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I STABL E STRAT IF I CAT I ON HJ H IE EART H'S COR E .' 

b y S imon Mo ll ett. 

~!:!!!!!!!~D:: 

There has been speculation that the Earth ' s fluid outer 

core may in part be stably stratif i ed, with evidence from studies 

of the magnetic field and from thermodynamic arguments. This 

affects possible models for the geodynamo; in particular stable 

stratification near the core~mantle boundary would allow more 

information about core surface velocities to be deduced from 

measurements of the secular variation of the magnetic field. The 

object of this ~dissertation is twofold: to examine the possible 

causes of such a stably stratified region, and to investigat~ the 

fluid dynamics of penetrative convection in a rotating system. 

The possibility of thermal stratification at the core mantle 

boundary 

numerical 

is investigated and rejected through 

model of the cooling of the Earth. 

constrained by the observed radius of the inner 

the use o f 

The model 

core, 

a 

i s 

present heat flux to the surface of the Earth, 

by the 

and by 

p~a la e o magnet i c e v i den c e for . an an c i en t g e o dynamo, and as a re s u l t 

gives reasonably well controlled estimates for the heat flux from 

core to mantle . Parameterised convection theory is used to model 

mantle convection, and the requirements of a dynamo mechanism are 

considered in terms of flows of e n t r opy . Co mpositional gradients 

are 

i n 

reviewed as a possible mechanism for stable 

terms of the rate of release of li~ht material 

stratification , 

indicated by 

t h e cooling of th e core . 

Penetrative convection in a rotating system is studie d i n 

t erms of the li~ear Boussinesq equations in simple geometries , b y 

both analytical and numerical methods. It is shown that rotat ion 

tends t o rest r ict the penetrati o n of c onvective f l ows int o the 

'adjoining st a bl e r e gion . Experiments on . penetrative conv e ction 

i n a rapidly rotating c y lin d ri ca l tank are in broad agreement 

l 



with the Linear theory , although fhe error estimates a re Large. 
i 

These exp er i men t s ··c:f s e a tank on w hi c h the boundary temper at u re 

varies with time to create the adjoining stably and unstably 

stratified regions that characterise penetrative convection. 

I 

I 
I. 
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Nomenclature 

The following is a List of the more commonly used symbols: 

in general they are defined when first encountered in the work. 

Chapter 3 

respect, 

t hi s List. 

a 

a 

0.. 

A 

b 

B 

B 

C 

C 

d 

0 

D 

e 

E 

n 

E 

f ( z) 

F 

g 

G 

y 

h 

1s quite independent of chapters 4, 5 and 6 in this 

and is indicated by the mark (3) where appropriate in 

horizontal wavenumber 

proportional to; thermal expansion coefficient 

aspect ratio 

amplitude 

constant (3), azimuthal wavenumber 

variable parameter (3), density gradient 

magnetic field 

constant, specific heat capacity 

heat capacity (3) 

depth of unstable region 

small increment 

geometrical constant (3), operator 

exponential 

small parameter 

magnetic diffusivity , radiogenic heating (3) 

Ekman number, entropy (3) 

shape function for temperature gradient 

normalised temperature pe~turbation 

gravity 

gravitational constant 

Gru~eisen ' s constant 

depth of a system 

/ -1 
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k 

k 

K 

K 

>.. 

L 

m 

µ 

M 

n 

V 

N 

Nu 

0 

p 

TI 

q 

Q 

r 

p 

R 

s 

a 

elec t ric current 

wave-number 

thermal conductivity , compressibility 

thermal diffusivit y 

degree Kelvin 

wave-Length, Biot number 

Latent heat (3) 

vertical wave-number 

dynamic viscosity 

mass (3) 

integer 

kinematic viscosity 

Brunt-Vaisala frequency 

Nusselt number 

Order 

time growth rate 

3.14159 • . .. 

ratio of thermal to magnetic diffusivity 

energy (3), Chandrasekhar number 

radial coordinate 

density 

Rayleigh number 

frequency o f overstable oscillation 

Prandtl number 



t 

T 

T 

-& 

8 

u 

u 

V 

w 

X 

y 

z 

(; 

z 

w 

t im e 

tim e scale 

temperature (3) , Taylor number 

t emperature perturbation 

t emperature 

velocity 

normalised vertical velocity 

co mponent of velocity 

component of velocity 

position coordinate 

position coordinate 

position coordinate 

vorticity 

normalised vert i cal vorticity 

frequency 

r otation rate 
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The object o f this work is to in vestigate some of the f Lui d 

dynamics problems that s tem from observations of the magnetic 

field of the Earth and from thermodynamic predictions of the 

properties of the Earth's core. Th es e suggest that the outermost 

part of the core may be stably stratified. There is no reason 

to suppose that core fluid dynamics has a simple structure: by 

analogy with the atmosphere and the oceans, 

diversity of flow phenomena in the core. 

one expects a great 

Not only is it a fluid 

body of Low viscosity subject to the 'rapid' da~Ly rotation of 

the Earth and to a rigid boundary, the mantle , of unknown 

topography, but also it is permeated by the magnetic field and is 

the seat of the geodynamo . It i s important therefore, i n 

studying specific toRics , to realise that ones results may be 

applicable only to certain conditions. In particular, when 

modelling the behaviour of the core , one must utilise any 

observational constraints on the models so as to restrict the 

uncertainties involved . 

The composition and properties of the core are not well 

known , owing to i ts inaccessibility to either direct observation 

or Laboratory simulation . Both seismic and magnet i c data give 

information but this is subject to the uncertainties inherent in 

any i nverse problem. In general, what information is ava il able 

i s an ave ra ge over a finite region of the Earth's interior and 

the 

works 

( e • g. 

outer 

res olution obtainable is Limited, as has been discussed in 

on the application of inverse theory to the deep interior 

Masters, 1 979) . There is a general c o nsensus that 

core is Liquid and the inner co re sol id, and that 

the 

both 

regions are composed of a predominantly i ron -nickel alloy with 

some Light component (Jacobs , 1975) . 

Ur-l. Vt:RSITY 
LIOR,- RY 

CAMBl~IDGE 
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observed b o th directly 1n recent historic times and through 

archaeo - and palaeo-magnetic records i n a r t i f i c i a l 

the 

baked 

materials , igneous rocks and certain sediments : these studies 

show that the field fluctuates over both time and position and is 

capable of reversals on a geological time scale . Accordingl y, 

the field is believed to arise from some self-generating dynamo 

mechanism . It is generally accepted that the dynamo requires 

convection in some region of the outer core , which is both fluid 

and an electrical conductor , rather than being driven by , for 

example , precessional torques (Loper , 1 975) , although gravity 

waves may be able to drive a dynamo (Singer & Olson , 1983) . 

This convection occurs in a fluid subject to both Coriolis and 

Lorentz 

dominate 

forces. It is not clear whether the Coriolis forces 

or whether they are matched by the Lorentz forces in an 

approximately "magnetostrophic" balance . That depends on the 

strength of the toroidal magnetic field which is not observable 

at the Earth ' s surface , being confined to the conducting core . 

Beyond that consensus , the r e is much discussion about the 

actual co mposit i on of the co r e , pa r ticula r ly of the identity of 

the Light alloy i ng compone nt and of the poss i ble presence of 

po t ass i um wi t h i ts a ttenda n t r ad i og en ic heat i ng fr om t he deca y of 

K4 0 , and of whe t he r pa r t of t he outer core may be stably 

s tr a tif ie d. ~i ggin s & Ke nne dy (1971) s ugges t t hat t he o uter pa rt 

ma y be sub - adiabati c i n i ts t emperatu r e g r adient thoug h this has 

sin ce be e n disputed (Stevens o n, 1980), w~ ile Fe a r n & Loper (19 8 1) 

discuss the possibility of c ompositional stratification near the 

c o r e -mant l e bo un dary. 

A stably str a tifi e d r e gi o n adja c ent t o the co re-mantle 

bou ndary wo uld Lea d to the Lack of u pwelling <); "r/~r = 0) reported 

by Whaler (1980) from secular variation data . If there is no 

8 



upwelling at the surface of the core, then much more information 

about the core surface velocities is available from the secular 

variations than is the case for unconstrained velocities (Backus, 

1968); Gubbins (1982) discusses the toroidal velocity components 

that can be measured on this assumption of zero upwelling. Thus 

it is important to assess whether such a stable region can exist. 

In this thesis, 

region can be formed, 

we investigate whether a stably stratified 

whether by compositional differences or by 

subadiabatic temperature gradients, and then study an idealised 

fluid dynamics problem, the effect of rotation on penetrative 

convection. The latter study is a step towards understanding 

whether such a stable region could persist adjacent to the 

convecting interior of the core. 

Chapter 2 contains a review of information on core 

properties and of the fluid dynamics of penetrative convection 

and convection influenced by rotation and magnetic fields. In 

chapter 3, a thermal history model of the Earth yields estimates 

for the heat flux out of the core, constrained to fit our 

knowledge of the present-day inner core radius and surface heat 

This flux and of the existence of ancient magnetic fields. 

suggests that no thermal stable stratification exists and 

therefore that any such region would be due to the compositional 

stratificatio~ model put forward by Fearn & Loper (1981), which 

is reviewed and extended in ~ 2.3. Chapters 4, 5 and 6 set out 

an investigation of penetrative conveciion in rotating systems, 

the object being to study whether the rotation tends to enhance 

or to inhibit the penetration of a stable region by adjoining 

convection. Analytic approaches to the linear Boussinesq 

equations of motion are discussed in chapter 4 and extended by 

numerical work in chapter 5, using a " shooting " program to find 

9 
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2 contains a review of information on core Chapter 

properties and of the fluid dynamics of penetrative convection 

and convection influenced by rotation and magnetic fields. In 

chapter 3 , 

for the 

a thermal history model of the Earth yields estimates 

heat flux out of the core, constrained to fit our 

knowledge of the present-day inner core radius and surface 

flu x and of the existence of ancient magnetic fields. 

heat 

This 

suggests that no thermal stable stratification exists and 

therefore that any such region would be due to the compositional 

s tr a ti f ic a ti~n model put fo rw ard b y Fearn & Loper (1981) , which 

is reviewed and extended in~ 2 . 3 . Chapters 4 , 5 and 6 set out 

an invest i gation of penet r ative conveciion in rotating systems , 

t he object being to study whether the rota t ion tends to e n han c e 

o r to inhi b i t th e pe net r ation of a stable region by a d joi n i n g 

convection . Analyt i c approaches to th e Linear Boussinesq 

equations of motion are discussed in chapter 4 and extended by 

numerica l work in chapter 5 , usi n g a " sh oo ti ng " p rog r am t o fi nd 
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the eigenvalues , .,. the 

penetrative convection 

critical 

systems . 

Rayleigh 

Some 

numbers , of simple 

e xperimental work on 

penetrative convection in a rapidly rotating cylindrical tank is 

described in chapter 6 and the results compared with the 

preceding numerical work. This study of the fluid dynamics i s 

restricted to the linear equations of motion and to flows in the 

absence of magnetic field . It is therefore only a step towards 

modelling convection in the core, but a necessary one in view of 

the complexities of any more wide-ranging model of the 

convection . 

1 0 



2 . 

fluid dtnamics ~roblem 

This chapter sets out the relevant properties of the core ( 

§2 . 2) and discusses the possibility of there being a stabl y 

stratified 

addition 

region near . the core mantle boundary ( § 2 . 3) . In 

it includes a review of the fluid dynamics Literature 

relat i ng to penetrative convection and convection in the presence 

of rotation or magnetic fields ( § 2 .4), a discussion of the 

Boussinesq approximation ( § 2.5) and then sets out the Linear 

equations of motion , under that approximation ( § 2.6). However, 

as the model of mantle convection used in the thermal history 

model of the Earth ( § 3) is a separate subject to this discus-

sion of the core , the review of mantle convection work has been 

Left to that chapter . 

2.2 

Seismic -------

A re~ent review of seismic evidence about the composition of 

the Earth's core is given by Bolt (1982). Travel t i mes and free 

oscillation periods yield velocity and density distribut i ons 

t hroughout the Earth such as the "Pr el imin ary reference Earth 

model" PREM (Dziewonski & Anders on , 1981). Such models are 

consistent with there being no stably stratified re gions in the 

outer core, but could not resolve such regions if "thin" since 

the distribution are typically averaged over radial scales of 

about SO km. According to Bolt (1982), 

work precluding 7.8 < a < -1 8.2 km s , 

"there is no definitive 

or 5% variation at the 

top of the outer core": here a is the P- wave velocity, but this 
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reflects a similar uncertainty in the density gradient. At the 

inner core boundary, reflection amplitudes for phase PKiKP 

suggest a de n s i t y r at i o be t w e e n f l u i d a n d s o l i d o f p0 ./ p ., = 0 • 8 7 :!: 

0.04 (Bolt, 1972), whilst the inversion of free oscillation data 

gives a jump !::.p = 0.87 :!: 0.32 g.cm- 3 (Masters, 1979), equivalent 

to a ratio P. / 
o<. p . ... 

+ 
= 0.93 0.03. This density jump, much 

greater than that due solely to freezing, indicates a 

compositional 

fluid outer 

difference between the solid inner core and the 

core (Masters, 1979), as would be expected at a 

freezing boundary in an alloy of non-eutectic composition . From 

this density jump stem the possibilities both of a compositional 

energy source for convection and of compositional stratification 

near the core-mantle boundary, as will be discussed in~ 2.3. 

Within the outer core, there no Longer appears to be a need 

for a transition zone at its base. The precursors observed to 

phase PKIKP formerly explained by such a zone can instead be 

accounted for by scattering from inhomogeneities near the core-

mantle boundary (for a review, see Haddon, 1982). Jacobs (1975) 

gives a broader review of these matters, together with much 

info~mation on the Likely composition and thermal state of the 

core. 

Models of the observed surface magnetic field and i t s 

secular variation that are continued downwards to the surface of 

the source region, the core (Lowes, 1974), have been used by many 

authors as a source of information about core motions (e.g. 

Bullard et al. 1950 on westward drift, Benton & Muth 1979 and 

Whaler 1980 on upwelling). A problem with the interpretation of 

these field models at the core mantle boundary is that of to what 

1 2 
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depth of the core they sample. For example, Whaler (1981) gives 

an estimate of the skin depth for secular variations of period 

one year as about 50 metres into the highly conductive core. 

However , as Whaler continues, this screening effect is calculated 

for a solid medium: in a fluid, horizontally polarised wave 

motions are possible that can transmit variations in the magnetic 

field through a conducting fluid, the MAC waves of Hide (1966) 

and Braginsky (1967). Benton (1979) considers the use of the 

unsigned flux integral U for a sphere of radius r, 

U(r,t) = f1sr(r,&,t,t)/.dS 

as a means of finding the source region, rather than the top of 

the core, following Hide (1978). The method considers the 

difference 6U(r) between field models at two different times, 

extrapolated down to radius r: the radius at which 6LJ(r)=O 

is that of the surface of a good conductor in which the flux is 

frozen. Benton (1979) extends the argument on the grounds that 

if there is a core region next to the core mantle boundary that 

i s not the site of dynamo action (because of stable 

stratification), then that region will react passively to the 

secular variation of the field and the vacuum r ep resentation of 

the magnetic field remains valid. Thus 6U (r) = 0 throughout 

this 

that 

region, 

radius 

and the site of dynamo action should be marked by 

at which I 6 LJ( r) rises again from zero. 

However, the accuracy of the method (2% ~rror, from Hide (1978)) 

unlikely t o be of use in measuring a "thin" stably makes i t 

stratified regi o n. 

When applied to the question of upwelling, the magnetic 

field data is consistent with the hypothesis of no upwelling (as 

measured by O V 1 " r; or 
) at the core-mantle boundary (Whaler 

1 3 



1980). This conclusion stems from the use of the radial 

component of the magnetic induction equation at the surface of a 

good conductor (so that diffusion is negligible on the time-

scales of the secular variation , and V 
r 

= 0 at the surface) : 

~ ~ r + v. VHB r + B r v> H" ~ c 0 

where 'vH is the horizontal divergence operator 
a (V- ar 

r ) 

(Backus , 1968). At points on the core mantle boundary at which 

vanishes, "vH.~ can be estimated by 

For an effectively incompressible fluid, this then gives avr/ar 

at these points. Thus the hypothesis of no upwelling, which 

stemmed from thermodynamic work described in more detail in 

§ 2. 3 and § 3, is tested "at" the core mantle boundary. The 

question of how deep this information about core flows extends is 

important: 

consistent 

if the information' is very shallo w, then it is merely 

with the fl u id dynamics boundary condition of a no-

s L i p (ri g i d) bounda r y, at which v = av / 
r r a r = 0. I f the 

information extends beyond the surface boundary Layer (the Ekman 

boundary Layer in a rapidly rotating fluid body) , t hen this Lack 

of upw el ling is significant and i s consistent with suggestions of 

stable stratification in the core near the core mantle bounda ry 

(see § 2. 3) . For a typical estimate of core viscosity of 'i) = 

s .1 0- 7 2 -1 (Gan s , 1972), the d a i Ly r otation of the m s core 

suggests an Ekman Layer thickness, of approximately 

m. Thus our information should at Least extend beyond the 

viscous influence of a no-slip boundary, and so can be taken as 

supporting the proposed presence of a s t able regi on, 

the penetration of convection. 

inhibiting 

Benton & Muth (1979) give an alternative measure of the 

1 /, 



upwelling avt / ~, using the change in area enclosed by a null - flu x 

curve (on which B = 0) between two field model s of different 
r 

epoch to give the average of av r/ 3rover that area and that 

period. They derive a value avr;~~10- 10 s- 1 , indicating that the 

radial velocity near the surface is very much smaller than the 

horizontal velocities inferred from westward drift or from the 

measurable velocities normal to null flux curves (typically 10 - 4 

-1 ms , aga in from Benton & Muth, 1979). 

2.3 Stable stratification in the core 

Although seismic and magnetic studies are the primary source 

of information on the core, it is the thermodynamics of the core 

that 

the 

has caused most discussion of the stability or otherwise of 

core . This subject i s intimately Linked both with 

speculation on the formation of the Earth and with the problem of 

finding an adequate source of energy to maintain a geomagnetic 

field. It is restrained by experimental high-pressure work on 

ir on alloys and their phases , and by cosmological ideas on 

isot ope abundancies. A review of this field is given by Jacobs 

( 1975) • 

Higgins & Kenn edy (1971) produced perhaps the greatest 

controversy 

theoretical 

when they suggested , on the basis of 

work on both the melting temperature and 

the i r 

the 

adiabatic gradient of iron at h igh pressures, that the ou ter core 

must be stably stratified for the surface between inner and outer 

cores to be a freezing interface. This ran contrary to the idea 

that thermal convection in the outer core, driven either by 

cooling (Verhoogen~ 1961) o r by radiogenic sources, was the cause 

of the geodynamo. Subsequent studies (e.g. Stevenson, 1980 ) 

have disagreed with Higgins & Kennedy's conclusions , finding 
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instead that the adiabatic gradient in the outer core should be 

Less steep than the melting temperature profile , so that a well­

follow the stirred convecting co r e in which temperatures 

adiabatic gradient outwards from the freezing surface is indeed 

consis tent with the outer core being molten (fig . 2.1). Ho we ve r, 

the controversy did Lead to work on the question of how much heat 

must flow out of the core to avoid a thermal stable 

stratification and also to renewed interest in the proposal of 

Braginsky (1963) that the release of a Light fluid fraction on 

freezing at 

convection . 

the 

Such 

inner core surface Leads 

compositional convection 

to compositional 

could occur even 

though the core might be in a state of thermal stable 

stratification , in which case the convection would result in a 

negative heat flow, in opposition to the heat flow by conduction 

down the adiabatic temperature gradient that is a consequence of 

vigorous convection and its attendant good "stirring" (Loper, 

1978a and b) . 

Thermal models of the Earth ' s core such as those of Loper 

(1978a) (based on a constant heat flux from core to mantle) and 

of Gubbins et al (1979) (constant rate of cooling) have been used 

to test whether such cooling can Lead to an 

source for the dynamo . Gubbins et al (1982) 

would be the result o f a zero r ate of cooling , 

formation of - a stably stratified Layer near 

adequate energy 

considered what 

in terms of the 

the core mantle 

boundary. This in turn Led to the u se of the secular variation 

data by Whaler (1980), to investigate fluid flows at the core 

surface. The work desc r ibed in chapter 3 is an extension of 

these models, considering the effect of mantle convection in 

determining the thermal boundary c on dition to the core . 
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Fig. 2.1 

Sc hematic diagram of adiabatic and melting-point 

profil e s in the Earth's core 

Temperature 
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in Turner (1973) 
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Fig . 8 .2. Diagram of the various convect inn regimes dcsc rihccl by (8. 1.8) . 
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Reguirement for ~!~Qili!Z 

For the purpose of this work, a stable stratification in a 

f l u id exists i f , should a small parcel of fluid initially in 

equilibrium with its surroundings be displaced vertically in an 

adiabatic process, that parcel then e xperien ces a restoring bod y 

r-
force. An adiabatic process is one in which no i r re vesible ,.. 

changes o c c u r ( e • g • thermal conduction or diffusion of matter) 

and as such is an idealised occurrence, but one to which real 

processes approximate. The density of a fluid body is charact-

erised by its composition , temperature and pressure and , provided 

there are no appreciable accelerations, the Last will be deter-

mined by the equi Librium pressure of its surroundings. 

Thus the requirement for stability is that, for an adiabatic 

move from z
1 

to z
2 

w·,~ c.c.""fo~\ ... r.. c.. .. t~ 1 -l. ~~ f> 

p(c(z1), T(z1, p(z2)) , p(z2)))p(c(z 2), T(z 2 , p(z 2)), p(z 2 )) 

where position z1 is Lower than position Z2. Note that, even 

though no heat flows by conduction , the temperature depends both 

on the original position and on the current pressure, due to the 

work done in any expansion. Assuming that, for small changes, 

the density depends Linearly on these factors, 

~ p = p 0 (1-a c-aTT+a p) 
C p 

we require, 

ac(c(z2)-c(z
1

))+aT(T(z 2 )-T(z
1
)-~[p (z 2 )-p(z )])-a (p(z 2 )-p(z )))0 

ap 1 p 1 

or, in the Limit of small displacements, 

~)- a (~)< D dz P dz 
where z is depth . 
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a (~) + a (~ --(~) )<o 
c dz T dz Bz 

s 

where is the adiabatic gradient, which is positive . 

This requirement, for the fluid to be stable , is not the 

same as that based on an isotropic reference state (e.g. used by 

Fearn & Loper, 1981) if there is a compositional gradient: a 

distinction attributed by Gubbins et a L • (1979) to Kalinin 

(1972) . 

It is very important to note that this requirement relates 

to adiabatic changes. If there are significant irreversible 

effects then it may not be a necessary criterion . Notably, this 

opens up the field of double-diffusive convection, in which 

differing rates of diffusion in a system with at Least two 

intrinsic factors affecting density (e.g. heat and a component of 

compos ition) can Lead to modes of instability even though the 

abo ve criterion suggests a stable situation. Further, even in 

the absence of diffusive instabi Lity , the occurrence of diffusive 

flows of 

results 

the factors causing the unstable density gradients 

in the requirement being on ly a ne cessa ry condition on 

in stability: there will need to be a finite excess of the 

unstable gradients over those required above for motion to occ ur. 

This is described by a Rayleigh number, as wi l l be set out in 

more detail below . · 
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i • e • 

a (~) + a (~ -(~) )<o 
c dz T dz Hz 

s 

where is the adiabatic gradient, whi c h is positive . 

This requirement, for the fluid to be stable, is not the 

same as that based on an isotropic reference state (e.g. used by 

Fearn & Loper, 1981) if there is a compositional gradient: a 

distinction attributed by Gubbins et a L • (1979) to Kalinin 

(1972). 

It is very important to note that this requirement relates 

to adiabatic changes. If there are significant irreversible 

effects then it may not be a necessary criterion. Notably, this 

opens up the field of double-diffusive convection, in which 

differing rates of diffusion in a system with at Least two 

intrinsic factors affecting density (e.g. heat and a component of 

composition) can Lead to modes of instability even though the 

above criterion suggests a stable situation. Further, even in 

the absence of diffusive instabi Lity , the occurrence of diffusive 

flows 

results 

of the . factors causing the unstable density gradients 

in the requirement being only a necessary condition on 

instability: there will need to be a finite excess of the 

unstable gradients over those required above for motion t o occur. 

This is described by a Rayleigh number, as will be set out in 

more detail below. 
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~diabatic Gradient 

In the absence of compositional density gradients , the above 

stability criterion reduces to a comparison of the temperature 

gradient with the adiabatic gradient. The adiabatic gradient in 

the co r e is not well-known . Anderson (1982) gives a re view of 

recent shock-wave measurements on iron at core pressures (for 

reference, · core-mantle boundary: 13SGPa; inner core boundary : 

32 8GPa , from Jacobs (1975)), which can be connected with the 

results of static measurements at pressures up to 20 GPa. His 

paper is primarily concerned with the melting point of iron at 

core pressures, but also considers the possible values for the 

thermodynamic Gruneisen ratio y from which 

il) ap 
s 

= YT / k 

ii\ 
where k(P) , the compressibility , can be derived from seismic data 

"' 
(and is tabulated in Jacobs (1975)). Anderson considers values 

in the range 1 .1 ~ y ~ 1.6 at the core mantle boundary, 0.9 ~ 

Y ~ 1.4 at the inner core boundary , and also notes that y 

should then be inc r eased slightly (by approximately 0 . 1) for 

electronic effects , which affect the adiabatic gradient but not 

the suggested melting point equat ions. 

where 

The adiabatic gradie nt can be r ew ritt en to: 

~) dZ 

qi 

s 
= y g T/<P 

- k/p 

(<P is the directly measured quantity from seismic data, 

- 4/ V 
2 

3 s 
) g is 

gravity and z depth. Fr om inner core boundary to core mantle 

boundary, these change as shown in table 2.1. 

The errors involved are Largely "parallel": 
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'/;, 

T 

(Anderson) 

(Jacobs) 

(Jacobs) 

(Anderson) 

(subject to err6rs 

in the adiabatic 

gradient as feedback) 

Hence 

+ 1.1 0.3 

4.2 -2 ms 

2 -2 s m 

4800 + 600 K 

. 
' 

+ 1.3 0.3 

10.7 -2 ms 

-8 
1.6 X 10 

3620 + 1000 K 

2 -2 s m 



..,... 
~t inner core boundary to that at core mantle boundary should be 

correct to about 20% with that error arising primarily from the 

feedback of uncertainty in the adiabatic gradient on the 

temperature at the core mantle boundary , which Anderson derives 

by continuation from the melting point at the inner core 

boundary. 

of 

The variation ,n aT ) 
ai s 

interest in indicating 

over the range of the outer core is 

the most Likely region for stable 

stratification. Gubbins et al . (1982) considered this question, 

but state only that the top of the core is favoured by reason of 

the higher adiabatic gradient the r e, arising, as they state , 

primarily from the increased value of gravity there . This is in 

fact only obvious, on a simple model in which aT) 
ap s 

is assumed 

constant, if a significant heat source is Localised deep in the 

core , rather than being distributed evenly with mass (as might be 

expected for specific heat from cooling or radiogenic 

as follows: 

heating) , 

a) Possible heat flux by conduction= k aT) az s 
x area 

b) Heat flux from distributed sources o<. mass enclosed (m) 

C ) !I) = gp !!.) a z ap 
Now 

s s 

and g a [ m ( r ) / r 2J 
possible heat flux by conduction a[m(r).kp ~~ )l 

s 

whilst distributed sources of heat 

d) to the extent that kp . !I. is constant with ap s 
Thus, radius, 

so one finds that dist ri buted s ources o f energy do !JQ! 

favour any particular region of the outer core as a can-

didate for being sub -a diabatic . On this simple model, it is 

only through the occurrence of a Localised source (latent 
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heat or g r av itat io nal energ y ) at t he inn e r co r e s ur f ace that 

th e c o r e man t le boundar y bec o mes the f avour it e re gion for 

sub- a diabatic temperature gradients . 

In addition , the increase in YT / cp from inner core 

bo und a r y t o core mantle boundary indicated by th e est imates in 

Table 2 . 1 does justif y the conclusion of Gubbins et a L • (1982) 

eve n in the a bsence of deep Localised sources of energ y. Thus , 

on two grounds , one can expect the outermost part of the core to 

be 

§ 3 a 

the most Likely to be stably stratified by temperature . In 

thermal h i story model of the Earth is used to estimate the 

heat flu x from the core , and thereby to investigate the 

possibility of a thermal stable stratification . 

ComQositionaL Stratification 

As an alternative hypothesis , we may consider whether 

compo s itional gradients can Lead to a stable stratification in 

t he core . This would stem from the release of Light material at 

the freezing su r face of the inner core , as suggested b y Braginsky 

(1 963) . Masters (19 7 9 ) uses f ree oscillation data to measure the 

density jump 

in d ica t e th at 

change alone 

change 6p =, 

( 

ac r oss 

th e 

6 p 

0 . 05 

the inne r co r e surface , 

ju mp i s gr eat er tha n tha t 

( 0. 7 + 0 . 3) Mg . m - 3 = -
- 3 . 

Mg . m ), with t he inner 

and hi s results 

due t o th e pha s e 

whereas phase 

co r e densit y being 

co nsis t e n t wi t h t hat o f pu r e ir o n, t he oute r co r e be i ng a Lig hter 

a llo y. 

Light 

Fea rn & Lop er (1981) sh o w t ha t the concomi t ant r elease of 

material a t the s urface during fr e ezi ng would Lead t o a 

con vective instability to a much greater degree than thermal 

flows. Further, on the assumption that the core-mantle boundary 

acts as an impermeable barrier to this L i g h t component, they 

argue that the flux of the Light component must decrease to zero 
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as it a pproaches the boundar y and therefore that a barodiffusive 

regime can account for the flu x near to the boundary. Hence the y 

suggest that a stably stratified region will result , of thickness 

approximately 70 km . As they point out, one must consider the 

time - scale for the possible emplacement of such a region and the 

possible disruptive effects of the convection in the remainder of 

the outer core as it impinges on the stratified region . This 

Latter problem , one of penetrative convection, is analogous to 

that of the dispersion of a heavy gas Layer in the turbulent 

atmospheric boundary Layer , as might be formed following , say , 

accidental industrial release . Atmospheric studies of en tr ain-

ment may be found in , for example, Deardorff (1976) or Jensen & 

Lens how (1978). 

The time scale for the full establishment of a compositional 

stable stratification , in which barodiffusion balances diffusion 

down the concentration gradient, would be of the order of the 

diffusive time-scale. If we take a Length-scale L = 70 km (Fearn 

& Loper, 1981) and a diffusion constant D Z 10- 8 m2s- 1 (based on 

a viscosity V = 5 x 10- 7m2 s- 1 (Gans , 1972) and the Einstein 

relation, kT = 
6 n ap 

) , we get a diffusive time-scale of order D V 

~ 15 Ga . 

At best diff~sive equilibrium can 1ll. ..- be only partially 

achieved as yet, unless one argues for a markedly greater 

diffusion constant (and hence lQ~~r viscosity). If we now turn 

to the question of what would be the final equilibrium state of 

such a stable Layer, then we can expect a Boltzmann distribution 

of the Light component , 

p = P, \ exp{:!!!~9 

\ kT 
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where l is the depth from the boundar y , z , 
0 

i s the bulk 

dens i t y, P1 
i s the amplitude of the density change due to the 

Light component and m* is the difference in molecular mass 

between heavy and Light components (40 a.m.u. for iron and 

o xy gen, 

solution 

24 a.m.u. for iron and sulphur). This supposes an ideal 

in which the~e is neither volume change nor release of 

chemical energy on substituting one component for the other. If 

we write the characteristic depth H 

= 60 km form*= 40 a.m.u. 

and T = 3300 k , 

we have 

and, as a measure of the stabi Lity, the square of the Brunt-

Vaisala frequency N 

N 2 = 

= 

ap / az. 

A exp \-nii~2 2) 

where we can estimate p
1 

Ip from equating the mass 
0 

of light 

component in t h i s dist r ibution with the mass rejected from the 

inner core on freezing , using the density jump given by Masters 

(1979). 

H < < R the radius of the outer core 

ML = 4TI R
2

Hp
1 

f :). P , / p o 
X (mass of co r e) 

But ML = 6% mass o f inner c o re (M as t e r s , 19 79) 

0.003 x (ma s s of core) 

Equa t in g A and B 
l 
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{) I IP ~ 

0.003 t:) 0 

~ 0 . 06 

Hence N2 ~ \ -5- 2) 1 0 s . exp \-(Z:Z 0 )) 

This simple model thus predicts that, if diffusive equilibrium 

has been attained (or , more pertinently, if it is near) then the 

compos i tional gradient leads to a Brunt - Vaisala f r equency N that 

ranges exponentially from zero deep in the outer core to 

approximately (3 x 10 - 3 ) s - 1 at the core mantle boundary , with a 

depth scale of order 60 km (or 70 km from Fearn & Loper , 1981). 

The shallow depth scale makes it unlikely to be detectable by 

seismic means . 

This model has assumed that the light component rejected on 

the freezing surface is convected to the core mantle boundary (or 

its vicinity) and then stays there , developing a locally 

diffusive concentration gradient . It further supposes that the 

intervening convecting part of the outer core , the greater part 

of i t , r emains well - mixed by the convect i on so that the light 

component a l ready i n the outer core r emains in so l u t ion , not 

su rf ace r eg i on . Th e s e p ar at in g ou t u nder grav i ty to jo i n the 

s eparat i on of stable and unstable regions , even though there be 

no rigid ba rrier bet we e n the tw o bod i es of flu i d , is a c on cept 

that wil l be investigated below . 

One furt her p o int ca n be made from this mod e l o f the release 

of light component . Using the thermal history model (chapter 3) 

to giv e a typical rate of c ooli ng of the c o re o f a pp r o xim a tely 

0. 1 -1 K .Ma ( " standard" r un give s 0.087 = 

can estimate the fl u x of light component fr o m the 

-1 K.Ma ), 

inner 

surface , using equation 3 .7 for the inner core radius r 

2 4 

we 
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= (T
0 

- T, ) 
/(To - Tf) 

where T1 is the current core-mantle boundary temperature , and T 
0 

T~ those hypothetical temperatures at which inner core formation 

s tarts and is complete~ respectively, so that 

2~ r 
dt r-2 

0 

dr 1 
dt = I 

:::::: 500 

- dT, 
/(To -Tf ) = dt 

(0~35) .( 10- 4 

-1 m.Ma 

Ma - 1 ) 

Hence we can estimate the mass deficit ML being released as: 

dM ... 
dt = 4 2 

TT r • dr 
df 

again using the density jump from Masters (1979), giving 

dM'" 
dt 

Diffusion: 

3 X 10 5 - 1 kg.s 

2 components causing opposing 

gradients. 

density 

As was mentioned above, when one relaxes the condition of 

changes being perfectly adiabatic, there arise possible 
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instabilitie s even though the overall densit y gradient i s 

apparently stable . These are caused by the diffusive flows , and 

may be said to be entropy driven in that the mechanism is one of 

redistributing one component more rapidly than the other , thereby 

allowing the potential energ y of the unstable component to be 

released by Local instability. Turner (1973) (chapter 8) gives a 

broad review of this field , in which two new instabilities occur, 

t he "finger" regime and the "unstable oscillations" regime . 

Figure 2 . 2 is reproduced from that book , and shows the occurrence 

of these two instabilities in the case of heat and salt as the 

two components (note: 

diffusivity of salt). 

diffusivity of heat in water ,.., - 100 X 

The finger regime in particular has been 

extensively studied, owing to its oceanographic applications in 

terms of salt transport between ocean Layers . 

In this thesis, double diffusion is not considered in 

detail: the penetrative convection studies made are on single 

component systems , attributing the possible stable Layer at the 

core mantle boundary to either thermal or compositional effects 

(probably the latter in view of the results of §3) , not to a 

c ombination of the two. However, if compositional effects a r e 

significant then double diffusion is Likely to be important, at 

Least in Local terms . If there i s the combination of a 

superadiabatic temperature gradient (ari sing from high heat flux 

out of the core) and a stable composit i onal gradient as suggested 

by Fearn & Loper (1981), then since the thermal diffusivity in a 

Liquid metal sh o uld be much greater than the material diffusivity 

one can expect the "unstable oscillation" regime to be a 

possibility near the core-mantle boundary. A "finger" regime is 

Less Likely, as it would involve a subadiabatic temperature 

gradient and so Leads to an inefficient dynamo (see § 3) • 
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Accordingly some experiments performed on s a l t fingers under 

rotation, following Schmitt & Lambert (1979), are not reported in 

t h i s work, 

experiments , 

although Fig. 

showing a 

2.3 is a pair of photographs of these 

side-effect of rotation observed, in 

inhibiting the formation of sec.ondary layering at the top and 

bottom surfaces of the experimental tank. 

The distinction between the two modes is whether the more 

(unstable rapidly diffusing component i s the unstable 

oscillations) 

the unstable 

across the 

oscillations, 

or the stable gradient (fingers): 

gradient component is 

region of instability. 

transported 

In the case 

in both cases 

preferentially 

of unstable 

the oscillatory motion assists the diffusive 

transport of the unstable component by enhancing the local 

gradient of that component and then advecting the component to 

another region, similar in some respects to the increased heat 

flux in rotating annulus experiments that arises from the 

baroclinic instability on the thermal wind flow (e.g. Hide 1958). 

The finger regime on the other hand is a steady motion, most 

simply conceived in terms of a conducting-pipe model set out by 

Stammel et al. (1956), in which diffusion of the stable component 

through the side-walls allows a steady advection of the unstable 

component. Stern (1960) showed that the differing rates of 

diffusion of the two components 

Double diffusion 

can r eplace the rigid conducting 

can also lead to finite amplitude side-walls. 

subcritical convection in cases in which . the unstable component 

is the more rapidly diffusing (Proctor , 1981a) . 
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Fig. 2.3 

Experiments on th e formation of salt fing ers , 

firstly non -rotating , secondly rotating about 

a v~rtical axis at approximately 0.5 
-1 

rev. s 

Non-rotating 

Boundary 

(secondary) 

finger l ayer . 

Main finger 

layer . 

Apparatus sciale is shown by the ve rtical grid 

whi c h is marked in 1cm st eps . 

- ------ -------- - -~-. 
·- ._/. 

Rotatin g 

~ secondary 

finger l aye r. 

r~ a i n f i n g e r 

layer . 

Not e that the bright 

hori zo nt al lines seen 

at the top boundary 

are merely reflections 

from the meniscus . 



2.4 Fluid Dznamics of Convection ----------
Penetrative Convection ----------- ----------

Penetrative convection theory applies to cases in which 

stable and unstable density gradients exist in adjacent regions 

of fluid, and is primari l y concerned with the extent to which 

convection can penetrate the stable region. In this sense it is 

a study of convection in a region in which the density gradient 

i s not constant , as in the Rayleigh-Benard problem, but rather 

changes sign. An alternative approach is to consider the f Lui d 

as two distinct regions, interacting at their mutual boundary 

through pressure and viscous forces. 

The former approach was studied for a non-rotating system by 

Sparrow et al. (1964) as part of an investigation into broadening 

the range of the convection problems studied using Linear theory. 

Part of the work concerns the effect of changing the thermal 

boundary condition, revealing the Long horizontal wavelengths 

associated with fixed flux o r Low Biot number boundaries (where 

Biot , the thermal boundary condition is = dz 
d-& = 

number, = temperature perturbation), and part investigates 

the non - Linear temperature profiles that can result from internal 

heating , 

mainly 

(defined 

r athe r than heating from the base. 

considers the effect on the Rayleigh 

This Latter part 

number at onset 

in terms of the maximum temperature difference within 

the system), but Sparrow et al. also note that for 

peaked temperature profi Les the Lower boundary becomes 

f r om the convect i ve motions by the immediately adjacent 

str a tif i ed r egion . 

strongly 

shielded 

stably 

Ver onis (1963) i nv estiga t es a s pe c if i c pen e t r ative p r obl em, 

that of convection in an 

coef f i c ient o f exp an sion a 

ice-water system, 

changes s i gn so th a t 

2 8 

in which the 

th e density 



gradient 1 S 

temperature 

one of 

gradient 

penetrative convection even though the 

is the constant one of simple one-dimen-

sional thermal conduction. His approach is based on Fourier 

series expansions of the perturbation variables , using the idea-

Lised boundary conditions of stress-free and perfectly conduct in g 

surfaces to simplify the analysis , and he achieves a high degree 

of accuracy in the evaluation of the critical Rayleigh number 

despite severe truncation of the series. Equivalent results for 

rigid boundaries are also given, from the analogous problem of 

Couette flow (Chandrasekhar, 1954). This problem is used as a 

test case in § s, in which the numerical integration used, a 

"shooting" method, yields similar values for the Rayleigh number 

but suggests that the countercell found by Veronis is partly due 

to the extent of truncation of the series. Veronis continues in 

the same paper to a weakly non-linear calculation in which he 

demonstrates a finite amplitude sub-critical instability: as he 

explains, this is to be expected in view of the results of mixing 

in a system with such a variation of the coefficient of expan-

sion . Moore & Weiss (1973) extend this work in a nonlinear 

numerical study. 

Stix (1970) also employs a Galerkin approach , a series 

expansion of t he solution , but conside rs two special cases of a 

two layer problem , 

upper 

one of a perfectly conducting and therefore 

("stable") Layer and the other of a very is othe rmal 

str ong ly stratif i ed upper layer. These allo w analytic 

and as expressions for the solutions at the onset of convection, 

a result Stix shows that the strongly s tratified region can act 

as a more severe boundary condition to the unstable region than 

would a rigid wall (the critical Rayleigh numbers being 2435 and 

1708 respectively). A similar conclusion is reached by Whitehead 
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(1971), who sh o ws that as the stable region becomes of infinitel y 

strong stratification i t becomes equivalent to a boundar y on 

which W = DW = 

(where W is the normal velocity , parallel to z ), a combination 

of the conditions of no slip and no tangential stress. 

Sun (1976) investigates the atmospheric problem of the 

morning disruption of the night-time temperature inversion by 

considering a two Layer problem. The Layer adjacent to the 

ground (a rigid boundary, taken to be perfectly conducting) is 

allowed a cubic temperature profile, which is matched to an upper 

semi-infinite stable Layer of uniform stability, and a power 

series method used. Subsequent finite amplitude convection i s 

described in terms of a mixed convecting region bounded by a 

thermal boundary Layer of superadiabatic temperature gradient by 

the ground and by an inversion Layer under an undisturbed stable 

region. This is similar qualitatively to the situation in the 

cylindrical tank experiments described 1n chapter 6, though 

without rotation . 

A finite degree of stable stratification i s investigated 

numerically in a 3 Layer model by Latour and Zahn (1978), the 

unstable Layer of unit depth being sandwiched between semi-

infinite stable Layers, the modulus of the density gradient being 

the same in each Layer. The computational domain is of 

restricted extent , with matching conditions at its boundaries to 

analytic solutions in the stably stratified regions that extend 

the solution to infinity. In their paper , the Layering is 

assumed due to variations in the underlying adiabatic gradient , 

with the motive for the work coming from convection in the 

int erio r o f sta rs . 

A non- Linear approach to a particular problem in pen e trative 
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convection is to use the Long-wavelength so.Lutions arising from 

f i X e d flux boundar y conditions to separate horizontal and 

vertical scales of the solutions (Roberts, 1982, 

1980, 

following the 

use of the method by Chapman & Proctor, and Proctor , 

1981b). Roberts notes that an extensive stable region inhibit s 

the Long-wavelength solutions and so Limits the applicability of 

the method. In chapter S, we shall see a simi Lar Limitation 

arising from rotation of the system. 

The alternative non-Linear approach 

convection is that developed by Townsend (1966), 

to 

who 

penetrative 

considers 

the effect of thermals impinging on a stably stratified region, 

causing wave motions in the Latter which can be of considerable 

amplitude and are therefore of interest in explaining and 

predicting the phenomenon of clear air turbulance. The only 

penetration considered i s that of the buoyant rise of the 

thermals into the stable region until the density contrast 

becomes zero . Thermals penetrating in this way then act as 

discrete sources of waves , which are subject to diffusive losses 

as they propagate away from the disturbance. Entrainment of 

stable fluid by such thermals is a model for the growth of 

unstable regions in certain cases (e . g . Denton & Wood, 1981) . 

Ih~ ~ff~£! Qf [Q!2!iQQ and magnetic fields on convection 

Chankra sekha r (1961) gives a detailed review of th e Li near 

stability of convection in a plane layer when rotation and 

magnetic fields are p re sent . His numerical results for critical 

Note : in the re mai nder of this chapte r and in chapters 4, 5, 6, 

T is the Taylor number , and so 8 represents the temperature . 
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Rayleigh numbers and horizontal wavenumbers are used 1n § 5 for 

comparison purposes with the shooting program used for this work. 

In his chapter on rotation there is a discussion of the R = O 
C 

a 
C 

relationships in the Limit of T~ 00 and 

also work on the occurrence of overstabi Lity when the Prandtl 

number Co= \J/K 

sufficiently 

) is sufficiently small and the rotation rate 

Large. Linear temperature profiles only are 

considered. The discussion of cell planforms follows Veronis 

(1959), and experimental evidence is fro~ Nakagawa & Frenzen 

(1955). A similar chapter on the effect of magnetic fields i s 

then followed by one on the joint effects of magnetic fields and 

rotation, in which it is shown that the critical Rayleigh number 

may be appreciably Lower when both influences are present than if 

only one is. 

Veronis (1959 and 1966) considers the possible occurrence , of 

finite amplitude instabilities and of overstability in much more 

detai L, using the method of a small amplitude expansion about the 

Linear solution previously set out in Malkus & Veronis (1958). 

Both overstable solutions and finite amplitude instabi Lities 

occur in certain parameter ranges in order to relax the 

constraint of rotation: both require fluids of Low Prandtl 

number. The prediction of a finite amplitude instability at 

modest values of the Taylor number has been verified 

experimentally by Rossby (1969). This instability depends on the 

dual role played by viscosity, in releasing energy as well as in 

dissipating it. Stress-free, perfectly ~onducting boundaries are 

considered in this work of Veronis as they permit an analytical 

solution to the Linear problem. The finite amplitude instability 

at Low Prandtl number is also studied numerically by Veronis 

(1968). 
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Spherical geometry greatl y 

Chandrasekhar , 

increase s the difficulty of 

anal y sis C e • g • 1 961 , 

simplification in the case of rapid 

chapter 6) , but a great 

rotation Leads to the non 

in which the inclination of axisymmetric "Busse-roll" solutions, 

the boundaries restricts the convection to a tightly packed 

cylindrical form (Busse, 1970, following earlier work by Roberts, 

1968). In such cases, in which the Coriolis forces must be 

dominant , a spherical shell such as the Earth's outer core can be 

divided into two very distinct regions of convection: polar, 1n 

which essentially plane-Layer solutions occur, and equatorial, in 

which Busse-rolls occur (figure 2.4). 

The existence of Busse-rolls has been demonstrated 

experimentally (Busse & Carrigan, 1974). Whether they are a 

suitable form of solution in the Earth ' s core depends on the 

strength of the magnetic field, for which Hide and Roberts (1979) 

review the arguments. In models incorporating a toroidal 

magnetic field of the same approximate strength as the observed 

poloidal field (weak field dynamo models), Busse-rolls should be 

impo r tant. However, in strong field models, in which the toroi­

dal field is much stronger than the poloidal and an approximate 

balan c e o f magnet i c and rotational forces is assumed ( a " magneto -

strophic " balance) , the rotational constraints are so weakened 

that the motion can again be fully three-dimensional. The 

analys i s l eading t o Busse - rolls is descr i bed in § 4. 5 , as 

backg r ou nd to nume r ical ( § 5) and expe r imental ( § 6) stud i es in 

a cyl in d ric al geometry , in wh i ch inclination of the boundar i es is 

not s ignifi ca nt. A point of inte r est f r om the expe ri ments o f 

Busse & Carr igan (1 974 ) is that no f in i te amp l i tu de s u bc ritical 

i nstability was observed , 

above . 

u nlike the plane Layer case disc us s e d 
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Sc hemat ic diagram of th e di vision of 

the Earth's core into two distinct 

regions of convection ; po 1 a r , in 

which the boundary inclination is small 

and eq uat or i al , in which it dominates. 



The interaction of rotation and magnetic fields to give 

Coriolis re latively Low critical Rayleigh number solutions when 

and Lorentz forces are of similar magnitude has been studied in 

such works as Eltayeb (1972, 1975) and Fearn (1979). Eltayeb 

(1972) describes the boundary Layer structure in his p lane-La yer 

study, 

Ekman 

noting that a magnetic field reduces the strength of the 

suction that is a major part of the rotational constraint 

on convection. The various boundary Layers (Ekman, Hartmann and 

mixed) are discussed in more detail by Tough & Roberts (1968). 

Soward (1979 and 1980) extends the plane layer investigation, for 

vertical (1979) and horizontal (1980) magnetic fields, in partic-

ular noting that overstable solutions occur only for q > 1 

(q = K/n ) . Fearn (1979) considers a spherical shell geometry 

with a fluid that is a weak conductor of electricity, so that q = 

i s small, where K is the thermal and n the magnetic 

diffusivity, and with a strong toroidal field ( Q = Bo 2 = 
2r2µp.n 

0 < 1 ) ) He finds that the critical Rayleigh number is a minimum 

for Q = 0(1) and is associated with a slowly drifting wave of 

azimuthal wavenumber m = 1, an oscillatory solution. 

Wave 

stratified, 

solutions to the Boussinesq equations of motion in a 

rotating perfectly conducting fluid are discussed by 

Hide (1969) in the simplest geometry, namely small amplitude 

plane waves in a fluid of infinite extent in which both the 

Brunt -V aisala frequency (N:: ( 51 the Alfven velocity 
p 

) are uniform, and there , is no dissipation . This 

indicates that the effect of stratification is negligible on the 

oscillations if N<<2r2 In the absence of stratification, 

hydromagnetic waves can be described in a spherical shell using 

the plane geometry (Hide, 1966), resulting in two classes of 

wave modes: "inertial" , W hi C h are of high frequenc y, and 
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11 magnetic 11
, of Lower frequency. The Latt~r are put forward b y 

Hide (1966) as a possible cause of the secular variation, whose 

time scale is hundreds of y ears . A review of this work and of 

more recent developments is given by Eltayeb (1981a), who then 

concentrates on the role of diffusion in modif y ing the waves in a 

spherical geometry. The combination of diffusion and of 

spherical boundaries Leads to very different solutions in certain 

parameter regimes, just as Busse-rolls reflect their influence in 

the non-magnetic case. In the weak field case ( Q~ O(o
2
/3 . E

1/3:,, 

where Q = B 2 / 
0 2~µpn , the modified Chandrasekhar number in 

Eltayeb ' s notation), solutions are of Busse-roll form , an iner-

t i a L wave in a thin cylindrical c e L L, propagating eastwards 

because of the constraint of the inclination of the boundary . 

Three-dimensional motions are the critical mode of convection in 

the strong field case . These waves are oscillatory solutions 

of a convection problem , in which there is a driving buoyancy 

force . They therefore refer to an unstable stratification and so 

are very different to the waves considered by Hide (1969). The 

Latter may be o f interest as a response to forcing by convection 

o rigin at ing elsewhere, in which case the problem would resemble 

that considered by Townsend (1966) in the context of gravity 

waves excited in the atmosphere by the impact of thermals. 

To wnsend considered dissipation of the wave s only as a means of 

estimating the extent o f their propaga tion from the source, his 

object being to put forward an explanation for 'clear air turbu­

lence'. 

In a separate paper to that described above, Eltayeb (1981b) 

considers the effect of a stably stratified outer region on 

convection in a spherical shell, prompted by the stable region 

suggested by Higgins & Kennedy (1971). His results show that in 
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th e w e a k f i e L d c a s e ( Q ~ 0 ( o 
213 E 1/3 ) ) , the Busse-r o ll form of 

so lution s p e rsists . The anal y sis is performed in the Limit of 

small a, 

results 

using an e xpansion scheme in powers of o , 

in 

d i ffusio n less 

the 

and 

solutions being 

independent of 

wave motions that 

the stratification . 

W hi C h 

are 

He 

anticipates that for o ~ 0(1) the solutions would be of decaying 

amplitude in the stably stratified part of the spherical shell , 

field but no such calculations are described . In the strong 

case , preliminary r esults are that instability occurs in the 

whole volume of the spherical shell : detailed calculations are 

not g i ven by Eltayeb (1981b) . These studies are very different 

from the qualitative model put forward by Yukutake (1981) , in 

which a two Layer outer core is invoked to explain the westward 

drift (in simi Lar analysis to that of Bulla r d et al. , 1950) and a 

stable stratification in the outer region is supposed to Lead to 

' spherical ' motions rather than ' cylindrical'. 

The role of rotation and of magnetic fields in convection 

also includes double diffusive effects analogous to those 

discussed p r ev i ously . Busse (19 75 ) describes the effect of the 

magnetic field o n the nonl i near stabili t y of a plane La ye r 

c o n vec t io n p r oble m. In t he case o f La r g e q ( q = K / n ) , 

oscillat i o n s ca n o c c ur, wi th ampl i fication of magnetic energy and 

dis t o rti o n of th e o ri g in a lly unif o rm and v e r t ic al mag n e tic field 

so as to al l o w f ini te ampli t ude co nvection at subc riti ca l 

Ray l eigh nu mber s . Ho we ve r, in th e Eart~· s c o r e q is e xpec te d to 

be small (q ""10- 6 per Eltayeb, 1981b) and so such a subcritical 

instability should not occur. A triply diffu s i ve re g ime has also 

been inve s tigated (Aches o n, 1980), but i s out s ide the sc ope of 

this work. 
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2. 5 Boussinesg aQQroximation 

The full equat ions describing a fluid , express ing conserva-

tion of 

include 

mass, momentum and energy, are unwieldy in that they 

effects such as compressibi Lity that are often observed 

to be of Little influence on the Large scale flows found in 

geophysics. In order to simplify mathematical analysis, a set of 

approximations known collectively as the "Boussinesq approxima-

tion" is frequently applied to the equations in convection prob­

lems, to reduce them to the following form: 

I/• V 

Pa·D~ 
TIT 

foe 08 
VDT 

= 0 

= - 'v p + µ'v2v + p(G) ._g_ 

= - Kl/ 28 

µ,c ,k are constants, 
V 

V 1 S the velocity , where the parameters 

p 0 areference density, 

the pressure. 

p ( 8) the density at temperature 8 and p 

In this section, the nature of the Boussinesq approximation 

i s reviewed, relying heavi Ly on the unpublished notes of Malkus 

(1964) and on the earlier work of Spiegel and Veronis (1960) and 

Mihaljan (1962). Malkus notes that the traditional rationale for 

the approximation is based on the following four assertions, 

plausible for a fluid in which density contrasts are small and 

velocities slow compared to that of sound: 

(a) the fluid behaves as though the density is constant ( p
0 

) 

except for the buoyancy force, 

(b) the fluid behaves as though incompressible, 

( C) the fluid parameters µ , c ,k are constant , and 
V 
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Cd) mechani ca l dissipation is negligible in the energy equation. 

The approach followed by Malkus i n quantifying the 

requirements needed to justify the Boussinesq approximation is to 

consider the effect on the equations of small departures from an 

ideal "Boussinesq" fluid, in terms of two parameters that are to 

be small: 

n = 

E 
= \ 6~: l 

where 8 is a reference temperature of the system, d the depth 
0 

and 68 1 the maximum potential temperature contrast. Thus ( n + 

E represents the overall scaled temperature contrast in the 

system, n 

temperature. 

temperature 

being due to depth and E to contrasts of potential 

A reference state based on the adiabatic 

profi Le through 8 and z = o and on 
0 

a hydrostatic 

pressure field is adopted and perturbations about this state 

considered in terms of new variables scaled as follows: 

1 
z/d 81 8 /Ee z = = 

0 

1 
p/En

0 

1 
P / Pa 

2 p = p = Va 

1 v/ t 1 
t/ (diva) V = = Vo 

]J 1 = µ(8)/µ(8) k 1 = k( 8 ) 1 k(8o) 
- 0 

where 8 and p are perturbations from the reference state and V 
0 

is a characteristic velocity for the system, based on the 

of sound , c , and the expansion parameters: 
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The characteristic time scale, T = d/ i s thus 
V o 

l 

T - \ig)2 -

W hi C h Malkus compares with "free-fall" under buoyancy forces in 

the system. It i s thus the shortest time-scale for either 

convective motions i f the temperature differences are 

destabilising or gravity waves if stabilising. Thus acoustic 

phenomena are excluded by the scaling and cannot be represented 

accurately in the Boussinesq approximation. 

This time scale is dependent on the Rayleigh number, through 

T = 

In a rapidly rotating system, following Chandrasekhar (1961), one 

typically finds 
2 

R = 0 (T /3) 
C 

= 0 (~ 4 / 3) 

T = 0 rn- 213) 

Thus there are Likely to be problems in using the Boussinesq 

approximation in a rapidly rotating system, in which the rotation 

time scale is much shorter than the natural convective 

time scale. Jn particular, inertial waves are in general on too 

short a time-scale to be resolved by the Boussinesq approximation 

under this scaling. However, one may anticipate that T is still 

sufficiently short to be an appropriate time-scale for convective 

motions. 

If one considers the non-rotating case, Malkus uses the 

ideal gas equation of state to write the full equations in terms 
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o f the e xpan s ion parameters E~ 

pa r a met ers R, ~ , s , where 

Rayleigh number R 

P ra n d tl number a 

and s · 

(his equations 2 . 22-24) 

and the non-dimen s ional 

3 
- gd 68 

-KVG 

V/K 
0 

-

- R/c 
p 

and 

of 

shows that the Bousinesq equations are the zero order 

the expansion of the equations in the parameters E 

s tate 

terms 

, n 

Thus the magnitudes of E and n are measures of the departure of a 

real system from that represented by the Boussinesq 

approximation . 

Rotation of the system introduces two sources of pressure 

fields beyond the hydrostatic field due to gravity . The 

resulting pressu r e differences represent additional terms to be 

included in n , the measure of the pressure depth of the system . 

In the atmosphere , the Coriolis acceleration Leads to pressure 

drops in cyclonic depressions of o r der 0 . 05 bar , which is small 
\::. '6,.\k ,.,..u ...... 

but no t negligible . In the core , the greater ri@irli=r k of the 
s 

fluid ensures that Coriolis accelerations are negligible in terms 

of dens i ty changes , as is no w sho wn :-

Pressu r e diffe r ences ~ nULp 

where r o tati o n rate n ~ 10 - 4 rad . 

f luid sp e e d sc al e U <.< Vp 

and Vp 104 - 1 
~ ms 

L ~ 10 6 m 

p 10 4 kg. m - 3 
~ 

- 1 
s 

( co mp re ss i onal wave 

( Ja cobs , 

1 0 
:. Coriolis pressure differences<< 10 Pa 
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. . . 

and 

II 
But K ~ 6 x 10 Pa ( Jacobs, 1975 ) s 

density changes due to Coriolis accelerations, 

< < 

so are negligible for any plausible (i.e. 

convection velocity in the core . 

subsonic) 

The centrifugal acceleration can be regarded as part of the 

effective local gravity field and, since the core-mantle boundary 

will be, to first approximation, an equipotential surface for 

this effective gravity field, any effect of centrifugal 

acceleration can be considered as included in the radial density 

profile of the outer core. Taking density values from Jacobs 

(1975), it is apparent that depth scales of order 100 km or less 

involve only small density changes (and so small values of n ). 

Q~Q!h from c.m.b. 

(km) 

0 

85 

485 

2270 (i.c . b.) 

9.90 

10.04 

10 . 62 

1 2. 11 

Thus for the purpose of considering motions effectively 

confined to the outermost 100 km or less of the core, the 

Boussinesq approximation should involve error terms due to n of 

order 

n = - o 

which can reasonably be taken as negligible. The suggested 

stratified region due to compositional effects is within this 

depth scale . 
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The other scale parameter t depends on the differences in 

densit y relative to the adiabatic equilibrium density profile. 

In an unstable region, they are Limited by the rapid transport by 

convection occurring when the Rayleigh number markedly exceeds 

i t s critical value. This is readi Ly shown to 

temperature (or density) 

require only 

differences negligible superadiabatic 

ae 
az (Gubbins et al. 1979 derived a superadiabatic gradient 

K km- 1 ) from the work on convection of Busse (1970), 

revealing a maximum superadiabatic temperature difference~ 8 = 0 

(10-S K) 

convecting 

stratified 

E: and so 

across the outer core). Thus E: is negligible 

region of outer core size. However, in a 

region there is no equivalent mechanism to 

in a 

stably 

Limit 

we need an estimate of the potential sub-adiabatic 

temperature gradient (or of the stabi Lising compositional density 

gradient). Thermal gradients, even immediately adjacent to the 

core mantle boundary, cannot plausibly be more sub -adiabatic than 

to be isothermal, and so thermal density differences in E: must 

be negligible in the same way that the adiabatic density depth 

n is negligible in the outermost 100 km or Less. Compositional 

gradients are not so constrained, and so we require the estimate 

of them made in§ 2.3 above. 

perturbation of 

Th i s suggested a maximum density 

0.06 which is still small even if 

not fully negligible. Accordingly, the Boussinesq approximation 

should be accurate to within terms of order n, E: where 

0.01 

0.06 

for the outermost 100 km or so of the core, which is acceptable. 

For motions extending throughout the outer core however, one has 
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n ~0.22 (from the measured densities, above) 

and so the error involved 1n the Boussinesq approximation i s 

correspondingly increased. 

For the purposes of the analyses of penetrative convection 

given in chapters 4 and 5, the Boussinesq approximation i s 

assumed, as being appropriate to the outermost part of the core. 

2.6 

The equations of motion for a fluid in a rotating frame of 

reference are given in many textbooks (e.g. Chandrasekhar 

1 961) • We have: 

Continuity 

a D 
af +'\}.(pu) 

Momentum 

a . ( o u ) + ( u . V) p u = X - VP 
TI 

where X are external forces, 

to be conservative. 

Heat transport 

a 
aT 

(pC 8) + (u.V)pC 8 
V - V = 

= 0 
(2.1a) 

+ £.V(gA~) 2 
+µV

2
u + 2p(uAQ) 

2 

(2.1b) 

such as gravity, which are assumed 

V. ( KV 8 ) - p V. ~ + <1> (2.1c) 

where is internal heating, such as viscous dissipation, 
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and 8 the temperature. 

The analysis will be based on Linear theory , 1n which quadratic 

terms in~ can be neglected . Clearly this is suitable only for 

either the onset of motion or else motions of small amplitude . 

I f we assume the Boussinesq approximation as discussed above 

in § 2 . 5 we can take all of the material properties of the fluid 

to be c onstant throughout its body , 

changes introduce buoyancy forces . 

except in so far as density 

Thus the above equations , in 

the Li near Boussinesq app r oximation become : 

\7 . u 

a..u. 
at 

= 0 

= ~ - Vp + \7 ( St A r ) 2 + V 92 u 
P P -z -

+ 2(u A S°G) 

ae + u .VG at = 

(2 . 2a) 

(2 . 2b) 

(2.2c) 

Le t us ope rat e on ( 2 . 2b ) with cu r l , and then again wi th c u r l 

(cur l a - \7A3 - E .. k a lJ --ax. ak ) t o g i v e 
J 

as \7 p 1 A_g_ 
v\7 21',; 2 ( SG . 9) u at = + + 

Po 
(2.3) 

and 1 · 1 1 4 = (_g_\7 2 p - (_g_. \7) \?p ) + v\7 u - 2_(_g. \7) !;_ 
p 0 

(2.4) 

where is the v o rticity a nd p1 is the density 

perturbation from th e refer enc e density Po In t he Bo uss ines q 

appr o xi mation a nd ass uming we a re dea l in g wit h thermal buoyancy , 
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and e the temperature. 

The analysis will be based on Linear theory, in which quadratic 

terms in~ can be neglected. Clearly this is suitable only for 

either the onset of motion or else motions of small a mplitude . 

If we assume the Boussinesq approximation as discussed above 

1n 9 2.5 we can take all of the material properties of the fluid 

to be c onstant throughout its body, except in so far as density 

changes introduce buoyancy forces. Thus the above equations, in 

the Linear Boussinesq approximation become: 

v'. u 

o!J.. 
at 

= 0 

= ~ - Vp + ! ( St I\ r ) 2 + v v'2 u 
p p L -

+ 2(u A St) 

ae af + u.ve = 

(2.2a) 

(2.2b) 

(2 .2c) 

Let us operate on (2.2b) with curl, and then again with curl 

(cur L a - 1/Aa := E' ' k a lJ --ax. 
J 

ak ) to give 

ar,; 1 v' p /\-9_ 
vv' z r, 2(St.v')u at = + + 

Po 
C 2. 3) 

1 · 1 1 4 = (_g_v' 2 p -(_g_. v') v'p ) + v'v u 
p 0 

2,(g. v') 1 (2.4) 

where is the vorticity and p1 is the density 

perturbation from the reference density Po In the Bouss i nesq 

approximation and assuming we are dealing with thermal buoyancy , 
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we can write 

I 
() = - Cl.po& 

where ~ is the potential temperature perturbation. 

Thus we have three dimensional equations 

vorticity: 

velocity : 

temperature: 

~= 
at 

= 

(2 . 5a) 

C2.5b) 

C2.5c) 

where i: , !d and-& are our small perturbations in vorticity, 

velocity and temperature, and '\/8 may be a function of position. 

In the case of penetrative convection, VG 

the region being studied. 

reverses sign within 

Time deeendence 

Since the equations (2.5) are valid only in the Linear case , 

when the perturbations are sufficiently small for non - Linear 

terms to be neglected, they can only be used for 2 cases . 

Firstly one can consider the case of marginal stability when the 

growth-rate of any convection mode is zero (although it may have 

a frequency · and therefore a time-dependence if the onset i s 

"overstable" rather than " stationary " convection, in the 

nomenclature of Chandrasekhar (1961)). , Secondly one may use the 

equations to derive the initial growth-rate of a mode: 

be a guide to which mode is Likely to dominate the 

finite amplitude motion, at Least in the short term. 

this may 

subsequent 

The use of 

the Linear equations gives only a sufficient condition for 

instabi Li ty . In order to find a necessary condition and thereby to 
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allow for finite amplitude instabilities , one can use 

argu ments such as those of Joseph & Shir (1966a, 196 6b). 

not pursued in this work . 

energy 

This is 

The traditional boundari condition to be placed on the 

equations for the onset of convection are based on the bounding 

surface being either rigid or stress-free, perfectly conducting 

or constant heat flux. 

u n 

clu 
-n 
cln 

= 0 

= 0 

= 0 

For a rigid boundary , one has : 

where n indicates the component 

normal to the boundary 

For a stress-free boundary , 

u = 0 
n 

a2
u 

a n1 n 
= 0 

lin = 0 
di\. 

The thermal bou ndary condition is either 

0 r a-& 
a,;:-

= 

= 

0 

0 

o r ,\ & + cl{}- = 0 
an 

(perfectly conducting) 

(constant heat flux) 

(imperfectly conducting,,\ = Biot number) 
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For the derivation of these , see Chandrasekhar (1961) pp. 21-22, 

and Hurle et al. (1967) for the imperfectly conducting case. 

Se~aration of Variables 

The Linear equations (2.5) and the boundary conditions may 

be separated simply between the independent variables for certain 

geometries. In particular, a Layer of fluid confined between 

infinite horizontal boundaries, rotating about a vertical axis 

and in which the set temperature gradient Ve is vertical and 

solely a function of vertical position z can be separated: the 

traditional Rayleigh-Benard problem is the particular case of '\/8 

= constant . In this geometry we may try a solution of the form 

(2.6) 

where x,, x
2 

are the horizontal co-ordinates; and so get the 

following equations for ( u ) and 

= 

2 2 p(D -a )u 
z = 

2 - aga -& 2 2 2 
+ v(D -a) u -2Q(DS) 

z z 

where 

i • e. 

p-& = -u D8 + z 
2 2 K(D -a )-& 

D: d 2 k2 k2 a = + 
d z I l. 

[o2-a2 - p/vl sz = -(2Q) Du 
V 

[ 2 2 2 2 J (D - a )(D - a -p/v) u = + z 

47 

and !1 = - g z 

z 

(2Q)D1;; 2 -& + aga 
- z 

V ..., 

(2.7a) 

(2.7b) 

(2.7c) 

(2.8a) 

(2.8b) 



= u 
z 

(2.8c) 

This i s only a valid solution if it satisfies the horizontal 

boundary condition: an arbitrary horizontal wave number Ca) i s 

allowable only in the Limit of infinite horizontal extent. In a 

bounded fluid, there will be a discrete spectrum for a even if 

those horizontal boundaries are idealised as stress-free 

and perfectly conducting. Less ideal horizontal boundaries 

destroy the periodicity and so the separation of variables (e.g. 

Buell & Catton, 1983). 

Q~fiai!i2D of a Rallei9h number 

In the Rayleigh-Benard problem, there is a natural Length-

scale given by the depth of the Layer and a natural temperature 

scale given by the overall temperature difference. However, once 

we allow Ve to be a function of position z, that is no Longer 

necessarily the most ~ppropriate scaling. For example it becomes 

quite possible to have a problem in which the overall temperature 

difference is zero and yet there is a region sufficiently 

unstable to allow convection to occur. This is a very similar 

problem of definition to that found by workers on convection 1n 

fluids of variable viscosity: no one definition of the Rayleigh 

number i s adequate as a universal description of a system ' s 

stability to convection . 

I propose to use the depth d of the region in which the 

temperature gradient "ve is destabilising as the characteristic 

Length 

(19 70) . 

scale of the problem , as suggested by Whitehead & Chen 

The max im um uns t a ble t e mpe ra t ur e gr adie nt wi l l be used 

to d e fine the temper a ture scale, foll o wi ng Roberts (1982). We 
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can write equations 

following scaling: 

Length 

temperature 

t i me 

where 

C 2 • 8) in non-dimensional 

d 

d 

and f Cz) ~ 1 

Thus, indicating non-dimensional terms by primes, 

[ o' 2 

where 

a' 2 - p' 1 < = ( 2) I I - 2~d D u2 

a_ v/ K 

-of( z') u' 
z 

= ( 2) I I ( 4 ) ,2 
1 

+ 2~d . Ds 2 + a~d 8. a~ 

is the Prandtl number. 

form on the 

(2.9a) 

(2.9b) 

(2.9c) 

Now Let us rescale the variables , following Chandrasekhar 

(1961), by introducing 

F - \ ag< l',a' 
2

) ~ (2 . 10a) 

z - (2~i) sz 
(2 . 10b) 

I u - u z 

a nd wri t i ng T - 4S}d4 Taylo r number 
v' 

R 4 Rayleigh number - agd B. 
KV 
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Dropping primes from now on on the non dimensional equations, we 

have: 

z = T.DU (2.11a) 

(2.11b) 

[ D2-a2-0'p] 2 F = -Ra f(z) U (2.11c) 

The only difference from the equations for Rayleigh- Benard 

convection is the presence of the function f(z) which can be 

regarded as the shape of the set temperature profile. In the 

case f(z) = 1 both the equations and the definitions for R and T 

reduce to those standard for the Rayleigh-Benard problem. 

~ff~£! Qf [Q!2!iQD on ~enetrative convection 

A qualitative view of the effect of rapid rotation on any 

fluid motion is traditionally sought by app l ying the concepts of 

the Taylor-Proudman column, of Ekman boundary Layers and of 

geostrophic balance. In addition high frequency motions will 

involve inertial wave modes. Such concepts are explored 

thoroughly by Greenspan (1968). 

The Taylor-Proudman theorem relates to an inviscid fluid in 

slow steady motion. This is also the state that y i elds the 

geostrophic balance. Starting with equation (2.1a) , 

=~ + + 
() 

and supposing we are dealing with motions of cha r acter istic 

velocity V, length -scale L and time-scale T , then if 
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a) viscous effects are small, i.e. if the Ekman number 

i s s m a L L , 

b) inertia l effects are small, i.e. if the Rossby number 

C) 

then 

is small 

the time-scale is Long, T ~ 

0 = X - / () 
- 'vp/p + 'v /2 ( fL.!:_)2 

Large, 

+ 2(~~gJ 

Taking curl of t hi s, assuming incompressibi Lity 

0 = 1 ( 'vp ~ 'vp) + 2(g. v) ~ p17-
In the absence of any baroclinic term ( v7 p ~ Vp ) 

reduces to 

0 = ( g. v)~ 

(2.12) 

(2.13) 

(2.14) 

this 

which is the Taylor-Proudman theorem, that y does not vary along 

the axis of rotation under these conditions. Clearly this can 

Lead to problems in fitting boundary conditions, and so one has 

to consider the effect of thin Ekman boundary Layers in which the 

Local Length scale is sufficiently short for viscosity to destroy 

the applicability of the Taylor-Proudman theorem. Not only will 

such short length-scales avoid the constraint of the Taylor-

Proudman theorem, they also introduce a region of very high 

viscous dissipation which may turn out to be the dominant form of 

dissipation when one considers the onset of convection in a 

rotating body. This will be seen more clearly in a later section 

( § 4.5), dealing with the onset of convection in a cylindrical 

annulus and the formation of "Busse-rolls" (Busse 1970) . 
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If one applies the qualitative view of the usual effects of 

rotation to the onset of convection, then as the Ta y lor number 

increases one might expect: 

a) 

b) 

the vertical form of u to become more uniform, 
z 

thin boundary layers, 

the horizontal planform to be of smaller scale, 

except for 

to match 

more closely the scale thickness of the boundary layers, 

C) as a result of ( b) , the critical Rayleigh number should 

increase. 

This appears to work well for convection in a rotating 

Rayleigh-Benard problem, with a uniform temperature gradient and 

so a uniform baroclinic term (equation 2.18). The 

scale diminishes sufficiently for the baroclinic 

horizontal 

term and 

viscosity to match the rotational constraint. Figure 2.5 shows U 

as a function of position z for various rotation rates (results 

derived from the shooting program described in § 5): as T becomes 

Large, U tends to a sine-wave with the influence of the rigid 

boundaries at z = O, z = 1 being removed by thin boundary Layers . 

Extending this reasoning to penetrative convection, one 

might expect rapid rotation to result in more uniform vertical 

velocity and therefore in greater penetration of the s t able 

region. This prediction is tested and disproved in chapters 4 

and 5 . 
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3. Heat flux from the core ---- ---- ----

The maintenance of the Earth's magnetic field by some dynamo 

mechanism in the core requires the dissipation of energy and a n 

associated heat flux out of the core. That heat flux may serve 

as a constraint on dynamo models. For each given type of energy 

source, a Lower bound can be placed on the heat f Lu X by 

considering the entropy requirements of a dynamo (Backus 1975, 

Hewitt et al 1975). Such calculations show that a source of 

gravitational energy arising from the release of a Light 

component during the freezing of the inner core would be markedly 

more efficient than a thermal source such as radiogenic heating 

or an overall cooling of the core (Gubbins 1977, Loper 1978a). In 

the case of a thermal source, the Lower bound on the heat f Lu X 

from the core is a substantial fraction of the observed heat flux 

from the Earth's surface. A model of the cooling Earth will now 

be used to investigate what values are possible for the heat flux 

from core to mantle, given the constraints imposed by our 

knowledge of the present size of the inner core, of the heat flux 

from mantle to the surface and of the existence of a magnetic 

field. The resulting heat flux can then be compared with the 

estimate of the conductive heat flux arising from the adiabatic 

gradient in the outer core, so as to decide whether a thermally 

stratified Layer is possible at the top of the outer core. 

Previous studies of the cooling of the core have incor-

simplifying assumptions as to the appropriate thermal porated 

boundary 

adopted 

condition at the core-mantle interface . Loper (1978a) 

a constant heat flux condition whereas Gubbins et a L 

(19 79) adopted one o f constant rate o f coo li ng. Subsequen tl y t he 
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effect on the core of a c on s tant temperature boundary has been 

c onsidered (Gubbins et al 1982). The last condition was intended 

to correspond to an extreme case of temperature dependent 

viscosity controlling mantle convection. In this work, a model of 

the heat flow through the mantle is used to give a more realistic 

thermal boundary condition for the core. 

Parameterised convection theory has been applied in several 

thermal 

mantle 

history studies to calculate the heat flux through the 

C e • g • 

Schubert et 

McKenzie & Weiss 

a l 1980, 

1983). 

Davies 

1975, 

1 980, 

Sharpe & Peltier 

Spohn & Schubert 

1979, 

1982, 

Stevenson et al. These studies include a variation of 

mantle viscosity with temperature following the argument that 

this temperature dependence makes mantle convection self regulat-

ing (Tozer 1972). Howevever doubt has been cast on the applica-

bility of the parameterised convection theory to the case of 

variable viscosity: it seems that such a parameterised model will 

overstate the effect of the variation on the heat flux (McKenzie 

& Weiss 1980). The present work therefore follows the suggestion 

of McKenzie & Weiss that a model based on a constant viscosity 

parameterisation is more suitable for studies of heat flux than 

is one purporting to incorporate variable viscosity. They warn 

that such a constant viscosity model will show average tempera-

tures that r~spond too slowly to changes in boundary conditions: 

in this 

results 

respect one must apply caution in interpreting the 

from the model. The application of the parameterised 

convection theory in this problem assumes that the convection in 

each spherical shell can be regarded as effectively homogeneous 

in a statistical sense , with the instabilities in the boundary 

Layers 

spa t ia ll y 

occurring 

and over 

sufficiently frequently and evenly both 

time t hat they have no marked individual 
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effec t on the heat flux. In particular, it s uppose s t hat s ur face 

plate tect o nic s can be r eg arded as a manifestation of the bound­

ary la ye r act ivit y at the top of the upper mantle , as opposed to 

bei ng a Largel y independent phenomenon which, through the Large 

thermal and mechanical anomalies associated with subduction 

regions , can control the upper mantle circulation i n certain 

areas. If such control of the convection is in fact significant, 

then the effective surface boundary condition to the Earth ' s 

mant Le may well have changed during geologic history as the 

configuration of the surface plates has changed. No attempt has 

been made in this study to allow for such variations in surface 

conditions. 

The core of the Earth is known from seismic observations to 

have a solid inner region and this is assumed to be growing by 

the freezing of the Liquid outer core (e.g. Jacobs 1975). 

Accordingly the model includes the Latent heat arising from the 

cooling and freezing of the core. This term may be made to 

arising at the freezing include all the sources of energy 

surface ; not only the Latent heat of solidification , W hi C h 

includes a term for the decrease in volume on solidification 

(Hage & Muller 1979) , but also the gravitational energy and 

chemical energy arising from a difference in composition between 

the solid and Liquid phases . Such a difference is indicated by 

the observed densities (Masters 1979). 

2.:.f.:. The ~QQ~l 

The model used is based on four concentric spherical Layers, 

corresponding to the core, Low er mantle, upper mantle and 

surface. These are numbered 1 to 4 re spectivel y. 

that th e three inner Layers convect independently , 
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f Luxes through the boundary Layers at their interfaces being the 

sole thermal connection. The outermost Layer is assumed to be at 

constant temperature. 

Two separate Layers are used for the mantle on the grounds 

of the s eismological (Richter 1979) and geochemical (O'Nions et 

al 1979) evidence. This tends to delay the Loss of heat from the 

core (McKenzie & Richter 1981). The results of this present work 

cannot be taken as an argument in favour of two layers, as part 

of the numerical scheme involves a fitting of parameters to the 

imposed thermal constraints . A similar procedure can be followed 

for a single Layer mantle model, and the results of doing this 

are reported in section 3.3.4. Arguments in favour of single 

Layer "whole mantle" convection have been based primarily on the 

problem of matching the viscosity distribution in the mantle, 

known from glacial rebound (e.g. Peltier, 1983), to a temperature 

distribution that includes a thermal boundary layer at about 650 

km depth (for a recent review of this problem, see Kenyon & 

Tu rcotte (1983)). 

Parameterised convection theory is applied to the two mantle 

layers. The theory is based on the premise that the heat flux is 

controlled by the thermal boundary Layers and is independent of 

the overall depth of the convecting Layer (McKenzie & Weiss 

1975). It i s assumed however that the boundary layer at the 

surface of the core can be neglected, owing to the high thermal 

conductivity and Low viscosity of the Liquid metal core compared 

to the mantle . For a viscosity v Less than 2 -1 1m s , 

e xpect 

Layer 

the temperature drop across the core thermal 

to be Less than 10-ZK for heat fluxes of up to 

one can 

boundary 

on 

the basis o f equation (3 .1). As a result, tempe r atures through -

o ut the c o re a re t a ke n to be uni q uel y determine d by the t e rn-
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peratu re at the core -m antle boundary, with no dependence on the 

heat flu x. Th e curvature o f the bou ndar y La yers in the ma nt l e is 

neglected on the grounds that they are thin relative to the i r 

radius C the parameterised convection theor y and the values o f 

para me ters in Table 3.1 give a thicknes s of approximately 20 km) , 

and so the sp herical geom e tr y is reflected only in the different 

surfa ce area o f each boundary La y er . Thus the Earth has been 

reduced to a 1-dimensional model (Fig. 3.1). 

Equation 3.1 is used to calculate the heat flux through each 

One has to consider the individual boundary boundary 

Layers as 

Layer . 

the flux per unit area will differ between top and 

bottom surfaces of each Layer of the model, owing to internal 

radiogenic heating, to internal cooling and to the dependence of 

surface area on radius. 

Flux per unit area= < 3. 1 ) 

where k = thermal conductivity 

K = thermal diffusivit y 

g = gravity 

a = coefficient of thermal expansion 

\) = kinematic viscosity 

D = geometrical constant of order 1 

t:,T = temperature drop across boundary layer 

(based on McKenzie & Weiss 1975). A further factor Swill be 

applied by an iterative procedure in order to fit the imposed 

thermal constraints (see equations 3.9a to 3.9c and section 

3.3 . 1). Accordingly the geometrical constant D has been taken to 

be 1.0 at the start of the calculations. The value of the ex-

ponent of ( D . 6T) , 4/3, is given by the parameterised convec -

tion theory , but has only approximately been confirmed by experi-

men t ( Ku Lacki & Emara, 197 7) . However, t r i a l runs with th e 
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Fig. 3.1 

Model of heat flow in the Earth. 

infinite sink · for 

Surface 4 heat, held at constant 

temperature T4 

t 
Upper constant heat capacity, 

Mantle 3 average temperature T3 

f 
Lower constant heat capacity, 

Mantle 2 average temperature T2 

1 
heat capacity includes a 

Core 1 variable latent heat term, 

boundary temperature T1 



Table 3.1 

Parameter 

Masses: 
core 
lower mantle 
upper mantle 

Specific heats: 
core 
mantle 

Latent heat (core) 

Radii: 
inner core 
outer core 
lower mantle 
upper mantle 

1.9 X 

2.8 X 

1. 2 X 

700 
1200 

1215 
3485 
5700 
6370 

Value 

-1 -1 
J kg_1K -1 
J kg K 

km 
km 
km 
km 

Radioactive decay constant 
(exponential basis) 4 x 109 years 

Adiabatic lapses across 
lower mantle 
upper mantle 

layers 
700 K 
400 K 

Source 

1 
1 
1 

3 
2 

3 

1 
1 
1 
1 

3 

2) 
2) 

(note 1) 

(note 2) 

Core freezing range (T
0

-TF) 1000 K Estimate (note 3) 

Mantle: 
thermal conductivity 
thermal diffusivity 
thermal expansion 
kinematic viscosity 
gravity 

Geometric factor D 

~Q!::!!:£~~ 
1. Jacobs 1975 
2. Jeanloz & Richter 1979 
3. Gubbins et al 1979 

6-12 
1- 2 
1- 2 
1-10 
10 

1 

4. McKenzie & Richter 1981 

with further calculations to derive an average 

subject to scaling, therefore approximate 

2 
2 
2 (note 4) 

4 

1 • 

2. 

3. 

4. 

uncertain owing to the effects of alloying constituents 

hence the stan993d ~9!ue for the transmission_5act2 2 A_ 4 / ~ {, ~ /ic v) D has been taken as 4. 1 0 Wm 
K , but is subject to scaling by /3· 



e xponent s et to 5/4 or 3/ 2 s ho wed tha t the mo del 1s not s ensitive 

t o i t s e xact value, again owing t o th e appli e d c onstraints 

( s ection 3.3 . 5). 

It i s assumed that Layers 1, 2 and 3 have specific heat 

c apacities constant with temperature . La y er 1 , the c o re, is also 

given a term for a Latent heat capacit y , , which will be a 

function of the radius of the inner core, and so of temperature. 

= 2 
4nplr .dr/dT 

I (3.2) 

where p is the density, L the specific latent heat, r the radius 

of the inner core and T
1 

the temperature of the core-mantle 

boundary used to characterise the temperature throughout the 

core. 

In order to derive d ~dT 
I 

, I make the following 

assumptions: 

= (3 . 3) 

(3 . 4) 

aT / aT 
I 

C 3 • 5) = = 

where T is the temperature at the inner core boundary, m and s 

represent the melt i ng and adiabatic profiles and b
1

, b 2 (=} TI Gp 2 ) 

are assumed to be constants . (3 . 4) and (3 . 5) amount to 

ignoring an y radial variation in the dens i t y a n d te mpe r atu re o f 

the i nner core , and are reasonable appro x imations because the 

gravitational field and t he pres s ure g rad i en t are r e l at iv e l y 
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s mall in the inner core. 

Hence dr/d T = 
I 

Integrating 
2 

r / r2 
0 

= 

1 
r 

where r 
0 

is the radius of the whole core and ( T
0
-Tf ) 

(3.6) 

( 3. 7) 

i s 

hypothetical range of temperatures for the core to freeze 

centre to surface. 

\ = 

= (3.8) 

the 

from 

where M i s the mass of the entire core. In this expres-

sion ( T - Tf ) i s a poorly known parameter of the model . 
0 

This expression for \ i s equivalent to the latent heat 

term considered by Gubbins et a L (1979) i n the i r section 4 • 1 and 

equations (40) and (41) subject to the simplifying assumptions in 

(3.3), (3.4) and (3.5) above which allow the expression of \ in 

terms of gross properties of the Layer. Furthermore, \ can 

obviously be ·interpreted as including terms for any other energy 

source simi Larly dependent on the freezing process. Thus , if one 

assumes further that the compositional density jump and the 

chemical energy per unit mass can be regarded as constants, then 

one can include the gravitational energy, che~ical energy and 

adiabatic heating ter ms given by Gubbins et al in their 

4.3, 4 . 4 and 4 . 6 by calculating: 

L = + + + 
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where 1s the Latent heat, L 
D 

L 
g 

~. ( 1µ ( r) - ~} is the gravitational energy, = 

L = cQH" Ln ( T / } i s the chemical energy of C T ( r ) 
rearrangement 

and Lo. ~~:Ar },,r(.)/f ~\'.:)[J~A·")~"· A•" M}," lr' = 
OL f r ,. 

• r o r 

is the adiabatic heating due to the rearrangement 

(note that the Last term differs from the expression evaluated by 

Gubbins et al. (1979) on their p. 81, due to an error in their 

term p ) , and IV is the gravitational potential, 

b.fh the 
f 

for 

fractional 

chemical 

density jump on freezing due to composition, 

Cl~ the heat of reaction, c the concentration of Light 

material in the fluid, M and M 
DC the masses of the outer 

core and entire core respectively, G,a,p,T are conven-

tional and indicates the average of X over the mass 

of the outer core, 

. x = J~xdv/M 
DC DC 

Radiogenic heating is an energy input to each of Layers 1, 2 

and 3, with the values given in Table 3.2. This heating decays 

exponentially with time, with a single decay constant designed to 

approximate the average of the principal radiogenic species in a 

chondritic composition over a time span of 4.5 Ga. 

The equations derived by applying conservation of energy to 

each Layer are:-

d T.; 
dt 
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!~~1~ ~~f §~!§ Qf ineut values for initial temeeratures 
and for radiogenic heating 

Initial temperature conditions 

Core-mantle boundary 
Lower mantle average 
Upper mantle average 
Surface (constant) 

K 

6000 
4500 
2500 
1000 

Radiogenic heating distributions 
(values as at pre,znt time) 

Units : 10 W 

1 f 
1 Core 0 2 
2 Lower Mantle 20 18 
3 Upper Mantle f f 

Total ff ff 

~ 2 

1 Core 0 2 
2 Lower Mantle 10 8 
3 Upper Mantle f f 

Total 1f 1f 

K 

4000 
3000 
1800 
1000 

~ 

5 
1 5 
f 

ff 

Q 

5 
5 
f 

1f 



d 

d T2 / 
dt 

T 3/dt 

T4 

6 T .. 
lJ 

= 

= 

= 

= 

( n2 
+ s [ a .1n 413 

-
1 2 1 2 

\ n 3 
[ 4 /3 + B a 23 .6 T 

23 

con sta nt 

( T . - T . ) 
1 J 

T . . 
lJ 

... 

aff O T4 /JJ) / (3 . 9b) 
23 c 2 

aJ4 . 0 T4 /JJVc (3 .9c) 

34 c 3 

(3 . 9d) 

(3 . 9e) 

Here T . is the temperature of Layer i, 
1 

6T .. is the potential temperature difference between Layers i lJ 

and j , W hi C h is the temperature drop across the 

boundary Layer, 

T .. is the adiabatic Lapse between the 'centres' of 
lj Layers 

i and j : these T .. are varied as one parameter only lJ 

by the iteration described in section 3.3.1, 

n is the radiogenic heating in Layer i, 
1 

Ba .. is 
lJ 

the transmission factor between Layers i and j , 

calculated from equation 3 .1. The common factor 

varied by the iteration described in section 3 . 3 .1, 

c. is the heat capacity of Layer 
1 

i , 

A is the Latent heat term given by equation (3.8). 

B is 

In all runs of the model , 

be 4.5 Ga . 

the age of the Earth is taken to 

Two thermal constraints are placed on the model by the 

variation of the two parameters B and T ..• 
lJ Firstly the radius 

of the inner core at present time must be that observed 

seismically. Secondly the 

mantle to surface , the term 

present time heat flux 
4 /3 

Ba34·6T34 

from upper 

in equation (3 . 9c) , should be equal to a pre set value, to 
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correspo nd to tha t for the Ea r th. 10 13 w 
were u se d for this constraint: 

Value s of 2 ,3,4 and 5 x 

these may be compared with the 

a L recent estimate of 3.6 x 10 1 3 W for this flux (Sclater et 

1980) . 

The first constraint sets a fi xed value for the heat to be 

Lost from the core over the full 4 . 5 Ga Life of the model Earth 

for any given values for the Latent and specific heat and for the 

radiogenic heating. It also Leads to an approximate value for 

the total heat supply from the model. If that Latter supply is 

inadequate for the required surface heat flux, the model w i l l 

fail to converge to a solution. On the other hand, the model can 

more readily adapt to a plentiful supply of heat compared to the 

required surface heat flux by increasing both B andT .. in order to lJ 
exaggerate the variation of the heat fluxes through the boundary 

Layers as the temperature differences between Layers diminish. 

The time interval over which the inner core freezes out from 

the core depends heavi Ly on the assumed range of freezing tern -

perature , in equations (3 . 7) and (3.8). It is a very 

poorly known parameter , depending as it does on the difference b
1 

between the melt in g and adiabatic gradients , 

well known at core pressures and temperatures. 

neither of which is 

However , a useful 

upper bound to physically plausible estimates of (T
0

-T f) is given 

by using equation (3.7) to note that the present si ze of the 

inner core = 0.35 , corresponds to a temperature that i s 

only about 0.12 down the freezing range. The remaining 0.88 (T -
0 

must b e a c c o m m o d a t e d b y f u r t h e r c o o ·L i n g from the present 

temperature of the core - mantle boundary. 

= 1000°K is feasible, but one of 3000°K becomes implausible (and 

has been taken as the upper Limit for this parameter in running 

the model) . This argument does of course depend on extending the 
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approximation~ (3 . 3) - (3.5) to a Large inner core when they are 

Likely to be much Less accurate. However, one major source of 

inaccuracy 1s the omission of any depression of freezing tempera-

tures by compositional changes during the growth of the so Lid 

inner core and this if taken into account would tend to make th e 

real freezing temperature range greater than the hypothetical 

range (T
0

-T f), thereby strengthening the argument. 

2~2 Calculations 

A first order forward difference procedure was used to solve 

equations (3.9a) to (3.9c). The two imposed thermal constraints 

are met by an iterative routine that chooses the appropriate 

values for S and T .. , 
lJ given the other input parameters. Lower 

and upper Limits of 0.05 and 20.0 are placed on S to avoid both 

instability in the model and physically unreasonable solutions. 

Similarly negative values for T . . are discarded lJ as solutions. 

These criteria exclude runs in which the total supply of energy 

is inadequate. 

2~2~~ Results of a "standard" run 

Figs, 

prof i Les 

parameters: 

i ) 

i i ) 

i i i ) 

(Profi les 

3.2 and 3.3 show the temperature and heat flux 

(marked . A.) resulting from the following input 

specific and Latent heats and a range of freezing 

temperatures as in Table 3.1, 

distribution ·2· for radiogenic heating and "cold" 

initial boundary conditions, from Table 3.2, and 

a surface heat flux constraint of 4 X 10 13 w. 
marked · s· are for "h ot " initial boundary conditions) . 
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Fig. 3 . 2 

Temperature profi les resulting from two runs 

' A' ' st andord' 'B' : 'h ot ' 

' 1 ' co re , ' 2 ' lower mantle , ' 3 ' upper mantl e . 
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Fig. 3 . 3 

Heat fl ux profiles resulting from two runs 

'A' 'standard' , ' B' : 'hot' ; 

' 1 ' flux from core , ' 2 ' flux from low e r mantle , 

'3' flux from upp er mantl e to surface . 



Time (Ga): 

1 to 2 
2 to 3 
3 to 4 

tl~2! fi~~~§ 2ri~ing fr2m !h~ 'standard' r~n 
Units: 10 12w 

1 

12 .1 
67.1 
73.5 

2 

10.0 
57.5 
63.2 

3 

8.9 
48.0 
52.8 

4 

8.8 
39.9 
43.8 

4.5 
(present) 

8.8 
36.6 
40.0 
(constrained) 

The inner core begins to form in layer 1 at 3.2 Ga: after then 
latent heat is evolved. 

I2Qi~ ~.:.(!.:. Temeeratures 2DQ rates of temeerature f!rQE 
2ri:§iD9 fr2m the 'standard' r~n 

~ni!~,;. : '. K :. !S -1 reseectivel;t -L §2--
Time (Ga) : 1 2 3 4 4.5 

(present) 

T1 3732 3586 3450 3344 3300 
(constrained) 

- d.T,Jd..t. 161 139 132 91 87 

T2 3012 2901 2785 2681 2637 - cha/4.t: 96 117 112 94 85 

T3 1622 1584 1543 1506 1491 
.lT'l /._t 32 41 39 34 30 
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Tables 3.3 and 3.4 give values for heat fluxes, temperatures and 

rates of change of temperature at selected times for 

standard run. 

The inner core begins to form at 3.2 Ga in this run. 

Later times, the heat flux from Layer 1 varies by only about 

whi Lst 0 -1 the rate of temperature drop decreases from 130 KGa 

t hi s 

At 

2% 

to 

8 7., I<. Ga - 1 Thus in this period the simplifying assumption of 

constant heat flux from the core, as used by Loper (1978), i s 

appropriate. For earlier times, neither simplifying assumption 

as to the boundary conditions is well justified. Figure 3.4 

shows the radius of the inner core as a function of time, as 

given by equation (3.7). 

The variations of input parameters tried in the model were:-

1) all specific and Latent heats : doubled, halved, 

2) Latent heat only: tripled, divided by three, 

in both cases based on values from Table 3.1 as the 

standards, 

3) initial temperature conditions : 2 sets (Table 3.2), 

6 sets (Table 3.2), 4) 

5) 

radiogenic heating distribution 

core freezing temperature range 30oo ·- K, 1000 K, 300 Kor 

100 . K 

Table 3.5 giv~s the average effect of each variation on the heat 

flux out of Layer 1 at present time (4 . 5 Ga). 

flux is relatively insensitive to the initial 

Clearly this heat 

temperatures, the 

heat capaciti e s and the r ange of freezing temperatures . Thi s i s 

mainly a result of the imposed thermal constraints and the 

sequent adjustment of the parameters Sand T . . 
l J 

con-

The effects of changing the co nstraint on the surface heat 
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Table 3.5 £ff~£! Qf ~2r~ing earameters 

Parameter 

Constraint on 
surface heat flux 

Total radiogenic 
heating (layer 2) 

Distribution of radio­
genie heating between 
core and Lower mantle 

Initial temperatures 

Specific and Latent 
heat capacities 

Latent heat 

Freezing temperature 
range 

Change to single-Layer 
mantle model 

Change of exponent 

fh2n9~ !h~r~in .5ff~£! 

+ 10 X 1012 w + 

+ 10 X 1012w -
(present day value) 

+ 3 X 10 12w + 
into core 
(present day value) 

Increase as in + 
table 3.2 

Doubled + 

Tripled + 

Tripled, for -
standard 
latent heat 

+ 

QQ £Qr~ h~2! 
10 12w 

3.9 + 0.9 -
4.4 + 0.8 -

3.5 + 0.3 -

0.4 + 0.6 -

0.5 + 0.5 -

1 • 8 + 1.0 -
0.6 + 0.3 -

0.3 + 0.3 -

in equation (1) From 3/2 to 5/4 + + 0.05 0.05 

fl!d~ 



f Lu X and of 

complementary to 

changing 

each 

the 

other , 

total 

as 

radiogenic 

might be 

heating 

expected . 

diffe r ence between the two is due to the time Lag involved 

radiogenic heat of deep origin (Layer 2) affecting the flu x 

the surface. 

are 

The 

in 

to 

A change in the distribution of radiogenic heating between 

Layers 1 and 2 by some amount has an effect of almost equal value 

on the flux out of Layer 1 . The effect is slightly Larger in 

value than the cause , again due to the t i me Lags involved. 

result in the flux being associated with the radiogenic 

These 

heating 

of an earlier period when the decay of the radiogenic heating is 

Less advanced . 

2~2~~ Effect of a single La t er mantle model 

A Limited set of variations of the parameters was also run 

on 

and 

a single Layer mantle model in which the thermal 

radiogenic heating of upper and Lower mantle were 

capacities 

combined. 

The effect on the present day heat flux from core to mantle was 

slight (Table 3.5). 

the two parameters 

This reflects the effect of the fitting of 

Sand T . . to 
lJ 

the imposed constraints , and 

emphasises how r est ri ctive are those const r a in ts . Only a core 

fr eezing temperature r ange of 1ooo·K and a constrained mantle t o 

crust heat flux of e i ther 30 or 40 x 10
12 w were applied , wit h the 

full range of Variati on of the other parameters, as the effect of 

th is change of the model on the heat flux r es ults wa s so slight. 

Similarly the change has Little effect on the tim e of onset o f 

formation of the inner core: the single Layer models giving times 

of onset typically Later by 100: 50 Ma only . 
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As there 

parameterised 

i s Little experimental evidence 

convection expression for the heat flux 

for 

used 

the 

in 

equation (3.1), test runs were made with the exponent set to 5/4 

and to 3/2 instead of the value of 4/3 given by the theory. The 

on the present time heat flux from the core was neg-effect 

Ligible, being (0.05: 0.05) x 10 12 w for the change in exponent 

from 3/2 to 5/4. This again emphasises the strength of the 

applied thermal constraints. 

Let us take the run in which, compared to the "standard" 

run, radiogenic heating is changed to distribution 11 6 11 and hot 

initial conditions are applied. 

present core heat flux of:-

From table 3.5, we may expect a 

Standard run 

Decrease in total radiogenic heating 

Move 3 x 10 12 w from mantle to core 

Hot initial conditions 

Prediction 

+ 

+ 

+ 

101-fw -- -
8.8 

4.4 + 0.8 -

3.5 + 0.3 -

0.4 + 0.6 -

1 7. 1 + 1. 0 

The model 1 2 in fact gives a present core flux of 16.9 x 10 W for 

this run. Tables 3.6 and 3.7 give values for heat fluxes, tern-

peratures and rates of change of temperature at selected times. 

In this run, the inner core begins to form at 3.8 Ga. In 

order to comply with the constraints, 8 = 1.65 . andT . . = 1.20 x 
lj 

standard, whereas for the standard run the model requires 8 = 

1 .65 and 1. 
lj 

1.31 x standard. 
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I2ei~ ~.:.Q tl~2! fi!d~~~ f.CQ!!! !: !d !J ~~f 

Units 10 12 w 

Time (Ga) : 1 2 3 4 4.5 
(present) 

!:2l~.C~ 

1 to 2 52.9 34.4 23.6 1 7. 5 16.9 
2 to 3 134.9 85.6 58.1 41.4 35.9 
3 to 4 149.9 95.5 65.0 46.4 40.0 

(constrained) 

The inner core begins to form in layer 1 at 12 8Ga at which 
time the heat flux from Layers 1 to 2 is 17.9 x 10 W. 

I2ei~ ~.:.Z TemQeratures 2!JQ .C2!~~ Qf tem12erature Q.!:QQ 
arising from r: !d !J ~Jl 

Units: K, 'K Ga -1 respectively 

Time (Ga) : 1 2 3 4 4.5 
(present) 

T1 4844 4127 3676 3383 3300 

- d.T. /~t. (constrained) 
914 557 363 187 152 

T2 3641 3139 2828 2620 2547 

- t!.T1. / it. 647 386 250 168 129 

T3 1853 1677 1568 1495 1468 

- d.."fiJ~t. 227 135 88 60 47 



In this case, the "standard" run is altered by a change i n 

radiogenic heating to distribution ' 1 · and a change i n the 

surface heat flux to 30 x 10 12 w. Again applying Table 3.5, we 

have:-

Standard run 

Move 2 x 10 12 from core to mantle - 2.3 + 
0.2 

Decrease surface heat flux constraint - 3.9 + 
0.9 

Prediction 2.6 + 0.9 

The model 

t hi s run. 

gives instead a present core flux of 3.0 x 

Heat fluxes, temperature and rates of 

for 

change of 

temperature are given in table 3.8 and 3.9. 

The inner core begins to form much earlier in this run, at 

2. 2 Ga, while in order to comply with the constraints B = 5.74 

and T-- = 1.87 x standard. 
lj 

Those lead to a rapid diminution with 

time of the heat transport through the boundary layers, in order 

to meet the reduced constraint on the surface heat flux. 

causes t~e early formation of the inner core. In so far as 

model requires these less "r ealistic" values for B andT ij , 

That 

the 

one 

can conjecture that such a run is less likely to correspond to 

the Earth. 

As described above, the model can be expected to give a 

reasonable range of values both for the present heat flux out of 

the Earth's core and for its variation with time , provided that 
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Time (Ga): 

1 to 2 

2 to 3 

3 to 4 

1 

8.8 

73.8 

81. 0 

tlf~! fluxes from 1~un ~fQ 
Units 10 W 

2 

4.3 

51 • 2 

56.2 

3 

3.5 

38.9 

42.7 

4 

3. 1 

30.7 

33.7 

4.5 
(present) 

3.0 

27.4 

30.0 
(constrained) 

The inner core begins to form in La yer 1 at 1~.2 Ga at which 
time the heat flux from Layers 1 to 2 is 3.9 x 10 W. . 

I~Ql~ ~.:.2 Teme~ratures and .C~!f~ of temeerature 
Q.CQe ~.ci~i!J9 from .c ~ !J ~fQ 

Units: K, K Ga -1 respectively 

Time CG a) : 1 2 3 4 4.5 
(present) 

T1 3572 3434 3367 3320 3300 

- d..T,/i!.t 
(constrained) 

210 95 54 42 38 

T2 2837 2733 2672 2628 2610 

- &•a./~t. 149 78 50 39 35 

T3 1526 1490 1468 1453 1446 

- ~ Ts/A.t.. 52 27 18 1 4 1 2 



the i nput parameters are sufficiently accurate. Table 3.1 sets 

out the "standard" parameters used, which are based on Literature 

sources relating to the Earth. Table 3 . 5 show s how sensitive the 

heat f Lu X calculated by the model i s to changes in these 

parameters. Clearly the crucial parameters are the quantity and 

Location of radiogenic heating and the values taken for the heat 

flux from mantle to surface. In particular the value adopted for 

radiogenic heating in the core itself is both important and, 

unfortunately , very ill-known . 

Despite that caution, the model does show that the heat flux 

out of the core, both at present and in the past, is a 

significant 

supporting 

contribution to the heat flow in the 

the case put by Sharpe & Peltier (1979). 

mantle, 

Using the 

"standard" input parameters, the model gives a present time heat 

flux from the core of 22% of that from mantle to surface. The 

applied range of parameters makes that vary from 7% to 60%. 

If one considers the energetics of the core at recent 

times, i.e. with the presence of an inner core, then the results 

from the model are closer to those from an assumption of constant 

heat flux at the core-mantle boundary (Loper 1978a) than to those 

from one of constant rate of change of temperature. The model 

does not yield a we ll determined time for the onset of the inner 

core it ranges from 0 .5 Ga to 4.3 Ga after the start of the 

mode L f o r t h e p _a r am et e r rang e t r i e d, w i t h 3 • 2 G a f o r t he " s t and-

ard" run. The time of onset does tend to be rather Later in the 

Earth ' s history than has usually been suggested ( e .g. Gubbins et 

al (1979) consider an inner core starting to form early) . 

However Stevenson et a L (1983), using a mode.L based on an 

exponential variation of v is cosi ty with temperature, have 

recently suggested an inner core starting to form quite Late , at 
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2 . 3 - 3.0 Ga fo r the si x models used. 

As s tated in the introduction , the model used is Likel y to 

g i Ve mantl e La yer temperatures that are substantially 1n er ror , 

b e ing too slow to respond to changing conditions. However , the 

upp e r mantl e temperatures , T3 , given b y the mod e l are in f act 

remarkabl y steady over recent periods . This reinforces one ' s 

confidence in the use of the constant viscosity parameterisation . 

For e xample the run with "standard" parameters yields a drop in 

T
3 

over the Last 2 . 5 Ga of only 93 -K (see Table 3.4). That value 

may be compared with the suggest i on (Green 1972) that the compo-

sitions of certain Archaean lavas indicate a decline in upper 

mantle temperature over that period of some 200 'K. As can be 

seen i n F i g • 3 . 2 , a change in the initial temperatures of the 

model has Little effect on this (for the "hot" set of initial 

conditions , the corresponding decline was 140 'K) . 

In this work , our main interest in the results from the 

model Lies in the comparison of the heat flux with the conductive 

heat flux due to the adiabatic gradient , in order to investigate 

the suggestion that the outermost part of the core may be stably 

strat i fied . Gubbins et al ( 1979 , 1982) consider the possibil i ty 

of thermal stratification i f the co r e - mantle boundary were 

cooling slo wly o r were a t co n sta nt t emperature , and give a 

maximum value f o r the heat flux fo r t h i s to occu r of 4. 5 x 10 12 w. 

Tha t is based - o n a n assu med th e rma l c o n du cti v i ty k = 50 Wm- 1 k- 1 

and a n 
aT/ 9 1 

ad i abat ic gr adient cp \ = 2.6 x 1 0- K.P a - at the 

top of t he ou te r co r e . The model g iv es a · heat f lu x from t he cor~ 

Lower than that for runs in which the r e is zero core radiogenic 

heating combined with the minimum c o ntri buti o n (8 x 10 12
w) from 

cooling , but ot herwise the heat f l ux is gr ea ter than the Lim i t. 

Th us t he mode l suggests that t he top o f t he core will not be 
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stably stratified by thermal effects. As wi LL be seen in section 

3.5, those runs in which the heat flux from the core is so Low as 

to suggest a stably stratified top of the core are also runs in 

which the requirements of a dynamo would not have been met prior 

to the formation of the inner core (when there could be no 

"gravitational" drive for the dynamo). The only exceptions to 

this, runs for which there can now be a stably stratified top of 

the core and yet there is sufficiently high flux to drive a 

dynamo before the formation of the inner core, are runs performed 

with a very Large range (3000 'K) of freezing temperatures of the 

core. 

3 . 5 • Comearison of results with dtnamo reguirements 

Gubbins et al (1979) give expressions for the generation of 

entropy Eby the sources of energy Q, as follows: 

Radiogenic ER/ Q 
3.05 10- 5 -1 (3.10a) R = X K 

Cooling Ec/Q 3.3 10- 5 -1 (3.10b) = X K 
C 

Latent (including 

chemical) ~/QL 
5.3 10- 5 -1 (3.10c) = X K 

Gravitational 

and adiabatic Eg/Q 2.9 10- 4 -1 (3.10d) = X K g 

These sources of entropy can then be compared with the 

various dissipative sinks , again from Gubbins et al: 

Thermal conduction Ek = 1.14 x 10 8 W/K (3.11a) 

(based on adiabatic gradient a~a ) = 2.6 x 10- 9 K/Pa) p s 

Molecular diffusion E 
a = 1 • 4 3 x 1 0 1 O x ( 4J / P) 2 W/K C 3 • 1 1 b ) 

where \ 4J;P) is the fractional density jump at the inner core 
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surface due to compositional differences. 

Ohmic dissipation E = 1 • 4 8 x 10 W/K (3.11c) 
0 

for the dynamo of Kumar & Roberts (1975). 

A representation of the dynamo requirements in terms of 

entropy is necessary in order to account properly for the 

back of Ohmic dissipation into. thermal buoyancy in the 

(compare Olson, 1981). 

~~2~1 The thermalll eowered dlnamoL at eresent time 

Excluding any contribution from gravitational energy, 

tions 3.10 and 3.11 give the values for the minimum heat 

from the core to power a dynamo set out in Table 3.10 . 

fe ed­

f l u id 

equa-

flux 

In the case of 

temperatures (1000°K), 

the standard range of core freezing 

the model gives sufficiently high values 

for the heat flux except for the runs in which both the core 

radiogenic heating and the difference between surface heat flux 

and total radiogenic heat flux are at 

10 12 w and 8 x 10 12 w respectively). 

Low values (Less than 2 x 

Changing the range of core 

freezing temperatures to 300 K does not affect this result. 

Hence at present time the heat flux alone can be sufficient 

to drive the terrestrial dynamo, unless there is the combination 

of properties set out above. This conclusion is sensitive to the 

assumed value of the adiabatic gradient: a higher value would 

make i t Less . Likely that the heat flux alone can drive the 

dynamo. 

~~2~f The thermalll eowered dlnamoL erior to onset of freezing 

Prior to the onset of f r eezing, there could necessarily be 

neither Latent heat nor gravitational energy from differential 

freezing as source of energy. Thus we can approximate by noting 

that: 
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Table 3.10 

R~diogenic Heating: 

Freezing Temperature Range: 

Standard heat capacities 
or all doubled or .halved 

Latent heat tripled 

Latent heat divided by 3 

Qynamo requirements for heat flu< from core 

with ~gravitational energy 

Units= 10
12w 

Low High 

( 5 X 10 12
W) 

1000°K 

(2 x-1~12W) 

7.6 

7.3 

8.0 

300°K 

7.3 

7. 2 

7.6 

1000°K 

6.8 

6.3 

7.4 

30J°K 

6.3 

6.0 

6.8 

1000°K 

6.2 

5. 5 

7.0 

Zero 

30J°K 

5.5 

5. 1 

6.2 



E c/ Q 
C 

'(sin ce both are ' distri buted' s ource s ) 

+ E (3 X heat flu x) 
C 

This places a lower limit to the heat flux for a dynamo to be 

possible, of approximately 8 x 10 12 w. 

At the onset of freezing, the only runs that failed to 

provide sufficient flux were under the same combination of low 

core radiogenic heating and low 

required for failure in section 3.5 . 1, 

contribution from cooling 

but also required a value 

for the heat capacities not greater than the "standard" 

parameters. 

Thus the model again indicates that the heat flux alone can 

be sufficient to drive the dynamo prior to the onset of freezing. 

This result can, in reverse, be used as a constraint on possible 

values for the adiabatic gradient in the core, because of the 

Lack of 

this case. 

complications from the inner core freezing surface 

In the case of the standard set of parameters, 

Lowest value 

8.6 X 10 12 W. 

of heat flux from the core prior to freezing 

This could only satisfy the dissipation given 

( 11) for values of the adiabatic gradient not more than 

in 

the 

was 

by 

1 0% 

greater than that used hitherto . This requirement depends on the 

evidence for an ancient magnetic field. Palaeomagnetic studies 

indicate that the field is at Least 3.5 Ga old (McELhinny & 

Senanayake , 1980) and this is older than the inner core for most 

parameter 

freezing 

ranges used, the only exceptions occurring with 

range (T
0
-Tf) set to its highest value, of 3000 K. 
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The gravitationallt ~owered QiQ~~2 

For a dynamo to be feasible , we now need 

C 1 5) 

which can again be expressed in terms of a minimum heat flux from 

the 

heat 

core , though now this flux may be Less than the conductive 

Loss down the adiabatic gradient, since convection can be 

driven against a thermally stable gradient by the compositional 

difference. Some solutions are given in Table 3.11. 

Except for runs with a combination of zero core radiogenic 

heating and Lowest contribution from cooling , fai Lure of the 

dynamo requirement is now rare for the range of parameters used: 

i f -3 the density contrast is 0 . 75 g cm and the freezing range is 

1ooo ·K, then only 4 runs now fail. These are among those failing 

in section 3.5.1 , but now failure only occurs for doubled values of 

the specific and Latent heats, 

gravitational contribution. 

as this reduces the effect of the 

~.:.2.:. Discussion of heat flux model 

The most interesting results of th i s work are that the heat 

flux out of the core can be su fficient ly Large to :-

i ) drive a dynamo both at present time and at times 

pre~ious to the formation of the inner core , 

ii) avoid thermal stable st ratificati o n of the core near 

the core mantle bounda ry, and 

i i i ) influence mantle convection significantly. 

Exceptions to these results occur for values of the 

heating in the core Lower than app roximately 2 x 10 12 w 

radiogenic 

combined 

with high values for mantle radiogenic he ating. The uncertainty 
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Table 3.11 

Dynamo requirements for heat flux from core 

i0cluding gravitational energy 

Units 1012w 

Radiogenic Heating ~igh 11 
~Low" ~Zero" 

12 12 1n core:- 5 x 10 W 2 x 10 W ---- ----
Freezing Temperature 

Range: - 1000°K 30iJ°K 1000°K 300°K 10CJ0°K 30iJ°K -- --- ---
Densitx:__Jump at Inner 

1 Core Boundarr_ -

-3 0 . 25 g cm 7.0 6.6 5.7 4.9 4.9 3.8 
-3 0.75g cm 6.7 6.3 4.7 4.1 3. 5 2.7 

-3 1. 25 g cm 7.0 6 . 6 4.9 4.2 3.4 2 .6 

Note 1 

2 

of these 0 . 1 g crn- 3 is assumed due to solidification, the balance to composition . 

"standard" values for specific and latent heat are used in calculating the above. 



in estimates of the adiabatic gradient near the core mantle 

boundary 

certain. 

i s such that (i) and (ii) above are themselves not 

The model used is successful 1n producing thermal histories 

that f i t the observational constraints for most sets of inp ut 

parameters. The resulting temperature profiles are remarkably 

steady after the first 1 - 2 Ga , despite the exclusion from the 

model of any temperature dependence of viscosity. Varying the 

input parameters leads to the estimates of the resulting effects 

on heat flux out of the core, given in Table 3.5. These show 

that the present time heat flux is relatively independent both of 

the initial temperature conditions (provided they are "hot") and 

of the values used for the specific heats. 

The combination of the thermal model and the 

requirements suggests that, if one requires a dynamo at 

dynamo 

early 

times (prior to about 2.0 - 2.5 Ga before present), then the 

present heat flux from core to mantle is sufficient to avoid a 

stable thermal stratification . It is the dynamo problem in the 

absence of an inner core (and hence the absence of any 

from compositional differences yielding a complications 

"gravitational" source of energy) that Leads to this stronger 

conclusion from the thermal model . In this context , i t i s 

important that the present inner core radius (35% of the whole 

core) c o r r e s p o.n d s , under plausible assumptions, to cooling 

through a small fraction of the range of f reezing temperatures 

(12% of that range). This i s of course a consequence of the Low 

value of g near the centre of the core, which Leads to small 

pressure gradients in the inner core . As a resu.Lt, it becomes 

physically imp l ausible that the f reezing range for the core can 

be very much larger than 1000 K, if about 88% of that range has 
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yet to b e co v ered by future cooling of the core-mantle boundary . 

In turn , t hi s results in it being Likel y that the geod y namo 

precedes the formation of an inner core . 
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4. Penetrative co nvection : ----------- Linear analytical approach to the 

equations . 

Th e remaining chapters of this the s is are devoted to a study 

of penetrative convection. The object is to assess the effect of 

rotation on the extent to which an unstable convecting Layer can 

disrupt an adjoining stabl y stratified region. In this chapter, 

the Linear equations are studied and the results given will serve 

as a framework for the numerical solutions, again of the Linear 

equations, set out in chapter 5 and the experimental work 

described in chapter 6. The analysis does not include the 

influence of magnetic fields , and so is only a step towards 

u nderstanding the dynamics of the core. 

4 . 1 Rotation ~arallel to 9ravitt 

The normalised Linear equations of motion and heat transport 

(2 . 11) are : 

r 2 2 J LD -a -p Z = - TDU 

[ 2 2 2 2 J (D -a )(D -a - p) u = +DZ + F 

[ 2 2 o p J F Ra 2 f ( z) D - a - = 

If we operate on (4.1b) with 

[ 
2 2 2 2 ] (D -a -p)(D -a - _op) 

and substitute from (4.1a) and (4.1c), 

differential equation in U: 

(4 . 1a) 

(4.1b) 

u (4 .1 c) 

this becomes an 8th order 

f2 2 2 2 2 2 2 2 2 2 l(D -a ) (D -a -p) (D -a - op) + TD (D -a - 0 p) .... 
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2 2 2 J + Ra (D -a -p)f(z) u = 0 ( 4 • 2) 

Note that the term in the Rayleigh number, 

1 2 2 2 ] lRa (D -a -p)f(z) u 

includes an operator that acts on f(z)U , not just on U. This 

makes the penetrative convection problem rather more interesting 

than a mere juxtaposition of solutions for different constant 

values of f ( z) • Only in the special case of marginal steady 

stability, p = 0, can the equations be simplified to the 6th 

order form: 

[(D 2
-a

2
)

3 
+ TD

2 
+ Ra

2
fCz) J LI = 0 (4.3) 

Even in this case we must exercise care in the boundary 

conditions (see Chandrasekhar, 1961, p.90): only for stress-free 

perfectly conducting boundaries does one find complete 

in terms of the sixth order equation. 

solutions 

We shall first investigate the limit of rapid rotation , 

T-+ oo , as this leads to a useful simplifying approximation 

( § 4.2) and then in § 4 .3 and § 4.4 investigate certain 

especially simple forms for f(z). 

4.2 Ra~id rotation li~i! 

The equations (4.1a) to (4 .1c ) can be simplified in the 

l i mi t T- oo for regions that do not include boundaries to the 

fluid. In such "interior" regions, we may anticipate from 

boundary layer theory that viscous forces become negligible so 

that the order of the di f ferential equations may be reduced from 

8 to 2 . Boundary conditions must then be met through matching 
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• 
the inter io r solutions to the boundaries by way of thin boundary 

La yers. Greenspan (1968) gives a review of the relevant boundary 

Layer 

for 

theory. In the interior region the vertical length-scale 

variations in the flow will continue to be the Layer depth 

but the horizontal Length-scale may become short to counteract 

the rotational constraint . 

Let us adopt a new non -dimen sionalisation of the Linear 

equations (4.1) on scales that reflect the rapid rotation. We 

shall Later see that the Length - scale is that appropriate only to 

the boundary Layer thickness: the horizontal Length - scale of 

convective motions ref lects a compromise between the layer 

and the rotational scale . 

depth 

Length L = I\) I s-t 

Time 't = St -1 

Temperature 8 = B d 
0 

Let us define new non-dimensional variables: 

F 1 

z, 
u, 

= 

= 

= 

jJ"g -& 1 

a \! 
(; 1 

z 
, 

u z 
1 1 1 

-& , (; ,u are the non - dimensionalised temperature, vertical 
z z 

where 

vorticity and vertical velocity perturbations respectively. 

Thus we get the non-dimensional equations 

(D -a )(D - a -p) [ 2 2 2 2 1 u t = 2 D Z + 
1 
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I 

I 
I 

F 
I 

= -f (z) U 

where a new Rayleigh number has been defined as 

R 
I 

gaS o 
0 

and D, a, pare non-dimensional. 

(4.4c) 

C 4 . 5) 

We now consider the terms in equations (4.4) in terms 

of a small parameter E 

E = 

where T is the Taylor number. Further Let us consider the 

marginal case , p = 0. 

would imply p = 0 (E 2 ). 

We may note that a diffusive time-scale 

We note that the horizontal wave-number 

a and the Rayleigh number R are as yet of undetermined 

magnitude, and that our vertical scale-Length implies that D U
1 

= 

0 (~) u, 

Combining 

, et C. 

the three equations (4.4), just as 

were combined into (4.3) in the marginal case, we have 

+ + u, = 0 (4.6) 

which may be exP,anded as 

[(-a6 + R a 2 f( z)) + (4 + 3 a 4 :02 
+ { - 3a2 )D4 + 06] ( 4. 7) 

1 

u = 0 
I 

and then approximated by 

[(-a6 + 2 4 2 ( - 3 J) ( 0 ( E 
4 ) ) + . .] u, (4.8) R a f(z)) + ( 4 + 3a )( O(E )) + 

I 

= 0 
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Let us consider 2 cases:-

Ci) a ~ 0 ( 1 ) 

Then (4 .8 ) can be approximated by 

+ R /f(z)) 
I + 0 = 

which implies R = 

~ 0(1) 

( i i ) a << 0( 1 ) 

Then (4.8) can be approximated by 

[ (-a6 + 2 R, a f (z)) 

which implies 

R a 2 
I 

= + 

which minimises R, for 

a = 

R = 0 ( E i./3 ) 

= 

0 (4 .9) 

(4.10) 

0 

(4.11) 

C4.12a) 

(4.12b) 

Comparing the 2 cases, the Latter Leads to the Lower critical 

Rayleigh number and is therefo re the appropriate physical 

scaling . Thus (4.8) should be approximated by:-

• 
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,:,,. 

= 0 (4.13) } ( R f (z) , + 

4/3 with the 1st correction terms being O ( E ) 

relative to the terms retained in (4.13). 

Now that we have reduced the interior equations to 2nd order 

in U
1 

(4.13), we are Left with the problem of what are appropriate 

boundary conditions. In the case of stress-free boundaries, 

Chandrasekhar (1961) adopts u, = 0 on each (pp. 104-106) and 

this would appear valid since the absence of stress at the 

boundary would seem to rule out the possibility of Ekman-Layer 

"pumping" as described by Greenspan (1968) (p.46). On the other 

rigid boundary will result in Ekman Layer pumping hand, a 

associated with any transverse interior motion: this is 

equivalent to a boundary condition of U / 0, thereby allowing a 

Longer vertical-scale and so a Lower Rayleigh number. This 

prediction is in general agreement with the results of the 

variational principle used by Chandrasekhar (1961) for the cases 

with rigid boundaries (see Table 4.1). 

At high 

still occurs, 

rotation rates, although boundary Layer pumping 

it can be shown that it becomes small relative to 

interior velocities. Using the boundary Layer flux given as 

equation 2.17.3 by Greenspan (1968) and converting it to our non­

dimensionalisation based on a Length-scale L = ~, 
we have 

(4.14) 
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Comparison of critical Rayleigh numbers for free-free and rigid­
rigid boundaries. Values taken from Cha.ndrasekhar (1961) 

T R R 
C rigid.!:.rigid Ratio free-free 

0 6.575 2 1 . 708 10 3 0.385 X 102 X 

10 2 8.263 1 . 7 5 7 3 0.470 X 103 X ,10
3 10 4 5.377 X 10 4 4.713 X 104 1.141 

106 9.222 X 106 7. 11 3 X 10 6 1. 296 
8 

10,0 1.897 X 107 1 • 5 31 X 10 7 1.239 
10 4.047 X 1 0 3.464 X 1 0 1 • 168 

Fig. 4.1 

Schematic diagram of the interior solution for the vertical 

velocity U under rapid rotation . 

o,o Id lh z 

I I I 
k f (z)> 0 * f (Z)< 0 )1 

I 



where x 
I 

, j, are the normalised transverse co-ordinates and~~ 

a typical interior velocity. 

order: 

Thus the normal flow, U is of 
I n 

U = O(a). U 
In IX (4.15) 

where, from C4.12a), 

a = O(i::'/3) = 

This OCT- 1112 ) relationship has previously been noted by 

. -1/12 Eltayeb (1972). Clearly we must consider T very Large for T 

to be small (and so for the above to be valid). Table 4.1 shows 

critical Rayleigh numbers for stress-free and for rigid 

boundaries in the rotating plane Layer convection problem, taken 

. -1/12 from Chandrasekhar (1961). As T increases, and T starts to 

become small, the ratio of Rayleigh numbers is seen to diminish. 

Thus, rather than the two types of boundary Leading to critical 

Rayleigh numbers of asymptotic form 

R = c T213 
C 

where the constant c differs depending on the boundary conditions 

(Chandrasekhar; _ 1961, p. 

L i mi t 

R = c T213 
C 

106), one should have an asymptotic 

with c indeeendent of boundary conditions, being of the form 
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c (s t ress-free) 
C ( rigid ) = 1 + 

In reducing the equations to 2nd order as T 

(4 . 16) 

, not 

only do we Lose the 2 viscous boundar y conditions , by 

substituting an Ekman boundary Layer, but a lso we Lose t he 

thermal boundary condition . In ·the full equations this condition 

represents the relative conductivit y of the boundaries and the 

fluid and might typically be given as : 

on the boundaries , 

perturbation and 

(4 . 17) 

where F i s the normalised temperature 

i s the Biot number . The Loss of this 

boundary condition through the introduction of a viscous 

boundary Layer is at first sight surprising , but physically is a 

result of the small horizontal Length-scales imposed by the rapid 

rotation. 

The Biot number i s the inverse of the thermal thickness 

of the bo u nda ry. If we scale on our rotationa l Le ngth - scale , we 

f i nd the Biot number is given by 

= ( 4.1 8 ) 

Thu s f o r any real bo un da ry, for whi ch the rescaled 

Bi o t num ber .X. ,in our r o ta t i o n a l s c ali ng wi l l tend t o ze r o i n the 

Li mit T~oo 

is reflected 

above (4.12a): 

Now that 

Thi s t e nden c y t o wa r d ~ a fi xed f lu x character 

in the Limit of the ho rizonta l wavenumber given 

a 
' 

= 0 

we are sati s fied that U 

T- oa · 

= 0 is the appropriate 

boundary condition for the interior region for T ~ oo , we c an 

8 3 



consider the interior eigenvalue problem given by (4.13). 

Clearly, in order to have a non-trivial solution satisfying the 

boundary condition at both top and bottom boundaries, 2 D must be 

a negative operator on U in at Least some part of the region. 

Therefore a 4 < R f( z) in some part of the fluid . 

If f( z ) changes sign, 2 then clearly D becomes a positive 

operator on u, , in that stable region. Thus in this limit 

we may expect that the interior solution for u, 

into two regions distinguished by the sign of D
2 

4. 1 ) 

has 

u 
I 

separated 

(Figure 

The boundary, = 0 ( t O Within O ( E 
413 

) ) , 

will be at the point where 

R f(z) 4 
= a (4.19) 

i • e. within the unstable region of f( z) > 0. Note that this 

boundary i s one = 0 but U / 0: i t i s !J2! 

correct to describe it as a stress-free (alb~t permeable) surface 

since i f one considers the horizontal elements of the viscous 

stress tensor, Pxz, Pyz, 

p X Z 
= µ ( aux + ouz \ 

Oi ox I 
(au au \ 

= µt ~ +-f } 
- 1 

then to achieve pxz = p = 0 . yz 
in an incompressible fluid we 

require 

au au 
X z 

-
oz . dX 

au au z __ Y 
and = 

oz oy 
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and so 

i • e • 

u 

a 
az ( ~) = az 

= 0 in our normalised units (4.20). 

= 0 is a stress-free boundary in the special case of U 

0 but not in the case being considered. 

AQQroximate solutionsL as T ...... oo 

= 

Let us consider the approximate equation of motion (4.13), 

valid as T ~ oo 

TD 2U = a 2 (a 4 - Rf(z)) U 
I 

i n 0 ~ z ~ h 

with U = 0 on z = o, h • 

If f(z) is an analytic function in the region O ~ z ~ h, then 

the equation can in principle be solved by a series expansion 

method. The choice of a suitable basis for the expansion depends 

on the form of f(z). For example, 

expressed as a trigonometric series 
00 

f ( z) = l fn.cos ("~
2

: 

n = 0 

then an expansion for U of the form 

u ( z ) = 

00 

u . sin n 

n = 1 

nn z 
h 

if f(z) can readi Ly be 

(4.21) 

(4.22) 

i s approp ri a t e , in that the boundary condit i ons are satisfied and 

one can use the relat i on 
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s in z sin + I 

on substituting the series expansions into equation (4.13). 

However, i f , f n are not small for Large n , there are 

problems arising from the "difference" sine term (sin(z
1 

above). Alternatively one could µse expansions in (z/h), 

00 

f ( z) = L f 1 n · 
(z/ )n (4.23) h 

n = 0 
00 

u ( z) = I u 1 . (z/ )n (4.24) 
1 n h n = in which case the series expansion of the cross-product (f(z). 

U(z)) term is simpler and one is Left with the boundary condition 

on U(z) at z =has the criterion for the eigenvalue R: 

u ( h) = 0 (4.25) 

00 

I u1n = 0 (4.26) 

n = 1 

Except for very simple forms of f(z) the simplest approach 

to equation (4.13) is numerical integration. Unlike the 8th 

order equations for slow rotation, this 2nd order equation lends 

itself to a straightforward initial value integration from the 

normalised initial conditions: 

UCO) = 0 

DU(O) = 1.0 

Results from such an integration are reported briefly in § 5.3.3 

As a brief example of the series expansion method, Let us 

consider a parabolic temperature profile , with temperature 
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- - -·-----------------~ 

Such a profile -gradient given by f(z) = 1-z in O ~ z ~ h. 

approximately describes the g~Q~i!t gradient in an ice-water 

system with a linear temperature profile (e.g. Veronis (1963)). 

f · 
0 = 

= 

1 

-h 

= 0 

Form > 1, we have the recurrence relationship 

T 

h2 
(m-.2)(m+1). 6 2 a U -a R1U m m 

and similarly we find form ~ 1 

u2 = 0 

u3 
h2 

(a 6 - a 2R) u, = - . 
I 

6T 

2 + a Rh.LI 
1 ' m-

(4.27a) 

(4.27b) 

(4.27c) 

(4.28) 

(4.29) 

(4.30) 

Inspection of the recurrence relation confirms that it will 

give a convergeht series for u(z) in O ~ z ~ h, since for large 

m we can approximate it by: 

u 
m + 2 

u m-1 
2 

m 
(4.31) 

Indeed, provided f(z) is itself analytic in that range of z, we 

can see that for any f(z) the recurrence relation will be of the 
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form 

1 
u. = 0 ('"TT) u. k J J J-

for some finite integer k and sufficiently large J. 

example, we have 

h 2 6 
a 2 R) U3 = (6f)(a u1 I 

U4 = 
h 2 

2 
( 1 2 T) ( a R,h) u1 

us = 
h 2 h 2 

E, 2 2 (20T) (bf) (a -a R) u1 

and so on. 
co 

(4 . 32) 

In our 

(4.33a) 

(4.33b) 

(4.33c) 

(4.33d) 

(4.33e) 

The boundary condition at z = h is equivalent to L un = 0. and so 
n=1 

we might take as a first approximation the series up tom = 3 

only, giving 

R 
' 

= a
4 + 6T 

?V 
(4.34) 

which can be minfmised by choosing a 6 = 3T!h 2 to give an estimate 

R = (4.35a) 
IC 

a = (4.35b) 
C 

. The corresponding eigenfunction is: 
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i • e • u ( z) = u ( ( ~ ) - ( ~ ) 3) 
1 h h (4.36) 

This is the Lowest order of truncation at which the boundary 

condition at z = h can be met in this problem. The inclusion of 

furthe r terms Leads to multiple roots for the Rayleigh number 

(for m ~ 5) , of which the Lowest is the one of interest. 

2) Expansion in sin (m1TZ/h) 

00 

f ( z) = l fn . cos(n1Tz / h) (4.37a) 
n=o 

where f = 1 - h/ (4.37b) 0 2 

f zm = 0 (4.37c) 

for m 3, 1 

fim-1 4h (4.37d) = 1T 2 (2m-1) 2 

The recurrence relation is 

m-1 00 

u ( a 
6 Tm 2 rr2 R,f ( [ . f r u . f ) (4.38) + h ) = u + m m-n n m+n n 

n=o n=o 

and in order to avoid the problem of the infinite series in the 
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last term on the R.H.S. we must make the approximation of 

truncatihg the solution for u(z). 

For truncation at m = 1, we have 

u ( z) = u1 sin (Tizjh) (4.39) 

and ( 1 - h / 2 ) R
1
a 2 6 T TI 2 

(4.40) so = a + - -h 

T TI 2 2/3 
which gives R = 3(2fiT) /(l _ h/2) (4.41) ,c 

T TI 2 1/6 
a = (2n') (4.42) C 

provided h < 2 

This level of truncation only "sees" the average value of f(z), 

For truncation at m = 2, we get 

and 

T TI 2 

+ 112"") 

which gives a quadratic 2 i n ( R,a ) : 

6 TTI 2 6 4TTI 2 
+ (a + t,T)(a + ~) 
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(4.43) 

C4.44a) 

(4.44b) 

= 0 (4.45) 



For given a, T, h this is readily solved, but it is clear that 

even at this modest Level of truncation the series expansion is 

of Little general use. Thus numerical integrat i on is to be 

preferred. 

It is worth noting that, having made the approximation of 

reducing the equations to 2nd order, based on T ~ oo , the 

solutions for critical Rayleigh number and wavenumber will now be 

of the form R a = O<T 116 ) for all values of T. This 
C C 

occurs as a result of neglecting all the terms Leading to 

deviation from those relationships. Thus the critical Rayleigh 

numbers plotted in figure 5.16 based on the 2nd order equations 

fit the straight Line 

Log (R) = 2/3 Log (T) + constant. 
C 

The solutions have a common form, depending only on the 

chosen f(z) and h to determine the constants of proportionality. 

In particular, under this approximation there can be no change in 

the ~h~Q~ of the eigenfunctions (and thus of the extent of 

penetration) as one varies T for given f(z), h. It is for this 

reason that the numerical work in § 5 is devoted to the full 8th 

order equations , as a study of the influence of rotation on the 

extent of penetration. 

The concept of the internal boundary separating the stable 

and unstable r~gions in the Limit T ~ oo according to the sign of 

o2u;U suggests that a study of a simple two Layer problem will be 

of interest. Let us consider the case 

f ( z) = +1 in O~z<1 (4.46a) 

= -A in 1 < z ~ h (4.46b) 
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The sol~tions in the two regions that satisfy our · interior' 

boundary condition U = 0 on z = 0 and z =hare: 

U = u 2 sin h(A 2 (2-h)) in 1<z(h 

where in order to satisfy equation 4.13 we must have' 

TA 2 

1 

and R > a 4 so that 
I 

= 

= 

Ra 2 

I 

A Ra 2 

I 

6 
a 

+ a 
6 

is real. 

(4.47a) 

(4.47b) 

(4.48a) 

(4.48b) 

At the interior boundary, continuity of velocity i s 

required, though not necessarily any higher derivation of U since 

we may have an internal Ekman Layer. Therefore U, DU are 

continuous (the Latter reflecting the continuity of the 

transverse velocities V and W). 

(4.49a) 

(4.49b) 

Combining these, we have 

= (4.50) 
A 2 

which for given values of a , T, h may be solved graphically , 
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root for \ 

1-h -f-----

- 1 

Fi g . 4 . 2 

Sc he ma ti c g r aphica l solution f or ff, = ,,0'1 ,wh e r e 

Z, = ta n \ / ~. , ..ff 1 = t an h \( 1 - h ) / '>.. 
2 

----3n1-'\ 12 I 



noting that and >. 1 both increase monotonically with the 

Rayleigh number R, (fig . 4.2). 

Regardless of the actual values of a, T and h, the first 

eigenvalue R clearly must correspond to I 

Thus, if T is sufficiently large that the 2nd order equation 4.13 

is a reasonable approximation, th~n regardless of the value of A 

we can perform a minimisation of the Rayleigh number with 

to a, T to show that 

respect 

R 
C 

(4.51a) 

a (4.51b) C 

just as for the case f(z) = 1. 

4.3 §~!J~.C~l two later Qroblem: f(z) = + 1 in O ~ z < 1 

= Ain1<z~h 

In the case of general values of rotation rate, the problem 

of the onset of convection in even the simple geometry of two 

layer~ of constant density gradient becomes much more difficult. 

The obvious analytical approach is to consider solutions of the 

form . 

u ~ 

in each layer. 

mz 
e 

(4.52) 

Stress-free and perfectly conducting boundaries at z = O, z 

= h lead to a simpLification, in that the relevant differential 

equa ti on for onset is sixth order: 

(4 . 53) 
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with boundary conditions U = D2U = o4u = 0 at z = O, z =hand an 

internal boundary z = 1 at which U and DjU (j = 1 to 5) are 

continuous. Rigid boundaries introduce such difficulties that no 

analytical treatment is useful. 

In this simple geometry, solutions will be of the form: 

(4.54a) 

in O~z<1 

and 

U = u
4 

sin h(m
4
(z-h)) + u

5 
sin h(m

5
(z-h)) + u

6 
sin h(m

6 
(z-h)) 

(4.54b) 

in 1<z~h 

are the roots from the cubic 

= Ra 2 

= ARa 2 

2 in m : 

(4.55a) 

(4.55b) 

In principle, these can be solved for given a, T, Rand then 

the matching condition at z = 1 Leads to discrete eigenvalues for 

R, for the given a, T. In practice it will be difficult. We 

next describe the problem for Large A, i • e • a strongly stably 

stratified region, whilst the following section (4.4) discusses 
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the problem of a thin unstable region imbedded in a stable 
stratification. Chapter 5 introduces numerical solutions of 
selected cases of interest. 

Strong stable .Cf.9iQD, A>>1 

Consider equation (4.55b) for the strongly stably stratified 
region 

2 2 3 2 2 Cm -a ) + Tm = A Ra 

If A is very Large, we may assume that the rotational term Tm 2 is 
negligible, influencing the solution only through equation 
(4.55a), from which we expect 

From C4.55b), we expect 

= 

Let us consider two cases: 

1) T small: a= 0(1), R = 0(1) 

and so J m I -= 0 CA 1 / 6 ) • 

(4.56a) 

(4.56b) 

(4.57) 

For large A, matching conditions at the boundary will tend to: 

(4.58a) 

(4.58b) 
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(4.58c) 

etc 

Thus the strong stable region acts as a very restrictive boundary 

to the unstable region O ~ z < 1, as noted by Stix (1970) and 

Whitehead (1971). 

2) 0(1) << T 

Rotation dominates the unstable Layer , so that 

a = 00 116 ) 

Suppose m = 0 ( A µ ) 

then we have terms in equation (4.55b) as follows: 

a 6 = 0 (A 'T ) 

' 

T m2 = ( A 2 µ + 'T ) 

ARa 2 = OCA 1 + 'T) 

If T < 2, the Leading terms are 
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(4.59a) 

(4.59b) 

(4.60a) 

(4.60b) 

(4.61a) 

(4.61b) 

(4.61c) 

(4.61d) 

(4.61e) 

(4.61f) 



\ 

l 
I 
l 
I 
l 
I 

l 
I 

I 
I 
I 
'I 

I 

· m6 and ARa 2 

giving µ = 1 /6 (1 + T ), so that the rotation increasesµ and the 

decay rate , already rapid, of solutions in the stable region. 

If T = 2, we have a balance of three terms , 

with 

If 

that 

6 2 2 m , Tm , .A.Ra 

µ = 1/2, T = 2 

T > 2, we have a two term balance of Tm 2 against 

µ = 1 / 2 

2 ARa, so 

In each of these cases, the decay rate of the solutions in the 

stable region is rapid, and so the boundary z = 1 remains a very 

restrictive one. At finite but large values of A, the effect of 

increasing rotation is to increase m and so increase this 

restriction at z = 1. Thus rotation tends to reinforce the 

effect of the stable stratification. 

4.4 SteQ - function temQerature Qrofile 

An idealised case of the layered problem is that in which 

the unstable layer is reduced in depth whilst the temperature 

drop across it remains constant, so that the temperature profile 

tends t~wards a step-function. This may be imbedded in symmetric 

deep layers of neutrally or stably stratified fluid. For the 

non-rotating case with deep neutral surroundings, such a step­

function profile_ will result in convective instability for an 

arbitrarily small temperature step, provided the problem will 

accommodate a sufficiently Long horizontal ~avelength. The aim 

of this section is .to investigate the effect of rotation and of 

the stability of the surround i ng Layers on the critical Rayleigh 

number of such a step temperature profile. 

We have a problem in defining a suitable length-scale , d , 
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for this 

useful. 

case: clearly the depth of the stable region is not 

Two intrinsic measures exist, namely the stable gradient 

Length-scale, over which the stable gradients result in an equal 

temperature change to that in the step, and the rotational Ekman 

Since the case of neutrally stable Layers 

is to be considered, the Latter is adopted here. Clearly the 

form of analysis does not extend to the irrotational case. 

Scaling on this Length-scale, on the rotational time scale, 

T 
-1 n , and a temperature scale of the unstable 

jump ( 6 T), we get at marginal steady stability the equivalent 

of equation (4.6), namely: 

[(D'-a'i' + 4D 2 + R
1
(z).a 2

] u = 0 

where R 
1 

( z) = - ( g ~~) I VT J in z <O 

and z>O 

= R 
s 

and R 
1 

( z) = + ( g g~) 6T.6(z) across z = 0 

where . 6 ( z) is the Dirac delta function, normalised by 
+ro 

f o(z).dz = 1 
- CX) 

In the stable regions, let us consider solutions 

u = 
mz iax 

u . e • e 

which can be substituted into (4.62) to give: 

R a 2 = 0 s 

Across the unstable step, integration of (4.62) 

shows that D5 U suffers a discontinuity , 
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of the form 

(4.63) 
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J 

= a 2 U ( o ) • ( gr2a2a • 11 T ) (4.64) 

0 

and then D4u D3 U D2U DU and U are continuous. , , , 

Let us suppose that the stable gradients are ·weak ' in so 

far as they allow convection on scales long compared with the 

Ekman depth, i.e. let us assume both 

\aj << 1 

R ~ 0(1) s 
} (4.65) 

Further, let us assume that the roots of (4 .63) are of the form: 

(4.66) 

Substitution into equation (4.63) leads to 

+ a2 

(4.67) 

0 

The roots form are in 2 groups, m small or m = 0(1) 

1. m = 0 (4.68) 
0 

l 

m1 = R 2 · 
s 

-2-

m2 = 0 

mJ = 0 

m4 = 0 
l 

l 2 
m5 = 1/ R 2 if R << 1 4 s s 
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2 . 

Thus a general 

4 
m = -4 

0 

m 
0 

= I i TT 2. e xp (4 (2 n-1 ) ) 

( for integer n) 

= 0 

m2 = -;~ . (12-Rs).exp(-tTTczn-1)) 

solution in the region z > 0 , 

(4.69) 

applying a 

boundary cond i tion that the motions decay to infinity, is: 

u -µz B1e -\)Z c1e -\JZ sin (4 . 70) = A1e + cos pz + pz 

l 5 
where 

aR 2 a µ = 5 + ---r 
2 4R 2 

s 

\) = 1 + a 2 (12-Rs) + O( a 4 ) 
32 

p = 1 - a 2 ( 12-Rs) + O(a 4 ) 
32 

th e c o rresponding ge ne r a l s ol u t i on i n z <O i s: 

U = A +µ z 8 +vz C +Vz . 
2e + 

2e cospz + 2e sin pz (4.71) 

The constants A
1 

, 0
1 

, c
1 

; A2, 0 2 , c2 are Linked by the 5 

. c ontinuity condition s at the ~oundary reg io n z = 0. The algebra 
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i s given i n Appendix 1 , Leading to 

A1 = Al. = A (4.72a) 

81 = s, = 
µ(p2_3v2) 

A 2v(v 2+p 2) (4.72b) 

c1 = -C1 
µ(3p2-v2) 

A = 2p(v2+p2) (4.72c) 

5 and the difference in DU across the step in temperature is given 

by: 

0 

from Appendix 1 • 

= (gacra
2

.~T)(A + B) 
Jt. 

Noting thatµ, B, C are O(a) or Less 

and µ, p 

we get the approximate relationship, to 0(a 3 ) 

[
4 Rt 

= - s + 
a 

2 a
3

] rr 
s 

+ O(µ) 

(4.73) 

(4.74a) 

(4.74b) 

(4.74c) 

The critical Rayleigh number thus calc~lated is minimised by 

choosing 

(4.75) 
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f 

Accordingly , the expansion of m in terms of a as a small 

parameter is only valid for very small values of R 
s 

( R 
s 

4 = O(a )) . 

Further, the critical Rayleigh number i s then 

( 
g aa. I:::. T ) _ R 

S°G
2 

C 
C 

= (4.76) 

which is itself O(a) . 

The "waveform" for U in the stable regions z<o and z>o 

is a combination of a slow exponential decay function of the form 

-µz 
e , which may be identified with the conventional decay 

solution in an homogeneous stable Layer, and an oscillatory 

- \) convective wave of the form e cos pz or 
- \) 

e sin pz , where 

and \) are of order unity. These latter therefore have a 
l 

"wavelength" of order the Ekman depth d
2 

- (v/n) 2 , decaying 

on the same scale. Thus increased rotation rates lead to ~hQI!~I 

length scales for the convective wave-like part of the solution. 

In turn, this may be regarded as a lesser extent of penetration 

into the stable regions, if one regards the other, -µz 
e , part 

of the wave form as being just a response to the forcing by the 

-Vz d -VZ . e cospz an e sin pz convection. That e-µz 

a decay wavelength, in dimensional terms of 

wavelength= 

= 

-1 
µ 

response is on 

= O (SG) (4.77) 

Thus this decay function is on a longer length-scale as rotation 

increases . 
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This analysis fa i Ls for since the 

horizontal wavenumber a, used as the expansion parameter , is 

then no Longer small. In such a case, the roots form (equation 

4.63) no Longer divide into one pair of "small" roots and two 

pairs of 0(1) roots and so the analysis of the complete solutions 

in each s t able Layer becomes unwieldy. As one moves to the other 

extreme , R
8 

>> 1 , the problem becomes rather i LL-posed 

physically in that one expects very short wave Lengths to be 

involved, with rotation becoming of negligible importance. These 

cases will not be pursued further. 

4.5 BQ!~!iQD eereendicular to gravitl: "Busse-Rolls" 

Busse (1970) considered the case of the onset of convection in a 

thin cylindrical annulus rotating about its axis with a radial 

body-force, following earlier work by Roberts (1968). His 

analysis drew attention to the role of the end-walls at top and 

bottom of the annulus in inhibiting convection through the 

dissipation in the end-wall boundary Layers and, if inclined, in 

restricting the radial extent of the motion. 

allowed the application of the model, 

The Latter effect 

which uses Locally 

rectangular coordinates to simplify the analysis, to the deep 

spherical shell that models the Earth's outer core. In this 

section, this analysis is extended to the case of penetrative 

convection and js then, in chapter 6,applied to observations made 

using a rapidly rotating cylindrical tank. Figure 4.3 shows the 

geometry involved. 
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Ei9.:. ~.:.2 'Busse' geometry 
'l 

.J)._ 

r 
0 

L 
z 

.flu.~J. ~ 
"j 

r t J ;> ;, 7 7 ;> 

This geometry, in which axial variations of the flow are 

negligible except for the flows induced by the boundary Layers, 

results in the equations being reduced to 6th order. The axial 

variation of the radial (~) component of vorticity is 

converted into an operator on the radial velocity through the 

boundary Layer theory (Greenspan, 1968). 

Taking the Linear Navier-Stokes equations for 

perturbations h!,.S, l; of velocity, temperature and vorticity, 

radial component of velocity: 

(where g 

a at( &) 

is taken to be constant), heat flow: 

= -u 
X 

ae + K l""72 a. •3x V V 
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radial component of vorticity: 

(4.78c) 

In the Limit of rapid rotation, we use boundary Layer theory 

to give the induced boundary flows at the top and bottom surfaces 

( z = :L/2) and thereby decouple the third equation 

u = - E1/2L 
!} • V " [ (Q A~ + n ~ ~;Ii D • 1/1' z J (4.79) -n 

2 \ !} ~, 
where E:: (v/L 2 

Q), !} is the normal to the boundary Layer and ~ 
the axis of rotation (Greenspan, 1968, eq n 2.17.3). This gives: 

(4.80) 

and (4.81) 

" " where n 1 , n 2 are small inclinations of one boundary in the~, l 

directions from being a plane perpendicular to the axis of 

rotation. 

S u b s t i t u t i n g f o r ~Jt , o n e g e t s 
az 

and 

o(q 'cJ & 
0 ~ 1. 

J 
2 = [ KV -p ]-& 

(4.82a) 

(4.82b) 

where p is the growth-rat e of the perturbation. Let us now use 

normalised variables, indicated by primes, based on scales: 

Length 

time 

temperature 

depth, and write 

B d, where d is the unstable Layer 
0 

Q = Lid, the aspect ratio. L is used as 
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the primary Length-scale because of the boundary Layer behaviour 

depending on E = v/L2~ 

[( 

I 4 1 / 2) -J ( '/z i ' ' )~ I ~ 3 l I ~ -r 'v +1E ,-E .V~ ... 'l, ~ ... 'l2 ~I u.x :o(~roJ.L: .~& (4.83a) 
DJ o:,c.. "lJ1. O'j,2 

and CJ 0... ) u" [ 'l 2 . - CJ p' J ft' (4.83b) = 
X 

3 2 I 
Now write F = a9S11 dL b B- (4.84a) 

2 
V 

u I 

(4.84b) = u 
X 

R = a.9 Ba d
4 

(4.84c) 
VK 

and -b2 = d 2 

aYi 2 

(azimuthal dependence) (4.84d) 

(4.85a) 

(4.85b) 

Note that R is defined here in a "conventional" manner, in terms 

of the depth of the unstable Layer. 

Some numerical solutions for the two equations (4.85a) and 

(4.85b) with various boundary conditions willbe investigated in 

§S.S. These ~ill explore the effect of rotation on an idealised 
I penetrative convection profile, f(x 1

) = cos (TTO..x ) , for various 
2 

boundary positions. The same numerical scheme will also be 

applied in § 5.5 to a simulation of the experimental observa-

tions of chapter 6. 

If one considers the equations (4.85a) and (4.85b) in com­

parison with the case of 9 parallel tog given by equations 4.1a 
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to 4.1c, it is clear that much higher rotation rates are going to 

be necessary for the rotation to be dominant, i n that rotation 

only in E-1/2v2 U and in -1 u, appears as a term as one E rJ a H ax" 
instead of as T a u in equation 4. 1 (note: T = 4E- 2 ). This i s -az 
because in the present case the convective transport of heat i s 

transverse to the rotation axis .and is therefore not affected by 

the rotation except through the effects of the top and bottom 

boundaries. These latter are a secondary effect on the flow. 

Busse (1970) considered the special case of constant temperature 

gradient and cylindrical symmetry 

f ( x' ) = 1 

with constant temperature, stress-free boundaries so that 

solutions were of the form 

U = sin ( a x' ) sin (b y" 

where a= TT o.. to fit the boundary conditions. 

By considering the real and imaginary parts of equations 

(4.85a) and (4.85b), remembering that at the onset of convection 

there can be an 

o n e g et s 

I 
P · = 

I i maginary part to the growth-rate p , 

w, 

2 'l• b (4 . 86) 
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and then 

R. o..~ 1,; : la..'+ 1,•J ?,+ 2 E_,,, (a..'+ 1:Y, (2~. 1,.,.J'(l>'+l.' +2 t!· l ( 4. 87) 

((a-.,),~+\:)E +2 a- E
112 )2 

This notation differs from that used by Busse (1970) in order to 

give a " conventional" definition for Rand to show the relative 

contributions to the Rayleigh number from Benard-type convection , 

from boundary-Layer suction and from end-wall inclination 

respectively . One can use this special case with its relatively 

simple solution to determine the conditions under which each of 

these mechanisms should be dominant , still follo win g Busse (1970) 

Case (i) o..>> E-11 4 
(cp Busse (1 970) misprint , G..>'> E-112 ) 

E 1 / 4 0-1 
n1 << 

Benard - type convection 

b = 
C 

(Rct) = 

Case (ii) 

C 

R = 
C 

a 

/2 

27 4 
48 

27 1T4 
4 

Boundary-Layer dominates 

b = a 
C 

(4.88a) 

(4.88b) 

(4.89a) 
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C a s e ( i i i ) 

and 

+2 a 

~ r -1 
Cl. t. • a 

End-wall inclination dominates 

( R o..4) 

b = 
C 

= 
C 

3 (/2 n 1 • a) 4 / 3 
E(a+1) 

w - - n1 l4/2 ' ) 1/3 
C E 2 a( a+ 1 ) 2 

Now we can see that the 

(4.89b) 

(4 . 90a) 

(4.90b) 

(4.90c) 

effect of rotation i S t 0 shift the 

emphasis away from interior dissipation (case 1) towards Ekman 

layer dissipation (case 2). Further, as rotation increases, it 

becomes more likely that any inclination will become significant. 

In the limit T-+ oo , for finite aspect ratio~, one gets either 

or 

R a 
C 

R 
C 

Y1t- - 2 
T o.. for zero inclination 

-4 
a for finite inclination 

(4.91a) 

(4.91b) 

Thus in any practical situation, one can expect 

R a T Z/3 
C 

as T-+ oo (4.92) 

as end-wall inclination will come to dominate the onset of 

convection. However, the numerical solutions in the next chapter 

109 



are for the case 'l_ = 0 in order to model the experimental 

cylindrical tank. This also avoids the oscillatory nature of the 

marginal solution that necessarily accompanies any significant 

in cl i nation. 

4.6 Thermal wind 

The 'thermal wind' is the azimuthal velocity field that 

balances Coriolis forces against baroclinic buoyancy forces ,n a 

rotating system. It is not a primary feature of any part of this 

work, but does occur in the experimental work reported in chapter 

6 and so a brief summary of the theory describing it i s given 

here. A more complete review is given by Pedlosky (1979): the 

following deals only with the nature of the thermal wind, not 

with the instabilities that arouse interest in atmosphere 

studies. 

The convection theory that has been dealt with considers 

cases of unstable equilibrium: _g_.'vp<O, _g_A 'vp = 0. 

If , i • e. if the gravity and density gradients 

are inclined to each other rather than being antiparallel, then 

there i s an overturning force acting on the fluid, 

In a non-rotating system such a baroclinic 

generating 

density vorticity. 

distribution Leads to convection and the system cannot be in 

static equilibrium. Rotation of the system introduces the 

possibility of _ the existence of azimuthal flows that, through the 

Coriolis force, set up a dynamic pressure field to balance the 

buoyancy forces and so prevent convection. The creation of such 

a flow pattern involves the deflection of the initial convection 

flows (which obey Ekman boundary Layer theory in a 

rotating 

equilibrium 

system) by the Coriolis forces u n t i l a 

i s reached : this time dependent behaviour 

1 1 0 

rapidly 

dynamic 

i s not 



dealt with here. A simi Lar problem in stellar fluid dynamics is 

that of Eddington-Sweet currents , which should be modified by 

rotational effects (Busse, 1981). 

Consider the non-Linear vorticity equation: 

w 
a- C ) = at + u. 9 ui _ 9 )u 

(4.93) 1/pA_g_ 
-p- + 9 /, !1 + 

The body force acceleration 9, which may be a combination of 

gravity and of centrifugal accelerations, is conservative,so that 

/\. 
Let us consider the azimuthal (<I>) component of 

vorticity in the steady state ( 

(4.94) 

In the case of slow rotation or in the neighbourhood of 

boundaries the viscous term is significant. However, in many 

geophysical applications the typical Length-scale L of the system 

is sufficiently Large that we can consider the rapid-rotation 

Limit in the interior of the fluid: 

(u.9)w<l> = + 2 n a 
az 

where E = V/nL 2 , the Ekman number, 

( u <t>) -,- 0 ( E ) (4.95) 

is small. This holds in the 

atmosphere or . core for L ~ 1 m if we consider non-turbulent 

processes 

for air. 

a n d t a k e v ::: 1 0- 7 m 2 s - 1 f o r t h e co re -5 2 -1 or v ::: 10 m s 

Now Let us consider the specific cylindrical geometry of the 

experiments described in chapter 6. 
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" -q 2 
o• -

There is cylindrical symmetry ·and the dominant body force in the 

region of interest (r :::: r 
0 

) is the radial centrifugal force. 

However 

gravity, 

effects. 

there is also an axial body force, the Laboratory 

baroclinic 
I\ 

-g z 
0 -

It 

= 

is this that gives 

l3(r)g + 2 Q. auq> 
0 -az 

rise to 

(4.96) 

Neglecting boundary Layer effects, we can put u = u = Oand r 2 

hence get a solution: 

u <I> = B(r).g • (z + c) 
0 (4.97) 

2Q 

for some constant c , zero if there is symmetry about z = D. 

This solution requires modification for the effect of Ekman 

boundary Layers on the rigid surfaces of the experimental tank, 

similarly there are internal viscous forces arising from the non-

uniformity of the flow and it assumes cylindrical symmetry. 

symmetry is · broken in certain of the experiments 

introduction of a radial thermistor array. 

Rigid surfaces 

by 

That 

the 

Following Greenspan ( 1968) , the modification to the interior 

flow arising from the surface z = ± L/ 2 is an a x i a l fl o w 

(i . e . normal to the surfaces) 
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u 
z = 

+ ~w], "L/2 

[
aS(r) + Htl] 

ar r 

(4.98) 
= 

Note that this velocity is constant with respect to z and 

represents a flow from one Ekman boundary Layer to the other, 

its sign depending on 6 (r). The counterflow to maintain the 

boundary Layers occurs in the inner side-wall boundary Layer 

( t h i c k n e s s O ( E 1/3 ) ) • S i d e - w a L L b o u n d a r y c o n d i t i on s a r e s a t i s f i e d 

over a thicker (O(E 1i )) boundary Layer. In the Limit of rapid 

rotation (E ~o>, these sidewall effects are negligible compared 

with the end surface z = ~ L/2. Greenspan (1968) gives a des-

cription of the various boundary Layers ( 

Internal shear -------- -----
The boundary Layer suction velocity 

and cannot accurately describe a basic 

§ 2.18). 

'h is correct only to O(E ) 

state for any finer 

corrections . Internal shears, Leading to viscous stresses, are 

of O(E), provided that the radial variation of 6 (r) is on a 

Length-scale comparable to L. Only if variations of 6 (r) are on 

radial Length scales 0(E 1h )Lor Less do internal shears become 

significant compared to the boundary Layer suction in modifying 

the velocity profile. 

this work. 

Accordingly such effects are ignored in 

The exp~rimental tank is cylindrically symmetric except in 

the cases in which a radial thermistor array is deployed. The 

array acts 
r 

as a radial barier to azimuthal flows by virtue of ,. 
changing the avai Lab le dept .h of the tank: a geostrophic path of 

constant depth is no Longer available for the thermal wind. The 

change of depth is approximately 6 mm in a tank of depth 200 mm, 

much greater than the Ekman Layer thickness. Such a change of 

depth can support a pressure difference sufficient to prevent the 
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thermal wind if its Rossby number E _ U/ds-2 is small, where dis 

the Length-scale of the obstacle and Uthe thermal wind speed in 

the absence of the obstacle. In a typical experiment, 

s z 10- 2 -1 
rn 

go z 1 0 rn s-2 

2 ~ z 1 0 2 rad.s -1 

z z 1 0 ·- 1 
rn 

so the expected thermal wind velocity is 
-4 -1 U :.: 1 0 ms 

and the critical depth d for "blocking" on the criterion E << 1 

i s 

d >> U/s-2 

>> ~o-6 
I rn 

The Ekman Layer thickness is of order 10- 4 m and so i s of 

more significance in this case than the Rossby number criterion : 

obstacles can only have a "blocking" effect if they are large 

enough to affect the internal region of inviscid flow. 

Clearly any feasible r adial thermistor array is Likely to 

act as an effective barrier to the thermal wind. On the other 

hand isolated 
) 

bumps in the top and bottom boundaries have no 

comparable blocking effect, provided there exist geostrophic 

paths around such bumps. The radial array effectively 

the degree of connectedness of the cylindrical annulus , 

changes 

owing to 

the combination of its "Large" size and its continuity across the 

annulus. 

The effect of the blocking of the thermal wind by the 
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thermistor array is to eliminate the dynamic pressure field that 

buoyancy forces associated with the laboratory the 

It 

opposes 

gravity . 

profi Les 

transport , 

is for this reason that the measured temperature 

in § 6.3 are distorted by the convective 

compared with the experiments performed without 

heat 

the 

thermistor array. Note that similar experiments performed in a 

spherical tank would not suffer such an effect, as geostrophic 

paths exist around a radial array (by deflection inwards in 

radius , to enjoy a matching increase 

s p he r i c a L bound a r y w a L L s ) • ( f;i . b. i). 
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5. ~~~~[i£~l !Q l~!iQD! to the liD~~[ ~g~~!i QD! 

5 . 1 ~bQQ! iD 9 Q[ Q9 [~~ 

In the Last c hapter it 1s apparent th at anal yt i cal so l utions 

ev en o f the Linear equations in co nv enient ge o metr i es are r a r e l y 

si mple, or indeed obtainable .• On the othe r hand, numerical 

integration o f s imultaneous Linear differential equati o ns suc h as 

(2.11) is generally quite easy, using a standard integration 

routine, and such integrations may therefore be us ed to test the 

result of guesses for the desired eigenvalue R, 

and thence to find the eigenvalues by 

The problem becomes one of finding 

t he 

an 

a 

Rayleigh 

iterative 

starting 

number , 

routine . 

condition, 1 n terms of both initial values for the va riables at 

o ne boundary and of the parameter R, such that int egrat i on of the 

differential equ a tions through the region of the problem yields 

boundary values for the variables at the boundaries that fit the 

conditions . Only one dime nsional regions of int egrat ion are 

investigated in this work, owing to the simple geometries o f the 

problems investigated. This method is known a s a "shooting" 

method of finding eigenvalues and functions of such problems. It 

involves both a Linear inversion 

integrations in order to fit a ll 

of 

but 

resu l ts 

one of 

from t r i a L 

the boundary 

conditions by var yin g the starting values for the variables, an d 

a non -L inea, iteration in the parameter R to f i t the fin a L 

bo und ary-cond ition . 

differential equations 

In general we are dealing with s imul taneous 

in (2n) v a r i a-b L e s , 

conditions on each of the two boundaries , 

w i t h 

and this 

( n) boundary 

requires a 

Linear inversion of a ((n-1)x(n - 1)) results matri x followed by 

the non-Linear it e ration . The case n = 1 o ccur s, in the 

La y er problem in the Limit T ~ m (see § 4 . 2 for a n a l ys i s ) , 

1 1 6 
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1n this there need be no Lin ea r inversion stage: t he one unknown 

variable at the opening bound a ry can be normalised to unity. n = 

4 o r 8 is requir ed for the general plane La yer problem, the 

La tter if overs t abi Lit y is t o be considered. n = 3 i s required 

for the cylindrical annulu s pr o blem, with end-wa ll s of z er o 

inclination. 

The program wilt now be described 1n the version for n = 4 , 

appropriate for solving the steady convection problem in a plane 

Layer (see flowchart in F i g. 5 • 1 ) • The equations to be solved 

are (2.11) W hi C h a r e : 

[ 02 82 J z = - T . DU 

[ 02 82 J 2 u - DZ + F -

[ 02 8 2 J F = R8
2 .f (z). U 

The shooting program treats these as the following eight 

simultaneous equations (subroutine 'RHT') 

D y ( 8) = T y ( 2) + a 2 y ( 7) 

D y ( 7) = y (8) 

D y ( 6) = ( R FCZ)a 2 ) y ( 1 ) + a 2 y ( 5) 

D y ( 5) = y (6) 

D y ( 4) = y ( 5) + y ( 8) + 2a 2 Y(3) - a 4 YC1) 

D y ( 3) = y (4) 

D y ( 2) = y ( 3) 

D y ( 1) = y ( 2) 

where u, DU, D2 U , D3 U are to be i dent if i,ed with y ( 1 ) to y ( 4) , F, 

DF with Y(S) , Y(6) and Z, DZ with y ( 7) , y ( 8) respectivel y. 

Integration of these equations over the interval Z = 0 to Z = h 

i s performed by t h a standard 4 order Runge-Kut ta integration 

subroutine ( ' RKM ' ), from Dr. Busse ' s group at UCLA, modified to 
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Subroutine 

MAIN 

MAIN 

SOLVE 

SOLVE 

RHT / RKM 

INVERT 

SOLVE 

CONVRG 

MAIN/ 
PARAB 

OUTPUT 

Set geometry and 

Taylor number. 

+ Set horizontal 

wavenumber 'a'. 

t 
Set Rayleigh number. 

t 
Set four initial 

boundary conditions. 

t 
Runge-Kutta integration. 

t 

Fig. 5.1 

Flowchart for the 

'SHOOTING' program. 

Linear inversion to fit three 

closing boundary conditions. 

t 
Calculate error in the 

fourth boundary condition. 

t 
New estimate for 

Rayleigh number. 

t 
Minimise R with respect 

C 

to ' a' 

t 
Print m1n1mum R , a 

C C 

and profi l es of varia bl es. 



Subroutine 

MAIN 

MAIN 

SOLVE 

SOLVE 

RHT / RKM 

INVERT 

SOLVE 

CDN VR G 

MAI N/ 
PARAB 

OUTPUT 

Set geometry and 

Tay lor number. 

t 
Set horizontal 

wavenumber 'a'. 

t 
Set Rayleigh number. 

t 
Set four initial 

boundary conditions. 

t 
Runge - Kutta integrati o n. 

t 

Fig. 5.1 

Flowchart for the 

'S HOOTING' program. 

Linear inversion to fit three 

closing boundary conditions. 

t 
Calculate error in the 

fourth boundary co ndition. 

t 
ffow estima t e for 

Rayleigh number. 

t 
Minimi se R with resp ec t 

C 

to ' a' . 

t 
Print m1n 1mum R , a 

C C 

~nd profi l es of varia b l e s . 



• 
incorporate a shortened step Length Cx 1/10) in the step nearest 

the bOundaries in order to improve the resolution of boundary 

Layer s. 

Typical opening boundary conditions at Z = 0 are (rigid, 

constant temperature boundary) : 

u = y ( 1 ) = 0 

DU = y ( 2) = 0 

F = y ( 5) = 0 

z = y ( 7) = 0 

W hi C h Leaves four opening values to be set, W hi C h can be 

expressed as a vector ~ : 

X = Cx 1 , x2 , x3 , x4 ) 

for the opening boundary values (z = o) 

y ( 3) = x1 

y ( 4) = x2 

y ( 6) = X3 

y ( 8) = X4 

After integration, one has an 'error' value on each of the 

closing boundary conditions, which can be expressed as a vector 

E : 

E 

where at 

= (e1, e2, e3, e4) 

the closing boundary , again taking a 

temperature boundary as our example, 

y ( 1 ) = _e 1 

y ( 2) = e2 

y ( 5) = e3 

y ( 7) = e4 

rigid constant 

The aim is now E = 0 - , and we can achieve this by varying X and 

the parameter R. From inspection of the equations ( 2.11 ), E 1s 

a Linear function of X. Trial integrations are made with 
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and 

and a 

for 

~, = ( 1 , 0, 0, 

~2 = (0, 1 , 0, 

~3 = (0, 0, 1 , 

~4 = (0, 0, 0, 

results matrix 

F .. 
1 J 

= 

0) 

0) 

0) 

1 ) 

F ( 3 X 3) constructe d 

e . ( X . ) 
J - 1 

i , j = 2,3,4 (subroutine 'SOLVE") 

This matrix is then inverted to give the input initial conditions 

~, normalised as 

(1, x
2

, x
3

, x
4

) 

that will yield 

X = 

E ( X) = (e
1

, 0, 0, 0) 

so that three boundary conditions 

'INVERT'). 

are satisfied (subroutine 

If n = 3 or n = 4, the inversion routine is explicit and 

algebraic but for the program version n = 8 the inversion routine 

is a standard Gauss-Jordan inversion, from Dr. Busse's group at 

UCLA. 

We now have an error estimate, for our chosen value R 

and the set parameters a, T, h, f( z) • The object now is to 

reduce to zero by manipulation of R ~nd then to test the 

effect on this eigenvalue R of varying the horizontal wavenumber 

a • The minimum of R with respect to a yields the critical 

Rayleigh number R and wavenumber a for the given conditions. 
C C 

Manipulation of R is performed by a Newton-Raphson iteration 

subroutine (CONVRG), which includes tests on successive values of 

R to deal with both diverging predictions and the physically 

unacceptable prediction of negative R. Iteration continues until 

the error estimate has been reduced by some preset factor, 

typically 10 3 , which is taken as being adequate convergence. 
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Minimi satio n of R with respect to a is ac hie ved by the 

adoption of Linearly stepped values of a until the re sul t R(a) is 

found to increase. 

R(a -2 6 
0 

R Ca cS ) 
0 

R C a ) 
0 

The Last 3 results 

where 6 is the steplength and R(a ) > R(a -
0 0 

cS ), are fitted by 

a parabola in · a· (subroutine PARAB, from E. Bolton, UCLA) to 

give a prediction for the minimum in R(a) at some value a
1 

The computation of R is then repeated for 

a = a1 - cS / 1 0 

a = a1 

a = a1 + cS / 1 0 

of a. 

and ' PARAB' employed again to give a final prediction of~, a , 
C C 

which is then tested by computing R(a ). 
C 

Thus we have a value for the critical Rayleigh number R and 
C 

wavenumber a for the set boundary conditions, rotation rate (T) , 
C 

fluid depth (L) and temperature profile (f(z)). Inspection of 

the form of the eigenfunctions for Y(1) to Y(8) acts as a check 

both on the adequacy of the convergence and on whether the Lowest 

eigenvalue has been found . Judicious selection of the initial 

guesses for the Ra y leigh number ' R ' and the range of wavenumbers 

· a · tested is of practical importance in running the program: if 

prior knowledge of similar set conditions is not available , it is 

best to perform an initial study of the results for a sequence of 

values of 'R' and of · a ·, 

' PARAB' out o f t he program . 

by switching the routines ' CONVRG ' and 
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~Q~!JQ2!:t conditions C n ---------- = 4 version, as example) 

1) Impermeable boundary: y ( 1 ) = 0 

2) Either a) rigid boundary: y ( 2) , y ( 7) = 0 

or b) stress-free boundary: y ( 3) , y ( 8) = 0 

3) Either a) perfect Ly conducting: y ( 5) = 0 

or b) fixed flux: Y(6) = 0 

or c) finite conductivity, Biot number ;\ = ks/L.kf 

where k is wall conductivity, 
s 

kf is fluid conductivity 

and L is non-dimensional wall thickness, 

<I> = ;\ YCS)+ Y(6) = 0 

where the sign depends on which boundary i s being 

Various 

considered. 

combinations of these are reported 1n the following 

results. Condition C3c) 1s only used in the case of the 

cylindrical annulus, in order to model the experimental tank. 

5.2 Testing the ero9ram 

To an extent the shooting program is self-checking in that 

i t yields values of the eight variables at all the integration 

steps: one can therefore check that the solution provided does 

indeed meet the set boundary conditions at both ends of the fluid 

region. In addition it was run for well-known problems as 

check on the numerical value of the critical Rayleigh number 

and the optimum horizontal wavenumber a • 
C 

1. Rayleigh-Benard problem, with verti~al rotation. 

Rigid - rigid , constant temperature boundaries 

f(z) = 1 

Integration step - 0.05 

1 21 

a 

R 
C 



Variational Method Program 

Tay lor No. (Chandrasekhar, 1 9 61 ) 

T Re ac R C ac 

0.0 1707.8 3 . 11 7 

0 . 1 1,707.2 3 . 11 

10 3 2151.7 3.50 2151.1 3.49 

10 4 4713.1 4.80 4712.4 4.78 

10 5 16721 7.20 16719 7.17 

10 6 71132 10.80 70800a 10.8a 

a : not properly converged, so uncertain. 

Agreement i s satisfactory. The variational method used by 

Chandrasekhar (1961) is of Limited accuracy in locating the 

critical wavenumber a , 
C 

owing to the spacing used between values 

of a • At T the shooting program only gives poorly 

converged results and so is inaccurate, particularly in Locating 

a • 
C 

This problem is discussed further in 

2. f(z) = 1 -z in O<Z<'.2 

§ 5. 3. 

Stress-free, constant temperature boundaries. 

Integration step= 0.10 

This case was investigated by Veronis (1963) as being an 

approximation to the ice-water system, in which the coefficient 

of thermal 

truncated 

expansion 0 a changes sign at 4 C. Veronis used a 

Fo~rier expansion of the velocity field to compute the 

critical Rayleigh numbe~. 

Veronis CT = 0) : 
. 3 
g . 6pd :: .JL in Veronis' notation 

2>.. 4 pKV 

The comparable case is Veronis A = 2 , in which case 

2 is the appropriate conversion . For the horizontal 

a = (a) . X ~ Ve r o n1 s 
TI Hence: -
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,·,. 

(
2f4\.conis 

= 2 . 72 TI 4 for A = 2 

. R .. 
Compare R 

C 

a 

Compare a 
C 

= 264.9 

= 529.9 

= 5 31 . 1 

•h 
= (0.233) 

= 0.483 

= 1. 516 

from Veronis 

from shooting program 

(T = 10- 3 ) 

from Veronis 

from shooting program 

Agreement here is again satisfactory. However, comparison 

of Ihe wave-form for the vertical velocity component (w 
0 

in 

Veronis' notation) at the onset of convection shows differences 

(fig. 5.2). 

his fluid 

secondary 

Veronis noted a countercell in the uppermost part of 

region, in which w < 0, 
0 

and attributed this 

circulation cell driven by viscous forces. No 

to a 

such 

countercell exists in the solution from the shooting program for 

h = 2. It appears that Veronis' countercell may be an artifact 

of using a Fourier expansion truncated at the fourth term . Using 

the shooting program, no countercell is observed until h = 2.5. 

As h increases beyond h = 2.5, the beginning of the countercell 

is found to ~ccur between Z = 2.0 and Z = 2 .1, so that the first 

c e l l only extends as far as the position of zero ove r all 

temperature difference. In the cases , 2.0< h< 2.5, there is no 

countercell because of the constraint of the upper boundary. 

This inhibition of the optimum form of con vection results in an 

increased value 

T a b l e 5 • 1 • 

for R in this range of h, 
C 
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Critical Rayleigh number and wavenumber fo~ 3 a parabolic 
de nsi ty profile at low rotation rate (T = 10 ). 
S t r e s s - f r e e , c o n s t a n t t e m p e r a t u r e b ,1 u n d a. r i e s • f ( z ) -~ 1 - Z 

h 

1 . 0 
1 . 1 
1 . 2 
1 • 3 
1 • 4 
1. 5 
1 • 6 
1 . 7 
1 . 8 
1 . 9 
2.0 
2 . 1 
2. 2 
2.3 
2. 4 
2. 5 
2 . 6 
2.7 
2.8 
2.9 
3.0 

Fig. 5.2 

R 
C 

1308.8 
990.8 
784.0 
646.8 
555.7 
497.8 
466.3 
458.2 
472.1 
5 01 . 5 
5 31 • 1 
549.7 
557.6 
558.8 
556.8 
554.1 
5 51 • 8 
550.4 
549.9 
549.8 
550.2 

a 
C 

2.23 
2.03 
1.86 
1 • 73 
1. 61 
1 • 51 
1.44 
1 • 39 
1 • 38 
1 . 43 
1 . 51 
1 . 5 8 
1 • 61 
1 • 62 
1.62 
1 • 61 
1 • 60 
1 • 59 
1. 59 
1. 59 
1 . 5 9 

Start o f 
countercell 

2. 2 
2 • 1 
2 • 1 
2 • 1 
2 • 1 
2 • 1 

Cop y of fig. 2 fr om Veron i s (1963) , showing the countercell 

f o und by a trunc ated series expa nsion analysis . Thi s case is 

equivalent to h=2.0, for which the shooting pro gram finds no 

countercell ( see ab ove , Table 5.1 ). 

z 
d 

,,st"; 2. -- 1\ plot of 11·, vcr~ns t for>. - 2 wilh r, nnr~nli1.fd, i.e., (T.l .., ~ 1, Rnd 7l'o drd11crrl frnrn ~'I ­
, · A_ ~rnnl_l ~rcnn_!IM_\ !C!I ncnr thr upper b!Jund~ry ,~ rlrrvrn hy v,~r1111s forres nn d is slio,wn ,,. the 

rc.p, 1011 in whwh W n J~ nrg1 I 1 ,,,.. . 



3 • f( z) = cos C TI z/
2

) in O L Z i.. 2 - -
Stress-free, constant temperature boundaries. 

Vertical rotation. 

An alternative method of finding the critical Rayleigh 

number in t h i s particular case is to use the Fourier series 

expansion method set out before 

properties of the cross-product term: 

f(z). sin (n TI z) 
2 

in ~ 4.2, 

+ sin 

The problem i s therefore to find values for R 

following determinant is zero: 

A1 B 0 

B Az B 0 

0 B A3 B 

0 0 B 
~4 

where the diagonal terms are 

A. 
1 

= - (i2 TI 2+a2)3 - T TI 2 

and the off diagonal terms are either zero or 

B = 

with T and a specified. 

utilising the 

such that the 

If the determinant is truncated at some order, i t defines 

approximate roots for the Rayleigh number R, which may be found 

numerically by the use · of an iterative procedure similar to the 

subroutine 'CONVRG' 

evaluation of the 

in the shooting program, 

truncated determinant. 

truncation at the 3rd order determinant 

A1 B 0 

B A2 B = 0 

0 B A3 

combined with an 

It i s found that 

gives reasonable estimates for the Rayleigh number, in that the 
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c.hange t o truncating at the 4th order determ inant results in no 

significant change in the root R. The critical values R , a can 
C C 

then be found b y the use of successively finer test grids of 

va lues of a . 

A comparison of the results at two different rotation rates 

from the two methods , the above determinant method and the 

shooting program , is given below : 

T 

0 . 0625 

62.5 

Determinant mf!bQQ 

R -c 

383 . 2 1 • 51 4 

(3rd order truncation) 

383.2 1 • 51 4 

(4th order truncation) 

582 . 8 2.072 

(3rd order truncation) 

582.8 2.072 

(4th order truncation) 

R -£ 
383 . 3 

582.9 

a -c 

1 • 511 

2.072 

Agreement is satisfactory. The determinant method is of Limited 

use : only this particular case of f(z) = cos ( TTz/
2

) gives such 

a simple determinant and it is only for the stress-free , constant 

temperature boundaries that a Fourier series expansion for U 

satis fies the boundary conditions . 

Numerical ~££~I2£l 

In general a grid spacing of 0 .1 is used fo r the Runge-Kutta 

integration routine, so that the Rayleigh number is evaluated at 

intervals of 0.05 (u sing a normalisation of unstab le re gion being 

0 ~ z.( 1.0) . No appreciable gain in resolution of th e critical 

Rayleigh number or of the critical horizontal wavenumber results 

from decreasing the spacing to 0 . 05 or 0 . 025 : 

results r elate to the case of :-
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f ( z) = 

rigid, constant temperature boundaries 

T = 1 

h = 1.6 or 2.0 

h = 1.:.Q h = f.:.Q - - -
Grid ~f2~£i!J9 Re ~£ E£ ac 

0.1 828 . 84 2.035 826.66 2.006 

0.05 828.65 2.029 826.43 1 • 999 

0.025 828 . 64 2.029 826.41 1 • 999 

Only in the case of f(z) being discontinuous (plane Layer 

case, reported below in § 5.3.2, Tables 5.5 to 5.7) does the 

finite spacing used affect the results to a marked degree. In 

other cases , f(z) is a continuous function and D f(z) is never 

so Large as to cause substantial changes between grid points. 

As 
ste.r 

noted above in the description of the shooting program, 

the "Length is 

the boundaries, 

reduced by a factor of 10 in the intervals next to 

in order to assist in resolving the Ekman Layers 

that form at high T. Since the highest rotation rate generally 

used i n running the program is T = 10 5 , for which the Ekman Layer 

thickness O(T- 114 ) is approximately 0.05, this is adequate: 

again a test of reducing the grid spacing to 0.025 for a run with 

T = 10 5 resulted in a change of less than 0 . 01% in R , 0.1% in 
C 

a • 
C 
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5 .3 Results : --------
5 • 3 • 1 

A temperature gradient of the form f(z) = cos nz/ 2 in the 

region O ~ Z ~ h for 1 ~ h ~ 2 is used as being a convenient 

function of smooth form . Note that the overall temperature 

diffe r ence across the Layer Z = 0 to Z = 2 is zero. The Layer is 

unstably stratified in O~Z<.1, stably in 1<Z~2 . The object of 

using a 

effects 

Layered 

smooth function f(z) is to avoid the risk of spu ri ous 

stemming from a discontinuity in one or more terms . A 

stratification, with a step-function for f(z) , w iL L be 

considered separately, in§ 5 . 3 . 2. 

The shooting program is run for different positions of the 

top boundary , h = 1.0, 1.1, to 2 . 0. These correspond first to 

having no stable Layer, then to adding a stable region above the 

unstable Layer. As a result of the manner in which the scale-

depth d is defined for the purpose of the Rayleigh number R and 

Taylor number T, R is proportional to 'v8 for all of the cases 

and similarly a given value for T implies the same rotation rate 

for all of the cases. 

R = 

T = 

ga~ od4 /K \! 

4S"22d4/\!2 

1) Rigid, constant temperature boundar ies 

(Figs . 5.3 to 5.5 and Table 5.2) 

At Low r otat ion r ates , T = 0(1) , and a top boundary at z = h 

= 1 . 0, the profile of vertical velocity U at the o nset of steady 

convection is very s,milar in shape for both f(z) = cos (nz/2 ) 

and f(z) = 1.0. The asymmetry of the density profile f( z) = cos 

( n z/2) scarcely deflects the velocity U f r om being symmetric 

about the mid-point , z = D.S . As one considers the top bo undary 

moved to h = 1.5 and then to h = 2.0, the profi Le of U penetrates 
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into the stable region , allowing a Longer effective Length -s cale 

and so a Lower value for the c r itical Rayleigh number ( f i g. 5 . 3 

and Table 5 .2). 

The effect of increasing the rotation rate, as measured by 

T, i s to bias the profile of U towards the region of greatest 

instability. For T ~ 10 3 , this effect is sufficientl y great 

that the profiles for h = 1.5 and h = 2.0 become very similar 1n 

the unstable region (see fig. 5 • 3) : the combination of rapid 

r otation and a stable Layer shields the solution from the actual 

position of the upper boundary , z = h • Thus the rotation 

emphasizes the effect of the stable Layer. This may be seen more 

clearly in the profiles of D2U plotted in fig . 5. 4 . Increasing 

the rotation rate from T = 1 to T = 10 3 causes a shift in the 

profiles of D
2u towards the unstable region , particularly marked 

for a deep stable region , h = 2.0. A further increase, to T = 

10 5 results in D2U being small except in the neighbourhood of the 

rigid boundaries, indicating that Ekman boundary Layer theor y and 

a reduction in the effective order of the equations to 2 in the 

interior region become applicable for T ~ 10 5 • 

Figure 5.5 shows the variation of critical Rayleigh number 

with the position of the upper boundary , h , for various rotation 

rates (see also Table 5.2). Medium rotation rates, T = 10 3 or 

show minima for the critical Rayleigh number at about h = 

1 • 6, rather than at h = 1.8 as for T = 1. This re flects the 

decreased advantage to the system of any penetrat i on of t he 

stable region. 

creasing with 

At T = 10 5 however, R appears to continue de­
e 

h , although this conclusion is Limited by the 

difficulty 

§5.3.3 for 

in achieving convergence for T = 10 5 , h ~ 1. 7 (see 

this problem). From Table 5.2, i t i s clear that 

changing the top boundary position from h: 1.0 to, say, h = 1.6 
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Second derivative of vertical velocity 

Rigid , constant temperat ure 

boundaries , f(z) = cos(nz/2) 
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RJh~ (1.0) Fig. 5.5 

c. 
Variation of critical Rayleigh 

1. 0 
number with depth h . Rigid , 

constant temperature boundaries 

f ( Z ) = COS ('n Z / 2 ) , 

s 
T=10 

.B 
4-

T=10 

.6 
3 

T=10 

.4 

T= 1 

.2 

0 
1.0 2.0 h 



Critical Rayleigh numbers and wavenumb ers 
Rigid , constant tempe r ature boundaries 
f (~) = co s ( n a. /

2
) 

-------------- ·--------------------------- ·-------------------- . . 
T !, -- 1. Q 1 • 1 1. 2 1.3 1. 4 

1 R 2483 1 855 14 50 1185 1009 I 

C 3 . 1 3 2 . 85 2 . 62 2.42 2.27 a 
C 

10 3 
R 3125 2527 2158 1933 1 804 C 

3 . 50 3 . 3 1 3.1 6 3.06 2.99 a 
C 

10 4 R 6829 6118 5675 5410 5265 C 
4.81 4 .69 4. 60 4.53 4 . 49 a 

C 

10 5 R 24158 22508 21 445 20790 2041 6 C 
7 . 25 7 . 09 6.98 6.89 6 . 84 a 

C 

10 6 R 102420 
C 1 0 . 98 a a 
C ---------~------- ·- -- - -- ·-..._ ____ __ --... ..... - ·- ·· ... _____________ ____ ._ .......... .. ..... .. . .. - ... -- - -

d : 

T 
I 

1 
I 

10 3 

1 o4 

10 5 

1 06 

:; tap L2;igth 

1. 5 

8 ? 6 
2. 1 4 

'1740 
2.95 

5202 
4.48 

20221 
6.82 

-:: 0.0 2 5 

1 ~ 6 

829 
2 . 04 

1720 
2 .94 

5184 
4.48 

20138 
6 . 81 

1 • 7 1 • 8 1. 9 2.0 

799 797 810 827 
1. 97 1. 95 1.97 2.01 

1727 1743 1760 1772 
2.96 2.99 3.01 3.04 

5 '191 5204 5215 5227 
4.49 4.51 4.53 4.54 

20087 failed 
6 . 8:3 

- - --- - - - .. _ -- -· -- - -- ..... -. ~ -..... ·~ ..... .. - ~ - .. - - - - - -- ._. -- -- --· .. - ......... - - .. -.... - ..... -



has a much greater effect i n decreasing the critical Rayleigh 

number R at Low rotation rates C T = 1 , R (h=1.0) = 2483, 
C C 

R c(h=1.6) = 829, a reduction of 67%) than at medium (T = 10 3 , 

Rc(h=1.0) = 3125, R (h=1.6) = 1720, a reduction of 4 5 %) or at high 
C 

rotation rates (T = 1 o5 , R (h=1.0) 
C 

= 24158, R (h=1.6) = 20138 , a 
C 

reduction of 17%). 

2) Stress - free, constant temperature boundaries. 

figs. 5.6 and 5 . 7, table 5.3 

The same effect of increasing the rotation rate on the 

extent of penetration into the stable region occurs with stress-

free boundaries. Fi g. 5.6 shows U, fig. 5.7 shows o2 u: the 

compression of the flow pattern into the unstable region i s 

clearer than for rigid boundaries as there is no Ekman boundary 

Layer effect to obscure fig. 5.7. The profi Le of o2u for h = 1.5 

shows how at fast rotation (T = 10 5 ) D2 U changes 

1 • 0: the cross-over occurring for z Less than 

amount, in accordance with our expectations from 

approximate equations (see § 5.3.4 for discussion 

rotation Limit). 

3) Rigid-R i gid, constant heat flux boundaries 

figs. 5.8 to 5.10, table 5.4 

sign 

1 • 0 

the 

of 

The case of constant heat f Lux boundaries 

near z = 

by a small 

2nd order 

the rapid 

has been 

investigated in recent years primarily as a result of the Long 

horizontal wavelengths associated with it , which hve been of 

inte r est to studies of mantle convection ( Sparrow et a l • 196 4, 

Chapman & Proctor ,· 1980) . Penetrative convect i on , in the form 

of an i dea li sed ice - water system , f(z) = 1- z , with fixed - flux 

bo un d a rie s was in vestigated by Robe rt s (1 98 2 ) who found th at the 

c r i tic a l wav e numb e r fo r the onset of co nvection rema i ns ze r o f o r 

laye r depths h < 1 . 6492. For h) 1 . 6492 , he found a bifurcation 
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Critical Rayleigh numbers a nd wavenu rn ber s 
Stress - f r ee , constant tempe ra t ure boundar i es 
f( ~ ) = cos ( 'ff'Z. /2) 

T 
.!. 

1 
' 

1 0 3 

1 o4 

10
5 

10 6 

h ::: 

R 
C a 
C 

R 
C a 
C 

R 
C a 
C 

R 
C a 
C 

R 
C a 
C 

LO 1 • 5 

9 6 3.5 :36 2 . 4 
2.24 1 . 5 4 

2441 . 7 1 724 . 4 
3.72 3 . 42 

7739 . 8 6095 . 2 
5 . 72 5 . 26 

30416 25 121 
8.67 7.96 

131190 
·12. 95 

2.0 

3 89 . 2 
1. 5 4 

1684 .1 
3.37 

5970 .7 
5.18 



to a non - zero critical wavenumber, mor e akin to the case of 

perfectly-conducting boundaries. This Limits the use of the 

simplification a = 0 in a non-Linear analysis to cases in which . C 

the stable region is not too Large. In the cases of a = O, the 
C 

vertical velocity perturbation profile becomes independent of 

f ( z) , so that penetration may be said to be complete, with the 

stable Layer having no effect on the form of the convection. 

The effect of rotation on these results tends to be to 

restrict range of applicability of the solution a 
C 

= 0. the 

Using our standard penetrative profi Le, f(z) = cos (nz/2) , at T 

= 1 we find that a = 0 is the solution for Layer depths h ~ 1.6, 
C 

whereas ac /0 for h ~ 1.7, in broad agreement with Roberts' 

results (given the slight difference in f(z)). However, at T = 

a = 0 is the critical solution only for the cases h ~ 1.1, 
C 

whilst at T = 10 4
, ac/ 0 even for h = 1.0. 

Figures 5.8 to 5.10 plot the vertical velocity profile, U, 

D U and the temperature perturbation F for the critical states . 

In the cases where a = O, 
C 

mid-point in z, z = h/z, 

the profiles are symmetric about the 

demonstrating the independence of the 

solution fr~m f( z) in these cases. This is especially marked in 

the profiles of F, the temperature perturbation, in which the 

cases a = 0 correspond to F = constant th r oughout the Layer, as C 

is obvious from the equations. 

Table 5.4 gives the critical wavenumber a 
C 

and Rayleigh 

number R f o r various cases, 
C 

and with the depth of Layer h. 

to show the variation with r otation 

Except in the region of both Ch -

1 • 0) and T small , in which a = O C , there is no qualitat i ve 

difference from the behav i our of convecting Layers with 

temperature boundaries. 

constant 

In terms of geophysical applications, the daily rotation of 
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Second derivative of vertical velocity, 
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Critical Rayleigh numbers and wavenumbers. 
R i g i d , f i x e d- f l u x b o u nd a r i e s f ( 'a ) = c o s ( n a. / 2. ) 

T LO 1.1 1. 2 1.3 1.4 

1 R 1065 
~ 

800 631 521 452 
a " 0 0 0 0 0 C 

10 3 
R 1675 1460 1344 1285 1264 C 

0 0 1 • 1 9 1. 62 1. 91 a 
C 

10 4 
R 5320 

C 3. 51 a 
C 

10 5 
R 21815 

C 6.52 a 
C 

T 1. s 1.6 1 • 7 1. 8 1.9 2.0 

1 412 400 417 447 476 497 
0 0 0.68 1. 08 1. 31 1. 44 

1 o3 1268 1287 1311 1332 1348 1358 
2. 11 2.27 2.39 2.48 2.54 2.57 

-

10 4 4491 4508 
3.97 4. 11 

10 5 
·J 8728 
6.44 



the Earth often gives rise to cases in which T For 

example, if one considers the convection problem in solar energy 

ponds, one only needs a depth of pond of approximately 1 metre to 

give T 
4 ~10 (based on Thus only 

very small-scale convective phenomena, or those in which the 

viscosity is great (such as mantle convection) are Likely to be 

affected by the Large aspect ratios associated with constant heat 

flux boundaries. In other cases, one can expect 

horizontal wavenumbers even i f constant heat flux 

appropriate thermal boundary condition. In particular, 

10 30 ) and core the rotation rate is very high (T ~ 

"normal" 

i s the 

for the 

so the 

poorly conducting mantle will not Lead to Long wavelength 

convection cells. 

5.3.2. Case 2: Latered ~rofile 

f(z) = 1.0 

= -A 

;i 
in O ~ z ~ 1.0 

in 1.0< z. 6 h 

The advantage of using a Layered profile of this form rather 

than f ( z) = cos ( nz/2 ) o r f ( z ) = 1 -z ,s that it becomes 

easy to introduce an asymmetry about z = 1 1n order to 

investigate 

stratified 

the effect of a relatively thin but 

stable region on the onset of convection. 

strongly 

Rigid, 

constant temperature boundaries are used in the calculations for 

this case: ~oundary condition effects should be qualitatively 

simi Lar to those for the previous section (f( z) = cos nz/2 ) 

after allowing for the greater shielding ,of the upper boundary by 

the strong stable Laye r. 

The critical Rayleigh numbers , horizontal wavenumbers and 

the point at which a countercell starts (if any) are Listed in 

Tables 5 . 5 to 5.7 , for values of A in the range 10 to 1000 . In 
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each ca s e , as h inc r ea s es to sufficientl y Large values (e . g . h ~ 

1 • 8 for A= 10 , h ~ 1.4 f or A= 100) , the results tend to 

constant values , those for Low A being o f Lower Rayleigh number 

and wavenumber as is expect e d for a Less "constricted" s y stem. 

At Low Taylor number , these results for Large h feature Lower 

values for both Rayleigh numb e r and wa venumber than for h = 1 . 0 

(the Linear temperature profile end-member of this case) but at 

high Taylor number coupled with high value for A this is not so . 

In t hese Lat t e r cases , the st a bl e Lay er acts as a mo r e rest r ic -

tive boundary to the convection than would a rigid boundary . 

Similarly , in these cases , Lower values of h (e . g . h = 1.1) do 

not display the initial rela xation of R , 
C 

the cases of Lo wer values for A or for T. 

A countercell i s associated with 

sufficiently Large h (as in the parabolic 

a that is clear 
C 

the solutions 

profile with 

for 

for 

zero 

rotation investigated by Veronis (1963)) : once well established , 

this i s responsible for the Lack of effect of any further 

increase in h , noted above . Increased values of A result in the 

appear i ng at smalle r values of h , as might be counte r cell 

e xpec t ed . I n cr eased r otation rate increases the value of h for 

onset ho weve r. Fr om the anal y sis in § 4 . 2 , one predic t s that as 

T is increas e d s till fu rther cou ntercells will no Longe r f e atur e 

i n t he sol u tion , regardless 0 -f h . This is a r esult of the 

te nd en ce o f f as t r o ta t i o n ra te to c ha nge th e e ff ective o rder o f 

the dif fe r en ti a l equat i ons from 8 t o 2 . 

footn o te * 

integration 

The 

Leads 

finite spacing using in the Runge-Kutta 

to f(z) = -A being applied first for z = 

1.05, except in the runs for A= 1000 (see Table 5.7) 
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I2~l£ 2~2 Critical Rayleigh numbers and wavenumbers 
Rigid, constant temperature boundaries 

f Ci!.) == 1 for z,1 , ==-10 for 1<'a. ~ h 

I h 1 • 0 1.1 1 • 2 1.3 1.4 

1 D 1709 1136 923 913 1023 " C 
3. 12 2.83 2.60 2.50 2.65 a 

C 

10 3 R 2152 1622 1396 1488 1611 
C 

3.49 3.29 3. 16 3.21 3.39 a 
C 

1 o4 R 4711 3988 3867 4186 4307 
C 

4.79 4.66 4.67 4.90 5.03 a 
C 

10 5 R 16719 15145 15528 16133 16250 
C 

7. 17 7.06 7.29 7.51 7.5 a 
C 

------ - ------ - - -- --- ._ ·-·-- --- --- ·- -- --..... ... -.... - .. - ·- ------- --- - --- ,._ ----------.. .. ,.,. - ... .._,, - .. _ ... ... 

T 1. 5 1. 6 1 • 7 1.3 2.0 

1 1061 1Q5Q 1035 1028 1029 ' 
2 . 76 2.76 2.74 2. 71 2.71 

10
3 

1640 16 36 1632 1631 1630 
3 .47 3.48 3.48 3.48 3.47 

10 4 4326 4328 4326 4326 4326 
5.06 5.06 5.06 , 5. 06 5.06 

10 5 16269 16272 16272 16273 16260 + 1 0 -7.59 7.59 7.60 + . () 2 7.59 7.7 + 0. 1 

----------- ~---- --- ..... ------ --~---------,.,...·-··-,·-- .-. ..... . . -~ ~ -- .. ·-------------- ---------.. ··- ·-·· 



Table_5.6 

Critical Rayleigh numbers and wavenumbers 
Rigid, Constant temperature boundaries 
f(:a,) = 1 for i:.6- 1 

= -100 for 1 <.;i <i k 

T h ' 1. 0 1.1 1. 2 1. 3 1. 4 1 ·• 5 1. 6 
1 Re 1709 1343 1623 1670 1610 1607 1610 

a 3.12 2.84 3.09 3.26 3.19 3.16 3. 17 C 

10 3 
R 2152 1855 2199 2222 2188 2190 2189 C 

a 3.49 3.32 3.66 3.78 3.75 3.74 3.74 C 

10 4 
R 

C 
4711 4709 5117 5109 5102 5099 5099 

a 4.79 4.85 5.25 5.29 5.28 5.28 5.28 C 

10 5 
R 16719 18172 181 41 18123 1 811 7 18120 + 10 failed C -a 7. 1 7 7.64 7.87 7.88 7.87 7.9 + ·1 C -



Table _5.7 

Cr itical Rayleigh numbers and wavenumbers 
Rigid , constant temperature boundaries 
f ('il. ) = 1 for ,Z. ~ 1 

= -1000 for 1 <.-i ~ h 

T h 1. 0 1.1 1 • 2 1. 3 1 • 4 1. 5 1. 6 

1 R 1708 2129 2182 2152 2153 21 51 21 51 C 

a 3. 1 2 3.34 3.55 3.48 3.49 3 . 49 3.48 C 

1 o3 R 
C 

2151 2708 2727 2716 2713 2713 2713 
a 3.49 3.83 3.97 3.95 3.95 3 . 95 3 .9 5 C 

10 4 R 
C 

4712 5808 5767 5763 5763 5763 fai Led 
a 

C 
4. 79 5 . 36 5. 41 5.41 5. 41 5 . 41 

10 5 
R 

C 
167 20 19718 19625 fai Led fai Led fai Led failed 

a 7. 17 8.02 8.02 C 



A second reversal of the velocity field is observed in some 

cases, generally those at high hand T, but this is not properly 

resolved within the convergence error of the iteration scheme and 

so may be just numerical error. Its occurrence has no effect on 

the convective part of the solutions. 

Countercell Position~ slow rotation (T = 1) 

see Fig 5.11 for a schematic diagram of the flow 

Fig. 5.11 Schematic diagram of vertical velocity 

u 

unstable 

f(z)=+1 

II 
,·~----,!lo> 
11 
I I 

stable 

f(z)=-A 

Table 5.8 Lists the positions z 
0 

at which flow reverses for 

various values of A and T = 1. For I~ A ~ 20 the grid spacing 

is reduced to 0.05 and so f( z) = -A is first applied at z = 1.0 

+ ! CO.OS) in the Runge-Kutta routine, 

grid spacing is agafn reduced to 0.02. 

whilst for 20 < A, the 

No simple power-law relates the depth of penetration to the 

countercell, z , to the strength A of the stable layer (figure 
0 

5.12 for logarithmic plot). In particular, A z = constant is 
0 

· not valid, so there is no relat io nship based directly on the 
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Counte r c e ll Position (T = 1 ) 

!, 

1 3 . 0 I 

2 3. 0 

5 3.0 

10 2. 5 

20 2.5 

10 0 1. 6 

10 00 1 . 6 

10 4 1. 3 

In t ra pola t e d position 

of rev ersal 

z 

Ca ) 

1 • 91 o 

1 . 640 

1. 415 

1 • 305 

1 • 235 

1.129b 

1. 068 b 

'J. 060b 

Adjusted pos i tion 

= ( z - 1 . 025) 

0.885 

0 . 615 

0 .39 0 

0 . 2 80 

0 .210 

0 .119b 

0. 0 58b 

0.050b 

Not~3: a: 2rror ± 0.010, based on integration spacing= 0.05 

b : Integration spacing= 0.02 

2 = C z -1.[)1) 
0 

e,·ro1~ + '.J.004 



log z0 

0 
:a. 

• 
:i: 
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-1 

-2 

0 1 

Fi g . 5 .1 2 

Log arit hmi c p lot of countercell 

p o si t i o n z ag ains t strength A 
0 

of t he s t a bl e l a y er 

Ri gid c o ns t ant temperatur e 

bo undaries , f(zl = 1 in z<1 

= -A in z >1 

I 

r 

2 3 

I 

log A 
4 



overall temperature difference across the first convective c e L L • 

For Large A, A z >> 1 , indicating that the countercell 0 

starts at a point whose density i s stable relative to the base 

z = 0 of the system ( f i g • 5.13). 

z 
co un te r c e ll Fi g . 5 .1 3 

convective cell 

density difference 
0 

Effect of rotation on countercell EQ~iliQQ 

At high rotation rates (T 00 ) there should be no 

countercell 

effectively 

since , following § 4.2, the equations are 

reduced to 2nd order and the flow in the stable 

region becomes one of exponential decay. In order to illustrate 

the transition to this, figure 5.14 shows the vertical velocity 

profile for the case A= 100 and T = 1, A grid 

spacing of 0.02 i s used in the calculations and the upper 

boundary . is at h = 1.4. Figure 5.14 shows that the increased 

rotation rates result both in the convection being more closely 

confined to the unstable region O ~ z ~ 1.0 (as in the case of 

f ( z) = cos ( ) considered previously) and in a weakening 

of the countercell in the stable region 

5.3.3 shooting erogram failures at l2I9~ IL~ 
and~~~ Qf fQQ o rd e r aeeroximate ~g~ 2!iQQ~ 

For Large values of T and R, the 8th order shooting program 

fails to converge, owing to the combination of two problems. 
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Fig. 5.14 

Effect of rotation rate on the 

extent of penetration into a 

strongly stable layer. 

Vertical velocity , rigid , 

constant temperature boundaries . 

f(z) = 1 in z <.1 

=-1 00 in Z'>1 

stable 
layer ~ 

0 'L ~ I >Z I i~i 

0 0.5 1.0 1.5 



Firstly, in cases where a stable region exists (h > 1 .0) there 

i s the exponential growth in each shot trial solution i n the 

region of f( z)<O, which becomes more extreme as the Rayleigh 

number is increased. Secondly, as T becomes Large the equations 

become simi Lar to the 2nd order T --.. oo approximation discussed 

in § 4 . 2 : as this occurs, there is increasing difficulty in 

inverting the results matrix (which tends towards singularity). 

The Limits of use of the shooting program are mapped out in 

figure 5 . 15 . 

In order to extend solutions into the high T region, i t i s 

best to take the approximate 2nd order equations from the T ~ oo 

analysis. Numerical integration of these is a simple initial 

value problem in which the one unknown starting boundary 

condition (DU) can be set arbitrarily to DU= 1.0. Results from 

such an integration are given in Table 5.9, with those from the 

8th order equations for rigid boundaries and T = 10 4 and 10 5 for 

comparison. Figure 5.16 shows a Logarithmic plot of critical 

Rayleigh numbers against Taylor number for h = 1 .0 by both 

methods. For T 1 o5 , it appears that the approximation of T-oo 

i s reasonable, with the viscous boundary conditions becoming 

negligible. 

5 • 3 • 4 • Phtsical exelanation for reduced eenetration 

One physical view of penetrative convection is that i t 

occurs in order to inc.rease the effective depth of the system, 

even at the expenie of a decrease in the overall temperature 

difference, 

convecting 

so as to increase the Rayleigh number of the 

region (Veronis, 1963) . With a smooth temperature 

profile, the overall temperature difference will of course be a 

maximum i f the boundary for convection is at the point where 
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Fig. 5. 1 5 

log T Stability of 8th order 

shooting program , in 

8 0 
terms of the Taylor No. 

and the depth of layer. 
, 

unstable program 

7 

" " 6 ' + ,o 0 

" " ' ' " ' 5 + + + + + + + +,o 0 0 

" " '-
" ' 4 + + + + + + + + + + ~ 

'-
" " program stable 

3 + + + 

2 

1 

0 + + + 

1.0 1.5 2.0 h 



Table 5.9 
E;~i~c;I-Rayleigh numbers and wavenumbers 4 2nd o r de r eq uations, with comparison to 8th order for T = 10, 10 5 
f (:Z) = cos (Tf'i!./2. ) -- - - -- - - -- - ·- ·- .__ - - ,....,. --- ... - -- . - . - -- . -· . . - - . - -- ·--- - - --- - - -- ..... - . . ..... . ~ - . . -· . ... . - ., . -

T h -:: 1.0 1 • 2 1 • 4 

I 
1 0 'l 8th order 6829 { 7740} 5675 5265 

R.R{F - F1 4.81 5.72 4.60 4.49 

2nd order 5726 5204 4976 
6. 11 5.81 5.63 

,as 8th order 24,158 l30,4161 21,445 20 , 416 
R.R . {F- F1 7.25 8 . 67 6.98 6.84 

2nd order 26,575 24,152 23 ,08 3 
8.97 8.53 8.27 

10 6 2n d order 1 • 23 X 1 0 S 1.12 X 1 o5 1. 07 X 1 o5 
13.17 12.53 1 2 . 1 4 

10 7 5 . 72 X ,as 5.20 X 1 o5 4.97 X 1 o5 
19 . 33 18.39 17.83 

10 8 2 .66 X 1 06 2 .42 X 106 2.31 X 106 
28.4 27 .0 26.1 

10 9 
1. 23 X 10 7 1.12 X 10 7 1.07 X 10 7 

41. 6 39.6 38.4 ----------------------------------------------------- -- ---------
T h = 1 • 6 1. 8 2 . 0 

I 
1 0 'l 3th order 5184 5204 5227 

R.R. 4.48 4.51 4.54 

2nd order 4894 48 7 2 4867 
5.54 5. 51 5 .50 

10 5 8th order 20,138 failed fai Led 
R. R. 6.81 

2nd order 22,700 22.,615 22,.S82 
8.14 8.09 8.07 

1 06 2nd order 1 . 0 5 X ,as 1 . 0 5 X 1 o5 1 . 0 5 X 1 o5 
11 . 9 5 11 . 88 11 . 8 5 

10 7 
4.89 X 10 5 

4.87 X 1 o5 4.87 X 1 0 S 
1 7. 51 17.42 17.39 

10 8 
2.27 X 1 06 2.26 X 1 06 2.26 X 1 06 

25.7 25.6 2 5. 5 

10 9 
1 . 0 5 X 10 7 

1 • 0 S X 10 7 1 . 0 5 X 10 7 
37.8 37.5 37.4 
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8th order equations , 

F-F stress-free) 
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f( z ) = 0, but wi LL diminish but slightly as one considers other 

nearby positions for the effective boundary. As a result, the d3 

term in the expression for the non-rotating Rayleigh number i s 

dominant: 

R = 
ga(VT.d ) d 3 

K \) 

(VT.d) is nearly constant in this region 

a favouring penetration. 

However, in the limit of rapid rotation, we may expect Ra 
C 

2 I ) 
T 

(Chandrasekhar, 1961) 

where T = 

•/3 
d 

Clearly in this limit there is Little "incentive" for the 

system to convect on a deeper Length-scale, 

of the stable region is not favoured . 

so that penetration 

A l .t e r n a t i v e l y , 

in the limit T - oo 

we can consider the reduced equation 

2 

T D U = a 
2 

[a~- R. f(z )1 U 

When R.f( z ) i s large and positive, we get a 

(4.13) 

sine 

solution , as in Benard convection. 

get exponentially decaying solutions . 

When R.f(z) is negative, we 

The changeover occurs when 

La4 
- R.f( z) J 

changes sign, i.e. at a point where f( z ) is positive. Thus the 
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effective region for convection is restricted to onl y part of the 

unstable region : the rapid rotation therefore reduces the extent 

of penetration th r ough the reduction in the order of the equation 

from 8 to 2 . 

The foregoing results refer to the onset of steady 

convection , in which the marginal case is that of zero growth , p 

= 0 . From equations 4 . 1a to 4 . 1c it is possible to envisage 

solutions W hi C h are marginal in the sense that Re(p) = 0 (no 

In 

the 

growth or decay) but which are oscillatory , with Im(p) :f. 0 . 

order to investigate such solutions, one must consider both 

real and the imaginary parts of the variables U, F, Z. Thus the 

shooting program has to be extended to 16 simultaneous Linear 

diffential equations , with 8 boundary conditions at each boun-

dary, those for the imaginary parts being the equivalent condi-

tions to those for the real parts. The Linear inversion of the 

t r i a L solutions is now that of a (7 x 7) matrix , derived from 8 

trial initial conditi6n . 

Using this method , one has to set both the horizontal 

wavenumber · a · and the overstable frequency · s · ( = Im(p)) and 

the n search for the Rayleigh number that w i L L satisfy the 

boundar y conditions. Although the Rayleigh number must in fact 

be real, being a physical value , the r oot for the problem for 

arbitrary pairs o f a, s 'wi ll not necessarily be real and so one 

i s faced with the ~dditional problem of finding the value of a 

for given s (or vice versa) that wi ll yield a purely real root. 

Chandra sekhar (196 1 , pp 114-124) discusses this at 

Length . Mismat ched pairs of a·, · s · wi ll yield no real 

greater 

value 

for R at which the error in fitting the boundary-conditions 1 S 
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zero (or , in practice , is Less than a small Limit) . If a , s 

are close to being a matched pair , one finds that the error 

converges towards zero as R approaches to its "root" except in a 

s ma L L region , in which it diverges . This region is found to 

become smaller as one refines the matching of a· , s. , but can 

never be eliminated. As a result the convergence routine cannot 

be used on the Rayl~igh number , and finding a root becomes a step 

by step manual inspection of the results from a grid of t r i a L 

values of R. This procedure is cumbersome and time consuming : 

accordingly few results are given in this section . 

finding the appropriate value of · a · to match to 
C 

One guide to 

s i s to 

follow the variation of a · and R with · s · away from s = O, 
C C 

which must correspond to the steady convection solution. Table 

5.10 sets out a comparison of results between Chandrasekhar 

(1961) and the shooting program , for the one specific case of a 

plane Layer , Linear temperature profile, rigid constant tempera-

ture 4 boundaries and T:10 • 

shooting prograsm reveals 

Agreement is good , except that the 

that the £Ii!i£~l wavenumber and 

frequency a r e displaced from those given by Chandrasekhar (1961). 

5.5 Gravitt normal to rotation: thin c t lindrical geometrt 

A fu rth e r variant of the shoot ing program 

investigate the convection equations 4.85a and 4.85b, 

i s used to 

for cylin-

drical convection with the body force perpendicular to the a X i S 

of rotation. The object is both to investigate the effec t of 

rotati on on an idealised penetrative convection pro fi Le f (x ), 

and to be able to apply the program to the observations on 

laboratory experiments set out in chapter 6, for which we need to 

establish an effective inner boundary to the convection solution 

in order to avoid problems of Large variations of the body force 
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Table 5.10 

Overstabi l i tt 
f ( z) = 1.0: rigid, constant-temperatu r e boundaries , h = 1 . 0 

From shooting e£Q9[2~, . T = 10 4 

s a 
u 7+:785 
1 0 no root 
20 no root 
30 3.60 + .05 
40 3 . 28 + .0 3 

45 3.065 + . 005 
46 3 . 023 + . 002 -47 2.978 + .002 
48 2.935 + .005 -
50 2.840 + . 005 -

Hence c r itical value i s R = 4366 + 3 
C a = 2.978 
C 

Note that near the criti cal value, 
Li nearly wi th S. 

a 
C 

Comeare Chandrasekhar 112212 fo r T = 10 4 : 
critical value is R = 4390 

ac = 3 .08 (which 
C 

R 
4712.4 

found 
found 

4570 + 1 0 -4410 + 20 -
4370 + 5 -4368 + 3 -4366 + 3 -4367 + 3 -
4379 + 3 -

s = 47 + 1 , -
+ .0 02 (for s = 47) -
varies approximately 

S = 44.5 
agrees for S = 44. 5) 



01, • 

-~------ - - ---------:-----~ 

and of curved geometry. 

The program used needs to deal with only 6 variables and so 

can use an explicit algebraic inversion of just a (2 x 2) matri x. 

In order to test i t, the results of Busse s (1970) theory , n t he 

case of stress-free perfectly conducting boundaries can be 

applied (see § 4.5 for this theory and table 5 . 11 for the 

results) . In the case of n ' = n2 = o, we need not map out 

the results in both T and a. space , since the equations depend 

Thus (a..= 1, T = 1) is equivalent to (a.= 10 , T = 

If n o, no such simplification is available unless 

the term in n becomes dominant. The case n f 0 

has not been studied in this work, as it Leads to the distinct 

"Busse-roll" solutions that have been studied elsewhere (Busse 

1970) . 

E~Q~!r 2!i~~ convection QIQfil~~ 
1 ) f ( X) = COS ( TI Q.X/z ) , where~ is the aspect 

ratio (see § 4. 5) 

The cylindrical vers i on of the shooting program produces the 

result s set out in Tables 5.12 t o 5.15 when applied with the 

above profi Le of temperature gradient and the four combinations 

of boundary co nditions: rigid/stress-free and constant 

temperature/fixed flux. The results refer to an aspect ratio o.. = 

10, but for ease of comparison with the plane Layer case the 
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Table 5.11 
Shooting-program 
'\. = o, a. = 1 o, 

boundaries 

T 

1 

10 2 

10 4 

10 6 

10 8 

1010 

1012 

1014 

1016 

applied to "Busse-rolls" case, as a test. 
f (x ) = 1.0, stress-free perfectly conducting 

Rayleigh Horizontal 
number wavenumber Notes 

R b 
65§ , 22?23 ( 1) 

660 22.24 

664 22.27 

677 22.38 

720 22.72 

852 23.59 

1257 25 . 40 

2497 27.76 

6339 29.78 (2) 

Notes:1 In limit T -. O, Busse predicts R ....,.. 
b c ... ,,Q. : 

657.5 
22 .2 14 

C u 
2 From \4.5, equation 4.87 ~ predict Re = 6341 for 

b = 29 . 78 and 
a = Tt'~ 



Rayleigh number R and horizontal wavenumber are normalised: n 

R R / <i! 
n 

b b / 0.. n 

As predicted in § 4.5, the effect of increasing the rotation 

rate is much Less than in the plane Layer case. The effect i s 

again to decrease the depth of penetration, 

position h of Lowest critical Rayleigh number. 

as indicated by the 

In the two cases of fixed flux boundaries (tables 5 .1 4, 

5.15), there is again the effect of the stable region on whether 

b = 0 is the critical solution, just as in the plane Layer case. n 

However, the effect of rotation on this is much weaker and i s 

only observed in the results for stress-free boundaries (table 

5.15). 

Figure 5.17 shows the vertical velocity profile in the case 

of rigid, constant temperature boundaries, h = 2.0 and T = 1, 

108 or 10 16 • The profi Les are normalised by D2 U(x=O) = 1.0 in 

each case. Higher rates of rotation are associated with a slight 

movement of the peak velocity further into the unstably 

stratified region. 

2) Parabolic profile f(x ) = 1 -ax 

The cylindrical version of the program has been applied to a 

parabolic temperature profi Le in order to serve for comparison 

with the experiments described in chapter 6, both in terms of 

t~ observed sh~pe of the temperature profile and as an extension of 

the model to cases in which the stable region is deep . In all 

cases, a rigid boundary at x = 0 is ppplied (to correspond to 

the apparatus side-wall) and in general another rigid boundary is 

applied at x 

Table 5.16) 

= h. A few runs (marked by square brackets in 

include a stress=free boundary at x =hand these 

indicate that for oh ?;. 2.0 this change of boundary conditio n has 

140 



Table 5.12 

Critical Rayleigh numbers and wavenumbe rs 
Rigid, constant temperature boundaries 
f ( x ) = c o s ( ,,. a.. ::ac. /2. ) , o. := a s p e c t r a t i o = 1 0 
Rayleigh No. and wavenumber normalised: R = R /o..4 b = b /o.. · n c ' n c 

T 1 • !) 1 • 2 1. 4 1 • 6 1 • 8 2 . 0 

1 D 2845 1449 1009 828 796 826 I " bn 3.12 2.61 2.26 2.03 1 . 94 2.00 n 

10 4 
R 2493 1456 101 5 835 803 833 bn 

n 3.12 2.61 2.26 2.03 1.94 2.00 

10 8 R 2575 1525 1079 900 873 904 bn 3.13 2.62 2.27 2 . 04 1. 96 2.02 n 
1012 R 3391 2205 1708 1 535 1533 1 566 bn 3.17 2.66 2. ~3 3 2 . 13 ?. • i)9 2.15 n 
1016 R 11301 8734 7660 7372 7419 7479 bn 3.26 2.75 2.43 2.27 2.27 2.33 n 

------------------------------------------- ·------------- ·- ------

Table 5.13 

Critical Rayleigh numbers and wavenumbers 
Stress-free, constant temperatu re bo undaries 
f (x) = cos ( 'Tf'O.':il./2. ) , o. = 10 

T 1. !) 1. 2 1 • 4 1 • 6 

1 D - 966 568 400 336 • " b :1 2.23 1 . 86 1 . 61 1 . 44 n 

10 4 R 975 575 406 343 
bn 2 .23 1 • 87 1 • 61 1 . 4 5 n 

10 8 R 1057 644 4 7 -1 410 bn 2.28 1. 92 1 . 6 7 1 . 5 2 n 
101 2 R 1841 . 1293 1l)69 1 009 bn 2 . 55 2.20 1 . 9 6 1 . 83 n 
1016 R 9228 7407 6645 6459 bn 3.00 2.56 2.29 2. 1 7 n 

1 • 8 2 . 0 

342 382 
1 . 39 1 • 51 

350 391 
1 . 40 1. 52 

421 459 
1. 49 1 • 60 

·1 030 1058 
-1 . 84 1 . 90 

6510 6559 
2. 18 2.23 

------·- -·-------- ·---- ~ , -.. .. ~- ·- ,·--------- - - -- ·-" . -. .. .. . . ' . ·- ............ . .. ~ ........ ~ .. 



Table 5.14 

Critical Rayleigh numbers and wavenumbers 
Rigid , fixed flux boundaries 
f ( X) ::: COS ( ,To. x../2, ) , 0.. -::: 1 0 

1 
I 

T 
I 

1 o4 

10 8 

1012 

1 o 'l 6 

D b:, 
n 

R 
bn 

n 

R . n 
n n 

R 
bn 

n 

R 
bn 

n 

1.0 1 ') 
I • I.. 

1065 ·630 
0 0 

1068 633 
0 0 

1101 660 
0 0 

1419 930 
a 0 

4347 338() 
0 0 

1 • 4 

451 
0 

454 
0 

480 
0 

742 
0 

3 1) 91+ 
0 

1 • 6 1. 8 2.0 

399 446 495 
:) 1 • o 7 1 • 4 3 

402 450 500 
0 1 . 07 1 • 4 3 

433 491 544 
0 1 • 0 8 1.44 

734 876 951 
0 1 . 1 4 1 • 46 

3424 4146 
0 1.34 

-- -- - -- ~-·--- -- - - ---------- -··" _ .... ...... - -~·· - '" - -- - ---~-- -- --- - ·-- .._ -- -- - - ·- -- - ·~ -- ·· ·- .. · -.. - ··· 

T.:ible 5.15 

Critical Ray leigh numbe rs and wavenumbers 
Stress-free, fixed flux boundaries 
f(x) = cos ('ffo...)IL./2.) , a.= 10 
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no appreciable effect: the stable Layer acts as a shield for that 

boundary. Tables 5.16 and 5.17 show the results for constant 

temperature and fi xed flux boundary conditions respectively. In 

both cases there is only a small variation in the results as h 

increases 

in R • 
C 

beyondah = 2.0, Less than 10% 1n b and Less than 5% 
C 

The only qualitative change ash increases is that a 

countercell does appear for a.h ~ 2.4 (Q.h ~ 2.2 as rotation rates 

increase This is very similar to the behaviour 

shown in ~ 5 . 2 in which the horizontal plane Layer version of 

the program was tested on a parabolic profile. .... .., 3.0, 

the countercell appears in 2.0 ~ ~x < 2.1 and so corresponds to 

the region that is stable relative to all parts of the f Lui d 

(figure 5.18). 

From this, we may compare observations made on a system with 

a deep stable Layer with numerical models based solely on the 

region O ~ <'.l.X f 2.0, neglecting the remainder of the stable 

region. Thus we can avoid both excessive computation and the 

difficulty of specifying a suitable internal boundary. 

The experimental tank is one in which the sidewall 

imperfect conductor of finite thickness and 

program has been applied to the mixed 

so the 

thermal 

conditions, PF = + ( o..'>.. )F, where )... is the Biot number . 

is an 

shooting 

boundary 

are the thermal conductivities of the solid wall 

and of the fluid, L is the wall thickness and d the unstable 

Layer depth. The aspect ratio a. enters into the boundary-
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TableS.16 

Critical Rayleigh numbers and wavenumbers 
Rigid, constant temperature bo un dari es, unless marked 
for which x = h boundary i s stress~free 
f(x) = 1- a.x > o. = 10 

-- -- ,_ - ·- .._ ..... - ·- ·------- .,... ..... - ... --- -- ,-,. - -- --- ·- - ·- . ... ... -- - -.. .... - .... .. -.. . .... -- .. -· . ~ - . - ... - . ~ ·-· -. . - . -
T Q.h ' 

.,, 1.0 1. 2 1 . 4 1 . 6 1 . 8 2.0 

--- ---- - -- -- - - ·- , ... ... - ~ - -.. -.. - ... -- --- - - -- ..... ·- -- . -.. ..... .. -• .. -· . . .. . .. - ... -- . - . --. . . . . ' . ...... 

1 D 3393 2025 1426 ·1173 1125 1168 ' bn 3.13 2.62 2.26 2 . 03 1 . 94 2.00 n 2383 1187 
2.70 2.04 

10 4 
R 3405 2034 1434 1182 1135 1178 
bn 3.13 2.62 2.27 2.03 1 . 94 2.00 n 2395 1197 

2.71 2.05 

10 8 
R 3516 2131 1524 1275 1234 1278 
bn 3. 13 2.62 2.27 2 . 05 1 . 97 2.02 n 2513 1296 

2.73 2.06 

1012 R 4625 3075 2407 2165 2159 220 6 
bn 3.17 2.67 2.33 2. 1 4 2 . 10 2.15 n 

1 016 R 15343 12087 10683 10286 10342 10417 
bn 3.27 2.77 2.44 2.29 2.29 2.30 n 

---------------------------------------------- ---------------- ---

T 
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I2~l~ ~~1Z Critical Rayleigh numbers and wavenumbers 
Rigid fixed flux boundaries 
f(x) = 1- o.x, o..= 10 
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---- --------------------------- -
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'I. 43 ·1 • 5 3 1. 53 

10 4 691 713 709 
1.43 1 . 5 3 1 . 5 3 

10 8 75 2 774 770 
1. 43 ·1 • 5 3 'I . 5 4 
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1 . 51 1. 50 1. 49 

701 698 698 
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condition because of the non-dimensionalisation of the 

equations, but the results depend only on\ for all values of o... 

Table 5. 1 8 gives selected critical Rayleigh numbers and 

wavenumbers for a range of values for \, T a n d o..h : i n e a c h c a s e 

the boundaries are rigid. In these results , the stable region is 

Large enough to prevent b = 0 being the critical solution for a 
C 

fixed flux boundary condition: the effect of changing \ on R 
C 

and b is therefore quite regular. 
C 

Experimental conditions (A~ 

0. 1 5, 

0.15, 

we 

o..-:::. 100, T z 10 12 ) are approximately equivalent to ( \ = 

o.. = 10, 

expect 

4 -8 T = 10 ) through the dependence on (To.. ), and so 

a critical Rayleigh number for the tank of 

approximately R = 730. 
C 

Figure 5.18 is plotted for\ = 0.10, a... 

= 10, T = 10 4 and so is similar to the expected velocity profile 

at the onset of convection in the tank. Note in particular the 

countercell for 2.05 ~ a.x ~ 3 . 0 : the main convection cell is 

effectively confined to O ~ o..x f. 2. 

At Low \ (i.e. nearly fixed-flux), the stable Layer acts to 

inhibit Long wavelength convection just as it does for strictly 

fixed flux boundaries. As for that Latter case, there is some 

value of depth of the stable region at which a high wavenumber 

solution . has an equally Low Rayleigh number to the Low wavenumber 

critical solution, and so the critical wavenumber shows a jump 

with increasing depth o..h. Table 5.19 shows this effect for \ = 

Near the Low wavenumber critical solutions the Rayleigh 

number is only very weakly dependent on the wavenumber, and so 

the critical wavenu~ber is not well Loca~ed (fig. 5.24, for A = 

= 1 • 0) • In the 'deep' cases (o..h ~ 1.7) with high 

wavenumber solutions, the effect of rotation is the usual one of 

increasing both R and b • 
C C 

However, in the " shallow " cases (a.h 

~ 1 • 6) with a Low wavenumber solution, an increased rotat i on rate 
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I2Q!.~ ~~1§ 
Effect of Biot number ~ on critica l Rayle igh numbers and 
wavenumbers 
Rigid boundaries, f(x) = 1-~x, o.. = 10 -- -- - - - - - - - - - - -· - - -- --·-- --- ·- - ...... - -.... - .. - ... -· -- - ..... -.. -~ .. - - .. - ~ ... - .... .. - - .. - - -- ...... - -.. .... - ... 

T ~; 0 
(fixed 
flux) 

0. 1 1 10 
(constan t 

temperature) 

-- - - -- - - -·- ---- - .... - -- -- - - -- ·- - - .., - -- .. .. - ~ - .. - . -- . - . ---..... ·- -~--- --- -- -.. - - ... - .. - - - ... -.. 

o.h ~ 2.0 1 
I 

0 685 708 833 1071 1168 ,, 
b ;i 1 • 43 1.48 1. 70 1. 94 2.00 n 

R 691 714 840 1080 1178 
bn 1 • 43 1 • 48 1 • 7 0 1 • 94 2.00 n 

R 752 777 913 1172 1278 
bn 1 • 43 1.49 1 • 71 1 • 96 2.02 n 

o..h = 3 .. 0 1 R 692 713 838 1 081 1180 
bn 1 • 49 1 • 5 3 1 • 73 1 • 97 2.03 n 

R 698 719 845 1090 1190 
bn 1. so 1. 53 1 • 73 1 .. 97 2. 0 4 n 

R 760 783 918 11 81 1289 . n 
1 • 5 0 1. 54 1 • 7 4 1 • 99 2.06 0 n 

Table 5.19 

Dependence of critica l sol ution on depth of Layer at Low Biot 
number ~. 
R i g i d b o u n d a r i e s , \. = 1 0 - 5 , o... = 1 0 , f C x ) = 1 - o.x 

T 1.0 1 • 6 1 • 7 2.0 

1 0 1443 550 570 685 " bn 0.160 0.13 0.62 1 • 43 n 

10 4 R 1448 554 575 692 
bn 0.160 0.13 0.62 1 • 43 n 

10 8 R 1491 597 625 752 
bn 0.160 0 .. 1 4 0.62 1 • 43 n 

1012 R 1 921 1008 1100 1308 
bn 

n 0. 159 0.131 0.66 1 • 46 

101 6 R 5858 4625 5323 failed 
bn 0. 1 4 0.095 0.09 n 

5198 
0.76 

---- --- --- -- ----------------------- ---·-------- --- ---- -------- ---
Note: Rayleigh number i s only weakly dependent on wavenumber and 
so in some cases b i s given to only a limited accuracy. n 
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leads to longer critical wavelengths (lower wavenumbers),opposite 

to the usual behaviour. However one must note that the 

differences in Rayleigh number involved in selecting the critical 

wavenumber are very small, 

significance. 

and so this effect is of no practical 

5.6 Summarz of results from the shooting ~rogram 

1) Plane-Layer: steady convection, 9 parallel to ~ 

The effect of increasing rotation is to restrict the 

convection more to the unstable region of a penetrative 

convection profile, whilst Leading to higher critical Rayleigh 

numbers and horizontal wavenumbers as in the standard non-

penetrative case. This restriction of the extent of the 

convection is clearly seen in grfhs of o2u, in which, as ,.. rotation 

rate increases, z = (the changeover point from unstable to 

stable density gradients) comes to be near a zero of o2u. 

In the case of fixed - flux boundaries , increased rotation 

rates enhance the effect of a deep stable region ,n inhibiting 

zero wavenumber from being the critical solution. T = 10 4 i s 

sufficiently fast rotation for the critical solution to occur for 

non-zero wavenumber even with no stable region (h = 1). This 

Limits the geophysical applicability of non-Linear theories based 

on scale separation for fixed flux boundary convection problems 

(e.g. Proctor (1981)) . 

The shooting program shows that 

excited for rath~r deeper stable Layers 

countercells are only 

than was previously 

predicted by methods based on truncated series expansions: in the 

case of a smooth density profi Le such as f( z) = 1-z • an upper 

boundary z = h of h ~ 2.5 is required. On the other hand, with 

an asymmetric density profile such that the stable re g i on is much 
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stronger than the unstable, a countercell occurs at Lower values 

of h. No simple power-Law relation is found between the position 

of the countercell and the relative strength of the stable Layer 

(figure 5.16). Increasing the rotation rate in such cases 

results in the inhibition of the countercell (for T ~ 

is expected as one approaches the Limiting case T ~ oo 

2) Plane-Layer: overstability 

as 

Few results have been obtained for the overstable case, 

which is a double eigenvalue problem (in frequency and Rayleigh 

number) as noted by Chandrasekhar (1961). Although the shooting 

program can locate the eigenvalues to any required accuracy, it 

cannot then produce a set of eigenfunctions: a good fit to the 

boundary conditions is never achieved in the close neighbourhood 

of the eigenvalues. Thus the method is of Limited use in this 

case. 

3) Cylindrical convection, 9 perpendicular to D 

The effect of rotation is much less marked than in the plane 

layer case, as is expected from the equations. In particular, 

increasing T has much less effect on inhibiting b = O from being 
C 

the critical solution for fixed flux thermal boundary conditions. 

A parabolic 

investigated 

temperature profile extending to a h= 3.0 has been 

in order to compare results with the experimental 

tank 

beyond 

(chapter 6), f\. and it is shown that increasing the stable regio . ,. 
Qh = 2.0 has little effect on the eigenvalues R and 

C 

although a counter~ell in the region ~x > 2.0 occurs for ~h > 
2 . 5 . The effect of Biot number is also investigated , and i s 

quite r egula r fo r ~ h = 2 . 0 o r 3 . 0 , which would apply to the 

expe ri mental r es u lts . Ho we v e r , f o r o..h f 1.6, in which c ase o ne 

has the long wavelength b = 0 solution for fixed f l ux thermal 
C 
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boundari e s , there 1 S an anomalous behaviour with increasing 

rotation rate in that increased rotation Leads to Lower critical 

Lower Biot numbe r s . This effect wavenumbers , appropriate to 

slight (up to T = 10 18 , the Limit of the numerical technique) 

anomalous and as yet unexplained . 
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6 Ex12eriments 12enetrative convection ----------on 

2~1 Introduction 

The object of the experimental work has been to test the 

predictions of the theory set out in § 4.5, which was based on the 

work of Busse (1970), for the o~set of convection and further to 

investigate the growth of the resulting convecting region into 

the stably stratified region. In distinction to the experimental 

work on "Busse-rolls" of Busse & Carrigan (1974) and of 

Chamberlain (1980), a cylindrical tank has replaced the spherical 

tanks, so that effects due to the inclination ( n) of the end-

w a L Ls have been eliminated. A penetrative convection type of 

density profile is set up by the use of a time-dependent boundary 

temperature: such a procedure was suggested by Veronis (1963) for 

the non-rotating case of penetrative convection in a plane layer. 

The temperature differences involved are small, of the order 

of o.os 0 c across the unstable region, and the depth of the 

unstable region i s of the order of 3 mm only. Thus direct 

temperature measurements, for example by the use of bead 

thermistors, are not feasible. Instead a thermal conduction model 

is used to calculate the temperature profile at various times, 

the model being checked by separate experiments using widely-

spaced thermistors ( § 6.3). This approach is only valid before 

the onset of convection , although if the Rayleigh number of the 

system becomes only marginally supercritical then one can expect 

the temperature profi Le to be but little , affected by the result­

ing conv e ctive f lo ws a nd heat tr a n spo rt. 
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The apparatus consists of a rotating experimental tank 

enclosed within a water jacket whose temperature can be varied 

and measured. The water jacket and associated temperature 

control are those built by Carrigan and Chamberlain and a f u l l 

description, in particular of the temperature control, is given 

in Chamberlain (1980). 

The experimental tank (shown in figs. 6.1 and 6.2) for this 

work is cylindrical, with top and bottom walls positioned, by 

Thus machining, to be normal to the + rotation axis to - 0.1 mm. 

any inclination of the top and bottom boundaries, (equation 4.87 

) , is negligible. The side walls are of thin (3 mm) perspex, the 

top and bottom walls are double 3 mm sheets of perspex, with a 3 

mm air-gap. 

conductors 

insulating 

As a result, the side-walls are relatively good 

whilst the top and bottom walls may be taken to be 

when calculating the temperature profile of the tank. 

Distilled water is used as the working fluid in the experiments. 

The main constraint on the design of the tank side walls and 

joints i s the need for sufficient mechanical strength to 

withstand the centrifugal pressure generated by the tank's 

rotation. Rotation rates in the range 30 - 100 radians s- 1 are 

needed for the centr i fugal forces to dominate Laboratory gravity, 

given the size Limitation of the water jacket , 

end of that r ange a 3 mm walled perspex 

and for the upper 

cylinder gives an 

adequate safety factor in tension. Glued joints on perspex are 

Liable to cracking and so the only such joint is designed to be 

under compression when the tank rotates (figure 6.2). In 

practice some Leaking of water occurs through the greased and 

bolted end-joint when the tank is in use, but several experimen-

t a L runs of 2 hours duration are possible before the resulting 
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Fig. 6.2 

Det a il of j oi nt con s tructi on 

of t he ex pe rim e nt a l tank . 
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Table 6.1 

Axial length L = 0 . 2 m 

Internal radius R = 72 X 10-3 m 
0 

Side - wal l t h ickness = 3 X 10-3 m 

Construction material = perspex 

Perspex properties (from IC! Ltd information sheets): 

i ) density f' = 1 • 1 9 X 1 o3 k .') ,. "' 
i i ) thermal conductivi ty k 0. 1 9 J 

-1 -1 = m Ks 

i i i ) specific heat = 0 . 35 

iv) tensile str en g t h - 8 106 Nm -2 
-- X 

Distilled water a t 30°C (from Batc hel o r (1967) ) 

i ) th e rmal d i f f u si v it y 1 • 4 6 1 o 7 2 -1 
K = X m s 

i i ) k i nem at i c vis cosi t y 8. 02 1 o-7 2 - 1 
~ = X X s 

The r misto r be ads: ITT U23 UD miniature be ad , nomina l ly 21< Jl , 
-3 diameter ~ 0.3 x 10 m~ the r ma l reaction time~ 0 . 3 s. 



air-space around the axis becomes a problem. 

At the highest rotation rate in fact used, 80 radians 

the Taylor number for the tank is approximately 10
12

, based 

axial Length L = 0 .2 m. This results in the tank being in 

-1 
s , 

on an 

the 

transition region between "Benard-type" and boundary-Layer" 

convection for the expected unstable region depth d of 

approximately d = 5 mm, for which we have an aspect ratio ~= L/d 

= 40. In practice,however, d did not greatly exceed 3 mm at the 

onset of convection, and so the boundary-Layer contribution to 

the critical Rayleigh number is relatively small. 

Measurement of the water jacket temperature is by a standard 

mercury thermometer (Gallenkamp THM-440-070M) immersed i n the 

jacket, capable of being read + to - 0.01°C by a Griffin & George 

thermometer reader. The two such thermometers in use were 

compared and found + 0.02°C i n the 70 37°C. to agree to - range to 

0 Typical experimental temperatures are over the range 27-33 C and, 
c.e. as only relative temperatures are of significant for the thermal ,.. 

model, no further calibration of the thermometers (e.g. against a 

standard gas thermometer) has been thought necessary. 

Experimental temperatures are kept near 30°c both to a L Low 

use of 

Batchelor 

the 30°C values for properties of water tabulated 

(1967) in the thermal model and to avoid the need 

refrigeration equipment in the temperature control bath. 

the 

in 

for 

Time Lags - in the measurement of water jacket temperatures 

are negligible: the thermometers were found to react to step 

changes in temperature with an exponential time constant of 

approximately 2.5 second , and the water jacket itself i s very 

well stirred by the rotation of the experimental tank , so that 

the thermometer will experience the same temperature as the tank 

w a L L • 
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Observ a ti o n s of the convection in the tank are made visually 

und e r strobosc opic Lighting fr o m th e sid e, using a n inclined 

mirr o r above the water jacket to view along the a x is of the 

e xperimental cylinder . Kalliroscope suspension AQ1000 is used in 

an a ppr ox imately 1% solution in distilled wat e r as a marker 

the visual observations . It consists of a suspension of 

thin quanine crystals which align themselves with the flow 

fo r 

Long 

i f 

there is a velocity shear , and as a result scatter Light anise-

tropically . This method of observation is described by 

Chamberlain (1980) in more detail. However, unlike the case of 

the " Busse-r olls " observed in a sphe r e by Chamberlain ( 1980) , no 

planform can be distinguished in the present study . The contrast 

between regions of shear and quiet regions is too slight to be 

recorded photographically when the convection is only slightly 

supercritical . As a result , the observations of the onset of 

convection and of its extent set out in § 6 . 4 are those recorded 

from direct observation by eye . In making these , it is found 

that a slight dif f erence in frequency between the tank rotation 

and the stroboscope illumination greatly assists the observer in 

that the slo w drift seen combines with the irregularities of the 

scattering to help in d i st i nguishing the presence or absence of 

convect i on . 

Te sts o f t he num e ric al t he r mal model of the tank ha ve be en 

made wi th th e u se o f bea d th e r mi s t o r s mounte d on a pe r spe x frame 

e x ten d i ng fr o m the c e ntral a xis t o t he s i d e-wa l l (fi g . 6.3), wit h 

po we r Leads t o the thermi s t o r s fed t h r ough the hollo w b r a s s axis 

to a silver slip-ring assembly mounted above the water-jacket and 

t hence to a Solartron 7045 digital resistance me ter. Details of 

t hese tests are g iv en in the nex t secti o n. When usi ng thermis-

tors, no Kalliroscope suspension is added to the distilled water, 
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as the crystals are found to aggregate on the thermistor beads 

and their Leads . Thus there are no combined observations of the 

convection by both visual means and temperature measurement. 

Whilst it would be desirable to use a thermistor array to examine 

the growth of the convecting region in strongly supercritical 

cases , this has not been done yet · owing to frequent mechanical 

breakages in the thermistor system under rapid rotation. 

Thermal conduction model 

The thermal model for the experiments is a numerical 

integration of the thermal diffusion equation in a tank with 

cylindrical symmetry. Rather than use a Green's function method, 

a direct integration over time is performed based on a spatial 

array of 1 mm radial spacing, so that temperature profiles at 

successive time steps are available for analysis in terms of the 

Rayleigh number. If T (r,t) denotes the temperature of the 

element centred on position rat time t, we have the equation: 

3T 
cp.at (r,t) = b, (T ( r-1 ,t) - T(r , t)) + b

2 
(T(r + 1,t) - T(r , t)) 

where the constants b
1 and b

2 for each position r depend on the 

appropriate thermal conductivity k , position and 

on the appropriate surface area (cylindrical geometry) : 

b = 
k , 

( r;! ) 
I 8' 

k2 
(r t) b2 + = cS2 r 

where o is the Length scale of the grid spacing. 
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The temperature profi Le is then integrated by the first 

order method: 

T(r,t + 1) = T (r,t) a 
+ Tat T(r,t) 

where r is the time step. 

Boundary conditions on the temperature are described below, 

being 

T(r,o) for all 

T(r , t) for all 
0 

T ( r . , t ) for all 
l 

0 ~ 

0 f 

r 6 r. 
l 

t ~ t 
0 

where r is the position of the outside of the tank wall, 
0 r . i s 

1 

the axis of the tank (taken to be r. = 1 
1 

mm to avoid the 

numerical problems of r = o) and t is a time Limit, the duration 
0 

of the experiment. 

The temperature T(r ,t) of the water jacket in 
0 

a typical 

experiment (N25) is shown in figure 6.4 as a function of time . 

At the start of the experiment, t = o, the temperature throughout 

the tank is assumed constant. The inner boundary condition at r 

= r. (where r. = 1 mm on a radial grid of 1 mm spacing) is that 1 1 

there is no heat flux through r = o, by cylindrical symmetry. 

Alternatively, an inner boundary condition that T(r.) = T 
1 

( r ) 
0 

can be applied to simulate thermal conduction through the metal 

shaft of the tank: no material effect on temperatures in the 

region of interest (near the outer wall) occurs. Figure 6.5 

shows the resulting temperature profi Les in the tank ·according to 

the thermal model at the end of cooling (t = 60 minutes) and at 5 

minute intervals thereafter . Note the thin unstable region at t 

1 5 1 
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r 
= 70 minutes, which has almost disappeared by t = 75 minutes 

through diffusive decay. 

Test of the model -- --- -----
A comparison of the predictions of the model with 

measurements made using thermistors mounted inside the tank i s 

shown in figs. 6.6 and 6.7. The first of these relates to run 

number N36 and to the thermistors mounted 16 mm ("1") and 6.5mm 

("6")inside the tank wall (the other two thermistors then in use 

were giving very noisy signals and so have not been ana Lysed) . 

The second relates to run number N37, for which an extra 

thermistor had been attached to the wall of the tank (thermistor 

"3"). 

An uncertainty in the properties of the tank is the thermal 

conductivity of 

represented as 

the perspex: in the numerical model this 

a fraction F of that of distilled water. 

i s 

The 

ICI literature value is F = 0.32, but variations of+ 10% are 

possible. In addition, in designing the tank one worry was that 

there might be a boundary layer convection effect on the side-

walls, where viscous drag would prevent a thermal wind from 

from the balancing the baroclinic pressure field that arises 

interaction of the radial temperature gradient and the axial 

Laboratory gravity < §4.6). Fr om the results shown in the 

figures, although F = 0.32 appears suitable with respect to the 

deeper part ~f the tank where thermistor . 1 . i s located, i t 

results in predicted temperatures noticeably too low for both 

thermistors · 3· (0.2 mm from the wall) and '6' (6.5 mm from the 

wall). F = 0.26 results in a good fit to the measured tempera-

tures in those Latter positions, which span the region of the 

tank in which convective in stabilit ies occur. Thus F = 0.26 is 

preferred, on the basis of the thermistors , in the analysis of 
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the experimental runs, b ut F = 0 .32 has also been used 1n o r de r 

to assess the sens i tivity of the anal y sis t o t h i s factor, and 

will Later be s hown to be preferable. 

One possible so ur ce of a systemati c er r or betw e en 

t herm istor meas ureme nt s o f te mp erature and the numerica l 

the 

model 

W hi C h l i e s in the disturbance to the internal thermal wind (for 

see § 4 . 6) ca used by the presence of the thermistors mounting 

frame, a perspe x "Ladder" of side dimensions of order 3 mm. This 

constitutes a barrier to any azimuthal thermal wind flow by 

virtue of the change in the overall depth of the fluid . If this 

i s the case , there will be a baroclinic flow in the tank 

re sulting , as above, from the radial temperature gradient and the 

axial Laboratory gravity. This flow will not be an azimuthal 

thermal wind, but instead will be a "meridio n al" convection cell 

Leading to enhanced heat flow in the fluid away from the wall. 

Thus we must consider that the thermistor measurements of 

temperature, whilst being direct , may be misleading . This 

p roblem did not arise in the experiments in s pherical tanks by 

Chamberlain (1980) because in a spherical tank there remains a 

path of constant depth along which geostrophic flow can occur 

even though there be a radial obstruction such as a thermistor 

array . The path merely has a radial kink , compensating for the 

obstruction (fig . 6.8). 

wall 

Fi g.6 .B 

Eff e ct o f an obstruction on 

geostrophic flow pat h the flow path 

in a spherical 

ta nk ge omet ry 
o bstru c tion 
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Thermistors -----------
As stated above, resistances of the miniature bead 

thermistors and the i r 

the 

Leads are measured directly with a 

Solartron 7045 meter held on the 0-9 kn range, with sensitivity 

of 10- 1 n . Changes of the meter range affect the reading (due 

to different internal impedance) but with the meter held on the 

one range it proves stable to: 2 x 10- 1 
Q between experiments. 

Calibration of the thermistors is based on measurements of their 

resistances while in place in the tank. In each case the tank is 

and the water-jacket well-mixed (by spin-up then spin-down) 

temperature adjusted until there is thermal equilibrium as shown 

by all the thermistors . The calibration measurements are made 

with the tank rotating, both to ensure that the water jacket i s 

well mixed and to simulate the experimental conditions of the 

slip-rings incorporated in the thermistor Lead circuits. 

Calibration tables are produced by an interpolation program that 

fits a cubic both to the two data points being interpolated and 

the next neighbouring data point on each side. 

The sensitivity of the resistor meter, + 0. 1 , 
corresponds approximately to a temperature sensitivity of + 

0.01°C at the thermistors, i • e. in Line with the accuracy to 

which the mercury thermometer in the water jacket can be read. 

As a combination of these two separate sources of measurement 

error , the measurements plotted in figs. 6.6 and 6.7 are given 
0 error estimates of: 0.02 C, unless a noisy reading was noted at 

the time of the experiment (notably run N37 thermistor '6'). No 

sign of thermistor "w arm-up " is ever observed with the 

thermistors immersed in water, but instead a slight cooling i s 

observed over a period of about 3 seconds, typically i nvolving an 

increase in resistance of .1 or . 2 Q over that period. In a L L 
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cases, measurements are taken ~f!~r that change. This appears to 

be a result of the growth of Local forced convection from the 

to the electrically heated thermistor bead, or perhaps due 

production of a thin gas Layer on 

leakage 

the bead surface by 

the electrolysis , reducing the current through 

surrounding water. As the effect appears to be quite regular, no 

further investigation has been necessary. 

Observations 

In general, observations have been made on experimental runs 

in which the tank is cooled for 60 minutes in order to set up a 

stable 

minutes 

w al l • 

stratification and then heated over approximately S 

in order to introduce an unstable region near the side-

Such a run is similar to that used in the thermistor 

temperature test run N36 shown in fig. 6.6. A typical 

temperature profile near the side-wall is shown in fig. 6.9, 

being at 70 minutes (i.e. after 10 minutes heating) in run N13, 

showing an unstably stratified region of depth 3 mm (positions 4 

to 7 on the graph) and then stably stratified fluid further from 

the perspex sidewall. Runs were made at either 7.0 or 9.8 times 

the rotation unit of 2.5 TT 
-1 . 

radians s : the accuracy of the speed 

controlle r was checked by observing the drive pulley unde r mains 

frequency stroboscopic lighting . The two speeds used give a 

variat i on of a fa_ctor of 2 in the centrifugal "gr avity " 

tank . 

in the 

The observations of the times of onse t of convection are 

uncertain because convection only becomes visible at finite 

amplitudes: one needs both some degree of supercri .ticality and 

also a time interval for growth. As a result the Rayleigh number 

at the time observed for onset should be only an upper Limit . In 
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order to indicate how critical the timings are, the results are 

presented together with error estimates based on+ 1 0 seconds 

observation errors. The error due to the need for a growth 

period depends on the degree of supercriticality, but as an 

indication one can take the thermal diffusion time constant (d 2 /K) 

for the unstable layer depth, which is approximately 60 seconds, 

as an upper limit to this growth period. 

Table 6.2 and fig. 6.10 give the results for the 

experimental runs, based on a thermal model with F = 0.26 

(relative thermal conductivity of perspex) as indicated by the 

thermistor measurements. The Rayleigh numbers are calculated 

from temperatures interpolated to a 0 . 1 mm grid, and therefore do 

not always change smoothly with time. This result of grid 

"coarseness" leads to an uncertainty in the calculated value of R 

of approximately 10% at times of interest, which is not 

significant given the scatter in R shown in 
C 

the table. 

results are to be compared to the numerical results of 

The 

the 

shooting program in§ S.S. For a rigid side-wall, parabolic 

temperature profile and a deep stable region, that model gives an 

approximate 

Biot number , 

critical Rayleigh number of 730 for the appropriate 

0. 1 5. Clearly the scatter of the results is 

too great to be able to resolve the variations in R arising from 
C 

different rotation rates. 

The effect oi using F = 0.26 in the thermal model rather 

than F = 0.32 can be seen by comparing Table 6.2 with Table 6 .3, 

for which the latter value is used. The hig~er value of perspex 

conductivity results in markedly higher values for the Rayleigh 

number at the observed onset of convection. It also gives a 

greater 

effect 

Length-scale d, which is of significance both to the 

of rotation (which enters as ~-Bx T) and to the Biot 
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Table 6.2 

Experimental Runs Thermal model based on F = 0.26 

Run Observed time of Rotation R Subse- Notes 
Number onset of convection rate C 

quent d (nun) --N after start of heating ( 2.5 10 sec. at 10 sec 12eak R at 

(min sec) 
rads- 1 ) early onset late & time onset 

13 7 30 9.8 620 754 751 1820 2.1 
(10 :35) 

14 - 9.8 
' 

16 7 : 30 9.8 645 782 938 1497 2.1 
(9:05) 

18 i)doubtful 9 30 0.06 

ii) 18 00 
9.8 (after peak R = 3.5) 

102 256 553 >18,000 1.8 
(21:00) 

19 7 40 9.8 500 623 767 1386 2.0 
(8:50) 

20 7 15 7.0 64 91 158 749 1.5 
( 8: 55) 

21 4 10 7.0 875 1327 1888 12,590 2.4 
(7 :45) 

22 6 20 7 .o 127 157 152 168 ' 1.8 
(7 :05) 

23 5 so 7 .0 277 274 333 473 1.9 
(7:15) 

24 12 35 7 . 0 54 73 95 261 1. 7 Previous peak R=64 at time 5:30 
(13 : 50) gave no observed convection 

.•. /Cont'd 



Table 6 . 2 (Cont'd ) 

Experimental Runs Thermal model based on F = 0 .26 

Run Observed time of Rotation 
R Subse- Notes Number onset of convection rate C quent 

d(mm) N after start of heating ( 2.5'TT peak R 
rads- 1 ) 10 sec. at 10 sec. 

& time at 
(min : sec) early onset late onset 

25 8 '20 7 .o 509 489 471 509 2.3 
(8:10) 

26 9 : 15 7 . o 20 19 13 44 1.3 Peak R = 44 occurred at 7:30 
(7: 30) 

27 14 : 25 7 .o 31 55 72 259 1.6 
(16:10) 

28 - 9.8 - Peak R = 0.3 
29 15 00 9.8 407 506 616 >17,000 2.2 Previous peak R = 3 

(21:00) 
30 8 20 9.8 293 288 348 348 1.8 

(8 :30) 
31 7 25 9.8 318 412 519 1650 1.8 

(9:10) 



Table 6 . 3 

Experimental Runs Thermal model based on F = 0.32 

Run Observed time Rotation R Subse- Time Notes Rate C 
quent d delay 

Number of onset --
( 2. 57T 10 sec . at 10 sec. 12eak R onset since 

N 
(min : sec) 

rads- 1 ) early onset late & time (mm) R = 730 
(sec) 

13 7 30 9.8 4693 5307 5970 13,671 3.1 75 
(10:20) 

14 - 9.8 - 0.12 - - No convection (11:05) 16 7 30 9.8 5497 6185 6929 10,352 3.2 80 
(.8: 55) 

18 i)doubt- 9 30 . 
9.8 299 278 210 after 684 2.0 fu l 

(7: 55) ii) 18 00 1789 3082 4405 >67,000 3 . 0 25 
(>21:00) 

19 7 40 9.8 4090 4695 5366 9215 3 .o 70 
(9:05) 

20 7 15 7.0 776 1129 1348 5157 2.5 10 
(9 :30) 

21 4 10 7 .o 4075 5514 7131 40,374 3.2 so 
(8:05) 

22 6 20 7. 0 ' 1525 1492 1672 1983 2.8 so 
(7:05) 

23 5 so 7. 0 1965 2225 2510 3710 2.9 so 
(7:25) 

24 12 35 7 .0 1214 1416 1641 3394 3.1 30 Previous peak R = 1158 at 6:25 gave no (14 : 10) convection 

... /Cont'd 



Table 6.3 Cont'd 

Experimental Runs Thermal model based on F = 0.32 

Run Observe.a time Rotation R Subse- Time Notes --
C 

delay 
Number of onset ,Rate quent d --

N 
(min : sec) 

( 2. 5,r 10 sec. at 10 sec. peak R onset since 
rads- 1 ) early onset late & time (mm) R = 730 

(sec) 

25 8 20 7 .o 3597 3481 3376 3841 3.4 95 
(9:05) 

26 9 15 7.0 803 773 741 909 2.7 100 Earlier peak 
(8:30) 

27 14 25 7.0 792 1073 1 237 3578 2.9 10 Previous peak R = 413 at 8:1 5 gave no 
(16:45) convection 

28 - 9.8 ·- 245 - - No convection 
(7: 55) 

29 15 00 9.8 4507 5141 6466 >68,000 3.5 80 Previous peak R = 738 at 8:50 gave no 
(>21:00) convection 

30 8 20 9.8 3229 3625 3537 4196 3 .0 95 
(9:05) 

31 7 25 9 . 8 2691 3648 4207 11,197 2.8 50 
(10:10) --
average= 58 

"' 



number at 

sensitivity 

conductivit y 

onset 

of 

(whi eh rises 

the results to 

1n proportion to d). 

the value of the 

This 

perspe x 

Leads to a Large error-margin in the results, one 

that could be eliminated in future experiments most easily by 

using a material of higher and more uniform conductivit y than 

perspex. The problem is one of finding a suitable material that 

is both strong in tension to withstand the centrifugal forces and 

i s transparent to enable visual observations from side 

illumination. 

Figures 6.10 and 6.11, plotting the results for F = 0.26 and 

F = 0.32 models respectively, show more clearly both the extent 

of the scatter of the results and also how compatible they are 

with the numerical prediction from the critical Rayleigh number. 

Clearly the F = 0.32 model is the more compatible; although the 

scatter of results is Large, it is Less than that for the F = 

0.26 model. Further, if one concentrates attention on those runs 

for which onset was observed to occur at a model value for R 
C 

within 30% of the peak R (i.e. 
C · 

runs in which conditions peaked 

near critical), runs 22, 25, 26 and 30, together with the "null" 

results, there is rather better agreement with the theory (figure 

6.12). However, the results still cannot be said to verify the 

results from theory: the scatter involved is too great even after 

this selection of " best " runs. 

§!Q~!h of convecting !~9iQD 

After the onset of convection, observations were made when 

possible of the radial extent of the convection, as indicated by 

the region of scattering from the Kalliroscope. Immediately 

after onset, this was in general approximately 3 mm (all observa-

tions made to+ 1 mm), which is consistent wi th the thermal 
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models . Subsequent observations can only usefully be compared 

w i t h the thermal model if the convection is only slightly super-

critical , so that the Nusselt number (measuring heat transport 

relative to conduction) does not greatly exceed 1. Consideration 

of f i g. 5. 1 8 suggests that the Ka L L i r o scope should reveal 

a..x.= 2.0, i • e • appreciable shear flows out to approximately 

about twice the depth of the unstable region. By the nature 

to 

of 

the Kalliroscope suspension, it tends to remain aligned for some 

time after the shear flow it records may have decayed. Thus 

observations may continue to be made even though the underlying 

convection has ceased. A further point is that the greatest 

concentration of Kalliroscope, at the start of the heating that 

Leads to instability, will be settled out on the side-wall owing 

to the centrifugal forces over the previous period (generally 1 

hour) of cooling under rapid rotation. Thus Little suspension 

will be available to show the existence of the countercell: a...x = 

2.0 (where U = o) is Likely to act as a definite barrier to the 

Kalliroscope as a tracer. 

Figures 6.13, 6.14 and 6.15 compare the observations with 

the values 

experiments 

for 2d given by the two thermal models 

numbers 22 , 25 and 30. Run number 26, 

for the 

which was 

observed to result in very faint convection which quickly faded, 

has no depth observational data. Instead figure 6.16 shows the 

variation of the Rayleigh number, as given by the two thermal 

models, 

together, 

over the time in which convection was observed. Taken 

these figures show better agreement with the model 

based on F = 0.32, but as expected the observed convection tends 

not to decrease in depth as it decays: the scattering merely 

becom~ faint. Figure 6.16 clearly favours F = 0.32 as that model 

gives a peak Rayleigh number only some 40 seconds previous to the 
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observation of very weak convection (it is also heartening that 

that peak Rayleigh number of R = 909 , is only about 25% above C 

the prediction from the shooting program) . 

A greater time-span of depth observations is available for 

run N23, during which the Rayleigh number reached nearly twice 

its value at the time of onset, before convection died away and 

was then restarted , and then restarted again (fig. 6.17). The 

thermal model with F = 0.32 gives reasonable predictions of the 

observations: onset is observed Later than the model prediction, 

but the fade-outs at 16 minutes and 25 minutes are in agreeme~t. 

The Later convection is observed to be deeper than is predicted 

by the thermal model, which presumably reflects the Large degree 

of supercriticality (R peaks at R = 32,500 at 29:25). 

Conclusions from the exeeriments 

Thermal model based on F = Q~~f 

On the basis of the results for the onset of convection in 

§6.4 and those for the growth of the convecting region in § 6.5, 

the thermal model based on F = 0.32 (corresponding to the 

Literature value for the thermal conductivity of perspex) is to 

be preferr~d. The use of F = 0.26 Leads to critical Rayleigh 

numbers and predicted depths of convection markedly smaller than 

those predicted from the shooting program ( § 5). It therefore 

seems Likely that the thermistor array used to make direct 

measurements of temperature does s ignificantly alter the thermal 

regime in the tank by impeding the thermal wind and thereby 

making possible convective transport resulting from the axial 

Laboratory gravity. In order to avoid this problem, a future 

r ebu ilt 

brought 

tank would need to allow the thermistor Leads to be 

radially out from the axial shaft outside the tank, 
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perhaps within the end air-space. This will then create problems 

of sealing the entry ports for the leads, which would be under a 

substantial pressure difference. 

Delat in observing onset of convection 

Table 6.3, based on F = 0.32 models, gives the time delay 

between the prediction of the thermal model that the Rayleigh 

number R exceeds R = 730 and the time of onset observed in the 
C 

experiment . These average 60: 30 seconds, and are not noticeably 

different between those runs at rotation rate 9.8 units and those 

at 7.0, whereas the crude data for the Rayleigh number at onset 

in general show distinctly higher values for the former set. The 

run N26, which has been noted as being close to marginal, is a 

notable example: although it yields a Rayleigh number at observed 

onset of R = 773 (approximately 6% above the theoretical value), 

that occurs only after a peak Rayleigh number of R = 909 and at a 

time 100 seconds after the time at which the Rayleigh number 

first exceeded the critical value. Thus the accuracy of this run 

stems not from being accurately observed in time, but from being 

a run in which the Rayleigh number went only marginally 

supercritical and remained so for a sufficiently long period. 

As was noted before (§ 6.4), the diffusion time constant 

for the unstable Layer is approximately 60 seconds: this is 

usually taken as -an upper Limit to the timescale for growth of 

the most quickly growing model of convection. Thus the observed 

delays are compatible with being primarily due to the time 

required for growth, except for those few runs where the delay 

was markedly short (e.g. N20, N27). No satisfactory reason for 

those very much shorter delays has been found. 
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This experiment has been unable to demonstrate the effect of 

rotation on the nature of the onset of convection, primarily 

because the aspect ratio Q. achieved is appreciably Larger than 

expected (typically about 60-100, whereas a..-:::40 was expected) . 

Since the effective Taylor number scales as -8 a.. , this Leaves the 

rotation rate in a region on in which R and b scarcely depend 
C C 

T. Future rebuilding of the tank should therefore be based on a 

reduced vertical Length L. A reduction to 3 cm, from 20 cm at 

present, 

rotation 

should result in and the currently obtainable 

rate would give T 101 0. A combination of 

~= 10 and T = 10 10 would bring the results into the region in 

which boundary Layer effects are appreciable, although not yet 

dominant. Whi Lst this proposed change of design will tend to 

give a stronger tank, 

will ease the strength 

supported by its end-plates, and therefore 

requirements, it will also tend to reduce 

the sensitivity of observation by the decrease in the depth of 

fluid i Lluminated by the stroboscope. This difficulty would 

probably prevent any further shortening of the tank. 

In none of the experiments has any flow been observed in the 

stable region away from the convection zone. Thus, at the 

R 
C 

levels typically R f 20 of supercriticality, experimental 

(table 6.3), the convection does not cause strong shear flows in 

the adjoining stably stratified fluid . Penetrative convection is 

therefore only apparent to the extent of the immediate convecting 

region, corresponding to a depth of approximately 2d where d is 

the computed depth of unstable stratification (see figs. 6.13 to 

6.17), which is in agreement with the Linear theory ( § 5. 5 ). 
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has demonstrated that a time-dependent The experiment 

temperature profile can be set up to investigate penetrative 

convections in terms of both the critical Rayleigh number for 

onset of convection and the resulting depth of convection . The 

accuracy is as yet poor. The present tank design is unable to 

investigate 

rotation, but 

the "boundary-Layer" dominated 

this would be accessible to a 

regime of rapid 

redesigned tank, 

shorter along the axis. Observed times of onset of convection, 

using Kalliroscope suspension as a tracer for the presence of 

shear flows, are delayed by the period required for growth of the 

convection and so the critical Rayleigh number 

measured by creating temperature profiles that 

can only be 

are marginally 

supercritical at their peak, rather than by timing onset in runs 

that then go substantially supercritical. 
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7. Discussion 

7.1 Discussion of results 

The object of this work is to investigate two questions : 

fi r stly whether a stably stratified layer can occur in the core 

and secondl y what effect rotation has on penetrative convection . 

The latter is a step towards understanding whether such a stabl y 

stratified layer might survive adjacent to a convecting region. 

The first of these questions must remain essentially speculative, 

as no direct observations are possible. However, the work 

presented in chapters 2 and 3 shows that no such stable layer is 

likely to arise from a subadiabatic temperature gradient. On the 

second question, the results of the analytical and numerical 

investigations of the linear equations, set out in chapters 4 and 

5 , indicate that the effect of rotation is to inhibit penetration 

into a stable region. The experimental observation described in 

chapter 6 are not sufficiently accurate to extend 

investigation to the finite amplitude, non-linear problem. 

the 

The 

lack of a treatment of either non-Linear advection terms or 

Lorentz forces means that the results cannot yet be applied to 

the geophysical problem : much more work is required. 

The model for the Earth's thermal history described in 

chapte r 3 results in values for the present heat flux out of the 

core and for its dependence on the various parameter values 

adopted. The conclusion that a subadiabatic temperature gradient 

is unlikely to exist ih the core depends on a consideration of 

the 

Thus 

needs of a dynamo prior to the formation o f the inner core. 

the most critical aspect of the model is the assumption of 

a s ufficiently hot start that the f rozen inner core forms only 

relatively recently. If the inner core were an original feature, 
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then the core must have been at a remarkably constant 

temperature, one not consistent with the model used in that i t 

requires a close equation of surface heat flux to radiogenic 

heating throughout the age of the Earth. Although the variation 

of mantle viscosity with temperature should favour this, i t i s 

unlikely to change the conclusions significantly, given the 

strength of the applied coristraints. 

Compositional gradients are discussed as an alternative 

cause of a stable stratification, in section 2.3: the problem for 

them is whether such gradients could form or survive 1n a 

vigorously convecting outer core, and this Leads on to the fluid 

dynamics study in the Later part of the thesis. A simple model 

following Fearn & Loper (1981) for such a compositional gradient 

is set out in section 2.3 in order to assess the possible degree 

of stability . 

approximately 

This Leads to a maximum Brunt-Vaisla frequency of 

N -1 
s 

Both analysis (chapter 4) and numerical solutions (chapter 

5) of the Linear Boussinesq equations at marginal stability Lead 

to the conclusion that rotati on inhibits penetration of a stable 

region in the plane-Layer problem. Such a geometry would be 

appropriate to a "polar" regi on (fig. 2.4). Another effect of 

rotation is to inhibit the tendency of fixed flux boundary 

conditions to result in Long horizontal wavelergth flows. This 

reduces the geophysical applicability of the non-Linear analysis 

of Chapman & Proctor (1980) and others, which depends on scale 

separation between the vertical and horizontal structure of the 

solutions. 
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The 

Busse, 

6) , in 

same problem is studied in the cylindrical geometry of 

both numerically (chapter 5) and experimentally (chapter 

the absence of any inclination of the end boundaries in 

order to avoid the Busse-roll type solution. Rotation has little 

effect on penetration in this geometry, owing to the secondary 

nature of the influence of rotation on the flows, through the end 

boundary layers. The experiments are of insufficient accuracy to 

confirm the results of the linear theory: the results reported 

are based on a numerical model of the temperature profile in the 

tank 

of 

the 

since direct temperature measurement leads to a 

the thermal wind balance in the cylindrical tank. 

effect of rotation has not been resolved as the 

disruption 

Further, 

effective 

aspect 

layer) 

ratio of the convection (length of tank/depth of unstable 

is found to be too large. This could be rectified in 

future work, by redesign of the experimental tank. 

7.2 Suggestions for f~!~I~ work 

No definitive answer can yet be given to the question of 

whether there is a region of stable stratification at the top of 

outer core. However, the results of the thermal history the 

model and the difficulty of a compositional layer surviving 

undisrupted 

layer that 

magnetic 

raise sufficient doubts about the suggested stable 

the next step should be a re-examination of the 

secular variation evidence for zero upwelling. 

Improvement of the thermal history model could come from a proper 

parameterisation of convective heat transport in a fluid of 

temperature dependent viscosity. However the constraints already 

placed on the model should ensure that any such improvement would 

have little effect on the results. 

The fluid dynamics problem leads more directly to future 
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work. Apart from the redesign of the e xperimental tank suggested 

in chapter 6 to enable a verification of the Linear theory , the 

next area of study should be on finite amplitude penetrative 

convection . The effect of rapid rotation on this is as yet quite 

unclear , and experimental observations on the growth of a 

convecting region, along the Lines of those reported in section 

6.5, are feasible with the techniques used already. 
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1} u = _ ,r A ~;z_. [ Bv (- -v
4

• 10 v'l/- 5/") .Jc f (s ./•_ ,o -vj,1+ /') J e._(_ 

+ [ ~f (- 5" yl. + 10 y
1,1-;4)4 C.v ~v

4
+ IO vi '-514

)] ~ 

t? U. ~ 0~ ~ - ,-/ A .J [E>Y (-vlt~ 10 vj/- f 14
) ~ c,( 5 v 4

- I O v;,/-r t") J 
Now , in z < 0 , we have th e sam e s o lution s exce p t for 

- )1--'l> + 'Y , a nd -r -', +r- throughou t . 
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Hence , matc h ing the t wo s olu t ions through z=O , we ge t 

-~'\ + CrC,-vB,) 

r- "l ~ 
1 

+ \ A BI - 2-..,f C, J 

= 

= 

-r-3 
A 1 + Lv BI l3 /-"') +f(, \5~,,.-r1)]= + r"!.f\ 4- ~ -"'1 e,, ( 3./--.i"l J + /' (_ 2 l 3, v"'-/)] = O 

J-'- 4 l\,+ B,(v~_<:,..,1f+,4)+4-C,vr(-A)=- ,.,.~A1 ~ B~(v4-bv't''+;4
) .. 4c.2"'f~ 

~ ~ 
"') 

~ 

B 
' 

c.., 

\,,) \u__ .,._ ,.,. 
') 

B 

c_ 

l N.'k -\-~"\ 

= A. = 
2. 

= B.~ = 

: -c. = t. 

\~i" 0~ ~~6 ;" 

= ,-,.1>.[ e'- 3.,,' J 2-.> l V 't -+ f 'Z. ) 

= t'- f.. [ 3 / - v' l 
2 f (-v.,_+f "L ) 

)>Qlo) = 1:>:!.u.lo') = o 

1 78 

UNIVERSITY~ 
LIBRARY I 

c,~.,,1,m~1;:v~'-- , 

A. 

B 

(_ 

\ r- \ ~ 

\:.1 ~,._.,_Li '6 } 


