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STABLE STRATIFICATION IN THE EARTH'S CORE.

by Simon Mollett.

Thefe has been speculation that the Earth’'s fluid outer
core may in part be stably stratified, with evidence ffom studies
of the magnetic fiéld and ffom thermodynamic arguments. This
affects possjble models for the geodynamo; in particular stable
stratification near the cbrefmantle boundary would allow more
information about core surface velocities to be deduced from
measurements qf the secular variation of the magnetic field. The
object of this dissertation is twofold: to examine the possible
causes of such a stably stratified region, and to investigate the
fluid dynamics of penetrative convection in a rotating system.

The possibility of thermal stratification at the core mantle
boundary - is dinvestigated and rejected through the wuse of a
numerical model of the cooling of the Earth. The modeLj is
constrained by the observed radius of the inner core, by the
present héat flux to the surface of the Earth, and by
palaeomagnetic evidence for an ancient geodynamo, and as a result
gives reasonably wéLL controlled estimates for the heat flux from
core to mantle. Parameterised convection theory is used to model
mantle convection, and the requirements of a dynamo mechanism are
considered in terms of flows of entropy. Compositional gradients
are reviewed as a possible mechanism for stable stratification,
in terms of the rate of release of Light material indicated by
the cooling of the core.

Penetrative convection‘ in a rotating system is studied in
terms of the linear Boussinesq equations in simple geometries, by
both analytical and numerical methods. It is shown that rotation
tends to restrict the penetration of convective flows into the
adjoining stable region. Experiments on penetrative convection

in a rapidly rotating cylindrical tank are in broad agreement




with the linear theory, although the error estimates are Llarge.
|
These experiments Use a tank on which the boundary temperature

varies with time to create the adjoining stably and wunstably

stratified regions that characterise penetrative convection.
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Nomenclature

The following is a List of the more commonly used symbols:

in general they are defined when first encountered in the work.

Chapter 3 1is quite independent of chapters 4, 5 and 6 in
respect, and is indicated by the mark (3) where appropriate

this Llist.

a horizontal wavenumber
Q. proportional to, thermal expansion coefficient
a aspect ratio
A amplitude
b constant (3), azimuthal wavenumber
B8 variable parameter 3, density gradient
B magnetic field
c constant, specific heat capacity
C heat capacity (3)
d depth of unstable region
S small ihcrement
D geometrical constant (3), operator dA&z
e exponential
€ small parameter
n magnetic diffusivity, radiogenic heating (3)
E ~Ekman number, entropy (3)
f(z) shape function for temperature gradient
F normalised temperature perturbation
g gravity
G gravitational constant
Y Gruneisen’s constant
h depth of a system
i Vv -1
4

o

this

in




i A-

j electric current

k ' wave-number

k thermal conductivity, compressibility
K thermal diffusivity

K degree Kelvin

A wave-length, Biot number

L, lLatent heat (3)

m vertical wave-number

H dynamic viscosity

M mass (3)

n integer
v kinematic viscosity

N Brunt-Vaisala frequency

Nu Nusselt number

0 Order

p time growth rate

m 3.141594 00

q ratio of thermal to magnetic diffusivity
Q energy (3), Chandrasekhar number

r | radial coordinate

0 density

R Rayleigh number

s frequency of overstable oscillation
o Prandtl number




I R RS

'
t 4 time
T time scale
T temperature (3), Taylor number
4 temperature perturbation
S temperature
u velocity
U normalised vertical velocity
v component of velocity
W component of velocity
X position coordinate
y position coordinate
z position coordinate
z vorticity
Z normalised vertical vorticity
w frequency
2 rotation rate




1. Introduction

The object of this work is to investigate some of the fluid
dynamics problems that stem from observations of the magnetic
field of the Earth and from thermodynamic predictions of the
properties of the Earth's core. These suggest that the outermost
part of the <core may be stably stratified. There is no reason
to suppose that core fluid dynamics has a simple structure: by
analogy with the atmosphere and the oceans, one expects a great
diversity of flow phenomena in the core. Not only is it a fluid
body of Llow viscosity subject to the ‘rapid’ daily rotation of
the Earth and to a rigid boundary, the mantle, of wunknown
topography, but also it is permeated by the magnetic field and is
the seat of the geodynamo. It d9s dimportant therefore, in

studying specific topics, to realise that one’s results may be

applicable only to certain conditions. In particular, when
modelling the behaviour of the core, one must wutilise any
observational constraints on the models so as to restrict the
uncertainties involved.

The composition and properties of the core are not well
known, owing to its inaccessibility to either direct observation
or laboratory simulation. Both seismic and magnetic data give
information but this is subject to the uncertainties inherent in
any inverse problem. In general, what information is available
is an average over a finite region of the Earth’'s dinterior and
the resolution obtainable is limited, as has been discussed in
works on the application of inverse theory to the deep idinterior
(e.g. Masters, 1979). There is a general consensus that the
outer core is liquid and the inner core solid, and that both
regions are composed of a predominantly iron-nickel alloy with

some Light component (Jacobs, 1975). The magnetic field s




observed both directly in recent historic times and through the
archaeo- and palaeo-magnetic records in artificial baked
materials, digneous rocks and certain sediments: these studies
show that the field fluctuates over both time and position and is
capable of reversals on a geological time scale. Accordingly,
the field is believed to arise from some self-generating dynamo
mechanism. It is generally accepted that the dynamo requires
convection in some region of the outer core, which is both fluid
and an electrical conductor, rather than being driven by, for
example, precessional torques (Loper, 1975), although gravity
waves may be able to drive a dynamo (Singer & Olson, 1983).
This convection occurs in a fluid subject to both Coriolis and
Lorentz forces. It 1is not clear whether the Corijolis forces
dominate or whether they are matched by the Lorentz forces in an
approximately '"magnetostrophic'" balance. That depends on the
strength of the toroidal magnetic field which is not observable
at the Earth’s surface, being confined to the conducting core.

Beyond that consensus, there is much discussion about the
actual composition of the core, particularly of the identity of
the Light alloying component and of the possible presence of
potassium with its attendant radiogenic heating from the decay of
KAO, and of whether part of the outer <core may be stably
stratified. 'Higgins & Kennedy (1971) suggest that the outer part
may be sub-adiabatic in its temperature gradient though this has
since been disputed (Stevenson, 1980), while Fearn & Loper (1981)
discuss the possibiti£y of compositional stratification near the
core-mantle boundary.

A stably stratified region adjacent to the —core-mantle
boundary would lead to the lack of upwelling (Bszr= 0) reported

by Whaler (1980) from secular variation data. If there is no




upwelling at the surface of the core, then much more information

about the core surface velocities is available from the secular
variations than is the case for unconstrained velocities (Backus,
1968); Gubbins (1982) discusses the toroidal velocity components
that can be measured on this assumption of zero upwelling. Thus
it is important to assess whether such a stable region can exist.

In this thesis, we investigate whether a stably stratified
region can be formed, whether by compositional differences or by
subadiabatic temperature gradients, and then study an idealised
fluid dynamics problem, the effect of rotation on penetrative
convection. The Llatter study is a step towards understanding
whether such a stable region could persist adjacent to the
convecting interior of the core.

Chapter 2 contains a review of information on core
properties and of the fluid dynamics of penetrative convection
and convection influenced by rotation and magnetic fields. In
chapter 3, a thermal history model of the Earth yields estimates
for the heat flux out of the core, constrained to fit our
knowledge of the present-day inner core radius and surface heat
flux and of the existence of ancient magnetic fields. This
suggests that no thermal stable stratification wexists and
therefore that any such region would be due to the <compositional
stratification model put forward by Fearn & Loper (1981), which
is reviewed and extended in § 2.3. Chapters 4, 5 and 6 set out
an investigation of penetrative convection in rotating systems,
the object being to ;tudy whether the rotation tends to enhance
or to 1inhibit the penetration of a stable region by adjoining
convection. Analytic approaches to the Linear Boussinesq
equations of motion are discussed in chapter 4 and extended by

numerical work in chapter 5, using a '“shooting" program to find
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the eigenvalues, =~the critical Rayleigh numbers, of simple
penetrative convection systems. Some experimental work on
penetrative convection in a rapidly rotating cylindrical tank s
described in chapter 6 and the results <compared with the
preceding numerical work. This study of the fluid dynamics s
restricted to the linear equations of motion and to flows in the
absence of magnetic field. It is therefore only a step towards
modelling convection in the core, but a necessary one in view of
the complexities of any more wide-ranging model of the

convection.
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2.1 Introduction
This chapter sets out the relevant properties of the core (
§2.2) and discusses the possibility of there being a stably
stratified region near the core mantle boundary ( § 2.3). In
addition it includes a review of the fluid dynamics Lliterature
relating to penetrative convection and convection in the presence
of rotation or magnetic fields ( § 2.4), a discussion of the
Boussinesqg approximation ( § 2.5) and then sets out the Linear
equations of motion, under that approximation (§ 2.6). However,
as the model of mantle convection used in the thermal history
model of the Earth ( § 3) s a separate subject to this discus-
sion of the core, the review of mantle convection work has been
left to that chapter.

2.2 Seismic and magnetic observations on the core

A recent review of seismic evidence abdut the composition of
the Earth’s core is given by Bolt (1982). Travel times and free
oscillation periods yield velocity and density distributions
throughout the Earth such as the "Preliminary reference Earth
model" PREM (Dziewonski & Anderson, 1981). Such models are
consistent with there being no stably stratified regions in the
outer core, but could not resolve such regions if "thin" since
the distribution are typically averaged over radial scales of
about 50 km. Accdrding to Bolt (1982), '"there is no definitive

1

work precluding 7.8 < o < 8.2 km s , Oor 5% varijation at the

top of the outer core'": here a is the P-wave velocity, but this

11




reflects a similar uncertainty in the density gradient. At the

inner core boundary, reflection amplitudes for phase PKiKP

suggest a density ratio between fluid and solid ofp,,/ = 0.87 z

pi.r.
0.04 (Bolt, 1972), whilst the inversion of free oscillation data
gives a jump Ap = 0.87 u 0.32 g.cm—3 (Masters, 1979), equivalent

to a ratio ;%U/p_ = 0.93  0.03. This density Jjump, much

greater than that due solely to freezing, indicates a
compositional difference between the solid inner core and the
fluid outer core (Masters, 1979), as would be expected at a
freezing boundary in an alloy of non-eutectic composition. From
this density jump stem- the possibilities both of a compositional
energy source for convection and of compositional stratification
near the core-mantle boundary, as will be discussed in § 2.3.
Within the outer core, there no longer appears to be a need
for a transition zone at its base. The precursors observed to
phase PKIKP formerly explained by such a zone can 1instead be
accounted for by scattering from inhomogeneities near the core-
mantle boundary (for a review, see Haddon, 1982). Jacobs (1975)
gives a broader review of these matters, together with much

information on the Llikely composition and thermal state of the

core.

Models of the observed surface magnetic field and its
secular wvariation that are continued downwards to the surface of
the source region, the core (Lowes, 1974), have been used by many
authors as a source of information about core motions (e.g.
Bullard et al. 1950 on westward drift, Benton & Muth 1979 and
Whaler 1980 on upwelling). A problem with the interpretation of

these field models at the core mantle boundary is that of to what

12




B P —

reflects a similar uncertainty in the density gradient. At the

inner core boundary, reflection amplitudes for phase PKiKP
suggest a density ratio between fluid and solid ofp“/pl= 0.87 4
0.04 (Bolt, 1972), whilst the inversion of free oscillation data
gives a jump Ap = 0.87 = 0.32 g.c‘m—3 (Masters, 1979), equivalent

to a ratio %“/p- = 0.93 2 0.03. This density jump, much

greater than that due solely to freezing, indicates a
compositional difference between the solid inner core and the
fluid outer core (Masters, 1979), as would be expected at a
freezing boundary in an alloy of non-eutectic composition. From
this density jump stem  the possibilities both of a compositional
energy source for convection and of compositional stratification
near the core-mantle boundary, as will be discussed in § 2.3.
Within the outer core, there no longer appears to be a need
for a transition zone at its base. The precursors observed to
phase PKIKP formerly explained by such a zone can instead be
accounted for by scattering from inhomogeneities near the <core-
mantle boundary (for a review, see Haddon, 1982). Jacobs (1975)
gives a broader review of these matters, together with much

information on the Llikely composition and thermal state of the

core.

Models of the observed surface magnetic field and its
secular wvariation that are continued downwards to the surface of
the source region, the core (Lowes, 1974), have been used by many
authors as a source of information about core motions (e.g.
Bullard et al. 1950 on westward drift, Benton & Muth 1979 and
Whaler 1980 on upwelling). A prcblem with the interpretation of

these field models at the core mantle boundary is that of to what

12




B e E

*

h-lm I —————

depth of the core they sample. For example, Whaler (1981) gives

an estimate of the skin depth for secular variations of period
one year as about 50 metres into the highly ~conductive <core.
However, as Whaler continues, this screening effect is calculated
for a solid medijum: in a fluid, horizontally polarised wave
motions are possible that can transmit variations in the magnetic
field through a conducting fluid, the MAC waves of Hide (1966)
and Braginsky (1967). Benton (1979) considers the use of the

unsigned flux integral U for a sphere of radius r,

U(r,t) E§|Br(r,8,q>,t)].d5

as a means of finding the source region, rather than the top of
the <core, following Hide (1978). The method considers the
difference AU(r) between field models at two different times,
extrapolated down to radius r: the radius at which AUCCr) =0
is that of the surface of a good conductor in which the flux s
frozen. Benton (1979) extends the argument on the grounds that
if there is a core region next to the core mantle boundary that
is not the site of dynamo action (because of stable
stratification), then that region will react passively to the
secular wvariation of the field and the vacuum representation of
the magnetic field remains valid. Thus AU €C(r) = 0 throughout
this region, ‘and the site of dynamo action should be marked by
that radius at which |A ulr) | rises again from =zero.
However, the accuracyrof the method (2% error, from Hide (1978))
makes it unlikely to be of use in measuring a '"thin'" stably
stratified region.

When applied- tq the question of wupwelling, the magnetic
field data is consistent with the hypothesis of no upwelling (as

measured by avr/a ) at the core-mantle boundary (Whaler
T
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1980) . This conclusion stems from the wuse of the radial

component of the magnetic induction equation at the surface of a

good conductor (so that diffusion is negligible on the time-

scales of the secular variation, and v, o= 0 at the surface):
9B, ., VB + B . V,.v =0
ot —

where V’H is the horizontal divergence operator ( V - %; r )

(Backus, 1968). At points on the core mantle boundary at which

vanishes,‘7H.i can be estimated by

I :
VH-X = - E'Er/Br

For an effectively incompressible fluid, this then gives avr/ar

V,8

T

at these points. Thus the hypothesis of no wupwelling, which
stemmed from thermodynamic work described in more detail in
2.3 and § 3, is tested "at" the <core mantle boundary. The
question of how deep this information about core flows extends 1is
important: 1if the information is very shallow, then it is merely
consistent with the fluid dynamics boundary condition of a no-
slip (rigid) boundary, at which V, = Bvr/ar = 0. If the
information extends beyond the surface boundary layer (the Ekman
boundary Layer in a rapidly rotating fluid body), then this Llack
of upwelling is significant and is consistent with suggestions of
stable stratification in the core near the core mantle boundary
(see § 2.3). For a typical estimate of core viscosity of ¥ =
5.10—7 m2 5—1 (Gans, 1972), the daily rotation . of the ~core
suggests an Ekman layer thickness, § = /v/ﬂ of approximately
10_1 m. Thus our information should at least extend beyond the
viscous influence of a no-slip boundary, and so can be taken as
supporting the proposed presence of a stable region, 1inhibiting

the penetration of convection.

Benton & Muth (1979) gijve an alternative measure of the
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upwelling 8Vr/g, using the change in area enclosed by a null-flux

curve (on which Br = 0) between two field models of different
epoch to give the average of avf/Brover that area and that
period. They derive a value 8Vl‘/als10_1o 5—1, indicating that the

radial velocity near the surface is very much smaller than the

horizontal velocities inferred from westward drift or from the

measurable velocities normal to null flux curves (typically 10—4
ms_1, again from Benton & Muth, 1979).
2.3 Stable stratification in the core

Although seismic and magnetic studies are the primary source
of information on the core, it is the thermodynamics of the core
that has caused most discussion of the stability or otherwise of
the core. This subject is intimately Linked both with
speculation on the formation of the Earth and with the problem of
finding an adequate source of energy to maintain a geomagnetic
field. It 1is restrained by experimental high-pressure work on
iron alloys and their phases, and by cosmological ideas on
isotope abundancies. A review of this field is given by Jacobs
(1975).

Higgins & Kennedy (1971) produced perhaps the greatest
controversy when they suggested, on the basis of their
theoretical work on both the melting temperature and the
adiabatic gradient of iron at high pressures, that the outer core
must be stably stratified for the surface between inner and outer
cores to be a freezing interface. This ran contrary to the idea
that thermal <convection in the outer core, driven either by
cooling (Verhoogen, 1961) or by radiogenic sources, was the cause
of the geodynamo. Subsequent studies (e.g. Stevenson, 1980 )

have disagreed with Higgins & Kennedy's <conclusions, finding
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instead that the adiabatic gradient in the outer core should be

Lless steep than the melting temperature profile, so that a well-
stirred convecting <core in which temperatures follow the
adijabatic gradient outwards from the freezing surface is 1indeed
consistent with the outer core being molten (fig. 2.1). However,
the controversy did lead to work on the question of how much heat
must flow out of the <core to avoid a thermal stable
stratification and also to renewed interest in the proposal of
Braginsky (1963) that the release of a Light fluid fraction on
freezing at the dnner <core surface Lleads to <compositional
convection. Such compositional <convection <could occur even
though the core might be in a state of thermal stable
stratification, in which case the convection would result in a
negative heat flow, in opposition to the heat flow by conduction
down the adiabatic temperature gradient that is a consequence of
vigorous convection and its attendant good 'stirring" (Loper,
1978a and b).

Thermal models of the Earth's core such as those of Loper
(1978a) (based on a constant heat flux from core to mantle) and
of Gubbins et al (1979) (constant rate of cooling) have been used
to test whether such cooling can Llead td an adequate energy
source for the dynamo. Gubbins et al (1982) <considered what
would be the result of a zero rate of cooling, in terms of the
formation of a stably stratified layer near the <core mantle
boundary. This din turn led to the use of the secular variation
data by Whaler (1980); to investigate fluid flows at the core
surface. The work described in chapter 3 is an extension of
these models, considering the effect of mantle <convection 1in

determining the thermal boundary condition to the core.
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Fig. 2.1

Schematic diagram of adiabatic and melting-point

profiles in the Earth's core .
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For the purpose of this work, a stable stratification in a

fluid exists if, should a small parcel of fluid initially 1in
equilibrium with its surroundings be displaced vertically in an
adiabatic process, that parcel then experiences a restoring body
fiorce. An adiabatic process is one in which no irre v%éibLe
changes occur (e.g. thermal conduction or diffusion of matter)
and as such is an idealised occurrence, but one to which real
processes approximate. The density of a fluid body is charact-
erised by its composition, temperature and pressure and, provided
there are no appreciable accelerations, the last will be deter-
mined by the equilibrium pressure of its surroundings.

Thus the requirement for stability is that, for an adiabatic

move from Z‘l to 22 wi‘\\~ com(:m.::‘:ac\ L,Tuf-l."&*"' T a.nA el

p(c(zq), T(zq, p(z2)), p(z2))dp (c(z2), T(z,, p(z,)), p(z,))

where position 2z is Lower than position z,. Note that, even
though no heat flows by conduction, the temperature depends both
on the original position and on the current pressure, due to the
work done in any expansion. Assuming that, for small changes,

the density depends Llinearly on these factors,
p = po(1-acc—aTT+app)
we require,

OLC(C(Zz)-C(Z1))+GT(T(22)—T(Z1)-_g_;[p(zz)—p(z1)])-GP (p(z2)-p(z,))>0

or, in the Limit of small displacements,

dc dT oT dp d :
o {—=|+ a- (2L - L |, 2P} . P 0 here z 1s depth
c(dz) T(dz ap dz *p dz < ! "
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This requirement, for the fluid to be stable, is not the

same as that based on an isotropic reference state (e.g. wused by
Fearn & Loper, 1981) if there is a compositional gradient: a
distinction attributed by Gubbins et al. (1979) to Kalinin
(1972) .

It s very important to note that this requirement relates
to adiabatic <changes. If there are significant dirreversible
effects then it may not be a necessary criterion. Notably, this
opens up the field of double-diffusive convection, in which
differing rates of diffusion in a system with at Lleast two
intrinsic factors affecting density (e.g. heat and a component of
composition) can Lead to modes of instability even though the
above criterion suggests a stable situation. Further, even in
the absence of diffusive instability, the occurrence of diffusive
flows of +the factors causing the wunstable density gradients
results din the requirement being only a necessary condition on
instability: there will need to be a finite excess of the
unstable gradients ove; those required above for motion to occur.
This 1is described by a Rayleigh number, as will be set out in

more detail below.
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Adiabatic Gradient

In the absence of compositional density gradients, the above
stability <criterion reduces to a comparison of the temperature
gradient with the adiabatic gradient. The adiabatic gradient 1in
the core is not well-known. Anderson (1982) gives a review of
recent shock-wave measurements on iron at core pressures (for
reference, "core-mantle boundary: 135GPa; 1inner core boundary:
328GPa, from Jacobs (1975)), which can be connected with the
results of static measurements at pressures up to 20 GPa. His
paper is primarily concerned with the melting point of iron at

core pressures, but also considers the possible values for the

thermodynamic Gruneisen ratio Y from which
aT YT
‘3‘5) =k
s

where k(P), the;gompressibiLity, can be derived from seismic data
(and dis tabulated in Jacobs (1975)). Anderson considers values
in the range 1.1 £ Y £ 1.6 at the core mantle boundary, 0.9 (
Y £ 1.4 at the innef core boundary, and also notes that Y
should then be increased slightly (by approximately 0.1) for
electronic effects, which affect the adiabatic gradient but not
the suggested melting point equations.
The adiabatic gradient can be rewritten to:
#)
9z &

where _
o = k/p

(® is the directly measured quantity from seismic data,
_ 2 _ 4 v 2 o
¢ = Vp /3 s ) g is
gravity and z depth. From inner core boundary to <core mantle

boundary, these change as shown in table 2.1.

The errors involved are largely "parallel": the ratio of %l)
Z
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¥ (Anderson) g 1.1 %

9 (Jacobs) 4.2 ms~

u@b (Jacobs) 1 x 10

T (Anderson) 4800 + 600 K

(subject to errors
in the adiabatic

gradient as feedback)

Hence ?i:

kY
s

(Lcuﬁf)

3620 + 1000 K

= (22 iO.%)x\O_“K,{‘ : (%.\ili-.()»xtcsk KN\-\

(c.m.b)
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at inner core boundary to that at core mantle boundary should be
correct to about 20% with that error arising primarily from the
feedback of uncertainty in the adiabatic gradient on the
temperature at the core mantle boundary, which Anderson derives
by continuation from the melting point at the dinner core
boundary.

The variation in %l) over the range of the outer core is
2
s

~of dinterest in dindicating the most likely region for stable

stratification. Gubbins et al. (1982) considered this question,
but state only that the top of the core is favoured by reason of
the higher adiabatic gradient there, arising, as they state,

primarily from the increased value of gravity there. This is in

31) is assumed
ap/g

constant, if a significant heat source is localised deep in the

fact only obvious, on a simple model in which

core, rather than being distributed evenly with mass (as might be
expected for specific heat from cooling or radiogenic heating),

as follows:

a) Possible heat flux by conduction = k %;) X area
; S
b) Heat flux from distributed sources e mass enclosed (m)
¢)  Now 3_T> = gp ﬂ.)
: z ap
S S
and g a[m(r)/r;]

possible heat flux by conduction u[m(r)-kp.%l)‘l
p

whilst distributed sources of heat a[m(r)}
d) Thus, to the extent that kp.%l s constant with radius,
P s

so one finds that distributed sources of energy do not
favour any particular region of the outer core as a can-
didate for being sub-adiabatic. On this simple model, it is

only through the occurrence of a localised source (latent
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heat or gravitational energy) at the inner core surface that

the <core mantle boundary becomes the favourite region for

sub-adiabatic temperature gradients.

In addition, the dincrease in YI/g from dinner core
boundary to core mantle boundary indicated by the estimates in
Table 2.1 does justify the conciusion of Gubbins et al. (1982)
even in the absence of deep localised sources of energy. Thus,
on two grounds, one can expect the outermost part of the core to
be the most Llikely to be stably stratified by temperature. In
§3 a thermal history model of the Earth is used to estimate the
heat flux from the core, and thereby to idinvestigate the

possibility of a thermal stable stratification.

As an alternative hypothesis, we may consider whether
compositional gradients can lead to a stable stratification in
the core. This would stem from the release of Llight material at
the freezing surface of the inner core, as suggested by Braginsky
(1963). Masters (1979) uses free oscillation data to measure the
density jump across the inner core surface, and his results
indicate that the jump is greater than that due to the phase
change alone ( A p = (0.7 = 0.3 Mg.m—3 whereas phase
change Ap = 0.05 Mg.m—3), with the inner core density being
consistent with that of pure iron, the outer core being a lighter
alloy. Fearn & Loper (1981) show that the concomitant release of
Light material at thé surface during freezing would lead to a
convective instability to a much greater degree than thermal
flows. Further, on the assumption that the core-mantle boundary
acts as an impermeable barrier to this Light component, they

argue that the flux of the light component must decrease to zero
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as it approaches the boundary and therefore that a barodiffusive
regime can account for the flux near to the boundary. Hence they
suggest that a stably stratified region will result, of thickness
approximately 70 km. As they point out, one must consider the
time-scale for the possible emplacement of such a region and the
possible disruptive effects of the convection in the remainder of
the outer core as it impinges on the stratified region. This |
lLatter problem, one of penetrative convection, is analogous to
that of the dispersion of a heavy gas layer in the turbulent
atmospheric boundary layer, as might be formed following, say,
accidental industrial release. Atmospheric studies of entrain-
ment may be found in, for example, Deardorff (1976) or Jensen &
Lenshow (1978).

The time scale for the full establishment of a compositional

stable stratification, 4in which barodiffusion balances diffusion
down the <concentration gradient, would be of the order of the
diffusive time-scale. If we take a length-scale L = 70 km (Fearn

& Loper, 1981) and a diffusion constant D =~ 10-8 mzs_1 (based on

a viscosity v =5 x 10 'm2s”] (Gans, 1972) and the Einstein
reLation,‘ D v =6§;p ), wWe get a diffusive time-scale of order
L2/D = 5 x 10175

Q

% 15 Ga.

At best diffusive equilibrium can et == be only partially
! achieved as yet, wunless one argues for a markedly greater
diffusion constant (and hence lower viscosity). If we now turn

to the question of what would be the final equilibrium state of

such a stable layer, then we can expect a Boltzmann distribution
of the Light component,

p =0 - 0, exp|-mxg (7 - ZO)

kT
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wﬁere Z 1s the depth from the boundary, 2 0 is the bulk
density, p, is the amplitude of the density change due to the
Light component and m* is the difference in molecular mass
between heavy and Light components (40 a.m.u. for dron and
oxygen, 24 a.m.u. for iron and sulphur). This supposes an ideal

solution in which there is neither volume change nor release of

chemical energy on substituting one component for the other. If
we write the characteristic depth H = [ kT
m*g

= 60 km for m* = 40 a.m.u.

and T 3300 k
we have
exp -(Z-ZO)

H

and, as a measure of the stability, the square of the Brunt-

Vaisala frequency N :

N =+ 9/, 30/,
= 0,/ g exp | -€Z=Z )| for p<< p
o H ( H™2 > ' °

where we can estimate 0, /p from equating the mass of Light
0
component in this distribution with the mass rejected from the

inner core on freezing, wusing the density jump given by Masters

(1979) .
H<< R , the radius of the outer core
_ 2
ML = 4T R"Hp,
_{ 3H . p,/p x (mass of core) eee A

el

But M ~ 6% mass of inner core (Masters, 1979)
~ 0.003 x (mass of core) is. B

Equating A and B)
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o,/ ~ 0.003 x[ R
P - \
O \
3H
=~ 0.06
Hence G ;:(10—5§2>. exp —(Z—ZO)

‘ H
This simple model thus predicts that, if diffusive equilibrium \
has been attained (or, more pertinently, if it is near) then the
compositional gradient leads to a Brunt-Vaisala frequency N that ‘
ranges exponentially from zero deep in the outer —core to i
\

3) 5_1 at the core mantle boundary, with a

approximately (3 x 10~
depth scale of order 60 km C(or 70 km from Fearn & Loper, 1981).
The shallow depth scale makes it unlikely to be detectable by
seismic means.

This model has assumed that the Light component rejected on
the freezing surface is convected to the core mantle boundary (or
its vicinity) and then stays there, developing a Llocally
diffusive <concentration gradient. It further supposes that the
intervening convecting bart of the outer core, the greater part
of it, remains well-mixed by the convection so that the Light
component. already 1in the outer core remains in solution, not
separating out under gravity to join the surface region. The
separation of stable and unstable regions, even though there be
no rigid barrier between the two bodies of fluid, 1is a concept
that will be investigated below.

One further point can be made from this model of the release
of Light component. Using the thermal history model (chapter 3)
to give a typical rate of cooling of the core of approximately

-1 =1

0.1 K.Ma~ ' ("standard" run gives ch/dt = 0.087 K.Ma~ 1), we

can estimate the flux of Llight component from the inner core

surface, using equation 3.7 for the inner core radius r
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2
rf 2 = (T_ - F, )
I s
re 0 /(TO TF>
where T1 is the current core-mantle boundary temperature, and TO

T‘ those hypothetical temperatures at which inner core formation

starts and is completed respectively, so that

SCCEE R Y: IR E S O
dr 1,1, 4 -
at z (oo%s) (107 MaT )

Hence we can estimate the mass deficit ML being released as:

3

S5 . (0.7 Mg.m™”)

dM 5 -1
dtL ~ 3 x 107 kg.s
Double Diffusion: 2 components causing opposing density

gradients.
As was mentioned above, when one relaxes the condition of

changes being perfectly adiabatic, there arise possible
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instabilities even though the overall density gradient is
apparently stable. These are caused by the diffusive flows, and
may be said to be entropy driven in that the mechanism is one of
redistributing one component more rapidly than the other, thereby
allowing the potential energy of the unstable component to be
released by local instability. Turner (1973) (chapter 8) gives a
broad review of this field, in which two new instabilities occur,
the "finger" regime and the '"unstable oscillations” regime.
Figure 2.2 is reproduced from that book, and shows the occurrence
of these two instabilities in the case of heat and salt as the
two components (note: diffusivity of heat in water = 100 x
diffusivity of salt). The finger regime in particular has been
extensively studied, owing to its oceanographic applications 1in
terms of salt transport between ocean layers.

In this thesis, double diffusion is not considered in
detail: the penetrative convection studies made are on single
component systems, attributing the possible stable layer at the
core mantle boundary tb either thermal or compositional effects
(probably the latter in view of the results of §3), not to a
combination of the two. However, 1if compositional effects are
significant then double diffusion is likely to be important, at
least in Llocal terms. If there 1is the combination of a
superadiabatic temperature gradient (arising from high heat flux
out of the core) and a stable compositional gradient as suggested
by Fearn & Loper (1981), then since the‘thermaL diffusivity in a
liquid metal should be much greater than the material diffusivity
one can expect the "unstable oscillation" regime to be a
possibility near the core-mantle boundary. A "finger" regime is
less Llikely, as it would involve a subadiabatic temperature

gradient and so Lleads to an inefficient dynamo (see § 3).
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Accordingly some experiments performed on salt fingers under
rotatién, following Schmitt & Lambert (1979), are not reported in
this work, although Fig. 2.3 is a pair of photographs of these
experiments, showing a side-effect of rotation observed, in
inhibiting the formation of secondary layering at the top and
bottom surfaces of the experimental tank.

The distinction between the two modes is whether the more
rapidly diffusing component is the unstable (unstable
oscillations) or the stable gradient (fingers): in both —cases
the unstable gradient component is transported preferentially
across the region of instability. In the <case of unstable
oscillations, the oscillatory motion assists the diffusive
transport of the unstable component by enhancing the Llocal
gradient of that component and then advecting the component to
another region, similar in some respects to the increased heat
flux 1in rotating annulus experiments that arises from the
baroclinic instability on the thermal wind flow (e.g. Hide 1958).
The finger regime on the other hand is a steady motion, most
simply <conceived in terms of a conducting-pipe model set out by
Stommel et al. (1956), in which diffusion of the stable component
through the side-walls allows a steady advection of the unstable
component. Stern (1960) showed that the differing rates of
diffusion of the two components can replace the rigid conducting
side-walls. Double diffusion can also lead to finite amplitude
subcritical —convection in cases in which the unstable component

is the more rapidly diffusing (Proctor, 1981a).
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Fig. 2.3

Experiments on the formation of salt fingers ,

firstly non-rotating , secondly rotating about

a vertical axis at approkimately 0.5 rev. s

-1

Non-rotating

Boundary

&.——_——
(secondary)

finger layer

Main finger

layer

Apparatus scale is shown by the vertical grid

which is marked in 1cm steps

il

Rotating

e—  No secondary

finger layer.

r Main finger

layer

are merely reflections

from the meniscus

Note that the bright
horizontal lines seen

at the top boundary




e

Penetrative convection theory applies to cases in which

stable and unstable density gradients exist in adjacent regions
of fluid, and is primarily concerned with the extent to which
convection can penetrate the stébLe region. In this sense it 1is
a study of convection in a region in which the density gradient
is not constant, as in the Rayleigh-Benard problem, but rather
changes sign. An alternative approach is to consider the fluid
as two distinct regions, interacting at their mutual boundary
through pressure and viscous forces.

The former approach was studied for a non-rotating system by
Sparrow et al. (1964) as part of an investigation into broadening
the range of the convection problems studied using linear theory.
Part of the work concerns the effect of <changing the thermal
boundary condition, revealing the lLong horizontal wavelengths

associated with fixed flux or Low Biot number boundaries (where

the thermal boundary condition is %% = +A9 o A = Biot
number, % = temperature perturbation), and part investigates

the non-linear temperature profiles that can result from internal
heating, rather than heating from the base. This Latter part
mainly considers the <effect on the Rayleigh number at onset
(defined in terms of the maximum temperature difference within
the system), but Sparrow et al. also note that for strongly
peaked temperature profiles the Llower bpundary becomes shielded
from the convective EOtions by the immediately adjacent stably
stratified region.

Veronis (1963) investigates a specific penetrative problem,
that of convection in an ice-water system, in which the

coefficient of expansion o <changes sign so that the density
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gradient is one of ©penetrative convection even though the

temperature gradient is the constant one of simple one-dimen-
sional thermal conduction. His approach is based on Fourier
series expansions of the perturbation variables, using the idea-
Lised boundary conditions of stress—-free and perfectly conducting
surfaces to simplify the anatyéis, and he achieves a high degree
of accuracy 1in the evaluation of the critical Rayleigh number
despite severe truncation of the series. Equivalent results for
rigid boundaries are also given, from the analogous problem of
Couette flow (Chandrasekhar, 1954). This problem is used as a
test <case in § 5, in which the numerical integration wused, a
"shooting" method, yields similar values for the Rayleigh number
but suggests that the countercell found by Veronis is partly due
to the extent of truncation of the series. Veronis continues in
the same paper to a weakly non-linear calculation in which he
demonstrates a finite amplitude sub-critical instability: as he
explains, this is to be expected in view of the results of mixing
in a system with such a variation of the coefficient of expan-
sion. Moore & Weiss (1973) extend this work in a nonlinear
numericaL study.

Stix (1970) also employs a Galerkin approach, a series
expansion of the solution, but considers two special cases of a
two Llayer problem, one of a perfectly conducting and therefore
isothermal wupper ("stable') Layer and the other of a wvery
strongly stratified upper Layer. These allow analytic
expressions for the solutions at the onéet of convection, and as
a result Stix shows that the strongly stratified region can act
as a more severe boundary condition to the unstable region than
would a rigid wall (the critical Rayleigh numbers being 2435 and

1708 respectively). A similar conclusion is reached by Whitehead
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(1971), who shows that as the stable region becomes of infinitely

strong stratification it becomes eguivalent to a boundary on
which W = DW = D°w =20

(where W is the normal velocity, parallel to 2z ), a combination
of the conditions of no slip and no tangential stress.

Sun (1976) investigates‘ the atmospheric problem of the
morning disruption of the night-time temperature inversion by
considering a two Llayer problem. The layer adjacent to the
ground (a rigid boundary, taken to be perfectly conducting) is
allowed a cubic temperature profile, which is matched to an upper
semi-infinite stable Layer of uniform stability, and a power
series method used. Subsequent finite amplitude convection s
described in terms of a mixed convecting region bounded by a
thermal boundary layer of superadiabatic temperature gradient by
the ground and by an inversion layer under an undisturbed stable
region. This is similar qualitatively to the situation in the
cylindrical tank experiments described 1in chapter 6, though
without rotation.

A finite degree of stable stratification is investigated
numericaLLy in a 3 layer model by Latour and Zahn (1978), the
unstable Llayer of unit depth being sandwiched between semi-
infinite stable layers, the modulus of the density gradient being
the same 1in each Llayer. The computational domain is of
restricted eitent, with matching conditions at its boundaries to
analytic solutions in the stably stratified regions that extend
the solution to in%inity. In their bpaper, the Llayering s
assumed due to variations in the underlying adiabatic gradient,
with the motive for the work coming from convection in the
interior of stars.

A non-linear approach to a particular problem in penetrative
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convection is to use the long-wavelength solutions arising from
fixed flux boundary conditions to separate horizontal and
vertical scales of the solutions (Roberts, 1982, following the
use of the method by Chapman & Proctor, 1980, and Proctor, ‘
1981b). Roberts notes that an extensive stable region inhibits ‘
the Llong-wavelength solutions and so Limits the applicability of
the method. In chapter 5, we shall see a similar Limitation
arising from rotation of the system.

The alternative non-Llinear approach to penetrative
convection is that developed by Townsend (1966), who <considers
the effect of thermals impinging on a stably stratified region,
causing wave motions in the latter which can be of considerable
amplitude and are therefore of interest 1in explaining and
predicting the phenomenon of clear air turbulance. The only
penetration considered is that of the buoyant rise of the
thermals 1into the stable region until the density contrast
becomes zero. Thermals penetrating 1in this way then act as
discrete sources of waves, which are subject to diffusive losses
as they propagate away from the disturbance. Entrainment of
stabLe fluid by such thermals is a model for the growth of

unstable regions in certain cases (e.g. Denton & Wood, 1981).
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The effect of rotation an
Chankrasekhar (1961) gives a detailed review of the Linear
stability of <convection in a plane layer when rotation and

magnetic fields are present. His numerical results for critical

Note: in the remainder of this chapter and in chapters 4, 5, 6,

T is the Taylor number, and so © represents the temperature.

(TE b o A‘k/wf\)
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Rayleigh numbers and horizontal wavenumbers are used in § 5 for

comparison purposes wWwith the shooting program used for this work.

In his chapter on rotation there is a discussion of the RC =0 |
2/ _ 1/ . . . .

(T 3, aC = 0 (T "6 ) relationships in the Llimit of T»x and

also work on the occurrence of overstability when the Prandtl

i
number (0o = V/K ) is sufficiently small and the rotation rate

&
sufficiently lLarge. Linear temperature profiles only are %
considered. The discussion of cell planforms follows Veronis |

(1959), and experimental evidence 1is from Nakagawa & Frenzen
(1955). A similar chapter on the effect of magnetic fields s *
then followed by one on the joint effects of magnetic fields and
rotation, in which it is shown that the critical Rayleigh number
may be appreciably lower when both influences are present than if ﬁ
only one is.

Veronis (1959 and 1966) considers the possible occurrence of §
finite amplitude instabilities and of overstability in much more
detail, using the method of a small amplitude expansion about the
linear solution previously set out in Malkus & Veronis (1958).

Both overstable solutions and finite amplitude instabilities
occur in certain parameter ranges in order to relax the
constraint of rotation: both require fluids of Llow Prandtl
number. The prediction of a finite amplitude instability at
modest values of the Taylor number has been verified
experimentally by Rossby (1969). This dinstability depends on the
dual role played by viscosity, 1in releasing energy as well as in
dissipating it. Stre;s—free, perfectly conducting boundaries are

considered 1in this work of Veronis as they permit an analytical

solution to the Llinear problem. The finite amplitude instability

at Llow Prandtl number is also studied numerically by Veronis

(1968).
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Spherical geometry greatly increases the difficulty of
analysis (e.g. Chandrasekhar, 1961, chapter 6), but a great
simplification in the case of rapid rotation leads to the non
axisymmetric "Busse-roll" solutions, in which the inclination of
the boundaries restricts the convection to a tightly packed |
cylindrical form (Busse, 1970, foLLowing earlier work by Roberts,
1968). In such ~cases, 1in which the Coriolis forces must be
dominant, a spherical shell such as the Earth's outer core can be
divided into two very distinct regions of convection: polar, in
which essentially plane-layer solutions occur, and equatorial, in
which Busse-rolls occur (figure 2.4).

The existence of Busse-rolls has been demonstrated
experimentally (Busse & Carrigan, 1974). Whether they are a
suitable form of solution in the Earth’'s core depends on the
strength of the magnetic field, for which Hide and Roberts (1979)
review the arguments. In models incorporating a toroidal
magnetic field of the same approximate strength as the observed
poloidal field (weak field dynamo models), Busse-rolls should be
important. However, in strong field models, in which the toroi-
dal. fieLd is much stronger than the poloidal and an approximate

balance of magnetic and rotational forces is assumed (a "magneto-

strophic" balance), the rotational constraints are so weakened
that the motion <can again be fully three-dimensional. The I
analysis Leading to Busse-rolls is described 1in § 4.5, as

background to numerical ¢ § 5) and experimental ¢ § 6) studies in

a cylindrical geomet;y, in which inclination of the boundaries 1is ?
not significant. A point of interest from the experiments of “
Busse & Carrigan (1974) 1is that no finite ampL%tude subcritical ;
instability was observed, wunlike the plane layer case discussed

above. \
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The 1interaction of rotation and magnetic fields to give
relatively low critical Rayleigh number solutions when Coriolis
and Lorentz forces are of similar magnitude has been studied in
such works as Eltayeb (1972, 1975) and Fearn (1979). Eltayeb
(1972) describes the boundary layer structure in his plane-layer
study, noting that a magnetic field reduces the strength of the
Ekman suction that is a major part of the rotational constraint
on convection. The various boundary layers (Ekman, Hartmann and
mixed) are discussed in more detail by Tough & Roberts (1968).
Soward (1979 and 1980) extends the plane layer investigation, for
vertical (1979) and horizontal (1980) magnetic fields, in partic-
ular noting that overstable solutions occur only for g >1

(g = K/pq ). Fearn (1979) considers a spherical shell geometry

with a fluid that is a weak conductor of electricity, so that g
K/n is small, where « is the thermal and n the magnetic

diffusivity, and with a strong toroidal field ( Q = 802 =

2§up .1
0C1)) . He finds that the critical Rayleigh number is a minimum
for Q = 0C1) and is éssociated with a slowly drifting wave of
azimuthal wavenumber m = 1, an oscillatory solution.

Wave solutions to the Boussinesq equations of motion in a
stratified, rotating perfectly conducting fluid are discussed by
Hide (1969) in the simplest geometry, namely small amplitude
plane waves in a fluid of infinite extent in which both the
Brunt-Vaisala frequency (N = (g___iQ%5 and the Alfven velocity

p 0z
and there is no dissipation. This

N

vV = BO/(pp) ) are uniform,
indicates that the ef%ect of stratification is negligible on the
oscillations if N<<2Q . In the absence of stratification,
hydromagnetic waves can be described in a spherical shell using

the plane geometry (Hide, 1966), resulting in two classes of

wave modes: "inertial"”, which are of high frequency, and

34




"magnetic', of lLlower frequency. The latter are put forward by
Hide (1966) as a possible cause of the secular wvariation, whose
time scale is hundreds of years. A review of this work and of
more recent developments is given by Eltayeb (1981a), who then
concentrates on the role of diffusion in modifying the waves in a
spherical geometry. The cémbination of diffusion and of
spherical boundaries leads to very different solutions in certain
parameter regimes, just as Busse-rolls reflect their influence in
the non-magnetic case. In the weak field case ( Q§0(02/3-Eq/5,

where Q = Bg'/ the modified Chandrasekhar number in

2Qupn ~
Eltayeb’s notation), solutions are of Busse-roll form, an iner-
tial wave in a thin <cylindrical <cell, propagating eastwards
because of the constraint of the inclination of the boundary.
Three-dimensional motions are the critical mode of convection in
the strong field case. These "waves  are oscillatory solutions
of a convection problem, in which there is a driving buoyancy
force. They therefore refer to an unstable stratification and so
are very different to the waves considered by Hide (1969). The
latter may be of interest as a response to forcing by convection
originating elsewhere, 1in which case the problem would resemble
that considered by Townsend (1966) in the context of gravity
waves excited 1in the atmosphere by the impact of thermals.
Townsend considered dissipation of the waves only as a means of
estimating the extent of their propagation from the source, his
object being to put forward an explanation for “clear air turbu-
lence”. '

In a separate paper to that described above, Eltayeb (1981b)
considers the effect of a stably stratified outer region on
convection 1in a spherical shell, prompted by the stable region

suggested by Higgins & Kennedy (1971). His results show that in
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the weak field case (@ € O (O/3E/-3 >), the Busse-roll form of

solutions persists. The analysis is performed in the Llimit of
small 0 , wusing an expansion scheme in powers of o , which
results in the solutions being wave motions that are
diffusionless and independent of the stratification. He
anticipates that for O 3 0(1) the solutions would be of decaying
amplitude in the stably stratified part of the spherical shell,
but no such calculations are described. In the strong fiéLd
case, preliminary vresults are that instability occurs in the
whole volume of the spherical shell: detailed calculations are
not given by Eltayeb (1981b). These studies are very different
from the qualitative model put forward by Yukutake (1981), 1in
which a two layer outer core is invoked to explain the westward
drift (in similar analysis to that of Bullard et al., 1950) and a
stable stratification in the outer region is supposed to lead to
‘spherical’ motions rather than ‘cylindrical’.

The role of rotation and of magnetic fields in convection
also includes doubLe> diffusive effects analogous to those
discussed previously. Busse (1975) describes the effect of the
magnetic field on the nonlinear stability of a plane Llayer
convection problem. In the <case of large q (g =K/ ),
oscillations can occur, with amplification of magnetic energy and
distortion of the originally uniform and vertical magnetic field
so as to allow finite amplitude convection at subcritical
Rayleigh numbers. However, in the Earth’s core g is expected to
be small (g = 10_6 pe} Eltayeb, 1981b) and so such a subcritical
instability should not occur. A triply diffusive regime has also

been investigated (Acheson, 1980), but is outside the scope of

this work.
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The full equations describing a fluid, expressing conserva-
tion of mass, momentum and energy, are unwieldy in that they
include effects such as compressibility that are often observed
to be of Llittle influence on the large scale flows found in

geophysics. In order to simplify mathematical analysis, a set of

approximations known collectively as the '"Boussinesg approxima-
tion" is frequently applied to the equations in convection prob- |

lems, to reduce them to the following form:

: \Y v o= 0
Po-Dv = - Vp + puV?v + p(0).g
| _t |
c DO = - KV?0 |
Forvor |

where the parameters u,cv,k are constants, v is the wvelocity,

poareference density, p(0©) the density at temperature © and p J

the pressure.

In this section, the nature of the Boussinesq approximation
! is revfewed, relying heavily on the unpublished notes of Malkus f
(1964) and on the earlier work of Spiegel and Veronis (1960) and |
Mihaljan (1962). Malkus notes that the traditional rationale for
the approximation 1is based on the following four assertions,
plausible for a fluid in which density contrasts are small and
velocities slow compa}ed to that of sound:
(a) the fluid behaves as though the density is constant ( Pe
except for the buoyancy force,

(b) the fluid behaves as though incompressible,

(c) the fluid parameters u, cv,k are constant, and
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(d) mechanical dissipation is negligible in the energy equation.

The approach followed by Malkus in gquantifying the
requirements needed to justify the Boussinesqg approximation is to
consider the effect on the equations of small departures from an
ideal "Boussinesq" fluid, 1in terms of two parameters that are to

be small:

N d/(cp8,)
g
€ :\AG)1
Qo

where @0 is a reference temperature of the system, d the depth
and A61 the maximum potential temperature contrast. Thus ( n +
€ ) represents the overall scaled temperature contrast in the
system, n being due to depth and € to contrasts of potential
temperature. A reference state based on the adiabatic
temperature profile through @o and z = o and on a hydrostatic
pressure field 1is adopted and perturbations about this state

considered in terms of new variables scaled as follows:

z = z/d = @/E@D
1 1 2

o’ = p/en, P =P/ p, V,
¥ 1 _

\Y) = V/Vo t t/(d/vo)
1 _ 1T

u —U(@,)/“(eo) k' = k(@)/k(eo)

where © and p are perturbations from the reference state and Vo
is a characteristic velocity for the system, based on the speed
of sound, ¢, and the expansion parameters:

, W2
Vg = (En)C
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The characteristic time scale, T = d/V is thus

© el

which Malkus compares with "free-=fall" under buoyancy forces in

the system. It is thus the shortest time-scale for either
convective motions if the temperature differences are
destabilising or gravity waves if stabilising. Thus acoustic

phenomena are excluded by the scaling and cannot be represented
accurately in the Boussinesqg approximation.

This time scale is dependent on the Rayleigh number, through

In a rapidly rotating system, following Chandrasekhar (1961), one

typically finds

2
/3
R, = 0 (T77)
0 (@3)
T = 0 (723

Thus there are Likely to be problems in Using the Boussinesq
approximation in a rapidly rotating system, in which the rotation

-1 is much shorter than the natural convective

time scale 2
time scale. In particular, inertial waves are in general on too
short a time-scale to be resolved by the Boussinesq approximation
under this scaling. However, one may anticipate that T is still
sufficiently short to be an appropriate time-scale for convective
motions.

If one <considers the non-rotating case, Malkus uses the

ideal gas equation of state to write the full equations in terms
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of the expansion parameters €N and the non-dimensional state

parameters R, o , s, where

Rayleigh number R = gd A0
KvOO
Prandtl number g = v/K
|
and s = R/cp

(his equations 2.22-24)

and shows that the Bousinesq equations are the zero order terms
of the expansion of the equations in the parameters ¢ , n .
Thus the magnitudes of € and n are measures of the departure of a
real system from that represented by the Boussinesq
approximation.

Rotation of the system introduces two sources of pressure
fields beyond the hydrostatic field due to gravity. The
resulting pressure differences represent additional terms to be
included in n , the measure of the pressure depth of the system.
In the atmosphere, the Coriolis acceleration leads to pressure
drops in cyclonic depressions of order 0.05 bar, which is small

bulle ml..\..s
but not negligible. In the core, the greater figidits kS of the

fluid ensures that Coriolis accelerations are negligible in terms

of density changes, as is now shown:-

Pressure differences = QULp
where rotation rate @ ~ 10 % rad. s~
fluid speed scale U<LL Vp (compressional wave speed)
and Vp = 10% ms™" ‘ (Jacobs, 1975)
| | L £ 10%n
é p = 10% kg.m-3

10
’ . Coriolis pressure differences << 10 "Pa
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But Ky = 6 x 10l Pa (Jacobs, 1975)
1
X density changes due to Coriolis accelerations,
Ap < < 10-20
cor O
and so are negligible for any plausible (j.e. subsonic)

convection velocity in the core.

The centrifugal acceleration can be regarded as part of the
effective local gravity field and, since the core-mantle boundary
will be, to first approximation, an equipotential surface for
this effective gravity field, any effect of centrifugal
acceleration can be considered as included in the radial density
profile of the outer core. Taking density values from Jacobs
(1975), it is apparent that depth scales of order 100 km or Lless

involve only small density changes (and so small values of n .

depth from c.m.b. density (14 ° kg.m™>)
{km)
0 9.90
85 | 10.04
485 10.62
2270 (i.c.b.) 12.11

Thus for the purpose of considering motions effectively

confined to the outermost 100 km or Lless of the «core, the

Boussinesq approximation should involve error terms due to n of

order

which can reasonably be taken as negligible. The suggested

stratified region due to compositional effects is within this

depth scale.




The other scale parameter € depends on the differences in
density relative to the adiabatic equilibrium density profile.
In an unstable region, they are limited by the rapid transport by
convection occurring when the Rayleigh number markedly exceeds
its critical value. This is readily shown to require only

negligible superadiabatic temperature (or density) differences
90

¥z

~
=~

(Gubbins et al.1979 derived a superadiabatic gradient

(10_11 K km—1) from the work on convection of Busse (1970),

revealing a maximum superadiabatic temperature difference A 0 =
(10_8 K) across the outer core). Thus € is negligible in a
convecting region of outer core size. However, in a stably
stratified region there 1is no equivalent mechanism to Limit
e and so we need an estimate of the potential sub-adiabatic
temperature gradient (or of the stabilising compositional density
gradient). Thermal gradients, even immediately adjacent to the
core mantle boundary, cannot plausibly be more sub-adiabatic than
to be isothermal, and so thermal density differences in € must
be negligible in the same way that the adiabatic density depth
n is negligible in tHe outermost 100 km or Lless. Compositional
gradients are not so constrained, and so we require the estimate
of them made in § 2.3 above. This suggested a maximum density
perturbation of O./OO = 0.06 which is still small even if

not fully negligible. Accordingly, the Boussinesqg approximation

should be accurate to within terms of order 1, € where

for the outermost 100 km or so of the core, which is acceptable.

For motions extending throughout the outer core however, one has
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n =~0.22 (from the measured densities, above)

and so the error involved in the Boussinesq approximation s
correspondingly increased.

For the purposes of the anaLyses of penetrative convection
given in chapters 4 and 5, the Boussinesg approximation is

assumed, as being appropriate to the outermost part of the core.

The equations of motion for a fluid in a rotating frame of
reference are given in many textbooks (e.g. Chandrasekhar

1961) . We have:

Continuity

QU
O

+v’(pg) - 0 (2.13)

|

Q
—+

Momentum

(ou) + (u.¥pu = X -Vp + R.V(QA_I;)Z +UV25 + 20(uafl )

N

(2.1b)

where X are external forces, such as gravity, which are assumed
to be conservative.

Heat transport

9 (pCV@) + (Efﬁanv@ = V.(kVO) - pV.u + 0 (2.1¢)
at ‘

where ® is internal heating, such as viscous dissipation,
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and @ the temperature.
The analysis will be based on Llinear theory; in which qguadratic
terms in u can be neglected. CLearLy this is suitable only for
either the onset of motion or else motions of small amplitude.

If we assume the Boussinesq approximation as discussed above
in § 2.5 we can take all of the material properties of the fluid

to be constant throughout its body, except in so far as density

changes introduce buoyancy forces. Thus the above equations, 1in

the Linear Boussinesq approximation become:

(2.2a)

I AN TN ERSNRVE Y
b2 = =

+ 2(u A Q)

(2.2b)

(2.2¢)

Let us operate on (2.2b) with curl, and then again with curl

.. 9 .
= €ijk 5;3- a, ) to give

~~
O
| ot
= G
—
1o
"
<
>
|
1

+ W + 2(R.V)u

S wrw) = 1 (gv¥p -(g.MWp) + W - 2(2.V)¢ (2.4)

and 'a—t‘ u 0 o

where g = Vau is the vorticity and ‘p1 is the density

perturbation from the reference density p, . In the Boussinesq

approximation and

assuming we are dealing with thermal buoyancy,



and @ the temperature.

The analysis will be based on linear theory, in which quadratic
terms in u can be neglected. Clearly this 1is suitable only for
either the onset of motion or else motions of small amplitude.

If we assume the Boussinesq approximation as discussed above
in § 2.5 we can take all of the material properties of the fluid
to be constant throughout its body, except in so far as density
changes introduce buoyancy forces. Thus the above equations, in

the Llinear Boussinesqg approximation become:

Vu = 0 (2.2a)
+ 2(u A §)
(2.2b) “f
20 2 § (2.2¢) |
—a—€+£.v9: K'V@+d:—- ;

Let us operate on (2.2b) with curl, and then again with curl

_ _ o 3 .
(curl a = Vaa = 613k-§77 a, ) to give
J I
3 Vp'ag \ (2.3)
3t oo + W2 + 2(2.V)u -
9 2 1 2 1 4
and S?(V u) = o (gV?p -(g.V)Vp') + Wu - 2(2.V)g (2.4)
o
where ¢z = Vau is the vorticity and ‘p1 is the density

perturbation from the reference density Py = In the Boussinesq

approximation and assuming we are dealing with thermal buoyancy,
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we can write
i
p = - apyP
where ¥ is the potential temperature perturbation.

Thus we have three dimensional equations

vorticity: 3L = - u(V&Ag) + vVZQ + 2(Q.V)u (2.5a)
o
; 2 2 4
velocity: 3 (Y'u) = - a(gVe-(g.V)Vd) +vV'u (2.5b)
- u
temperature: 9 = - u.Vo + KV29 (2.5¢)
ot

where £, u andy are our small perturbations in wvorticity,
velocity and temperature, and VO may be a function of position.
In the case of penetrative convection, VO reverses sign within

the region being studied.

Since the equatidns (2.5) are valid only in the Llinear case,
when the perturbations are sufficiently small for non-linear
terms to be neglected, they can only be wused for 2 cases.
Firstly one can consider the case of marginal stability when the
growth-rate of any convection mode is zero (although it may have
a frequency and therefore a time-dependence if the onset s
"overstable" rather than "stationary'" —convection, in the
nomenclature of Chandrasekhar (1961)). Secondly one may use the
equations to derijve Ehe initial growth-rate of a mode: this may
be a guide to which mode is Llikely to dominate the subsequent

finite amplitude motion, at least in the short term. The use of

the Llinear equations gives only a sufficient <condition for

mstability. In order to find a necessary condition and thereby to
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allow for finite amplitude instabilities, one can wuse energy

arguments such as those of Joseph & Shir (1966a, 1966b). This is

not pursued in this work.

The traditional boundary condition to be placed on the
equations for the onset of convection are based on the bounding
surface being either rigid or stress-free, perfectly conducting

or constant heat flux. For a rigid boundary, one has:

u = 0
n
where n indicates the component
o, = 0O
an normal to the boundary
c.i = O

u, — 0
32U = 0
Bn‘n
°c, = 0
Bnn

The thermal boundary condition is either

S = 0 (perfectly conducting)
or 3¢ = 0 (constant heat flux)
on
\
or A9 + 33 = O (imperfectly conducting,A = Biot number)
T On
L6
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For the derivation of these, see Chandrasekhar (1961) pp. 21-22,

and Hurle et al. (1967) for the imperfectly conducting case.

The linear equations (2.5) and the boundary conditions may
be sepafated simply between the independent variables for certain
geometries. In particular, a layer of fluid confined between
infinite horizontal boundaries, rotating about a vertical axis ]
and in which the set temperature gradient Y© 1is vertical and }
solely a function of vertical position z can be separated: the ‘
traditional Rayleigh-Benard problem is the particular case of V©

= constant. In this geometry we may try a solution of the form
u = ug(z).explpt + i (kx, + k,x,)) (2.6)

where X, X are the horizontal co-ordinates; and so get the

2
~following equations for (g)z s LMY , and 9
pC = v(Dz—azﬁ + 2Q(Du_) (2.7a)
z z z =
2 2 2 2 2.2
p(D~-a )uz = - o0aga 9% + v(D"-a”) UZ_ZQ(DSZ) (2.7b)
: 2 2
pd = —uzD@ + k(D“-a”)9% (2.7¢c)
where D= d 32 = k? + kf and g = - gli
dz , o -
i.e. [D -a _p/v]gz = -(20) DuZ (2.8a)
v
[(Dz—az)(Dz—az—p/\)) b, =+ (22)Dr, + aga’ §  (2.8b)
v Y
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[-Dz—az—p/KJ & = ( 99) u, (2.8¢)
K

This is only a valid solution if it satisfies the horizontal
boundary condition: an arbitrary horizontal wave number (a) is
allowable only in the Llimit of‘infinite horizontal extent. In a
bounded fluid, there will be a discrete spectrum for a even if
those horizontal boundaries are idealised as stress-free
and perfectly conducting. Less ideal horizontal boundaries
destroy the periodicity and so the separation of variables (e.g.

Buell & Catton, 1983).

In the Rayleigh-Benard problem, there is a natural Llength-
scale given by the depth of the layer and a natural temperature
scale given by the overall temperature difference. However, once
we allow VO to be a function of position z, that is no Llonger
necessarily the most appropriate scaling. For example it becomes
gquite possible to have a problem in which the overall temperature
difference 1is zero and yet there dis a region sufficiently
unstable to allow convection to occur. This i1s a very similar
problem of definition to that found by workers on convection 1in
fluids of variable viscosity: no one definjition of the Rayleigh
number is édequate as a universal description of a system’'s
stability to convection.

I propose to dse the depth d of the region in which the
temperature gradient VO is destabilising as the characteristic
length scale of the problem, as suggested b} Whitehead & Chen

(1970) . The maximum unstable temperature gradient will be used

to define the temperature scale, following Roberts (1982). We
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can write equations (2.8) in non-dimensional form on the

following scaling:

length d
temperature B, d
. 2
time d /v
where Vo=-28 f (2) |

and f (z) £ 1

Thus, indicating non-dimensional terms by primes,

[D'Z_a’z-p']c; - -(ZQdZ) Dy (2.9a) |

\Y

[(D’ 2 _ g 2)([)' Z_B’Z_p’)] u - +(29d2) DT, + (agdAB.) a2y’ (2.9b)
V

Y

[ f 2-8/2—56} 8 = -Gf(i)u; (2.9¢)

where o= V/k is the Prandtl number.
Now Llet us rescale the variables, following Chandrasekhar

(1961), by introducing

- (agda a'2>3 (2.10a)
\V

(2.10b)

N

i
—_

N

< 0

a
N
S~——

Y
N -

and writing T = Mﬁda Taylor number
Vi
R = ugf%. Rayleigh number
KV
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Dropping primes from now on on the non dimensional equations, we

have:
[Dz—az—p] Z = - ToU (2.11a)
((Dz—az)(Dz—aZ—p)_]U =+ Dz 4 F (2.11b)
[Dz—az—dp] F = -Ra® f(z) U 2.11¢)

The only difference from the equations for Rayleigh- Benard
convection 1is the presence of the function f(z) which can be
regarded as the shape of the set temperature profile. In the
case f(z) = 1 both the equations and the definitions for R and T

reduce to those standard for the Rayleigh-Benard problem.

A qualitative view of the effect of rapid rotation on any
fluid motion is traditionally sought by applying the concepts of
the Taylor-Proudman céLumn, of Ekman boundary Llayers and of
geostrophic balance. In addition high frequency motions will
involve inertial wave modes. Such —concepts are explored
thoroughly by Greenspan (1968).

The Taylor-Proudman theorem relates to an inviscid fluid in
slow steady motion. This is also the state that yields the

geostrophic balance. Starting with equation (2.1a),

"V;E + _V(@r)z + \)VZH - Z(HAQ>
) 2

—_
|

=
f=
+

[o 5] Nab)

+ic
I

o X

and supposing we are dealing with motions of <characteristic

velocity V, length=scale L and time-scale T , then if
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a) viscous effects are small, i.e. if the Ekman number
E = Va? is small,
b) inertial effects are small, i.e. if the Rossby number
¢ = VL is small
c) the time-scale is long, T large,
then
O = Xy m Wy v Tu(0r) v 2(ung) te-1e

/

Taking curl of this, assuming incompressibility

| 0 = 1 ( e AVp> + Z(Q.V)u (2.13)
F 2 =
In the absence of any baroclinic term (Vp ~ Vp ) this

! reduces to
o= (9'V>E (2.14)

which is the Taylor-Proudman theorem, that u does not vary along
the axis of rotation under these conditions. Clearly this can
% Lead to problems in fitting boundary conditions, and so one has
to consider the effect of thin Ekman boundary layers in which the
local Llength scale is sufficiently short for viscosity to destroy

the applicability of the Taylor-Proudman theorem. Not only will

such short length-scales avoid the constraint of the Taylor-
Proudman theorem, they also dintroduce a region of very high
viscous dissipation thch may turn out tb be the dominant form of
dissipation when one <considers the onset of convection in a
rotating body. This will be seen more clearly in a later section
( § 4.5), dealing with the onset of convection in a cylindrical

annulus and the formation of "Busse-rolls"” (Busse 1970).
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If one applies the qualitative view of the usual effects of

rotation to the onset of convection, then as the Taylor number

increases one might expect:

a) the vertical form of u, to become more uniform, except for
thin boundary Llayers,

b) the horjzontal planform to be of smaller scale, to match
more closely the scale thickness of the boundary layers,

c) as a result of (b), the critical Rayleigh number should
increase.

This appears to work well for convection 1in a rotating
Rayleigh-Benard problem, with a uniform temperature gradient and
so a uniform baroclinic term (equation 2.18). The horizontal
scale diminishes sufficiently for the baroclinic term and
viscosity to match the rotational constraint. Figure 2.5 shows U
as a function of position z for various rotation rates (results
derived from the shooting program described in § 5): as T becomes
Llarge, U tends to a sine-wave with the influence of the rigid
boundaries at z = 0, z = 1 being removed by thin boundary Llayers.

Extending this reasoning to penetrative <convection, one
might expect rapid rotation to result in more uniform vertical
velocity and therefore 1in greater penetration of the stable

region. This prediction is tested and disproved in chapters &4

and 5.

52




T

0.1

-/

Fige 2«5

Vertical velocity
at various rotation
rates ; normalised

by DZU = 100,

(rigid boundaries).

1.0




Heat flux from

|+
1=
[[g]
10
10
-
1D

The maintenance of the Earth’s magnetic field by some dynamo
mechanism in the core requires the dissipation of energy and an
associated heat flux out of the core. That heat flux may serve
as a constraint on dynamo models. For each given type of energy
source, a lower bound <can be placed on the heat flux by
considering the entropy requirements of a dynamo (Backus 1975,
Hewitt et al 1975). Such calculations show that a source of
gravitational energy arising from the release of a Light
component during the freezing of the inner core would be markedly
more efficient than a thermal source such as radiogenic heating
or an overall cooling of the core (Gubbins 1977, Loper 1978a). In
the <case of a thermal source, the lower bound on the heat flux
from the core is a substantial fraction of the observed heat flux
from the Earth’'s surface. A model of the cooling Earth will now
be used to investigate what values are possible for the heat flux
from <core to mantle, given the constraints imposed by our
knowledge of the present size of the inner core, of the heat flux
from mantle to the surface and of the existence of a magnetic
field. The resulting heat flux can then be compared with the
estimate of the conductive heat flux arising from the adiabatic
gradient 1in thé outer core, so as to decide whether a thermally
stratified layer 1is possible at the top of the outer core.

Previous studie§ of the cooling of the core have incor-
porated simplifying assumptions as to the appropriate thermal
boundary condition at the core-mantle interface. Loper (1978a)
adopted a constant heat flux condition whereas Gubbins et al

(1979) adopted one of constant rate of cooling. Subsequently the
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effect on the core of a constant temperature boundary has been
considered (Gubbins et al 1982). The last condition was intended
to correspond to an extreme case of temperature dependent
viscosity controlling mantle convection. In this work, a model of
the heat flow through the mantle is used to give a more realistic
thermal boundary condition for the core.

Parameterised convection theory has been applied in several
thermal history studies to calculate the heat flux through the
mantle (e.g. McKenzie & Weiss 1975, Sharpe & Peltier 1979,
Schubert et al 1980, Davies 1980, Spohn & Schubert 1982
Stevenson et al. 1983). These studies include a varjation of
mantle wviscosity with temperature following the argument that
this temperature dependence makes mantle convection self regulat-
ing (Tozer 1972). Howevever doubt has been cast on the applica-
bility of the parameterised convection theory to the case of
variable viscosity: it seems that such a parameterised model will
overstate the effect of the variation on the heat flux (McKenzie
& Weiss 1980). The présent work therefore follows the suggestion
of McKenzie & Weiss that a model based on a constant viscosity
parémeterisation is more suitable for studies of heat flux than
is one purporting to incorporate variable viscosity. They warn
that such a constant viscosity model will show average tempera-
tures that respond too slowly to changes in boundary conditions:
in this respect one must apply caution in interpreting the
results from the model. The application of the parameterised
convection theory in %his problem assumes that the convection in
each spherical shell can be regarded as effectively homogeneous
in a statistical sense, with the instabilities in the boundary
lLayers occurring sufficiently frequently and evenly both

spatially and over time that they have no marked dindividual
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effect on the heat flux. In particular, it supposes that surface
plate tectonics can be regarded as a manifestation of the bound-
ary layer activity at the top of the upper mantle, as opposed to
being a largely independent phenomenon which, through the Llarge
thermal and mechanical anomalies associated with subduction
regions, can control the upper mantle circulation in certain
areas. If such control of the convection is in fact significant,
then the =effective surface boundary condition to the Earth's
mantle may well have changed during geologic history as the
configuration of the surface plates has changed. No attempt has
been made in this study to allow for such variations in surface
conditions.

The <core of the Earth is known from seismic observations to
have a solid inner region and this is assumed to be growing by
the freezing of the Lliquid outer core (e.g. Jacobs 1975).
Accordingly the model includes the latent heat arising from the
cooling and freezing of the core. This term may be made to
include all the sources of energy arising at the freezing
surface; not wonly the Llatent heat of solidification, which
includes a term for the decrease in volume on solidification
(Haée & Muller 1979), but also the gravitational energy and
chemical energy arising from a difference in composition between
the solid and liquid phases.  Such a difference is indicated by

the observed densities (Masters 1979).

The model used is based on four concentric spherical Llayers,
corresponding to the ~core, Llower mantle, wupper mantle and
surface. These are numbered 1 to 4 respectively. It is assumed

that the three inner layers convect independently, with the heat
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fluxes - through the boundary layers at their interfaces being the
sole thermal connection. The outermost layer is assumed to be at
constant temperature.

Two separate layers are used for the mantle on the grounds

of the seismological (Richter 1979) and geochemical (0'Nions et

al 1979) evidence. This tends to delay the loss of heat from the ‘
core (McKenzie & Richter 1981). The results of this present work

cannot be taken as an argument in favour of two layers, as part

of the numerical scheme involves a fitting of parameters to the
imposed thermal constraints. A similar procedure can be followed ﬁ
for a single layer mantle model, and the results of doing this |
are reported 1in section 3.3.4. Arguments in favour of single
layer "whole mantle'" convection have been based primarily on the
problem of matching the viscosity distribution in the mantle,
known from glacial rebound (e.g. Peltier, 1983), to a temperature
distribution that includes a thermal boundary layer at about 650
km depth (for a recent review of this problem, see Kenyon &
Turcotte (1983)).

Parameterised convection theory is applied to the two mantle
layers. The theory 1is based on the premise that the heat flux 1is
controlled by the thermal boundary layers and is independent of
the overall depth of the convecting layer (McKenzie & Weiss
1975). It 1is assumed however that the boundary layer at the
surface of the core can be neglected, owing to the high thermal
conductivity and low viscosity of the liquid metal core compared

to the mantle. For a viscosity v Lless than 1m23_1, one can
expect the temperature drop across the ~core thermal boundary

layer to be less than 10—2K for heat fluxes of up to 1014w, on

the basis of equation (3.1). As a result, temperatures through-

out the <core are taken to be uniquely determined by the tem-
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perature at the core-mantle boundary, with no dependence on the
heat flux. The curvature of the boundary layers in the mantle 1is |
neglected on the grounds that they are thin relative to their
radius (the parameterised convection theory and the values of
parameters in Table 3.1 give a thickness of approximately 20 km),
and so the spherical geometry is reflected only in the different
surface area of each boundary Llayer. Thus the Earth has been
reduced to a 1-dimensional model (Fig. 3.1).

Equation 3.1 is used to calculate the heat flux through each
boundary LlLayer. One has to consider the individual boundary
layers as the flux per unit area will differ between top and
bottom surfaces of each layer of the model, owing to internal

radiogenic heating, to internal cooling and to the dependence of

surface area on radius.
'/3 NE
Flux per unit area = k Kgo‘/m)) .(D.AT) (3.1)

where Kk = thermal conductivity

K = thermal diffusivity

g = gravity

a = coefficient of thermal expansion

Y = kinematic viscosity

D = geometrical constant of order 1

AT = temperature drop across boundary Llayer

(based on McKenzie & Weiss 1975). A further factor B will be
applied by én iterative procedure in order to fit the 1imposed

thermal constraints (see equations 3.9a to 3.9c and section

3.3.1). Accordingly the geometrical constant D has been taken to
be 1.0 at the start of the calculations. The value of the ex-
ponent of (D.AT) , 4/3, is given by the parameterised convec-

tion theory, but has only approximately been confirmed by experi-

ment (Kulacki & Emara, 1977). However, trial runs with the
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Table 3.1 Standard Parameters
Parameter Value Source
Masses:
core 1.9 x 10§Zkg 1
Lower mantle 2.8 x 1024kg) 1
upper mantle 1.2 x 10° kg 1
Specific heats: -1 =1
core 700 J kg_1K -1 3
mantle 1200 J kg K 2
Latent heat (core) 1.0 x 106 J kg-1 3
Radii: _
inner core 1215 km 1
outer core 3485 km 1
Lower mantle 5700 km 1
upper mantle 6370 km 1
Radioactive decay constant 9
(exponential basis) 4 x 10" years 3 (note 1)
Adiabatic lapses across Llayers
Lower mantle 700 K 2) (note 2)
upper mantle 400 K 2)
Core freezing range (TO—TF) 1000 K Estimate (note 3)
Mantle: -1 =1
thermal conductivity 6-12 Wm K.° 5 _4 2
thermal diffusivity 1- 2 x 10_5 m,s 2
thermal expansion 1- 2 x 1017I<2 -1 2 (note 4)
kinematic viscosity 1-10 X 10 m,s
gravity 10 ms

Geometric factor D

Sources

1. Jacobs 1975

2. Jeanloz & Richter 1979

3. Gubbins et al 1979

4, McKenzie & Richter 1981

Notes

1. with further calculations to derive an average

2 x subject to scaling, therefore approximate

3. uncertain owing to the effects of alloying constituents
4.

hence the stan d ue for the transmission facto
A7k (ﬂ“/ksf)??gb 4735 has been taken as 4.10_E wm_E
K , but is subject to scaling by ﬁ
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exponent set to 5/4 or 3/2 showed that the model is not sensitive
to its exact wvalue, again owing to the applied constraints
(section 3.3.5).

It 1is assumed that Llayers 1, 2 and 3 have specific heat
capacities constant with temperature. Layer 1, the core, is also
given a term for a latent heatlcapacity, A, which will be a

function of the radius of the inner core, and so of temperature.

_ 2
A = 4mplr 'dr/dﬂ (3.2)

where p 1is the density, L the specific latent heat, r the radius

of the dinner core and ﬂ the temperature of the core-mantle

boundary wused to <characterise the temperature throughout the

core.
In order to derive 7dT' , I make the following
assumptions:
? aT/ap>m - aT/ap)s = b, (3.3)
j | OP/ar = - b,r (3.4)
Mar, = Tt b, N3 T2

where T dis the temperature at the inner‘ core boundary, m and s
represent the meLting’and adiabatic profiles and q . bz(:% il sz)
and b3 are assumed to be constants. (3.4) and (3.5) amount to
ignoring any radial variation in the density and temperature of

the inner core, and are reasonable approximations because the

gravitational field and the pressure gradient are relatively
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small in the 1inner core.

b
Hence dr/dT‘ = = 3 1 (3.6)
b b T
) 2
r2 2
Integrating /ro = (T -T, )/(TO‘T;-) (3.7
where E . is the radius of the whole core and (To_Tf) is the

hypothetical range of temperatures for the core to freeze from

centre to surface.

by
A = - A4mwplr.—
b b
y 2 1
2
L BML.(TO_T)
2(T5TF) TéTF (3.8)
where M is the mass of the entire core. In this expres-
sion (TO - TF ) is a.poorly known parameter of the model.

This expression for A 1s equivalent to the Llatent heat
term‘considered by Gubbins et al (1979) in their section 4.1 and
equationé (40) and (41) subject to the simplifying assumptions in
(3.3), (3.4) and (3.5) above which allow the expression of A oin
terms of gross properties of  the Llayer. Furthermore, A can
obviously be interpreted as including terms for any other energy
source similarly dependent on the freezing process. Thus, if one
assumes further that the compositiona[ density jump and the
chemical energy per unit mass can be regarded as constants, then
one can 1include the gravitational energy, chemical energy and
adiabatic heating terms given by Gubbins et al in their sections
4,3, 4.4 and 4.6 by calculating:

L = L + L + L + L
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where LO is the latent heat,

Lg = é% (w(r) - b ) is the gravitational energy,
L = cQ,. n|[T is the ~chemical energy of
C H /
T(r)
rearrangement
r LS Yo
A ,1 " m lllz o » '
and L‘x :_C-_'i_ﬁ [,--n'T(r')I' /p(r) 8173(\' )r AJ- — M c&l’ : AJ‘
w2

. p T
o

r

is the adiabatic heating due to the rearrangement

(note that the last term differs from the expression evaluated by

Gubbins et al. (1979) on their p. 81, due to an error in their

term for é >, and V¥ is the gravitational potential,
Aﬁfthe fractional density jump on freezing due to composition,
the chemical heat of reaction, ¢ the concentration of Light
material in the fluid, M and M the masses of the outer

ocC

core and entire core respectively, Gy@y 0,1 are conven-
tional and PS indicates the average of X over the mass
of the outer core,
oc oc
Radiogenic heating is an energy input to each of layers 1, 2
and 3, with the values given in Table 3.2. This heating decays
exponentially with time, with a single decay constant designed to

( approximate the average of the principal radiogenic species in a

chondritic composition over a time span of 4.5 Ga.

: The equations derived by applying conservation of energy to

each layer are:-

E : dTth = (n' ¥ B[—aqz.ATjg312/4%' - X) (3.92)
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diy /'dt - <n " B[a ATd3 8,5 AT“”D (3.9b)
z 12 12 23 €5

(3.9¢)

d Tz/dt = (nB " B{azj.m“/3 i} aM.ATM}J) ¢
23 34 03

Ta - constant (3.9d)

= _ - . (3.9e)

ATij = (Ti TJ) Ty 3.9e

Here T. is the temperature of layer i ,

AT.. is the potential temperature difference between layers i
and j , Which is the temperature drop across the
boundary Llayer,

Tij is the adiabatic lapse between the ‘centres’ of Layers

i and j : these Tij are varied as one parameter only
by the iteration described in section 3.3.1,

n. is the radiogenic heating in layer i,

Ba.. is the transmission factor between layers i and j ,
calculated from equation3.1. The common factor B s
varied by the iteration described in section 3.3.1,

ci'is the heat capacity of layer 1 ,
A is the latent heat term given by equation (3.8).

In all runs of the model, the age of the Earth is taken to
be 4.5 Ga.

Two thermal constraints are placed on the model by the
variation of the two parameters B and Tij‘ Firstly the radius
of the inner core at present time must be that observed
seismically. Secondly the presenz/%ime heat flux from upper

mantle to surface, the term BGBA'ATBA

in equation (3.9¢), should be equal to a preset value,
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correspond to that for the Earth. Values of 2,3,4 and 5 x 1013w

were used for this constraint: these may be compared with the
recent estimate of 3.6 x 1013 W for this flux (Sclater et al
1980).

The first constraint sets a fixed value for the heat to be
lost from the core over the full 4.5 Ga Life of the model Earth
for any given values for the latent and specific heat and for the
radiogenic heating. It also leads to an approximate value for
the total heat supply from the model. If that Llatter supply s
inadequate for the required surface heat flux, the model will
fail to converge to a solution. On the other hand, the model can
more readily adapt to a plentiful supply of heat compared to the
required surface heat flux by increasing both R andrijin order to
exaggerate the variation of the heat fluxes through the boundary
layers as the temperature differences between layers diminish.

The time interval over which the inner core freezes out from
the ~core depends heavily on the assumed range of freezing tem-
perature, (TO—Tf) in‘equations (3.7) and (3.8). It is a wvery
poorly known parameter, depending as it does on the difference b1
between the melting and adiabatic gradients, neither of which is
weLL.known at core pressures and temperatures. However, a useful
upper bound to physically plausible estimates of (To_Tf) is given
by using equation (3.7) to note that the present size of the
inner core r/ro = 0.35, corresponds to a temperature that is
only about 0.12 down the freezing range. The remaining 0.88 (TO—
Tf) must be accommodated by further cooling from the present
temperature of the core-mantle boundary. Thus a range of (To_Tf)
= 1000°K is feasible, but one of 3000°K becomes implausible (and

has been taken as the upper Llimit for this parameter in running

the model). This argument does of course depend on extending the
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approximations (3.3) - (3.5) to a large inner core when they are
Likely to be much less accurate. However, one major source of

inaccuracy 1is the omission of any depression of freezing tempera-

\ tures by compositional changes during the growth of the solid
inner core and this if taken into account would tend to make the
real freezing temperature range greater than the hypothetical

range (TO—T ), thereby strengthening the argument.

f

3 Calculations

A first order forward difference procedure was used to solve
equations (3.9a) to (3.9c). The two imposed thermal constraints
are met by an iterative routine that chooses the appropriate
values for B and Tij, given the other input parameters. Lower |
and upper Llimits of 0.05 and 20.0 are placed on B to avoid both |
instability 1in the model and physically unreasonable solutions.
Similarly negative values for Tij are discarded as solutions. i
These criteria exclude runs in which the total supply of energy I

is inadequate. I

run

Figs, 3.2 and 3.3 show the temperature and heat flux ﬂ

profiles (marked °“A°) vresulting from the following input
parameters: , |
i) specific and latent heats and a range of freezing
temperaturés as in Table 3.1, I
ii) distribution '2° for radiogenic heating and "cold"
initial boundary conditions, from Table 3.2, and
13

i1i1) a surface heat flux constraint of 4 x 10 ~W. i

(Profiles marked "B’ are for "hot" initial boundary conditions). ’H
i
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Table 3.3 Heat fluxes arising from the ‘standard’ run
Units: 1012w

g |
Time (Ga): 1 2 3 4 4.5 T
(present) y
Layers |
|
1 to 2 12.1 10.0 8.9 8.8 8.8 |
2 to 3 67.1 57.5 48.0 39.9 36.6 |
3 to 4 73.5 63.2 52.8 43.8 40.0 |

(constrained)

The inner core begins to form in layer 1 at 3.2 Ga: after then
latent heat is evolved.

Table 3.4. Temperatures and rates of temperature drop W

arising from the ‘standard’ run i

Units: 'K, ‘K Ga=l respectively W

w

Time (Ga): 1 2 3 4 4.5 |

' (present) w

i

il

T, 3732 3586 3450 3344 3300 H

4 (constrained) i
- 4T e 161 139 132 91 87

I

B \1;

Ty 3012 2901 2785 2681 2637 |

- & e 96 117 112 94 85 l

N‘_

Ts 1622 1584 1543 © 1506 1491 ﬂ

32 41 39 34 30 |




Fig. 3.4
Radius of inner core as a function of

time . 'A' : 'standard' run ,

'B" : 300 K freezing range.
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Tables 3.3 and 3.4 give values for heat fluxes, temperatures and
rates of change of temperature at selected times for this
standard run.

The dinner core begins to form at 3.2 Ga in this run. At
later times, the heat flux from layer 1 varies by only about 2%

whilst the rate of temperature drop decreases from 1300KGa—1 to

87 K Ga _1. Thus in this period the simplifying assumption of
constant heat flux from the core, as used by Loper (1978), is
appropriate. For earlier times, neither simplifying assumption
as to the boundary conditions is well justified. Figure 3.4

shows the radius of the inner core as a function of time, as

given by equation (3.7).

The variations of input parameters tried in the model were:-
1 all specific and latent heats : doubled, halved,
2) lLatent heat only: tripled, divided by three,
in both cases based on values from Table 3.1 as the
standards, |
3) initial temperature conditions : 2 sets (Table 3.2),
4) ‘radiogenic heating distribution : 6 sets (Table 3.2),
5) core freezing temperature range : 3000°K, 1000 K, 300 K or
100 K
Table 3.5 gives the average effect of each variation on the heat
flux out of layer 1 at present time (4.5 Ga). Clearly this heat
flux is relatively ingensitive to the initial temperatures, the
heat capacities and the range of freezing temperatures. This s
mainly a result of the imposed thermal constraints and the con-
sequent adjustment of the parameters B and Tij .

The effects of changing the constraint on the surface heat
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‘ |
Table 3.5 Effect of varying parameters |
|
Parameter Change therein Effect on core heat flux |
1012y
Constraint on 12 "
surface heat flux + 10 x 10 "W + 3.9 - 0.9
Total radiogenic + 10 x 1012w - 4 4 2 0.8 |
heating (layer 2) (present day value) W
pisteibution of redio- + 3 % 1079 + 3.5 0.3
genic heating between into core
core and lower mantle (present day value)
Initial temperatures Increase as in + 0.4 z 0.6 |
table 3.2
Specific and latent Doubled + 0.5 % 0.5
heat capacities
Latent heat Tripled + 1.8 £ 1.0
Freezing temperature Tripled, for - 0.6 : 0.3 \
range ' standard ,
Latent heat |
. ’\
Change to single-LlLayer - + 0.3 z 0.3 |
mantle model :
I
Change of exponent N
in equation (1) From 3/2 to 5/4 + 0.05 = 0.05




‘r

|
flux and of changing the total radiogenic heating are
complementary to each other, as might be expected. The f
i : difference between the two is due to the time lag involved 1in
radiogenic heat of deep origin (layer 2) affecting the flux to

the surface.

A change in the distribution of radiogenic heating between

layers 1 and 2 by some amount has an effect of almost equal value
on the flux out of layer 1. The effect is slightly Llarger in [
value than the cause, again due to the time lags involved. These
result 1in the flux being associated with the radiogenic heating
of an earlier perjod when the decay of the radiogenic heating is

lLess advanced.

A Limited set of variations of the parameters was also run
on a single layer mantle model in which the thermal capacities i
and radiogenic heating of upper and lower mantle were combined. 7
The effect on the present day heat flux from core to mantle was I
slight (Table 3.5). This reflects the effect of the fitting of |
the two parameters B and Tijto the 1imposed constraints, and |
emphaéises how restrictive are those constraints. Only a core
freezing temperature range of 1000°K and a constrained mantle to ‘
crust heat flux of either 30 or_40 X 1012w were applied, with the
full range of variation of the other parameters, as the effect of
this change of the model on the heat flux results was so slight.
Similarly the changé has little effect on the time of onset of I
formation of the inner core: the single layer models giving times Q

of onset typically Llater by 100 z 50 Ma only. ‘ ‘
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As- there is lLittle experimental evidence for the
parameterised convection expression for the heat flux used in
equation (3.1), test runs were made with the exponent set to 5/4
and to 3/2 instead of the value of 4/3 given by the theory. The
effect on the present time heat flux from the core was neg-
Ligible, being (0.05 % 0.05) «x 1012w for the change in exponent
from 3/2 to 5/4. This again emphasises the strength of the
applied thermal constraints.

3-3.6. An example of a high flux run (N32)

Let wus take the run in which, compared to the "standard"

run, radiogenic heating is changed to distribution "6" and hot

initial conditions are applied. From table 3.5, we may expect a

present core heat flux of:-

1015y
Standard run 8.8
Decrease in total radiogenic heating + 4ok x 0.8
Move 3 x 1012w from.mantLe to core + 3.5 2 0.3
Hot initial conditions + 0.4 2 0.6
Prediction 17.1 2 1.0

The model in fact gives a present core flux of 16.9 «x 1012w for

this run. Tables 3.6 and 3.7 give values for heat fluxes, tem-

peratures and rates o% change of temperature at selected times.
In this run, the inner core begins to form at 3.8 Ga. In

order to comply with the constraints, B = 1.65.and1ij = 1.20 x

standard, whereas for the standard run the model requires B

1.65 and Tij: 1.31 x standard.
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|
|
|
Table 3.6 Heat fluxes from run N32
Units 101%u
Time (Ga): 1 2 3 4 4.5
(present)
Layers
1 to 2 52.9 344 23.6 17.5 16.9
2 to 3 134.9 85.6 58.1 41.4 35.9 ‘
3 to &4 149.9 95.5 65.0 L6 . b 40.0 |

(constrained) |

The dinner core begins to form in layer 1 at ?28Ga at which
time the heat flux from layers 1 to 2 is 17.9 x 10 "W. ;

Table 3.7 Temperatures and rates of temperature drop ‘
arising from run N32 N
Units: K, °K Ga~ ! respectively
Time (Ga): 1 2 3 4 4.5
(present)
T, ' 4844 4127 3676 3383 3300
_ AT (constrained)
Hfax 914 557 363 187 152
Ts 3641 3139 2828 2620 2547
- 4T /A 647 386 250 168 129
T 1853 1677 1568 1495 1468

3 ‘“
- 4Ty Jax. 227 135 88 60 47 “




3-3.7. An example of a Llow f

I—

ux run (N26)

In this case, the "standard" run is altered by a change in

radiogenic heating to distribution ‘1’ and a change 1in the

surface heat flux to 30 x 1012w. Again applying Table 3.5, we
have:-
1012y
Standard run 8.8
12 ¥
Move 2 x 10 from core to mantle - 2.3 = 0.2
Decrease surface heat flux constraint - 3.9 z 0.9
. s +
Prediction 2.6 - 0.9
The model gives instead a present core flux of 3.0 x 1012 for
this run. Heat fluxes, temperature and rates of change of

temperature are given in table 3.8 and 3.9.

The inner core begins to form much earlier in this run, at
2.2 Ga, while in order to comply with the constraints B = 5.74
and Tij = 1.87 x standafd. Those lead to a rapid diminution with
time of the heat transport through the boundary layers, in order
to meet the reduced constraint on the surface heat flux. That
causes the early formation of the inner core. In so far as the
model requires these less "realistic" values for B andT.U , one
can conjecture that such a run is less likely to correspond to

the Earth.

As described above, the model can be expected to give a
reasonable range of values both for the present heat flux out of

the Earth’'s core and for its variation with time, provided that
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Table 3.8 Heat fluxes from,gun N26
Units 10 "W
Time (Ga): 1 2 3 4 B
(present)

Layers

1 to 2 8.8 4.3 3.5 3.1 3.0

2 to 3 73.8 51.2 38.9 30.7 27.4

3 to & 81.0 56.2 42.7 33.7 30.0

(constrained)

The dinner core begins to form in layer 1 at1§.2 Ga at which
time the heat flux from layers 1 to 2 is 3.9 x 10 “W.

Table 3.9 Temperatures and rates of temperature

Units: K, K Ga-‘I respectively

Time (Ga): 1 2 3 4 4.5
(present)

T, 3572 3434 3367 3320 3300

AT ‘ (constrained)
= Sh/ax 210 95 54 42 38

T, 2837 2733 2672 2628 2610
- 4Ty 149 78 50 39 35

T, 1526 1490 1468 1453 1446

-3y e 52 27 18 14 12




the input parameters are sufficiently accurate. Table 3.1 sets
ouf the "standard" parameters used, which are based on literature
sources relating to the Earth. Table 3.5 shows how sensitive the
heat flux ~calculated by the model is to changes in these
parameters. Clearly the crucial parameters are the quantity and
location of radiogenic heating and the values taken for the heat
flux from mantle to surface. In particular the value adopted for
radiogenic heating 1in the core itself is both important and,
unfortunately, very ill-known.

Despite that caution, the model does show that the heat flux
out of the <core, both at present and in the past, 1is a
significant —contribution to the heat flow in the mantle,
supporting the case put by Sharpe & Peltier (1979). Using the
"standard" 1input parameters, the model gives a present time heat
flux from the core of 22% of that from mantle to surface. The
applied range of parameters makes that vary from 7% to 60%.

If one considers the energetics of the <core at recent
times, i.e. with the presence of an inner core, then the results
from the model are cLosér to those from an assumption of constant
heat flux at the core-mantle boundary (Loper 1978a) than to those
from one of constant rate of change of temperature. The model
does not yield a well determined time for the onset of the inner
core it ranges from 0.5 Ga to 4.3 Ga after the start of the
model for the parameter range tried, with 3.2 Ga for the "stand-
ard" run. The time of onset does tend to be rather later in the
Earth’s history than Has usually been suggested (e.g. Gubbins et
al  (1979) <consider an 1inner core starting to form early).
However Stevenson et al (1983), wusing a model based on an
exponential variation of viscosity with temperature, have

recently suggested an inner core starting to form quite late, at
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2.3 - 3.0 Ga for the six models used.

As stated in the introduction, the model used is Llikely to
give mantle layer temperatures that are substantially in error,
being too slow to respond to changing conditions. However, the
upper mantle temperatures, T3, given by the model are in fact
remarkably steady over recent periods. This reinforces one’s
confidence in the use of the constant viscosity parameterisation.
For example the run with "standard" parameters yields a drop in

T, over the last 2.5 Ga of only 93 K (see Table 3.4). That value

3
may be compared with the suggestion (Green 1972) that the compo-

sitions of certain Archaean lavas indicate a decline 1in upper
mantle temperature over that period of some 200 K. As can Dbe
seen 1in Fig. 3.2, a change in the initial temperatures of the
model has Llittle effect on this (for the "hot" set of initial
conditions, the corresponding decline was 140 K).

In this work, our main interest in the results from the
model Llies in the comparison of the heat flux with the conductive
heat flux due to the adiabatic gradient, 1in order to investigate
the suggestion that the outermost part of the core may be stably
stratified. Gubbins et al (1979, 1982) consider the possibility
of fhermaL stratification if the core—hantLe boundary were

cooling slowly or were at constant temperature, and give a

maximum value for the heat flux for this to occur of 4.5 x 1012w.

That is based-on an assumed thermal conductivity k = 50 Wm_1k_1
al

and an adiabatic gradient ap )S= 2.6 x 10 ? K.Pa 1 at the

top of the outer core. The model gives a heat flux from the core
Lower than that for runs in which there is zero core radiogenic

1ZW) from

heating combined with the minimum contribution (8 x 10
cooling, but otherwise the heat flux is greater than the Limit.

Thus the model suggests that the top of the core will not be
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stably stratified by thermal effects. As will be seen in section
3.5, those runs in which the heat flux from the core is so low as
to suggest a stably stratified top of the core are also runs in
which the requirements of a dynamo would not have been met prior
to the formation of the inner core (when there could be no
"gravitational" drive for the dynamo) . The only exceptions to
this, runs for which there can now be a stably stratified top of
the <core and yet there is sufficiently high flux to drive a
dynamo before the formation of the inner core, are runs performed
with a very large range (3000 'K) of freezing temperatures of the

core.

Gubbins et al (1979) give expressions for the generation of

entropy E by the sources of energy Q, as follows:

E

Radiogenic R = 3.05 x 1075 k™1 (3.10m)
Cooling Ec/uC = 3.3 x 1077 k™' (3.10b)
Latent (including

chemical) vy 5.3 x 1077 K| (3.10¢)
Gravitational

and adiabatic 94 =2.9 x 1074 k' (3.100)

g

These sources of entropy can then be compared with the

various dissipative sinks, again from Gubbins et al:

8

Thermal conduction B, = 1.14 x 107 W/K (3.11a)

(based on adiabatic gradient myap% = 2.6 x 10—9 K/Pa)

Molecular diffusion E, = 1.43 x 10190 x(&?b)ZWA< (3.11b)
Qhere (A”b> is the fractional density jump at the inner core
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surface due to compositional differences.

Ohmic dissipation Eo = 1.4 x 108 W/K (3.11¢)
for the dynamo of Kumar & Roberts (1975).

A representation of the dynamo requirements in terms of
entropy is necessary in order to account properly for the feed-

back of Ohmic dissipation into thermal buoyancy in the fluid

(compare Olson, 1981).

Excluding any contribution from gravitational energy, equa-
tions 3.10 and 3.11 give the values for the minimum heat flux
from the core to power a dynamo set out in Table 3.10.

In the <case of the standard range of core freezing
temperatures (1OOOOK), the model gives sufficiently high values
for the heat flux except for the runs in which both the core
radiogenic heating and the difference between surface heat flux
and total radiogenic heat flux are at low values (less than 2 x
1012w and 8 x 1012w respectively). Changing the range of core
freezing temperatures to 300 K does not affect this result.

Hence at present time the heat flux alone can be sufficient
to drive the terrestrial dynamo, wunless there is the combination
of properties set out above. This conclusion is sensitive to the
assumed value of the adiabatic gradient: a higher value would
make it less. Likely that the heat flux alone <can drive the
dynamo.

3.2.2 The thermally éowered dynamo, prior to onset of freezin

Prior to the onset of freezing, there could necessarily be
neither Llatent heat nor gravitational energy from differential

freezing as source of energy. Thus we can approximate by noting

that:
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Table 3.10

Dynamo requirements for heat flux from core

with no gravitational energy

ypits = 1012W

Radiogenic Heating: High Low Lero
(5 x 1012w) (2 x 1012w)
Freezing Temperature Range: 1000°K 300°K 1000°K 302K 1000°K 309

Standard heat capacities
or all doubled or.halved 7.6 743 6.8 6.3 6.2 5.5

Latent heat tripled 7.3 7.2 63 6.0 5:5 5.1

Latent heat divided by 3 8.0 7.6 7.4 6.8 7.0 6.2




V’ ‘ . i S .—ﬁ. ’

ER/QR ~ C/QC (since both are 'distributed’ sources)
and QR = (

E %+ E =~ (3 x 10—5K—1) x (core to mantle heat flux)

This places a lower Limit to the heat flux for a dynamo to be
possible, of approximately 8 x 1012w.

At the onset of freezing, the only runs that failed to |
provide sufficient flux were under the same combination of Low
core radiogenic heating and Llow contribution from <cooling
required for failure in section 3.5.1, but also required a value
for the heat capacities not greater than the “"standard"
parameters.

Thus the model again indicates that the heat flux alone <can
be sufficient to drive the dynamo prior to the onset of freezing.
This result can, 1in reverse, be used as a constraint on possible |
values for the adiabatic gradient in the core, because of the
lack of <complications from the inner core freezing surface in
this case. In the case of the standard set of parameters, the
lowest value of heat flux from the core prior to freezing was
8.6 x 10'%4. This could only satisfy the dissipation given by
(11> for wvalues of the adiabatic gradient not more than 10%
greatér than that used hitherto. This requirement depends on the
evidence for an ancient magnetic field. Palaeomagnetic studies
indicate that the field is at least 3.5 Ga old (McELhinny &
Senanayake, 1980) and this is older than the inner core for most

parameter ranges used, the only exceptions occurring with the

freezing range (TO—Tf) set to its highest value, of 3000 K.




For a dynamo to be feasible, we now need

which can again be expressed in terms of a minimum heat flux from
the core, though now this flux may be less than the conductive
heat Loss down the adiabatic gradient, since convection can be
driven against a thermally stable gradient by the compositional
difference. Some solutions are given 1in Table 3.11.

Except for runs with a combination of zero core radiogenic
heating and Llowest contribution from cooling, failure of the
dynamo requirement is now rare for the range of parameters used:
if the density contrast is 0.75 g cm—3 and the freezing range is

1000;K, then only 4 runs now fail. These are among those failing

in section 3.5.1, but now failure only occurs for doubled values of

the specific and latent heats, as this reduces the effect of the

gravitational contribution.

The most interesting results of this Qork are that the heat
flux out of the core can be sufficiently large to:-
i) drive a dynamo both at present time and at times
previous to the formation of the inner core,
i) avoid thermal stable stratification of the core near
the core méntle boundary, and
iii) influence mantle convection significantly.
Exceptions to these results occur for values of . the radiogenic
12

heating 1in the coré Llower than approximately 2 x 10 "W combined

with high values for mantle radiogenic heating. The uncertainty
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Table 3.11

Dynamo requirements for heat flux from core

including gravitational energy

1000%

4.9

3.5

3.4

Units 10"%
Radiogenic Heating "High" ' "Low"
in core:- ‘E_K_uiEiﬁ Z_{_lgiiﬂ
Freezing Temperature
Range:- 1000° 300% 1000% 300%
Density Jump at Inner
Core Boundary1:-
0.25 g em™> 7.0 6.6 5.7 4.9
0.75g Cm-3 6.7 6.3 4.7 4.1
1.25 g em™ 7.0 6.6 4.9 4.2
Note 1 of these 0.1 g crn“3 is assumed due to solidification, the balance to composition.

2 "standard" values for specific and latent heat are used in calculating the above.

llzeroll

300%

3.8

2.7

2.6




in estimates of the adiabatic gradient near the <core mantle
boundary is such that (i) and (ii) above are themselves not
certain.

The model used is successful in producing thermal histories
that fit the observational constraints for most sets of input
parameters. The resulting temperature profiles are remarkably
steady after the first 1 - 2 Ga, despite the exclusion from the
model of any temperature dependence of viscosity. Varying the
input parameters leads to the estimates of the resulting effects
on heat flux out of the core, given in Table 3.5. These show
that the present time heat flux is relatively independent both of
the dinitial temperature conditions (provided they are "hot") and
of the values used for the specific heats.

The combination of the thermal model and the dynamo
requirements suggests that, if one requires a dynamo at early
times (prior to about 2.0-2.5 Ga before present), then the
present heat flux from core to mantle is sufficient to avoid a
stable thermal stratification. It is the dynamo problem in the
absence of an dinner <core (and hence the absence of any
complications from compositional differences yielding a
"gravitational" source of energy) that Léads to this stronger
conclusion from the thermal model. In this context, it s
important that the present inner core radius (35% of the whole
core) corresponds, under plausible assumptions, to <cooling
through a small fraction of the range of freezing temperatures
(12% of that range). ’ This is of course a consequence of the Low
value of g near the centre of the core, which leads to small
pressure gradients in the inner core. As a result, it becomes
physically implausible that the freezing range for the core can

be very much larger than 1000 K, if about 88% of that range has
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yet to be covered by future cooling of the core-mantle boundary.

In turn, this results in it being likely that the geodynamo

precedes the formation of an inner core.




4. Egﬁg;gg;iyg convection: analytical approach to the Llinear
equations.

The remaining chapters of this thesis are devoted to a study
of penetrative convection. The object is to assess the effect of
rotation on the extent to which 'an unstable convecting layer can
disrupt an adjoining stably stratified region. In this chapter,
the linear equations are studied and the results given will serve
as a framework for the numerical solutions, again of the Llinear
equations, set out in chapter 5 and the experimental work
described 1in chapter 6. The analysis does not include the

influence of magnetic fields, and so is only a step towards

understanding the dynamics of the core.

4.1 Rotation parallel to gravity

The normalised linear equations of motion and heat transport

(2.11) are:

2]

= - Tou (4.12)
[(Dz—az)(Dz—az—p)] U = +DZ + F (4.1b)
[Dz—az— Op] F = RaZ_f(z) 1] (4.1¢)

If we operate on (4.1b) with

[(Dz—az—p)(Dz-aZ— opJ

and substitute from (4.1a) and (4.1c¢), this becomes an 8th order

differential equation in U:

sz—az)(DZ—az-p)z(DZ—az— op) + TDZ(DZ—az— Op)__"

%




4 Ra2<oz—a2-p>f<z>] U = o0 (4.2)
Note that the term in the Rayleigh number,
[Razcoz-az-p>f(z>] U
includes an operator that acts on f(z)U, not just on U. This

makes the penetrative convection problem rather more interesting
than a mere juxtaposition of solutions for different constant
values of f(z). Only in the special case of marginal steady
stability, p = 0, can the equations be simplified to the 6th

order form:

Foz—a2>3 + TDS + Razf(z).] U = 0 (4.3)

Even in this —case we must exercise care in the boundary
conditions (see Chandrasekhar, 1961, p.90): only for stress-free
perfectly conducting boundaries does one find complete solutions
in terms of the sixth order equation.

We shall first investigate the Limit of rapid rotation,
T o , @as this leads to a useful simplifying approximation
C 3 4.2)' and then in § 4.3 and § 4.4 dinvestigate —certain

especially simple forms for f(z).

The equations {4.1a) to (4.7¢) can be simplified in the
Limit T— o for regions that do not include boundaries to the
fluid. In such "dinterior" ‘regions, we may anticipate from
boundary layer theory that viscous forces become negligible so
that the order of fhe differential equations may be reduced from

8 to 2. Boundary conditions must then be met through matching
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the interior solutions to the boundaries by way of thin boundary
layers. Greenspan (1968) gives a review of the relevant boundary
layer theory. In the interior region the vertical length-scale
for wvariations in the flow will continue to be the Llayer depth
but the horizontal Llength-scale may become short to counteract
the rotational constraint.

Let wus adopt a new non-dimensionalisation of the Linear
equations (4.1) on scales that reflect the rapid rotation. We
shall Llater see that the length-scale is that appropriate only to
the boundary Llayer thickness: the horizontal length-scale of
convective motions reflects a compromise between the layer depth

and the rotational scale.

Length L o= Y/
Time T = 9_1
Temperature 8 = Bod

Let us define new non-dimensional variables:

F L - 4 fa
81 v
Z1 = & 2
1
U1 = u z

1 1 1 . : . .
where § , s, are the non-dimensionalised temperature, vertical

vorticﬁty and vertical velocity perturbations respectively.

Thus we get the non-dimensional equations
{D?a?pj]z, - 2D U, (4.42)

[(D2—82)(D2—az—p)] U, = 2D 7Z + R,a’F, (4.4b)
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| [-Dz—az—pc} F,oo= -f(z) U, (4.bc)

where a new Rayleigh number has been defined as

'l R, = gaB o (4.5) i
: +

and D, a, p are non-dimensional. ‘

We now consider the terms in equations (4.4) in terms
of a small parameter ¢
_1
€ = L/d = /Z.T &
where T dis the Taylor number. Further Llet wus <consider the
marginal case, p = 0. We may note that a diffusive time-scale |
would imply p = 0 (62). We note that the horizontal wave-number u;
a and the Rayleigh number Rl are as yet of undetermined I

magnitude, and that our vertical scale-length implies that D u, = i
0 (e) U, s €tc. )
Combining the three equations (4.4), just as (4.1)

were combined into (4.3) in the marginal case, we have

[(02-a%)% o w? . R'azf(z)] U, = 0 (4.6)
which may be expanded as

[(—86 + R, a?‘f(z))' + (4 + 384D2 + ,(—382)D4+D6] (4.7)
U = 0

and then approximated by

[<-86+R,a2r<z>> v (6 3at)(00eD) « <-3a‘><o<e“>>+..]u, (4.8)
= 0
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Let us consider 2 cases:-

| iy a > 0(1)

") J Then (4.8) can be approximated by

| [_86 + Ra’f(z)) + 0 (52>] U = 0

which implies R, = O(aa)
Z 0(1)
(i) a << 0(1)
Then (4.8) can be approximated by

[-a8 + R aZr(2) oo, = o

which implies
R,a2 = U(EZ) + 0(36)
which minimises R, for

a - 0(e?)

R -0(e*?)

Rayleigh number and 1is therefore
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(4.9)

(4.10)

4.11)

(4.12a)

(4.12b)

Comparing the 2 cases, the latter leads to the Llower critical

the appropriate physical

scaling. Thus (4.8) should be approximated by:-




[402 v a (R F(2) - aa):] U, =0 (4.13)

. ) . 4/3
with the 1st correction terms being 0 (e ~)

relative to the terms retained in (4.13).

Now that we have reduced the interior equations to 2nd order
in U (4.13), we are left with the problem of what are appropriate
boundary conditions. In the case of stress-free boundaries,
Chandrasekhar (1961) adopts U, = 0 on each (pp. 104-106) and
this would appear valid since the absence of stress at the
boundary would seem to rule out the possibility of Ekman-layer
"pumping" as described by Greenspan (1968) (p.46). On the other
hand, a rigid boundary will result in Ekman layer pumping
associated with any transverse interior motion: this is
equivalent to a boundary condition of U f’ 0, thereby allowing a
longer vertical-scale and so a Llower Rayleigh number. This
prediction is in general agreement with the results of the
variational principle used by Chandrasekhar (1961) for the cases
with rigid boundaries (see Table 4.1).

At high rotation rates, although boundary Layer pumping
still occurs, it can be shown that it becomes small relative to
interior velocities. Using the boundary Llayer flux given as

equation 2.17.3 by Greenspan (1968) and converting it to our non-

V\);Q ”

dimensionalisation based on a length-scale L

we have

)U (4.14)
X
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Comparison of critical Rayleigh numbers for free-free and rigid-
rigid boundaries. Values taken from Chandrasekhar (1961)

T R ' R .~ |

freeSfree rigidkrigid Ratio 1
0, 8.575 x 103 1.708 x 103 0.385 |
104 8.263 x 103 1.757 x,103 0.470 Il
106 5.377 x 104 4.713 «x 104 1.141
108 9.222 x 106 7.113 x 106 1.296 il
1010 1.897 x 107 1.531 x 107 1.239 Ll
10 4,047 x 10 3.464 x 10 1.168 i

Fig. 4.1

Schematic diagram of the interior solution for the vertical |

velocity U under rapid rotation . ‘

U
/

/ﬁ I il
/ | i

k— 0'<0 K D'>0—,
/| | ‘1‘;
/ | 4
A | 4
/ , 4
0 10 g T z

| | |

le f(z)>0 sl f(z)< ) —s

| | |




where X, s Y are the normalised transverse co-ordinates and U,
a typical interior velocity. Thus the normal flow, Urn is of
order:

L“n = 0(a). le (4.15)

where, from (4.12a),

k) - 'Ia

a = 0(e ) = 0(T )

T-1/12

This 0¢ ) relationship has previously been noted by

Eltayeb (1972). Clearly we must consider T very large for T-1/12
to be small (and so for the above to be valid). Table 4.1 shows
critical Rayleigh numbers for stress-free and for rigid
boundaries in the rotating plane Layer convection problem, taken
from Chandrasekhar (1961). As T increases, and T_1/12 starts to
become small, the ratio of Rayleigh numbers is seen to diminish.

Thus, rather than the two types of boundary leading to critical

Rayleigh numbers of asymptotic form

where the constant ¢ differs depending on the boundary conditions

(Chandrasekhar, 1961, p. 106), one should have an asymptotic

Limit

with ¢ independent of boundary conditions, being of the form
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|
{
|
|
|
|

¢ (stress-free)

= (4.
B thaid T+ 0(T ) 4.16)
In reducing the equations to 2nd order as T —> oo _  not
only do we lose the 2 viscous boundary conditions, by

substituting an Ekman boundary layer, but also we Llose the
thermal boundary condition. In the full equations this condition
represents the relative conductivity of the boundaries and the

fluid and might typically be given as:

+
DF = = XF (4.17)
on the boundaries, where F is the normalised temperature
perturbation and A\ is the Biot number. The Lloss of this
boundary condition through the dntroduction of a viscous

boundary Llayer is at first sight surprising, but physically is a
result of the small horizontal length-scales imposed by the rapid

rotation.

The Bijot number A is the inverse of the thermal thickness

of the boundary. If we scale on our rotatijonal length-scale, we
find the Biot number X, is given by

AI = €A (4.18)
Thus for any real boundary, for which 0< )\ < o the rescaled

Biot number XA in our rotational scaling will tend to zero in the
Limit T2 o " This tendency towards a fixed flux character
is reflected in the Limit of the horizontal wavenumber given
above (4.12a): a = 0(e?) —> © as T = oo .

Now that we‘are satisfied that U = 0 is the appropriate

boundary condition for the interior region for T—» o , we can
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] consider the interior eigenvalue problem given by (4.13) .
Clearly, in order to have a non-trivial solution satisfying the
| - boundary condition at both top and bottom boundaries, D2 must be
a negative operator on U in at least some part of the region.
Therefore a4 < R, f(z) in some part of the fluid.
\ If f(z ) changes sign, then clearly 02 becomes a positive
operator on U, in that stable region. Thus in this Limit T—» o
we may expect that the interior solution for u, has separated

2

into two regions distinguished by the sign of D U, (Figure

4.1)
The boundary, where 02Ul = 0 (to within 0 ( 8#/3 )Y,

will be at the point where

R f(z) = a (4.19)

i.e. wWwithin the unstable region of f(z ) > 0. Note that this
boundary is one on which D2U' = 0 but U, 4 0: it dis not
correct to describe it as a stress-free (albeit permeable) surface

since if one considers the horizontal elements of the viscous

stress tensor, Pxz, Pyz, 1l

Bux auz i
Pxz S U\ — + —— i
og ox ]

ou ou
Pyz =u=L +==
al‘ 31

then to achieve pXZ = %q = 0 in an incompressible fluid we
require
Bux . auz
9z Ix
DL
and 32 ;ay
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3 du Bzu 82u
and so — - Z ) - z z
0z 07 2 2
9 X ay
. 2 2 _ . . . 2
i.e. (D™ + a™) u, = 0 in our normalised units (4.20). Thus D
u = 0 is a stress-free boundary in the special case of Ul =

0 but not in the case being considered.

Approximate solutions, as T » o

Let us consider the approximate equation of motion (4.13),

valid as T — ©

2 2 4

TD"U = a~ (a - Rf(z)) U
in 0 € z¢h
with U =20 on z =0, h.

If f(z) is an analytic function in the region 0 <€ 2 < h, then
the equation can in principle be solved by a series expansion
method. The choice of a suitable basis for the expansion depends

on the form of f(z). For example, if f(z) can readily be

expressed as a trigonometric series

nmz
f(z) = f .cos ( = ) (4.21)
n =0
then an expansion for U of the form
. nTz
U(z) = u - sin —n (4.22)
n = 1

is appropriate, in that the boundary conditions are satisfied and

one can use the relation
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. 1 . - |
= == ‘ - g ) ‘ |
S1I Z'. cos Z2 g 5 s1in (Z,] 22) + 1T (Z,I + Z2,

} . on substituting the series expansions into equation (4.13).

r However, if u.o, fn are not small for large n , there are ‘

WA . problems arising from the "difference”" sine tern (sin(z1 - Zy) W

l above). Alternatively one could use expansions in (z/h),

f(z) N GV (4. 23) |

n h |
= O “\

U1n' (Z/h)” (4.24)

in which case the series expansion of the cross-product (f(z). \f‘

U(z) =

5\ 8 :r\/WS

‘U(z)) term is simpler and one is left with the boundary condition

on U(z) at z = h as the criterion for the eigenvalue R: *y
o

H‘;ﬁ

Uth) = 0 (4.25) i

oo “J ‘
~§i u = 0 (4.26) i
n ﬂw

m = 4 |

: Except for very sihpLe forms of f(z) the simplest approach ‘W
to equation (4.13) is numerical integration. Unlike the 8th 1
order équations for slow rotation, this 2nd order equation lends
itself to a straightforward initial value integration from the

normalised initial conditions:

uco)

]
o

DUCO)

1
-
1 ]
o

Results from such an integration are reported briefly in § 5.3.3
As a brief example of the series expansion method, let us

consider a parabolic temperature profile, with temperature
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gradient given by f(z) = 1-z in 0 < z < h. Such a profile
approximately describes the density gradient 1in an dce-water |

|
‘ — system with a linear temperature profile (e.g. Veronis (1963)). I

m
 “ . 1) Expansion in (Z/h\

fb = 1 (4.27a) w
\H

i

I

1“1\“\‘}

- 4, ) i

fps Pgusns = B (4.27¢ |

For m > 1, we have the recurrence relationship i

U 6 2 2 Il
hZ m+ 2 = a Um—a R,um + a th.um_,' (4.28) “‘u“;‘
\“ ‘

L s 2(m+ 1),

I
\ and similarly we find for m <& 1 1

= (4.29) il

‘ U2 0 ‘:‘M
il !

2 “lus‘

U, = . a® = aZR) u (4.30) i
3 6T o i

Inspection of the recurrence relation confirms that it will i
give a convergent series for u(z) in 0 € z £ h, since for Llarge 01

m we can approximate it by: |

2.3\ U I
L, = (a '}‘h > m; (4.31)
m + m ‘H‘

Indeed, provided f(z) is itself analytic in that range of zZ, We

can see that for any f(z) the recurrence relation will be of the




form
u, = 0 () u. (4.32)
J J J-k
for some finite integer k and sufficiently large j. In our

example, we have

U1 (4.33a)
u = 0 (4.33b)
2
Uz = (ETJ(aé-azR) U, (4.33¢)
- () (atRn) (4.33d)
Y = 977 oty .
_ h? _hi 6 - 2
Us = (ZDT)(éT)(a -a R) u (4.33e)
and so on. &
The boundary condition at z = h is equivalent to E:un = 0. and so
- n=1

we might take as a first approximation the series up tom = 3

only, giving

R = a4 6T (4.34)
a-h>
. oo ; 6 _ 37T, 2 . ;
which can be minimised by choosing a- = /h~ to give an estimate
T .2/3
- 37 . (4.35a)
R'C - 3( /hi)
1/6
_ 37
a, = (27 h2) , (4.35b)

The corresponding eigenfunction is:
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T8,

This
condi
furth

(for

2)

]
u2 =0
Uz = 7 Uy
_ Zy Z\ 3
u 2 = u () - (3)) (4.36)
is the lowest order of truncation at which the boundary
tion at z = h can be met in this problem. The inclusion of
er terms Leads to multiple roots for the Rayleigh number

m 2 5), of which the lowest is the one of interest.

Expansion in sin (mmz/h)

f(z) = :{ fn.cos(nﬂz/h) (4.37a)
n=o
where Fo = 1 - h/2 (4.37b)
fzm = O (4.37(:)
for m > 1
Faroa = 4h (4.37d)
L I D
The recurrence relatjon 1is
m-1 ©
6 Tm?w?,  Ra? ,
Up (8% + “HE) = B5(F uf S Unine o) (4.38)
Nz o n=o
and 1in order to avoid the problem of the infinite series in the
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last term on the

R.H.S.

we must make the approximation

truncating the solution for u(z).

For truncation at m

u(z)
and so (1—h/2)R,a2
which gives Rc

ac
provided h

This Llevel of truncation

= 1, we have

= U, sin (Wz/h) (4.39)
2
= a4 T;T C4.40)
Tm? 2/3
B(W) /(l_h/z) (4.41)
. 1/6
= %’[) (4.42)
< 2

only "sees" the average value of f(z2),

fCz) = (1-"/2) (4.43)
For truncation at m = 2, we get
u1(a6 + TE;) 5 R§2(2 forty + fyeuy) (4.44a)
and uz(a6 + 3%£i> = Bgi(Z fo.uz 4 f1.u1) (4.44b)

which gives a quadratic in (Ra

(R,52)2(1_h+h2(i- -

6 Tar? 6
+ _h—r)(a

+ (a

2):

5%))—(&32)((1u_%)(286 . 5;ﬂ2))

4Tm?

) =0 (4.45)

of




For given a, T, h this is readily solved, but it is clear that

even at this modest level of truncation the series expansion s
of little general use. Thus numerical integration is to be
preferred.

It 1is worth noting that, having made the approximation of
reducing the equations to 2nd order, based on T -+ o , the
solutions for critical Rayleigh number and wavenumber will now be

213, a, = qep 176

of the form Rc = 0(T ) for all values of T. This
occurs as a result of neglecting all the terms Lleading to
deviation from those relationships. Thus the critical Rayleigh
numbers plotted in figure 5.16 based on the 2nd order equations
fit the straight Lline

log (RC) = 2/3 log (T) + constant.

The solutions have a common form, depending only on the
chosen f(z) and h to determine the constants of proportionality.
In particular, under this approximation there can be no change in
the shape of the eigenfunctions (and thus of the extent of
penetration) as one varies T for given f(z), h. It is for this
reason that the numericéL work in § 5 is devoted to the full 8th
order equations, as a study of the influence of rotation on the

extent of penetration.

Two L

1]

Yer case
The <concept of the internal boundary separating the stable
and unstable regions in the limit T - o according to the sign of
DZU/U suggests that a study of a simple two layer problem will be
of interest. Let us csnsider the case

f(z) (4.463)

il
+
—_
=
3
o
IN
N
A
=

= -A in 1<z £ h (4.46Db)
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The solutions in the two regions that satisfy our ‘'interior’

boundary condition U = 0 on z = 0 and =z = h are:
U = u, sin(k1z) in 0gz<1 (4.47a)
U = wu, sin h(x,(z-h)) in 1<zgh (4.47b)

where in order to satisfy equation 4.13 we must have’
TA\,?> = Ra? - a (4.48a)

TA.? = A Ra? + a (4.48b)

and R > a4 so that x1 is real.

At the interior boundary, continuity of wvelocity is
required, though not necessarily any higher derivation of U since
we may have an internal Ekman Llayer. Therefore U, DU are

continuous (the lLatter reflecting the continuity of the

transverse velocities V and W).

u, sin A1 = u, sin h (A,(1=h)) (4.49a)

1

u1k1 cos A1 = Ui, cos h (A,(1-h)) (4.49b)

Combining these, we have

tan A, _tan h  X,(1-h) , (4.50)

A1 A2

which for given values of a, T, h may be solved graphically,
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root for >\ .

Fig. 4.2

Schematic graphical soclution for ,Zf’: A, ,where
B = tan N/ X\, , B,= tanh N(1-n)/ X\,

2




noting that A1 and ), both increase monotonically with the
Rayleigh number R, (fig. 4.2).

Regardless of the actual values of a, T and h, the first
eigenvalue R, clearly must correspond to ﬂ/z <A1 <7
Thus, if T is sufficiently large that the 2nd order equation 4.13
is a reasonable approximation, then regardless of the value of A

we can perform a minimisation of the Rayleigh number with respect

to a, T to show that

2/3

R, = 0CT°") (4.51a)
a, = 01"/ (4.51b)
just as for the case f(z) = 1.
4.3 General two layer problem: f(z) = + 1 in 05z <1

= A in 1<z <h

In the case of general values of rotation rate, the problem
of the onset of convection in even the simple geometry of two
Layers of constant density gradient becomes much more difficult.
The obvious analytical approach is to considér solutions of the
form.
mz

(4.52)

in each Llayer.

Stress-free and pérfectty conducting boundaries at z = 0, =z
= h lead to a simplification, 1in that the relevant differential

equation for onset is sixth order:

[(Dz—a2)3 + TDC 4 Raz.f(z)] U =0 (4.53)
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2 4

with boundary conditions U = DU = DU = 0 at 2z = 0, z = h and an

internal boundary 2z = 1 at which U and DJU (j =1 to 5) are
continuous. Rigid boundaries introduce such difficulties that no

analytical treatment is useful.

In this simple geometry, solutions will be of the form:
| n
) I
i
U = u, sin(m,z) + u; sin(mgyz) + Uy sin(mBZ) (4.54a) ||
[t
in 0<z<1
and
u = u, sin h(ma(z-h)) + ug sin h(ms(z—h)) + U, 31nh(m6(z—hﬂ
(4.54Db)
f
f in 1<zgh
|
’ where m1 » Mg, My are the roots from the cubic in m2:
(m?+a?)® + Tm? = Ra? (4.55a) |
and my s, Mg, m . from
’ (m’-a’)3 + Tm? = ARa? (4.55b)
In principle, these can be solved for given a, T, R and then
{
| the matching condition at z = 1 leads to discrete eigenvalues for

R, for the given a, T. In practice it will be difficult. We
next describe the problem for large A, i.e. a strongly stably

stratified region, whilst the following section (4.4) discusses
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the problem of a thin unstable region imbedded 1in a stable
stratification. Chapter 5 dntroduces numerical solutions of

selected cases of interest.

Strong stable region, A>>1
Consider equation (4.55b) for the strongly stably stratified
region

2.3 2 2
a

(m2— ) + Tm~ = A Ra

If A is very large, we may assume that the rotatijonal term Tm2 is
negligible, influencing the solution only through equation

(4.55a), from which we expect

0(1)s a < 0(1'/6) (4.56a)

o(1) ¢ R < 0(T2?/3) (4.56b)
From (4.55b), we expect

n] - 0(ARa®)1/6 (4.57)
Let ué consider two cases:

1) T small: a = 0(¢1), R = 0(1)
A1/6

and so ]mf— 0 « )

For Llarge A, matching conditions at the boundary will tend to:

0UC1_ ) = puc,) (4.58a)

and D4U(1_ » = 0ca” /6 (4.58b)




3 N -2/6
DUCI_ ) = 0C(A ) Ch.EBc) _

etc.
Thus the strong stable region acts as a very restrictive boundary

to the unstable region 0 ¢ z < 1, as noted by Stix (1970) and

Whitehead (1971).
, 2) 0C(1) << T

l Rotation dominates the unstable layer, so that ‘
|

i

T1/6 [

If T < 2, the leading terms are

| a = 0O¢ ) (4.59a) |
‘ “ !
|
R = 0¢12/3) (4.59b) @
j
Suppose m = 0CAM ) (4.60a) '
\i ‘
l( “:
. |
T =0T (4.60b)
||
, |
| then we have terms in equation (4.55b) as follows:
i
m® = 0ca® M) (4.61a) |
nta% = gt M+ T/3, (4.61b)
|
nfa* = oAl W * 2 T3, (4.61¢) ||
| |
| a® = 0aT ) (4.61d)
‘ Tme = (a2 M * T, ‘ (4.61e)
| aRa% = o' * Ty | (4.61)
|
|
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m6 and ARa2

giving u = 1/6 (1 + 1 ), so that the rotation increases pand the

decay rate, already rapid, of solutions in the stable region.

If © =2, we have a balance of three terms,
m6, Tmz, ARa2

with b o=1/2, 1T =2

If t©v > 2, we have a two term balance of Tm2 against ARaZ, so

that u =1/2

In each of these cases, the decay rate of the solutions in the

stable region is rapid, and so the boundary z = 1 remains a very

restrictive one. At finite but large values of A, the effect of

increasing rotation dis to dincrease m and so increase this

restriction at =z = 1. Thus rotation tends to reinforce the

effect of the stable stratification.

RAA Step-function temperature profile

An idealised <case of the lLayered problem is that in which
the unstable Llayer is réduced in depth whilst the temperature
drop across it remains constant, so that the temperature profile
tends towards a step-function. This may be imbedded in symmetric
deep Llayers of neutrally or stably stratified fluid. For the
non-rotating case with deep neutral surroundings, such a step-
function profile will result in convective instability for an
arbitrarily small temperature step, provided the problem wijll
accommodate a sufficiehtly long horizontal wavelength. The aim
of this section is to investigate the effect of rotation and of
the stability of the surrounding layers on the critical Rayleigh

number of such a step temperature profile.

We have a problem in defining a suitable length-scale, d,
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for this —case: <clearly the depth of the stable region 1is not
useful. Two intrinsic measures exist, namely the stable gradient
length-scale, over which the stable gradients result in an equal
temperature change to that in the step, and the rotational Ekman
depth, d = (v/Q )% . Since the case of neutrally stable layers
is to be considered, the latter is adopted here. Clearly the
form of analysis does not extend to the irrotational case.
Scaling on this length-scale, on the rotational time scale,
T = 9_1 , and a temperature scale of the unstable

jump ¢ A T), we get at marginal steady stability the equivalent

of equation (4.6), namely:

[(Dz—az)3 + 4D?% + R1(z).az] U

= 0 (4.62)
where R1(z) R (E%S) 'VT’ in z <0
and z>0
= - R
s
and R1(z) =+ 9%3) AT.8(z) across z = O

where &6(z) is the Dirac delta function, normalised by

+ o
f §(z).dz = 1
- 0O
In the stable regions, let us consider solutions of the form
U = u.eM? gliax

which can be substituted into (4.62) to give:
(m’—az)3 + 4m? - RSa2 = 0 ‘ (4.63)

Across the unstable step, integration of (4.62)

shows that D5 U suffers a discontinuity,
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D’ U & a2U(o).(—%g,9.AT) (4.64)

and then D4U, D3U, DZU, DU and U are continuous.

Let wus suppose that the stable gradients are ‘weak’ in so
far as they allow convection on scales long compared with the
Ekman depth, i.e. let us assume both

\al <<

(4.65)

Ry € 0(1)

Further, let us assume that the roots of (4.63) are of the form:
= 2
ms=m_o+am,. + a‘m o+ .... (4.66)
Substitution into equation (4.63) leads to
6 2 5
(mO + amo) + a(6m0m1 + 8m0m1)
2 4 , 5 4 2
+ a (15m0m1 + 6m0m2 - 3m0 + 8m0m2 + 4m1 = RS)
(4.67)
+ 0 (a?) = 0
The roots for m are in 2 groups, m small or m = 0(1) ‘
1. m = 0 (4.68) i
0] It
1 |
m1 = RS \‘i
2 ﬁ
m o = 0 "
my, = O
m = 0
4 1
me = 1/,RZ if R <<1
> 4% g s
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2. m = =4

0
i} AT o

moo= /2 . exp ( 4(2n 1))

(4.69)
(for integer n)
|
m,I = 0
m, = é%. (12—RS).exp(_zﬂ(2n—1))

| Thus a general solution in the region =z > 0 , applying a

boundary condition that the motions decay to infinity, is:

|
|
) U=Ae " 4+ B e V%os pz + C e V%sin pz (4.70)

1 1 1
aR% 85
where u = S + —T
2 4R?2
. S
|
| ‘ 2
| v o= 1 a’(12-Rg) 0(84)
| 32
N ; _ a*(12-Rg) 0(at) |
P = 37 ? |
| 4 |
‘ the corresponding general solution in z<O0O ise ﬂ
} U = A2e+uz+826+vzcospz + Cze+vzsin pz (4.71) ‘i

The constants A1 , B1 , C1 - AZ’ BZ’ 62 are Linked by the 5

continuity conditions at the boundary region =z = 0. The algebra
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is given in Appendix 1, leading to

| Ay = Ay = A (4.72a)
_ _ u(p®-3v*)
B,I — Bl - m o A (4.?2b)
_ _ u(3p*-v?) .
C, = € = Gorerpry o A (4.720)

and the difference in DSU across the step in temperature is given

by: ot
2
DU = (908 -ATy(p , B)
_ n
0
= —ZUSA % 281v(-v4+10v2p2—5p4) + 2C1p(5v4—10v2p2+p4)
(4.73)
from Appendix 1
Noting that pu, B, C are 0(a) or Lless
and u, p are [1 + D(a’)]
we get the approximate relationship, to 0(a3)
2
(901,0?2 -AT)(1"‘U/2) = 8(—“/2)—8(11/2) + D(azu) (4.743)
2 i
gooa’AT Vw
(-——QT—-) = - Bu + 0(a?u)+0(pn?) ' (4.74b) }“
|
; : ‘
(%gﬂ) . _[“ Rs « %——2—] + 0(p) (4.74c)
a s

The critical Rayleigh number thus calculated is minimised by i

choosing y

1 ' ‘
a :(E RS>4 (4.75) |
3 |
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Accordingly, the expansion of m in terms of a as a small

( parameter 1is only valid for very small values of RS (RS = O(a4)).

Further, the critical Rayleigh number dis then

Pl

I
0

‘ . (QGQO-AT) + 0(n) (4.76)

c

16 ,3
= 5 (7 Re)

!

!' which is itself 0C(a).

: The "waveform" for U in the stable regions z<o and z>0

? is a combination of a slow exponential decay function of the form
e HZ , wWhich may be identified with the conventional decay

solution 1in an homogeneous stable Llayer, and an oscillatory

! convective wave of the form e “cos pz or e sin pz , wWhere

! P and v are of order unity. These lLlatter therefore have a

i. "wavelength" of order the Ekman depth d, = (v/Q)% , decaying

on the same scale. Thus increased rotation rates lead to shorter

. °nh the same scate. [Ihus increased rotatton rates tead to shorier
f Length scales for the convective wave-like part of the solution.

In turn, this may be regarded as a lesser extent of penetration
: into the stable regions( if one regards the other, e~HZ , bart
E of the wave form as being just a response to the forcing by the
} \V -uz

-\VZ -Vz . . s
e cospz and e sin pz convection. That e response is on

a decay wavelength, in dimensional terms of

wavelength

1
=
r

Q<

= 0 () (4.77)

Thus this decay function is on a longer length-scale as rotation

increases.
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This analysis fails for R. > 0(1) since the

)
horizontal wavenumber a, wused as the expansion parameter, s
then no longer small. In such a case, the roots for m (equation
4.63) no longer divide into one pair of "small" roots and two
pairs of 0(1) roots and so the analysis of the complete solutions
in each stable layer becomes unwieldy. As one moves to the other
extreme, RS >> 1 , the problem becomes rather 4ll-posed
physically in that one expects very short wave Llengths to be

involved, with rotation becoming of negligible importance. These

cases will not be pursued further.

4.5 Rotation perpendicular to gravity: !"Busse-Rolls”

Busse (1970) considered the case of the onset of convection in a
thin cylindrical annulus rotating about its axis with a radial
body-force, following earlier work by Roberts (1968). His
analysis drew attention to the role of the end-walls at top and
bottom of the annulus din inhibiting convection through the
dissipation in the end-wall boundary layers and, if inclined, in
restricting the radial e#tent of the motion. The latter effect
allowed the application of the model, which wuses Llocally
rectangular coordinates to simplify the anélysis, to the deep
spherical shell that models the Earth’s outer core. In this
section, this analysis is extended to the case of penetrative
convection and is then, in chapter 6,applied to observations made

using a rapidly rotating cylindrical tank. Figure 4.3 shows the

geometry 1involved.
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Fig. 4.3 'Busse' geometry
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This geometry, in which axial varjations of the flow are
negligible except for the flows induced by the boundary Llayers,
results in the equations being reduced to 6th order. The axial
(2) variation of the radial (2) component of wvorticity s
converted into an opérator on the radial velocity through the
boundary Llayer theory (Greenspan, 1968).

" Taking the Linear Navier-Stokes equations for the
perturbations u,g, £ of velocity, temperature and vorticity,

radial component of velocity:

3 2 -] 328 )
a—t(vux)_\)vux-ocga—y[-zfzgg(cx) (4.78a)

(where g = ero is taken to be constant), heat flow:

g_ (9) = -y .g—f + KV (4.78b) ;
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‘ radial component of vorticity:

_ 2 9 (4.78¢)
_—(Z;X) = vV Qx + 2 8 57 (ux)

In the Limit of rapid rotation, we use boundary layer theory
to give the induced boundary flows at the top and bottom surfaces

(z = iL/z) and thereby decouple the third equation

u = —E1/2L.Q.V/\):(r_1/\! ¥ n.g 2%9.511/2] (4.79)
P

2

where E = (\)/L2 ), n is the normal to the boundary layer and z

the axis of rotation (Greenspan, 1968, eq'n 2.17.3). This gives:

Y.
B__Lf_i S R —E“: - [’[. e s ‘*y}o(E\)u,‘ (4.80)
vz D x by L

and }gx = +E'l2 Blux -'})l“‘ - ]:’l' Bux - A, (4.81)

"\Z —B_)-c' 'ga"a L Bj B x

<>
S
K>

where N4, N, are small inclinations of one boundary in the
directions from being a plane perpendicular to the axis of
rotation.

Substituting for 3C, , one gets

a9z
I ks "2 * } } BZS—
(vv _?V )+2_§L (—-E .VH+'[~ .o -l}_\) W, = 0(3 -
and / B, fx) u =[KV-pls  (4.82b)
where p is the growth-rate of the perturbatijon. Let us now use

normalised variables, indicated by primes, based on scales:

length L

time LZ/v

temperature B Od, where d is the unstable layer
depth, and write Q = L/d, the aspect ratio. L is used as
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the ©primary length-scale because of the boundary layer behaviour

depending on E = \)/L2Q

(RN TS AR RSP W I = qf3 ¥ sz

> % 2
3 2y
7/ 7’ / 2 7 7
and o a f(x u « = (v o pP 19 (4.83b)
;
. 3.2
Now write F = agB, dL™b 9 (4.84a)
2
é Vv
} ’
u = u (4.84b)
; - X
| R =  ogf d* (4.84¢)
VK
; 2
9 .

’ and -b = 3?2 (azimuthal dependence) (4.84d)
1

| 2 2, =V , 2 -1 _
| [v’ (v “p)-2E V. . 2€ ('1. %,-’b%—)]u = =F  (4.85a)
J * '

l: R o \b’_i(x')] U = [V'f,';]f: (4.85b)

Note that R is defined here in a "conventional" manner, in terms
of the depth of the unstable layer.

] Some numerical solutions for the two equations (4.85a) and
(4.85b) with various boundary_conditions willbe investigated in

§5.5. These will explore the effect of rotation on an idealised

| '

i penetrative convection profile, f(x’/ ) = cos (“‘;X ), for various
boundary positions. The same numerical scheme will also be
applied in § 5.5 to a simulation of the experimental observa-

tions of chapter 6.
i If one considers the equations (4.85a) and (4.85b) in com-

i parison with the case of g parallel to 2 given by equations 4.1a
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to 4.%c, it is clear that much higher rotation rates are going to

be necessary for the rotation to be dominant, in that rotation

only appears as a term in E—1/2Vf2HU and as one 1in E—1n 3 u,
Ix’
instead of as T 8 U in equation 4.1 (note: T = 4E 2). This is

dz
because in the present case the convective transport of heat is

transverse to the rotation axis and is therefore not affected by
the rotation except through the effects of the top and bottom
boundaries. These Latter are a secondary effect on the flow.
Busse (1970) considered the special case of constant temperature

gradient and cylindrical symmetry

f(x") =1
n, =20
with constant temperature, stress-free boundaries so that

solutions were of the form
U= sin (a x ) sin (b y” )

where a = 1 a to fit the boundary conditions.
‘By ‘considering the real and imaginary parts of equations
(4.85a) and (4.85b), remembering that at the onset of convection

there can be an imaginary part to the growth-rate ﬁ 7

one gets

() = — 2 iy b
20 E'Iz+ (c-+\§ (&l+ \>2> E

(4.86)
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and then

, ‘ X ,
R ot b (&\;ﬁ 2 (@) [ be)fentiad™)
((c"-c— u)(alu\; E+2 E'b)z
This notation differs from that used by Busse (1970) in order to
give a '"conventional" definition for R and to show the relative
contributions to the RéyLeigh number from Bénard-type convection,
from boundary-layer suction and from end-wall inclination
respectively. One can use this special case with its relatively
simple solution to determine the conditions under which each of
these mechanisms should be dominant, still following Busse (1970)

Case (i) a>> E-1/4 (cp Busse (1970) misprint, o >> E_’l/2 )

n, << E1/4 0-1

Benard-type convection

bC = a (4.88a)
V2
4 - 27 4
(Ro.)C 7 @
R = 27 4 (4.88b)
c 4
Case (i1) o << E‘1/4

n, << E1/4.O_1

Boundary-lLayer dominates

b = a (4.89a)
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(Rcf*)c - gg “ W2 4+ (4.89b)

case (iii) 1 >>n >> £ /4]
and n, >> u? E.o_1
End-wall inclination dominates
- ()
(Ra) = 3(‘/5 ”1'0)4/3 (4.90b)
E(o+1)
We T ‘(2_,/;%12)2)1/3 (4.90c)

Now we can see that the effect of rotation is to shift the
emphasis away from interior dissipation (case 1) towards Ekman
layer dissipation (case 2). Further, as rotation increases, it
becomes more Llikely that any inclination will become significant.
In the Limit T » » , for finite aspect ratio aq, one gets either

Y -2 . . .
R « T a for zero inclination (4.91a)

C
: N
or R_ r‘(’TZ/B o for finite inclination (4.91b)

Thus in any practical situation, one can expect

R, @ T2/3 245 To w (4.92)

as end-wall inclination will come to dominate the onset of

convection. However, the numerical solutions in the next chapter
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are for the case q- = 0 in order to model the experimental
cylindrical tank. This also avoids the oscillatory nature of the
marginal solution that necessarily accompanies any significant

inclination.

4.6 Thermal wind

The “thermal wind’ is the azimuthal velocity field that
balances Coriolis forces against baroclinic buoyancy forces in a
rotating system. It is not a primary feature of any part of this
work, but does occur in the experimental work reported in chapter
6 and so a brief summary of the theory describing it s given
here. A more complete review is given by Pedlosky (1979): the
following deals only with the nature of the thermal wind, not
with the dinstabilities that arouse dnterest in atmosphere
studies.

The convection theory that has been dealt with considers
cases of unstable equilibrium: g.Vp<0, gn Vp = 0.
If gAaVp £ 0 » i.e. if the gravity and density gradients
are inclined to each ofher rather than being antiparallel, then
there is an overturning force acting on the fluid, generating
vorticity. In a non-rotating system such a baroclinic density
distribution Lleads to convection and the system cannot be in
stat{c equilibrium. Rotation of the system dintroduces the
possibility of the existence of azimuthal flows that, through the
Coriolis force, set up a dynamic pressure field to balance the
buoyancy forces and sé prevent convection. The creation of such
a flow pattern involves the deflection of the initial convection
flows (which obey Ekman béundary layer theory din a vrapidly
rotating system) by the <Coriolis forces until a dynamic

equilibrium is reached: this time dependent behaviour is not




dealt with here. A similar problem in stellar fluid dynamics is
that of Eddington-Sweet currents, which should be modified by
rotational effects (Busse, 1981).

Consider the non-linear vorticity equation:

Vorg : 4 (4.93)

The body force acceleration g, which may be a combination of

gravity and of centrifugal accelerations, is conservative,so that

Vag =0 . Let wus consider the azimuthal ( 6) component of
W
vorticity in the steady state ( %% =0 )J:
(u.Vwy = KV‘“E> + Wiog + 20 3 (ug) (4.94)
— 0 o} - o]
¢ 9z

In the <case of slow rotation or in the neighbourhood of
boundaries the viscous term is significant. However, in many
geophysical applications the typical length-scale L of the system
is sufficiently Llarge that we can consider the rapid-rotation

Limit in the 1interior of the fluid:

(u.Mw, = (YP"9) +293(u)+D(E) (4.95)
- e 3z ¢ 2

where E = V/q 2, the Ekman number, s small. This holds in the

atmosphere or —core for L 2 T m if we consider non-turbulent

processes and take v:167m28_1for the core or v = 10_5m28_1
for air.

Now lLet us consider the specific cylindrical geometry of the

experiments described in chapter 6.




=,

|

P QD};)E —

3

-

There is cylindrical symmetry ‘and the dominant body force in the
region of interest (r = ro ) is the radial centrifugal force.

However there dis also an axial body force, the Llaboratory

gravity, -9, 2 . It 1is this that gives rise to baroclinic
effects.
ow 9w au
u_ . ® + u_._ "0 - B(r)g + 2Q 0] (4.96)
I = z 0 e
or 9z 3z
Neglecting boundary Llayer effects, we can put u. = u = 0and
hence get a solution:
U = - B(r).go. (z + ¢) (4.97)
29
for some constant ¢ » zero if there is symmetry about z = 0.

This solution requires modification for the effect of Ekman
onndahy layers on the rigid surfaces of.the experimental tank,
similarly there are internal viscous forces arising from the non-
uniformity of the flow and it assumes cylindrical symmetry. That
symmetry is- broken in certain of the experiments by the
introduction of a radjal thermistor array.

Rigid surfaces

Following Greenspan (1968), the modification to the interior
flow arising from the surface zZ = + L/2 " is an axial flow

(i.e. normal to the surfaces)




1
u = - EZL | au u ]
VA 229 + =9
2 [ar r g = L/Z
1 (4.98)
L v/295L [a(e) | B(r) ‘.98
L air “.r

Note that this wvelocity is constant with respect to =z and
represents a flow from one Ekman boundary layer to the other,
its sign depending on B (r). The counterflow to maintain the
boundary Llayers occurs in_the inner side-wall boundary Layer
(thickness O (Ebg)). Side-wall boundary conditions are satisfied
over a thicker (O(Eqﬂ-)) boundary layer. In the Limit of rapid
rotation (E—-+0), these sidewall effects are negligible compared

z L/2. Greenspan (1968) gives a des-

with the end surface z =
cription of the various boundary layers ( §2.18).

Internal shear

)
The boundary layer suction velocity is correct only to O(E‘/2

and cannot accurately describe a basic state for any finer
corrections. Internal shears, Lleading to viscous stresses, are
of O0CE), provided that the radial variation of B (r) is on a
length-scale comparable to L. Only if variations of B (r) are on
radial Length scales O(EV2 JL or less do internal shears become
significant compared to the boundary Llayer suction in modifying
the veiocity profile. Accordingly such effects are ignored in

this work.

=
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o
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The experimental tank is cylindrically symmetric except in
the cases in which a radial thermistor array is deployed. The
array acts as a radial ba{ier to azimﬁthaL flows by virtue of
changing the available depth of the tank: a geostrophic path of
constant depth is_no longer available for the thermal wind. The
change of depth is approximately 6 mm in a tank of depth 200 mm,
much greater than the Ekman layer thickness. Such a change of

depth can support a pressure difference sufficient to prevent the
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thermal wind if its Rossby number ¢ = U/dQ is small, where d is
the length-scale of the obstacle and U the thermal wind speed 1in

the absence of the obstacle. In a typical experiment,

8 = 107 m
N -2
g, * 10 oom S
2 0 = 10°? rad.s_j
z - 10_1 m

so the expected thermal wind velocity is

U = 10_4 ms—1

and the critical depth d for "blocking'" on the criterion € << 1
is
d »>> U/Q

>> 10"6 m

The Ekman Layer thickness is of order 10—4m and so is of
more significance in tﬁis case than the Rossby number criterion:
obstacles <can only have a "blocking" effect if they are Llarge
enough to affect the internal region of inviscid flow.

Clearly any feasible radial thermistor array is Likely to
act as an effective barrier to the thermal wind. On the other
hand) isolated bumps 1in the top and bottom boundaries have no
comparable blocking effect, provided there exist geostrophic
paths around such buﬁps. The radial array effectively changes
the degree of connectedness of the cylindrical annulus, owing to
the combination of 1its ”Large” size and its continuity across the

annulus.

The effect of the blocking of the thermal wind by the




thermistor array is to eliminate the dynamic pressure field that
opposes  the buoyancy forces associated with the Llaboratory
gravity. It 1dis for this reason that the measured temperature
profiles in § 6.3 are distorted by the convective heat
transport, compared with the experiments performed without the
thermistor array. Note that similar experiments performed in a
spherical tank would not suffer such an effect, as geostrophic
paths exist around a radial array (by deflection dinwards in

radius, to enjoy a matching increase 1in depth between the

spherical boundary waLLs).(ﬁ%.én%\.
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S. Numerical solutions to the
5.1 Shooting program

In the last chapter it is apparent that analytical solutions
even of the Llinear equations in convenient geometries are rarely
simple, or indeed obtainable. On the other hand, numerical
integration of simultaneous linear differential equations such as
(2.11) is generally quite easy, wusing a standard integration
routine, and such integrations may therefore be used to test the
result of "guesses’ for the desired eigenvalue R, the Rayleigh
number, and thence to find the eigenvalues by an Jterative
routine. The problem becomes one of finding a starting
condition, in terms of both initial values for the variables at
one boundary and of the parameter R, such that integration of the
differential equations through the region of the problem vyields
values for the variables at the boundaries that fit the boundary
conditions. Only one dimensional regions of integration are
investigated 1in this_work, owing to the simple geometries of the
problems investigated. This method is known as a '"shooting"
method of finding eigenvalues and functions of such problems. It
inQoLvés both a Llinear dinversion of results from trial
integrations in order to fit all but one of the boundary
conditions by varying the starting values for the variables, and
a non-linear diteration 1in the parameter R to fit the final
boundary-condition. In general we are dealing with simultaneous
differential equations in (2n) wvariables, with (n) boundary
conditions on each of the two boundaries, and this requires a
linear inversion of a ((n-1)x(n-1)) results matrix followed by

the non-linear iteration. The case n = 1 occurs, in the plane

lLayer problem in the Limit T - o (see § 4.2 for analysis), and
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in this there need be no Linear inversion stage: the one unknown
variable at the opening boundary can be normalised to unity. n =
4 or 8 is required for the general plane Layer problem, the
latter if overstability is to be considered. n =3 1is required
for the cylindrical annulus problem, with end-walls of zZero
inclination.

The program will now be described in the version for n = 4,
appropriate for solving the steady convection problem in a plane
layer (see flowchart in Fig. 5.1). The equations to be solved

are (2.11) which are:

[ B2 ~ a® } Z = - T.DU
[ D2 - a2 1% U = DZ + F
[ D* - a® ] F = —Ra?.f(z).U
The shooting program treats these as the following ejght

simultaneous equations (subroutine 'RHT')

2

DY (8) = - T Y(2) + a% v(7)
DY (7) = Y (8)

DY (6) = - (R F(2)a%) Y(1) + a2 Y(5)

DY (5) = Y (6)

DY (4) = Y(5) + Y(8) + 2a°Y(3) - a“y(1)
DY (3) = Y (4)

DY () = Y (3

DY (1) = Y (2)

where U, DU, D°U, DU are to be identified with Y(1) to Y(4), F,

DF with Y(5), Y(6) and Z, DZ with Y(7), Y(8) respectively.
Integration of these equations over the interval Z = 0 to Z = h

is performed by a standard Ath order Runge-Kutta dintegration

subroutine ('RKM"), from Dr. Busse’'s group at UCLA, modified to
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incorporate a shortened step length (x 1/10) in the step nearest
the boundaries in order to improve the resolution of boundary

layers.

Typical opening boundary conditions at Z = 0 are (rigid,

constant temperature boundary):

U = Y1) = 0
puU = Y(2) = 0
F = Y() = 0
z = Y(7) = 0

which leaves four opening values to be set, which <can be

expressed as a vector X:

X = (x1, X5, Xz, x4)
for the opening boundary values (z = o)
Y(3) = X4
Y(4) = X5
Y(6) = X3
Y(8) = X,

After integration, one has an ‘error’ value on each of the
closing boundary conditions, which can be expressed as a vector

E.:

E = (e1, €5, €3, e4)

where at the closing boundary, again taking a rigid constant

temperature boundary as our example,

Y1) = €y
Y(2) = e,
Y(5) = ez
Y(7) = e,
The aim is now E = 0, and we can achieve this by varying X and

the parameter R. From inspection of the equations ( 2.11), E is

a Llinear function of X. Trial integrations are made with
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X = (1, 0, 0, O

=1

52 = (0, 1, 0, O

Xo = 0, 0, 1, O
and 54 = (0, 0, 0, 1

and a results matrix F (3 x 3) constructed

for i, ] = 2,3,4 (subroutine "SOLVE")
This matrix is then inverted to give the input initial conditions

X, normalised as

X = 4, X5, Xz, x4)
that will yield
E (X)) = (e1, 0, 0, O

so that three boundary conditions are satisfied (subroutine
"INVERT ").

If n =3 o0or n =24, the inversion routine is explicit and
algebraic but for the program version n = 8 the inversion routine
is a standard Gauss-Jordan inversion, from Dr. Busse's group at
UCLA.

We now have an error estimate, €, for our chosen value R
and the set parameters a, T, h, f(z). The object now is to
reduce .e1 to zero by manipulation of R and then to test the
effect on this eigenvalue R of varying the horizontal wavenumber
a. The minimum of R with respect to a vyields the critical
Rayleigh number RC and wavenumber a. for the given conditions.

Manipulation of R is performed by a Newton-Raphson iteration
subroutine (CONVRG),'which includes tests on successive values of
R to deal with both diverging predictions and the physically
unacceptable prediction of négative R. Iteratipn continues until

the error estimate €, has been reduced by some preset factor,

typically 103, which is taken as being adequate convergence.
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Minimisation of R with respect to a is achieved by the
adoption of linearly stepped values of a until the result R(Ca) is
found to increase. The last 3 results

R (a_ =26 )
o

R (a_ - 6
0
R (ao)
where 8 is the steplength and R(ao) > R(aO - § ), are fitted by

a parabola in "a’ (subroutine PARAB, from E. Bolton, UCLA) to

give a prediction for the minimum in R(Ca) at some value ay of a.

The computation of R is then repeated for

a = a, - § /10
a = a,
a = a, + § /10

and "PARAB’ employed again to give a final prediction of RC, a,
which is then tested by computing R(ac).

Thus we have a value for the critical Rayleigh number RC and
wavenumber a. for the set boundary conditions, rotation rate (T),
fluid depth (L) and temperature profile (f(z)). Inspection of
the form of the eigeﬁfunctions for Y(1) to Y(8) acts as a check
both on the adequacy of the convergence and on whether the Llowest
eigenvalue has been found. Judicious selection of the initial
guesses for the Rayleigh number "R’ and the range of wavenumbers
"a’ tested is of practical importance in running the program: if
prior knowledge of similar set conditions is not available, it is
best to perform an initial study of the results for a sequence of
values of 'R’ and of "a’, by switching the routines "CONVRG’ and

"PARAB " out of the program.
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Boundary conditions (n = 4 version, as example)
1) Impermeable boundary: Y1) =0
2) Either a) rigid boundary: Y(2), Y(7) =0
or b) stress-free boundary: Y(3), Y(8) =0
3) Either a) perfectly conducting: Y(5) = 0
or b) fixed flux: | Y(6) = 0
or c) finite conductivity, Biot number A = kS/L.kf

where ks is wall conductivity,
kf is fluid conductivity
and L is non-dimensional wall thickness,
o} = A Y(5)+ Y(6) =0
where the sign depends on which boundary is being
considered.
Various combinations of these are reported in the following

results. Condition (3c¢) is only used in the <case of the

cylindrical annulus, in order to model the experimental tank.

5.2 Testing the program

To an extent thé shooting program is self-checking in that
it yields wvalues of the eight variables at all the integration
steps: . one can therefore check that the solution provided does
indeed meet the set boundary conditions at both ends of the fluid
region. In addition it was run for well-known problems as a
check on the numerical value of the critical Rayleigh number RC
and the optimum horizontal wavenumber a.-
1. Rayleigh-Benard érobLem, with vertical rotation.
Rigid - rigid, constant temperature boundaries
f(z) =1

Integration step = 0.05
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Variational Method Program
Taylor No. (Chandrasekhar, 1961)
I Rc ac Re ac

0.0 1707.8 3.117

0.1 1,707.2 3.11
10° 2151.7 3.50 2151.1 3.49
10" 47131 4.80 4712.4 4.78
10° 16721 7.20 16719 7.17
10° 71132 10.80 70800° 10.8°
a: not properly converged, so uncertain.
Agreement is satisfactory. The wvariational method wused by

Chandrasekhar (1961) is of limited accuracy in Llocating the
critical wavenumber a., owing to the spacing used between values
of a. At T = 106, the shooting program only gives poorly
converged results and so is inaccurate, particularly in locating
a,- This problem is discussed further in § 5.3.
2. f(z) =1 -z in 0<£z42
Stress-free, constant femperature boundaries.
Integration step = 0.10

This case was investigated by Veronis (1963) as being an
approximation to the ice-water system, 1in which the coefficient
of thermal expansion a changes sign at 4OC. Veronis used a

truncated Fourier expansion of the velocity field to compute the

critical Rayleigh number.

Veronis (T = 0): g.Apd3 = R in Veronis’® notation
pKV ZAA
The comparable case 1is Veronis )\ = 2, in which case

R = K Bq) x 2 is the appropriate conversion. For the horizontal
2ZX " I Ver.
wave-number, a = <§>Veronis X m . Hence:-
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Ba = 2.72 mh for A = 2
2\
Veronis
= 264.9
. R = 529.9 from Veronis
Compare RC = 531.1 from shooting program
\
(1 = 107 |
____________ |
|/ |
a = (0.233)
A |
Veronis
= 0.483
S.oa = 1.516 from Veronis
Compare a. = 1.513 from shooting program
Agreement here is again satisfactory. However, comparison

of the wave-form for the verticau velocity component (wO in
Veronis® notation) at the onset of convection shows differences
(fig. 5.2). Veronis noted a countercell in the uppermost part of
his fluid region, in which wO<LO, and attributed this to a
secondary circulation cell driven by viscous forces. No such
[ countercell exists in.the solution from the shooting program for
h = 2. It appears that Veronis® countercell may be an artifact
of using a Fourier expansion truncated at the fourth term. Using
the shooting program, no countercell is observed until h = 2.5.
As h increases beyond h = 2.5, the beginning of the countercell
is found to occur between Z = 2.0 and Z = 2.1, so that the first

cell only extends as far as the position of zero overall

temperature difference. In the cases 2.0< hg 2.5, there is no
countercell because of the constraint of the upper boundary.
| This inhibition of the optimum form of convection results in an

increased value for RC in this range of h, as can be seen in

: Table 5.1.
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Table 5.1

Critical Rayleigh number and wavenumber for3 a parabolic

density profile at low rotation rate (T = 10 7).

Stress—-free, constant temperature boundaries.f( z) = 1 - Z |
J

h Rc a, Start of
‘ countercell

1.0 1308.8 2.23 =

1.1 990.8 2.03 =

1.2 784.0 -~ 1.86 . - |

1.3 646.8 1.73 —~

1.4 555.7 1.61 =

1.5 497.8 1.51 = i

1.6 466.3 1.44 - |

1.7 458.,2 1.39 - |

1.8 472 .1 1.38 - |

1.9 501.5 1.43 = |

2.0 531.1 1.51 - il

2.1 549.7 1.58 - |

2.2 557.6 1.61 = |

2.3 558.8 1.62 —

2.4 556.8 1.62 - !

2.5 554 .1 1.61 2.2 |

2.6 551.8 1.60 2.1

2.7 550.4 1.59 2.1 “

2.8 549.9 1.59 2.1 i

2.9 549.8 1.59 2.1

3.0 550.2 1.59 2.1

Copy of fig. 2 from Veronis (1963) , showing the countercell
found by'a truncated series expansion analysis . This case is
equivalent to h=2.0 , for which the shooting program finds no

countercell ( see above , Table 5.1 ).

d
'?qﬂ)[-'n; 2.-- A plot of 10y versus z for A = 2 with T, normalized, i.e., (70)m = 1, and o deduced from eq.
4} A small secondary cell near the upper boundary is driven by viscous forces an is shown as the

fegion in which 0, is negative,
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3. f(z) = cos (7 2/2) in 04£1714&2
Stress-free, constant temperature boundaries.
Vertical rotation.

An alternative method of finding the chiticaL Rayleigh
number din this particular case is to use the Fourier series
expansion method set out bgfore in § 4.2, utilising the

properties of the cross-product term:

£(z) . sin (nm2) =1 sin((n-‘l)ﬁ 2\ + sin [Credg z)
7 2 7 — 7

The problem 1is therefore to find values for R such that the

following determinant is zero:

A1 B 0

B A2 B 0

0 B A3 B

° ° ° o
where the diagonai terms.are -

A, = - (12 1T2+a2)3 - T nz

:

and the off diagonal terms are either zero or
B = R a2/2

with T and a specified.

If  the determinant is truncated at some order, it defines
approximate roots for the Rayleigh number R, which may be found
numerically by the use of an iterative procedure similar to the
subroutine 'QONVRG' in the shooting program, combined with an

evaluation of the truncated determinant. It is found that

truncation at the 3rd order determinant

A1 B 0
B A2 B =0
0 B A3

gives reasonable estimates for the Rayleigh number, in that the
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change to truncating at the Ath order determinant results in no
significant change in the root R. The critical values Rc’ a. can
then be found by the use of successively finer test grids of
values of a.

A comparison of the results at two different rotation rates

from the two methods, the above determinant method and the

shooting program, is given below:

Determinant method Shooting program

T R a R a
- =g =c =c =c
0.0625 383.2 1.514 383.3 1.511

(3rd order truncation)
383.2 1.514
(4th order truncation)
62.5 582.8 2.072 582.9 2.072
(3rd order truncation)
582.8 , 2.072
(4th order truncation)
Agreement is satisfactory. The determinant method is of limited
use: only this partibutar case of f(z) = cos (112/2) gives such
a simple determinant and it is only for the stress-free, constant
temperature boundaries that a Fourier serijes expansion for U
satisfies the boundary conditions.

In genergL a grid spacing of 0.1 is used for the Runge-Kutta
integration routine, so that the Rayleigh number is evaluated at
intervals of 0.05 (dsing a normaLisation?of unstable region being
0£ z£1.0). No appreciable gain in resolution of the critical
Rayleigh number or of the critical horizontal wavenumber results

from decreasing "the spacing to 0.05 or 0.025: the following

results relate to the case of:-
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f(z) = cos (m 2/2)

rigid, constant temperature boundaries

T =

h =1.6 or 2.0

h = 1.6 h = 2.0

Grid spacing Re ac Re ac
0.1 828.84 2.035 826.66 2.006
0.05 828.65 2.029 826.43 1.999
0.025 828.64 2.029 826.41 1.999

Only in the case of f(z) being discontinuous (plane Llayer
case, reported below in § 5.3.2, Tables 5.5 to 5.7) does the
finite spacing used affect the results to a marked degree. In
other cases, f(z) is a continuous function and D f(z) is never
so large as to cause substantial changes between grid points.

- As noted above in the description of the shooting progranm,

§Ep
the ALength is reduced by a factor of 10 in the intervals next to
the boundaries, in order to assist in resolving the Ekman Llayers
Since the highest rotation rate generally

used in running the program is T = 105, for which the Ekman Llayer

T—1/4

that form at high T.
thickness 0¢( ) is approximately 0.05, this 1dis adequate:
again a test of reducing the grid spacing to 0.025 for a run with

T = 105 resulted in a change of less than 0.01% in RC, 0.1% in
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A temperature gradient of the form f(z) = cos ﬂz/2 in the
region 0 £ 7 £ h for 1< h< 2 is used as being a convenient
function of smooth form. Note that the overall temperature
difference across the layer Z = 0 to Z = 2 is zero. The Llayer 1is
unstably stratified in OS:Z<~1,‘stabLy in 1< Z<£ 2. The object of
using a smooth function f(z) is to avoid the risk of spurious
effects stemming from a discontinuity in one or more terms. A
Layered stratification, with a step-function for f(z), will be
considered separately, in§ 5.3.2.

The shooting program is run for different positions of the
top boundary, h =1.0, 1.1, to 2.0. These correspond first to
having no stable layer, then to adding a stable region above the
unstable Llayer. As a result of the manner in which the scale-
depth d is defined for the purpose of the Rayleigh number R and
Taylor number T, R is proportional to VO for all of the cases
and similarly a given value for T implies the same rotation rate
for all of the cases.
90Bd"/
40%2d%/v?

R

T

1) Rigid, constant temperature boundaries
(Figs. 5.3 to 5.5 and Table 5.2)

At low rotation rates, T = 0(1), and a top boundary at z = h
= 1.0, the pfofiLe of vertical velocity U at the onset of steady
convection is very similar in shape for both f(z) = cos (nz/2 )
and f(z) = 1.0. The asymmetry of the density profile f(z) = cos
( 7z/2) scarcely deflects the velocity U from being symmetric

about the mid-point, =z = 0.5. As one considers the top boundary

moved to h = 1.5 and then to h = 2.0, the profile of U penetrates
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T =T

into the stable region, allowing a longer effective length-scale

and so a lLower value for the critical Rayleigh number (fig. 5.3
and Table 5.2).

The =effect of increasing the rotation rate, as measured by
T, is to bias the profile of U towards the region of greatest
instability. For T 2 103,‘ this effect is sufficiently great

2.0 become very similar 1in

that the profiles for h = 1.5 and h
the unstable region (see fig. 5.3): the combination of rapid
rotation and a stable layer shields the solution from the actual
position of the upper boundary, =z = h. Thus the rotation

emphasizes the effect of the stable layer. This may be seen more

2

clearly in the profiles of D"U plotted in fig. 5.4. Increasing

the rotation rate from T =1 to T = 103 causes a shift in the

profiles of X towards the unstable region, particularly marked

for a deep stable region, h = 2.0. A further increase, to T =
105 results in DZU being small except in the neighbourhood of the
rigid boundaries, indicating that Ekman boundary layer theory and

a reduction in the effective order of the equations to 2 in the

interjor region become applicable for T } 105.

Figure 5.5 shows the variation of critical Rayleigh number

with the position of the upper boundary, h, for various rotation

rates (see also Table 5.2). Medium rotation rates, T = 103 or

104, show minima for the critical Rayleigh number at about h =

1.6, rather than at h = 1.8 as for T = 1. This reflects the

decreased advantage to the system of any penetration of the

5

stable region. At T = 10 however, RC appears to continue de-

creasing with h, although this conclusion is limited by the

difficulty in achieving convergence for T = 105, h 2 1.7 (see

§5.3.3 for this problem). From Table 5.2, it is <clear that

changing the top boundary position from h = 1.0 to, say, h = 1.6
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Fig. 5.3

Vertical velocity profiles ,
rigid , constant temperature

boundaries , f(z)=cos(wz/2).
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Variation of critical Rayleigh
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Table 5.2

- e o mm  m em em

Critical Rayleigh numbers and wavenumbers
Rigid, constant temperature boundaries

f(&) = cos (ﬂi./z)
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T h = 1.0 1.1 1.2 1.3 1.4
1 R 24383 1855 1450 1185 1009
al 3.13 2.85 2.62 2.42 2.27
10° R 3125 5527 2158 1933 1804
ag 3.50 3.31 3.16 3.06 2.99
10% R, 6829 6118 5675 5410 5265
a 4.81 4.69 4.60 4.53 4.49
10° R, 24158 22508 21445 20790 20416
a 7.25 7.09 6.98 6.89 6.84
100 R, 102420,
a 10.98
S - S
a: step Llength = D.025
T 1.5 1.6 1.7 1.8 1.9 2.0
1 395 329 799 797 810 827
2.14 2.04 1.97 1.95 1.97 2.01
103 1740 1720 1727 1743 1760 1772
2.95 2.94 2.96 2.99 3.01 3.04
10% 5202 5184 5191 5204 5215 5227
4.48 448 4.49 4.51 4.53 4.54
10° 20221 20138 20087 failed
6.82 6.81 6.83
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has a much greater effect in decreasing the <c¢ritical Rayleigh

2483,

Rc(h=1.6) = 829, a reduction of 67%) than at medijum (T = 103,

number R at low rotation rates (T = 1, R_(h=1.0)

Rc(h=1.0) = 3125, Rc(h=1.6) = 1720, a reduction of 45% or at high
rotation rates (T = 105, Rc(h=1.0) = 24158, Rc(h=1.6) = 20138, a
reduction of 17%).
2) Stress-free, constant temberature boundaries.

figs. 5.6 and 5.7, table 5.3

The same effect of increasing the rotation rate on the
extent of penetration into the stable region occurs with stress-
free boﬁndaries.’ Fig. 5.6 shows U, fig. 5.7 shows D2U: the
compression of the flow pattern into the wunstable region 1is
clearer than for rigid boundaries as there is no Ekman boundary

lLayer effect to obscure fig. 5.7. The profile of D2U for h = 1.5

2

shows how at fast rotation (T = 105) DU changes sign near z
1.0: the <cross-over occurring for z less than 1.0 by a small
amount, in accordance with our expectations from the 2nd order
approximate equations (see § 5.3.4 for discussion of the rapid
rotation Limit).
3) Rigid-Rigid, constant heat flux boundaries

figs. 5.8 to 5.10, table 5.4

The case of constant heat flux boundaries has been
investigated 1in recent years primarily as a result of the Llong
horizontal wavelengths associated with it, which hve been of
interest to’studies of mantle convection (Sparrow et al. 1964,
Chapman & Proctor, ~ 1980). Penetrative convection, in the form
of an idealised ice-water system, f(z) = 1-z, with fixed-flux
boundaries was investigated by Roberts (1982) who found that the

critical wavenumber for the onset of convection remains zero for

Llayer depths h £ 1.6492. For h » 1.6492, he found a bifurcation
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Fig. 5.6

Vertical velocity profiles
stress-free , constant
temperature boundaries ,
flz) = cos(wz/2).

Normalised DU = 10.
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velocity , stress-free , constant
temperature boundaries .
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fl(z) = cos(wz/2)




Critical Rayleigh numbers and wavenumbers
Stress-free, constant temperature boundaries

f(®) = cos ('rrz/z)

I Ch o=

1 R
a\d
[
107 R
a
c
10% R
C
a
C
10° R
C
] a
C
109 R
C
a
C

1.9 15
968.5 562.4
2.24 1.54
2441.7 1724 .4
3.72 3.42
7739.8 6095.2
5.72 5426
30416 25121
8.67 7.96
131190
12.95
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to a non-zero critical wavenumber, more akin to the —case of

perfectly-conducting boundaries. This Llimits the use of the
simplification a. = 0 in a non-Llinear analysis to cases in which
the stable region is not too large. In the cases of a, = 0, the

vertical velocity ©perturbation profile becomes independent of
f(z), so that penetration may be said to be complete, with the
stable layer having no effect én the form of the convection.

The effect of rotation on these reéuLts tends to be to
restrict the range of applicability of the solution ac = 0.
Using our standard penetrative profile, f(z) = cos (mz/2) , at T
= 1 we find that a, = 0 is the solution for layer depths h £ 1.6,

whereas a, # 0 for h 2 1.7, in broad agreement with Roberts’

results (given the slight difference in f(z)). However, at T =
103, aC = 0 is the critical solution only for the cases h £ 1.1,
4

whilst at T = 107, acfé 0 even for h = 1.0.

Figures 5.8 to 5.10 plot the vertical velocity profile, U,
D U and the temperature perturbation F for the critical states.
In the cases where i, = 0, the profiles are symmetric about the
mid-point inz, z = h/2, demonstrating the independence of the
solution from f( z) in these cases. This is especially marked in
the profiles of F, the temperature perturbation, in which the
cases a_ = 0 correspond to F = constant throughout the layer, as
is obvious from the equations.

Table 5.4 gijves the critical wavenumber aC and Rayleigh
number Rc for various cases, to show the varijation with rotation
and with the depth of layer h. Except jn the region of both (h -
1.0 and T small, in which a, = 0, there is no qualitative
difference from the behaviour of convecting layers with constant

temperature boundaries.

In terms of geophysical applications, the daily rotation of
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Fig. 5.8

Vertical velocity profiles ,
6 | rigid , fixed flux boundaries,
f(z) = coslmz/2).

Normalised D2U = 100.




15

Fig. 5.8

Second derivative of vertical velocity,
rigid , fixed-flux boundaries .

f(z) = cos(wz/2) .




Fig. 5.10

Temperature perturbation F ,

rigid , fixed-flux boundaries ,

f(z) = cos( z/2) .

Normalised by D2U = 1.0 .




Table 5.4

e e s e e e

Critical Rayleigh numbers and wavenumbers.

Rigid, fixed-flux boundaries f(z) = cos ( wafa )
T h o= 1.0 1.1 1.2 1.3 1.4
1 R 1065 800 631 521 452
al 0 0 0 0 0
103 R 1675 1460 1344 1285 1264
ag 0 0 1.19 1.62 1.91
10* R 5320
a’ 3.51
G
5
10 R 21815
a® 6.52
[
T 1.5 1.5 1.7 1.8 1.9 2.0
1 412 409 417 447 476 497
0 ) 0.68 1.08 1.31 1.44
103 1268 1287 1311 1332 1348 1358
2.11 2.27 2.39 2.48 2.54 2.57
10% 4491 4508
3.97 4.11
10° 18728 ‘
6.44




the Earth often gives rise to cases in which T > 10", For
example, if one considers the convection problem in solar energy
ponds, one only needs a depth of pond of approximately 1 metre to

give T ~1O4 (based on Vv = 10_6 mzs—1

for water). Thus only
very small-scale convective phenomena, or those in which the
viscosity is great (such as mantle convection) are likely to be

affected by the large aspect ratios associated with constant heat

flux boundaries. In other <cases, one <can expect "normal"
horizontal wavenumbers even if constant heat flux is the
appropriate thermal boundary condition. In particular, for the
core the rotation rate is very high (T = 10 30) and so the

poorly conducting mantle will not lead to Llong wavelength

convection cells.

f(z) = 1.0 in0 £ z £ 1.0
= -A in 1.0< z £ h

The advantage of using a layered profile of this form rather
than f(Cz) = cos ( ﬁz/Z ) or f(z) = 1=z is that it becomes
easy to introduce an asymmetry about 2z = 1 din order to
investigate the effect of a relatively thin but strongly
stratified stable region on the onset of convection. Rigid,
constant temperature boundaries are used in the calculations for
this case: boundary condition effects should be qualitatively
similar to those for the previous section (f( z) = cos Tz/2 )
after allowing for the greater shielding of the upper boundary by
the strong stable Llayer.

The critical Rayleigh nﬁmbers, horizontal . wavenumbers and
the point at which a countercell starts (if any) are Llisted in

Tables 5.5 to 5.7, for values of A in the range 10 to 1000. In
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each case, as h in;reases to sufficiently large values (e.g. h >
1.8 for A =10, h =2 1.4 for A = 100), the results tend to
constant wvalues, those for low A being of lLower Rayleigh number
and wavenumber as is expected for a less '"constricted” system.
At low Taylor number, these results for lLarge h feature Llower
values for both Rayleigh numbgr and wavenumber than for h = 1.0
(the Llinear temperature profile end-member of this case) but at
high Taylor number coupled with high value for A this is not so.
In these latter cases, the stable layer acts as a more restric-
tive boundary to the convection than would a rigid boundary.
Similarly, in these cases, Llower values of h (e.g. h = 1.1) do
not display the initial relaxation of Rc, a. that is clear for
the cases of lower values for A or for T.

A countercell is associated with the solutions for
sufficiently Llarge h (as in the parabolic profile with zero
rotation investigated by Veronis (1963)): once well established,
this is responsible for the lack of effect of any further
increase in h, noted above. Increased values of A result in the

countercell appearing at smaller values of h, as might be

expected. Increased rotation rate increases the value of h for

onset however. From the analysis in § 4.2, one predicts that as
T is increased still further countercells will no lLonger feature
in the solution, regardless of h. This is a result of the
tendence of fast rotation rate to change the effective order of

the differential equations from 8 to 2.

footnote * The finite spacing wusing in‘ the Runge-Kutta
integration Lleads to f(zZ ) = -A being applied first for z =

1.05, except in the runs for A = 1000 (see Table 5.7)
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Table 5.5 Critical Rayleigh numbers and wavenumbers
Rigid, constant temperature boundaries
f (&) =1 for Z¢&1 . =z=10 for 1€2 £ h
T h 1.9 1.1 1.2 1.3 1.4
1 R. 1709 1185 923 913 1023
a; 3.12 2.83 2.60 2.50 2.65
103 Rc 2152 1622 1396 1488 1611
a’ 3.49 3.29 3.16 3.21 3.39
10% R, 4711 3988 3867 4186 4307
al 4.79 4,66 4,67 4.90 5.03
105 RC 16719 15145 15528 16133 16250
a. 7.17 7.06 7.29 7.51 7.5
T 1.5 1.6 1.7 1.8 2.0
K 1057 1050 1035 1028 1029
2.76 2.76 2.74 2.71 2.71
IO3 1640 1636 1632 1631 1630
3.47 3.48 3.48 3.48 3.47
104 4326 4328 4326 4326 4326
5.06 5.06 5.06 "5.06 5.06
105 16269 16272 16272 16273 16260 + 10
7.59 7.59 7.60 + .02 7.59 7.7 + 0.1




Critical Rayleigh numbers and wavenumbers
Rigid, Constant temperature boundaries

f(2) =1 for %<1
= =100 for 1 <2 ¢ h
T h k 1.0 1.1 1.2 1.3 1.4 T 5 1.6
1 RC 1709 1343 1623 1670 1610 1607 1610
a, 3.12 2.864 3.09 3.26 3.19 3.16 3.17
103 'Rc 2152 1855 2199 2222 2188 2190 2189
a, 3.49 3.32 3.66 3.78 375 3.74 3.74
104 Rc ‘ 4711 4709 5117 5109 5102 5099 5099
a, 4.79 4,85 5.25 5.29 ‘ 5.28 5.28 5.28
105 RC J 16719 18172 18141 18123 18117 18120 + 10 failed
a 7.17 7.64 7.87 7.88 7.87 7.9 + 1




Critical Rayleigh numbers and wavenumbers

Rigid, constant temperature boundaries

f () =1 for 241
= -1000 for 1 <= ¢ h
T h 1.0 1.1 1.2 Tu3 1.4 1.5 1.6

1 R, 1708 2129 ‘2182 2152 2153 2151 2151
a. 3.12 3.34 5.55 3.48 3.49 3.49 3.48

103 RC 2151 2708 2var 2716 2713 2713 2713
a, 3.49 5.8% 3.97 3.95 3.95 3.95 3.95

10% R 4712 5808 5767 5763 5763 5763 failed
a 4.79 5.36 5.41 5.41 5.41 5.41

10 R 16720 19718 19625 failed failed failed failed




A second reversal of the velocity fieta.is observed in some
cases, generally those at high h and T, but this is not properly
resolved within the convergence error of the iteration scheme and
so may be just numerical error. Its occurrence has no effect on

the convective part of the solutions.

Countercell Position: slow rotation (T = 1)

see Fig 5.11 for a schematic diagram of the flow

Fig. 5.11 schematic diagram of vertical velocity
U
I 2o
N 3

countercell

O LA \J—/ T >

11
< > &— >
unstable stable
flz)=+1 flz)=-A

Table 5.8 Lists the positions z at which flow reverses for
varijous values of A and T = 1. For 1 € A & 20 the grid spacing
is reduced to 0.05 and so f(z) = -A is first applied at z = 1.0
+ 3 (0.05) in the Runge-Kutta routine, whilst for 20 < A, the
grid spacing is again reduced to 0.02.

No simple power-law relates the depth of penetration to the
countercell, z, to the strength A of the stabLe Layer (figure
5.12 for logarithmic plot). In particular, A z = constant is

(e}

‘not wvalid, so there is no relationship based directly on the
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20 2.5
100 1.6
1000 1.6
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Notes: a: error + 0.010,
D: Integration spa

Z = (z -1
(o]

error + 3.00

lated position Adjusted position

reversal 2

5 = (z - 1.025)

(a)

1.910 0.835
1.640 . 0.615
1.415 0.390

1.305 0.280

- 1.235 0.210

1.129b 0.119b
1.068b 0.058b

1.060b 0.050b

based on integration spacing = 9.05

cing = 0.02
.01
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Fig. 5.12

Logarithmic plot of countercell
position zO against strength A
of the stable layer

Rigid , constant temperature
boundaries , f(z) =1 in z<1 ,

=-A in z>1




For Llarge A, A z, >> 1, indicating that the countercell

starts at a point whose density is stable relative to the base

|
overall temperature difference across the first convective cell. /
z= 0 of the system (fig. 5.13).

A countercell Fig. 5.13

convective cell

> density difference

At high rotation rates (T — o ) there should be no iw
countercell since, following § 4.2, the equations are ‘W
effectively reduced to 2nd order and the flow in the stable \
region becomes one of exponential decay. In order to illustrate
the transition to this, figure 5.14 shows the vertical velocity

> and 10%. A grid

profile for the case A = 100 and T = 1, 10
spacing of 0.02 1is wused in the <calculations and the upper
boundary. is at h = 1.4. Figure 5.14 shows that the increased
rotation rates result both in the convection being more closely
confined to the unstable region 0 < = £ 1.0 (as in the case of

f( z) = cos (’ mz/2 ) considered previously) and in a weakening

of the countercell in the stable region

For large values of T and R, the 8th order shooting program il

fails to —converge, owing to the combination of two problems.
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=1

Fig. 5.14

Effect of rotation rate on the
extent of penetration into a
) ra
T—103 strongly stable layer .

Vertical velocity , rigid ,

constant temperature boundaries .

flz) = 1 in ze1

=-100 in z%1

T=10
', stable :
| layer |




]

>FirstLy, in cases where a stable region exists (h > 1.0) there
is the exponential growth in each shot trial solution in the
region of f( z)<0, which becomes more extreme as the Rayleigh
number is increased. Secondly, as T becomes large the equations
become similar to the 2nd order T — o« approximation discussed
in § 4.2: as this occurs, there is increasing difficulty in
inverting the results matrix (which tends towards singularity).
The Limits of wuse of the shooting program are mapped out in
figure 5.15.

In order to extend solutions into the high T region, it s
best to take the approximate 2nd order equations from the T — o
analysis. Numerical integration of these is a simple initial

value problem in which the one wunknown starting boundary

condition (DU) can be set arbitrarily to DU 1.0. Results from

such an integration are gijven in Table 5.9, with those from the

4 and 105 for

8th order equations for rigid boundaries and T = 10
comparison. Figure 5.16 shows a logarithmic plot of <critical

Rayleigh numbers against Taylor number for h = 1.0 by both
5

methods. For T > 107, it appears that the approximation of T»w

is reasonable, with the viscous boundary conditions becoming

negligible.

5.3.4. Physical explanation for reduced penetration

One physjcaL view of pénetrative convection 1is that it
occurs in order to increase the effective depth of the system,
even at the expense of a decrease in the overall temperature
&ifference, so as to increase the Rayleigh number of the
convecting region (Veronis, 11963). With a smooth temperature
profile, the overall temperature difference will of course be a

maximum if the boundary for —convection is at the point where
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Table 5.9

Critical Rayleigh numbers and wavenumbers

2nd order equations,
cos (vwe/y)

f () =

-

10

8th order
R.RAF-F}

2nd order
8th order
R.R./{F-F}

2nd order

Znd order

{

with comparison to 8th

order for T = 10

T S e m e o e o e Tm o e s T S RS T o e i 8 T v S G e e e T emm sy iem 8 e A® M e e R s e T« m 8 S e e w8 -t oy - n oy T

10

10

10

10

10

2nd order

8th order

R.R.

2nd order

2nd order

10

10

10

10

1.2 1.4
7740 5675 5265
5.72 4.60 L. 49
5204 4976
5.81 5.63
30,416 21,445 20,416
8.67 6.98 6.84
24,152 23,083
8.53 8.27
4 1.12 x 10°  1.07
12.53 12.14
3 5.20 x 10°  4.97
18.39 17.83
6 2.42 x 10°  2.31
27.0 26.1
7 1.12 x 107 1.07
39.6 38.4
1.8 2.0
5204 5227
4.51 4,54
4872 4867
5.51 5.50
fajled failed
22,615 22,582
8.09 8.07
10° 1.05 x 10°  1.05
- 11.88 11.85
10° 4.87 x 10°  4.87
17.42 17.39
10° 3.26 x 10% 2.28
25.6 255
107 1.05 x 10’  1.05
37.5 37.4
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Fig. 5.16
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Comparison of the critical
Rayleigh numbers derived
from the 2nd order and the % |
Bth order equations .
F-F : stress-free) '
Jboundaries

R-R : rigid ) |
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fCz ) =0, but will diminish but slightly as one considers other
nearby positions for the effective boundary. As a result, the d3

term 1in the expression for the non-rotating Rayleigh number s

dominant:

ga(VT.d)d>
KV

(VT.d) is nearly constant in this region

° R/R a d , favouring penetration.

However, in the Llimit of rapid rotation, we may expect Rca

2 3
1./

(Chandrasekhar, 1961)

2 'S 2
where T = 49 d/v
. R/ /3
Rc a d
Clearly in this Limit there is Llittle "incentive" for the

system to convect on a deeper length-scale, so that penetration
of the stable region is not favoured.
Alternatively, we can consider the reduced equation (4.13)

in the Limit T -—» o
2 2 &
T DU = a [a - R.F(z)] U

When R.fC z ) is Llarge and positive, we get a ‘sine’
solution, as in Benard convection. When R.f(z ) is negative, we

get exponentially decaying solutions. The changeover occurs when

{a“ - R.f(z)]

changes sign, i.e. at a point where f(z ) is positive. Thus the
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effective region for convection is restricfed to only part of the
unstable region: the rapid rotation therefore reduces the extent

of penetration through the reduction in the order of the equation

from 8 to 2.

5.4 "Overstable” Convection

The foregoing results ‘refer to the onset of steady
convection, in which the marginal case is that of zero growth, p
= 0. From equations 4.7a to 4.7c it is possible to envisage
solutions which are marginal in the sense that Re(p) = 0 (no
growth or decay) but which are oscillatory, with Im(p) ;é 0. In
order to investigate such solutions, one must consider both the
real and the imaginary parts of the variables U,F,Z. Thus the
shooting program has to be extended to 16 simultaneous Llinear
diffential equations, with 8 boundary conditions at each boun-
dary, those for the imaginary parts being the equivalent condi-
tions to those for the real parts. The Llinear dinversion of the
trial solutions is now that of a (7 x 7) matrix, derived from 8
trial initial condition.

Using this method, one has to set both the horizontal
wavenumber “a’ and the overstable frequency s’ ( = Im(p)) and
then search for the Rayleigh number that will satisfy the
boundary conditions. Although the Rayleigh number must in fact
be real, being a physical value, the root for the problem for
arbitrary pairs of‘a; "s'will not necessarily be real and so one
is faced with the additional problem of finding the value of "a°’
for given s’ (or vice versa) that will yield a purely real root.
Chandrasekhar (1961, pp 114-124) discusses this at greater
length. Mismatched pairs of "a’, “s’ will yield no real value

for R at which the error in fitting the boundary-conditions s
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zero (or, in practice, is less than a small Llimit). If "a’, "s’
are close to being a matched pair, one finds that the error
converges towards zero as R approaches to its "root" except in a
small region, in which it diverges. This region is found to
become smaller as one refines the matching of 'a’, "s’, but can
never be eliminated. As a result the convergence routine cannot
be used on the Rayleigh number, and finding a root becomes a step
by step manual inspection of the results from a grid of trial
values of R. This procedure is cumbersome and time consuming:
accordingly few results are given in this section. One guide to
finding the appropriate value of 'ac' to match to 's® s to
follow the wvarijation of ‘ac' and RC with s’ away from s = 0,
which must correspond to the steady convection solution. Table
5.10 sets out a comparison of results between Chandrasekhar
(1961) and the shooting program, for the one specific case of a
plane lLayer, Linear temperature profile, rigid constant tempera-
4

ture boundaries and T=10 . Agreement is good, except that the

shooting prograsm reveals that the <critical wavenumber and

A further variant of the shooting program 1is used to
investigate the convection equations 4.85a and 4.85b, for cylin-
drical convection with the body force perpendicular to the axis
of rotation. The object is both to investigate the effect of
rotation on an jidealised penetrative convection profile f(x ),
and to be able to apply the program to the observations on
laboratory experiments set out in chapter 6, for which we need to
establish an effective inner boundary to the convection solution

in order to avoid problems of large variations of the body force
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Table 5.10

= e e o o e —w

— e D o - e = o = —

f (z) =1.0: rigid, constant-temperature boundaries, h =
From shooting program, T = 10
S a R
-0 7785 L7124
10 no root found
20 no root found
30 3.60 + .05 4570 +
40 3.28 + .03 4410 +
45 3.065 + .005 4370 +
46 53.023 + .002 4368 +
47 2.978 + .002 4366 +
48 2.935 + .005 4367 +
50 2.840 + .005 4379 +
Hence critical value is RC = 4366 +3 | S = 47 +
a_ = 2.978 + .002 (for S
Note that near the critical wvalue, a_ varies
Linearly with S. N
Compare Chandrasekhar (1961) for T = 10%:
critical vatue is R = 4390 S =

3.08 (which agrees for S

1

47)

approximately

b4 .5

44.5)




-

and of curved geometry.

The ©program used needs to deal with only 6 variables and so
can use an explicit algebraic inversion of just a (2 x 2) matrix.
In order to test it, the results of Busse's (1970) theory in the
case of stress-free perfectly conducting boundaries can be
applied (see § 4.5 for this theory and table 5.11 for the
results). In the case of n, = Ng = 0, we need not map out

the results in both T and a space , Since the equations depend

1
on (E ? 0.2). Thus (&= 1, T = 1) is equivalent to (a= 10, T =

8

107). If n f 0, no such simplification is available unless

the term in n, becomes dominant. The case n # 0

D N2
has not been studied in this work, as it leads to the distinct
"Busse-roll" solutions that have been studied elsewhere (Busse

1970> .

1 f(x) = cos (max/o ) », Where o is the aspect
ratio (see § 4.5)

The cylindrical version of the shooting program produces the
results set out iﬁ Tables 5.12 to 5.15 when applied with the
above profile of temperature gradient and the four combinations
of boundary conditions: rigid/stress-free and constant
temperature/fixed flux. The results refer to an aspect ratio a-=

10, but for wease of comparison with the plane layer —case the
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I
Table 5.11 i
Shooting-program applied to '"Busse-rolls" case, as a test.
=0, @« =10, f (x ) =1.0, stress-free perfectly conducting
boundaries |
Rayleigh ' Horizontal il
T number wavenumber Notes ‘f
R b il
1 658 - 22%23 (1) il
10° 660 22.24 WW
il
10% 664 22 .97 f
‘\1“ ‘ |
10% 677 22.38 |
108 720 22.72 fﬂ
il
1012 852 23.59 il
i
1012 1257 25.40 I
I
[
10 2497 27.76 i
16 i
10 6339 29.78 2) e
I
Notes:1 In Limit T-»0, Busse predicts R_ —w  657.5 il
b " ma = 22.214 \W”
LFY i
2 From §4.5 , equation 4.87 , predict R_ = 6341 for ‘w
b = 29.78 and i
a = TrT Q. “1}‘ I “
HM
“i‘\y\‘;
i
il |
i
il
il
“\ ‘ I
:i‘; “\}‘ ‘
:lj“:\:““ I
I
I
|
i
i
A
0"
‘i“ \f
‘
)




the

Rayleigh number Rn and horizontal wavenumber are normalised:

R = R/of'
F =
b = b/a

n

As predicted in § 4.5, the effect of increasing the rotation
rate is much Lless than in the plane layer case. The effect is
again to decrease the depth of penetration, as indicated by the
position h of lowest critical Rayleigh number.

In the two <cases of fixed flux boundaries (tables 5.14,
5.15), there is again the effect of the stable region on whether
bn = 0 is the critical solution, just as in the plane layer case.
However, the effect of rotation on this is much weaker and is
only observed in the results for stress-free boundaries (table
5.15).

Figure 5.17 shows the vertical velocity profile in the —case
of rigid, constant temperature boundaries, h=2.0and T =1,

8 or 1016. The profiles are normalised by 02

10 U(x=0) = 1.0 in
each case. Higher rates of rotation are associated with a slight
movement of the peak wvelocity further into the unstably
stratified region.
2) Parabolic profile f(x ) = 1-ax

The cylindrical version of the program has been applied to a
parabolic temperature profile in order to serve for comparison
with the experiments described in chapter 6, both in terms of
observed shape of the temperature profile and as an extension of
the model to cases in which the stable region is deep. In all
cases, a rigid bodndary at x = 0 is applied (to correspond to
the apparatus side-wall) and in general another rigid boundary is
applied at x = h. A few runs (marked by square brackets in

Table 5.16) include a stress=free boundary at x = h and these

indicate that for ah ) 2.0 this change of boundary condition has

140




Table 5.12

Critical Rayleigh numbers and wavenumbers
Rigid, constant temperature boundaries

f(x) = cos (We3x/2 ), e = aspect ratio = 10 4

Rayleigh No. and wavenumber normalised:'Rn = RC/Q., bn = bC/m

T ah = 1.0 1.2 1.4 1.6 1.8 2.0

1 R 2845 1449 1009 = 828 796 826
b 3.12 2.61 2.26 2.03 1.94 2.00

104 R 2493 1456 1015 835 803 833
b7 3.12 2.61 2.26 2.03 1.94 2.00

108 R 2575 1525 1079 900 873 904
b 3.13 2.62 2.27 2.04 1.96 2.02

1012 R 3391 2205 1708 1535 1533 1566
b, 3.17 2.66 2.33 2.13 2.09 2.15

1076 R 11301 8734 7660 7372 7419 7479
b 3.26 2.75 2.43 2.27 2.27 2.33

Table 5.13

e

Critical Rayleigh numbers and wavenumbers
Stress-free, constant temperature boundaries

f (x) = cos (Trax fa ) , & = 10
T  ah = 1.0 1.2 1.4 1.6 1.8 2.0
1 R 954 558 409 334 342 382

3 5,93 ° 1.86 1.61 1.44 1.39 1.51

104 R, 975 575 406 343 350 391

o 2.23 1.87 1.61 1,45 1.40 1.52
108 R, 1057 644 471 410 421 459
b 2.28 1.92 1.67 1.52 1.49 1.60
1012 ) 1841 1293 1069 1009 1030 1058
o 2.55 2.20 1.96 1.83 1.84 1.90
1070 R 9228 7407 6645 5459 6510 6559
b 3.00 2.56 .29 2,17 2.18 2.23




Table 5.1 ‘ ' pw

Critical Rayleigh numbers and wavenumbers i
Rigid, fixed flux boundaries ‘r
f(x) = cos (Weax/3), a= 10 il

B |
T ah = 1.0 1.2 1.4 1.5 1.8 2.0 |
I
e i £ S e e e . e e ot St e o _ _ S “HH;“‘]\
““1:“11 ‘ |
1 R, 1045 530 451 . 399 446 495 il
b 0 : { { 1.07 1.43 i
n i
4 i
10% R 1068 633 454 402 450 500 WW“
b 0 0 0 0 1.07 1.43 www
\“““
108 R 1101 660 480 433 491 544 i
b 0 0 0 0 1.08  1.44
1pte R 1419 930 742 734 876 951
o, 0 0 0 0 1.14 1.46 |
1'% R 4347 3330 3094 3424 4146 - j
b 0 0 0 0 1.34 il
‘H

T e €3 s ove AR M em m TS M e TN TV e fmm w9 B e S @ TR e —m e e e (e o2 o e e e rem Tem e = e e m vm s = - a % s e e = e

Critical Rayleigh numbers and wavenumbers
Stress-free, fixed flux boundaries

F(x) = cos (TWax [y ) , & =190
I ah = 1.0 1.2 1.4 1.6 1.8 2.0 i
5 2 S 5 TS o 9 e s e s oo o s 1 T S S 5 1§ B % e et beeere e “w““ 1
il
i
1 R_ 180 107 78 69 89 155 W%
b ) ) ) ) 9| 0.97 ‘Mm
3 \H‘:“\
0% r 183 109 80 72 93 158 i
b" 0 0 0 0 0 0.98 |
Il
10° R 206 129 99 % 130 194 it
b_ 0 0 0 0 0 1.04 Mw
W‘“‘i ‘
10'% - 438 328 294 322 4438 506 i
o 0 0 0 0 0.85 1.22 i
16 ‘H‘

10 R, 2744 2307 2238 2594 3215 - il




Fig. 5.17

Radial velocity in the ’'cylindrical’
geometry . Rigid , constant temperature

boundaries . f(x) = cosftrax/2)




no appreciable effect: the stable layer acts ;s a shield for that
boundary. Tables 5.16 and 5.17 show the results for —constant
temperature and fixed flux boundary conditions respectively. In
both cases there is only a small variation in the results as h
increases beyondah = 2.0, Lless than 10% 1in bC and less than 5%
in Rc' The only quaLitative‘change as h increases is that a

countercell does appear for ah >» 2.4 (ah > 2.2 as rotation rates

12). This is very similar to the behaviour

increase to T = 10
shown in § 5.2 in which the horijzontal plane layer version of
the program was tested on a parabolic profile. For ah % 3.0,
the countercell appears in 2.0& ax < 2.1 and so corresponds to
the region that is stable relative to all parts of the fluid
(figure 5.18).

From this, we may compare observations made on a system with
a deep stable layer with numerical models based solely on the
region 0 € ax £ 2.0, neglecting the remainder of the stable

region. Thus we can avoid both excessive computation and the

difficulty of specifying a suitable internal boundary.

The experimental tank is one in which the sidewall 1is an

imperfect conductor of finite thickness and so the shooting

program has been applied to the mixed thermal boundary
conditions, DF = + (oA )F, where X\ 1is the Biot number.
A= ks = d
ke 1
where kg, k¢ are the thermal conductivities of the solid wall

and of the fluid, | is the wall thickness and d the unstable

layer depth. The aspect ratio @ enters into the boundary-
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Table5.16

Critical Rayleigh numbers and wavenumbers i

faiLed

Rigid, constant temperature boundaries, unless marked ’ Il
for which x = h boundary is stress-free
f(x) = 1-ax , o = 10 W‘r‘{‘
I
I  ah = 1.0 1.2 1.4 1.6 1.8 2.0 |
1l
______________________ e - I i
Pe \ w‘ !
1 R 3393 2025 1426 1173 1125 1168 i
b 3.13  2.62 2.26 2.03 1.94 2.00 |
2383 1187 A
2.70 2.04 I
“h“‘:
10% R_ 3405 2034 1434 1182 1135 1178 iR
b7 3.13 2.62 2.27 2.03 1.94 2.00 e
2395 1197 |
2.71 2.05 “M‘
M
il
10°  ®_ 3516 2131 1524 1275 1234 1278 I
b” 3.13 2.62 2.27 2.05 1.97 2.02 it
2513 1296 e
273 2.6 aMﬂ
W\f i
1012 R, 4625 3075 2407 2165 2159 2206 it
b, 3.17 2.67 2.33 2.14 2.10 2.15 b
A
1 I
106 R 15343 12087 10683 10286 10342 10417 i
b 3.27 2.77 2.44 2.29 2.29 2.30 i
ﬂw
_________________________________________________________________________ | “\1\ I
it
MM
‘\“i“‘m
‘\‘1; “ \“ ‘
----------------------------- TS mmm s I
T ah = 2.2 2.4 2.6 2.8 3.0 5.0 I
WM
______________________________________________________________________________ ‘1“‘;
i
1 1188 1184 1180 1180 1180 1180 ”mﬂ
2.05 2.05 2.04 2.03 2.03 2.03 I
: 1180 i
2.03 e
i ‘r
1
10% 1198 1197 1190 1190 - 1190 1190 N
2.05 2.05 2.04 2.04 2.04 2.04 i
1190 i
2.04 [ ‘ ‘\M‘
) 1‘1\
108 1296 1295 1289 1289 1289 1289 w
2.07 2.07 2.06 2.06 2.06 2.06 |
1289 1
2.06
1012 2219 failed
2.18 R
1016 |



Table 5.17
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Rigid fixed flux boundaries

f{x)

1-ax,

a.= 10

i ak = 1.0 1.2 1.4
1 R_ 1441 859 625
b’ 0 0 0

n
104 R 1445 872 629
b 0 0 0

n
108 R, 1489 910 666
b 0 0 0

n
T 2.9 2.2 2.4 2.6

1 485
1.43
10% 691
1.43
108 752
1.43

707
1.53

713
1.53

774
1.53

7383
1.53

709
1.53

770
1.54

692
150

698
1.50

760
1.50

Critical Rayleigh numbers and wavenumbers

692
1.49

698
1.30

760
1.50




condition because of the non-dimensionalisation of the
equations, but the results depend only on A for all values of a,
Table 5.18 gives selected critical Rayleigh numbers and
wavenumbers for a range of values for A, T andah: in each case ‘
the boundaries are rigid. In these results, the stable region is
Large enough to prevent bC =0 being the critical solution for a Il
fixed flux boundary condition: the effect of changing X on Rc

and bC is therefore quite regular. Experimental conditions (A =
0.15, a =100, T = 1012) are approximately equivalent to ( A =
0.15, o =10, T = 104) through the dependence on (T0:8), and so
we expect a critical Rayleigh number for the tank of ij
approximately RC = 730.  Figure 5.18 is plotted for A = 0.10, o
=10, T = 104 and so is similar to the expected velocity profile
at the onset of convection in the tank. Note in particular the
countercell for 2.05 £ ax <€ 3.0: the main convection cell is ;
effectively confined to 0 £ ax & 2.

At Low X (i.e. nearly fixed-flux), the stable layer acts to

inhibit long wavelength convection just as it does for strictly

fixed flux boundaries.' As for that latter case, there is some
value of depth of the stable region at which a high wavenumber 1”
solution has an equally low Rayleigh number to the low wavenumber
critical solution, and so the critical wavenumber shows a jump
with increasing depth ah. Table 5.19 shows this effect for A = |
10-5. Near the low wavenumber critical solutions the Rayleigh il
number is only very weakly dependent on the wavenumber, and so i
the critical wavenumber is not well located (fig. 5.24, for A =
165, ah = 1.0). In the "deep’ cases (ah > 1.7) with high
wavenumber solutions, the effect of rotation is the usual one of ‘ﬂ
increasing both Rc'and bc' However, in the "shallow'" cases (ah

¢1.6) with a low wavenumber solution, an increased rotation rate
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Table 5.18 | |

Effect of Biot number W on critical Rayleigh numbers and lf
wavenumbers , ‘

Rigid boundaries, f(x) = 1-ax, Q= 10
e ﬁ
T N= ) 0.1 . 190 o0 el
(fixed - (constant
flux) temperature) W@
e e e e e e e e e e e S e e e S N
P “\ “‘ “1
oh = 2.0 1 R 685 708 - 833 1071 1168 Il
b7 1.43 1.48  1.70 1.94 2.00 |
i
0% r_ 691 714 840 1080 1178 I
b 1.43 1.48 1.70 1.94 2.00 W
M 1
0% R 752 777 913 1172 1278 |
o! 1.43 1.49  1.71 1.96 2.02 i
ah = 3.0 1 R, 692 713 838 1081 1180
b! 1.49 1.53 1.73 1.97 2.03
10% R 698 719 845 1090 1190
b" 1.50 1.53 1.73 1.97 2.04
108 R, 760 783 918 1181 1289
b 1.50 1.54 1.74 1.99 2.06
Table 5.19

Dependence of criticat'solution on depth of layer at Low Biot
number W\ . _s '
Rigid boundames, N\ =10 , o= 10, f(x) = 1-ax

T &b = 1.0 1.6 1.7 2.0
1 R_ 1443 550 570 685
b’ 0.160 0.13 0.62 1.43
10% R, 14438 554 575 692
b 0.160 0.13 0.62 1.43
108 R 1491 597 625 752
b/ 0.160 0.14 0.62 1.43
101¢ R 1921 1008 1100 1308
o 0.159 0.131 0.66 1.46
1016 R, 5858 4625 5323 #a5led
3 0.14 0.095 0.09
5198
0.76

Note: Rayleigh number is only weakly dependent on wavenumber and
so in some cases bn is given to only a limited accuracy.




Fig. 5.18

Illustration of the formation
of a countercell in cylindrical
geometry . Rigid boundaries ,
Biot nhmber = 0.1

f(x) = 1-ax .

' countercell. !




leads to longer critical wavelengths (lower wavenumbers) ,opposite
to the usual behaviour. However one must note that the
differences in Rayleigh number involved in selecting the critical
wavenumber are very small, and so this effect is of no practical

significance.

5.6 Summary of results from the shooting program
1) Plane-layer: steady convection, g parallel to £

The effect of dncreasing rotation dis to restrict the
convection more to the unstable region of a penetrative
convection profile, whilst Leading to higher critical Rayleigh
numbers and horizontal wavenumbers as in the standard non-
penetrative case. This restriction of the extent of the
convection is clearly seen in gr{hs of D2U, in which, as rotation
rate dincreases, z = 1 (the changeover point from wunstable to
stable density gradients) comes to be near a zero of DZU.

In the case of fixed-flux boundaries, increased rotation
rates enhance the effect of a deep stable region in inhibiting
zero wavenumber from being the critical solution. T = 104 is
sufficiently fast rotation for the critical solution to occur for
non-zero wavenumber even with no stable region (h = 1). This
Limits the geophysical applicability of non-linear theories based
on scale separation for fixed flux boundary convection problems
(e.g. Proctor (1981)).

The shooting program shows that countercells are only
excited for rather deeper stable Layers than was previously
predicted by methods based on truncated serijes expansions: in the
case of a smooth density profile such as f(z) = 1-z . an upper

boundary z = h of h > 2.5 is required. On the other hand, with

an asymmetric density profile such that the stable region is much
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stronger than the unstable, a countercell occurs at lower values

of h. No simple power-law relation is found between the position
of the countercell and the relative strength of the stable Llayer
(figure 5.16). Increasing the rotation rate in such cases

4), as

results in the inhibition of the countercell (for T > 10
is expected as one approaches the Limiting case T —» o .
2) Plane-layer: overstability |

Few results have been obtained for the overstable case,
which is a double eigenvalue problem (in frequency and Rayleigh

number) as noted by Chandrasekhar (1961). Although the shooting

program can locate the eigenvalues to any required accuracy, it I

cannot then produce a set of eigenfunctions: a good fit to the
boundary conditions is never achieved in-the close neighbourhood
of the eigenvalues. Thus the method is of Llimited use in this i

case. “\ |

3) Cylindrical convection, g perpendicular to &

The effect of rotation is much less marked than in the plane
lLayer case, as is expecfed from the equations. In particular, i
increasing T has much less effect on inhibiting bC = 0 from being i
the critical solution for fixed flux thermal boundary conditions.
A parabolic temperature profile extending to ah = 3.0 has been i
investigated 1in order to compare results with the experimental
tank (chapter 6), and it is shown that increasing the stable regi%ﬁ M
beyond ah = 2.0 has little effect on the eigenvalues RC and bc,
although a countercell in the region ax. > 2.0 occurs for ah >

2.5. The effect of Biot number is also investigated, and is

quite regular for ah = 2.0 or 3.0, which would apply to the “f
experimental results. However, for ah 4 1.6, in which case one

has the Llong wavelength bC = 0 solution for fixed flux thermal
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there 1is an anomalous behaviour with

boundaries, increasing

rotation rate in that increased rotation leads to Lower critical

appropriate to lower Biot numbers. This effect is

018

wavenumbers,

slight C(up to T =1 the Limit of the numerical technique) but

4

anomalous and as yet unexplained.
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The object of the experimental work has been to test the
predictions of the theory set out in §4.5, which was based on the
work of Busse (1970), for the onset of convection and further to
investigate the growth of the resulting convecting region into
the stably stratified region. In distinction to the experimental
work on "Busse-rolls" of Busse & Carrigan (1974) and of
Chamberlain (1980), a cylindrical tank has replaced the spherical
tanks, so that effects due to the dinclination ( 1) of the end-
walls have been eliminated. A penetrative convection type of
density profile is set up by the use of a time-dependent boundary
temperature: such a procedure was suggested by Veronis (1963) for
the non-rotating case of penetrative convection in a plane Layer.

The temperature differences involved are small, of the order
of 0.05°C across the unstable region, and the depth of the
unstable region is of the order of 3 mm only. Thus direct
temperature measuremenfs, for example by the wuse of bead
thermistors, are not feasible. Instead a thermal conduction model
is wused to calculate the temperature profile at various times,
the model being checked by separate experiments using widely-
spaced thermistors ( § 6.3). This approach is only valid before
the onset of convection, although if the Rayleigh number of the
system becomes only marginally supercritical then one can expect
the temperature pro{iLe to be but Little affected by the result-

ing convective flows and heat transport.
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Tank design
The apparatus consists of a rotating experimental tank
enclosed within a water jacket whose temperature can be varied
and measured. The water jacket and associated temperature
control are those built by Carrigan and Chamberlain and a full
description, in particular of the temperature control, is given
in Chamberlain (1980).

The experimental tank (shown in figs. 6.1 and 6.2) for this
work is cylindrical, with top and bottom walls positioned, by
machining, to be normal to the rotation axis to - 0.1 mm. Thus
any inclination of the top and bottom boundaries, (equation 4.87
), is negligible. The side walls are of thin (3 mm) perspex, the
top and bottom walls are double 3 mm sheets of perspex, with a 3
mm air-gap. As a result, the sjde-walls are relatively good
conductors whilst the top and bottom walls may be taken to be
insulating when calculating the temperature profile of the tank.
Distilled water is used as the working fluid in the experiments.

The main constraint on the design of the tank side walls and
joints is the need for sufficient mechanical strength to
withstand the <centrifugal pressure generated by the tank’s
rotation. Rotation rates in the range 30 - 100 radians 3-1 are
needed for the centrifugal forces to dominate Laboratory gravity,
given the size limitation of the water jacket, and for the upper
end of that range a 3 mm walled perspex cylinder gives an
adequate safety factor in tension. Glued joints on perspex are
Liable to cracking a%d so the only such joint is designed to be
under compression when the tank rotates (figure 6.2). In
practice some Lleaking of water occurs through the greased and
bolted end-joint whén the tank is in use, but several experimen-

tal runs of 2 hours duration are possible before the resulting
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Fig. 6.1

Schematic diagram of the

experimental tank .
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Thermistor array . 0Only one thermistor shown .
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air-space around the axis becomes a problem.

At the highest rotation rate in fact used, 80 radians 5—1,
the Taylor number for the tank is approximately 1012, based on an
axial Llength L = 0.2 m. This results in the tank being in the
transition region between "Benard-type" and boundary-lLayer"
convection for the expected wunstable region depth d of
approximately d = 5 mm, for which we have an aspect ratio = L/d
= 40. In practice,however, d did not greatly exceed 3 mm at the
onset of convection, and so the boundary-Llayer contribution to
the critical Rayleigh number is relatively small.

Measurement of the water jacket temperature is by a standard
mercury thermometer (Gallenkamp THM-440-070M) immersed in the
jacket, capable of being read to s 0.01°% by a Griffin & George
thermometer reader. The two such thermometers 1in use were

(o]

+ .
compared and found to agree to - O.OZOC in the range 70 to 37 °C.

Typical experimental temperatures are over the range 27-33%% and,
as only relative temperatures are of significa{; for the thermal
model, no further caLibration of the thermometers (e.g. against a
standard gas thermometer) has been thought necessary.
Experimental temperatures are kept near 30°C both to allow the
use 6f the 30°C values for properties of water tabulated in
Batchelor (1967) in the thermal model and to avoid the need for
refrigeration equipment in the temperature control bath.

Time lags - in the measurement of water jacket temperatures
are negligible: the thermometers were found to react to step
changes 1in temperat;re with an exponential time constant of
approximately 2.5 second, and the water jacket dtself s very
well stirred by the rotation of the experimental tank, so that

the thermometer will experience the same temperature as the tank

wall.
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Observations of the convection in the tank are made visually
under stroboscopic Lighting from the side, wusing an idinclined
mirror above the water jacket to view along the axis of the
experimental cylinder. Kalliroscope suspension AQ1000 is used in
an approximately 1% solution in distilled water as a marker for
the visual observations. It consists of a suspension of Llong
thin quanine crystals which align themselves with the flow if
there is a velocity shear, and as a result scatter light aniso-
tropically. This method of observation 1is described by
Chamberlain (1980) in more detail. However, unlike the case of
the "Busse-rolls" observed in a sphere by Chamberlain (1980), no
planform can be distinguished in the present study. The contrast
between regions of shear and quiet regions is too slight to be
recorded photographically when the convection is only slightly
supercritical. As a result, the observations of the onset of
convection and of its extent set out in§ 6.4 are those recorded
from direct observation by eye. In making these, it is found
that a slight differencg in frequency between the tank rotation
and the stroboscope illumination greatly assists the observer in
that the slow drift seen combines with the irregularities of the
scattéring' to help in distinguishing the presence or absence of
convection.

Tests of the numerical thermal model of the tank have been
made with the use of bead thermistors mounted on a perspex frame
extending from the central axis to the side-wall (fig. 6.3), with
power Leads to the tgermistors fed through the hollow brass axis
to a silver slip-ring assembly mounted above the water-jacket and
thence to a Solartron 7045 digital resistance meter. Details of
these tests are givén in the next section. When using thermis-

tors, no Kalliroscope suspension is added to the distilled water,
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as the «crystals are found to aggregate on the thermistor beads
and their leads. Thus there are no combined observations of the
convection by both visual means and temperature measurement.
Whilst it would be desirable to use a thermistor array to examine
the growth of the convecting region in strongly supercritical
cases, this has not been done yet owing to frequent mechanical

breakages in the thermistor system under rapid rotation.
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The thermal model for the experiments is a numerical
integration of the thermal diffusion equation in a tank with
cylindrical symmetry. Rather than use a Green’'s function method,
a direct integration over time is performed based on a spatial
array of 1 mm radial spacing, so that temperature profiles at
successive time steps are available for analysis in terms of the
Rayleigh number. If T (r,t) denotes the temperature of the

element centred on position r at time t, we have the equation:

cogE (1,8) = b, (T(r-1,8) = T(1,)) + by (T(r + 1,8) - T(r,))

where the constants b1 and b2 for each position r depend on the
appropriate thermal conductivity k , position and

on the appropriate surface area (cylindrical geometry):

K, r-+
b, = §F ( r2>

where § is the length scale of the grid spacing.
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The temperature profile s then integrated by the first

order method:

Tt + 13 = T (5,6) + Ta—i T(r,t)

where T s the time step.

Boundary conditions on the temperature are described below,

being

T(r,o0) for all r_ < r & r.

IN
-+
in
-+

T(ro,t) for all O

N
-
IN
o+

T(r,,t) for all O

where o is the position of the outside of the tank wall, rs is
the axis of the tank (taken to be r, = 1T mm to avoid the
numerical problems of r = 0) and to is a time limit, the duration
of the experiment.

The temperature T(ro,t) of the water jacket in a typical
experiment (N25) is shown in figure 6.4 as a function of time.

At the start of the experiment, t = o, the temperature throughout

the tank is assumed constant. The inner boundary condition at r

r. (where ry = 1 mm on a radial grid of 1 mm spacing) is that
there is no heat flux through r = o, by cylindrical symmetry.
Alternatively, an dinner boundary condition that T(ri) =T (ro)
can be applied to simulate thermal conduction through the metal
shaft of the tank: ’no material effect on temperatures in the
region of interest (near the outer wall) occurs. Figure 6.5
shows the resulting temperature profiles in the tank ‘according to
the thermal model at fhe end of cooling (t = 60 minutes) and at 5

-minute dintervals thereafter. Note the thin unstable region at t
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=

= 70 minutes, which has almost disappeared by t = 75 minutes

through diffusive decay.
Test of the model

A comparison of the predictions of the mode L with
measurements made using thermistors mounted inside the tank s
shown in figs. 6.6 and 6.7. The first of these relates to run
number N36 and to the thermistors mounted 16 mm ("1") and 6.5mm
("6")inside the tank wall (the other two thermistors then in use
were giving very noisy signals and so have not been analysed).
The second relates to run number N37, for which an extra
thermistor had been attached to the wall of the tank (thermistor
"3 .

An uncertainty in the properties of the tank is the thermal

conductivity of the perspex: 1in the numerical model this s

represented as a fraction F of that of distilled water. The
ICI literature value is F = 0.32, but variations of + 10% are
possible. In addition, in designing the tank one worry was that

there might be a boundary layer convection effect on the side-
walls, where viscous drag would prevent a thermal wind from
balancing the baroclinic pressure field that arises from the
interaction of the radial temperature gradient and the axial
Laboratory gravity ( §4.6). From the results shown 1in the
figures, although F = 0.32 appears suitable with respect to the
deeper part of the tank where thermistor "1° is located, 1t
results in predicted temperatures noticeably too lLow for both
thermistors °3° (0.2'mm from the wall) and "6° (6.5 mm from the
wall). F = 0.26 results in a good fit to the measured tempera-
tures in those latter positions, which span the region of the
tank din which cénVective instabilities occur. Thus F = 0.26 is

preferred, on the basis of the thermistors, 1in the analysis of
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the experimental runs, but F = 0.32 has also been used in order
to assess the sensitivity of the analysis to this factor, and
will Later be shown to be preferable.

One possible source of a systematic error between the
thermistor measurements of temperature and the numerical model
Lies in the disturbance to the dinternal thermal wind (for which
see § 4.6) caused by the presence of the thermistors mounting
frame, a perspex "ladder" of side dimensions of order 3 mm. This
constitutes a barrier to any azimuthal thermal wind flow by
virtue of the change in the overall depth of the fluid. If this
is the <case, there will be a baroclinic flow in the tank
resulting, as above, from the radial temperature gradient and the
axial laboratory gravity. This flow will not be an azimuthal
thermal wind, but instead will be a "meridional" convection cell
leading to enhanced heat flow in the fluid away from the wall.
Thus we must consider that the thermistor measurements of
temperature, whilst being direct, may be misleading. This
problem did not arise in the experiments in spherical tanks by
Chamberlain (1980) because in a spherical tank there remains a
path of constant depth along which geostrophic flow <can occur
even théugh there be a radial obstruction such as a thermistor
array. The path merely has a radial kink, <compensating for the
obstruction (fig. 6.8).

Fig.6.8

Effect of an obstruction on

L, geostrophic flow path the flow path

\\¥“~’ tank geometry
wall
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Thermistors

As stated above, the resistances of the miniature bead
thermistors and their Lleads are measured directly with a
Solartron 7045 meter held on the 0-9 k 0 range, with sensitivity
of 10_1 Q. Changes of the meter range affect the reading (due
to different internal impedance) but with the meter held on the
one range it proves stable to + 2 x 10—1 2. between experiments.
Calibration of the thermistors is based on measurements of their
resistances while in place in the tank. 1In each case the tank 1ds
well-mixed (by spin-up then spin-down) and the water-jacket
temperature adjusted until there is thermal equilibrium as shown
by all the thermistors. The calibration measurements are made
with the tank rotating, both to ensure that the water jacket s
well mixed and to simulate the experimental conditions of the
slip-rings incorporated in the thermistor Llead circuijts.
Calibration tables are produced by an interpolation program that
fits a cubic both to the two data points being interpolated and
the next neighbouring data_point on each side.

The sensitivity of the resistor meter, + 0.1 & .,
corresponds approximately to a temperature sensitivity of +
0.01°C at the thermistors, d.e. in line with the accuracy to
which the mercury thermometer in the water jacket can be read.
As a combination of these two separate sources of measurement
error, the measurements plotted in figs. 6.6 and 6.7 are given
error estimates of + O.OZOC, unless a noisy reading was noted at
the time of the exper%ment (notably run N37 thermistor ‘6°). No
sign of thermistor "warm-up" is ever observed with the
thermistors immersed in water, but instead a slight cooling s
observed over a periodvof about 3 seconds, typically involving an

increase in resistance of .1 or .2 £ over that period. In all
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cases, measurements are taken after that change. This appears to
be a result of the growth of local forced convection from the
electrically heated thermistor bead, or perhaps due to the
production of a thin gas layer on the bead surface by
electrolysis, reducing the leakage current through the

surrounding water. As the effect appears to be quite regular, no

further investigation has been necessary.

Observations

[[e
I~

In general, observations have been made on experimental runs
in which the tank is cooled for 60 minutes in order to set up a
stable stratification and then heated over approximately 5
minutes in order to introduce an unstable region near the side-
wall. Such a run is similar to that used 1in the thermistor
temperature test run N36 shown in fig. 6.6. A typical
temperature profile near the side-wall is shown in fig. 6.9,
being at 70 minutes (i.e. after 10 minutes heating) in run N13,
showing an unstably stratified region of depth 3 mm (positions &4
to 7 on the graph) and then stably stratified fluid further from
the perspex sidewall. Runs were made at either 7.0 or 9.8 times
the rotation unit of 2.5 7 radians 5-1: the accuracy of the speed

controller was checked by observing the drive pulley under mains

frequency stroboscopic Lighting. The two speeds used give a
variation of a factor of 2 in the centrifugal "gravity" in the
tank.

The observation; of the times of onset of <convection are
uncertain because convection only becomes visible at finite
amplitudes: one needs both some degree of supercriticality and
also a time intervaL for growth. As a result the Rayleigh number

at the time observed for onset should be only an upper Llimit. In
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order to indicate how critical the timings are, the results are
presented together with error estimates based on + 10 seconds
observation errors. The error due to the need for a growth
period depends on the degree of supercriticality, but as an
indication one can take the thermal diffusion time constant (d?/x)
for the unstable layer depth, which is approximately 60 seconds,
as an upper Limit to this growth period.

Table 6.2 and fig. 6.10 give the results for the
experimental runs, based on a thermal model with F = 0.26
(relative thermal conductivity of perspex) as indicated by the
thermistor measurements. The Rayleigh numbers are <calculated
from temperatures interpolated to a 0.1 mm grid, and therefore do
not always change smoothly with time. This result of grid
"coarseness'" leads to an uncertainty in the calculated value of R
of approximately 10% at times of interest, which 1is not
significant given the scatter in RC shown in the table. The
results are to be compared to the numerical results of the
shooting program in § S.S.» For a rigid side-wall, parabolic
temperature profile and a deep stable region, that model gives an
approximate <critical Rayleigh number of 730 for the appropriate
Biot numbér, A = 0.15. Clearly the scatter of the results is
too great to be able to resolve the variations in RC arising from
different rotation rates.

The effect of using F = 0.26 in the thermal model rather
than F = 0.32 can be seen by comparing Table 6.2 with Table 6.3,
for which the latter value is used. The higher value of perspex
conductivity results in markedly higher values for the Rayleigh
number at the observed onset of convection. It also gives a
greater Llength-scale d, which is of significance both to the

effect of rotation (which enters as Q—g x T) and to the Bijot
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Table 6.2
Experimental Runs Thermal model based on F = 0.26
Run Observed time of Rotation R Subse- Notes
Number onset of convection rate : : c quent d (mm)
N after start of heating ( 2.5 10 sec. at 10 sec  peak R at
. rads_l) early onset late & time onset
(min : sec) —_—
13 7 : 30 9.8 620 754 751 1820 2.1
(10:35)
14 ) - . 9.8 - -
16 . 7 : 30 9.8 645 782 938 1497 2 sl
(9:05)
18 i)doubtful 9 : 30 _ 0.06 -
L. 9.8 (after peak R = 3.5)
idd 14 2 G0 102 256 553  >18,000 1.8
(21:QO)
19 7 : 40 9.8 500 623 767 1386 2.0
, - (8:50)
20 7 : 15 7.0 64 91 158 749 1.5
(8:55)
21 4 : 10 7.0 875 1327 1888 12,590 ‘ 2.4
(7:45)
22 6 : 20 7.0 127 157 152 le8 -~ 1.8
(7:05)
23 5 : 50 7.0 277 274 333 473 1.9
) . (7:15)
24 12 » 35 7.0 54 7.3 95 261 1.7 Previous peak R=64 at time 5:30
(13:50) gave no observed convection

.../Cont'd




Table 6.2 (Cont'd)

Experimental Runs Thermal model based on F = 0.26
Run Observed time of Rotation R Subse- Notes
Number onset of convection rate c gquent 5 (i)
N after start of heating ( 2.57 peak R
—— 10 sec. at 10 sec. & T at
(min : sec) early onset late —_— onset
25 _ 8 :'20 7.0 509 489 471 509 2:3
(8:10)
26 9 : .15 7.0 .20 19 13 44 1.3 Peak R = 44 occurred at 7:30
(7:30)
27 14 ¢ 25 70 31 55 72 259 1.6
. (16:10)
28 - ' 9.8 - Peak R = 0.3
29 15 : oo 9.8 407 506 6l6 >17,000 2.2 Previous peak R = 3
(21:00)
30 8 : 20 9.8 293 288 348 348 1.8
(8:30)
31 7 : 25 9.8 318 412 519 1650 1.8

(9:10)




Table 6.3

Experimental Runs Thermal model based on F = 0.32
Run Observed time Rotation Rc Subse- Time Notes
Number of onset Rate quent a delay
. 10 5 t 10 . peak R onset since
N fuif 5 cei) (2 Eg sec a sec eal L
rads™") early onset late & time (mm) R = 730
' (sec)
13 7 : 30 9.8 4693 5307 5970 13,671 3.1 75
§ (10:20)
14 - 9.8 - - 0.12 - - No convection
(11:05)
16 7 : 30 9.8 5497 6185 6929 10,352 3.2 80
(8:55)
18 i)doubt- 9 : 30 . 9.8 299 278 210 after 684 2.0 -
ful ) (7:55)
ii) 18 : 00 1789 3082 4405 >67,000 3.0 25
(>21:00)
19 7 : 40 - 9.8 4090 4695 5366 9215 3.0 70
(9:05)
20 7 : 15 . 7 J0 776 1129 1348 5157 2.5 10
(9:30)
21 4 : 10 7.0 4075 5514 7131 40,374 3.2 50
(8:05)
22 6 : 20 7.0 - 1525 1492 1672 1983 2.8 50
(7:05)
23 5 : 50 7.0 1965 2225 2510 3710 2.9 50
(7:25)
24 12 : 35 7.0 1214 1416 1641 3394 3.1 30 Previous peak R = 1158 at 6:25 gave no
(14:10) convection

.../Cont'd




Table 6.3 Cont'd

Experimental Runs Thermal model based on F = Q.32
Run Observed time Rotation Rc Subse- Time Notes
Number of onset ‘Rate quent d delay
N fnis : see) ( 2.57 10 sec. at 10 sec. peak R onset since
: rads~1) early onset late & time (mm) R = 730
: (sec)
25 8 : 20 7.0 3597 3481 3376 3841 3.4 95
(9:05)
26 9 : 15 7.0 803 773 741 909 2.7 100 Earlier peak
(8:30)
27 14 . 25 7.0 792 1073 1237 3578 2.9 10 Previous peak R = 413 at 8:15 gave no
(16:45) convection
28 - 9.8 - 245 - - No convection
(7:55)
29 15 : 00 9.8 4507 5141 6466 >68,000 3.5 80 Previous peak R = 738 at 8:50 gave no
(>21:00) convection
30 8 : 20 9.8 3229 3625 3537 4196 3.0 95
) (9:05)
31 7 : 25 9.8 2691 3648 4207 11,197 2.8 50
(10:10)

average = 58
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number at onset (which rises in proportion to d). This
sensitivity of the results to the wvalue of the perspex
conductivity Lleads to a large error-margin in the results, one
that could be eliminated in future experiments most easily by
using a material of higher and more uniform <conductivity than
perspex. The problem is one of finding a suitable material that
is both strong in tension to withstand the centrifugal forces and
is transparent to enable visual observations from side
illumination.

Figures 6.10 and 6.11, plotting the results for F = 0.26 and
F = 0.32 models respectively, show more clearly both the extent
of the scatter of the results and also how compatible they are
with the numerical prediction from the critical Rayleigh number.
Clearly the F = 0.32 model is the more compatible; although the
scatter of results is large, it is less than that for the F =
0.26 model. Further, if one concentrates attention on those runs
for which onset was observed to occur at a model value for RC
within 30% of the peak RC (i.e. runs in which conditions peaked
near critical), runs 22, 25, 26 and 30, together with the "null"
results, there is rather better agreement with the theory (figure
6.12). However, the results still cannot be said to verify the

results from theory: the scatter involved is too great even after

this selection of "best" runs.
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After the onset of convection, observations were made when
possible of the radial extent of the convection, as indicated by
the regjion of scattering from the Kalliroscope.  Immediately
after onset, this was Hn general approximately 3 mm (all observa-

tions made to + 1 mm), which is consistent with the thermal
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models. Subsequent observations can only usefully be compared
with the thermal model if the convection is only slightly super-
critical, so that the Nusselt number (measuring heat transport
relative to conduction) does not greatly exceed 1. Consideration
of fig. 5.18 suggests that the Kalliroscope should reveal
appreciable shear flows out to approximately ax= 2.0, J.e. to
about twice the depth of the unstable region. By the nature of
the Kalliroscope suspension, it tends to remain aligned for some
time after the shear flow it records may have decayed. Thus
observations may continue to be made even though the underlying
convection has —ceased. A further point is that the greatest
concentration of Kalliroscope, at the start of the heating that
leads to instability, will be settled out on the side-wall owing
to the centrifugal forces over the previous period (generally 1
hour) of cooling under rapid rotation. Thus Llittle suspension
will be available to show the existence of the countercell: ax =
2.0 (where U = 0) is likely to act as a definite barrier to the
Kalliroscope as a trﬁcer.

Figures 6.13, 6.14 and 6.15 compare the observations with
the values for 2d given by the two thermal models for the
experiménts numbers 22, 25 and 30. Run number 26, which was
observed to result in very faint convection which quickly faded,
has no depth observational data. Instead figure 6.16 shows the
variation of the Rayleigh number, as given by the two thermal
models, over the time in which convection was observed. Taken
together, these fig;res show better agreement with the model
based on F = 0.32, but as expected the observed convection tends
not to decrease in depth as it decays: the scattering merely

becomes faint. Figure 6.16 clearly favours F = 0.32 as that model

‘gives a peak Rayleigh number only some 40 seconds previous to the
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observation of very weak convection (it is also heartening that
that peak Rayleigh number of RC = 909, is only about 25% above
the prediction from the shooting program).

A greater time-span of depth observations is available for
run N23, during which the Rayleigh number reached nearly twice
its wvalue at the time of onset, before convection died away and
was then restarted, and then restarted again (fig. 6.17). The
thermal model with F = 0.32 gijves reasonable predictions of the
observations: onset is observed later than the model prediction,
but the fade-outs at 16 minutes and 25 minutes are in agreement.
The Llater convection is observed to be deeper than is predicted
by the thermal model, which presumably reflects the large degree

of supercriticality (R peaks at R = 32,500 at 29:25).
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On the basis of the results for the onset of convection in

§6.4 and those for the growth of the convecting region in § 6.5,

the thermal model based on F = 0.32 (corresponding to the
lLiterature value for the thermal conductivity of perspex) is to
be preferred. The wuse of F = 0.26 leads to critical Rayleigh
numbers and predicted depths of convection markedly smaller than
those predicted from the shooting program ¢ § 5). It therefore
seems Likely that the thermistor array used fo make direct
measurements of temperature does significantly alter the thermal
regime 1in the tank'by impeding the thermal wind and thereby
making possible convective transport resulting from the axial
laboratory gravity. In order to avoid this problem, a future

rebuilt tank would .need to allow the thermistor leads to be

- brought radially out from the axjal shaft outside the tank,
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perhaps within the end air-space. This will then create problems
of sealing the entry ports for the leads, which would be under a

substantial pressure difference.

Table 6.3, based on F = 0.32 models, gives the time delay
between the prediction of the thermal model that the Rayleigh
number R exceeds RC = 730 and the time of onset observed in the
experiment. These average 60i 30 seconds, and are not noticeably
different between those runs at rotation rate 9.8 units and those
at 7.0, whereas the crude data for the Rayleigh number at onset
in general show distinctly higher values for the former set. The

run N26, which has been noted as being close to marginal, 1is a

notable example: although it yields a Rayleigh number at observed
onset of R = 773 (approximately 6% above the theoretical wvalue),
that occurs only after a peak Rayleigh number of R = 909 and at a
time 100 seconds after the time at which the Rayleigh number ‘
first exceeded the criticaL value. Thus the accuracy of this run ‘
stems not from being accurately observed in time, but from being l
a run in which the Rayleigh number went only marginally ?'
supercritical and remained so for a sufficiently lLong period.

As was noted before (§ 6.4), the diffusion time constant e
for the unstable Llayer is approximately 60 seconds: this s i
usually taken as-an upper Limit to the timescale for growth of
the most quickly growing model of convection. Thus the observed
delays are compatibie with being primarily due to the time
required for growth, except for those few runs where the delay
was markedly short (e.g. N20, N27). No satisfactory reason for

those very much shorter delays has been found.
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This experiment has been unable to demonstrate the effect of

rotation on the nature of the onset of convection, primarily ‘

because the aspect ratio @ achieved is appreciably larger than |

expected (typically about 60-100, whereas a 240 was expected).

Since the effective Taylor number scales as o , this leaves the “

rotation rate in a region in which RC and bc scarcely depend on

T. Future rebuilding of the tank should therefore be based on a

reduced vertical length L. A reduction to 3 cm, from 20 cm at
present, should result in a=10, and the currently obtainable f

4821 10

|

|

\

|

I

|

rotation rate would give T = -7 = 10 . A combination of

a= 10 and T = 1010

would bring the results into the region in
which boundary layer effects are appreciable, although not yet
dominant. Whilst this proposed change of design will tend to
give a stronger tank, supported by its end-plates, and therefore
will ease the strength requirements, it will also tend to reduce
the sensitivity of observation by the decrease in the depth of I

fluid illuminated by the stroboscope. This difficulty would b

(i
( probably prevent any further shortening of the tank. i
{

' In none of the experiments has any flow been observed in the
[ stable region away from the convection zone. Thus, at the i

experimental levels of supercriticality, typically R £, 20 RC
| (table 6.3), the convection does not cause strong shear flows 1in
the adjoining stably ;tratified fluid. Penetrative convection is
therefore only apparent to the extent of the immediate convecting
region, corresponding to a depth of approximately 2d where d is

the computed depth of unstable stratification (see figs. 6.13 to il

6.17), which is 1in agreement with the linear theory ( § 5.5 ).
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The experiment has demonstrated that a time-dependent
temperature profile can be set up to 1investigate penetrative

convections in terms of both the critical Rayleigh number for

onset of convection and the resulting depth of <convection. The
accuracy 1is as yet poor. The present tank design is unable to
investigate the "boundary-layer" dominated regime of rapid

rotation, but this would be accessible to a redesigned tank,
shorter along the axis. Observed times of onset of convection,
using Kalliroscope suspension as a tracer for the presence of
shear flows, are delayed by the period required for growth of the
convection and so the critical Rayleigh number can only be
measured by creating temperature profiles that are marginally
supercritical at their peak, rather than by timing onset in runs

that then go substantially supercritical.
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7. Discussion ' Uw
7.1 Discussion of results

The object of this work is to investigate two questions: ;;‘
firstly whether a stably stratified layer can occur in the core
and secondly what effect rotation has on penetrative convection. :
The latter is a step towards understanding whether such a stably !
stratified Llayer might survive adjacent to a convecting region.
The first of these questions must remain essentially speculative,

as no direct observations are possible. However, the work

presented in chapters 2 and 3 shows that no such stable layer is

Likely to arise from a subadiabatic temperature gradient. On the
second question, the results of the analytical and numerical
investigations of the Llinear equations, set out in chapters 4 and
5, indicate that the effect of rotation is to inhibit penetration ‘\W

\

|

‘

into a stable region. The experimental observation described in i

i |

|

:

|

|

chapter 6 are not sufficiently accurate to extend the
investigation to the finite amplitude, non-Linear problem. The ¢‘

lack of a treatment of either non-linear advection terms or
Lorentz forces means that the results cannot yet be applied to
the geophysical problem: much more work is required.

The model for the Earth's thermal history described in ‘ﬂ
chapter 3 results in values for the present heat flux out of the  “
core and for its dependence on the various parameter values i
adopted. The conclusion that a subadiabatic temperature gradient
is wunlikely to exist in the core depends on a consideration of
the needs of a dynamo prior to the formation of the inner core.
Thus the most critical aspect of the model is the assumption of
a sufficiently hot start that the frozen inner core forms only

relatively recently. If the inner core were an original feature,

163




then the core 'must have;wbeen at a remarkably constant
temperature, one not consistent with the model used in that it
requires a close equation of surface heat flux to radiogenic
heating throughout the age of the Earth. Although the variation
of mantle viscosity with temperature should favour this, dt s
unlikely to —change the concLusions‘ significantly, given the
strength of the applied constrajnts.

Compositional gradients are discussed as an alternative
cause of a stable stratification, in section 2.3: the problem for
them is whether such gradients could form or survive in a
vigorously convecting outer core, and this leads on to the fluid
dynamics study in the later part of the thesis. A simple model
following Fearn & Loper (1981) for such a compositional gradient
is set out in section 2.3 in order to assess the possible degree
of stability. This leads to a maximum Brunt-Vaisla frequency of

approximately

Both analysis (chapter 4) and numerical solutions (chapter
5) of the linear Boussinesqg equations at marginal stability lead
to the conclusion that rotation inhibits penetration of a stable
region in the plane-layer problem. Such a geometry would be
appropriate to a ”pqtar“ region (fig. 2.4). Another effect of
rotation is to inhibit the tendency of fixed flux boundary
conditions to result in Long horizontal wavelength flows. This
reduces the geophysical applicability of the non-linear analysis
of Chapman & Proctor (1980) and others, which depends on scale
separation between the'verticaL and horizontal structure of the

solutions.
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The same problem is studied in the cyLindric;L geometry of
Busse, both. numerically (chapter 5) and experimentally (chapter
6), in the absence of any inclination of the end boundaries in
order to avoid the Busse-roll type solution. Rotation has Little
effect on penetration in this geometry, owing to the secondary
nature of the influence of rotation on the flows, through the end
boundary layers. The experiments are of insufficient accuracy to
confirm the results of the linear theory: the results reported
are based on a numerical model of the temperature profile in the
tank since direct temperature measurement leads to a disruption
of the thermal wind balance in the cylindrical tank. Further,
the effect of rotation has not been resolved as the effective
aspect ratio of the convection (length of tank/depth of unstable
layer) dis found to be too Llarge. This could be rectified in

future work, by redesign of the experimental tank.

7.2 Suggestions for future work

No definitive answer can yet be given to the question of
whether there is a region of stable stratification at the top of
the outer core. However, the results of the thermal history
model and the difficulty of a compositional ‘layer surviving
undisrupted raise sufficient doubts about the suggested stable
Layer that the next step should be a re-examination of the
magnetic secular variation evidence for zero upwelling.
Improvement of the thermal history model could come from a proper
parameterisation of convective heat transport in a fluid of
temperature dependent viscosity. However the constraints already
placed on the model should ensure that any such improvement would
have Little effect on the results.

The fluid dynamics problem leads more directly to future
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work. Apart from the redesign of the experimental tank suggested
in chapter 6 to enable a verification of the linear theory, the
next area of study should be on finite amplitude penetrative
convection. The effect of rapid rotation on this is as yet quite
unclear, and experimental observations on the growth of a
convecting region, along the lines of those reported in section

6.5, are feasible with the techniques used already.
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Appendix 1 : algebra for section 4.4 .

Write c for cospz , s for sin/oz , e for exp(-vz) and

A for (vl*/ol)

L = A er‘z + B Q—VZ cos pz 4 € Q_—V1Sn/>1
(in Z>0)
= A e_—f*z & 3 iq LS Ces
DU = - p Ae_"r"z o (/_)Q-v&>e_c + (-—/DB—\:Q>QS |
bukob: - A 4 QIDQ—\:B>

DO = Iu_’-AQ_f"‘z & [(A}B - 2v/> Q]LQ + [2»»/;%4(43}1] es ‘
; bl\,\@ = A [AB —2~.a/;Q]
:D3 59 & o > AQ_—HI.; [vBLB/;'—v’>+/oC (3\;‘- f1>] __C =
+ E—fBLB?.l—/D’B-& vQ(B/D’-— v‘)] s
: 3>3u\o> = -p2h ['vB (2p-) v p (35047 |
> W = r.Ll‘. Ae:rz 3 [Bkv"- (ov’/;.;/f’> + C (ll-v/oz'- Ll--f/))] ec
+ [E} (— ll-v/D3+ l\-\)-s/o)-i—c_(v‘*— ‘ov‘/ola- /:b‘);! LI
ge 3>h- 0 LO_b = r.L"' AN o+ l B kv"'— b‘)‘/)l-ilb“) +C (Lo-v/;l— 1-0-\)?'/)):)
Ds O% SAQrZ [BV( N IO»’/;’—S/Q">4 C/>(Sv"- 10 v}o’vb")] ec
LT ey e S A
Fulo) - —ptA [g,, (<t 109154 0 s .ov’/,L/o*U

Now , in z< 0 , we have the same solutions except for

T

-v=>+v , and -p->+pM throughout .
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Hence

» matching the two solutions through z=0

, we get -
A . B - A . B
_r,\’\‘ + L/[)C\-\JB‘\ = +P-Az_ + (/)Cz_-a- v&l) = @)
PIAla—(AB\ —vaQ'> = r.)-.‘AI-.. (ABL-& zv/,cz)

EFCTNI R (39, B v poAe &“’B'(Sf’""‘) . pC(3up))=0

’J.“ A+ B Kv‘-wfla-lp‘.) . li-C‘le (_A> = ’u"A , + B (v"— ()9,/314-f"> + A.Cva.A

) e
A = A = A
B = B = 2
<, = ol < = -
\,J\\_n.,v#_ & -\_o \3-\- ol‘&&)‘ QMK)A KT XI—L\ N
B = A - 30
A ]
25»(v2+fz)
c _ " A[ 3/01—1)1 ‘J
2/3 (v"+/o‘>

{Ng\q_ aX _‘.D\Lkox = \D}\LKO} = O L} saammi\'\-} }
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