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I. TEMPERATURE AND PRESSURE

DEPENDENCE

Fig. S1 (a) shows the spherically-averaged np(p) for
temperatures ranging from 0K to 5000K in order to
demonstrate that at sufficiently high temperatures the
increasing thermal motion of the protons becomes com-
parable in size to their quantum ZP motion and is re-
flected in np(p). In practice ice melts at about 273K, at
which point np(p) is indistinguishable from its 0K coun-
terpart. Figs. S1 (a) and (c) show the projection of single
proton and the proton-averaged n(p) at 0K and 268K
onto the (001) plane, respectively. While the proton-
averaged n(p) at 0K and 268K are indistinguishable,
Fig. S1 (b) suggests a weak temperature dependence of
n(p) of an individual proton along the direction orthog-
onal to the O–H covalent bond. However, on the scale
of the effects of stacking-disorder and vibrational anhar-
monicity neither the proton-averaged n(p) nor the n(p)
of an individual proton exhibit a significant temperature
dependence.
Figs. S2 (a) to (c) show the absence of a significant

pressure dependence of n(p) up to the Ih–II and Ih–III
transitions pressures, despite the volume changes of up
to around 2% collected in Table S1. The anharmonic

P [MPa] c [Å] V [Å
3
/H2O] ∆uRMS,anh [Å]

-100 7.11 29.35 0.4016(6)
0 7.10 29.29 0.4010(6)

100 7.08 28.98 0.4008(6)
200 7.06 28.81 0.4005(6)

TABLE S1. Dependence on pressure, P , of unit cell parame-
ters and proton RMS displacements in ice Ih Cmc21, ∆uRMS.

correction to the vibrational free energy of Ih increases
by about 0.2meV/H2O or, equivalently, about 4%. Cru-
cially, the softening of pseudo-translations and librational
modes leads to a decrease in harmonic vibrational free
energy under pressure, leaving the total vibrational free
energy essentially unchanged under pressure – similarly
to the proton kinetic energy.

II. DEPENDENCE OF Z∗

ON VIBRATIONAL

DISPLACEMENTS

In order to understand why the nuclear polarisability
of ice is affected by nuclear motion it is necessesary to
understand how the Born effective charges Z∗

αβ associ-
ated with a particular atom depend on general vibra-

tional displacements q. To gain an atomistic insight we
decompose Z∗

αβ into an equilibrium/static-lattice term

Z
∗(0)
αβ , independent-mode terms Z

∗(1)
αβ (qi), pair terms

Z
∗(2)
αβ (qi, qj), etc,:

Z∗
αβ(q) = Z

∗(0)
αβ +

∑

i

Z
∗(1)
αβ (qi) +

∑

i,j

Z
∗(2)
αβ (qi, qj) + . . .

Z
∗(0)
αβ ≡Z∗

αβ(q = 0)

Z
∗(1)
αβ (qi) ≡Z∗

αβ(qi , qj 6=i = 0)− Z
∗(0)
αβ

Z
∗(2)
αβ (qi, qj) ≡Z

∗(2)
αβ (qi , qj , qk 6=i,j = 0)

− Z
∗(0)
αβ − Z

∗(1)
αβ (qi)− Z

∗(1)
αβ (qj)

(1)

Z
∗(1)
αβ (qi) is typically dominated by a linear dependence

on qi as illustrated in Fig. S4 (a). However, this lin-
ear dependence does not contribute to the vibrationally
corrected Z∗

αβ due to the symmetry of the vibrational

wavefunction. Fig. S4 (b) shows the less common case,

in which Z
∗(1)
αβ (qi) clearly involves higher order (even)

terms in qi, which contribute to the vibrationally cor-
rected Z∗

αβ .

Fig. S4 (c) shows a particular pairwise term

Z
∗(2)
αβ (qi, qj). It is small in comparison to the independent

mode terms Z
∗(1)
αβ (qi) and antisymmetric, so that its con-

tribution to the vibrationally corrected Z∗
αβ is negligible,

suggesting that pairwise terms do not play a significant
role. Nonetheless the vibrationally corrected Z∗

αβ in the
main text were evaluated using a Monte Carlo sampling
approach in which the vibrationally corrected Z∗

αβ are
evaluated as the mean

Z∗
αβ =

1

N

N∑

i=1

Z∗
αβ(qi) (2)

over N frozen-phonon configurations qi, which are drawn
from the harmonic vibrational density as the underlying
probability distribution and for each of which an individ-
ual PBE-DFT calculation was performed to determine
Z∗
αβ(qi). This approach accounts for the full dependence

of Z∗
αβ(q) on q.

III. PERMITTIVITY OF DIFFERENT IH

PROTON-ORDERINGS

Fig. S6 shows ǫ for the 16 eight-molecule proton-
orderings of Hirsch and Ojamae [1]. The permittivity
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FIG. S1. Temperature dependence of (a) the spherically-
averaged MDF and the projection of the spatially-resolved
MDF of (b) a single proton and (c) averaged over all protons
in Ih Cmc21 onto the (001) plane up to unphysically high
temperatures. Up to the melting point thermal effects are
negligible.

ǫ in the Mhz-range depends sensitively on the particular
proton-ordering and varies by up to 14% between proton-
orderings. In contrast, the vibrational corrections to ǫ are
very similar for all proton-orderings and are larger than
5% of the static-lattice value in all cases considered.

The details regarding the symmetries groups of the 16
eight-molecule proton-orderings and their static-lattice
Ei

static and vibrationally corrected configurational ener-
gies Ei, etc. are collected in Table S2.
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FIG. S2. Pressure dependence of (a) the spherically-averaged
and the projection of the spatially-resolved MDF of (b) a
single proton and (c) averaged over all protons in Ih Cmc21
onto the (001) plane up to the Ih–II and Ih–III transition
pressures.

IV. ROLE OF THE xc-FUNCTIONAL

Semi-local generalised gradient approximations such as
the PBE [2], optPBE [3], andWC [4] functionals shown in
Fig. S5 (a) all produce very similar values for ǫ. However,
in general the static-lattice and, in consequence, the vi-
brationally corrected ǫ of ice depends substantially on the
choice of xc-functional. For example, the hybrid HSE06
functional [5–7] produces a static-lattice ǫ of 2.61, while
the LDA [8–10] results in a value of 3.06. However, these
large differences between functionals arise predominantly
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FIG. S3. Dependence on stacking and proton-order of (a)
the spherically-averaged and the projection of the proton-
averaged spatially-resolved MDF of Ih Cmc21 and P212121,
and Ic I41md and P21 onto the (b) basal and (c) prism plane,
respectively.

i Space group Ei
static ∆Ei

har ∆Ei
anh Ei

1 Cc 1.02 -0.62 6.42 7.01
2 Cmc21 0.00 0.00 6.97 6.97
3 P1 1.17 -0.06 6.73 7.84
4 Pc 1.83 -0.21 7.65 9.26
5 P21 4.00 -0.72 7.00 10.27
6 P21 3.98 -0.71 6.65 9.92
7 P21 1.32 -0.19 7.32 8.45
8 P21 2.39 -0.92 7.16 8.63
9 Pc 1.72 -0.19 8.34 9.86
10 Pc 2.39 -0.69 6.76 8.45
11 P212121 5.18 -0.79 6.44 10.83
12 P212121 2.77 -0.52 6.28 8.53
13 Pbn21 2.35 -0.30 5.96 8.01
14 Pca21 1.34 -0.13 5.58 6.99
15 Pna21 4.16 -0.88 6.42 9.69
16 Pna21 3.83 -0.59 6.26 9.50

TABLE S2. Space groups, static-lattice energies Ei
static, har-

monic lattice free energies ∆Ei
har, and anharmonic correc-

tions ∆Ei
anh, at 0K for the 16 Ih proton-orderings of Hirsch

and Ojamae [1]. All energies are measured in meV/H2O.
Ei

static and ∆Ei
har are measured relative to the values for Ih

Cmc21 (also referred to as XIh). For Ih Cmc21 ∆E2
har =

692.34meV/H2O.

from the different unit cell volumes arising from geometry
optimisation with the respective xc-functionals. Setting
aside results obtained with the LDA, fixing the unit cell
parameters to the experimental values renders the static-
lattice ǫ and the vibrational properties (and therefore the
vibrational correction to ǫ) insensitive to the choice of xc-
functional (see Fig. S5 (a)).

Fig. S5 (b) shows the convergence of the harmonic and
anharmonic Monte Carlo sampled vibrationally corrected
ǫ of Ih Cmc21 obtained using different xc-functionals
(but the same PBE frozen-phonon configurations) with
the number of frozen-phonon configurations sampled.

Fig. S5 (c) shows the dependence of the tempera-
ture dependent vibrational correction to ǫ of Ih Cmc21
obtained using the PBE functional with and without
Tkatschenko-Scheffler (TS) dispersion correction [11].
Here the sampled frozen-phonon configurations were con-
structed using PBE and PBE-TS optimised unit cells and
vibrational data, respectively. The differences in the vi-
brational correction to ǫ arise predominantly from the
different unit cell volumes and the resulting different vi-
brational properties obtained with and without the TS
dispersion correction.

[1] K. Hirsch and L. Ojamäe, Quantum-chemical and force-
field investigations of ice Ih: computation of proton-

ordered structures and prediction of their lattice energies,
Journal of Physical Chemistry B 108, 15856 (2004).
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FIG. S4. (a) Typical strong linear dependence of the diagonal elements of Z∗

ij(q) on the vibrational displacement, q, along
a particular mode. However, linear terms cancel when integrated over the symmetric vibrational wavefunction and therefore
do not contribute to the vibrational renormalisation of Z∗. (b) The quadratic dependence of Z∗

11(q) leads to vibrational
renormalisation of Z∗

11 for the symmetric vibrational wavefunction. (c) Even the largest corrections from cross-terms, qni q
m
j ,

are generally negligible and typically do not contribute to the vibrational renormalisation of Z∗ due to the symmetry of the
vibrational wavefunction.
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FIG. S5. (a) Dependence of the static-lattice and vibrationally corrected ZP ǫ on the choice of xc-functional for the same set
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FIG. S6. Dependence on proton order of the static-lattice ǫ
and ǫ in the harmonic approximation.
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