Supplementary Information: First-principles momentum distributions and vibrationally corrected permittivities of hexagonal and cubic ice

Edgar A. Engel, Irene Li, and Richard J. Needs

TCM Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK

I. TEMPERATURE AND PRESSURE DEPENDENCE

Fig. S1 (a) shows the spherically-averaged $n_p(p)$ for temperatures ranging from 0 K to 5000 K in order to demonstrate that at sufficiently high temperatures the increasing thermal motion of the protons becomes comparable in size to their quantum ZP motion and is reflected in $n_p(p)$. In practice ice melts at about 273 K, at which point $n_p(p)$ is indistinguishable from its 0 K counterpart. Figs. S1 (a) and (c) show the projection of single proton and the proton-averaged $n(\mathbf{p})$ at 0 K and 268 K onto the (001) plane, respectively. While the protonaveraged $n(\mathbf{p})$ at 0 K and 268 K are indistinguishable, Fig. S1 (b) suggests a weak temperature dependence of $n(\mathbf{p})$ of an individual proton along the direction orthogonal to the O-H covalent bond. However, on the scale of the effects of stacking-disorder and vibrational anharmonicity neither the proton-averaged $n(\mathbf{p})$ nor the $n(\mathbf{p})$ of an individual proton exhibit a significant temperature dependence.

Figs. S2 (a) to (c) show the absence of a significant pressure dependence of $n(\mathbf{p})$ up to the Ih–II and Ih–III transitions pressures, despite the volume changes of up to around 2% collected in Table S1. The anharmonic

P [MPa]	c [Å]	$V [\text{\AA}^3/\text{H}_2\text{O}]$	$\Delta u_{\rm RMS,anh}$ [Å]
-100	7.11	29.35	0.4016(6)
0	7.10	29.29	0.4010(6)
100	7.08	28.98	0.4008(6)
200	7.06	28.81	0.4005(6)

TABLE S1. Dependence on pressure, P, of unit cell parameters and proton RMS displacements in ice Ih $Cmc2_1$, $\Delta u_{\rm RMS}$.

correction to the vibrational free energy of Ih increases by about $0.2 \text{ meV/H}_2\text{O}$ or, equivalently, about 4%. Crucially, the softening of pseudo-translations and librational modes leads to a decrease in harmonic vibrational free energy under pressure, leaving the total vibrational free energy essentially unchanged under pressure – similarly to the proton kinetic energy.

II. DEPENDENCE OF Z^* ON VIBRATIONAL DISPLACEMENTS

In order to understand why the nuclear polarisability of ice is affected by nuclear motion it is necessesary to understand how the Born effective charges $Z^*_{\alpha\beta}$ associated with a particular atom depend on general vibrational displacements **q**. To gain an atomistic insight we decompose $Z^*_{\alpha\beta}$ into an equilibrium/static-lattice term $Z^{*(0)}_{\alpha\beta}$, independent-mode terms $Z^{*(1)}_{\alpha\beta}(q_i)$, pair terms $Z^{*(2)}_{\alpha\beta}(q_i,q_j)$, etc,:

$$Z_{\alpha\beta}^{*}(\mathbf{q}) = Z_{\alpha\beta}^{*(0)} + \sum_{i} Z_{\alpha\beta}^{*(1)}(q_{i}) + \sum_{i,j} Z_{\alpha\beta}^{*(2)}(q_{i}, q_{j}) + \dots$$
$$Z_{\alpha\beta}^{*(0)} \equiv Z_{\alpha\beta}^{*}(\mathbf{q} = \mathbf{0})$$
$$Z_{\alpha\beta}^{*(1)}(q_{i}) \equiv Z_{\alpha\beta}^{*}(q_{i}, q_{j\neq i} = 0) - Z_{\alpha\beta}^{*(0)}$$
$$Z_{\alpha\beta}^{*(2)}(q_{i}, q_{j}) \equiv Z_{\alpha\beta}^{*(2)}(q_{i}, q_{j}, q_{k\neq i,j} = 0)$$
$$- Z_{\alpha\beta}^{*(0)} - Z_{\alpha\beta}^{*(1)}(q_{i}) - Z_{\alpha\beta}^{*(1)}(q_{j})$$
(1)

 $Z_{\alpha\beta}^{*(1)}(q_i)$ is typically dominated by a linear dependence on q_i as illustrated in Fig. S4 (a). However, this linear dependence does not contribute to the vibrationally corrected $Z_{\alpha\beta}^{*}$ due to the symmetry of the vibrational wavefunction. Fig. S4 (b) shows the less common case, in which $Z_{\alpha\beta}^{*(1)}(q_i)$ clearly involves higher order (even) terms in q_i , which contribute to the vibrationally corrected $Z_{\alpha\beta}^{*}$.

Fig. S4 (c) shows a particular pairwise term $Z_{\alpha\beta}^{*(2)}(q_i, q_j)$. It is small in comparison to the independent mode terms $Z_{\alpha\beta}^{*(1)}(q_i)$ and antisymmetric, so that its contribution to the vibrationally corrected $Z_{\alpha\beta}^{*}$ is negligible, suggesting that pairwise terms do not play a significant role. Nonetheless the vibrationally corrected $Z_{\alpha\beta}^{*}$ in the main text were evaluated using a Monte Carlo sampling approach in which the vibrationally corrected $Z_{\alpha\beta}^{*}$ are evaluated as the mean

$$\overline{Z_{\alpha\beta}^*} = \frac{1}{N} \sum_{i=1}^{N} Z_{\alpha\beta}^*(\mathbf{q}_i) \tag{2}$$

over N frozen-phonon configurations \mathbf{q}_i , which are drawn from the harmonic vibrational density as the underlying probability distribution and for each of which an individual PBE-DFT calculation was performed to determine $Z^*_{\alpha\beta}(\mathbf{q}_i)$. This approach accounts for the full dependence of $Z^*_{\alpha\beta}(\mathbf{q})$ on \mathbf{q} .

III. PERMITTIVITY OF DIFFERENT IH PROTON-ORDERINGS

Fig. S6 shows ϵ for the 16 eight-molecule protonorderings of Hirsch and Ojamae [1]. The permittivity

FIG. S1. Temperature dependence of (a) the sphericallyaveraged MDF and the projection of the spatially-resolved MDF of (b) a single proton and (c) averaged over all protons in Ih $Cmc2_1$ onto the (001) plane up to unphysically high temperatures. Up to the melting point thermal effects are negligible.

 ϵ in the Mhz-range depends sensitively on the particular proton-ordering and varies by up to 14% between proton-orderings. In contrast, the vibrational corrections to ϵ are very similar for all proton-orderings and are larger than 5% of the static-lattice value in all cases considered.

The details regarding the symmetries groups of the 16 eight-molecule proton-orderings and their static-lattice E_{static}^i and vibrationally corrected configurational energies E^i , etc. are collected in Table S2.

FIG. S2. Pressure dependence of (a) the spherically-averaged and the projection of the spatially-resolved MDF of (b) a single proton and (c) averaged over all protons in Ih $Cmc2_1$ onto the (001) plane up to the Ih–II and Ih–III transition pressures.

IV. ROLE OF THE *xc*-FUNCTIONAL

Semi-local generalised gradient approximations such as the PBE [2], optPBE [3], and WC [4] functionals shown in Fig. S5 (a) all produce very similar values for ϵ . However, in general the static-lattice and, in consequence, the vibrationally corrected ϵ of ice depends substantially on the choice of *xc*-functional. For example, the hybrid HSE06 functional [5–7] produces a static-lattice ϵ of 2.61, while the LDA [8–10] results in a value of 3.06. However, these large differences between functionals arise predominantly

FIG. S3. Dependence on stacking and proton-order of (a) the spherically-averaged and the projection of the protonaveraged spatially-resolved MDF of Ih $Cmc2_1$ and $P2_12_12_1$, and Ic $I4_1md$ and $P2_1$ onto the (b) basal and (c) prism plane, respectively.

i	Space group	E_{static}^{i}	$\Delta E_{\rm har}^i$	$\Delta E_{\rm anh}^i$	E^{i}
1	Cc	1.02	-0.62	6.42	7.01
2	$Cmc2_1$	0.00	0.00	6.97	6.97
3	P1	1.17	-0.06	6.73	7.84
4	Pc	1.83	-0.21	7.65	9.26
5	$P2_1$	4.00	-0.72	7.00	10.27
6	$P2_1$	3.98	-0.71	6.65	9.92
7	$P2_1$	1.32	-0.19	7.32	8.45
8	$P2_1$	2.39	-0.92	7.16	8.63
9	Pc	1.72	-0.19	8.34	9.86
10	Pc	2.39	-0.69	6.76	8.45
11	$P2_{1}2_{1}2_{1}$	5.18	-0.79	6.44	10.83
12	$P2_{1}2_{1}2_{1}$	2.77	-0.52	6.28	8.53
13	$Pbn2_1$	2.35	-0.30	5.96	8.01
14	$Pca2_1$	1.34	-0.13	5.58	6.99
15	$Pna2_1$	4.16	-0.88	6.42	9.69
16	$Pna2_1$	3.83	-0.59	6.26	9.50

TABLE S2. Space groups, static-lattice energies $E_{\rm static}^i$, harmonic lattice free energies $\Delta E_{\rm har}^i$, and anharmonic corrections $\Delta E_{\rm anh}^i$, at 0 K for the 16 Ih proton-orderings of Hirsch and Ojamae [1]. All energies are measured in meV/H₂O. $E_{\rm static}^i$ and $\Delta E_{\rm har}^i$ are measured relative to the values for Ih $Cmc2_1$ (also referred to as XIh). For Ih $Cmc2_1 \Delta E_{\rm har}^2 =$ 692.34 meV/H₂O.

from the different unit cell volumes arising from geometry optimisation with the respective *xc*-functionals. Setting aside results obtained with the LDA, fixing the unit cell parameters to the experimental values renders the staticlattice ϵ and the vibrational properties (and therefore the vibrational correction to ϵ) insensitive to the choice of *xc*-functional (see Fig. S5 (a)).

Fig. S5 (b) shows the convergence of the harmonic and anharmonic Monte Carlo sampled vibrationally corrected ϵ of Ih $Cmc2_1$ obtained using different *xc*-functionals (but the same PBE frozen-phonon configurations) with the number of frozen-phonon configurations sampled.

Fig. S5 (c) shows the dependence of the temperature dependent vibrational correction to ϵ of Ih $Cmc2_1$ obtained using the PBE functional with and without Tkatschenko-Scheffler (TS) dispersion correction [11]. Here the sampled frozen-phonon configurations were constructed using PBE and PBE-TS optimised unit cells and vibrational data, respectively. The differences in the vibrational correction to ϵ arise predominantly from the different unit cell volumes and the resulting different vibrational properties obtained with and without the TS dispersion correction.

 K. Hirsch and L. Ojamäe, Quantum-chemical and forcefield investigations of ice Ih: computation of protonordered structures and prediction of their lattice energies, Journal of Physical Chemistry B 108, 15856 (2004).

FIG. S4. (a) Typical strong linear dependence of the diagonal elements of $Z_{ij}^*(q)$ on the vibrational displacement, q, along a particular mode. However, linear terms cancel when integrated over the symmetric vibrational wavefunction and therefore do not contribute to the vibrational renormalisation of Z^* . (b) The quadratic dependence of $Z_{11}^*(q)$ leads to vibrational renormalisation of Z_{11}^* for the symmetric vibrational wavefunction. (c) Even the largest corrections from cross-terms, $q_i^n q_j^m$, are generally negligible and typically do not contribute to the vibrational renormalisation of Z^* due to the symmetry of the vibrational wavefunction.

FIG. S5. (a) Dependence of the static-lattice and vibrationally corrected ZP ϵ on the choice of xc-functional for the same set of PBE-DFT frozen-phonon configurations. (b) Convergence of the absolute and relative vibrationally corrected ZP ϵ with the number of frozen-phonon samples for different xc-functionals. (c) Temperature dependence of ϵ using PBE and PBE-TS frozen-phonon configurations, respectively.

FIG. S6. Dependence on proton order of the static-lattice ϵ and ϵ in the harmonic approximation.

- [2] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Physical Review Letters* 77, 3865 (1996).
- [3] J. Klimeš, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, *Jour-*

nal of Physics: Condensed Matter 22, 022201 (2009).

- [4] Z. Wu and R. E. Cohen, More accurate generalized gradient approximation for solids, *Physical Review B* 73, 235116 (2006).
- [5] J. Heyd, G. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, *Journal* of Chemical Physics 118, 8207 (2003).
- [6] J. Heyd, G. Scuseria, and M. Ernzerhof, Erratum: "Hybrid functionals based on a screened Coulomb potential", *Journal of Chemical Physics* **124**, 219901 (2006).
- [7] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Ángyán, Screened hybrid density functionals applied to solids, *Journal of Chemical Physics* **124**, 154709 (2006).
- [8] D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, *Physical Review Letters* 45, 566 (1980).
- [9] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, *Physical Review B* 23, 5048 (1981).
- [10] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, *Physical Review B* 45, 13244 (1992).
- [11] A. Tkatchenko and M. Scheffler, Accurate Molecular Van Der Waals Interactions from Ground-State Electron Den-

sity and Free-Atom Reference Data, *Physical Review Letters* 102, 073005 (2009).