new peak at 225 nm is due to the Pd(NO3)2 unreacted in 

solution however, the shoulder of this peak is likely to be caused by the presence of Pd 

nanoparticles with absorbance at ~240 nm. As these particles have a hollow structure, their 

extinction coefficient is larger than their solid counterparts13. Finally, when HQ was added in 

Reactor 4, a clear Ag-Pd NP absorbance peak at 246 nm appears. It is important to note that 

this absorbance peak is not as sharp as the one observed in the previous case where the 

galvanic displacement reaction and the HQ reduction took place simultaneously from the 

beginning in Reactor 3 suggesting that re-reduction of Ag+ ions promotes the galvanic 

displacement kinetics, considerably quicker than the reduction of Pd2+ by HQ. In addition, the 

Ag-Pd peak is much broader than in Figure 8 with a clear shoulder at ~225 nm due to the 

incomplete reduction of the Pd(NO3)2 precursor. Even when HQ is added in Reactor 4, the 

nucleation and reduction of Ag is so slow under these conditions that incomplete conversions 

were achieved at similar residence times. 
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Figure 8. UV-vis spectra of Ag seeds after Reactor 2, Pd nanoparticles after galvanic displacement in Reactor 3 
and Ag-Pd bimetallic nanoparticles after addition of HQ in Reactor 4. All solutions were diluted 10 times prior 

characterisation. 

 

Figure 9 shows characteristic images of the particles were the galvanic displacement and the 

reduction reactions were separated in reactors connected in series. The particles, formed in 

Reactor 4 after addition of HQ, present a very broad size distribution with scare hollow 

particles and a large number of monometallic particles, judging from their small size and the 

d-spacing value, matching with the Ag<111> lattice plane,.  

 

Figure 9. (a) TEM and (b) HRTEM images of nanoparticles synthesised using only Pd(NO3)2 in Reactor 3 and HQ 
in Reactor 4.  
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Simultaneous reduction of silver and palladium 

Further understanding of the formation of the hollow bimetallic nanoparticles was gained by 

carrying out a simultaneous reduction of Ag(NO3) and Pd(NO3)2 by HQ in a single reactor at 

60°C as depicted in Figure 10. 

 

 

Figure 10. Simultaneous reduction of Ag(NO3) and Pd(NO3)2 with HQ in a CFI microreactor. 

 

Similarly to above, the product was characterised by UV-vis spectroscopy. Figure 11 shows 

the appearance of two absorbance peaks at 288 nm and 246 nm assigned to Ag-Pd 

nanoparticles and HQ in solution, respectively. Negligible absorbance at ~400 nm was 

observed indicating that monometallic silver NPs were not formed under these conditions. 

The saturation of the detector at low wavelengths (< 230 nm) was due to the presence of 

Pd(NO3)2 as the conversion under these conditions is quite low due to the mild reduction 

nature of HQ.  
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Figure 11. UV-vis spectrum of Ag-Pd alloy NPs synthesized by simultaneous reduction of Ag(NO3) and Pd(NO3)2 
with HQ. The solution was diluted for 10 times prior characterisation. 

 

Figure 12 shows images of the Ag-Pd NPs synthesized by simultaneous reduction of Ag(NO3) 

and Pd(NO3)2 by HQ in a CFI reactor. It can be observed a very broad distribution of the 

particles with an average diameter of 26.6 ± 8.4 nm caused by the absence of capping ligands 

in the system and the weak reducing nature of HQ, which leads to slow nucleation, normally 

translated into broad distributions, despite the presence of citrate. In addition, in this case, 

metal fouling of the wall of the reactor was observed very quickly, which also leads to poor 

control of particle size and size distribution. 

 

 

Figure 12. (a) TEM and (b) HRTEM image for Ag-Pd alloy NPs synthesized by simultaneous reduction of 
Ag(NO3) and Pd(NO3)2 with HQ. 
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The formation of a Ag-Pd alloy by simultaneous reduction was confirmed by EDS mapping. 

As shown in the scan line analysis, the total metal intensity, Pd and Ag, across the particle 

increases in the middle of the particle in agreement to its solid nature. At the edges of the 

particle, Pd element has a higher intensity than Ag due to the Pd:Ag ratio (4:1), however, in 

the centre of the particle, there is a higher presence of Ag, suggesting an Ag rich core. As 

shown in Figure 13c-d, Ag and Pd are uniformly dispersed in the entire nanoparticles. 

Moreover, EDX elemental line scanning of the nanoparticles (Figure 13b) also verified the 

presence of the alloy structure in these NPs. 

 

 

 

 

Figure 13. (a-b) EDS line scan, (c-d) EDS elemental mapping and (e) EDS spectra of Ag-Pd alloy NPs synthesises 
by by simultaneous reduction of Ag(NO3) and Pd(NO3)2 with HQ. 

 

 

Catalytic activity in 4-nitrophenol reduction reaction 

To evaluate the catalytic performance of the prepared Ag-Pd bimetallic NPs, the reduction of 

4-NP reaction was used here as model reaction (Figure 14). The absorbance peak of the 4-NP 

at 400 nm is constant and stable in the absence of a catalyst. Upon the addition of the 

colloidal particles, the absorbance peak at 400 nm significantly decreased with time and a 

new peak around 300 nm corresponding to 4-aminophenol (4-AP) gradually developed.  
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Figure 14. Reduction of 4-nitrophenol to 4-aminophenol NaBH4 in excess. Conditions: 3.3×10-5 M 4-NP and 
6.6×10-2 M NaBH4 at room temperature. 

A typical evolution of the UV-vis spectra as the reaction time progresses using hollow Ag-Pd 

NPs synthesized using 3 CFI reactors in series and Pd(NO3)2 as precursor is shown in Figure 

15a. The reduction of 4-NP is considered to be a pseudo first order reaction respect to the 

concentration of 4-NP when an excess of NaBH4 (2000-fold excess in the present study) is 

used24. Thus, the rate of consumption of 4-NP, rt, is often defined as: 

rt = 
dCA

dt
 = KappCA                                                       (10) 

where CA is the concentration of 4-NP, and Kapp is the apparent rate constant in s-1. 

As the absorbance of the solution is proportional to the 4-NP concentration (according to Beer 

Lambert law), simple derivation of equation (10) leads to a linear correlation between the 

initial absorbance (A0), the absorbance at a given time (At) and the apparent rate constant 

(Kapp): 

-K
app

t =  ln
At

A0
= ln

Ct

C0
                                                            (11) 

where C0 is the initial concentration of the 4-NP before Ag/Pd NPs are added and Ct is the 4-

NP concentration at a given time (t).  

Figure 15b shows the increase of reduction activity of the Ag-Pd nanoparticles respect to the 

Ag nanoparticles seeds. It is well known that alloying of Ag-Pd leads to an increase of 

catalytic activities for a number of reactions such as formic acid decomposition 9. More 

importantly, hollow Ag-Pd particles present an increase in activity respect to their solid 

counterparts, making this continuous synthesis tools a highly attractive tool for the 

preparation of designer catalysts with controllable morphologies and metal distributions. It is 

important to mention that the size and polydispersity of the alloy particles is different from 

the hollow ones and thus, these important factors in addition to the presence of metal salt 
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precursor are likely to affect the absolute catalytic comparison. Further studies related to size 

control of alloy nanoparticles would be necessary to enable the equal-to-equal comparison.  

 

Figure 15. (a) Time-dependent UV-vis absorption spectra of the catalytic reduction of 4-nitrophenol to 4-
aminophenol by an excess amount of NaBH4 by hollow Ag-Pd NPs synthesised in 3 CFI reactors connected in 

series, using Pd(NO3)2 as precursor. (b) Average kinetic constant (Kapp) value of hollow alloy Ag-Pd, solid alloy 
Ag-Pd (synthesised by simultaneous reduction with HQ) and Ag NPs (seeds). 

 

 

4. Conclusions and outlook 

Hollow bimetallic silver-palladium nanoparticles present an enhanced catalytic activity for 

the reduction of 4-nitrophenol reaction in comparison to their solid or monometallic 

counterparts. They can be selectively synthesised in a continuous system consisting of a 

number of coiled flow inverter (CFI) microreactors connected in series. In this way, the initial 

formation of silver seeds with tuneable sizes can be separated from the galvanic displacement 

reaction gaining full control of both steps. The nature of the palladium precursor has a key 

effect in the system, not only determining the feasibility of the galvanic displacement reaction 

depending on its reduction potential but also, in the formation of by-products such as AgCl 

which greatly reduces the yield. Finally, the galvanic displacement reaction can be greatly 

enhanced in the presence of a mild reducing agent such as hydroquinone. 
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