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Abstract

CHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration)

is a fast, non-homologous end-joining based, strategy for genomic editing in mamma-

lian cells. There is no requirement for cloning in generation of the integration donor,

instead the desired integration donor is produced as a polymerase chain reaction

(PCR) product, flanked by the Cas9 recognition sequences of the target locus. When

co-transfected with the cognate Cas9 and guide RNA, double strand breaks are intro-

duced at the target genomic locus and at both ends of the PCR product. This allows

incorporation into the genomic locus via hon-homologous end joining. The approach

is versatile, allowing N-terminal, C-terminal or internal tag integration and gives pre-

dictable genomic integrations, as demonstrated for a selection of well characterised

membrane trafficking proteins. The lack of donor vectors offers advantages over

existing methods in terms of both speed and hands-on time. As such this approach

will be a useful addition to the genome editing toolkit of those working in mammalian

cell systems.
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1 | INTRODUCTION

Whilst offering advantages over ectopic expression, endogenous pro-

tein tagging is costly in terms of time and resources which can limit its

application. With this in mind, we set out to develop a faster, simpler

approach, reducing the time and effort required to generate endoge-

nous knock-ins via the CRISPR/Cas9 system.

The CRISPR/Cas9 system has radically simplified genome editing

in mammalian cells.1-3 Knockouts can now be created rapidly and eas-

ily by relying on error-prone non-homologous end joining (NHEJ) to

generate insertions or deletions (indels). Furthermore, short

sequences such as small epitope tags can be introduced by homology-

directed repair (HDR), using readily synthesised single-stranded

oligodeoxynucleotide donors with short homology arms of 50-70 bp

flanking the double strand break (DSB) site.4 Although fast, this

approach does not allow incorporation of longer sequences such as

fluorescent protein tags and thus requires the screening of a number

of single cell derived colonies. The creation of larger knock-ins via

HDR remains relatively laborious, requiring time-consuming cloning of

a donor vector with the integration cassette flanked by 0.5-1.5 kb

homology arms. This is particularly problematic due to the widespread

use of fluorescent protein tags to determine localisation and perform

affinity isolation. There is clearly a need to simplify the process of

fluorescent protein tag integration. This is particularly true when

aiming to tag multiple loci, for example in validating the results of a

screen.

NHEJ, the predominant repair mechanism in mammalian cells, is

increasingly being investigated as an alternative route to producing

large genomic knock-ins.5-10 For NHEJ mediated editing, the desired

integration donor is generally provided in a plasmid vector, flanked by

Received: 17 June 2019 Revised: 16 August 2019 Accepted: 4 September 2019 Uncorrected manuscript published on: 10 September 2019

DOI: 10.1111/tra.12696

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Traffic published by John Wiley & Sons Ltd.

Traffic. 2019;1–9. wileyonlinelibrary.com/journal/tra 1

https://orcid.org/0000-0002-2260-2075
mailto:pm464@cam.ac.uk
https://publons.com/publon/10.1111/tra.12696/
https://publons.com/publon/10.1111/tra.12696/
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/tra


Cas9 recognition sites for liberation once inside the target cell. The

released donor is then integrated, during the repair of a

Cas9-mediated genomic DSB, via the NHEJ pathway. The reliance

upon a donor vector imposes limitations on these approaches. Generic

NHEJ approaches use a small number of donor vectors for all knock-

ins, greatly reducing the cloning required. This however limits control

of the final nucleotide sequence around the edit site.6,9,10 Conversely,

more bespoke NHEJ approaches, those allowing greater control over

the integrated DNA fragment, require individual donor vectors to be

prepared for each knock-in.8 Therefore, while potentially much faster,

NHEJ approaches are currently limited in terms of versatility. Remov-

ing the reliance upon a donor vector has the potential to combine the

speed of generic NHEJ approaches with the versatility of bespoke

approaches. However, previous attempts to employ a polymerase

chain reaction (PCR) product or restriction fragment as the donor have

been unsuccessful, suggested to be due to a requirement for intracel-

lular cleavage and co-processing to target the donor fragment for suc-

cessful NHEJ integration.6,10

Here we demonstrate a donor vector independent, NHEJ-mediated

genome editing strategy for mammalian cells. Our methodology,
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F IGURE 1 Genome editing by CHoP-In. CHoP-In genome editing relies utilises NHEJ-mediated integration of a PCR-generated donor into a
CRISPR/Cas9-induced DSB. A, To achieve this, two constructs must be prepared after identifying the genomic gRNA and PAM site. To introduce
a DSB at the desired locus, a vector such as pX330 encoding both the gRNA and the Cas9 nuclease is constructed. Additionally, a CHoP-In
integration donor is produced by PCR, consisting of the desired integration fragment flanked by the same gene specific gRNA and PAM sites in
the PCR primers. Importantly, the gRNA and PAM sites flanking the integration donor must be in the reverse orientation with respect to genomic
locus as this prevents reconstitution and re-cleaving of the sites following integration. B, The whole process can be completed in approximately
1 week, giving a mixed population of edited cells with minimal hands-on time when compared with HDR mediated approaches
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which we term CHoP-In (CRISPR-mediated, Homology-independent,

PCR-product Integration), employs a PCR-generated donor, flanked by

gene-specific guide RNA (gRNA) and protospacer adjacent motif (PAM)

sequences incorporated via the PCR primers. Thus, donors can be pro-

duced quickly and easily, without the need for cloning. To demonstrate

the utility, versatility and fidelity of our approach, we have generated

and characterised multiple HeLa cell lines expressing fluorescent pro-

tein fusions from their endogenous loci. Four example fusion-proteins

are presented, each requiring a different site of tag integration and each

showing a distinct but well characterised localisation within the

endomembrane system.

2 | RESULTS

2.1 | Requirements for CHoP-In genome editing

Two components need to be prepared for each CHoP-In experiment.

The first is a plasmid (eg, pX330) encoding Cas9 and a gRNA targeting

the gene of interest. The second is a PCR produced donor containing

the desired integration fragment (eg, a fluorescent protein tag),

flanked by Cas9 recognition sites corresponding to the target gRNA

and PAM sequences of the gene of interest, but in the reverse orien-

tation. Thus, for a gRNA targeting the sense strand, the integration

fragment must be flanked by gRNA and PAM sequences in the anti-

sense orientation (Figure 1), and vice versa. This is to avoid rec-

onstituting the genomic Cas9 target site. It also has the advantage of

conferring directionality, as undesired reverse integrations will be

excised via further CRISPR/Cas9 cleavage. Co-transfection of the

plasmid and PCR product leads to cleavage of both the genomic DNA

and the donor, which is then integrated into the genomic DSB by

NHEJ (Figure 1).

PCR-generation of donors allows for integration of different exog-

enous DNA sequences, addition of linker sequences and conservation

of frame by simply modifying the PCR primers, without any require-

ment for creating new donor vectors. Removing the need for these

cloning steps greatly speeds up the process of genomic editing, both

in absolute terms and particularly in hands-on time requirement, a sig-

nificant benefit over existing approaches (Figure 1B).

2.2 | N-Terminal tagging of RAB5C

N-terminal tagging is the optimal configuration for CHoP-In in non-

haploid cell types as selection of a gRNA recognition site upstream of

the translation start codon reduces the risk of small indels disrupting

the coding sequence of other alleles. It should be noted that there

remains a possibility of larger indels leading to disruption of alternate

alleles. This problem is common to all currently existing genome

editing approaches and should always be carefully considered during

functional analysis. In addition, for some proteins, such as Rab

GTPases, the N terminus is the only position where a tag can be

inserted without compromising function. As with all NHEJ knock-in

approaches, CHoP-In will generate a small scar from the gRNA and

PAM sequences, which forms part of the linker sequence between

the target protein and the tag. When generating an N-terminal tag,

this scar can be minimised by selecting a sense strand-targeting gRNA,

ideally as close to the start codon as possible.

As a demonstration of N-terminal tagging using CHoP-In, an emer-

ald fluorescent protein (EmGFP) tag was introduced to the N terminus

of the early endosomal Rab GTPase Rab5C (Figure 2A). To generate a

RAB5C integration donor, EmGFP DNA was PCR-amplified using

CHoP-In primers (Figure 2B). Because a sense strand-targeting gRNA

was selected, the forward primer contained the gRNA and PAM

sequence in the antisense direction, followed by a Kozak sequence

prior to the start codon of the EmGFP. The reverse primer also con-

tained the gRNA and PAM sequence, in the antisense direction when

expressed, as well as a flexible peptide linker (GGSGG) between the

tag and RAB5C. The predicted edited protein sequence is shown in

Figure 2B. HeLa cells were transfected with pX330:RAB5C (encoding

the gRNA and Cas9), together with donor PCR product, either

encoding a frame-corrected EmGFP lacking gRNA recognition

sequences or a full CHoP-In integration fragment as described in

Figure 2B. Forty eight hours after transfection these cell populations

were analysed and sorted by flow cytometry. Transfection of a PCR

product encoding EmGFP but lacking gRNA recognition sequences

gave little to no stable integration the EmGFP tag at the RAB5C locus.

The percentage of positive cells following CHoP-In editing suggests a

knock-in efficiency of approximately 0.5% (Figure 2C), in line with

other NHEJ-mediated knock-in approaches.6-8 Importantly, subse-

quent imaging of the mixed population of EmGFP-positive cells

showed homogeneous subcellular distribution. Consistent with the

known distribution of Rab5 proteins,11 much of the EmGFP localised

to early endosomes, marked by Alexafluor-555 labelled transferrin

that had been endocytosed for 15 minutes (Figure 2D). Western blot-

ting of the mixed population of edited cells with an antibody against

RAB5C showed a band at the expected weight for a correctly tagged

allele (Figure 2E).

To assess the fidelity of CHoP-In editing, Sanger sequencing was

carried out on targeted loci PCR amplified from genomic DNA pre-

pared from the mixed population. Eight of twelve sequenced junctions

had no indel, and only one indel was seen at a 30 junction, generating

an in-frame deletion within the linker sequence between the EmGFP

tag and Rab5C (Figure 2F). The observed fidelity of the CHoP-In

approach thus compares well with that of other NHEJ-mediated

knock-in approaches.6,7

2.3 | C-terminal tagging of ATP6V1G1

It is not always possible to tag a protein at its N terminus, for example

where this tag placement would disrupt intermolecular interactions or

interfere with sorting signals such as mitochondrial or endoplasmic

reticulum signal sequences. In these cases, a C-terminal tag is the

most common solution. The viability of C-terminal tagging by CHoP-

In was demonstrated via the generation of HeLa cells expressing a C-

terminally tagged ATP6V1G1, a subunit of the vacuolar adenosine

triphosphatase localising to late endosomes and lysosomes12

(Figure 3A). An antisense-oriented gRNA site just upstream from the
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F IGURE 2 Generation and characterisation of an EmGFP-RAB5C HeLa line. A, Sequence encoding an N-terminal EmGFP tag was integrated
into the endogenous RAB5C locus by CHoP-In. B, A sense strand gRNA and PAM site was selected immediately upstream of the RAB5C start
codon and CHoP-In primers were designed to amplify DNA encoding EmGFP, flanked by the necessary gRNA and PAM sites for intracellular
cleavage and NHEJ-mediated integration. C, Following transfection with px330-RAB5C together with PCR donor fragments consisting of a frame
corrected EmGFP tag without any Cas9 recognition site (no recognition seq.) or a full CHoP-In donor fragment (ChoP-In), cells were analysed and
sorted by flow cytometry. WT cells are untransfected HeLa. Data are shown as FACS plots from individual experiments as well as mean data (+/−
SD) from three independent experiments. D, Fluorescence microscopy revealed EmGFP signal (green) in cells from this mixed population which
colocalised well with Alexafluor-555 labelled endocytic tracer transferrin (red), following uptake of the marker for 15 minutes in order to label
early endosomes (scale bar equals 10 μm). E, Immunoblotting with an antibody against RAB5C revealed the presence of a higher molecular weight
band corresponding to the EmGFP-RAB5C fusion in lysates from the mixed population. F, Sanger sequencing of integration junctions showed the
fidelity of NHEJ mediated knock-in of EmGFP into the RAB5C locus
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F IGURE 3 C-terminal tagging of ATP6V1G1. A, ATP6V1G1 was tagged at its C terminus with EmGFP. B, An antisense strand targeting gRNA
and PAM site was selected which would create a DSB slightly upstream of the endogenous stop codon. EmGFP was amplified with CHoP-In
primers encoding sense orientation gRNA and PAM sites. C, Good colocalisation of EmGFP signal with the endolysosomal marker Magic Red was
seen in a flow cytometry isolated EmGFP positive mixed population (scale bar equals 5 μm). D, Immunoblotting with an antibody against
ATP6V1G1 confirmed expression of higher molecular weight, EmGFP-tagged ATP6V1G1 from its endogenous locus. E, Off target expression of
EmGFP was assessed by examining mixed populations of cells for aberrant GFP localisation
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stop codon was selected in order to minimise the integration scar

(Figure 3B). EmGFP again served as the tag, flanked in the integration

donor by gRNA and PAM sequences in the sense orientation

(Figure 3B). Two days after transfection, EmGFP-positive cells were

isolated by flow cytometry, this time accounting for approximately 2%

of the population. Consistent with the known localisation of the

ATP6V1G1 protein, the EmGFP fluorescence in this mixed population

co-localised well with the endolysosomal marker Magic Red, a cathep-

sin B substrate liberating a fluorescent cresyl violet dye upon hydroly-

sis and therefore marking catalytically active degradative

compartments13,14 (Figure 3C). Immunoblotting with an antibody to

ATP6V1G1 revealed a band at the expected molecular weight for the

tagged protein in the mixed population, at approximately one third

the intensity of wild-type ATP6V1G1 in unedited HeLa cells.

(Figure 3D). This suggests that on average, one of the three

ATP6V1G1 alleles in our mixed population was tagged.

We next wanted to assess the reliability of localisation information

obtained from CHoP-In edited cells. To do this we examined mixed

populations of tagged cells for any examples of aberrant EmGFP

localisation by microscopy. We found extremely low levels of aberrant

EmGFP localisation suggesting that off target expression of tagging

donors is not a major problem following CHoP-In genome editing

(Figure 3E).

As opposed to N-terminal tagging, C-terminal tagging via CHoP-In

has the potential to disrupt other alleles through NHEJ-mediated indel

generation without tag integration. To explore this possibility mono-

clonal cell lines were generated from the ATP6V1G1-EmGFP mixed

population. In one of these lines, clone 7, as well as an apparently cor-

rect EmGFP fusion protein, assessed by western blot and fluorescence

imaging (Supplemental figure S1), an additional shifted band and was

seen by western blot which was too small to represent EmGFP inte-

gration. Sequencing confirmed correct integration of the EmGFP into

at least one allele, but also revealed an additional allele harbouring a

one base pair indel creating a frameshift mutation extending the read-

ing frame and accounting for the apparent molecular weight shift

(Supplemental figure S1).

To assess the wider applicability of CHoP-In editing in other com-

monly used cell types we attempted to tag the RAB5C locus in

HEK293-T cells and the ATP6V1G1 locus in NRK cells. In both cases

we observed comparable results to those obtained in HeLa cells

(Supplemental figure S2) suggesting that our approach is likely to work

in a range of mammalian model cell systems.

2.4 | Internal tagging

As a further test of CHoP-In versatility, internal tags were introduced

into two proteins for which both N and C-terminal tagging have been

AP2M1 gene

Ex. 6 Ex. 7 Ex. 8

Ex. 6 Ex. 7 EmGFP

AP1G1 gene

Ex. 19 Ex. 20 Ex. 21

Ex. 8

Ex. 19 Ex. 21mCh.

Adaptor μ-homology 

EmGFP Adaptor μ-homology 

Adaptin N-terminal domain Ear-Dom.Hinge

Adaptin N-terminal domain Ear-Dom.mCherry

AP2M1 protein

(A) (B)

(C) (D)

Cas9 DSB

AP2M1 EmFP

Cas9 DSB

AP1G1 protein

AP1G1 mCherry

AP2M1-EmGFP

AP1G1-mCherry

F IGURE 4 Internal tagging of
AP2M1 and AP1G1. A, To create an
internal AP2M1-EmGFP fusion, a
gRNA and PAM site was selected in
exon 7 of the gene to generate an in-
frame insertion of EmGFP into the C-
terminal μ-homology domain of the
protein when expressed. B, Following
isolation by flow cytometry, an
EmGFP positive mixed population
showed clear punctate plasma
membrane EmGFP signal
characteristic of endogenous
AP2M1. C, To tag AP1G1 with
mCherry, a gRNA and PAM site was
selected in exon 20 of the gene in
order to place mCherry within the
flexible hinge region of the expressed
protein. D, mCherry signal alone was
at the limit of detection so the signal
was amplified with an antibody
against mCherry, revealing
tubulovesicular perinuclear staining
characteristic of endogenous AP1G1
Scale bars equal 10 μm

6 MANNA ET AL.



shown to be disruptive: subunits of the AP-1 and AP-2 adaptor pro-

tein complexes. These represent challenging targets as tag placement

is constrained to regions of high intrinsic disorder between or within

folded domains in both proteins. The detailed CHoP-In targeting strat-

egy for these two genes is shown in supplemental figures S3-4. Mixed

populations of HeLa cells edited at either exon 7 of the AP2M1 gene

to express an internal EmGFP fusion15 (Figure 4A), or exon 20 of the

AP1G1 gene to express an internal mCherry fusion16 (Figure 4C) were

generated. The subcellular distribution of fluorescence was homoge-

neous amongst the mixed cell populations and correctly localised, with

AP2M1 showing discrete puncta at the plasma membrane (Figure 4B)

and AP1G1 showing a tubulovesicular perinuclear distribution

(Figure 4D).

3 | DISCUSSION

NHEJ-mediated knock-in is known to function well in a wide variety

of cell lines.5,6,8-10 Indeed, we have achieved comparable results in

HeLa, HEK293-T and NRK cells suggesting that our approach will be

broadly applicable to mammalian model cell systems. In the current

study we chose to tag loci with fluorescent protein tags as this repre-

sents by far the most widely used approach for determining protein

localisation and carrying out affinity isolation. However, there is no

inherent restriction in the exogenous DNA sequence encoded in the

donor beyond recovery of edited cells. We suggest that this could be

achieved through addition of antibiotic resistance cassettes when tag-

ging at the C-terminus. We believe that our approach can incorporate

donors of the required size as we were able to successfully generate

HEK293 cells bearing a full GFP expression cassette derived from

pEGFP-N2 (approximately 1.7 kbp) targeted to the AAVS1 safe har-

bour locus. Otherwise, this represents a problem common to all cur-

rently available genome editing approaches necessitating fluorescent

tag use, an application which we have shown CHoP-In to greatly

facilitate.

The current study suggests that N-terminal tagging is the optimal

approach due to indel generation in other alleles when targeting the

open reading frame. This limitation can likely be overcome however,

either by working in a haploid or near haploid cell line such as HAP1

as previously demonstrated for NHEJ-based editing6 or alternatively

by screening clonal cell populations for either multiple targeting

events or the presence of unedited alleles. In fact, the decision to

work in HeLa cells, with their polyploid nature, likely increased the

likelihood of recovering alleles harbouring indels. Note also that when

generating an internally tagged gene, although the probability of gen-

erating mutant alleles remains, it is likely that nonsense mediated

decay would prevent the production of a truncated protein.17

As well as speeding up the generation of individual edited cell

lines, CHoP-In has an inherent scalability, being based upon readily

synthesised oligonucleotides. This feature of the approach will be par-

ticularly useful for following up uncharacterised proteins identified via

genetic and proteomic screens.18,19 Validation and characterisation of

these screening “hits” is often frustrated by overexpression artefacts

and a lack of reliable antibodies for the analysis of endogenous pro-

teins. Of particular concern for those interested in processes occur-

ring at the subcellular level is the common observation of

overexpression leading to aberrant localisation.20 As such, the inher-

ent speed and versatility of our approach will be useful to those wish-

ing to accelerate the generation of multiple cell lines expressing

tagged proteins at their endogenous levels and under endogenous

control.

4 | MATERIALS AND METHODS

4.1 | Cell culture

HeLa cells were cultured in RPMI 1640 (Sigma Aldrich, Darmstadt,

Germany) supplemented with 10% foetal calf serum, 2 mM L-gluta-

mine, 100 U/mL penicillin and 100 μg/mL streptomycin.

4.2 | Antibodies

Anti-Rab5C (Ab199530; Abcam, Cambridge, UK), Anti-red, for detec-

tion of mCherry, (5F8 Chromotek, Munich, Germany), Anti-

ATP6V1G1 (16143-1-AP; Proteintech Europe, Manchester, UK), Anti-

EF2 (C14; Santa Cruz, Dallas), Anti Lamp-1 (H4A3; Abcam), Alexafluor

568 anti-rat (Thermo Fisher, Waltham). Horseradish peroxidase

(HRP)-conjugated secondary antibodies (Sigma Aldrich).

4.3 | Genome editing by CHoP-In

A detailed protocol can be found as an appendix to this article. Strep-

tococcus pyogenes Cas9 and gRNAs were expressed from the pX330

plasmid (Addgene #42230).21 Briefly, complementary oligonucleotides

encoding the desired gRNA sequence plus short 50 overhangs were

annealed and ligated into BbsI digested pX300 as described previ-

ously.21 Primers for generating CHoP-In integration donors were

designed as outlined in the current study. gRNAs were selected using

the genetic perturbation platform (GPP) web portal (Broad Institute,

Cambridge), all gRNA and primer sequences are shown in supplemen-

tal table S1. Integration fragments were generated by PCR using KOD

polymerase (Merck, Darmstadt, Germany) from standard vectors

pUC19-EmFP, pmCherry-N1. For each integration donor the product

of 5 × 100 μL PCR reactions was pooled and purified by ethanol pre-

cipitation prior to resuspension in 0.1 × tris-EDTA at a concentration

of approximately 2 μg/μL. HeLa cells grown on 9 cm plates were

transfected using either lipofectamine 2000 (Thermo Fisher) or HeLa

Monster (Mirus, Madison) according to manufacturers' instructions.

Cas9/gRNA expression plasmid and integration donor were trans-

fected at 1:1 ratio by mass. 48-72 hours post-transfection success-

fully edited cells were enriched by flow cytometry sorting and

subsequently cultured either as a mixed population or further diluted

to generate monoclonal cell lines.
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4.4 | Genomic DNA isolation and sequencing

Genomic DNA was isolated from approximately 1 × 106 cells using

the High Pure PCR template preparation kit (Roche, Basel, Switzer-

land) according to manufacturers' instructions. The region around the

CRISPR/Cas9 lesion was amplified using primers outlined in supple-

mental table S1. PCR products were cloned into pCR-Blunt vector

(Thermo Fisher), transformed into Escheria coli and resulting colonies

screened by colony PCR for the presence of an integration event. Pos-

itive colonies were amplified, and recovered plasmids analysed by

sanger sequencing using M13 reverse and T7 forward primers.

4.5 | Magic Red colocalisation

Magic Red cathepsin B substrate (Immunocytochemistry Technolo-

gies, Bloomington) was prepared as previously described.14 Cells were

grown on PeCon glass coverslips or MatTek glass bottomed dishes for

live cell imaging. Cells were incubated at 37�C in a 5% CO2 incubator

for at least 2 minutes in the presence of the cathepsin substrate

before being transferred to the microscope for imaging.

4.6 | Transferrin colocalisation

Cells, seeded onto glass cover slips, were incubated for 15 minutes at

37�C in the presence of Alexa-fluor 555 labelled human transferrin

(Thermo Fisher) (25 μg/mL) in serum free media. Cells were then

washed in ice cold PBS prior to fixation for 10 minutes in 4% (w/v)

paraformaldehyde in PBS and processing for fluorescence

microscopy.

4.7 | Immunofluorescence staining

Cells, seeded onto glass coverslips, were washed in ice cold PBS and

fixed for 10 minutes in 4% w/v) in PBS. Following fixation, cells were

permeabilised in 0.1% Triton X-100 in PBS for 15 minutes at room

temperature before blocking for 1 hour in 20% foetal calf serum in

PBS. Primary and secondary antibody incubations were carried out

sequentially at room temperature for at least 1 hour in 20% foetal calf

serum in PBS.

4.8 | Fluorescence microscopy

For fixed-cell samples, coverslips were mounted onto glass slides in

ProLong Diamond antifade reagent with 4',6-Diamidine-2'-

phenylindole dihydrochloride (Thermo Fisher). Cells were imaged on a

Zeiss Axio Imager upright microscope under a 63 × 1.4 numerical

aperture (NA) Plan Apochromat oil immersion objective. Live cell

imaging was carried out on a LSM780 confocal microscope equipped

with an incubated stage (Carl Zeiss, Ltd., Welwyn Garden City, UK)

using a ×63 1.4 NA Plan Apochromat oil-immersion lens.

4.9 | Immunoblotting

Immunoblotting was conducted as previously described (Navarro

Negredo et al, 2018). Briefly, cells were lysed in sodium dodecyl sul-

phate (SDS) buffer (2.5% SDS, 50 mM Tris, pH 8.0) before boiling in

NuPAGE LDS sample buffer supplemented with 0.1 M DTT. SDS-

PAGE was performed on NuPAGE 4-12% Bis-Tris gels with NuPAGE

MOPS SDS Running Buffer (Life Technologies, Carlsbad). Following

transfer of proteins to nitrocellulose membranes, membranes were

blocked with 5% non-fat milk in PBS with 0.1% (v/v) Tween-20 (PBS-

T). Primary antibody incubations were carried out for at least 1 hour

with appropriate horseradish peroxidase-conjugated secondary anti-

bodies applied subsequently. Chemiluminescent detection of bound

antibody was carried out using AmershamECL Prime Western Blotting

Detection Reagent (GE Healthcare, Pittsburgh) and X-ray film (Kodak,

Rochester).

4.10 | Flow cytometry

2-5 × 106 cell were trypsinised, washed with PBS and resuspended at

a concentration of 106/mL in PBS. Sorting was carried out on a BD

FACSMelody cell sorter. Positive cells, gated at a fluorescent intensity

above all events seen in a control population, were collected and

seeded into 25 mm plates for expansion to a mixed population.
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