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Abstract

Many tasks in machine learning require learning some kind of input-output relation
(function), for example, recognising handwritten digits (from image to number) or
learning the motion behaviour of a dynamical system like a pendulum (from positions
and velocities now to future positions and velocities). We consider this problem using
the Bayesian framework, where we use probability distributions to represent the state
of uncertainty that a learning agent is in. In particular, we will investigate methods
which use Gaussian processes to represent distributions over functions.

Gaussian process models require approximations in order to be practically useful.
This thesis focuses on understanding existing approximations and investigating new
ones tailored to specific applications. We advance the understanding of existing tech-
niques first through a thorough review. We propose desiderata for non-parametric basis
function model approximations, which we use to assess the existing approximations.
Following this, we perform an in-depth empirical investigation of two popular approxi-
mations (VFE and FITC). Based on the insights gained, we propose a new inter-domain
Gaussian process approximation, which can be used to increase the sparsity of the
approximation, in comparison to regular inducing point approximations. This allows
GP models to be stored and communicated more compactly. Next, we show that
inter-domain approximations can also allow the use of models which would otherwise
be impractical, as opposed to improving existing approximations. We introduce an
inter-domain approximation for the Convolutional Gaussian process – a model that
makes Gaussian processes suitable to image inputs, and which has strong relations
to convolutional neural networks. This same technique is valuable for approximating
Gaussian processes with more general invariance properties. Finally, we revisit the
derivation of the Gaussian process State Space Model, and discuss some subtleties
relating to their approximation.

We hope that this thesis illustrates some benefits of non-parametric models and
their approximation in a non-parametric fashion, and that it provides models and
approximations that prove to be useful for the development of more complex and
performant models in the future.
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f(X) f([X]n) = f(xn) , i.e. the evaluation of f(·) at each location in X, where
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X The space of inputs to a particular function.

M Number of inducing points.

X Matrix of inputs ∈ RN×D. Each input is ∈ RD.

y Vector of observations ∈ RN .

L Variational lower bound on the LML.

N Number of observations / data points.

Y The space of outputs from a particular function.
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KL Kullback-Leibler, usually in the context of the divergence.
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Notation

While the Gaussian processes discussed in this thesis can often have very general input
and output spaces, we mainly consider real valued inputs and outputs in this thesis.
While doing so, we manipulate the data to various degrees of granularity. We shall
take the following convention:

• Inputs are considered to be ∈ RD, while outputs are considered to be univariate
(∈ R).

• A collection of N inputs is denoted as a matrix X ∈ RN×D.

• The nth input vector in X is denoted as xn.

• A specific dimension will be denoted using the subscript d, i.e. xnd for the dth
dimension of the nth input, or xd for the dth dimension of a general input x.

• Outputs for multiple inputs will generally be considered vectors ∈ RN .

• We denote an entire function as f(·), and a particular evaluation at x as f(x).

• Multiple evaluations can be written as f(X) ∈ RN , where X contains N inputs.





Chapter 1

Introduction

Machine learning aims to create algorithms that improve their performance by
leveraging observed data or experience on a task. For example, we may want a computer
to use examples of hand-written digits to learn how to recognise them. Generally,
machine learning algorithms rely on statistical models which are built to reflect reality
(or at least be useful for predicting it). Statistical models may contain parameters
which are unknown or uncertain a-priori (i.e. when starting out before observing any
data, or gaining any experience). Given an increasing amount of data, learning involves
a) finding parameter settings which will improve the performance of the task, and
b) choosing which statistical models are likely to perform well.

In essence, this is identical to familiar problems in statistics, e.g. where we may
want to predict the risk of a disease using certain environmental factors. Generally,
the approach is to propose multiple models (e.g. linear and non-linear) which relate
the observed factors and the presence of disease. As more data is gathered and made
available to the model, the relationship between the observations becomes clearer,
leading to more certain parameter estimates. Additionally, we can also find out which
model explains the relationship best (e.g. whether a linear model suffices, or whether
the more complicated non-linear one is needed). Both of these improvements allow us
to make better predictions.

When following this procedure with any finite dataset, we can not expect to get
completely certain answers. Each model may contain multiple different parameter
settings which fit the data equally well, but which may give different predictions for
unseen inputs. In fact, the parameter which best fits the training data, may predict
very poorly in the future. This is known as overfitting, and must be avoided in some
way by any machine learning technique.
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This chapter provides an introduction to the Bayesian approach to machine learning
and Gaussian processes as Bayesian models. The main aims are to describe fundamental
Bayesian and Gaussian process methodologies, and to emphasise their elegant properties
which make them worthy to study.

1.1 Bayesian Machine Learning

The two problems described above (finding parameters in models, and assessing the
models themselves) can be neatly solved within the single framework of Bayesian
inference1. To illustrate the problem further, figure 1.1 shows an example regression
task with three possible models to explain the relationship. Each model contains
parameters which determine the shape of the regression line. A single setting for the
parameters corresponds to a fully defined regression line. Given the limited dataset,
there are many parameter settings in each model which are consistent with the data.
Additionally, it is also unclear whether the relationship is linear or quadratic – both fit
the data to a degree. It should be clear, however, that the high order polynomial is
probably not going to give sensible predictions, despite it having the smallest deviations
from the training data.

The polynomial solution is a classic example of overfitting, and shows that a
solution which fits the training data may not generalise to future problems. The
missing ingredient is a way to limit the complexity of the solution in the right way. In
the Bayesian framework, complexity is automatically managed by correctly keeping
track of the uncertainty around the quantity of interest [Rasmussen and Ghahramani,
2001]. Other machine learning frameworks have different methods for dealing with
complexity (see e.g. Mohri et al. [2012, ch.3] or Grünwald [2007]).

1.1.1 Probability theory: a way to reason under uncertainty

Figure 1.1 illustrates that there are many different solutions to a regression problem
that all seem plausible to some degree. Taking again the example of predicting disease,
where the x-axis would be a risk factor (like eating ice-cream) and the y-axis the risk of
getting ill, the current data cannot unambiguously determine the truth of a statement
like “halving my intake of ice-cream will reduce my risk of disease by 50%”. Things
become more complicated with added levels of uncertainty. What if the relationship
only existed in people with a particular gene, and I’m uncertain about whether I have

1See Ghahramani [2012] or Ghahramani [2015] for good introductions and MacKay [2002] or Jaynes
[2003] for an extensive treatment.
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Fig. 1.1 Example regression problem with linear and quadratic models using Bayesian
inference, and an 11th order polynomial model chosen to minimise the error to the
training points for comparison. We want to predict at the point marked ‘?’. Plausible
regression functions are sampled from the models’ posteriors, while optimising for data
fit seems to lead to nonsensical (and off-the-scale) predictions.

it? It would be nice if we had some kind of system for calculating our “degree of belief”
for new statements, given how certain we are about the statements it depends on. Cox
[1946] provided just this2, by stating certain quantitative relations that such a calculus
would need to obey in order to [Jaynes, 2003]:

• represent beliefs using real numbers,

• fit with common sense (i.e. beliefs in statements and their negations must vary
in opposite directions with new information),

• be consistent (i.e. agents with the same starting beliefs must obtain the same
results).

Cox [1946] showed that probability theory provides such a calculus, meaning we can
represent beliefs about statements using probabilities.

1.1.2 Bayesian modelling & inference

Following the notion that we can represent uncertainty about quantities using proba-
bility distributions, we can formulate models about how the world works in terms of
random variables. A model will generally make a prediction based on some configu-
ration of the world. In mechanics, for example, Newton’s laws of motion will make
very precise predictions about the motion of objects, given perfect knowledge of the
objects’ positions and speeds3. Generally, we don’t think about these predictions as

2Good discussions are also found in Jaynes [2003, ch 1 & 2] and MacKay [2002].
3Here, “precise predictions” refers to the model’s claim that the prediction is precise. Newton’s

laws make precise predictions that are also correct (to some accuracy), which makes it a great model
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being in terms of a probability distribution, but we don’t expect the measurements to
be exactly correct either. Phrasing the expected precision as a probability distribution
is a natural way of expressing the remaining uncertainty. In probabilistic modelling,
the distribution characterising the prediction given “all knowledge of the state of the
world” is termed the likelihood. Uncertainty in the likelihood often represents the
limit of the predictive capability of a model, beyond which the model can not be more
precise. This can be the result of a physical limitation, or a deficiency in the model.
For example, Newtonian mechanics is not accurate at relativistic speeds (a model
deficiency), and the precise timing of the radioactive decay of a specific particle cannot
be predicted (a physical limitation – as far as our models know...). These sources of
inaccuracy or uncertainty can be accounted for in the likelihood.

Equally as important to the likelihood is our belief about the state of the world,
which most of the time is not fully observed and uncertain. In probabilistic modelling
the state of the world is expressed as a collection of latent variables or parameters.
Again, taking mechanics as an example, we may still want to make predictions based
on Newton’s laws of motion if we are uncertain about the starting position and velocity
of an object. The uncertainty in our prediction should combine the uncertainty of our
state of the world, together with that of the likelihood.

Machine learning tasks can often be phrased as first reducing uncertainty about
latent variables from data, and then making predictions based on this reduced uncer-
tainty. Keeping with mechanics as an example, we can imagine needing to predict the
orbit of an asteroid based on telescope measurements over several days. Given the
limited precision of our measurements, we will have some residual uncertainty of the
location and speed of the asteroid, which needs to be taken into account.

The process of going from data to conclusions about the latent variables is called
inference4, and is the main reason that allows machine learning models to improve
their performance with more data. The more data, the more certain we can be about
our latent variables, and the better we can predict. To a certain extent, inference is
synonymous with learning. From the Bayesian point of view, the processes of inference
and prediction require only manipulating the random variables and their probability
distributions5.
in many situations. A bad model makes precise predictions which are wrong. The theory of Brownian
motion does not make precise predictions about the location of a specific particle, but nevertheless
accurately predicts other properties.

4Or “statistical inference”, to emphasise the presence of uncertainty and distinguish it from
inference in pure logic.

5Here we start to take mathematical background for granted. MacKay [2002, ch.2] provides an
excellent introduction to the rules of probability and manipulating distributions.
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Very complicated models are possible with hierarchies of latent variables, but here
we stick with the example in figure 1.1, as it contains the two main characteristics we
are interested in: First, inferring the probability distribution over parameters (latent
variables) in a particular model, and second, finding how certain to be in each model
itself.

Parameter inference

The starting point in Bayesian inference is the prior distribution, which represents
our uncertainty about parameters in the model before any data is observed (a-priori).
We use our data and likelihood to update the prior distribution to represent our
reduced uncertainty after taking the data into account (a-posteriori). In the regression
problem above (and in this thesis) we can assume that we observe a function plus some
Gaussian noise to account for any deviations. Taken together, the prior, likelihood
and assumptions that went into choosing them make up our model and form a joint
probability distribution over any combination of parameters and data that our model
can capture:

p(
parameter︷︸︸︷

w ,
data︷︸︸︷
y )|θ)︸ ︷︷ ︸

joint under the model θ

= p(y|w, θ)︸ ︷︷ ︸
likelihood

p(w|θ)︸ ︷︷ ︸
prior

. (1.1)

Once we observe some data, we are interested in the probability distribution of our
parameters, given the observed data, the posterior. The distribution for this can be
found using Bayes’ rule:

p(w|y, θ) = p(y|w, θ)p(w|θ)
p(y|θ) = p(y|w, θ)p(w|θ)∫

p(y|w, θ)p(w|θ)dw
. (1.2)

The posterior completely captures our knowledge (and uncertainty) about the correct
parameter for the model θ. Figure 1.1 visualises the uncertainty by taking samples
from the posterior for each of the models.

Model comparison & marginal likelihoods

As said earlier, we are also uncertain about which of the two models is correct. Luckily,
the correct model is just another unobserved variable that can be inferred from the
data using Bayes’ rule [MacKay, 2002, ch.28]. If we define the prior probabilities over
the linear and quadratic as 0.5 each (so as not to favour one a-priori), we can again
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use Bayes rule:

p(θ|y) = p(y|θ)
=0.5︷ ︸︸ ︷
p(θ)

p(y) . (1.3)

For θ being linear and quadratic in figure 1.1, the posterior probabilities end up being
0.13 and 0.87 respectively. Although the data prefers the quadratic model, we do still
have some degree of belief for the linear one.

Interestingly, the likelihood for the model comparison task, is the normalising
constant of the parameter estimation task. We call p(y|θ) the marginal likelihood,
and it has interesting properties that allow it to capture model complexity. We will
review some of these characteristics more in section 5.1.1. For now, it suffices to note
that it is really nice that the same procedure can be used for parameter inference and
model inference. This is because the distinction between “parameters” and “model”
is rather arbitrary. In the Bayesian framework, both are random variables which are
to be inferred given some data. The structure of our inference problem can be much
more complicated, with many levels in the hierarchy, all of which can be handled in
the same way.

1.1.3 Predictions and decisions

So far, the Bayesian framework has shown us how to find the posterior distributions over
parameters and models. When making predictions, we want to take our uncertainty
into account. Predicting with a single parameter value, or single model would lead to
over-confident results. Simply applying the same rules of probability will automatically
take the uncertainty into account when finding the distribution over the prediction
(y∗):

p(y∗|y) =
∫

p(y∗|w, θ)p(w|y, θ)p(θ|y)dwdθ . (1.4)

Based on the information given, we often need to choose some action, which will
have varying outcomes, based on the actual outcome of the predicted quantity. Decision
theory (see MacKay [2002, ch.36] or the relevant chapters in Rasmussen and Williams
[2005]) tells us how to pick the optimal action. The predicted uncertainty can make a
crucial difference in the optimal action to take. For example, imagine we are tying to
throw balls into buckets, each of which gives a different score. The distribution of y∗

describes where we think the ball will land relative to where we aim. If the distribution
has low variance (i.e. we are good at throwing), it makes sense to aim at the highest



1.1 Bayesian Machine Learning 7

value bucket, even if there are low value buckets nearby. If the variance is high, we
should find a region with many reasonably highly valued buckets to aim for.

The mathematical goal is easy to define. We simply have to define a loss function,
which determines the loss for each pair of outcome y∗ and action a. Then we minimise
the expected value under our posterior predictive distribution:

abest = argmin
a

∫
L(y∗, a)p(y∗|y)dy∗ . (1.5)

To what extent do we care about parameters?

Looking at the above criterion for decision making, we note that it only depends on
the predictive distribution of the model (equation 1.4). If all we really care about is
making predictions, and decisions based upon them, the central distribution of interest
is not really the parameter posterior p(θ|y), but rather the predictive distribution
p(y∗|y), which can also be obtained from the marginal data distribution directly:

p(y∗, y) =
∫

p(y∗|w, θ)p(y|w, θ)p(w|θ)p(θ)dwdθ , (1.6)

p(y∗|y) = p(y∗, y)
p(y) . (1.7)

In this view, all distinctions between prior and likelihood vanish, and everything is
phrased in terms of probability distributions on observable quantities. This is reassuring,
as it shows that the result of Bayesian inference is invariant to the arbitrary choice we
have in defining parameters, and decisions on whether to place effects in the prior or
likelihood. The only thing that matters is the effect of choices on the data distribution.

So why do we care about the posterior over parameters, and why do we put so much
emphasis on the distinction between prior and likelihood? There are two main reasons.
Firstly, the separation between prior and likelihood can be mathematically convenient.
Usually, parameters in the prior are chosen to make observations conditionally inde-
pendent. This makes the posterior over parameters sufficient for making predictions in
the future, which means we can forget about the details of the data we observed in any
further analysis. This structure also is useful for making approximations. Secondly, we
make these choices and distinctions for human convenience. Conditional independency
is a useful way to isolate dependencies in models and are an intuitive way to describe
structure in data. We may also want to interpret parameter values learned from data.
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1.1.4 Practical considerations

While the Bayesian framework is clear in prescribing what computations need to be
performed in order to solve a problem, it often prescribes computations which are far
too costly to compute exactly – integrals being the main problem. In most real models,
the posterior is not a distribution with a closed-form expression. Often the issue comes
from the marginal likelihood being intractable [MacKay, 2002, ch.29], but it can also be
worse. This problem has spurred on the development of many approximation methods
like MCMC [Brooks et al., 2011], or variational methods [Beal, 2003; Blei et al., 2016].

One saving grace is that often when there are few parameters relative to the size of
the dataset, the posterior will become very concentrated around one value. To illustrate
this with an example, consider a model with i.i.d. observations and a continuous θ,
where the posterior becomes:

p(θ|y) =

[∏N
n=1 p(yn|θ)

]
p(θ)∫ [∏N

n=1 p(yn|θ)
]
p(θ)dθ

. (1.8)

Each data point adds a likelihood term which removes an area of density from the
prior. The marginal likelihood normalises the model, causing the mass to concentrate
around a point6. In situations like these the posterior can often be well approximated
by a single point mass, obtained from maximising the posterior density. In practice,
we will make this approximation when performing model comparison.

The models we consider in this work will have many (or rather, an infinite number
of) parameters (w above), so we can not expect the posterior p(w|y, θ) to be peaked,
making correct Bayesian inference important. However, we will only perform model
comparison on a small number of models, or between models that are continuously
parameterised by only a few parameters, so the posterior p(θ|y) is likely to be well-
approximated by a point mass. The example in figure 1.1 is actually rather unusual in
that the two models have a similar posterior probability. In many cases, the posterior
probabilities quickly concentrate on a single model, so that only the most probable
has any appreciable influence on the final predictions. This is discussed in detail in
MacKay [1999] and Rasmussen and Williams [2005, §5.2].

6Assuming the likelihood doesn’t contain equivalent values for different parameter settings.
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1.2 Learning mappings with Gaussian processes

Like the regression problem in the previous section, many learning problems can be
reduced to learning about a mapping from a space of inputs X to a space of outputs
Y. In classification Y is a set of discrete values (e.g. a number representing a digit),
while in regression it is continuous (e.g. the state of a dynamical system in the future).

If we want to use the Bayesian framework, the mapping has to be represented as a
random variable, with our current state of knowledge represented as its distribution.
We start by first defining a prior distribution consistent with our beliefs, and then learn
by updating our beliefs after observing data using Bayes’ rule. Gaussian processes
(GPs) are a class of distributions over functions which can be used for representing prior
and posterior beliefs over mappings for the applications mentioned above [Rasmussen
and Williams, 2005].

Over the next few sections we will review how to manipulate Gaussian process
priors and posteriors, and relate them to other common machine learning models. A
more in-depth discussion can be found in Rasmussen and Williams [2005]. In this
discussion, however, we want to emphasise the connection to stochastic processes and
finite basis function models. The stochastic process view in particular has recently
gained traction after Matthews et al. [2016] showed it to be more clear and precise for
describing approximate inference in Gaussian processes. Gaussian processes have been
discussed in this way before in the context of machine learning, notably by Seeger [2003,
2004], although this generally requires more mathematical machinery (such as measure
theory), making it less accessible. Here we aim to present without any measure theory,
while still emphasising the stochastic process nature of the model.

1.2.1 Basis function models

In order to learn mappings with Bayesian inference, we must first consider how to
place prior distributions on them. Functions can be represented conveniently as a sum
of basis functions. We can define a family of functions by taking some simple functions
as building blocks7, and weighting them together:

f(x) =
M∑

m=1
wmφm(x) . (1.9)

7For this example, we use “squared exponential” basis functions of the form φm =
s2 exp

(
− 1

2 (x − c)2). The chosen basis functions have a big influence on the properties of the re-
sulting function.
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Almost all statistical and machine learning models can be interpreted as representing
functions this way, from linear models [Seal, 1967] and the earliest neural networks
[Rosenblatt, 1958] to deep learning models [e.g. Krizhevsky et al., 2012] and Gaussian
processes [Rasmussen and Williams, 2005]. Learning entails modifying the weights
{wi} such that the resulting function fits the data. Figure 1.2 shows an example of
basis functions being weighted to create some complex function.

Fig. 1.2 Example of unweighted basis functions (left) and their combination into some
more complex mapping from X to Y (right, combination in red, with its basis function
components in the same colours as left).

Priors

Given the representation of functions in terms of basis functions, we can define a
distribution over functions by placing a prior over the weights. We can equivalently
view the weights {wi} or the entire function f(·) as a random variable, and we can
obtain their posteriors through Bayes’ rule. We can start with an independent Gaussian
distribution for the weights:

p(w) = N
(
w; 0, σ2

wI
)

. (1.10)

While we can easily represent distributions over a finite number of weights, it requires
more careful measure theory to correctly handle random variables in the space of
functions. However, it is important to note that the concept of the latent function as a
random variable is a useful one. In this instance, manipulating the distribution on the
weights is equivalent to manipulating the distribution over functions.

As discussed in section 1.1, the properties of the prior distribution need to match
our prior beliefs about what functions we are likely to encounter. We will see more
examples later, but in our current model we can adjust the properties of the functions
by changing the basis functions or p(w). Choosing a larger σw for example would place
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higher probability on functions with large values. Viewing samples is a great way to
convey the properties of functions that are likely under our chosen prior (figure 1.3).

It is also worth pointing out that when using a finite number of basis functions only
a limited selection of functions can be represented. When using M basis functions, we
can only freely specify the function value at M points, after which the weights are
fully specified. All functions that are outside the span of our basis functions cannot
be represented, and therefore are outside the prior. From equation 1.2 it should be
clear that functions that are not in the prior, can also not be in the posterior, and can
therefore not be learned. To guarantee a good performing model, we need to ensure
that the prior is rich enough to contain functions (close to) the function we want to
learn.

Posteriors

Next, we find the posterior of the weights after observing data. We assume our
observations of the underlying function are corrupted by Gaussian noise. The likelihood
can be formulated as either depending on the function value, or equivalently the weights:

p(yn|f(xn)) = N
(
yn; f(xn), σ2

)
, (1.11)

p(yn|w, xn) = N
(

ym;
∑
m

wmφm(xn), σ2
)

. (1.12)

We find the posterior through Bayes’ rule, and we can visualise samples in figure 1.3.

p(w|y) =
∏

n p(yn|w, xn)p(w)
p(y) . (1.13)

We see that posterior draws all go near the observed data points, and in regions where
few data points are, there is more variation in what the functions do, since the weight
of the basis function in that location is not constrained.

Hyperparameters & marginal likelihoods

The posterior over weights is only a partial solution to the problem, as we are also
uncertain about the properties of the prior or likelihood, and we want to infer these
properties from data as well. We collect the parameters that the model depends on, for
example the number of basis functions M , the scale of the functions σw, and the noise
σ in the hyperparameters θ, and infer these, again using Bayes’ rule and the marginal
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Fig. 1.3 Samples from the prior and posterior for a model with 10 basis functions. The
posterior mean is shown in blue, and the blue shaded regions show the marginal 1 and
2 standard deviations of the posterior.

likelihood:
p(θ|y) = p(y|θ)p(θ)

p(y) . (1.14)

While technically this posterior cannot be simplified, and we will need to make
predictions by integrating over both θ and w, we will in practice choose a single
θ to work with. This is well justified in the case where there are few hyperparameters,
since the posterior for θ only will be dominated by the marginal likelihood p(y|θ) at its
maximum [MacKay, 1999; Rasmussen and Williams, 2005, §5.2]. The posterior p(θ|y)
can then be approximated by a delta function. This greatly simplifies prediction, as it
now only requires a single integral over the Gaussian w:

p(θ|y) ≈ δ(θ − θ̂) θ̂ = argmax
θ

p(y|θ) , (1.15)

=⇒
∫

p(y∗|w)p(w|y, θ)p(θ|y)dθdw ≈
∫

p(y∗|w)p(w|y, θ̂)dw . (1.16)

1.2.2 Notation

For the following, we will introduce notation that we will use throughout the rest of
this thesis. We will be interested in regression and classification problems. Both have
an input space of RD. Outputs for regression outputs are in R, while for classification
they are natural numbers indicating the class. We collect the N input vectors {xn}N

n=1

in the matrix X ∈ RN×D, and denote the vector of observations at this point as f(X)
or f for short. We also collect the evaluations of all basis functions for an input x in
the vector φ(x), and for a collection of inputs X in the matrix Φ(X). We will predict
at a point x∗ or points X∗, giving the vector of function evaluations f(X∗) or f∗.
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1.2.3 From basis functions to function values

In the previous section we saw that a distribution over weights implied a distribution
over functions, and that we can perform inference over the weights to perform inference
over the functions. We were interested in the posterior over the weights, since it was
sufficient for calculating predictions and the marginal likelihood. Here we show that
we can find both the posterior for new points f(X∗), and the marginal likelihood by
only considering the joint distribution of function evaluations. This side-steps any
manipulations of distributions on the weights.

Prior over function values

In order to obtain the posterior over f(X∗), we first need to obtain their prior, joint
with the points required for the likelihood. We start with the deterministic relationship
between f(X) and w:

f(X) =
[
f(x1) f(x2) · · ·

]T
=
[
wTφ(x1) wTφ(x2) · · ·

]T

= Φ(X)w . (1.17)

So we can get the joint distribution over any set of function points X by integrating:

p(f(X)) =
∫

p(f(X)|w)p(w)dw

=
∫

δ(f(X) − Φ(X)w)p(w)dw

= N (f(X); µ, Kff) . (1.18)

Where the mean and covariance of the distribution are given by:

µ = Φ(X)Ew[w] = 0 (1.19)
Kff = Covw[Φ(X)w] = Φ(X)Ew[wwT]Φ(X)T

= σ2
wΦ(X)Φ(X)T . (1.20)

Φ(X)Φ(X)T is the matrix containing all pairs of inner products of basis-function
evaluation vectors φ(x). We can alternatively view each element of Kff as being
evaluated by a function giving the inner product between the feature vectors of two
points. This function k : RD × RD → R is named the kernel or covariance function
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(more details later), and in this case is given by:

k(xi, xj) = [Φ(X)Φ(X)T]ij = φ(xi)Tφ(xj) =
B∑

b=1
φb(xi)φb(xj) . (1.21)

In general we denote the covariance of the distribution of the N function values f(X)
(or f for short) with Kff ∈ RN×N . Through the same argument as above, we can also
get the joint covariance between two separate vectors of function values, e.g. f(X) and
f(X∗), denoted by K(f ,f∗)(f ,f∗). The covariance between f(X) and f(X∗) will be given
denoted by Kff∗ and is the N × N∗ sub-matrix of K(f ,f∗)(f ,f∗).

Posteriors and predictions

We now have our equivalent prior to the one defined in weight space. If we consider the
joint prior for function values of the inputs we observe, plus those we want to predict
at, we can get the posterior and predictive distribution in one go:

p(f(X), f(X∗)|y) = p(y|f(X))p(f(X), f(X∗))
p(y)

= p(y|f(X))p(f(X))
p(y) p(f(X∗)|f(X)) (1.22)

= p(f(X)|y)p(f(X∗)|f(X)) . (1.23)

Interestingly, we see that by applying the product rule8 to the joint prior (left hand
side) we can split the joint posterior into the posterior for the observed function values,
and the points we want to predict at. This means that we can get the posterior over any
set of new inputs simply from the posterior over f(X)!9 In a sense, this gives us access
to properties of the distribution over the entire latent function, just as the posterior
over w did. This isn’t odd, since the way we constructed the prior p(f(X), f(X∗))
meant that it had a consistent function underlying it.

8The exact form of the conditional Gaussian p(f(X∗)|f(X)) can be found in Rasmussen and
Williams [2005, p.16].

9Kernel Ridge Regression (a similar non-Bayesian technique), has the similar property that the
“optimal” solution can be represented with basis functions centred only at the observed points. This
is known as the Representer Theorem [Kimeldorf and Wahba, 1970]. Csató and Opper [2002] also
note this link.
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1.2.4 Gaussian processes

So far, we have specified priors over functions indirectly by specifying a prior distribution
over weights in a basis function model. We saw that either the posterior over the
weights or over the observed function values was sufficient for making predictions over
any point on the rest of the latent function. One advantage of the function-value view
is computational, if the number of basis functions is large enough. Manipulating a
Gaussian posterior incurs a cost that scales with the cube of the number of variables
considered. So if there are fewer data points than basis functions, there will be a
computational speed-up.

From marginal distributions to functions

We argued that because we could define the prior over an arbitrarily large set of function
values, we had a handle on the distribution of the overall function. This argument is
mathematically formalised by the Kolmogorov extension theorem. Informally10, the
theorem states that if one can define joint distributions on finite subsets of some input
space X which are all marginally consistent, then there exists a probability measure
of the whole space. By marginally consistent, we mean that we obtain the same
distribution if we directly define a joint over some set of points, as if we first define a
distribution over a larger set, and then marginalise out the appropriate variables:

pmarginal(f(X)) =
∫

p(f(X), f(X∗))df(X∗) = pdirect(f(X)) . (1.24)

The beauty of this is that it shows that our basis function model does in fact
define a distribution over entire functions. Marginal consistency simply comes from
the property of the Gaussian distribution that marginalisation of a variable entails
dropping the corresponding row and column from the mean and covariance.

Additionally, this view leads to a different method of specifying distributions over
functions. In the previous section, the covariance function k(x, x′), and matrix Kff

were constructed from a basis function model. The Kolmogorov extension theorem
above implies that this construction is redundant. It is equally valid to specify some
function k(x, x′) directly, and it will specify a distribution over functions, provided
the distributions it implies over finite dimensional marginals are consistent. We call
this “distribution over functions” with Gaussian marginals a Gaussian process. It is
completely defined by its covariance function k(x, x′) and mean function µ(x), which

10For a formal discussion focused on GPs, see Matthews [2016], or Seeger [2004] for something in
between.
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determines the means of the marginal Gaussian distributions11. We will denote a
function distributed according to a Gaussian process as

f ∼ GP(µ(x), k(x, x′)) . (1.25)

And, as discussed, the distribution over N function values f(X) at inputs X will be
Gaussian distributed:

f(X) ∼ N

f(X);


µ(x1)
µ(x2)

. . .

µ(xN)

,


k(x1, x1) k(x1, x2) . . . k(x1, xN)
k(x2, x1) k(x2, x2) . . . k(x2, xN)

... ... . . . ...
k(xN , x1) k(xN , x2) . . . k(xN , xN)



 . (1.26)

Above, we connected the prior over function values to a Gaussian process over
functions. If we assume the regression case with the Gaussian likelihood

p(y|f(X)) =
N∏

n=1
p(yi|f(xi)) =

N∏
n=1

N
(
yi; f(xi), σ2

)
, (1.27)

we get a Gaussian posterior p(f(X), f(X∗)|y) from equation 1.23.12 We can work
backwards from this to find that the posterior implies a Gaussian process as well:

f(x∗)|y ∼ GP
(

kf∗f
(
Kff + σ2I

)−1
y, Kf∗f∗ − kf∗f

(
Kff + σ2I

)−1
kff∗

)
. (1.28)

Kernels & basis functions

From this function space view, we specify the properties of the latent function through
the covariance/kernel function, instead of the number and shape of the basis functions
and prior over the weights. Properties like differentiability, expected change over a
distance and periodicity can all be determined – see figure 1.4 for some samples from
different kernels.

Kernels can not just be constructed from explicit feature spaces, but feature spaces
can also be specified by a kernel. Mercer’s theorem [Rasmussen and Williams, 2005,

11The mean function of the Gaussian process constructed by the basis function model was constantly
zero. All derivations follow through with non-zero means, as the marginal consistency property is
unchanged.

12See Rasmussen and Williams [2005, p.16] for the full expressions.
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Fig. 1.4 Samples from a squared exponential (blue), Matérn-1/2 (orange), and periodic
squared exponential kernel (green).

§4.3] states that any kernel can be written as an infinite series summation:

k(x, x′) =
∞∑

i=1
λiφi(x)φ∗

i (x) . (1.29)

For many kernels, λi = 0 for i being greater than some B, showing that a kernel can be
written as an inner product between vectors, as is the kernel constructed from a feature
space explicitly in equation 1.21. The number of non-zero λis determines how many
basis functions the Gaussian process effectively has. Interestingly, certain kernels have
B = ∞, implying an infinite number of basis functions. These kernels are said to be
non-degenerate and imply a non-parametric model. In fact, if we take the limit of an
infinite number of basis functions in section 1.2.1, we obtain a Gaussian process prior
with the “squared exponential” (SE) kernel [Rasmussen and Williams, 2005, §4.2.1]:

ksqexp(x, x′) = σ2
f exp

(
−

D∑
d=1

(xd − x′
d)2

2l2
d

)
. (1.30)

1.2.5 How many basis functions?

So far, we saw that Gaussian processes can be specified by their basis functions and
weight prior, or directly using a kernel, and that kernels can imply an infinite number of
basis functions. But how many basis functions do we need, and what is the advantage
of having an infinite number? The number of basis functions influences both:

• the range of functions that the Gaussian process can learn,

• the predictive uncertainties of the posterior.
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Fig. 1.5 Prior conditionals for a 5 basis function model. The shaded regions indicate
the variance of p

(
f(xn)|{f(xi)}n−1

i=1

)
.

Limited capacity of finite basis function models

Models with a finite number of basis functions can only produce a finite number of
linearly independent functions. This is a very restricted set, so it is easy to construct
functions which lie outside this prior distribution. We will illustrate this in both the
weight and function value view. We start by noting that the probability of observing
the function values f(X) under the prior p(f(X)) can be expanded as

p(f(X)) = p(f(x1))p(f(x2)|f(x1))p(f(x3)|f(x2), f(x1)) . . .

=
∏
n

p
(
f(xn)|{f(xi)}n−1

i=1

)
. (1.31)

This shows that we can analyse the prior and calculate the probability density of a set
of function values by the one dimensional prior conditionals. In figure 1.5 we visualise
the prior conditionals for an increasing set of points we condition on. We see that after
conditioning on 5 points, the variance of p

(
f(x6)|{f(xi)}5

i=1

)
becomes zero, indicating

that any function with any function value that is not predicted has zero probability
under the prior.

We can analyse this behaviour in more generality by considering either the posterior
over the weights p(w|f) or the prior p(f) directly. We can find the posterior for
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the weights by writing the deterministic relationship between the weights w and the
function values f from equation 1.17 as a delta function likelihood:

p(w|f) = p(f |w)p(w)
p(f) = δ(f − Φ(X)w)N (w; 0, σ2

w)
p(f) . (1.32)

The resulting posterior is the prior density projected onto the plane f − Φ(X)w = 0:

p(w|f) = N
(
w; Φ(X)T(Φ(X)Φ(X)T)−1f , σ2

w

(
I − Φ(X)T(Φ(X)Φ(X)T)−1Φ(X)

))
.

(1.33)

Each new observation gives another linear constraint on w, until we have M obser-
vations, when the variance of p(w|f) becomes zero. At this point, there are no more
degrees of freedom in the prior and function values are either consistent with the others,
or the prior does not contain a function which can pass through the required points.

This same insight can be gained from the prior p(f) directly. The covariance is given
by Kff = σ2

wΦ(X)Φ(X)T from equation 1.20. This covariance matrix has a maximum
rank of M since Φ(X) ∈ RN×M . As a consequence, if we consider more points than
basis functions (N > M), it will necessarily have a zero eigenvalue. Any vector of
function values f with a component in the corresponding eigenvector, will have zero
density under the prior.

Using infinite basis functions

In the previous section we saw that a finite basis function model only has enough
degrees of freedom for the function to be fully specified at a finite number of points.
This leads to the question of how many basis functions to use in a model. A model
with a small number of bases can be expected to fit model a small dataset well, with
more basis functions being needed as more data arrives, and more complex structure
is observed. If the number of bases is treated as a hyperparameter, the marginal
likelihood could be used for model selection. Rasmussen and Ghahramani [2001] show
that this procedure is unsatisfactory, as the marginal likelihood does not distinguish
between models once enough basis functions are added. Furthermore, they show that
in this regime, it is the shape of the basis functions and the prior over their weights
that is distinguished by the marginal likelihood. Because of this, they argue that the
convenient and correct way to choose the number of basis functions, is to take an
infinite number of them. This also makes sense when considering the case of modelling
a single phenomenon, but with an increasingly large dataset. We expect a single model
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to explain the phenomenon, since the size of the dataset does not change the process
we are trying to model. Using the marginal likelihood to determine the size of the
model makes our inference depend on a detail that is irrelevant to the phenomenon we
are actually modelling. This also leads to a contradiction with the Bayesian framework,
where the prior distribution should be consistent with our beliefs, and determined
before observing any data, as we a-priori believe each finite basis function model will
be falsified after observing enough data, since none of them will contain the exact
function of interest, which would require us to place a 0 prior probability on them.

Often, the consequence of having a prior which has such a broad coverage of
functions, is that the method will be universally consistent [Rasmussen and Williams,
2005, §7.1,§7.2], meaning that any function can be approximated to arbitrary precision.
Not all kernels with an infinite number of basis functions exhibit this property (we see
an example of that in chapter 5), but many common ones like the squared exponential
(equation 1.30) do. These kernels are named universal [Micchelli et al., 2006]. Working
with consistent algorithms can be very desirable, since we are guaranteed to improve
to an optimal result as we observe more data.

Influence on uncertainty

It may also be dangerous to use a limited number of basis functions from the point of
view of getting good predictive uncertainties. In figure 1.3 we see that the predictive
uncertainties decrease outside the range [2 . . . 8], in both the prior and posterior.
Without a basis function in a location, the model is blind to the fact that it may be
uncertain to what is going on there. This is also illustrated by the zero eigenvalues in
Kff which arise from parametric models. The model not only cannot learn functions
that lie in that subspace, but it can also not represent uncertainty in these directions.

By taking the infinite limit, resulting in the squared exponential kernel, we get the
more sensible error bars seen in figure 1.6. Sensible error bars in data-sparse regions can
be very important not just for avoiding over-confident predictions, but also for assessing
how much there is to learn. Particularly reinforcement learning algorithms [Deisenroth
and Rasmussen, 2011] have a need for accurate uncertainties, as this indicates how
much more could be to learned, which helps to create robust control policies and for
guiding exploration.
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Fig. 1.6 Samples from the prior and posterior over functions for a squared exponential
kernel with infinite basis functions. The posterior mean is shown in blue, and the blue
shaded regions show the marginal 1 and 2 standard deviations of the posterior, and
samples in green.

1.3 Why approximate non-parametric models?

The previous sections described the advantages of the Bayesian framework and using
non-parametric models. The Bayesian framework is desirable because it provides a
unified way of:

• Learning under uncertainty caused by lack of data by using posterior
distributions to represent uncertainty.

• Selecting or inferring assumptions or properties of a model through hy-
perparameter optimisation of the marginal likelihood, or joint Bayesian inference.

Non-parametric models fit particularly well within this framework, both practically
and philosophically, as they provide:

• A sound way of modelling phenomena, irrespective of dataset sizes.
When considering an increasingly large training dataset, non-parametric models
avoid the problem of needing to change the model prior by adding modelling
capacity (in this case, basis functions) to deal with the increasing complexity
that has been revealed.

• A way to ensure correctly large uncertainty estimates in regions with
little data. The limited capacity of parametric models causes weight uncertainty
to be insufficient for representing uncertainty where there is no data, as there
is no incentive to place basis functions that are unconstrained by the data in
those regions. And if there is no basis function, there can be no variation in the
function.
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This thesis is concerned with developing practical methods which do not sacrifice the
benefits from either the Bayesian or the non-parametric modelling approaches. In order
to obtain practical methods we follow earlier work which approximates the posteriors
of non-parametric Gaussian processes with a limited number of basis functions. Now,
it may seem strange to go through a lot of effort to set up a model with an infinite
number of basis functions, only to approximate it with a limited number again. Is this
not equivalent to using a finite model in the first place?

As we will see in followings sections, there is a difference between a finite approxi-
mation to a non-parametric model, and a parametric model. It is possible to maintain
the desirable properties discussed above in approximations which have much lower
computational cost, while either maintaining the desired benefits, or at least having an
indication that the approximation has failed.

1.4 Main contributions

In this thesis, we are interested in assessing and improving the state of approximations
in non-parametric Gaussian process models. We summarise the contributions of each
chapter:

Chapter 2 We review the main sparse approximations in Gaussian processes, and
propose a list of desiderata for approximations to non-parametric models.

Chapter 3 We evaluate two popular Gaussian process approximations – FITC and
VFE – and examine their behaviour in detail. We show that FITC, while being
a usable machine learning method, has some pathologies which raise questions
about its suitability for approximating GP models. We additionally discuss
the consequences of the VFE objective also being a lower bound to the FITC
marginal likelihood.

Chapter 4 We extend inter-domain Gaussian process approximations to give them
more basis functions for the mean, at a lower cost compared to traditional
inducing point approximations. We show that, while the extra capacity can
improve performance, the lack of flexibility in the approximate covariance hinders
hyperparameter selection, which limits the usability of the approximation in
some cases. We do show practical use for compressing GP models, by showing
improved predictive performance for limited storage space.
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Chapter 5 We introduce an inter-domain approximation for effectively performing
inference in Gaussian process models with invariances encoded into their priors.
We use this technique to build a non-parametric convolutional Gaussian process
priors and show their use in improving the classification of images. We also
discuss the relation of convolutional Gaussian processes to convolutional neural
networks, particularly as an infinite limit.

Chapter 6 We address some pedagogical issues regarding random-input GPs and
Gaussian process State Space Models (GPSSMs) in particular.

Chapter 7 We review our contributions, and discuss them in relation to the wider field
of machine learning.





Chapter 2

Sparse Gaussian process
approximations

Although Gaussian processes have many desirable properties from a modelling point
of view, they become computationally intractable to manipulate for even moderately
sized datasets. Interestingly, the source of the intractability in GP models is orthogonal
to the usual reasons posteriors may be intractable (mentioned in section 1.1.4). This is
best illustrated by Gaussian process regression [Rasmussen and Williams, 2005, §2.2],
and we will take this as a running example. Although the distributions of interest
(i.e. the marginal likelihood, posterior, predictive and even the prior), are all Gaussian
and analytically tractable, they become computationally intractable because they and
their derivatives contain matrix operations1 costing O(N3), where N is the number
of observations on the GP. In order to circumvent this prohibitive computational
constraint, low-rank approximations have been developed which aim to approximate
the full Gaussian process without having to perform O(N3) operations. In most cases,
this involves approximating Kff by a rank M < N matrix which can be manipulated
in O(NM2). Generally, these methods can be seen as learning about a small number
(M) quantities that are highly informative of what the posterior Gaussian process
is doing more globally. Ferrari-Trecate et al. [1999] and Williams et al. [2002] gave
evidence showing that GPs could be well approximated this way (also discussed in
Rasmussen and Williams [2005, §7.1]). These quantities can be the weights of explicit
basis functions [Lázaro-Gredilla et al., 2010; Rahimi and Recht, 2008], the function
value at certain input locations [Quiñonero-Candela and Rasmussen, 2005; Titsias,

1Specifically, a log determinant and matrix inversion for Kff , or alternatively, a single Cholesky
decomposition of Kff .
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2009b], or more abstract representations [Lázaro-Gredilla and Figueiras-Vidal, 2009]
related to the Gaussian process.

In the following sections we will discuss several methods that have been proposed
to approximate Gaussian processes. We will refer to the target of our approximation
as the “exact” Gaussian process, which will be a Gaussian process with some given
non-degenerate kernel function k(x, x′). We will discuss each of the approximations in
relation to some desiderata.

2.1 Desiderata for non-parametric approximations

In the previous chapter, we laid out the advantages of the Bayesian framework for
machine learning, and non-parametric models. However, given realistic computational
constraints, we need to make approximations in order to get usable answers. In this
thesis, we are interested in approximations which allow us to retain the advantages of
the Bayesian approach, and non-parametric Gaussian processes. To retain advantages
of Bayesian methods, we mainly want to be able to separate the effects of the prior
modelling assumptions and the approximation, so we can use marginal likelihoods for
model comparison and as a guide to build new models.

For Gaussian process models, we believe that these advantages are maintained if
an approximation satisfies the following desiderata. We desire that approximations to
non-parametric Gaussian processes:

1. Allow for some form of assessment of the distance to the exact solution (of both
the posterior and marginal likelihood), within the same computational budget as
finding the approximation.

2. Recover the exact solution increasingly well given more computational resources,
and ideally exactly in some limit.

3. Obtain error bars that behave as the non-parametric model.

We accept that these requirements may preclude some methods which can be very
practically useful in certain situations. However, we believe these requirements to be
essential for obtaining the advantages outlined earlier. We will discuss each desideratum
in turn to explain its necessity.

Assessment of the approximation As mentioned earlier, GP approximation meth-
ods use M quantities to summarise the approximation. This number allows the compu-
tational requirements to be traded off against accuracy. This value needs to be chosen,
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and it should be set to the smallest value possible. To set this free parameter in a
principled way, we need to quantify how good the approximation is for a given M , and
whether it would be useful to increase it at all. Therefore, we would like some way to
quantify the distance to the exact solution. For this quantity to be practically useful,
it also needs to be computable at roughly the same cost as the approximation itself. A
measure relying on computation of the intractable exact solution, for example, is not
useful.

Recovery of the exact solution As more resources are added, we want the be-
haviour of the approximation to grow closer to the exact solution, ideally monotonically.
Firstly, this guarantees that adding computational resources gives a better answer,
even when desideratum 1 is not satisfied. Secondly, this indicates that an improvement
in performance that is observed after improving the approximation can be attributed
to qualities that the exact solution possesses.

If the approximation diverges from the exact solution, it is not suitable for use
within the Bayesian framework, even if it achieves good performance. A central part of
Bayesian analysis, is to perform model comparison to check whether prior assumptions
made in the model are compatible with the observations. If the approximation does
not accurately recover the true posterior and marginal likelihoods, any good or bad
performance may be more attributable to deviations introduced by the approximation,
rather than assumptions made in the prior. Later in this thesis we will see an
approximation which perform well in certain cases, but not because it accurately
resembles the desired solution.

Non-parametric uncertainties One large advantage of some fully non-parametric
Gaussian processes, is that their error bars grow far away from the data (see section 1.2.5
& figure 1.6), avoiding overconfidence if the model is faced with a prediction task from
e.g. a different input distribution. We would like to keep this property in addition to
good approximations of the marginal likelihood and posterior on a test set.

In the following sections, we will review some existing approximations and assess
them based on the above desiderata.
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2.2 Explicit feature representations

2.2.1 Random feature expansions

While earlier (section 1.2.3) we saw the advantages of working with kernels rather
than with the basis functions directly, Rahimi and Recht [2008] suggest that randomly
chosen features with a carefully chosen distribution can give rise to a kernel that is very
close to some desired kernel. The idea comes from Bochner’s theorem (see Rasmussen
and Williams [2005, §4.2.1]), which (informally) states that any stationary kernel has
a positive and normalisable Fourier transform. With appropriate rescaling, the Fourier
transform can be interpreted as a density, which can then be sampled from. The
resulting features will be sines and cosines with random frequencies. Rahimi and Recht
[2008] prove the following statement (reproduced, but adapted to the notation used
here):

Theorem (Uniform convergence of Random Fourier features). Let M be a compact
subset of Rd with diameter diam(M). Then for the mapping to the feature space φ(·)
obtained from the random features, the following holds:

P
(

sup
x,y∈M

|φ(x)Tφ(x′) − k(x, x′)| ≥ ϵ

)
≤ 28

(
σpdiam(M)

ϵ

)2

exp
(

− Dϵ2

4(d + 2)

)
(2.1)

Where diam(M) is the supremum over distances between pairs of points in M, σp is
the variance of the distribution where the random frequencies are sampled from, D is
the number of feature vectors and d is the dimensionality of the input space.

This is a great result, showing that it is highly likely that within some limited
region M, evaluations of the approximate kernel will lie close to their true value. Le
et al. [2013] provide algorithmic improvements and show that good performance can be
obtained with few basis functions. In some cases the approximation even outperformed
the exact method.

2.2.2 Optimised features

Lázaro-Gredilla et al. [2010] present a different take on this idea, pointing out that the
random features also can just be seen as defining a new kernel, which is parameterised
by the chosen frequencies. While Rahimi and Recht [2008] take the view that the
approximation is exact in the limit of infinite samples, Lázaro-Gredilla et al. [2010]
choose to view these frequencies as kernel hyperparameters which can be optimised
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over to fit the data better. This “Sparse Spectral Gaussian process” squeezes out extra
performance per basis function, at the expense of optimisation during training.

2.2.3 Desiderata

Both methods essentially work by introducing a new parametric model that makes
some concessions to key properties of the original model. Both methods have lost
their non-parametric error bars. Because of the sinusoidal basis functions, all functions
in the posterior will be periodic, resulting in locations far from the data where the
variance collapses to what it is near the data and the function repeats itself. If enough
basis functions are used, the periods can be made large enough such that this won’t
pose a practical problem. However, this may be hard to assess, particularly in high
dimensions. Regardless of practical ways to mitigate this issue, this is a qualitative
difference the approximation introduces, which would be nice to avoid.

The random feature expansion monotonically improves given more features, and is
guaranteed to converge to the true model in the limit of infinite features. The bound
on the deviation of the kernel is easily computable, but a bit limited since the posterior
depends on Kff inverse, while the bound only guarantees things about elements of Kff .
Additionally, the guarantee only holds for points within diam(M).

Optimising the features removes these guarantees. While the advantage is a more
compressed representation (more performance for less basis functions), Lázaro-Gredilla
et al.’s [2010] approximation does not get closer to the original kernel with more basis
functions. The method is better seen as a new model in itself.

We emphasise though, that pointing out these “flaws” does not constitute an
argument against the impressive practical utility of these algorithms. However, these
properties are important within the question of this thesis of how well posteriors of
non-parametric Gaussian processes can be approximated, and which properties get
preserved.

2.3 Inducing point approximations

In inducing point approximations, the M quantities that are learned are function values
(inducing outputs) at specific input locations (inducing inputs), rather than the weights
of some basis functions. In section 1.2.3 we saw that, strictly speaking, the posterior
for all observed function values is needed to make predictions, and that a small set of
M quantities is not sufficient. The main intuition that underpins this approximation,
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Fig. 2.1 An example of a posterior obtained from many noisy observations (left) and
from very few noiseless observations (right), on Snelson and Ghahramani’s [2006]
commonly used dataset. The two posteriors are visualised with their means and 1 and
2 σ credible intervals, and are almost identical.

is that there is a lot of redundant information in representing the distribution of many
function values with noisy observations in the same region. Because the GP prior
places such strong constraints on what values neighbouring outputs can take, such a
distribution would be represented almost as well by learning very well about a single
point and then using the prior to constrain the distribution on neighbouring points
(figure 2.1). The goal for the approximation method then becomes: “what M inputs and
strongly constrained outputs would result in a posterior close to the true GP posterior?”

Over the next few sections, we will review different views on inducing point
approximations, and some of the methods that have been proposed.

2.3.1 As likelihood approximations

Inducing point approximations can be created using a similar approach as in the
previous section: by introducing an approximate model with the desired computational
properties, which in some way has properties similar to the exact model. Seeger et al.
[2003] and Snelson and Ghahramani [2006] presented inducing point approximations
based on approximations to the likelihood.

They started by concentrating on obtaining the posterior over M inducing points,
based on the observation that this would at least speed up predictions. Even within
the framework of exact Gaussian processes, this is a completely valid question to ask
the model. We are simply querying the posterior over the full latent function at some
marginals, determined by the inputs Z:

p(f(Z)|y, X) = p(y|f(Z), X)p(f(Z))
p(y|X) . (2.2)

Following on the notation from the previous chapter, we refer to f(Z) as u for short.
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The likelihood p(y|f(Z)) has to be obtained by marginalising over f(X). For
regression, this is analytically tractable and gives the following likelihood and posterior:

p(y|u, X) =
∫ ∏

i

p(yi|fi)p(f |u, X, Z)df (2.3)

= N
(
y; KfuK−1

uuu, Kff − KfuK−1
uuKuf + σ2I

)
, (2.4)

p(u|y, X) = N
(

u; Kuf (Kff + σ2)−1y, Kuu − Kuf
(
Kff + σ2I

)−1
Kfu

)
. (2.5)

Finding this smaller posterior still does not remove the large burden of dealing with
an N × N matrix. The first approximation is introduced in the likelihood of u, as a
factorisation constraint over each observation. The resulting “approximate” likelihood
is denoted by q(y|u):

q(y|u, X) = N
(
y; KfuK−1

uuu, diag[Σ] + σ2I
)

. (2.6)

With application of the Woodbury matrix identity, an inversion of a full N × N matrix
is avoided, resulting in the desired computational saving. Different approximations
will have different values for Σ, which will be discussed later.

2.3.2 As model approximations

Quiñonero-Candela and Rasmussen [2005] present an alternative, unifying view on
the “likelihood approximation” view. Instead, they show that the approximations can
be seen as performing exact Bayesian inference, only with a modified prior and the
original likelihood. In addition to providing a unified framework to compare these
methods, this interpretation is also more natural since it allows the modified prior
to be analysed while retaining the well-developed intuition about the i.i.d. Gaussian
likelihood.

The unifying view shows that all methods can be constructed by a generative
process that samples the inducing outputs u first, followed by independent draws for
the training f and testing values f∗ (figure 2.2). In all approximations, u is drawn from
the exact prior. The approximations differ, and are characterised by their training
conditional q(f |u), and testing conditional q(f∗|u), which can be derived from the
approximate likelihood view and the proposed prediction procedure.

The most powerful insight gained from this unifying view, is that the GP approxi-
mations can themselves be seen as models in their own right, where exact inference is
performed. The Gaussian conditionals imply a Gaussian joint prior p(f , f∗), where the
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u

fi f∗

yi

N

Fig. 2.2 Independence assumptions for approximate sparse GP models.

conditional independence property implies that inference over the M inducing variables
u is sufficient for predicting the points f∗.

Two approximations discussed in Quiñonero-Candela and Rasmussen [2005] are of
particular interest in the context of this thesis: the Deterministic Training Conditional
(DTC), and the Fully Independent Training Conditional (FITC). We will summarise
these methods, following the unifying framework, while discussing their properties in
relation to our desiderata from non-parametric approximations.

2.3.3 Consistency with an approximate GP

Although the sparse GP approximations can definitely be seen as performing exact
inference with some finite-dimensional Gaussian, one can ask the question whether the
procedure is also performing inference in a Gaussian process model. For this to be the
case, the implied joint prior p(f , f∗) has to be marginally consistent in the sense that
was laid out in section 1.2.4. In sparse models with the structure in figure 2.2, this
boils down to requiring identical training and inducing conditionals. To show this, we
can simply consider the marginal distribution of the function at some inputs X.2 If
this depends on whether they are considered a training or testing points, i.e. whether
they are in f or f∗, then there is no consistent distribution over latent functions linking
f and f∗. ∫

qtraining(f(X)|u)p(u)du ?=
∫

qtesting(f(X)|u)p(u)du (2.7)

The marginals will only be consistent if qtraining equals qtesting.
2Here we depart from the notation of f = f(X) and f∗ = f(X∗) as the function outputs at training

and testing inputs, in order to explicitly highlight that we’re considering some arbitrary input x as
either a testing or training point.
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It is not necessarily a practical problem if the marginals are not consistent and the
method cannot be seen as performing exact inference in a modified Gaussian process.
Regardless of what the method is to obtain a posterior distribution over u, a valid
Gaussian process over predictions will be induced by the testing conditional. However
one can wonder why a predictive model would work well with the posterior of a different
model. This definitely is not true in general (imagine applying a posterior over weights
to a model with different basis functions), however in the following approximations the
difference between training and testing conditions are not too severe.

2.3.4 Deterministic Training Conditional (DTC) approxima-
tion

The Deterministic Training Conditional approximation was originally introduced by
Seeger et al. [2003]. The method was introduced using a deterministic link between
the inducing outputs u and the points required by the likelihood f , hence its name.
The training conditional can be written as

q(f |u, X) = N
(
f ; KfuK−1

uuu, 0
)

. (2.8)

Due to this deterministic nature, this method behaves as a parametric basis function
model during training, discussed as Subset of Regressors (SoR) in Quiñonero-Candela
and Rasmussen [2005]. Kfu can be interpreted as the evaluation of the M basis
functions at the training input locations, with K−1

uuu ∼ N (0, K−1
uu) being the weights.

This expression is obtained from p(u) = N (u; 0, Kuu).
After obtaining the posterior over u, predictions are made using the testing condi-

tional, which is chosen to be the exact GP’s conditional. If we denote the posterior
distribution of u to be N (µ, Σ), we can also express the full predictive distribution:

q(f∗|u, X) = p(f∗|u, X) = N
(
f∗; Kf∗uK−1

uuu, Kf∗f∗ − Kf∗uK−1
uuKuf∗

)
, (2.9)

q(f∗|y) = N
(
f∗; Kf∗uK−1

uuµ, Kf∗f∗ − Kf∗uK−1
uu(Kuu − Σ)K−1

uuKuf∗

)
. (2.10)

Quiñonero-Candela and Rasmussen [2005] state that using the exact testing conditional
“reverses the behaviour of the predictive uncertainties, and turns them into sensible
ones”, compared to SoR, by which was meant that the predictive error bars grow far
away from the data (figure 2.3). We would like to unpack this statement a bit further,
and contrast the DTC predictive distribution with that of a fully non-parametric GP.
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It is clear that the mean will only ever have M degrees of freedom, with its weights
determined by µ. In this sense, the predictive distribution does not have the non-
parametric property of being a universal approximator. However, the behaviour of
the predictive covariance is closer to that of the fully non-parametric GP. Apart from
the marginal variances growing as pointed out by Quiñonero-Candela and Rasmussen
[2005], samples drawn from the predictive distribution will have infinite degrees of
freedom (figure 2.3). This corresponds much more closely with a non-parametric model,
in the sense that the posterior correctly shows that there is still structure to be learned.

Fig. 2.3 Samples from the DTC (top) and SoR (bottom) posteriors. While both models
have the same limited capacity to learn from data, DTC’s posterior is a non-degenerate
GP with infinite degrees of freedom.

We see this to be true by considering an arbitrarily large set of inputs X∗ to predict
on3. The predictive covariance will always be positive definite, as Kf∗f∗ −Kf∗uK−1

uuKuf∗

is the Schur complement of K(∗,u)(∗,u).
For this reason, we emphasise the following:

Remark. The uncertainty of the DTC predictive distribution behaves like a non-
parametric model, in the sense that sampled functions have infinite degrees of freedom.
However, it can only be reduced in M degrees of freedom, so there is only limited
capacity to reduce uncertainty in regions with lots of data.

3We assume no repeated input points and X∗ ∩ Z = to avoid technical details where two outputs
are constrained to the same value, or have zero variance.
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Additionally:

Remark. The predictive mean of DTC behaves like a parametric model, in that it only
has M degrees of freedom.

Finally we want to emphasise a remark stated in Quiñonero-Candela and Rasmussen
[2005]. They show that the joint prior distribution of f and f∗ can be written as
equation 2.11. While this is a perfectly valid Gaussian distribution, from which
posteriors can be obtained, it does not correspond to exact inference in a modified
Gaussian process, as the prior implies different marginal distributions for a training
and testing point, even if the input location is identical.

pDT C(f , f∗) = N

 f
f∗

;
0
0

,

KfuK−1
uuKuf KfuK−1

uuKuf∗

Kf∗uK−1
uuKuf Kf∗f∗

 (2.11)

Remark. The DTC approximation does not correspond exactly to a Gaussian process.

We also note an important distinction with the explicit basis function methods,
is that the full GP solution is recovered if M = N and all inducing inputs Z are at
the input locations X. The explicit basis function methods, on the other hand, only
recover the full GP solution in the infinite limit.

Selecting the inducing points In Seeger et al.’s [2003] original formulation of DTC,
the set of inducing points was constrained to be a subset of the training inputs. Selecting
a subset of M points from the N training points would be an intractable discrete
optimisation problem. Instead training inputs were ranked by the KL divergence of
the modified to the old posterior, and greedily added to the inducing points based on
their ranking. Hyperparameters were optimised intermittently with adding inducing
points using the model’s marginal likelihood:

pDT C(y) = N
(
y; 0, Qff + σ2I

)
, (2.12)

Qff = KfuK−1
uuKuf . (2.13)

Note that the marginal likelihood is a function of the inducing inputs through Kfu and
Kuu, and so it can, in principle, be used for selecting the inducing inputs, similarly to
Lázaro-Gredilla et al. [2010].

Desiderata DTC does not give a method for quantifying some distance to the exact
solution. While the training method does imply a marginal likelihood (equation 2.12),
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this may be an over- or under-estimate of the marginal likelihood of the full model.
DTC does recover the exact posterior if the inducing inputs are chosen to be all the N

training inputs. Additionally, its predictive error bars contain exactly the desirable
property of non-parametric models.

2.3.5 Fully Independent Training Conditional (FITC) approx-
imation

Snelson and Ghahramani [2006] propose a different approximate likelihood (equa-
tion 2.14). Again, Quiñonero-Candela and Rasmussen [2005] view this as a different
training conditional. Compared to DTC’s training conditional, FITC matches the
variances of the exact conditional, but keeps the independence between training points
required for computational tractability, as in equation 2.6.

pF IT C(y|u) = N
(
f ; KfuK−1

uuu, diag[Kff − Qff ] + σ2I
)

(2.14)

q(f |u) = N
(
f ; KfuK−1

uuu, diag[Kff − Qff ]
)

(2.15)

While DTC could be framed as learning using a finite basis function model and a
regular Gaussian likelihood, things are more complicated for FITC. When viewing
FITC as a likelihood approximation, it can be seen as learning a finite basis function
model, with heteroskedastic (input dependent) noise in the likelihood [Snelson and
Ghahramani, 2006]. Alternatively, in the unifying framework, the heteroskedastic noise
is subsumed into the process. The posterior over u can then be seen as being obtained
by performing exact inference in a modified GP with the kernel k̃:

k̃(x, x′) =

k(x, x′), if x = x′.
k(x, Z)k(Z, Z)−1k(Z, x) = kf(x)uK−1

uukuf(x), otherwise .
(2.16)

If the testing and training conditionals are chosen to be the same, training and
prediction correspond to exact inference with the kernel in equation 2.16 [Quiñonero-
Candela and Rasmussen, 2005]. However, just like with DTC, the exact testing
conditional can also be used, at the expense of the interpretation of exact inference in
a GP.

The similarities with DTC mean that the same remarks concerning the non-
parametric nature of the prediction applies to FITC. The same limitation also applies,
in that the kernel mean only has M degrees of freedom. The main advantage of FITC
over DTC, was that Snelson and Ghahramani [2006] showed that the inducing points
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could be chosen using gradient based optimisation on FITC’s marginal likelihood
(equation 2.17), while this failed in DTC.

pF IT C(y) = N
(
y; 0, Qff + diag[Kff − Qff ] + σ2I

)
(2.17)

Desiderata Like DTC, FITC recovers the exact solution when Z = X. However,
in chapter 3 we will show that when optimising the inducing points, FITC prefers
to (sometimes significantly) depart from the full GP model. Additionally, there is
no way of assessing how close to the exact solution FITC is – its marginal likelihood
may be an over- or under-estimate of the true value. The error bars do maintain their
non-parametric nature.

2.4 Inducing point posterior approximations

In the previous section we saw how modifications to the exact GP model could result
in cheaper models that still maintained some of our desiderata. We also saw that the
exact solution could be obtained by the approximate model with enough well-placed
basis functions or inducing points. However, recovering the model does not give much
reassurance about the quality of the approximation when resources are limited.

A more elegant way of approaching the problem is to attempt to directly approximate
the exact posterior of the GP. We will discuss two well-established approximation
techniques: Variational inference (VI) (see Blei et al. [2016] for a modern review) or
Expectation Propagation (EP) [Minka, 2001]. Both VI and EP work by acknowledging
that the true posterior is too complex or expensive to represent and deal with. Instead,
the goal is to find the approximation in a restricted class of distributions which is
tractable. EP and VI vary in how they choose the final posterior from this restricted
class. Perhaps surprisingly, both methods result in posteriors which are strongly related
to the model-based approximations from the previous sections.

2.4.1 A class of tractable Gaussian process posteriors

For parametric models, approximate posteriors can easily be parameterised using
standard distributions. Gaussian process models are harder, as we need to represent
distributions over functions. Luckily, as we saw earlier, we only need to handle the
distributions over the finite dimensional marginals, and we will define the approximate
posteriors in the same way.
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In the previous sections we saw that DTC and FITC defined their predictive
distributions using a posterior over inducing outputs p(u|y), and an testing conditional
p(f |u), taken to be the prior’s conditional distribution. The inducing outputs were
integrated out in equation 2.10 to give a predictive distribution over any inputs. The
marginals of the predictive distribution again defined a Gaussian process4. Taking
inspiration from these methods, we can define a class of Gaussian processes with a very
similar structure. Instead of committing to the distribution over u being a posterior,
we free it to be any Gaussian. From the finite dimensional marginals, we can again
find the implied Gaussian process:

q(f , u) = p(f |u)q(u)
= N

(
f ; KfuK−1

uuu, Kff − KfuK−1
uuKuf

)
N (u; µ, Σ) , (2.18)

q(f) = N
(
f ; KfuK−1

uuµ, Kff − KfuK−1
uu(Kuu − Σ)K−1

uuKuf
)

, (2.19)

=⇒ f(·) ∼ GP
(
k·uK−1

uuµ; k(·, ·) − k·uK−1
uu(Kuu − Σ)K−1

uuku·
)

. (2.20)

These Gaussian processes can be seen as posteriors to alternate “fantasy” regression
problems with M observations, inputs Z (controlling the covariances with u) and an
arbitrary likelihood5. To make this clearer, we consider the posterior of a GP where
the inducing points u are observed, with an arbitrary Gaussian likelihood q̃(ỹ|u), and
its corresponding marginal likelihood q̃(ỹ):

q(f , u) = p(f |u) q̃(ỹ|u)p(u)
q̃(ỹ) . (2.21)

The combination of the likelihood, the marginal likelihood and the prior will be
q(u), the posterior of the fictional regression problem. Since we allowed an arbitrary
likelihood there will always exist be a Gaussian likelihood for any desired setting of
q(u) = N (u; µ, Σ). The goal of the approximate inference scheme then becomes to
adjust the “fantasy inputs” Z and the alternate likelihood using {µ, Σ}, such that
the posterior for this fantasy regression problem will be close to the true posterior, as
in figure 2.1. These candidate posteriors have essentially the same properties as the
DTC and FITC posterior. They can be manipulated with O(M3) cost, are full rank,
with error bars assuming infinite basis functions as in figure 2.3, but with only a finite
number of basis functions in the mean, and so a limited capacity to adapt to data.

4We repeat the earlier point that the predictive Gaussian process did not need to be consistent
with the Gaussian process used for training u.

5Thanks to Richard Turner for popularising this view in the group.
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Fig. 2.4 The exact GP prior split into its components h(·) and g(·). h(·) remains
unchanged after observing data, while g(·) can be adjusted.

We can probe the class’ properties a bit deeper by observing that the approximate
Gaussian process posterior is the sum of two Gaussian processes (noted similarly in
Hensman et al. [2018]):

f(·) = g(·) + h(·) , (2.22)
g(·) ∼ GP

(
k·uK−1

uuµ; k·uK−1
uuΣK−1

uuku·
)

, (2.23)

h(·) ∼ GP
(
0, k(·, ·) − k·uK−1

uuku·
)

. (2.24)

For some choice of inducing input locations, the component g(·) contains the degrees
of freedom that can be learned about by the approximate posterior. It has M basis
functions to adjust in the mean. Additionally, if there is any uncertainty left in the
value of the weights, Σ can increase the variance. In the extreme case of Σ = 0, the
posterior has reached its capacity to learn, while for Σ = Kuu, f(·) will simply be the
prior. The component h(·), on the other hand, represents all degrees of freedom in the
prior that the approximate posterior cannot learn about. This provides the error bars
of the non-parametric prior.

The split is illustrated in figure 2.4. h(·) shows what variance is left if the inducing
points are fully known, while g(·) shows what degrees of freedom from the prior can be
learned about. Figure 2.5 shows what happens when g(·) is constrained after observing
some data. We see that the variance of the process can be reduced by observations near
inducing points, but not ones far from inducing points. The distribution of the inducing
outputs far from the data stays near the prior, and does not help modelling the data.
This illustrates the crucial role of placing the inducing points when attempting to find
a good approximation.
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Fig. 2.5 Top: g(·) after observing some data, and the process resulting from the
combination. Bottom: Idem, but with an input far from any inducing points. The
process cannot represent the desired reduction in variance, as the h(·) component
remains unchanged.

2.4.2 Variational inference

The main idea behind variational inference is to restrict the approximate posterior to
a class of tractable distributions, and choose the one with the lowest KL divergence to
the true posterior. Computing the KL divergence to the true posterior is intractable
in general, since it requires the quantity we want to approximate in the first place.
Instead, a lower bound (denoted L) to the marginal likelihood can be constructed,
where the slack is exactly equal to the intractable KL divergence. We can derive the
bound simply by applying Bayes rule after stating the KL divergence. Here we use
q(H) to denote the approximate posterior over the hidden variables, which will be
chosen from the tractable constrained family, while D denotes the observed data.

KL[ q(H) ∥ p(H|D) ] = Eq(H)

[
log q(H)

p(H|D)

]
= Eq(H)

[
log q(H)p(D)

p(D|H)p(H)

]
= log p(D) − Eq(H)[log p(D|H) + log p(H) − log q(H)] (2.25)
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Since the marginal likelihood is constant w.r.t. q(H), the expectations form a lower
bound to it, where the gap is exactly the KL divergence we want to minimise:

L def= Eq(H)[log p(D|H) + log p(H) − log q(H)] (2.26)
L = log p(D) − KL[ q(H) ∥ p(H|D) ] (2.27)

∴ L ≤ log p(D) (2.28)

For some models the optimal q(H) can be found in closed form using calculus
of variations (e.g. Beal [2003]), for others L is calculated in closed form and q(H)
is parameterised and optimised using gradients. More recently, it has been shown
[Titsias and Lázaro-Gredilla, 2014; Ranganath et al., 2014] that low-variance unbiased
estimates of L can be used if a closed form expression is hard to come by.

Variational inference for Gaussian processes

Titsias [2009b] introduced a method relying on the variational lower bound to find the
approximate posterior. In light of Matthews et al.’s [2016] recent work showing that
maximising that variational bound did, in fact, minimise the KL divergence between
the prior and posterior stochastic process, we will present the informal derivation from
the latter work. We will refer to this approximation as the Variational Free Energy
(VFE) approximation.

We start with a Gaussian process prior over the latent function, and a factorised
likelihood that only depends on the Gaussian process at the locations X:

f(x) ∼ GP(0, k(x, x′)) , (2.29)

p(y|f(X)) =
N∏

n=1
p(yn|f(xn)) . (2.30)

As we saw in section 1.2.3, our posterior process only requires inference about the
function values at the input locations X, and so only needs the marginal prior of f(X).
However, we are free to consider the marginal over a larger set of variables – we are
simply representing more of the same latent Gaussian process. In order to emphasise
that we are inferring the entire process, we will consider the extra variables u def= f(Z)
and f∗ def= f(X∗). For now, the inputs Z and X∗ will be completely arbitrary in size
and location. Following Bayes’ rule and using the product rule to split the joint prior
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into its conditionals, we get the posterior over the finite dimensional marginal:

p(f , u, f∗|y) =
∏N

n=1 p(yn|fn)p(f |u)p(u)
p(y) p(f∗|u, f) . (2.31)

Next, we choose our class of approximating Gaussian processes to be the one described
in section 2.4.1. As described, it can be defined by its finite dimensional distribution
over the inducing inputs Z (q(u)) and the inducing conditional p(f∗, f |u)). We will
represent the approximating Gaussian process at the same inputs X, X∗ and Z.

We can now follow the same variational inference procedure as described earlier, by
minimising the KL divergence between the two finite dimensional marginals. We note
that the finite dimensional marginal can be factorised in similar ways:

KL[ q(f , u, f∗) ∥ p(f , u, f∗|y) ] = KL[ q(u)p(f |u)p(f∗|f , u) ∥ p(f , u|y)p(f∗|f , u) ] . (2.32)

By considering the actual integral formulation of the KL, we can see that the common
factor p(f∗|f , u) cancels out, and does not influence the value of the KL, i.e.:

KL[ q(f , u, f∗) ∥ p(f , u, f∗|y) ] = KL[ q(u)p(f |u) ∥ p(f , u|y) ] . (2.33)

Regardless of how many extra points X∗ we evaluate the KL divergence on, the value
will be equal to considering the finite dimensional marginals only. In fact, Matthews
et al. [2016] showed this expression to be equal to a formal version of a KL divergence
between the approximate and posterior processes.

Now that we are satisfied with the properties of the KL divergence, we can set
about to minimise it by constructing a lower bound, as introduced by Titsias [2009b].
The fact that both the approximate and true process contain p(f |u) – the expensive
term with an O(N3) matrix operation – allows them to cancel, which is the essence of
the trick introduced by Titsias:

KL[ q(u)p(f |u) ∥ p(f , u|y) ] = log p(y) − Eq(f ,u)

[
log p(y|f)����p(f |u)p(u)

����p(f |u)q(u)

]
︸ ︷︷ ︸

=L

, (2.34)

∴ L =
N∑

n=1

∫
p(fn|u)q(u) log p(yn|fn)dfndu − KL[ q(u) ∥ p(u) ] . (2.35)
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We can integrate out u further to show that the likelihood expectation depends only
on the marginal distribution of the approximating process at xn:

L =
N∑

n=1
Eq(f(xn))[log p(yn|f(xn)] − KL[ q(u) ∥ p(u) ] . (2.36)

The above expression works for general likelihoods that depend point-wise on the
latent function [Hensman et al., 2015b,a]. It also lends itself to stochastic optimisation
using minibatches by subsampling the sum over N data points [Hensman et al., 2013].
For regression, Titsias [2009b] showed that q(u) could optimised in free form, resulting
in a Gaussian distribution. In turn, this allowed the explicit representation of q(u) to
be replaced by the optimised form, resulting in the so-called collapsed bound:

L = N
(
y; 0, KfuK−1

uuKuf + σ2I
)

− 1
2σ2 Tr

(
Kff − KfuK−1

uuKuf
)

. (2.37)

The lower bound can only improve with more inducing points (see chapter 3 or
Matthews [2016] for separate proofs).

An upper bound Usually, tractable upper bounds to the marginal likelihood are
not known, and variational inference does not help in finding them. However, in the
special case of Gaussian process regression, Titsias [2014] did construct the upper
bound:

log p(y) ≤ −N

2 log 2π − 1
2 log

∣∣∣KfuK−1
uuKuf + σ2I

∣∣∣
− 1

2yT
(
KfuK−1

uuKuf + (c + σ2)I
)−1

y , (2.38)

c = Tr
(
Kff − KfuK−1

uuKuf
)

≥ λmax

(
Kff − KfuK−1

uuKuf
)

. (2.39)

The proof relies on observing that |KfuK−1
uuKuf | ≤ |Kff | (the normalising constant of

p(y)), while ensuring that c compensates for the smaller eigenvalues of KfuKuuKuf

such that the quadratic term is over-estimated. c can be taken as any upper bound
to the eigenvalues of Kff − KfuK−1

uuKuf . With application of the Woodbury matrix
identity, this upper bound is also computable in O(NM2). Results on a toy dataset in
Titsias [2014] show that the upper bound converges to the marginal likelihood slower
than the lower bound, with increasing M .

Finding tighter upper bounds would be very useful for sandwiching marginal
likelihoods. Especially finding tighter bounds on c could help, as it is a rather drastic
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change to the quadratic term. One other bound, which may be tighter in certain
situations, is the maximum row sum of a matrix (from the Perron-Frobenius theorem).

Desiderata Like FITC and DTC, VFE fully maintains the non-parametric error
bars (in fact, its posterior is equivalent to that of DTC Titsias [2009b]), and recovers
the true results when Z = X. It is also guaranteed to recover the true posterior
when globally optimising Z, given that it minimises the KL divergence, and that it
monotonically improves with more resources (see chapter 3). However, local optima
in the objective function may cause sub-optimal solutions to be found with different
initialisations.

Contrary to DTC and FITC, the lower bound to the marginal likelihood provides
some way to assess the quality of the approximation. While knowledge of the KL
divergence between the posterior and approximation would be ideal, the lower bound
can guide when to add more capacity to the approximation: a halt in the increase of
the bound with increasing M can indicate that the bound has become tight. Stronger
evidence for this can be gained by using the upper bound to sandwich the marginal
likelihood. A small gap between upper and lower bound guarantees an accurate
approximation.

2.4.3 Expectation propagation

Expectation Propagation (EP) [Minka, 2001] is an alternative method for approximate
inference. Rather than directly minimising an objective function, it iteratively refines
a posterior by minimising the KL divergence of marginals of a tractable posterior with
the tilted distribution. The tilted distribution is the approximate posterior with one
intractable, but exact, likelihood term added in.

Expectation propagation has been applied to general graphical models [Minka
et al., 2014], but also non-sparse Gaussian processes with non-Gaussian likelihoods (see
[Rasmussen and Williams, 2005; Kuss and Rasmussen, 2005; Nickisch and Rasmussen,
2008, §3.6]). To obtain sparse inference algorithms with non-Gaussian likelihoods,
e.g. Naish-Guzman and Holden [2008]; Hernández-Lobato and Hernández-Lobato [2016]
start from FITC as an approximate model, and use EP for the approximate likelihoods.

EP gives rise to FITC For the purposes of this thesis, we will not delve into
details of EP, as Bui et al. [2017] provide an excellent overview of EP, its variants,
and their close relationship to the variational method described above. However, the
connection between EP and FITC that was brought to light is critical to the points
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raised in this thesis: Performing EP on the full Gaussian process regression model,
using the same approximate posterior as used in the variational free energy (VFE)
method (section 2.4.1), results in the same solution as FITC. Additionally, adding
non-Gaussian likelihoods, leads to the approximations cited above. Bui et al. [2017]
also point out that a similar derivation was already developed by Csató and Opper
[2002], and the link between EP and FITC was mentioned in Qi et al. [2010], without
these links becoming widely known.

For the purposes of this thesis, we will analyse FITC as a model in itself. However,
given that it is in fact the same method as an EP approximation would result in, FITC
can equally be presented as an EP approximation.

2.5 Conclusion

We have discussed 5 common approximation schemes for Gaussian processes: Random
Fourier features, SSGP, DTC, FITC (equivalent to EP) and VFE, and discussed some
of their properties against the desiderata for non-parametric approximations laid out
in section 2.1. We list a summary in table 2.1. We saw that it was possible to maintain
the non-parametric error bars in prediction, even in the approximate models.

All methods had to give up the consistency property of non-parametric models. All
methods except VFE and the EP interpretation of FITC propose approximate models.
It is interesting to note that all “approximate model” methods (SSGP, DTC and
FITC) lose their ability to recover the true model, even when given enough resources
to do so (see chapter 3), if the inducing inputs are optimised for a more compressed
representation. Only Random Fourier features and VFE seem to have guarantees and
assessment criteria which show that the approximation will ever more closely resemble
the target model. VFE seems to be the only method to exhibit all desirable properties.
It only gives up the infinite capacity of the non-parametric model, but retains its error
bars, recovers the exact solution and has a computable method to assess how far away
it is in terms of the lower (and upper) bound.

For the remainder of this thesis, we focus on methods that maintain the non-
parametric error bars, particularly FITC and VFE. While we do not want to detract
from the usefulness of Random Fourier features, it is interesting to push approximations
which do not compromise on such a fundamental property of the non-parametric GP
that is to be approximated.

The properties discussed so far are only theoretical, and the main aim is to obtain
a good approximation for some constrained M . So one could argue that the desiderata
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Assessment Recovery
Monotone

improvement Error bars
RFF ✓1 ✓ ✓2 ×
SSGP × × × ×
DTC × ?3 × ✓
FITC × ?3 × ✓
VFE ✓ ✓ ✓ ✓

1 Through a probabilistic bound on the deviation of the effective
kernel in a small region, rather than a global guarantee.

2 In the sense of its kernel deviation.
3 Only if the inducing points are chosen from the inputs.

Table 2.1 Summary of GP approximation methods against the desiderata laid out in
section 2.1.

of assessment, recovery and monotone improvement are not strictly necessary. In the
next chapter, we delve into the detailed behaviour of FITC and VFE to assess the
relative qualities of their approximations.



Chapter 3

Understanding the behaviour of
FITC and VFE

In the previous section, we introduced two sparse approximations and showed how
two objective functions – FITC and VFE – for learning sparse approximations could
be derived. While both methods have been around for several years, there still is
not a consensus in the literature on which method is “best”. The original papers
[Snelson and Ghahramani, 2006; Titsias, 2009b] show some illustrative 1D examples,
together with benchmarks on some standard datasets. There has been successful
follow-on work extending both methods [Naish-Guzman and Holden, 2008; Titsias
and Lawrence, 2010; Damianou and Lawrence, 2013], without much clarity on the
detailed properties of each method, and when either method is appropriate to use. A
certain amount of “folk-wisdom” has developed among practitioners over the years,
with certain (sometimes contradictory) behaviours mentioned in different papers.

In this work, we aim to thoroughly investigate and characterise the difference in
behaviour of the FITC and VFE approximations, when applied to regression. We
analyse each method and shed light on their behaviours and when they can be observed,
hopefully resolving some of the contradictory claims from the past. We do this by
unpicking the methods’ optimisation behaviour from the biases of their objective
functions. Our aim is to understand the approximations in detail in order to know
under which conditions each method is likely to succeed or fail in practice. We will
assess both methods on how they approximate the true GP model based on the
desiderata outlined in the previous chapter, rather than placing the emphasis on
predictive performance.

Additionally, in section 3.3, we discuss the curiosity that FITC and VFE share a
variational lower bound. This highlights another interesting link between the methods,
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which is perhaps worrying given that VFE was designed to approximate the full GP
model, not an approximation to it. This connection has been used to attempt to
develop variational approximations for heteroscedastic models. We show that this
approach may have unintended consequences.

3.1 Common notation

We saw the optimisation objectives for VFE and FITC in equation 2.37 and equa-
tion 2.17 respectively. We will repeat them here in a common notation:

F = N

2 log(2π) + 1
2 log|Qff + G|︸ ︷︷ ︸
complexity penalty

+ 1
2yT(Qff + G)−1y︸ ︷︷ ︸

data fit

+ 1
2σ2

n

Tr(T )︸ ︷︷ ︸
trace term

, (3.1)

where
GFITC = diag[Kff − Qff ] + σ2

nI GVFE = σ2
nI (3.2)

TFITC = 0 TVFE = Kff − Qff . (3.3)

The common objective function has three terms, of which the data fit and complexity
penalty have direct analogues to the full GP. The data fit term penalises the data
lying outside the covariance ellipse Qff + G. The complexity penalty is the integral
of the data fit term over all possible observations y. It characterises the volume of
possible datasets that are compatible with the data fit term. This can be seen as the
mechanism of Occam’s razor [Rasmussen and Ghahramani, 2001], by penalising the
methods for being able to predict too many datasets. The trace term in VFE ensures
that the objective function is a true lower bound to the marginal likelihood of the full
GP. Without this term, VFE is identical to the earlier DTC approximation [Seeger
et al., 2003] which can over-estimate the marginal likelihood. The trace term penalises
the sum of the conditional variances at the training inputs, conditioned on the inducing
inputs [Titsias, 2009a]. Intuitively, it ensures that VFE not only models this specific
dataset y well, but also approximates the covariance structure of the full GP Kff .

3.2 Comparative behaviour

As our main test case we use the same one dimensional dataset considered throughout
this thesis and in Snelson and Ghahramani [2006] & Titsias [2009b]. Of course,
sparse methods are not necessary for this toy problem, but all of the issues we raise
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are illustrated nicely in this one dimensional task which can easily be plotted. In
sections 3.2.1 to 3.2.3 we illustrate issues relating to the objective functions. These
properties are independent of how the method is optimised, and should generalise
to stochastic optimisation methods that use the same bound [Hensman et al., 2013].
However, whether they are encountered in practice depends on the optimiser dynamics.
We describe this influence in sections 3.2.4 and 3.2.5.

This section is joint work with Matthias Bauer and was published in Bauer, van der
Wilk, and Rasmussen [2016]. The authors agree that the paper was the result of equal
contribution, with the experiments using the upper-bound being done by Mark van der
Wilk alone. The supplementary material of the paper included a first-order analysis of
repeated inducing points with jitter led by Matthias Bauer, which is not included in
this thesis.

3.2.1 FITC can severely underestimate the noise variance,
VFE overestimates it

In the full GP with a Gaussian likelihood we assume a homoscedastic (input independent)
noise model with noise variance parameter σ2

n. It fully characterises the uncertainty left
after completely learning the latent function. Here, we show how FITC can also use
the diagonal term diag(Kff − Qff ) in GFITC as heteroscedastic (input dependent) noise
[Snelson and Ghahramani, 2006] to account for these differences, thus, invalidating
the above interpretation of the noise variance parameter. In fact, the FITC objective
function encourages underestimation of the noise variance, whereas the VFE bound
encourages overestimation. The latter is in line with previously reported biases of
variational methods [Turner and Sahani, 2011].

Figure 3.1 shows the configuration most preferred by the FITC objective for a subset
of 100 data points of the Snelson dataset, found by an exhaustive systematic search
for a minimum over hyperparameters and inducing inputs locations. The procedure
relied on several random re-starts of the joint optimisation of Z and hyperparameters,
choosing the solution with the highest marginal likelihood. Next, inducing points
were incrementally added in locations that would increase the marginal likelihood
most. For this solution, the noise variance is shrunk to practically zero, despite the
mean prediction not going through every data point. Note how the mean still behaves
well and how the training data lie well within the predictive variance. Only when
considering predictive probabilities will this behaviour cause diminished performance.
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VFE, on the other hand, is able to approximate the posterior predictive distribution
almost exactly.

FITC (nlml = 23.16, σn = 1.93 · 10−4) VFE (nlml = 38.86, σn = 0.286)

Fig. 3.1 Behaviour of FITC and VFE on a subset of 100 data points of the Snelson
dataset for 8 inducing inputs (red crosses indicate inducing inputs; red lines indicate
mean and 2σ) compared to the prediction of the full GP in grey. Optimised values for
the full GP: NLML = 34.15, σn = 0.274.

For both approximations, the complexity penalty decreases with decreased noise
variance, by reducing the volume of datasets that can be explained. For a full GP and
VFE this is accompanied by a data fit penalty for data points lying far away from the
predictive mean. FITC, on the other hand, has an additional mechanism to avoid this
penalty: its diagonal correction term diag(Kff − Qff). This term can be seen as an
input dependent or heteroscedastic noise term (discussed as a modelling advantage by
Snelson and Ghahramani [2006]), which is zero exactly at an inducing input, and which
grows to the prior variance away from an inducing input. By placing the inducing
inputs near training data that happen to lie near the mean, the heteroscedastic noise
term is locally shrunk, resulting in a reduced complexity penalty. Data points both far
from the mean and far from inducing inputs do not incur a data fit penalty, as the
heteroscedastic noise term has increased around these points. This mechanism removes
the need for the homoscedastic noise to explain deviations from the mean, such that
σ2

n can be turned down to reduce the complexity penalty further.
This explains the extreme pinching (severely reduced noise variance) observed in

figure 3.1, also see, e.g. Titsias [2009b, Fig. 2]. In examples with more densely packed
data, there may not be any places where a near-zero noise point can be placed without
incurring a huge data-fit penalty. However, inducing inputs will be placed in places
where the data happens to randomly cluster around the mean, which still results in a
decreased noise estimate, albeit less extreme, see figures 3.2 and 3.3 where we use all
200 data points.

Remark 1. FITC has an alternative mechanism to explain deviations from the learned
function than the likelihood noise and will underestimate σ2

n as a consequence. In
extreme cases, σ2

n can incorrectly be estimated to be almost zero.
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As a consequence of this additional mechanism, σ2
n can no longer be interpreted

in the same way as for VFE or the full GP. σ2
n is often interpreted as the amount of

uncertainty in the dataset which cannot be explained, regardless of future data. Based
on this interpretation, a low σ2

n is often used as an indication that the dataset is being
fitted well. Active learning applications rely on a similar interpretation to differentiate
between inherent noise, and uncertainty that can be reduced with more data. FITC’s
different interpretation of σ2

n will cause efforts like these to fail.
VFE, on the other hand, is biased towards over-estimating the noise variance,

because of both the data fit and the trace term. Qff +σ2
nI has N −M eigenvectors with

an eigenvalue of σ2
n, since the rank of Qff is M . Any component of y in these directions

will result in a larger data fit penalty than for Kff , which can only be reduced by
increasing σ2

n. This is actually likely to be the case since the number of basis functions
is limited. The trace term can also be reduced by increasing σ2

n.

Remark 2. The VFE objective tends to over-estimate the noise variance compared to
the full GP.

3.2.2 VFE improves with additional inducing inputs, FITC
may ignore them

Here we investigate the behaviour of each method when more inducing inputs are
added. For both methods, adding an extra inducing input gives it an extra basis
function to model the data with. We discuss how and why VFE always improves, while
FITC may deteriorate.

Figure 3.2 shows an example of how the objective function changes when an inducing
input is added anywhere in the input domain. While the change in objective function
looks reasonably smooth overall, there are pronounced spikes for both FITC and VFE.
These return the objective to the value without the additional inducing input and
occur at the locations of existing inducing inputs. We discuss the general change first
before explaining the spikes.

Mathematically, adding an inducing input corresponds to a rank 1 update of Qff ,
and can be shown to always improve VFE’s bound1, see appendix B for a proof. VFE’s
complexity penalty increases due to an extra non-zero eigenvalue in Qff , but gains in
data fit and trace.

1Matthews [2016] independently proved this result by considering the KL divergence between
processes. Titsias [2009b] proved this result for the special case when the new inducing input is
selected from the training data.
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FITC VFE
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Fig. 3.2 Top: Fits for FITC and VFE on 200 data points of the Snelson dataset for
M = 7 optimised inducing inputs (black). Bottom: Change in objective function
from adding an inducing input anywhere along the x-axis (no further hyperparameter
optimisation performed). The overall change is decomposed into the change in the
individual terms (see legend). Two particular additional inducing inputs and their
effect on the predictive distribution shown in red and blue.

Remark 3. VFE’s posterior and marginal likelihood approximation become more
accurate (or remain unchanged) regardless of where a new inducing input is placed.

For FITC, the objective can change either way. Regardless of the change in objective,
the heteroscedastic noise is decreased at all points (see appendix B for the proof).
For a squared exponential kernel, the decrease is strongest around the newly placed
inducing input. This decrease has two effects. Firstly, it reduces the complexity penalty
since the diagonal component of Qff + G is reduced and replaced by a more strongly
correlated Qff . Secondly, it worsens the data fit term since the heteroscedastic term is
relied upon to fit the data when the homoscedastic noise is underestimated. Figure 3.2
shows reduced error bars with several data points now outside of the 95% prediction
bars. Also shown is a case where an additional inducing input improves the objective,
where the extra correlations outweigh the reduced heteroscedastic noise.

Both VFE and FITC exhibit pathological behaviour (spikes) when inducing inputs
are clumped, that is, when they are placed exactly on top of each other. In this case,
the objective function has the same value as when all duplicate inducing inputs were
removed. In other words, for all practical purposes, a model with duplicate inducing
inputs reduces to a model with fewer, individually placed inducing inputs.

Theoretically, these pathologies only occur at single points, such that no gradients
towards or away from them could exist and they would never be encountered. In
practise, however, these peaks are widend by a finite jitter that is added to Kuu to
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ensure it remains well conditioned enough to be invertible. This finite width provides
the gradients that allow an optimiser to detect these configurations.

As VFE always improves with additional inducing inputs, these configurations
must correspond to maxima of the optimisation surface and clumping of inducing
inputs does not occur for VFE. For FITC, configurations with clumped inducing inputs
can – and often do – correspond to minima of the optimisation surface. By placing
inducing inputs on top of each other, FITC can avoid the penalty of adding an extra
inducing input and can gain the bonus from the heteroscedastic noise. Clumping,
thus, constitutes a mechanism that allows FITC to effectively remove inducing inputs
at no cost. In practise we find that convergence towards these minima can be slow.
Titsias [2009b] notes a variation of this effect when describing that FITC often does
not spread the inducing points around the data to optimally benefit from the added
basis functions.

We illustrate this behaviour in figure 3.3 for 15 randomly initialised inducing inputs.
FITC places some of them exactly on top of each other, whereas VFE spreads them
out and recovers the full GP well.

FITC VFE

Fig. 3.3 Fits for 15 inducing inputs for FITC and VFE (initial as black crosses, optimised
red crosses). Even following joint optimisation of inducing inputs and hyperparameters,
FITC avoids the penalty of added inducing inputs by clumping some of them on top
of each other (shown as a single red cross). VFE spreads out the inducing inputs to
get closer to the true full GP posterior.

Remark 4. In FITC, having a good approximation Qff to Kff needs to be traded off
with the gains coming from the heteroscedastic noise. FITC does not always favour a
more accurate approximation to the GP.

Remark 5. FITC avoids losing the gains of the heteroscedastic noise by placing
inducing inputs on top of each other, effectively removing them.

3.2.3 FITC does not recover the true posterior, VFE does

In the previous section we showed that FITC has trouble using additional resources to
model the data, and that the optimiser moves away from a more accurate approximation
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to the full GP. Here we show that this behaviour is inherent to the FITC objective
function.

Both VFE and FITC can recover the true posterior by placing an inducing input
on every training input [Titsias, 2009b; Snelson, 2007]. For VFE, this must be a global
minimum, since the KL gap to the true marginal likelihood is zero. For FITC, however,
this solution is not stable and the objective can still grow by aggressive optimisation,
as was shown in Matthews [2016]. The derivative of the inducing inputs is zero for this
configuration, but the objective function can still be improved. As with the clumping
behaviour, adding jitter subtly makes this behaviour more obvious by perturbing the
gradients. In figure 3.4 we show this behaviour on a subset of 100 data points of the
Snelson dataset. VFE is at a minimum and does not move the inducing inputs, whereas
FITC improves its objective and clumps the inducing inputs considerably.

Method NLML initial nlml optimised

Full GP - 33.8923
VFE 33.8923 33.8923
FITC 33.8923 28.3869

0 1 2 3 4 5 60
2
4
6
8

initial

op
tim

ise
d VFE FITC

Fig. 3.4 Results of optimising VFE and FITC after initialising at the solution that
gives the correct posterior and marginal likelihood. We observe that FITC moves to a
significantly different solution with better objective value (Table, top) and clumped
inducing inputs (Figure, bottom).

Remark 6. FITC generally does not recover the full GP, even when it has enough
resources.

3.2.4 FITC relies on local optima

So far, we have observed some cases where FITC fails to produce results in line with the
full GP, and characterised why. However, in practice, FITC has performed well, and
pathological behaviour is not always observed. In this section we discuss the optimiser
dynamics and show that they help FITC behave reasonably.
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To demonstrate this behaviour, we consider a 4d toy dataset: 1024 training and
1024 test samples drawn from a 4d Gaussian Process with isotropic squared exponential
covariance function (l = 1.5, sf = 1) and true noise variance σ2

n = 0.01. The data
inputs were drawn from a Gaussian centred around the origin, but similar results were
obtained for uniformly sampled inputs. We fit both FITC and VFE to this dataset with
the number of inducing inputs ranging from 16 to 1024, and compare a representative
run to the full GP in figure 3.5.
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Fig. 3.5 Optimisation behaviour of VFE and FITC for varying number of induc-
ing inputs compared to the full GP. We show the objective function (negative log
marginal likelihood), the optimised noise σn, the negative log predictive probability
and standardised mean squared error as defined in Rasmussen and Williams [2005].

VFE monotonically approaches the values of the full GP but initially overestimates
the noise variance, as discussed in section 3.2.1. Conversely, we can identify three
regimes for the objective function of FITC: 1) Monotonic improvement for few inducing
inputs, 2) a region where FITC over-estimates the marginal likelihood, and 3) recovery
towards the full GP for many inducing inputs. Predictive performance follows a similar
trend, first improving, then declining while the bound is estimated to be too high,
followed by a recovery. The recovery is counter to the usual intuition that over-fitting
worsens when adding more parameters.

We explain the behaviour in these three regimes as follows: When the number of
inducing inputs are severely limited (regime 1), FITC needs to place them such that
Kff is well approximated. This correlates most points to some degree, and ensures a
reasonable data fit term. The marginal likelihood is under-estimated due to lack of a
flexibility in Qff . This behaviour is consistent with the intuition that limiting model
capacity prevents overfitting.

As the number of inducing inputs increases (regime 2), the marginal likelihood is
over-estimated and the noise drastically under-estimated. Additionally, performance in
terms of log predictive probability deteriorates. This is the regime closest to FITC’s
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behaviour in figure 3.1. There are enough inducing inputs such that they can be placed
such that a bonus can be gained from the heteroscedastic noise, without gaining a
complexity penalty from losing long scale correlations.

Finally, in regime 3, FITC starts to behave more like a regular GP in terms of
marginal likelihood, predictive performance and noise variance parameter σ2

n. FITC’s
ability to use heteroscedastic noise is reduced as the approximate covariance matrix
Qff is closer to the true covariance matrix Kff when many (initial) inducing input are
spread over the input space.

In the previous section we showed that after adding a new inducing input, a better
minimum obtained without the extra inducing input could be recovered by clumping.
So it is clear that the minimum that was found with fewer active inducing inputs still
exists in the optimisation surface of many inducing inputs; the optimiser just does not
find it.

Remark 7. When running FITC with many inducing inputs its resemblance to the full
GP solution relies on local optima. Solutions with the earlier issues are still preferred
in terms of the objective function, but are not found.

3.2.5 VFE is hindered by local optima

So far we have seen that the VFE objective function is a true lower bound on the
marginal likelihood and does not share the same pathologies as FITC. Thus, when
optimising, we really are interested in finding a global optimum. The VFE objective
function is not completely trivial to optimise, and often tricks, such as initialising the
inducing inputs with k-means and initially fixing the hyperparameters [Hensman et al.,
2015b, 2013], are required to find a good optimum. Others have commented that VFE
has the tendency to underfit [Lázaro-Gredilla and Figueiras-Vidal, 2009]. Here we
investigate the underfitting claim and relate it to optimisation behaviour.

As this behaviour is not observable in our 1D dataset, we illustrate it on the
pumadyn32nm dataset2 (32 dimensions, 7168 training, 1024 test), see table 3.1 for the
results of a representative run with random initial conditions and M = 40 inducing
inputs.

Using a squared exponential ARD kernel with separate lengthscales for every
dimension, a full GP on a subset of data identified four lengthscales as important to
model the data while scaling the other 28 lengthscales to large values (in table 3.1 we
plot the inverse lengthscales).

2Obtained from http://www.cs.toronto.edu/~delve/data/datasets.html.

http://www.cs.toronto.edu/~delve/data/datasets.html
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Method NLML/N σn inv. lengthscales RMSE

GP (SoD) -0.099 0.196 · · · 0.209
FITC -0.145 0.004 · · · 0.212
VFE 1.419 1 · · · 0.979
VFE (frozen) 0.151 0.278 · · · 0.276
VFE (init FITC) -0.096 0.213 · · · 0.212

Table 3.1 Results for pumadyn32nm dataset. We show negative log marginal likelihood
(NLML) divided by number of training points, the optimised noise variance σ2

n, the
ten most dominant inverse lengthscales and the RMSE on test data. Methods are full
GP on 2048 training samples, FITC, VFE, VFE with initially frozen hyperparameters,
VFE initialised with the solution obtained by FITC.

FITC was consistently able to identify the same four lengthscales and performed
similarly compared to the full GP but scaled down the noise variance σ2

n to almost zero.
The latter is consistent with our earlier observations of strong pinching in a regime
with low-density data as is the case here due to the high dimensionality. VFE, on the
other hand, was unable to identify these relevant lengthscales when jointly optimising
the hyperparameters and inducing inputs, and only identified some of the them when
initially freezing the hyperparameters. One might say that VFE “underfits” in this case.
However, we can show that VFE still recognises a good solution: When we initialised
VFE with the FITC solution it consistently obtained a good fit to the model with
correctly identified lengthscales and a noise variance that was close to the full GP.

Remark 8. VFE has a tendency to find under-fitting solutions. However, this is an
optimisation issue. The bound correctly identifies good solutions.

3.2.6 FITC can violate a marginal likelihood upper bound

In previous sections we saw that FITC deviates from the true GP solution mainly due
to the objective function preferring to use the heteroskedastic correction term instead
of noise. These solutions are assigned higher FITC marginal likelihoods compared to
the maximum marginal likelihood of the full GP. Here, we analyse FITC’s marginal
likelihood in more detail by comparing it to the upper bound on the true marginal
likelihood discussed in section 2.4.2. Our main aim is to assess whether the upper
bound can identify when FITC over-estimates the marginal likelihood within a similar
computational budget.

We start by training FITC models to a 100 point subset of the 1D dataset with
increasing numbers of inducing points. We initialise the inducing points randomly from
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the data, and perform 4 random restarts, choosing the model with the highest marginal
likelihood. We then initialise all parameters jointly. We test whether the upper bound
can identify any over-estimation in this setting within a similar computational budget
as FITC has, so we limit the upper bound to have the same number of inducing points
as FITC does. We test 3 different variations for choosing the inducing inputs for the
upper bound: 1) the optimised values from the FITC model, and 2) optimised by
minimising the upper bound itself. We optimise the inducing points of the upper bound
by minimising it from the same initialisation.

Figure 3.6 shows a comparison between the upper bound and the marginal likelihood
of a FITC model with increasing numbers of inducing points. We see that FITC over-
estimates the marginal likelihood already with few inducing variables. The behaviour
is the same as discussed in chapter 3, with very low noise levels being preferred. Once
enough inducing points are added, the optimised upper bound becomes tight enough to
detect that the FITC marginal likelihood is an over-estimate. Note that even though
the over-estimation very significant compared to the full GP at its optimal parameters,
FITC very strongly over-estimates the marginal likelihood for the hyperparameters it
finds (i.e. with very low noise).

Fig. 3.6 Comparison of marginal likelihood upper bounds with FITC, full GP, and
independent Gaussian (for reference) marginal likelihoods. Arrows with corresponding
numbers indicate out of scale values.

We look at this data more closely in figure 3.7, where we show upper bounds with
increasing numbers of inducing points for each FITC model in figure 3.6, to give an
indication of when the bounds become useful. We see that when using a small number
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of inducing points, FITC either correctly estimates the marginal likelihood (as for
M = 4) the marginal likelihood, or has a small over-estimation (M = 6, M = 8), for
its chosen hyperparameters. However, in this regime, the upper bound needs more
inducing points than FITC to prove the over-estimation. When more inducing points
are added, the upper bound can identify over-estimation, consistent with figure 3.6.

Fig. 3.7 Marginal likelihoods of FITC models with different numbers of inducing points
(M), compared to upper bounds with increasing numbers of inducing points. Arrows
indicate out of scale values, numbers indicate value.

3.2.7 Conclusion

In this work, we have thoroughly investigated and characterised the differences between
FITC and VFE, both in terms of their objective function and their behaviour observed
during practical optimisation.

We highlight several instances of undesirable behaviour in the FITC objective: the
lack of guarantees of the FITC marginal likelihood and its consistent over-estimation
when given enough inducing points, sometimes severe under-estimation of the noise
variance parameter, wasting of modelling resources and not recovering the true posterior.
The common practice of using the noise variance parameter as a diagnostic for good
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model fitting is unreliable. In contrast, VFE is a true bound to the marginal likelihood
of the full GP and behaves predictably: It correctly identifies good solutions, always
improves with extra resources and recovers the true posterior when possible. In practice
however, the pathologies of the FITC objective do not always show up, thanks to “good”
local optima and (unintentional) early stopping. While VFE’s objective recognises a
good configuration, it is often more susceptible to local optima and harder to optimise
than FITC.

The sparse upper bound to the marginal likelihood can be used to identify when
FITC finds a solution that it over-estimates the marginal likelihood for, but only when
enough inducing points are used. Unfortunately, over-estimation starts with a smaller
number of inducing points

Which of these pathologies show up in practise depends on the dataset in question.
However, based on the superior properties of the VFE objective function, we recommend
using VFE, while paying attention to optimisation difficulties. These can be mitigated
by careful initialisation, random restarts, other optimisation tricks and comparison to
the FITC solution to guide VFE optimisation.

3.3 Parametric models, identical bounds

So far, we have seen that the a GP can often be well approximated by an inducing
point approximation, where the inducing points are chosen through optimising an
approximation to the full GP marginal likelihood. This approximation comes in the
form of either an alternative, parametric model’s marginal likelihood [Quiñonero-
Candela and Rasmussen, 2005], or as a variational lower bound [Titsias, 2009b]. The
main attraction of the variational lower bound is that it approximates the correct
latent process with fewer computational resources, while retaining some of the desirable
properties of the non-parametric posterior (section 2.4.2 and chapter 3).

It may then come as a disappointment (and perhaps a surprise) that the variational
lower bound stemming from a non-parametric GP model, can be the same as from
FITC, which can be seen as a parametric model. This was first noted by Frigola et al.
[2014] in reference to the GPSSM, and highlighted as an unexplained disappointment.
This same effect was noted for simple GP regression during personal communication
with Yarin Gal. The observation that we can start with a parametric model, perform
approximate inference, and end up with the same procedure as for a non-parametric
model is worrying. After all, how could we expect any of the desirable properties of the
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non-parametric posterior to be present in an approximation, if the same approximation
is also obtained from a parametric model?

Conversely, if we perform inference in a model starting from FITC, perhaps expecting
to replicate its heteroskedastic noise behaviour, to what degree should we expect this
behaviour to be maintained if the approximation scheme we obtain is the same as
for a non-heteroskedastic Gaussian process? Mixing variational inference and model
approximations with the goal of maintaining some of the model properties has been
attempted [Hoang et al., 2015, 2016], so an understanding of this correspondence should
help to identify when model properties are maintained, and when they are not.

Here, we discuss the curious equivalence of variational bounds from FITC style
models, and from the full GP. We characterise for what models there is a correspondence,
and why properties of the non-parametric model are maintained in the approximation,
while properties of FITC are not.

3.3.1 FITC and GP regression share a lower bound

We start with Titsias’s [2009b] original finite-dimensional derivation for GP regression.
We represent N + M points on the Gaussian process, corresponding to the N data
inputs X and outputs f , and the M inducing inputs Z and outputs u. We use the
variational distribution q(f , u) = q(u)p(f |u), where q(u) is a free-from distribution,
and p(f |u) is the prior conditional under the Gaussian process.

log p(y) = log
∫

p(y|f)p(f)df = log
∫

p(y|f)p(f |u)p(u)dfdu (3.4)

≥
∫

q(u)p(f |u) log
∏

i p(yi|fi)����p(f |u)p(u)
����p(f |u)q(u) dfdu (3.5)

=
N∑

i=1

∫
q(u)p(fi|u) log p(yi|fi)dfidu − KL[ q(u) ∥ p(u) ] (3.6)

:= L (3.7)

On inspection of the above bound, we see that it depends on the likelihood, prior
over inducing points, and the marginal conditional prior p(fi|u). We can therefore
construct models with the same lower bound, simply by choosing different covariances
between the fs but the same marginals. FITC fulfills these criteria, since it was
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constructed to have the same variances along the diagonal:

pGP (f |u) = N
(
f ; KfuK−1

uuu, Kff − KfuK−1
uuKuf

)
, (3.8)

pF IT C(f |u) = N
(
KfuK−1

uuu, diag
[
Kff − KfuK−1

uuKuf
])

. (3.9)

As a consequence, we have:

Remark 9. The FITC marginal likelihood will always be greater than or equal to the
variational free energy L.

Many other models relying on sparse variational GPs share this property, like the
Bayesian GPLVM [Titsias and Lawrence, 2010], Deep Gaussian processes [Damianou
and Lawrence, 2013], or GPSSMs [Frigola et al., 2014] where this relation was originally
pointed out.

It is rather worrying that these two models share the same variational bound.
Normally, it is assumed as fairly reasonable that a variational inference method should
exhibit the properties of the model it was derived for, except for a few biases here and
there. Now we have shown that the same variational bound can be derived from a
model which behaves significantly differently in some situations (section 3.2). While
the previous section should leave little doubt that the non-parametric GP is correctly
approximated, the question of “why” this behaviour shows up is still unanswered. In
the following, we aim to characterise when the bound behaves like either FITC or the
full GP. We argue that it is a rather unnatural approximation to FITC and a natural
approximation to the full GP.

3.3.2 L as an approximation to FITC

Given that Titsias’s [2009b] approximation can also be seen as a variational approxima-
tion to FITC, we may be wonder whether the preference of FITC for under-estimated
noise levels (chapter 3) can be exhibited by VFE as well, or if not, why? From the
outset, this worry can be dismissed because of the trivial observation that for any
setting of Z, L will be a lower bound to both the full GP and FITC marginal likelihoods.
As a consequence, L simply cannot over-estimate the marginal likelihood of the full
GP, which is the mechanism for FITC’s behaviour. On the flip-side, the bound is also
limited by the smaller of the FITC and full GP marginal likelihoods.

Remark 10. If FITC does not have the capacity to model the data well (in a marginal
likelihood sense), neither will the variational bound. Additionally, even if FITC has the
capacity to over-fit, the variational bound will not, due to being bounded by the full GP.



3.3 Parametric models, identical bounds 63

−2 −1.5 −1 −0.5 0 0.5 1

60

80

100

120

Offset of inducing points

nl
m

l
vfe
fitc
GP

Fig. 3.8 The negative bound, FITC NLML and full GP NLML as a function of an
offset added to all inducing points. The full GP remains unchanged, while FITCs
NLML does change. The optimum for the bound is located at the point of least slack
to the full GP. This is not the case for FITC, as the FITC NLML changes with the
inducing point location as well. The underlying regression problem is the 1D example
dataset figure 2.1.

We can also note another property from the outset, which will be the main explana-
tion as to why L will not approximate FITC well: Z influences the marginal likelihood
of FITC, while it leaves that of the full GP unchanged (figure 3.8). So for FITC, Z

also takes the role of hyperparameters, while they are only variational parameters for
the full GP. In fact, tying Z to be the same for both the prior and the approximate
posterior is necessary to get a tractable variational bound. As a consequence:

Remark 11. Optimising Z will make L closer to the full GP marginal likelihood, but
not necessarily to the FITC marginal likelihood.

We can investigate why L follows the full GP rather than FITC in more detail
by taking a closer look at the true FITC and variational posteriors. In FITC, the
true posterior of u is sufficient for making predictions on any new testing point. The
posterior for new points can be found using the inducing conditional pF IT C(f |u). Given
this observation, the approximate variational distribution seems sensible, and seems
like it could represent the exact posterior. However, the optimal q(u) for this bound is
[Titsias, 2009b]:

q(u) = N
(

u; σ−2Kuu
(
Kuu + σ2Kuf Kfu

)−1
Kuf y, Kuu

(
Kuu + σ2Kuf Kfu

)−1
Kuu

)
.

(3.10)
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Since this optimal distribution is a consequence of the bound, and not of the model,
it remains unchanged regardless of whether the origin of the bound was the full GP
or the FITC model. This variational posterior is different to the true FITC posterior,
which can be obtained through Bayes’ rule:

p(u|y) = N
(

u; Kuu
(
Kuu + Kuf Λ−1Kfu

)−1
Kuf Λ−1y, Kuu

(
Kuu + Kuf Λ−1Kfu

)−1
Kuu

)
.

(3.11)

This is puzzling, since no obvious constraints are placed on q(u) during the derivation
of the bound, hinting that it ought to be able to recover the true posterior, particularly
when it is so easily represented.

An explanation for this behaviour can be found by considering the KL divergence
that is minimised, rather than the bound:

p(y) − L = KL[ q(u)pF IT C(f |u, X, Z) ∥ pF IT C(u, f |y, X, Z) ] . (3.12)

The bound also cares about matching the posterior at the training points f , even
though they are not strictly necessary for prediction at any new point. This is the
root cause for the variational bound not approximating FITC. FITC as a model has a
heteroscedastic noise component that considered to be part of the latent process f . As
a consequence, any observation yi will also inform how large the heteroscedastic noise
component was in fi – information which is not contained in u.

The factorisation in the approximate posterior is not able to reduce the variance of
the heteroscedastic component at the training locations, and so the true joint posterior
p(f , u|y) can not be recovered. This, in turn, biases q(u) away from the true FITC
posterior, to minimise the joint KL, and explains why FITC is not well approximated.
One notable exception is when an inducing point is placed on each input. In this case,
FITC is equivalent to the full GP, and VFE correctly recovers the posterior [Snelson,
2007].

Remark 12. The variational bound does not recover the FITC posterior, due to the
heteroscedastic noise component being considered part of the process. As a consequence,
the variational posterior can never capture FITC’s, except when inducing points are
placed at all inputs, where FITC, VFE and the full GP are all equivalent.
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3.3.3 Conclusion

Based on the observations above, it seems as though the variational bound can be
seen as a severely hampered approximation to FITC. It will not recover the FITC
posterior, will always return an under-estimated marginal likelihood, and there are no
free variational parameters to tighten the bound. Optimising Z is not guaranteed to
minimise the KL to the FITC model. In contrast, optimising Z does minimise the KL
to the full GP. The bound will also recover the full GP, given enough resources. So
from all perspectives VFE is a very poor approximation to FITC, but a good one to
the full GP.

It is interesting that hampering FITC in this way results back in an approximation
to the non-parametric full GP. We offer no deep insight into why this is the case. The
only intuition is based on FITC having the tendency to over-fit when given enough
inducing inputs, in contrast to the full GP, and that this capacity is removed by the
constraint of the variational approximation. This constraint is apparently just right to
give back properties of the non-parametric model.

Overall, we hope that we have explained why FITC and VFE share a variational
lower bound, and why VFE does behave as one would want an approximation to.





Chapter 4

Inter-domain basis functions for
flexible variational posteriors

In the previous sections we discussed how to approximate full Gaussian process
posteriors using cheaper Gaussian processes that were only conditioned on M points.
In chapter 3 we discussed how the variational approximation is particularly appealing
since it can get very close to the posterior and optimal hyperparameters for the true GP,
if it is given enough inducing points. Unfortunately, the cost for adding inducing points
is cubic so in practice we are still limited to approximations with only a few thousand
inducing variables. For datasets that consist of millions of data points, how sure are
we that this is really enough to get close to the true Gaussian process posterior?

In order to get the most out of a sparse approximation, we ought to get the most out
of each individual inducing point, to avoid the expense of using too many. Optimising
the inducing points is a first very helpful step. A further improvement was suggested
by the remark in Titsias [2009a] that “any linear functional involving the GP function
f(x) can be an inducing variable”, since any linear transformation of f(·) would also
have a Gaussian distribution. This was subsequently taken up by Lázaro-Gredilla and
Figueiras-Vidal [2009], who used smoothing and wavelet-like integral transforms to
define the inducing variables, and selected them using the FITC objective (Snelson
and Ghahramani [2006], chapter 3). While Lázaro-Gredilla and Figueiras-Vidal [2009]
dismissed using the VFE objective due to the perception of its tendency to under-fit
(addressed in section 3.2.5), it was later used by Alvarez et al. [2010] for implementing
multi-output kernels.

Here we revisit the inter-domain inducing variables and propose a method to squeeze
even more information out of each variable. While Lázaro-Gredilla and Figueiras-Vidal
[2009] propose fixed inter-domain transformations, we propose to parameterise the
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transformation itself using basis functions. This allows us to add a cheaper type of
basis function to the approximate posterior, thereby increasing its flexibility without
increasing the size expensive matrix operations. We investigate how this variational
posterior behaves.

In the next sections we will describe and analyse inter-domain approximations,
particularly from the point of view of variational inference. We will then justify our
proposed method, and present experimental results showing that inter-domain basis
functions can indeed be used to sparsify models. While practical benefits to training
speed are small, the method can be used for compressing Gaussian process models in
terms of storage size.

4.1 Related work

Inter-domain inducing variables were first proposed together with the variational
approximation framework by Titsias [2009a]. Later, Matthews [2016] showed that
variational posteriors using inter-domain inducing variables also minimise the KL
divergence between the latent stochastic processes, if the relationship between the
inter-domain variables and the latent GP is deterministic.

Walder et al. [2008] first introduced the idea of using basis functions in the approx-
imation that were different to the kernel. Their specific approach did not correspond
to a well-formed Gaussian process, as it could exhibit negative predictive variances,
which was fixed in Lázaro-Gredilla and Figueiras-Vidal [2009], where they were cor-
rectly combined with FITC objective for training. Additionally, they have seen use
in situations where placing inducing points in the usual input domain would lead to
a useless approximation. Alvarez et al. [2010] and Tobar et al. [2015] both use white
noise to drive a filter, the output of which is then observed. In these cases, individual
function values have no correlation with the rest of the process, and are also not useful
for predicting the data. Instead, the lower-frequency behaviour of the process is of
importance, and can be captured by inter-domain inducing variables.

Hensman et al. [2018] propose a method most in the spirit of this work, where
Fourier-like inter-domain features are used. Very impressive speed-ups were reported,
but the method suffers from a curse of dimensionality, so scaling this method is
constrained to using additive models in high dimensions.
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4.2 Inter-domain inducing variables

As mentioned, the main idea is to use general linear functionals of f(·) as inducing
variables, rather than f(Z). This can be a good idea, since it captures more global
properties about the function than a single point does. Later we will also see that it
gives more flexibility to the mean of the posterior process. An inter-domain inducing
variable is constructed by taking an integral projection of the GP f(·) with respect to
some function v(·), parameterised by z:

u(z) =
∫

f(x)v(x; z)dx . (4.1)

Since f(·) is a random variable, u(z) will be as well, and since the projection is linear,
it will also be Gaussian. We can find its mean, covariance and cross-covariance by
substituting in its definition, and taking expectations over f(·). As usual, we take
f ∼ GP(0, k(x, x′)).

Ef [u(z)] = Ef

[∫
f(x)v(x; z)dx

]
=
∫

v(x; z)Ef [f(x)]dx = 0 (4.2)

Covf [u(z), f(x)] = Ef

[∫
f(x′)v(x′; z)dx′f(x)

]
=
∫

v(x′; z)Ef [f(x′)f(x)]dx′

=
∫

v(x; z′)k(x, x′)dx′ (4.3)

Covf [u(z), u(z′)] = Ef

[(∫
f(x)v(x; z)dx

)(∫
f(x′)v(x′; z)dx′

)]
=
∫∫

v(x, z)v(x′, z′)k(x, x′)dxdx′ (4.4)

Using these covariances, we can calculate the covariance matrices Kf∗u, Kuu and Kuf ,
needed for representing the sparse approximation. It is worth emphasizing how easy it
is to use inter-domain variables with any of the inducing variable techniques described
in section 2.3. These approximations only depend on the (cross-) covariances between
u and f , and so the expressions above are a simple drop-in replacement.

The practical usability of inter-domain methods depends on whether the integrals
to find these covariances can be computed analytically. Lázaro-Gredilla and Figueiras-
Vidal [2009] point out that one can integrate Gaussians and sinusoids against other
Gaussians, and use this to propose three possible projections: multi-scale (MSIF), fre-
quency (FIF), and time-frequency (TFIF). In the following statement of the projections
we denote the parameters of the inducing input z to contain whichever are present of
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µ, ∆, ω and ω0. ∆ is usually taken to be diag
[
δ2

1 · · · δ2
D

]
.

vMS(x; z) = |2π∆|−
1
2 exp

(
−1

2(x − µ)T∆−1(x − µ)
)

(4.5)

vF (x; z) = |2π∆|−
1
2 exp

(
−1

2xT∆−1x
)

cos(ω0 + ωTx) (4.6)

vT F (x; z) = |2π∆|−
1
2 exp

(
−1

2(x − µ)T∆−1(x − µ)
)

cos(ω0 + ωT(x − µ)) (4.7)

We reproduce the cross-covariances here as they will illuminate the methods later. We
also note that the expression of k(z, z′) for the Time-Frequency inducing features was
not correctly reported in either Lázaro-Gredilla and Figueiras-Vidal [2009] or the later
Lázaro-Gredilla [2010]. We derive the correct covariance in appendix A.1.

kMS fu(x, z) =
D∏

d=1

(
l2
d

l2
d + δ2

d

) 1
2

exp
(

−1
2(x − µ)T(∆ + Λ)−1(x − µ)

)
(4.8)

kF fu(x, z) =
D∏

d=1

(
l2
d

l2
d + δ2

d

) 1
2

exp
(

D∑
d=1

x2
d + δ2

dl2
dω2

d

2(δ2
d + l2

d)

)
cos
(

ω0 +
D∑

d=1

δ2
dωdxd

2(δ2
d + l2

d)

)
(4.9)

4.3 Inter-domain posteriors

To understand what benefit we may get from inter-domain inducing variables, we first
analyse the structure of the posterior, and how it relates to the bound we’re optimising.
In section 2.4.1 we discussed the structure and properties of the approximate Gaussian
process when using inducing points. They could be split into components g(·) and h(·),
having the forms:

f ∼ GP
(
k∗uK−1

uuµ, Kf∗f∗ − Kf∗uK−1
uu(Kuu − Σ)K−1

uuKf∗u)
)

, (4.10)

f(·) = g(·) + h(·) , (4.11)
g(·) ∼ GP

(
k·uK−1

uuµ; k·uK−1
uuΣK−1

uuku·
)

, (4.12)

h(·) ∼ GP
(
0, k(·, ·) − k·uK−1

uuku·
)

. (4.13)

We saw in figure 2.4 how an inducing point added capacity to the g(·) which could
adapt to data, and locally reduced the variance in h(·), which represented the variance
that could not be explained by the inducing points. By changing the covariance
relationships between u and f , we change the capacities of g(·) and h(·). Foremost, we
notice that different basis functions are used for the mean in g(·). Instead of being the
usual kernel function, one of the cross-covariance functions (equation 4.8) is used. For
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Fig. 4.1 The exact GP prior split into its components h(·) and g(·) as in figure 2.4.
Top: Multi-scale inducing features, with ones tending to inducing points in the left for
comparison. Bottom: Frequency inducing features.

the multi-scale case, this means that longer lengthscales are used. These lengthscales
can be optimised, which can be useful to fit some regions in the posterior where there
may not be a lot of variation in the mean. The frequency inducing feature also seems
attractive, since it gives many local extrema – something which could only be achieved
with several inducing points. Another effect is that the variance reduction in h(·) gets
spread out over a larger range, at the expense of it reducing the variance at a point
to zero. We see this practically in figure 4.1 for the multi-scale and time-frequency
inducing features. The multi-scale features are wider, while the frequency features
allow for more extrema.

Essentially, the inter-domain features allow a trade-off between the complexity of
the mean of the posterior process against its covariance structure and how much it can
be reduced. Initially, this seems like a very sensible idea. In noisy regression, it seems
unreasonable to expect the data be able to reduce the uncertainty in the posterior
process to exactly zero, so why do we need a class of approximate posteriors that
spends computational resources to represent this? Lázaro-Gredilla and Figueiras-Vidal
[2009] showed that FITC models could be made significantly sparser with the more
complicated inducing features from equation 4.8.
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4.4 Basis functions for inter-domain projections

Rather than committing to a fixed form of the inter-domain variable, defined by a
particular form of the projection v(·, ·), we propose to parameterise it directly using
basis functions ṽ(·, ·), and let the objective function decide what the best projection is:

v(x; z) =
C∑

c=1
wcṽ(x, z(c)) , z = {z(1), . . . , z(C), w} . (4.14)

The parameters of the overall projection are the parameters for each basis function
z(c) (e.g. its location and scale for MSIF) and the vector of weights w = [w1 · · · wc]T.
We can choose any function that is integrable against the kernel as the basis function
vbf . For the squared exponential kernel, this could be any of the equations 4.5 to 4.7.
Since summing is a linear operation, the cross-covariance with the observations Kfu

and the covariance of the inducing points Kuu simply become sums of the covariance k̃

corresponding to the projection basis function ṽ.

kfu(z, x) = Ef

[∫
f(x)

C∑
c=1

wcṽ
(
x; z(c)

)
dx
]

=
C∑

c=1
wck̃fu

(
x, z(c)

)
(4.15)

kuu(z, z′) = Ef

[(∫
f(x)

C∑
c=1

wcṽ
(
x; z(c)

)
dx
)(∫

f(x′)
C∑

c′=1
wc′ ṽ

(
x′; z′(c′)

)
dx′

)]

=
∑
cc′

wcwc′ k̃uu
(
z(c), z′(c)

)
(4.16)

If we again consider that kfu determines the basis functions of our posterior mean,
we see that the summed inducing variables gives us M × C basis functions, rather than
the usual M :

µposterior(·) = k·uα =
M∑

m=1
αmkfu(·, zm) =

M∑
m=1

C∑
c=1

αmwck̃fu
(
·, z(c)

m

)
. (4.17)

Delta inter-domain features

Here, we also would like to point out that we could simply take ṽ(x, z) = δ(x − z) – the
Dirac delta function. By itself this is not that useful, since the resulting inter-domain
covariances are just the same as for the inducing point case. However, within the basis
function projections it does usefully increase the flexibility of the posterior. This also
widens the range of kernels that inter-domain approximations can be applied to, over
the squared exponential kernel discussed in Lázaro-Gredilla and Figueiras-Vidal [2009],
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and is simple to implement. Figure 4.2 shows the structure of approximate posterior
as earlier.

In the following experiments, we will focus on the “sum of deltas” inducing features,
because of the generality in which they apply, but also because it allows a direct
comparison of the trade-off between using normal inducing points, and adding more
basis functions in a single inducing variable.

Fig. 4.2 Sum of delta functions inter-domain inducing features. Left: h(·). Right: g(·).

4.4.1 Computational complexity

Training using methods that require batch optimisation, like VFE or FITC, both
require computing the entire bound and its gradients before updating the variational-
and hyperparameters. The expensive operations for both these objective functions is
computing the Cholesky decomposition of Kuu = LLT, and calculating L−1Kuf using
a matrix triangular solve. These operations cost O(M3) and O(NM2) respectively.
Using inter-domain basis functions does not increase the size of the matrices, leaving
these costs unchanged. Evaluating the kernels does cost more, however. Evaluating
Kfu (equation 4.15) costs O(NMC), while Kuu (equation 4.16) costs O(M2C2). The
number of variational parameters scales linearly with C. It seems that in cases where
the matrix operations are the bottleneck, inter-domain basis functions can give extra
capacity at the roughly linear cost it takes to calculate the extra derivatives.

Hensman et al. [2013] introduced stochastic optimisation to GPs by modifying
Titsias’s [2009b] variational lower bound so an unbiased estimate can be found using
a random sample of the training data. Computationally, the main difference is that
a minibatch of size Ñ << N is used, which greatly reduces the cost of the matrix
triangular solve operation to O

(
ÑM2

)
, leaving the bottleneck to be the O(M3)

Cholesky decomposition. In this case, C could be increased without making the
bottleneck worse, until the kernel evaluations become the bottleneck.
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Theoretically, inter-domain basis functions can also be used to reduce memory use.
The matrices Kfu and Kuu need to be computed and stored. These can be calculated
by accumulating each term in the sum block by block. Specifically, denoting the
parameters of the cth basis function for all M inducing points by Z(c), we can write:

Kfu =
C∑

c=1
wck̃

(
X, Z(c)

)
=

C∑
c=1

wcK̃
(c)
fu , (4.18)

Kuu =
C∑

c=1

C∑
c′=1

k̃
(
Z(c), Z(c′)

)
=
∑
cc′

wcwc′K̃(c,c′)
uu . (4.19)

Implementation These matrices can be calculated using NM and M2 numbers
of memory space respectively, without growing with C, by accumulating the results
directly. However, computing the gradients using reverse-mode automatic differentiation
usually requires all the intermediate results K̃

(c)
fu and K̃(c,c′)

uu to be stored at a memory
cost of O(NMC) and O(M2C2). In practice, this is a large problem, especially on
GPUs where memory is limited to – at a push – 12GB.

While the O(NMC) cost is unavoidable, the more painful O(M2C2) is. Either,
Kuu could be re-computed during the backwards accumulation at the cost of extra
computation, or reverse-mode only autodiff should be avoided. Instead it is possible to
compute the gradient as ∂L

∂Kuu
∂Kuu

∂Z
. Both intermediate gradients can be stored at a

cost of O(M2C), thanks to a sparsity pattern that the derivative of Kuu with a single
inducing point has. The disadvantage of these suggestions is that they require some
changes in the internal workings of the autodiff software packages. In TensorFlow
[Abadi et al., 2015], which is used here for the implementation, this is (at the moment of
writing) particularly hard. For this reason, we go ahead with the regular reverse-mode
autodiff in our experiments.

4.4.2 A motivating example

In order to gain more intuition into where this method can present a benefit, we return
to the 1 dimensional Snelson dataset. In the past, much attention has been paid to
the perceived property of the variational bound to spread the inducing points evenly
around the data [Titsias, 2009b] (often in contrast to FITC, see chapter 3). However, in
sparse scenarios, we find that sometimes it is possible to obtain a much better posterior
using two almost identical inducing variables. We see an example of this in figure 4.3.
The variational bound uses two almost identical inducing variables to obtain quite
a satisfactory solution. However, if the location of the inducing variable is modified
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even in the slightest bit, the approximation deteriorates drastically, which is reflected
correctly by the variational bound.

Fig. 4.3 Very sparse solution to the Snelson regression task. Multi-scale inducing
features are used, and shown below the regression (for clarity, the projection value is
zero at the start and finish). Left: The optimal solution. Note that 3 inducing features
are used, but two are so close they show up as a single one. Right: The location of one
of the inducing features is perturbed, causing the solution to become poor. The third
inducing feature just becomes visible.

This solution is correct, and consistently found by the optimiser, and also surprising,
since the intuition usually is that inducing points lose their representational capacity as
they come close together. Figure 4.4 shows the effect that moving the inducing point
around has on the bound. While it is the case that exactly repeating an inducing point
effectively removes it and returns the bound to a low value, there is a very significant
peak slightly to the right of it.

Fig. 4.4 Effect of the position of an inducing variable on the approximation quality, as
measured by the variational lower bound. At first sight (left), the maximum appears
to be around 2.6. However, the true peak only becomes visible after some zoom, and
is around 4.2.
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At first, this effect was thought to be caused by numerical instability, since having
two inducing inputs that similar very strongly correlates their inducing outputs. Indeed,
adding jitter removes this effect, as it limits the strongest possible correlation in
Kuu. However, in this case, the effect is actually favourable, as it allows a good
posterior to be found. Looking at the resulting q(u) for the similar variables, we find
that their correlation is 0.99999979, while the means of the effective basis function
weights (α = K−1

uuµ) were 1.8662 · 105 and −1.8674 · 105. Essentially, the variational
approximation was using the difference between the two basis functions as a single
basis function. Using the summed inducing projections, we can merge the effect of
these two inducing points into one (figure 4.5). We see a slight penalty in the bound,
but the approximate posterior is essentially unchanged, the mean in particular.

Fig. 4.5 Solution to the regression problem using 2 inducing features. One inducing fea-
ture is the sum of two multi-scale features, scaled by the weights set in the approximate
GP solution.

We now move on from this toy dataset and experiment with the method on more
realistic examples.

4.5 Experiments

Over the next several sections we will investigate the utility of these new basis functions.
We will assess their behaviour on several UCI regression tasks. We are most interested
in assessing what level of sparsity can be obtained in the approximate posterior by
pushing the inducing variables to their limits, while still approximating the true
posterior well. Given this objective, and in light of the results that FITC often does
not approximate the model of interest (chapter 3), we will mainly focus on using the
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variational free energy (VFE) bound to choose the approximation. We use the squared
exponential kernel for all experiments.

For most of the following, we will optimise the hyperparameters jointly with the
variational parameters, as is usual in sparse GP regression, unless stated otherwise.
We will also use the “sum of delta” inducing features, proposed earlier, as this allows a
direct comparison between adding basis functions using the most common inducing
points, and adding basis functions in the inter-domain transform. We initialise the
locations of the deltas by the randomly selecting the desired number of points from
the dataset. Initially, we believed this may lead to poor solutions, as the points could
lie far away from each other, leading to a single inducing variable (and therefore a
single basis function) needing to explain distant parts of the GP with little correlation
between them. To avoid this, we also tried performing a crude hierarchical clustering,
first splitting the inputs into M clusters, and then clustering the points in each cluster
again into C parts, using the latter centres as an initialisation. These procedures were
not found to have significant impact on the final solution.

We will evaluate the method based on the quality of the approximation of the
marginal likelihood, and the RMSE and NLPP it provides. We will also discuss
hyperparameter selection for further insight into why the model is behaving as it does.

4.5.1 Sparsity of the resulting models

Firstly, we examine the extra sparsity that inter-domain basis functions can give us,
similar to the experiments presented in Lázaro-Gredilla and Figueiras-Vidal [2009].
While this isn’t necessarily a fair discussion in a practical sense since the inter-domain
variables have many more free parameters to optimise, it helps give a sense of how
sparse the posterior can be, given powerful enough inducing variables. We will first
review two UCI datasets in their standard form. However, both datasets require an
impractically large number of inducing points to actually recover the true posterior.
Based on this observation, we add noise to both datasets, making it easier to recover
the true posterior with a smaller M in order to investigate whether inter-domain basis
functions help to recover the true posterior earlier.

Kin40k

We start with the “kin40k” dataset, with a 36k point training split. This dataset
is particularly interesting since other GP approximations have not been able to get
close to the full GP in terms of performance [Snelson and Ghahramani, 2006; Lázaro-
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Gredilla and Figueiras-Vidal, 2009]. Figure 4.6 shows the behaviour of the sum of
deltas projection, with changing numbers of inducing variables M and inter-domain
bases C.

We see very large gains in the very sparse regime, especially for the RMSE. A
model with 10 inducing variables and 20 inter-domain bases (200 bases in total), would
seem to out-perform a model with 150 regular inducing variables. Gains for the NLPP
are similarly large in the very sparse regime. However, the benefit of adding extra
inducing variables is much smaller when the inter-domain projection is already complex.
As more inducing variables are added, the benefit of inter-domain bases decreases,
eventually leading to no additional benefit, even if the performance is still sub-optimal.
The variational free energy reflects this as well.

When investigating the inferred noise level we see exactly the same pattern of
improvement as in the other plots. In chapter 3 we argued that over-estimating the
noise is a failure mode of VFE in very sparse models. Later, we will investigate whether
hyperparameter estimation is the limiting factor for the improvement with added
inter-domain bases.

Finally, we observe that sometimes the variational objective function prefers a
posterior that performs worse under our chosen metrics. For example, M = 200, C = 1
has a better objective than M = 50, C = 8, despite having a worse RMSE.

Parkinsons

We see similar, but more encouraging, results for the “Parkinsons” dataset. In the very
sparse regime we see very large improvements in RMSE. Using 5 inter-domain basis
functions even achieves near-optimal RMSE at 100 basis functions, rather than > 200
for normal inducing points. Additionally, a considerable improvement in NLPP is seen
even as the number of inducing points is increased, in contrast to kin40k. In this case,
the benefit of inter-domain basis functions is clear all the way up to the regime where
optimal performance is achieved.

Noisy kin40k

We now manually add Gaussian noise with a standard deviation of 0.4 to the kin40k
dataset1 to make it easier to capture with fewer inducing points. We do this to
simulate a regime where the task can actually be solved to an optimal degree within
the computational budget.

1Due to the noise, the maximum attainable performance will be worse than earlier. The lower
bounds to the RMSE and NLPP will be 0.4 and 0.5 respectively.
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Fig. 4.6 Results for 36k split of kin40k, showing performance in RMSE and NLPP (top
left and right) and the negative bound on the log marginal likelihood (NLML) and
estimated noise hyperparameter (bottom left and right).
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Fig. 4.7 Results for the Parkinsons dataset, showing performance in RMSE and NLPP
(top left and right) and the negative bound on the log marginal likelihood (NLML)
and estimated noise hyperparameter (bottom left and right).
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In the NLML plot in figure 4.8 we see that we are starting to approach the regime
where adding inducing points does not improve the bound. The results are broadly
similar, with the added benefit of additional inter-domain basis functions diminishing.
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Fig. 4.8 Results for 36k split of kin40k, with 0.4 stddev noise added, showing perfor-
mance in RMSE and NLPP (top left and right) and the negative bound on the log
marginal likelihood (NLML) and estimated noise hyperparameter (bottom left and
right).

Noisy Parkinsons

The result follow generally the same pattern as in for the non noisy version, only here
it becomes clear that the inter-domain basis functions do help to achieve a tight bound
with a lower sparsity.

4.5.2 Sparsity for known hyperparameters

In the previous section we saw that VFE had trouble capturing the true posterior
for the kin40k dataset, even in the case with added noise that was designed to be
easier. Once a certain number of “true” inducing variables are used, inter-domain basis
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Fig. 4.9 Results for the Parkinsons dataset with 0.05 sttdev noise added, showing
performance in RMSE and NLPP (top left and right) and the negative bound on the
log marginal likelihood (NLML) and estimated noise hyperparameter (bottom left and
right).
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functions give diminishing returns to both the performance and the bound, despite the
fact that the variational approximation has not captured the true posterior yet. This
begs the question of why the extra flexibility of the inter-domain basis functions is not
helpful and is not utilised.

One possibility is that the hyperparameters – particularly the noise – are biased due
to the poor bound. Perhaps the extra inter-domain basis functions could be trained
better if only there was a good estimate of the hyper-parameters? Here we investigate
this by assessing how the inter-domain basis functions help when approximating a
GP with given near-optimal hyperparameters, found by training a sparse model with
M = 104 (i.e. impractically large).

In figure 4.10 we see that in terms of RMSE the inter-domain basis functions most
definitely are utilised fully, and improve performance significantly. It seems that in
this case inter-domain basis functions are equally valuable, with inter-domain basis
functions being useful even at M = 10 with C = 50. However, this comes at the cost
of performance in NLPP, where performance is worse than when the hyperparameters
are optimised with the variational lower bound. Additionally, it is noteworthy how
poor the estimate of the lower bound is.

4.5.3 Compression of the posterior

In previous sections we showed that we could indeed find sparser solutions in certain
regimes using inter-domain basis functions, in the sense that fewer inducing variables
were needed. Here we show that this sparsity can have practical benefits in terms of
the size of the model that needs to be stored for predictions. This is a like-for-like
comparison, which takes into account the extra parameters required by having multiple
basis functions per inducing variable.

We assume a situation where we want to do the minimum amount of computation
at test time. The form of the GP posterior is:

f(·) ∼ GP
(
k·uK−1

uuµ; k(·, ·) − k·uK−1
uu(Kuu − Σ)K−1

uuku·
)

(4.20)

So for predictions we would need to store K−1
uuµ (M elements), the matrix K−1

uu

(Kuu − Σ) K−1
uu (M2 elements), and the inducing inputs Z (MC(D + 1) elements) to

allow the calculation of kfu(x∗, z). We see that inducing variables have a squared cost,
while inter-domain basis functions only scale linearly, although scaled by the input
dimension.
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Fig. 4.10 Kin40k (36k split) trained with the hyperparameters fixed to good values
found by using a sparse model with 104 inducing points.
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Figures 4.11 and 4.12 show the relation between the size of the approximation
and the obtained performance. Using inter-domain bases does compress models up
to an order of magnitude, depending on the desired level of performance. As earlier,
the benefit for kin40k decreases for large models when large M is required. A large
improvement is more consistently seen in the Parkinsons dataset over a larger range
of approximation sizes, with a consistent factor of 3 improvement in size for a chosen
NLPP. In RMSE using inter-domain basis functions produces big gains for very sparse
models. As all models become larger, the improvement in RMSE for an increase in
model size diminishes. However, if one really requires to obtain a specific level of
performance, inter-domain basis functions will still give compression factor of 2-3.
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Fig. 4.11 Size of the kin40k model against performance.
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4.5.4 Computational comparison

In section 4.4.1 we discussed that for calculating the bound and its gradients, the
computational complexity of adding inter-domain bases is less than adding full in-
ducing variables. Actual computational speed-ups depend on a multitude of factors,
including details of the implementation. The current implementation is based on
GPflow [de G. Matthews et al., 2017], a TensorFlow [Abadi et al., 2015] based library
for Gaussian processes. Relying on TensorFlow for the computations has pushed the
boundaries of practicality for GPs, firstly by removing the need for manual coding of
derivatives, and secondly by more effectively utilising modern hardware like GPUs.
However, this comes at the cost of some flexibility in implementation. The current
implementation, for example, does not use the approach to minimise memory usage
(section 4.4.1) – a boundary which was hit on the GPU. We believe there is still some
scope for optimising the evaluation of the kernel matrices, which could change the
results from this section.

Apart from implementation details, the nature of the optimisation problem is also
changed with the introduction of more parameters. In order to separate the influence of
the change in optimisation problem and iteration cost, we investigate the optimisation
traces as a function of both iteration count and time.

In figure 4.13 we see the performance increase for a selected few models for the
kin40k dataset. We see that when using inter-domain basis functions, more iterations
are needed to reach optimal performance. While the inducing point models have
all converged after roughly 2000 iterations, the models using inter-domain inducing
variables are still slowly improving. For the kin40k dataset, the difference in iteration
speed does not compensate for this difference.

The Parkinsons dataset (figure 4.14) shows similar features, with performance
roughly the same.

4.6 Discussion

In the previous sections, we found that:

• Performance can be significantly improved for very sparse models by making the
inter-domain variables more flexible. For some datasets the improvement can
continue until the posterior is very close to optimal (Parkinsons dataset).
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• In some cases the extra capacity allowed by the inter-domain basis functions is
not utilised. This is caused by bias in the hyperparameter optimisation from the
variational lower bound.

• Practically, inter-domain basis functions can be used to reduce the storage
requirement for a given required level of performance.

We particularly want to note the result from section 4.5.2, and what this means for
the viability of finding good GP approximations. This result shows that the variational
bound may need a very large number of inducing variables (i.e. large M) to obtain an
accurate posterior, while only 500 basis functions are really necessary to model the
mean. The reason for this can be found by considering the form of the variational
lower bound for regression in equation 3.1 together with the decomposition of the
approximate posterior in figure 4.1. In section 3.2.1 we saw that the trace term will
strongly bias the hyperparameters to large noise values if the inducing variables can
not make the variance of h(·) small at data locations. Reducing this variance can
only be achieved by increasing the rank of Qff , which requires real inducing variables.
Inter-domain basis functions allow the maximum amount of covariance to be squeezed
out of a single inducing variable, but ultimately it will only impose a single linear
constraint on the samples from the posterior.

Somehow it seems that using the variational bound makes the problem harder.
Other models – parametric models – like the SSGP manage to predict much better
with far fewer basis functions. Frustratingly, the SSGP is often justified as being an
approximation to a GP with a given covariance function. Lázaro-Gredilla et al. [2010]
and Gal and Turner [2015] both mention that stationary kernels can be approximated
using sinusoidal features, and then move to optimising the features. While this definitely
shows big gains in performance, this does not show that they approximate the posterior
of the original model well. In fact, the fact that these models perform well is likely
because they are not constrained to fit the original model. Section 4.5.2 shows that
in a certain sense it is easy to learn the mean of the dataset, but hard to get the full
posterior. Parametric models like the SSGP can freely adjust their prior to fit the data,
while taking it way from the original model.

Does this mean it is foolish to try to approximate non-parametric posteriors?
Krauth et al. [2016] seem to go down this path, showing that results can be improved
by using an estimate of the Leave-One-Out objective, instead of the variational lower
bound. This could significantly improve performance with inter-domain bases, since we
know that we can obtain good performance with our chosen posterior. However, the
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marginal likelihood for model selection, and the associated variances of the posterior
are the unique things about Gaussian process models. Would this approach (to quote
MacKay [1998]) be throwing out the baby with the bathwater?

To offer an alternative train of thought: Perhaps the problems we encountered with
the kin40k dataset arise from the foolishness of trying to approximate the posterior of
a squared exponential GP. If the kernel is mismatched to the dataset, and past points
do not accurately predict future ones (resulting in a low marginal likelihood), we can’t
really expect to be able to find a good sparse approximation. Perhaps good models
(i.e. with high marginal likelihood) allow for sparser approximations? Perhaps we should
be searching over larger classes of models at the same time as finding approximate
posteriors, in order to find models that we can both do inference in successfully, and
that have high marginal likelihoods2?

4.7 Conclusion & Outlook

Overall, we have shown how to add cheaper basis functions to sparse posteriors, and
experimentally shown that there are situations where they help, and where they
make little difference. Practically, they can be used to store models more efficiently,
without reducing performance. Additionally, we believe this work illustrates interesting
properties of sparse GP posteriors, showing that the number of basis functions is not
sufficient for good performance.

Hopefully inter-domain basis functions can be a stepping stone for improving
sparse GP approximations. One problem that may hold them back is that they rely on
optimisation for setting the weights of the inter-domain basis functions, something which
the inducing variables get for free with the matrix inversion required for calculating the
bound. Empirically, there is some evidence to show that this makes the optimisation
problem harder. Even for regular inducing point methods, the optimisation of the
inducing inputs is time consuming. In neural networks, much effort has gone into
adjusting the models to be easy to optimise (ReLUs, Nair and Hinton [2010]), and
developing optimisation algorithms [Grosse and Martens, 2016]. Perhaps the GP
community would benefit from the same.

2A similar thought is mentioned by Huszár [2016].





Chapter 5

Convolutions and Invariances

In the previous sections, we mainly investigated how to come up with accurate ap-
proximations to the posterior of a given model, when the dataset is too large to allow
exact computations. However, accurate inference is only useful so far as the model
in question is able to generalise well. Until now, we haven’t paid much attention
to the properties of the GP prior, and how these affect its ability to generalise well
in a specific problem. Most common kernels rely on rather rudimentary and local
metrics for generalisation, like the Euclidean distance. Bengio [2009] has argued that
this has held back kernel methods in comparison to deep methods which learn more
sophisticated distance metrics that allow for more non-local generalisation. While deep
architectures have seen enormous success in recent years, it is an interesting research
question to investigate what kind of non-local generalisation structures can be encoded
in shallow structures like kernels, so that the elegant properties of GPs are preserved.
Additionally, a more complete understanding of the abilities and limits of kernels,
may help improve the understanding of what sets deep models apart, or make kernel
methods competitive once again.

In this chapter, we introduce a Gaussian process with convolutional structure,
together with a matched approximate inference scheme that makes the method appli-
cable in practice. Our method distinguishes itself from previous attempts to introduce
convolutions to GPs by convolving a Gaussian process over the inputs, rather than
by mapping the inputs through a deterministic transformation like a neural network
[Calandra et al., 2016; Wilson et al., 2016]. We view convolutional structure in the
light of more general invariances [Kondor, 2008; Ginsbourger et al., 2013; Duvenaud,
2014], to which our method is also applicable, with the aim of developing a general
understanding of why invariances are useful. We demonstrate the method on MNIST
and CIFAR-10.
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Overall, this method is a significant step towards bringing the advantages of Gaus-
sian processes to convolutional networks. Thanks to the variational lower bound, we
have an automatic way of choosing how many filters to use, how to choose hyperpa-
rameters and even what model structure to choose. In the coming sections we will
first review why invariances in the kernel may help generalisation, followed by how our
approximation can be used for general invariances. We then introduce the convolutional
kernel and some of its variants and show its use experimentally.

This section is joint work with James Hensman, and was published in van der Wilk,
Rasmussen, and Hensman [2017].

5.1 Improving generalisation through invariances

We now shift our focus from approximating GP models with a given kernel to designing
and identifying models which will perform well on a particular dataset. Any statistical
model has to make assumptions about how the observed data relates to future predic-
tions in order to be able to make any predictions, and the success of a method depends
on the suitability of the assumptions for the dataset in question. In Bayesian modelling
(section 1.1) we express all assumptions of a model in its prior and likelihood. We can
propose multiple models, and use the marginal likelihood to assess the suitability of
each of the assumptions made. As discussed, the predictions when averaging over all
models usually are dominated by a single model with the largest marginal likelihood.

A central expectation in the Bayesian methodology is that models with a high
marginal likelihood will generalise well. There are many strands of work that quantify
generalisation error in GP models, and make the link to marginal likelihoods [Seeger,
2003; Germain et al., 2016]1. So how do we obtain Gaussian processes that have high
marginal likelihoods?

Since the properties of a GP prior are fully determined by its kernel, finding a
good GP prior is equivalent to finding a good kernel. The marginal likelihood can
be used to choose between continuously parameterised kernels, for example by using
gradient-based maximisation with respect to lengthscales and variance parameters of
simple kernels like the squared exponential. More flexible, highly parameterised kernels
can also be used, like the spectral mixture kernel [Wilson and Adams, 2013], or kernels
parameterised by neural networks [Wilson et al., 2016]. Comparison between discrete
models is also possible, as was done by Duvenaud et al. [2013]. Here, the marginal

1Estimating or bounding generalisation error directly can also be used for assessing models – see
Rasmussen and Williams [2005, ch.5] for an introduction and pointers.
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likelihood is used to perform a greedy search over a discrete space of kernel structures
to create the “Automatic Statistician”.

All methods above essentially search over a large space of kernels using the max-
imum marginal likelihood. The larger these search spaces are, the less constrained
the kernel hyper-parameters are, which leads to a loss in robustness to over-fitting.
Extra regularisation is often needed. In the next few sections, we investigate what
characteristics in a GP prior gives a model a high marginal likelihood, and how to
design kernels with these characteristics, without necessarily choosing from a large
parametric family. We will specifically investigate invariances.

5.1.1 Model complexity and marginal likelihoods

The approaches mentioned in the previous section all search for kernels by maximising
the marginal likelihood (justified in section 1.1.4). But what properties do kernels with
high marginal likelihoods have? In this section, we analyse the marginal likelihood
further to gain an insight into what functions should have high probability under the
prior to allow for high marginal likelihoods. We follow MacKay [2002, ch.28] and
Rasmussen and Ghahramani [2001] and argue that the marginal likelihood prefers
models which are as constrained as possible, while still fitting the data. This justifies
our later investigation into incorporating invariances and convolutional structures into
kernels in order to improve generalisation.

The marginal likelihood of a model is found by evaluating the probability it assigns
to generating the observed data. It is usually expressed as the marginal of the likelihood
and prior (hence the name):

p(y|θ) =
∫

p(y|f)p(f |θ)df . (5.1)

This formulation invites us to gain intuition by considering sampling from the prior.
We can think of a Monte Carlo approximation to the marginal likelihood by sampling
functions from the prior and then averaging the likelihood of each sample. If many
functions from the prior give a high p(y|f), we obtain a high marginal likelihood.

We visualise this in figure 5.1, where we show samples from three different priors
p(f) with increasing lengthscales, and the samples left over after we filter out the ones
with low likelihood p(y|f). The number of high likelihood samples is a proxy for the
marginal likelihood. Functions from the short lengthscale prior vary too much. If a
function passes through one particular data point, there is only a small chance it will
also pass through a neighbouring one. However, this does allow the model to assign
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similar marginal likelihoods to many data sets. Taking this model to the extreme by
letting the lengthscale go to zero, we obtain a white noise process which assigns equal
probability to all (normalised) datasets. The bottom example shows a prior with too
long a lengthscale. Functions are constrained from varying between nearby points,
resulting in a low probability of the function changing enough to be pass through
neighbouring observations which differ. The limit of taking the lengthscale to infinity
gives a model that only produces flat, horizontal functions. Such a model will give
poor marginal likelihoods for all datasets, except ones where all observations lie on
a horizontal line. In between these two models, is an optimal model, which contains
functions with just the right amount of flexibility.

Fig. 5.1 Samples from priors with increasing lengthscales (left), and the samples from
the prior that have high likelihood. From the 106 samples from the prior, only 9, 120,
and 8 have high likelihood for the respective models.

We can also use the product rule to factorise the marginal likelihood, rather than
writing it as a marginal over f . This is interesting, as it shows that the marginal
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Fig. 5.2 Short lengthscale prior’s incremental predictive probabilities.

likelihood can be written in terms of the product of posterior predictive distributions
of the nth point, given all previous observations.

p(y|θ) = p(y1|θ)p(y2|y1, θ)p(y3|y1:2, θ)p(y4|y1:3, θ) . . .

= p(y1|θ)
∏
n=2

p(yn|y1:n−1, θ) . (5.2)

We visualise this in figures 5.2 to 5.4. The short lengthscale prior (figure 5.2) pre-
dicts with large variances, which fits with the earlier intuition of the prior not being
constrained enough. Even conditioned on several observations, the prior still allows
enough variation in the functions for the prediction at the new point to be uncertain.
The prior with the long lengthscale (figure 5.4) is again over-constrained. The prior
does not allow for much variation within each sampled function, so the model makes
very strong predictions even after only a few observations. Since the observed data lie
far outside the high density region of the prediction, the marginal likelihood incurs a
strong loss. Again, the medium lengthscale prior is constrained such that it predicts
with the narrowest error bars, while keeping the data within them.

5.1.2 Invariances help generalisation

In the previous section, we only changed the lengthscale of a kernel to constrain the
flexibility of functions in the prior. This is a rather rudimentary constraint. Intuitively,
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Fig. 5.3 Medium lengthscale (good fit) prior’s incremental predictive probabilities.

Fig. 5.4 Long lengthscale prior’s incremental predictive probabilities.
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we want a machine learning method to predict the same (or a similar) value for inputs
which are similar in our abstract perception of the inputs (e.g. all ways of writing a
particular digit share some essential characteristics). Kernels based on the Euclidean
distance will only constrain variation with respect to this metric, which is well known
to not match humans’ perception of variation in many perceptual tasks. Instead, we
investigate constraining all functions in a prior to be invariant to some transformation.
Invariances are a strong constraint, and greatly help generalisation – so long as they
are actually present in the data. The periodic kernel [MacKay, 1998], for example,
only contains functions in the prior that are periodic with a specified period. With this
extra constraint, observations inform what the function does even in regions that are
distant in terms of the euclidean distance (figure 5.5). Thinking back to equation 5.2,
we can see how this gives a possibility for higher marginal likelihoods that did not exist
with the squared exponential kernel. The tight predictions in distant regions have the
opportunity to contribute to a high marginal likelihood.

Fig. 5.5 Regression on a periodic function. The squared exponential kernel leads to
a prior where with functions that are locally smooth. Function values far away from
observations are largely unconstrained, leading to uncertainty when extrapolating. A
prior constrained to contain only periodic functions (i.e. ones which are invariant to
translations by the period) extrapolates much better for this example that actually
does exhibit periodicity.

We are particularly interested in high dimensional inputs like images, where con-
straining the model is crucial due to the many degrees of freedom that functions can
have in these spaces (the curse of dimensionality). Consider a squared exponential
kernel which uses the Euclidean distance to determine the decay in covariance between
points, and say the function is known at some points in a small region. Since the
squared exponential kernel allows the function to vary independently in any direction
away from the data, the GP will quickly revert back to the prior as we move in any
direction away from a training point. As a consequence, the posterior will likely predict
with large uncertainties on test data. In order to learn in high dimensional spaces,
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a kernel must effectively be able to rule out variation of the function in the correct
directions.

Exploiting additive structure in kernels [Durrande et al., 2012; Duvenaud et al.,
2011] is one way to reduce the flexibility of the prior functions in high dimensions.
The simplest additive Gaussian process has a kernel which is additive over dimensions
(e.g. pixels of an image)

k(x, x′) =
∑

i

k0(xi, x′
i) , (5.3)

where k0(·, ·) is a kernel over 1 dimensional inputs, and xi is the ith element of x. The
additive structure enforces that all resulting functions are sums of functions of one
dimension. This causes the relative values of the function to be invariant to movement
along one dimension. As a consequence, if an offset is learned at one location, the
same offset will be applied along all other dimensions. This introduces long range
correlations that simply do not exist in common kernels like the squared exponential,
where the influence drops off equally quickly in all directions.

Other invariances share this same quality of long range interactions. For example,
if we learn a function that is constrained to be invariant to rotations or translations of
the an image input, a single observation will constrain the function for all images that
are rotated / translated versions, which will be far away as measured by the Euclidean
distance.

5.2 Encoding invariances in kernels

We discussed that invariances can be helpful to constrain models in high dimensional
spaces in a way which (hopefully) helps them to generalise. So, how can these invariances
be encoded into GP priors? Kondor [2008] and Duvenaud [2014, §2.7] provide great
discussions from the machine learning point of view, and we will review one particular
method here.

Invariance of a function f(·) can be formalised as a requirement that for a collection
of T transformations of the input space of the GP, gi : X → X , we have:

f(x) = f(gi(x)) ∀x ∈ X ∀i ∈ {1 . . . T} . (5.4)

The composition of all compositions of these operations forms a group G containing
every possible transformation that we are required to be invariant to. Ginsbourger
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et al. [2013] showed that a GP prior produces samples with the required invariances if
and only if the kernel is invariant to the same transformations:

k(x, x′) = k(g(x), g′(x′)) ∀x, x′ ∈ X g, g′ ∈ G . (5.5)

One way to construct such a kernel, as suggested by Kondor [2008] and Ginsbourger
et al. [2013], is to sum a base kernel over the orbit of x with respect to the group of G.
The orbit of x is the set of points that one obtains by applying all transformations in
G to x: {g(x) | g ∈ G}. We obtain the kernel:

k(x, x′) =
∑
g∈G

∑
g′∈G

kbase(g(x), g′(x′)) . (5.6)

We can (informally) justify this approach by noting that this is exactly the covariance
obtained if we construct a function f(x) by summing some base function fbase(x) ∼
GP(0, kbase(·, ·)) over the orbit of x:

f(x) =
∑
g∈G

fbase(g(x)) . (5.7)

Any two points that can be transformed to each other will have the same orbit, causing
their respective function values to be equal, as they are constructed from a sum of the
same values. The kernel for f(·) can be obtained by taking expectations over fbase(·):

k(x, x′) = Efbase

∑
g∈G

fbase(g(x))
∑

g′∈G

fbase(g′(x′))


=
∑
g∈G

∑
g′∈G

Efbase
[fbase(g(x))fbase(g′(x′))]

=
∑
g∈G

∑
g′∈G

kbase(g(x), g′(x′)) (5.8)

This result is really convenient, as invariances are encoded simply as kernels, which
can be evaluated and plugged in to normal Gaussian process inference code.

5.2.1 Computational issues

While the previous section provides a constructive procedure for coming up with an
invariant kernel, computational resources can once again pose a limit – and for different
reasons than are usual for Gaussian processes. Denoting the size of the orbit as P ,
a single evaluation of the invariant kernel requires P 2 kernel evaluations. If the size
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of the orbit is large, this may make the kernel evaluation intractable, on top of the
intractability of the large matrix inverse. Taking the kernel evaluations into account,
the full GP has the cost O(N3 + N2P 2), while the VFE bound (equation 2.36) costs
O
(
ÑM2 + ÑMP 2 + M2P 2

)
.2

If we consider a kernel that is invariant to pixel-wise translations of the input
images, a problem of the size of MNIST would have P = 272 = 729 (similar for the
convolutional kernels introduced later). Even in sparse methods, the 6 · 105 kernel
evaluations required per entry in Kfu, Kuu and diag[Kff ] are completely prohibitive3.
When using 750 inducing variables (probably still not enough), storing Kuu alone
would take more than 1.1TB of memory. And this is supposed to be the tractable
matrix! A better approximation is needed.

Ultimately, this intractability stems from the approximate posterior we chose in
section 2.4.1. Although it can be manipulated without any large, intractable matrix
inverses, it still requires evaluations of the kernel, which in this case is intractable due
to its double sums. Any method which uses this class of approximate posteriors will
suffer from the same problem. This indicates that we should first search for a tractable
approximate posterior that can be used with invariant kernels. If this is possible, the
solution should be applicable to both VFE and FITC/EP.

5.2.2 Inter-domain variables for invariant kernels

In chapter 4 we discussed inter-domain inducing variables, where we place the inducing
inputs in a different space than our observations and predictions. The original work
by Lázaro-Gredilla and Figueiras-Vidal [2009] focused on using integral transforms of
f ∼ GP to define the space where the new inducing inputs would lie. In Matthews’s
[2016] later measure-theoretic treatment of sparse Gaussian processes, it was shown
that any deterministic relationship between the inducing domain process u(z) and the
GP of interest f(x) would result in a method that minimised only the KL divergence
between approximate and true posterior processes. Here, we construct a sparse inter-
domain approximation for invariant kernels of the form of equation 5.6, which avoids
the prohibitive O(P 2) cost.

The key observation that leads to our method is that in equation 5.7, we construct
the invariant function by summing a base function over many transformed inputs.
Given the deterministic relationship between f(·) and fbase(·), we choose to place the

2With minibatches of size Ñ . Full-batch methods have Ñ = N .
3The same issues regarding back-propagating gradients as mentioned in section 4.4.1 apply here as

well.
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inducing variables in the input space of fbase. We can find the (cross-)covariances as in
equation 5.8.

k(x, z) = Covfbase
[f(x)fbase(z)] = Covfbase

∑
g∈G

fbase(g(x))fbase(z)


=
∑
g∈G

kbase(x, z) (5.9)

k(z, z′) = kbase(z, z) (5.10)

These inter-domain variables remove the double sum in the covariances needed for
the computation of Kfu and Kuu – the largest kernel matrices. Only the computation
of diag[Kff ] in the variational bound still requires P 2 kernel evaluations, making the
cost for the sparse method O

(
ÑM2 + ÑMP + M2 + ÑP 2

)
. Luckily, for minibatch

methods Ñ can be small compared to the dataset size, or even the number of inducing
variables.

The use of inter-domain variables for parameterising the approximate posterior
successfully addresses the computational constraints discussed in the previous section.
Additionally, they are easy to implement within all sparse GP approximation frameworks
(including both VFE and FITC/EP), as only a drop-in replacements for the calculation
of Kfu and Kuu are needed. One question which is currently unanswered is whether
these new inter-domain inducing variables are as effective as inducing points. This
trick will not be particularly useful if the number of inducing variables required to
obtain an approximation of a particular quality would drastically increase. We will
address this question for a special case in section 5.3.2.

5.3 Convolutional Gaussian processes

Incorporating invariances into models to improve generalisation is ubiquitous in modern
machine learning in the form Convolutional Neural Networks [LeCun et al., 1998]. Here,
we describe an analogous Convolutional Gaussian process, which is constructed in a
similar way to the invariant kernels of the previous section. In the next few sections,
we will introduce several variants of the Convolutional Gaussian process, and illustrate
its properties using synthetic and real datasets. Our main contribution is showing that
convolutional structure can be embedded in kernels, and that they can be used within
the framework of non-parametric Gaussian process approximations. For inference, we
use a slightly modified version of the trick described in the previous section.



102 Convolutions and Invariances

We are interested in the problem of constructing Gaussian process priors that
generalise well for images in RD. As mentioned earlier, one issue with common
kernels like the squared exponential, is that they are, in a certain sense, too flexible.
Additive models allow the value of a particular subset of inputs to influence the
prediction far away in other inputs. Fully connected neural networks face a similar
issue. Convolutional Neural Networks [LeCun et al., 1998] constrain the flexibility of
the mapping by convolving many small linear filters with the input image, followed by
a non-linearity. The main justification for this is that in images, small patches can be
highly informative of the image label, and that the location of these patches matters
less than their presence. It therefore makes sense to learn the same local features for
the entire image.

Here, we construct a Gaussian process that has a similar structure by decomposing
the input into a set of patches, and then applying the same function to each of these
patches. The individual patch responses are pooled by an addition. This structure
would allow each patch to contribute a particular value to the GP output and reduce
its variance by some amount, independent of all other patches. The resulting kernel
will be invariant to any image which contains the same patches, regardless of their
location. We will also discuss modifications that remove the strict invariance constraint,
in favour of extra flexibility.

Pandey and Dukkipati [2014] and Mairal et al. [2014] discuss similar kernels in
passing. Computational constraints have prevented these ideas from being applied to
GPs directly.

5.3.1 Constructing convolutional kernels

We construct the convolutional GP by starting in a similar way to equation 5.6 and
equation 5.7. However, since we are interested in invariances over patches rather
than the entire image, we choose fbase to act on smaller patches instead. This has
the added advantage that we are effectively learning a Gaussian process of a smaller
dimensionality, as well as any invariance benefits. This presents a trade-off for the
model. Large patches allow structure between distant pixels to be distinguished, while
small patches mitigate the curse of dimensionality.

We call our fbase(·) the patch response function, and denote it as g : RE → R,
mapping from patches of size E. For images of size D = W × H, and patches of size
E = w × h, we get a total of P = (W − w + 1) × (H − h + 1) patches. We can start by
simply making the overall function from the image f : RD → R the sum of all patch
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responses. If g(·) is given a GP prior, a GP prior will also be induced on f(·):

g ∼ GP(0, kg(z, z′)) , (5.11)
f(x) =

∑
p

g(x[p]) , (5.12)

=⇒ f ∼ GP

0,
P∑

p=1

P∑
p′=1

kg

(
x[p], x′[p′]) , (5.13)

where x[p] indicates the pth patch of the vector x. In the coming sections we will
consider several variants of this model, particularly ones that remove the restriction of
each patch contributing equally to f , and ones designed to operate on colour images.

5.3.2 Inducing patch approximations

The structure of this kernel is exactly that of invariant kernels (equation 5.6), and we
can therefore apply the inter-domain approximation from section 5.2.2 by placing the
inducing points in g(·):

um = g(zm) , u = g(Z) . (5.14)

One interesting detail is that the inducing inputs are now of a different (smaller!)
dimensionality to the image inputs, as they live in patch space. The reduced dimen-
sionality of the inducing patches may also make optimisation more manageable. The
(cross-)covariances we need for parameterising the approximate posterior are in essence
the same as equations 5.9 and 5.10, only summing over the patches in the image, rather
than an orbit:

kfu(x, z) = Eg

[∑
p

g(x[p])g(z)
]

=
∑

p

kg

(
x[p], z

)
, (5.15)

kuu(z, z′) = kg(z, z′) . (5.16)

As pointed out earlier, this parameterisation clearly removes some of the computational
issues with evaluating Kfu and Kuu. However, this trick would not be of much use if
the number of inducing variables that are required for a given approximation accuracy
would increase drastically. In the next section, we investigate to whether this is an
issue, and provide results and intuition into when the inducing patch approximation is
accurate.
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5.4 Required number of inducing patches

For inducing point approximations, it is well known when the exact posterior is
recovered, and there is good intuition for when the approximate posterior will be
accurate. Here, we prove similar results for inducing patch approximations, starting
with what inducing patches are needed for an optimal approximation, followed by a
characterisation of when this is more or less than what is needed when using inducing
points. While this does not strictly tell us which approximation will be best when
the number of inducing variables is constrained, a similar intuition holds for inducing
patches, as for inducing points. Here, we will prove statements for the finite dimensional
KL divergences, which are equal to the full KL divergence between processes [Matthews,
2016]. In the following, we will only refer to inducing variables corresponding to patch
inputs as u, while denoting inducing points as observations on f(·) directly.

5.4.1 Inducing points

It is well known that, for Gaussian likelihoods, the variational approximation and most
other inducing point methods recover the true posterior when the inducing inputs are
chosen to be the entire training input set Z = X [Snelson and Ghahramani, 2006;
Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009b]. For non-Gaussian likelihoods
with a full rank Gaussian q(f(Z)), the variational bound can always be improved
when new inducing points are added [Matthews, 2016]. We summarise and prove these
results in the following lemma.

Lemma 1. For general, point-wise likelihoods p(yn|f(xn)), the optimal placement for
inducing points Z is at the training points X.

Proof. We consider the KL divergence to an approximate posterior which uses the
training inputs X and an arbitrary set of extra inducing points Z∗ as inducing points,
i.e. Z = X ∪ Z∗. We denote the KL divergence between processes for the inducing
point approximation as Df , which evaluates to:

Df = KL[ q(f(Z∗), f(X)) ∥ p(f(Z∗), f(X)|y) ] . (5.17)
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By applying the chain rule, we can decompose this expression into the KL divergence
using only X as inducing points, and a positive term:

Df = KL[ q(f(X)) ∥ p(f(X)|y) ]︸ ︷︷ ︸
KL without additional Z∗

+Eq(f(X))[KL[ q(f(Z∗)|f(X)) ∥ p(f(Z∗)|f(X)) ]]︸ ︷︷ ︸
≥0

.

(5.18)
Therefore, the KL divergence can only be increased by adding inducing points on top
of X, with no extra gap being added if the conditional q(f(Z∗)|f(X)) is chosen to be
equal to the prior conditional.

Due to the highly structured nature of the convolutional kernel defined in equa-
tion 5.13, fewer inducing points are needed in some situations. Additionally, in some
situations, the covariance for our Gaussian q(f(Z)) must be constrained to avoid a
−∞ variational lower bound. Before we summarise the result in the next lemma, we
set up some useful notation. We denote with u ∈ RU the vector of patch response
function values at the union of all patches present in all input images as

u = g

(
N⋃

n=1

{
x[p]

n

}P

p=1

)
, (5.19)

where U is the number of unique patches that are present. Since f(X) = f is constructed
as a sum of patch responses, and since all patch responses are present in u, we can
describe the deterministic and linear relationship between the two using the matrix
W ∈ {0, 1}N×U , with Wnm = 1 if the patch zm is present in the image xn:

f = Wu . (5.20)

Finally, we use the (reduced) Singular Value Decomposition, giving W = URSRV T
R . For

rank W = ρ, UR ∈ RN×ρ, SR ∈ Rρ×ρ and is diagonal, and VR ∈ RU×ρ. The columns of
UR and VR are mutually orthonormal and respectively span the column and row spaces
of W .

Lemma 2. For general, point-wise likelihoods, and priors using the convolutional
kernel of equation 5.13, the parameters of q(f(Z)) may be constrained without reducing
the variational lower bound. We take µf = URSRµ∥ and Σf = URSRΣ∥SRUT

R (with the
full-rank SR only being included for algebraic convenience). In this case the KL term
in the variational lower bound (equation 2.36) becomes equal to

KL[ q(f(Z)) ∥ p(f(Z)) ] = KL
[

N
(
α∥; µ∥, Σ∥

) ∥∥∥N
(
α∥; 0, V T

RKuuVR

) ]
. (5.21)
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Proof. As usual, the variational bound is L = Eq(f)[log p(y|f)]−KL[ q(f(Z)) ∥ p(f(Z)) ].
With the notation introduced above, we can write the prior as

p(f(Z)) = N (f(Z); 0, WKuuW T) . (5.22)

If q(f(Z)) places density where p(f(Z)) does not, the KL term will be infinite. For a
full-rank kernel Kuu, p(f(Z)) places density only in the column space of W , which is
spanned by the columns of UR. We can constrain q(f(Z)) to lie within this space by
taking µf = URµ and Σf = URΣUT

R. This only removes solutions that would otherwise
have had a lower bound of −∞, so this does not constitute a loss of generality.

We now can rewrite the KL divergence into the desired form by the change of
variables f = URSRα∥:

KL[ q(f) ∥ p(f) ] = KL
[

N
(
URSRµ∥, URSRΣ∥SRUT

R

) ∥∥∥N (0, URSRV T
RKuuVRSRUT

R)
]

= KL
[

N
(
α∥; µ∥, Σ∥

) ∥∥∥N
(
α∥, 0, V T

RKuuVR

) ]
(5.23)

where V T
RKuuVR is always full rank.

The constraint on Σf occurs when rank W < N , which must occur when U < N ,
i.e. the number of unique patches is smaller than the number of images, and implies a
deterministic relationship between the function values for different images. In turn,
this implies that we can obtain the same bound with U < N inducing points, so long
as the inducing points preserve the deterministic relationship. This is the case when
the chosen inducing points contain all the patches that are present in the input images.

Remark. The convolutional kernel can be recovered exactly with fewer than N inducing
points, when the number of unique patches is smaller than the number of images U < N .
The inducing points are required to contain all unique patches.

5.4.2 Inducing patches

For inducing patches, we can make a similar argument as in lemma 1 by starting from
the KL divergence between processes for approximate posteriors constructed from inter-
domain variables [Matthews, 2016]. Here we denote the inducing variables associated
with inducing patches as u, and KL divergence of the resulting approximation as Du.
The KL becomes:

Du = KL[ q(f) ∥ p(f |y) ] = KL[ q(f(X), u) ∥ p(f(X), u|y) ] . (5.24)
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This expression is harder to justify from the reasoning presented in section 2.4.2, as it
contains variables that are not directly part of the GP, and proved using a measure
theoretic argument that depends on our inducing variables u being deterministically
related to the process of interest. However, the expression above allows us to analyse
the KL between processes without measure theory, and prove a result for inducing
patches that is similar to lemma 1.

Lemma 3. For general, point-wise likelihoods p(yn|f(xn)), and the convolutional kernel
from equation 5.13, the optimal inducing variables defined by inducing patches u = g(Z)
are obtained by using the collection of all unique patches in all training points as the
inducing patches Z =

N⋃
n=1

{
x[p]

n

}P

p=1
.

Proof. As before, we start from the KL between processes, with an extra inducing
variable added, here denoted as u∗:

Du = KL[ q(f(X), u, u∗) ∥ p(f(X), u, u∗|y) ] ,

= KL[ p(f(X)|u, u∗)q(u, u∗) ∥ p(f(X)|u, u∗, y)p(u, u∗|y)) ] . (5.25)

From the construction of f(·) in equation 5.12, and the definition of Z, we see that
there is a deterministic relationship between f(X) and u. Given this deterministic
relationship, the conditionals p(f(X)|u, u∗, y) and p(f(X)|u, u∗) become independent
of u∗ and y, and are therefore equal on both sides of the KL, allowing them to be
removed from consideration:

Du = KL[((((((((
p(f(X)|u, u∗)q(u, u∗) ∥((((((((

p(f(X)|u, u∗)p(u, u∗|y)) ] . (5.26)

The KL is now in the same situation as in lemma 1, where we have the optimal KL,
and a positive term:

KL = KL[ q(u) ∥ p(u|y) ]︸ ︷︷ ︸
KL without additional u∗

+Eq(u)[KL[ q(u∗|u) ∥ p(u∗|u) ]]︸ ︷︷ ︸
≥0

, (5.27)

which implies that the KL can only be increased by adding additional inducing
variables.
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5.4.3 Comparing inducing points and inducing patches

Lemmas 1 and 3 tell us the optimal inducing inputs for both approximations. Here we
will also consider the influence of the respective Gaussian q(·) distributions over the
inducing outputs, and show that the optimal posteriors are equivalent.

Theorem 1. For the convolutional kernel, the optimal approximate posteriors based
on inducing points and inducing patches both have the same KL divergence to the true
posterior, i.e.:

min
µu,Σu

KL
[

qµu,Σu(u))
∥∥∥ p(u|y)

]
= min

µf ,Σf
KL

[
qµf ,Σf (f(X))

∥∥∥ p(f(X)|y)
]

. (5.28)

Proof. To prove the statement, we will show that the variational marginal likelihood
lower bounds for both approximations are equal when certain degrees of freedom of
their respective parameterisations are optimised out. We already did this for inducing
points in lemma 2. For the compressed parameterisation, we find the bound for the
inducing points approximation by substituting the equivalent KL divergence, and the
other deterministic relationships:

Lf = EN
(

α∥;µ∥,Σ∥
)[log p(y|URSRα∥)

]
− KL

[
N
(
α∥; µ∥, Σ∥

) ∥∥∥N
(
α∥; 0, V T

RKuuVR

) ]
(5.29)

The inducing patch bound can be written in exactly the same way. We start with
the standard bound, and then substitute relationship f = Wu:

Lu = Eq(u)[log p(y|Wu)] − KL[ N (u; µu, Σu) ∥ N (u; 0, Kuu) ] . (5.30)

If W has a space for which Wu = 0, certain degrees of freedom in Σu are unconstrained
by the likelihood. We can then strictly improve the bound by minimising the KL term
with respect to these degrees of freedom. A full SVD on W gives us

W = USV T =
[
UR UN

]
S

V T
R

V T
N

 (5.31)

where the columns of VN gives us an orthonormal basis for the null space of W . Since
V is invertible and orthonormal, we can write α = V Tu and u = V α = VRα∥ + VNα⊥.
α⊥ are the coefficients for the components of u that lie within the nullspace of W , and
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therefore do not affect the expected likelihood term. If we parameterise q(u) as

µu = VRµ∥ + VNµ⊥ , (5.32)
Σu = V ΣαV T = VRΣ∥V

T
R + VRΣ12V

T
N + VNΣ21V

T
R + VNΣ⊥V T

N , (5.33)

then we are free to choose µ⊥, Σ12, and Σ⊥ while only affecting the KL term. We now
find the optimal values for these variables, starting by rewriting the KL divergence of
Lu in terms of α:

KL[ N (u; µu, Σu) ∥ N (u; 0, Kuu) ] = KL[ N (α; µα, Σα) ∥ N (α; 0, V TKuuV ) ]

= KL
N

α∥

α⊥

;
µ∥

µ⊥

,

Σ∥ Σ12

Σ21 Σ⊥

∥∥∥∥∥∥N

α∥

α⊥

; 0,

V T
RKuuVR V T

RKuuVN

V T
NKuuVR V T

NKuuVN

 .

(5.34)

We can factorise the KLs in order to separate out α⊥, which describes the component
of u in the null space of W .

KL[ q(α) ∥ p(α) ] = KL
[

q(α∥)
∥∥∥ p(α∥)

]
+ Eq(α∥)

[
KL

[
q(α⊥|α∥)

∥∥∥ p(α⊥|α∥)
]]

(5.35)

The conditional distributions are given by:

p(α⊥|α∥) = N
(

α⊥; V T
NKuuVR(VNKuuVR)−1α∥, (5.36)

V T
NKuuVN − V T

NKuuVR(V T
RKuuVR)−1V T

RKuuVN

)
(5.37)

q(α⊥|α∥) = N
(
α⊥; µ⊥ + Σ21Σ−1

∥ (α∥ − µ∥), Σ⊥ − Σ21Σ−1
∥ Σ12

)
(5.38)

We can reduce the conditional KL to 0 by choosing

Σ21 = V T
NKuuVR(V T

RKuuVR)−1Σ∥ , (5.39)
µ⊥ = Σ21Σ−1

11 µ∥ , (5.40)
Σ⊥ = V T

NKuuVN − V T
NKuuVR(V T

RKuuVR)−1V T
RKuuVN + Σ21Σ−1

∥ Σ21 . (5.41)

We can now rewrite the inducing patch bound as

Lu = Eq(α∥)
[
log p(y|URSRα∥)

]
− KL

[
N
(
α∥; µ∥, Σ∥

) ∥∥∥N
(
α∥; 0, V T

RKuuVR

) ]
(5.42)

This is exactly the same form as the form for Lf in equation 5.29. We have now
shown that for particular restrictions of µu, Σu, µf , and Σf that contain the optimal
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parameters, the bounds Lu and Lf are the same. This implies that the optimal
variational distributions give the same KL divergence to the posterior.

Remark. The optimal inducing patch approximation is equivalent to the optimal
inducing point approximation, and only needs more inducing variables if the number of
unique patches in all input images is larger than the number of images.

This result shows that the inducing patch approximation is as compact as the most
compact inducing point approximation, when considering optimal inducing placement
of the inducing inputs. It is harder to make precise statements when the number
of inducing variables is limited more strongly, for both inducing point and patch
approximations. However, the same intuition holds: if the inducing variables constrain
the function well for the training data, the approximation is likely to be good. For
inducing patches, this implies that if the variation in terms of the present patches is
small, there is likely to be a compact inducing patch approximation. We now move on
to investigating several variants of the convolutional kernel in practice.

5.5 Translation invariant convolutional kernels

We call the basic version of the convolutional kernel as described in section 5.3.1
“translation invariant”, as the influence of a particular patch on the overall function f

will be equal regardless of its location. We re-state the inter-domain covariances for
completeness:

kfu(x, z) = Eg

[∑
p

g(x[p])g(z)
]

=
∑

p

kg

(
x[p], z

)
, (5.43)

kuu(z, z′) = kg(z, z′) . (5.44)

In order to highlight the capabilities of the new kernel and the accompanying
approximation, we now consider two toy tasks: classifying rectangles and distinguishing
zeros from ones in MNIST.

5.5.1 Toy demo: rectangles

The rectangles dataset is an artificial dataset containing 1200 images of size 28 × 28.
Each image contains the outline of a randomly generated rectangle, and is labelled
according to whether the rectangle has larger width or length. Despite its simplicity,
the dataset is tricky for common kernels that rely on Euclidean distances, because
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Fig. 5.6 The optimised inducing patches
on the rectangles dataset.

Fig. 5.7 The corresponding function of
µu. Blue is low, red is high.

of the high dimensionality of the input, and the strong dependence of the label on
multiple pixel locations.

To tackle the rectangles dataset with the convolutional GP, we used a patch-size of
3 × 3. We set the number of inducing points to 16, and initialised them with uniform
random noise. We optimised using Adam [Kingma and Ba, 2014], using a learning
rate of 0.01 with 100 points per minibatch, and obtained 1.4% error and a negative
log predictive probability (nlpp) of 0.055 on the held out test set. For comparison, a
squared exponential kernel with 1200 optimally placed inducing points, optimised with
BFGS gives 5.0% error and an nlpp of 0.258. The convolutional model performs better,
with fewer inducing points. Note that for the squared exponential model variational
inference is only used to handle the non-conjugate likelihood, rather than to obtain a
sparse inducing point posterior.

The model works because it is able to recognise and count vertical and horizontal
bars in the patches. We can see this by considering the inducing patches (figure 5.6)
and their corresponding outputs (figure 5.7). The inducing patches are sorted by the
mean value of their corresponding inducing output. Horizontal bars have negative
values, while vertical bars are positive. Each patch contributes a value to the output
of the GP over the entire image, and the classification will depend on whether the
majority is horizontal or vertical. Perfect classification is prevented by edge effects. In
the centre of the image, a vertical bar contributes to the output of f(·) in 3 individual
patches. However, at the edge, a vertical bar will be captured only once.

5.5.2 Illustration: Zeros vs ones MNIST

We perform a similar experiment for classifying MNIST 0 and 1 digits for illustrative
purposes. We use the same experimental setup with 50 inducing features, shown in
figure 5.8. The inducing patches are sorted by the mean of their inducing output,
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ranging from −1.51 in the top left to +1.52 in the bottom right. This gives insight
into the types of features the GP takes as evidence for a zero or one being present,
negative in favour for zero and positive in favour of one. Features for zeros tend to be
diagonal or bent lines, while features for ones tend to be blank space or thick edges.
We obtain 99.7% accuracy.

Fig. 5.8 The optimised inducing patches on the MNIST 0-vs-1 dataset with the
translation invariant convolutional kernel.

5.5.3 Full MNIST

Next, we turn to the full multi-class MNIST dataset. Our model uses 10 independent
latent Gaussians using the convolutional kernel with 5 × 5 patches. We use the same
setup as in Hensman et al. [2015a], only constraining q(u) to a Gaussian. It seems
that the translation invariant kernel is too restrictive for this task, since its accuracy
plateaus at around 95.7%, compared to 97.9% for the squared exponential kernel (figure
5.11). This is consistent with the poor marginal likelihood bound (figure 5.10). It
appears that the summation structure here is not flexible enough. Full results are in
table 5.1.
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5.6 Weighted convolutional kernels

We saw in the previous section that although the fully translation invariant kernel
excelled at the rectangles task, it under-performed compared to the squared exponential
on MNIST. Full translation invariance is too strong a constraint, which makes intuitive
sense for image classification, as the same feature in different locations of the image
can imply different classes. This can be easily avoided, without leaving the family of
Gaussian processes, by weighting the response from each patch. Denoting again the
underlying patch-based GP as g(·), the image-based GP f(·) is given by

f(x) =
∑

p

wpg(x[p]) . (5.45)

The weights wp can be inferred in order to adjust the relative importance of the response
for each location in the image.

In order to use this model construction in the variational GP framework we require
again the covariance function kf as well as the inter-domain covariance function kfg:

kf (x, x) =
∑
pq

wpwqkg(x[p], xq) , (5.46)

kfg(x, z) =
∑

p

wpkg(x[p], z) . (5.47)

The patch weights w ∈ RP are considered to be kernel hyperparameters: we optimise
them with respect to the marginal likelihood lower bound in the same fashion as the
underlying parameters of the kernel kg. This introduces P hyperparameters into the
kernel, which is slightly less than the number of input pixels, which is how many
hyperparameters a squared exponential kernel with automatic relevance determination
would have. This may lead to slight over-fitting and over-estimation of the marginal
likelihood. Inference for w could be extended to MAP, MCMC or variational methods,
if overfitting presents a large problem.

5.6.1 Toy demo: Rectangles

The errors in the previous section were caused by rectangles along the edge of the image,
which contained bars which only contribute once to the classification score. Bars in
the centre contribute to multiple patches. The weighting allows some up-weighting of
patches along the edge. This results in near-perfect classification, with no classification
errors and an nlpp of 0.005 in the test set.
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Fig. 5.9 The patch response kernel hyperparameters for the weighted convolutional
kernel on the MNIST 0-vs-1 dataset.

5.6.2 Illustration: Zeros vs ones MNIST

Using the same experimental setup as earlier, we repeat the classification of MNIST
0 and 1 digits for illustration purposes. Due to the weighting of a patch’s response,
we can not interpret µu in the same way as earlier, where the value indicated the
strength of evidence towards a particular class. Depending on the location of a patch,
the same patch could contribute towards a positive or negative classification. However,
the weights do give insight into what regions of the image carry importance for either
class. Figure 5.9 shows the patch weights, which nicely highlight exactly the difference
in areas where salient features for ones and zeros would be. This modification obtained
perfect classification on the test set.

5.6.3 Full MNIST

By adding the weighting, we see a significant reduction in error over the translation
invariant and squared exponential kernels (table 5.1 & figure 5.11). The weighted
convolution kernel obtains 1.38% error – a significant improvement over 1.95% for the
squared exponential kernel [Hensman et al., 2015a]. Krauth et al. [2016] report 1.55%
error using a squared exponential kernel, but using a Leave-One-Out objective for
finding the hyperparameters. The variational lower bound correctly identifies the best
performing model, if it were to be used for model comparison (figure 5.10).
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5.7 Is convolution too much invariance?

As discussed earlier, the additive nature of the convolution kernel places constraints on
the possible functions in the prior. While these constraints have been shown to be useful
for classifying MNIST, the non-parametric nature of the squared exponential, which
guarantees enough capacity to model well in the large data limit, is lost: convolutional
kernels are not universal [Rasmussen and Williams, 2005, §4.3] in the image input
space. Here we investigate whether a small squared exponential component in the
kernel can push classification performance even further.

5.7.1 Convolutional kernels are not universal

Kernels with invariances and convolutional kernels are odd in the sense that they are
non-parametric, but not universal. They are non-parametric, as the Mercer expansion
(equation 1.29) has an infinite number of terms, however, they lack the ability to
approximate any function arbitrarily closely. For invariant kernels this fact is obvious:
the function is constrained to have the same value for different inputs. Any function
that does not obey this constraint, cannot be captured. Weighted convolutional kernels,
on the other hand, are slightly more complicated since they have given up their exact
invariance to patch permutations. To show that they are not universal, we need to
construct a set of inputs which would fully constrain the function value at a different
input. This would show up as a rank deficient covariance matrix.

Claim. Weighted covariance kernels are not universal.

Proof. Consider N distinct images with P (not necessarily distinct) patches each. An
example of this would be a 28 × 28 image with only a single pixel on in different
locations. This would give 784 possible images, that could have possible different
responses. Our N input images contain U distinct patches. Assuming 5 × 5 patches,
U = 25. We collect the response for each individual patch in g. The function values f
can be obtained through the linear transformation

f = WQg , (5.48)

where W simply has the patch weights as rows, and Q projects g to a vector of patch
responses at the correct locations. The product WQ has size N × U . This implies that
the convolutional function evaluated at the U + 1th image in the example above has
to be fully determined by the responses of the previous images. This image exists, as
N > U .
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Of course, the kernel matrix for these inputs has to have some zero eigenvalues
because the matrix

E[ffT] = E[WGggTW TGT] = WQKGQTW T (5.49)

has rank at most U .

This simple example shows what functions on images the convolutional kernel can
not model. It is possible that the classification performance we obtained is held back
by the constrained nature of the convolutional kernel, despite the very same constraints
being necessary to outperform the squared exponential kernel on its own. In the next
section, we attempt to get the best of both worlds of constrained convolutional kernels
and flexible squared exponentials.

5.7.2 Adding a characteristic kernel component

We can again obtain a kernel on f(·) that is both characteristic and has convolutional
structure by adding a characteristic squared exponential (SE) component with a
convolutional component: f(x) = fconv(x) + frbf(x). This construction allows any
residuals that the convolutional structure cannot explain to be modelled by the
characteristic SE kernel. By adjusting the variance parameters of both kernels, we can
interpolate between the behaviour of the two kernels on their own. Having a too small
a variance for the characteristic component will not allow enough of the residuals of
the convolutional component to be modelled, while having too large a variance will
result in a model that is too flexible to generalise again. Following section 5.1.1, we use
the marginal likelihood (or rather, an approximation to it) to weigh these competing
considerations and choose the variance parameters, in the same way as was done in
other additive models [Duvenaud et al., 2013, 2011].

Inference in such a model is straightforward under the normal inducing point
framework – it requires only plugging in the resulting sum of kernels. Our case is
complicated since we can not place the inducing inputs for the SE component in patch
space. We need the inducing inputs for the SE to lie in the space of images, while
we want to use inducing patches for the convolutional kernel. This forces us to use a
slightly different form for the approximating GP, representing the inducing inputs and
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outputs for each component separately, asuconv

urbf

 ∼ N

µconv

µrbf

, S

 , (5.50)

f(·) | u = fconv(·) | uconv + frbf (·) | urbf . (5.51)

We can derive a similar variational lower bound as in equation 2.36. For clarity, we
are interested in a model where we have a prior which is the sum of two GPs, and an
arbitrary likelihood:

f1(·) ∼ GP(0, k1(·, ·)) , (5.52)
f2(·) ∼ GP(0, k2(·, ·)) , (5.53)
f(·) = f1(·) + f2(·) , (5.54)

yi|f, xi ∼ p(yi|f(xi)) . (5.55)

We can write down the probability of everything and introduce a bound using the
trick in Titsias [2009b] of matching the prior conditionals. The component GPs f1(·)
and f2(·) are independent in the prior. The inducing variables un are observations of
the component GPs, possibly in different domains.

log p(y) = log
∫

p(y|f(x))p(f(x)|u1, u2)p(u1)p(u2)dfdu (5.56)

≥ log
∫ p(y|f(x))((((((((

p(f(x)|u1, u2)p(u1)p(u2)
((((((((
p(f(x)|u1, u2)q(u1, u2)

df1df2du (5.57)

=
∑

n

Eq(f(xn))[p(yn|f(xn))] − KL[ q(u1, u2) ∥ p(u1)p(u2) ] (5.58)

The marginal distributions needed for the likelihood expectation can simply be found by
considering the conditional of f(·) and remembering that the sum of two independent
Gaussian processes is a Gaussian process with the means and covariances summed:

f(·)|u1, u2 ∼ GP
(∑

i

kT
ui

(·)K−1
uiui

ui,
∑

i

ki(·, ·) − kT
ui

(·)K−1
uiui

kui
(·)
)

. (5.59)

We can choose a factorised approximation between u1 and u2, or a full joint, where
we learn a 2M × 2M posterior covariance matrix. In the former case, the predictive
variance of q(f(xn)) is simply the sum of predictive covariances of two sparse GP
posteriors, while in the latter case some extra interaction terms are required. By
denoting Sii′ as the approximate posterior covariance between ui and ui′ , we obtain
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the predictive variance for the non-factorised version

σ2
n = k(xn, xn) +

∑
i

∑
i′

δii′kui
(xn)TK−1

uiui
Sii′K−1

ui′ ui′ ku′
i
(xn) − kui

(xn)K−1
uiui

kui
(xn) ,

(5.60)
in which we never need expensive matrix operations on matrices larger than M × M ,
despite dealing with 2M inducing variables. A similar simplification can be done in
the KL divergence.

5.7.3 MNIST

By adding a squared exponential component, we indeed get an extra reduction in error
from 1.38% to 1.17% (table 5.1 & figure 5.11). The variances for the convolutional and
SE kernels are 1.13 · 10−2 and 3.82 · 10−4 respectively. The marginal likelihood lower
bound of the convolutional + SE model is slightly higher than that of the weighted
convolutional model.
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Fig. 5.10 Optimisation of the variational lower bound for the full MNIST experiment
for 4 different kernels: SE (blue), translation invariant convolutional (orange), weighted
convolutional (green) and weighted convolutional + SE (red) kernels.
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Fig. 5.11 Classification accuracies on 10 class MNIST for 4 different kernels: SE
(blue), translation invariant convolutional (orange), weighted convolutional (green) and
weighted convolutional + SE (red) kernels.
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Fig. 5.12 Negative log predictive probabilities on 10 class MNIST for 4 different kernels:
SE (blue), translation invariant convolutional (orange), weighted convolutional (green)
and weighted convolutional + SE (red) kernels.
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Kernel M Error (%) NLPP
Invariant 750 2.35% 0.089

SE 750 1.95% 0.068
Weighted 750 1.38% 0.056

Weighted + SE 750 1.17% 0.039

Table 5.1 Final results for MNIST.

5.8 Convolutional kernels for colour images

Our final variants of the convolutional kernel are focused on handling images with
multiple colour channels. The addition of colour channels presents an interesting
modelling challenge. While there is definitely information in colour, the cost is a
significant increase in input dimensionality, with a large amount of redundancy between
colour channels.

As a baseline, the weighted convolutional kernel from section 5.6 can be used with the
collection of patches simply containing all patches from each colour channel separately
(baseline weighted convolutional kernel). For images with a width W , height H

and number of colour channels C, we would get P = (W − w + 1) × (H − h + 1) × C

patches. This kernel can only account for linear interactions between colour channels,
through the weights, and is also constrained to give the same patch response for
inputs, regardless of the colour channel. A next step up would be to define the patch
response function to take a w × h × C patch with all C colour channels (weighted
colour-convolution kernel). This trades off increasing the dimensionality of the
patch response with allowing it to learn non-linear interactions between the colour
channels.

As a final model, we propose to use a different patch-response function gc(·) for
each colour channel, weighted together linearly based on patch location and colour
channel. We will refer to this approximation as the multi-channel convolutional
kernel:

f(x) =
P∑

p=1

C∑
c=1

wpcgc

(
x[pc]

)
. (5.61)

Following the earlier approximation scheme of placing the inducing points in the patch
space, we can consider the C patch response functions together as a multi-output GP
g : z → RC . Interestingly, this leads to having multi-dimensional inducing outputs in
RC . As before with inter-domain approximations, we only need to find the (cross-)
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covariances between f and g. The main difference here is that we have a C valued
vector of covariances for each inducing input (denoting x[pc] as the pth patch of the
cth colour channel):

kfgc(x, z) = E{gc}C
c=1

[∑
pc

wpcgc

(
x[pc]

)
gc(z)

]
=
∑
pc

wpckg(x[pc], z) . (5.62)

To avoid any tensor arithmetic, the vectors are stacked to give an overall Kfu ∈ RN×CM

matrix. Similarly, the covariance matrix between all inducing variables Kuu can be
represented as CM × CM matrix. Thanks to the independence assumption in the
prior of the gc(·)s, it will be block-diagonal in structure. As in section 5.7, we have
the choice to represent a full CM × CM covariance matrix, or go for a mean-field
approximation, requiring only C M × M matrices.

The multi-output inducing variables can be avoided if the weighting of each of the
channels is constant w.r.t. the patch, i.e. wpc = wpwc. In this case, the pixel response
will be a weighted sum of GPs, which is itself a GP with the kernels summed:

f(x) =
∑

p

wp

∑
c

wcgc(x[pc]) =
∑

p

wpg̃(x[pc]) , (5.63)

g̃(·) ∼ GP
(

0,
∑

c

wckc(·, ·)
)

. (5.64)

We will refer to this as the additive colour-convolutional kernel, as it is equivalent
to the colour-convolutional kernel with an additive kernel for the patch-response
function.

5.8.1 CIFAR-10

We conclude the experiments by an investigation of CIFAR-10 [Krizhevsky et al., 2009],
where 32 × 32 sized RGB images are to be classified. We use a similar setup to the
previous MNIST experiments, by using 5 × 5 patches. Again, all latent functions share
the same kernel for the prior, including the patch weights. We compare a regular SE
kernel, the “baseline” weighted convolutional kernel, a weighted colour-convolutional
kernel, an additive colour-convolutional kernel and finally a multi-channel convolutional.
All models use 1000 inducing inputs.

Test errors, NLPPs and ELBOs during training are shown in figures 5.13, 5.14 and
5.15. Any convolutional structure significantly improves classification performance,
however, colour interactions are particularly important. All three variants of kernels
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Fig. 5.13 Test error for CIFAR-10, using SE (blue), baseline weighted convolutional
(orange), weighted colour-convolutional (green), additive colour-convolutional (purple)
and multi-channel convolutional (red) kernels.
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Fig. 5.14 Test negative log predictive probability (nlpp) for CIFAR-10, using SE
(blue), baseline weighted convolutional (orange), weighted colour-convolutional (green),
additive colour-convolutional (purple) and multi-channel convolutional (red) kernels.
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Fig. 5.15 Variational bound for CIFAR-10, using SE (blue), baseline weighted convolu-
tional (orange), weighted colour-convolutional (green), additive colour-convolutional
(purple) and multi-channel convolutional (red) kernels.

which allow for some form of decoupled response to different colours outperform the
baseline weighted convolutional kernel. The final error rate of the multi-channel kernel
the with multi-output inducing variable approximation was 38.1%, compared to 48.6%
for the RBF kernel. While we acknowledge that this is far from state of the art
using deep nets, it is a significant improvement over existing Gaussian process models,
including the 44.95% error reported by Krauth et al. [2016], where a SE kernel was
used together with their leave-one-out objective for the hyperparameters4.

5.9 Comparison to convolutional neural networks

Just as Gaussian processes are infinite limits of single-layer neural network [Neal, 1994],
convolutional Gaussian processes are a particular limit of single-layer convolutional
neural networks. Single layer convolutional neural networks convolve filters wh over an
image, followed by a non-linearity φ(·) to form the hidden representation. Each filter
is shaped as a patch, and there are H filters, giving wh ∈ Rw×h×H . After the hidden
layer, all features are multiplied and summed with the weights wf ∈ RP ×H , to form a
single scalar. We illustrate this in figure 5.16.

4It may be possible that the gain in performance seen in Krauth et al. [2016] from using the
leave-one-out objective will also carry through to convolutional kernels.
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The core assumption that leads to the convolutional Gaussian process, is to constrain
wf to use the same weights to sum spatially, and the same weights to sum over the H

filters. This gives:
[wf ]ph = wpwg . (5.65)

Given this assumption, we can perform the spatial summing after the summing over
features. We identify result of the summation over wg as outputs of the patch response
function. If we place a Gaussian prior on wg, and take the limit of H → ∞, we obtain
exactly the same situation as discussed by Neal [1994], where the patch response
function becomes a Gaussian process. As in the convolutional Gaussian process, we do
not place a prior over wp, and let them remain as hyperparameters.

Fig. 5.16 Pictorial representation of the convolution required in stationary kernels. A
single dot product with a patch is highlighted.

This comparison is useful to highlight one main difference between convolutional
GPs and CNNs. Adding filters in a CNN does increase the capacity of the model, while
it does not for the convolutional GP, as it already has an infinite number. If we were
to do this, we would simply recover an additive kernel for the patch-response function.

5.10 Notes on implementation

A large bottleneck for the implementation is summation of kernel evaluations over
numerous patches. A general implementation could simply extract the patches from
the image, compute the kernel, and sum:

[Kfu]nm =
∑

p

kg(x[p]
n , zm) . (5.66)
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This can be implemented as evaluating a large PN × M kernel matrix, reshaping
to P × N × M , and summing over the first dimension. For general kernels, this is
required. However, if the kernel is stationary, i.e. kg(p, p′) = kg(|p − p′|), the first
step is computing the matrix of pairwise distances between all patches and inducing
points. If the patches were general inputs, this would be unavoidable. However, in
this case neighbouring inputs overlap strongly, since they’re all patches from the same
image. By expanding the Euclidean distance, we can find the convolution operation
(figure 5.17):

(x[p]
n − zm)2 = x[p]

n

Tx[p]
n − 2x[p]

n

Tzm + zT
mzm . (5.67)

The inner product of zm along all patches of x is a convolution operation. Additionally,
the inner product of the patches with themselves is also a convolution of the squared
image with a window of ones. This allows the Euclidean distance to be computed in
O(log E) rather than O(E). Additionally, much effort has gone into optimising imple-
mentations of convolutions (e.g. TensorFlow [Abadi et al., 2015] provides tf.conv2d()),
together with placing them on fast hardware like GPUs thanks to the popularity of
convnets.

Fig. 5.17 Pictorial representation of convolution required in stationary kernels. A single
dot product with a patch is highlighted.

5.11 Conclusions

We started this chapter by noting that in some cases, the performance of Gaussian
processes may be held back as much by the lack of kernels with interesting generalisation
properties, as the availability of accurate approximate inference schemes. We showed



126 Convolutions and Invariances

that incorporating invariances into Gaussian process priors can be very helpful for
improving generalisation, and is favoured by the marginal likelihood if it does.

Based on this understanding, we specifically looked at integrating convolutional
structures (similar to those known in neural networks) into a Gaussian process model, in
order to incorporate invariances beneficial for modelling functions on high-dimensional
image inputs. For efficient inference, we introduced a matched inter-domain approxima-
tion, where inducing points were placed in the space of patches, leading to a procedure
with computational similarities to convolutional neural networks. Several variations of
convolutional kernels were applied to the standard MNIST and CIFAR-10 benchmarks,
both of which are considered challenging for GPs, and strongly improved compared to
previous GP models.

One particularly interesting observation was that using convolutional structure alone
did not result in optimal performance. Although the convolutional kernel generalises
well due to its constrained nature, its constrained nature also left certain systematic
residuals unmodelled. By adding a universal squared exponential kernel to the model,
and using the marginal likelihood approximation to weigh the magnitudes of both
components, we could improve performance even further. This property, the ability
to search over a space of different models and trade off data fit and complexity, is
arguably the main promise for Gaussian process models for the future. Currently, deep
learning models require trial-and-error and cross-validation to find the architecture.
This process could be greatly simplified if hyperparameter selection could be guided by
a differentiable objective function, as the marginal likelihood is for Gaussian process
models.

It has to be emphasised though, that despite their elegance, Gaussian processes
do lag behind deep neural networks in terms of performance. In this particular work,
depth is the obvious missing ingredient. However, progress in deep Gaussian processes
may open the door to powerful models which combine the benefits of both worlds, with
convolutional Gaussian processes providing a starting point for layers useful for image
processing tasks.



Chapter 6

New insights into random-input
Gaussian process models

In this chapter, we want to deal with some conceptual issues surrounding Gaussian
process models with random variables as inputs, with a particular focus on the the
Gaussian Process State Space Model (GPSSM). The insights in this chapter were
developed together with Richard Turner, Carl Rasmussen, Thang Bui and Roger
Frigola1. My main contribution was the connection between the marginalised presenta-
tion presented by Frigola [2015], and the derivation using the process view. We argue
that the presentation of GPSSMs (and to a lesser extent all random variable input GP
models) is complicated by a conflation of random variables on the GP, and ones that
are the evaluation at some random input location. We can also greatly simplify the
derivations by viewing the models (informally) from the stochastic process perspective
[Matthews et al., 2016], and resolve ambiguities in the graphical models that have been
used to demonstrate GPSSMs in recent years. Over the next few sections we will build
up to the GPSSM from GP regression, highlighting where the process view comes in
at each stage. This new presentation has three main advantages over previous ones.
First, the notation is clear, with unambiguous conditional distributions and graphical
models. Second, the derivation of variational inference is greatly simplified, and third,
the mean-field assumption in the approximate posterior between the transition function
and the states becomes clear. The main drawback of this presentation is some slight
abuse of notation regarding the infinite-dimensional Gaussian process.

1The insights were written up and circulated as a note around the group. Some of the insights
were discussed in passing in Frigola [2015], where the note was cited.
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6.1 Issues with augmentation

We first want to briefly justify the need for the “approximating process” view in
random-input GPs by considering some issues that can arise from the augmentation
view.

In section 2.4.2 we discussed how the the KL divergence between latent processes
can be minimised to find a sparse approximation. Titsias [2009b] originally presented
the variational inference scheme starting from the formulation with f(·) marginalised
out. The model is then “augmented” with the inducing variables u, by specifying a
joint distribution p(f , u) which is marginally consistent with f . Variational inference is
then performed over both f and u. While in Titsias’s [2009b] work, the augmenting was
done in a way that led to minimising the KL between processes, not every augmentation
guarantees a good approximation, and the augmentation argument by itself does not
provide an indication of what a good augmentation is2.

The main worry about the augmentation argument alone (also voiced by Richard
Turner), is that as soon as the model is augmented with arbitrary variables, the varia-
tional inference scheme is obliged to approximate the posterior over both [Matthews,
2016, see §3.4.3]. We can easily construct augmentations which lead to poor approxi-
mations. For example, if we chose u to be noisy observations of the latent process at
locations Z. We can explicitly represent the noise variables (figure 6.1) to emphasise
the change in model, even when the model is marginally consistent. As before, we end
up minimising the KL divergence

KL[ p(f |u)q(u) ∥ p(f , u|y) ] , (6.1)

only this time, with the posterior

p(f , u|y) = N

Kfy

Kuy

K−1
yy y,

Kff Kfu

Kuf Kuu + σϵI

−

Kfy

Kuy

K−1
yy

[
KT

fy KT
uy

] . (6.2)

The bound we get from this KL can now never be tight, since the diagonal term in
the covariance of p(f , u|y) can never be represented with our approximate posterior.
The approximate posterior now needs to trade off accurately representing this noise
term (which we do not care about) and accurately capturing the distribution over f
(which we do care about). We therefore want to revisit derivations of uncertain input
GPs with the “approximating process” view, to verify their correctness as well.

2Although Hensman and Lawrence [2014] discusses justifications for good augmentations in terms
of information theory.
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ϵ
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Fig. 6.1 A model that is marginally consistent, but that does not result in a variational
approximation with the KL between processes as the minimised quantity.

6.2 Conditioning in GP regression

We first consider the standard GP regression scenario, where we change notation
slightly. We are given some inputs x1:N = {xn}N

n=1 in the space X and corresponding
outputs y1:N = {yn}N

n=1, and want to make predictions over future inputs x∗. We
place a Gaussian process prior over the latent function. The usual Gaussian likelihood
depends on the latent function at the input given in the training set:

f ∼ GP(f ; 0, K) (6.3)
yn|f(·), xn ∼ N

(
yn; f(xn), σ2

y

)
. (6.4)

The Gaussian process is a measure on the space of functions RX , which we can’t
strictly represent as a density. However, it behaves like an “infinitely long vector” in
the sense that if we want the marginal over any finite set of inputs X̃ ⊂ X , we obtain
Gaussian distributions (section 1.2.4). Because the likelihood only depends on a finite
set of points, we can focus on the posterior of these only, and marginalise out all other
random variables on the Gaussian process that do not correspond to an input point3.
We can calculate the posterior:

p(f(x1:N)|y1:N) = p(yn|f(·), xn)p(f(x1:N))
p(y1:N) . (6.5)

We use f(x1:N) to denote the marginal distribution of the GP at the locations x1:N .
Only the likelihood is conditioned on the training inputs, as this determines which
function values it depends on. The prior is not conditioned on the training inputs, we
simply use the observed values to determine which marginals we choose to represent
in our calculations. This is consistent with how we defined the model. After all, the

3As discussed in section 1.2.3, we only need this posterior to recover the full latent Gaussian
process posterior.
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prior distribution over the latent function does not change with knowledge of only the
training inputs. For a more specific example, consider the distribution of the function
value at the input 3, assuming X = R for now. f(3) is a random variable with a
distribution that remains unchanged after gaining the knowledge that our yns will be
observed at X.

This presentation is subtly different to how the model has been presented in the
past. Rasmussen and Williams [2005], for example, condition the prior over function
values on the inputs, writing p(f |X). We can arrive at this formulation by integrating
out the Gaussian process:

p(f) = GP(f ; 0, K) (6.6)
p([f ]n|f, xn) = δ(f(xn) − [f ]n) (6.7)

p(yn|[f ]n) = N
(
yn; [f ]n, σ2

y

)
. (6.8)

In this case, we construct the random variable f to be the collection of the function
f(·) evaluated at the training input locations (we denote the nth element of f using
[f ]n to explicitly avoid confusion with f). We also change the likelihood to not depend
directly on the latent function f(·), but on f instead. We can again integrate out
all unnecessary random variables, which in this case is the entire Gaussian process,
resulting in a distribution of f which is conditioned on X.

p(f |X) = N (f ; 0, Kff) (6.9)

Conditioned on X, the latent Gaussian process can be recovered by finding the joint
distribution of f with an arbitrary marginal f

(
x∗

1:Ñ

)
, and integrating the rest of f out.

Although both these models are equivalent interpretations, the separation between
variables on the GP and evaluations will become important when we consider random
inputs. We can view the graphical models for each option in figure 6.2.

6.3 Adding uncertainty on the inputs

The GPLVM is the canonical example of a GP model with uncertainty on its inputs,
and Titsias and Lawrence [2010] developed the first variational inference scheme over
both the GP mapping and the inputs X (see Damianou et al. [2016] for a comprehensive
and modern review of the Bayesian GPLVM and derivative models). The distinction
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Fig. 6.2 Three equivalent graphical models for GP regression, or the GPLVM if we
consider the xn variables to be unobserved. Left: The likelihood depends directly on
the latent process f(·). Middle: Explicit representation of the evaluation variable f is
added. Right: The GP is integrated out, and the evaluations f become correlated.

between f and f(x1:N) becomes more apparent in this case. The graphical model for
the GPLVM is the same as in figure 6.2, only with {xn} being unobserved.

It is now problematic to refer to a random variable on the Gaussian process as f(xn),
particularly if we refer to a joint as p(xn, f(xn)). The value of xn determines the identity
of the random variable f(xn) (i.e. which variable on the GP we’re considering). This
means that the notation p(xn, f(xn)) is nonsensical, as it does not refer to the density
of a well-defined random variables. This issue is an infinite-dimensional analogue to
issues with representing mixture models as graphical models. Mixture models share
the feature that the mixture indicator determines which cluster mean determines the
mean of a new data point. In regular directed graphical models, there is no choice but
to make the data depend on the mixture indicator as well as all cluster means4.

It should be clear now that the likelihood p(yn|f(·), xn) really does need to depend
on the entire latent Gaussian process: For a stochastic input, it is not clear which
random variable on the GP is required until xn is observed – it could depend on any.
Explicitly representing the evaluation variable f as the evaluation of the GP at a
random input location solves this problem. We can correctly refer to the joint density
p(xn, [f ]n), and just like in regression, it is clear that the conditional f |X is Gaussian.

While the specification of the finite dimensional model is correct, it obscures the
connection to the latent process when performing inference. We gain two insights from
considering the process view: how to alternately sample the GP and inputs, and that
the variational approximation from Titsias and Lawrence [2010] was in fact mean-field
between the GP and the inputs.

4Minka and Winn [2009] introduce “gates” as an extension to directed graphical models to visually
describe this situation more elegantly.
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6.3.1 Gibbs sampling

Consider the task of performing Gibbs (or, more accurately, Metropolis-within-Gibbs)
sampling in the marginalised formulation of the GPLVM. Given that we have the joint
p(X, f , y), it would be natural to alternately sample from p(f |X, y) and p(X|f , y). The
former conditional of f can be sampled from exactly, while p(X|f , y) has to be handled
with Metropolis-Hästings, giving the acceptance probability:

a = min
(

1,
p(Xprop, f , y)

p(X, f , y)
q(Xprop → X)
q(X → Xprop)

)
(6.10)

Following this procedure, we may expect the latent GP to remain in the same state
during the update of X. This is not true, since f are not variables on the GP, but
observations of the GP at X. If X is re-sampled, we are in effect also constraining
the latent GP to have the old f at the new locations, leading to a different predictive
distribution at other points.

If we consider the latent process, we arrive at a different procedure for p(X|f , y).
Imagine if we had truly sampled the full f(·). Keeping this variable constant would
entail looking up a new value for f after proposing the new inputs. Sampling the
infinite-dimensional f(·) is impractical, of course. However, retrospective sampling
offers an elegant solution. Papaspiliopoulos and Roberts [2008] proposed to switch
the order of sampling of the infinite-dimensional object with values that depend on it.
Adams et al. [2009] used this retrospective sampling trick in a Gaussian process model,
where it simply amounts to sampling the GP inputs before their sampling respective
function values from the GP conditioned on all previously sampled points5. In the
limit where we instantiate an infinite number of function values, this process would
become a simple look up. Following this idea, our procedure for re-sampling X now
becomes:

1. Sample Xprop ∼ q(X → Xprop) ,

2. Sample f(Xprop) ∼ p(f(Xprop|f(X), y) ,

3. Accept with

a = min
(

p(y|f(Xprop))((((((((((
p(f(Xprop)|f(X))

p(y|f(X))((((((((((
p(f(X)|f(Xprop))

((((((((((
p(f(X)|f(Xprop))q(Xprop → X)

((((((((((
p(f(Xprop)|f(X))q(X → Xprop)

)
.

(6.11)
5Intuitively this is akin to lazy evaluation – variables are only sampled once they are needed.
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Crucially, marginalised over this transition, the distribution of f(·) at any collection
of fixed points Z remains unchanged, which is what we expect from a Gibbs sampler.
The next sampling step would re-sample f(·) by simply re-sampling f(X). A full
description of the retrospective sampling trick for GPs can be found in Adams et al.
[2009]. The main importance here is that by considering the marginalised model,
we (perhaps inadvertently) mix up inference over the uncertain inputs X, and the
underlying GP f(·). The process view avoids this. A similar issue occurs in variational
inference.

6.3.2 Variational inference

The original derivations of the GPLVM in Titsias and Lawrence [2010] start with
the evaluation variables f after the GP has been integrated out. The derivation of
the variational inference scheme then required putting variables on the GP back in,
which was presented as the “augmentation trick”. The variational distribution that
was proposed was:

q(f , u, X) = q(X)q(u)p(f |u, X) . (6.12)

At first sight, this method does factorise X and u, but does allow dependence between
X and f . This makes it seem as though there are dependencies between X and the
Gaussian process. Viewing the approximation from the process view, we see that the
approximation does, in fact, factorise X and f(·).

In the following alternative derivation, we focus directly on the marginals of the GP,
instead of f . With some abuse of notation, we write the GP prior as p(f), even though
there is no density w.r.t. the Lebesgue measure. We do this, on the understanding that
we will integrate out all variables except a finite set. This allows us to write down the
marginal likelihood:

log p(y1:N) = log
∫ N∏

n=1
p(yn|f, xn)p(f)p(X)dfdX

= log
∫∫ N∏

n=1
p(yn|f(xn))p(f(X))df(X)p(X)dX . (6.13)

As mentioned earlier, we can not write a joint distribution between the inputs and
the function values on the GP like p(X, f(X)), as the identity of the random variable
f(X) would be implied to change for different values of X. However, the inner integral,
and all the densities in it, are well defined, since the value for X is fixed in the outer
integral. We write the approximate posterior factored as (again with some abuse of



134 New insights into random-input Gaussian process models

notation):

q(f, X) = q(X)q(u)p(f ̸=u|u) . (6.14)

With this, we mean that we can get the marginal at any set of input locations X̃

(distinct from the X used in q(X)) using the distribution of a GP conditioned on
u = f(Z):

q(f(X̃), X) = q(X)
∫

q(u)p(f(X̃)|u)du . (6.15)

We can now create a variational lower bound in the same way as in section 2.4.2,
by explicitly representing the same variables in the prior and posterior, and noting
that the conditional for any extra variables cancel.

log p(y1:N) = log
∫

q(X)
 ∫ q(f(X), f(X∗), u)

N∏
n=1

p(yn|f(xn))((((((((((
p(f(X), f(X∗)|u)p(u)

q(X)
((((((((((((
p(f(X), f(X∗)|u)q(u)

df(X)df(X∗)du

dX

≥
∫

q(X)
[∫

p(f(X)|u)q(u) log p(yn|f(xn))p(u)
q(X)q(u) df(X)du

]
dX

= Eq(xn)
[
Eq(f(xn)|u)q(u)[log p(yn|f(xn)]

]
− KL[ q(u) ∥ p(u) ]

− KL[ q(X) ∥ p(X) ] (6.16)

This alternative derivation shows the mean-field property of the variational distribution,
and highlights that all the variables involved are actually on the GP.

6.4 Gaussian Process State Space Models

GPSSMs have recently been studied in various forms with various inference techniques.
Progress in the development of inference for the model, however, has outpaced the
clarity of presentation, with papers containing mathematically ambiguous notation and
graphical models with unclear semantics, despite the methods being algorithmically
correct. Again, we argue that the root cause is that there is not enough clarity about
the process that the finite dimensional marginals come from. Much of the clarity
here was first presented by Frigola et al. [2014]. Here we aim to continue the work,
and revisit the GPSSM in the same way as above with the GPLVM. This simplifies
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the derivation of the lower bound, highlights mean-field properties of the variational
distribution and clears up the graphical model.

6.4.1 Model overview

The GPSSM posits that observed time series y1:T can be explained as noisy observations6

from some latent time series x1:T with a Markov structure. The transition from one
latent state to the next is determined by some non-linear function f(·) given a GP
prior:

f ∼ GP(0, k(·, ·)) , (6.17)
x0 ∼ N (x0; 0, Σ0) , (6.18)

xt+1|f, xt ∼ N (xt+1; f(xt), Σx) , (6.19)
yt|xt ∼ N (yt; xt, Σy) . (6.20)

Although the model is concisely described by referencing the underlying transition
function f(·) which makes the whole system Markov, presenting the model using finite
dimensional marginals is complicated. The model requires feeding the output of the
GP back into itself as an input. This turns the mild issues that existed in the GPLVM
concerning the identity of random variables, and the question of what variables are
actually conditioned on others, into real conceptual issues. Early papers like Wang et al.
[2006] and Ko and Fox [2009] note that the problem can be seen as a regression problem
from x0:T −1 to x1:T . Directly substituting this into the prior for GP regression as in
equation 6.9 would lead to the nonsensical expression p(x1:T |x0:T −1) where we both
want to describe a distribution over a subset of the same variables that we condition
on. This was noted in Wang et al. [2006] as an unexplained oddity.

This conceptual problem stems from considering the random variables of the latent
state as being the same as the random variables on the GP. In the GPSSM, which
variable on the GP is required for describing the distribution of xt+1 depends on the
value that xt takes – the previous output of the same GP. Frigola et al. [2014] presents
a view that solves many of these issues by explicitly splitting the evaluations of the
GP and states into different variables. The full model (“probability of everything”)
was then constructed incrementally, sampling from the GP one value at a time.

6Other observation models can also be considered, see Frigola [2015] for a great overview.
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6.4.2 Graphical model

Here we will investigate an unambiguous graphical model for the GPSSM, and how it
relates to the graphical model when only finite dimensional marginals are represented.
In the past, GP models have relied on the “thick black bar” notation, used in Rasmussen
and Williams [2005] to indicate variables on the same GP (and hence from a fully
pair-wise connected factor graph). Frigola et al. [2013] and Frigola [2015] present the
GPSSM in this way as well (figure 6.3). There are several issues with this illustration.
Firstly, the arrow from an xn to an fn+1 does not indicate a conditioning. As discussed
earlier, the GP prior does not change with knowledge of the input locations. What is
meant, is that xn picks out the appropriate variable from the GP. Secondly, the fns
are not marginally Gaussian, which one would expect from variables on a Gaussian
process. Finally, the graphical model does not obey the usual rules of conditioning in
directed graphical models [Shachter, 1998]. For example, observing f2 and f1 does not
make f3 independent of x1 and x0.

x0 x1 x2 x3

f1 f2 f3. . . . . .

y1 y2 y3

Fig. 6.3 GPSSM using the “thick black bar”
notation.

x0 x1 x2 x3

y1 y2 y3

f(·)

Fig. 6.4 GPSSM with explicit reference to
the full latent function.

The graphical model including the full non-parametric model (figure 6.4) does
fulfil these requirements. We can, however, recover the graphical model for the finite
dimensional presentation of the model [Frigola et al., 2014] by introducing the evaluation
variables (ft – not the curly f) again, and then integrating out f(·). The generative
model becomes:

f ∼ GP(0, k(·, ·)) x0 ∼ N (0, Σ0)
ft|xt−1 ∼ δ(ft − f(xt−1)) xt+1|ft ∼ N (ft, Σx)

yt|xt ∼ N (xt, Σy) (6.21)
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By carefully integrating out f , we return back to the formulation from Frigola et al.
[2014] (appendix C).

x0 x1 x2 x3

f1 f2 f3 ...

y1 y1 y1

Fig. 6.5 Resulting graphical model after marginalising out the infinite dimensional f in
figure 6.4.

6.4.3 Variational inference

Finally, we show how the process view can greatly simplify the derivation of the
variational inference lower bound, while avoiding the augmentation trick. Similar to
the derivation for the GPLVM in equation 6.16, we initially instantiate the full latent
process, and show that our bound only ever relies on well-defined expectations. The
derivation here was proposed by Richard Turner. We start again informally with an
integration over f . We again also do the integration over x0:T last, so we can refer to
densities of f(x), when they are well-defined:

log p(y1:T ) = log
∫

p(x0)
T∏

t=1
p(yt|xt)p(xt|xt−1, f)p(f)dfdx0:T

= log
∫

p(x0)
T∏

t=1
p(yt|xt)p(xt|f(xt−1))p(f(x0:T ), u)df(x0:T )dudx0:T (6.22)
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Our variational distribution is the same as for the GPLVM in equation 6.14. Again, we
can represent any number of other variables on the GP without changing the bound:

log p(y1:T ) ≥
∫

p(X)
 ∫ q(f(X), f(X∗), u)

log p(x0)
∏T

t=1 p(yt|xt)p(xt|f(xt−1))((((((((((
p(f(X), f(X∗)|u)p(u)

((((((((((
p(f(X), f(X∗)|u)q(u)

df(X)df(X∗)du

dx0:T (6.23)

=
T∑

t=1
Eq(xt)[log p(yt|xt)] +

T∑
t=1

Eq(xt−1:t)
[
Ep(f(xt−1),f(xt)|u)q(u)[log p(xt|xt−1, f)]

]
+

H(q(x0:T )) − KL[ q(u) ∥ p(u) ] + Eq(x0)[log p(x0)] (6.24)

The expectations required for computing this bound are well described by Frigola
[2015], when sampling from the optimal q(x0:T ) and McHutchon [2014], when optimising
a Gaussian q(x0:T ).

6.5 Conclusion

We presented alternate derivations of the GPLVM and GPSSM, which more closely
highlight the connection to the “approximating process” view of variational inference
for GPs. It shows that the models can be derived without the use of the augmentation
argument, relying only on not marginalising out certain variables. This view has pitfalls
when considering random inputs. It is not possible to write down a well-defined joint
distribution between variables on the GP and the random inputs. However, when
performing the integrals carefully in the correct order, we can work with well-defined
densities. While the difference to the previous derivations is subtle, the derivations
presented here are useful in two ways. They are simpler to derive, as they don’t
require the incremental construction of the GP, and they highlight the independence
assumptions in the approximate posterior more clearly.
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Discussion

So far in this thesis, we have discussed our contributions within the context of the
Bayesian framework and the study of Gaussian process models. In this final chapter,
we will take a broader look at the field, discuss the wider implications of this work, and
take the liberty to speculate about possible future implications. We will particularly
address the question of what the advances in Gaussian processes made in this thesis
can offer large-scale applications currently dominated by deep learning.

7.1 Non-parametrics and modern deep learning

Machine learning has seen enormous growth in recent years in terms of interest from
both private and public institutions and the general public, largely due to impressive
improvements in performance on academic benchmarks and real-world industrial
problems. Deep learning has been a large contributor to this growth, due to its ability
to leverage large datasets to learn complex non-linear relationships for a wide variety of
tasks like image recognition and natural language translation [LeCun et al., 2015]. In
the resulting wave of enthusiasm about deep learning, it seems that the performance gap
of Bayesian non-parametric models has become well-known, causing their advantages1

to be under-emphasised as well.
There have been various attempts to bring the benefits of the Bayesian methodology

to neural networks over the years (e.g. MacKay [1992b,a]; Neal [1994]; Kingma et al.
[2015]; Gal and Ghahramani [2016], see Gal [2016, §2.2] for a good review). Modern
approaches are required to scale to the large datasets that are common in deep learning,
and mainly focus on obtaining estimates of posterior uncertainty. This approach has

1Uncertainty estimates, objective functions for hyperparameter selection, and coherent models for
increasing dataset sizes (section 1.3).
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resulted in improved (and already useful) uncertainty estimates compared to maximum
likelihood methods.

However, current Bayesian deep learning approaches mainly focus on approximating
the posterior on the weights only, with other benefits not yet being fully realised. We
take a moment to consider the current gap between the promises of the Bayesian
non-parametric framework (section 1.3) and current deep learning practice.

• Robust uncertainty. While approximate weight posteriors have improved deep
learning uncertainty estimates, it is still an open question as to how well the true
posterior is actually captured. More fundamentally though, current methods
still only approximate parametric deep learning models. In section 1.2.5 we
argued that having “enough” basis functions in the model (with infinity being a
convenient way to have enough) was important for obtaining robust uncertainties,
particularly away from the input data distribution. Perhaps non-parametric
layers can offer further improvements. This may be of particular importance
when dealing with adversarial examples [Szegedy et al., 2013], as uncertainty has
been shown to provide additional robustness [Li and Gal, 2017].

• Hyperparameter selection. Deep learning models generally use cross-validation
for tuning hyperparameters. The marginal likelihood (or approximations to it)
provides an elegant alternative. The ability to maximise the marginal likelihood
using gradients (in the same framework as backpropagation) may provide a faster
and more convenient way of training models. Currently, no approximations to the
marginal likelihood of deep neural networks that can be used for hyperparameter
selection exist.

• Continual learning. Deep learning models struggle in settings where increasing
amounts of data become available. Small models are preferred for small datasets,
with models becoming more complicated as more data gets available. This is at
odds with the Bayesian non-parametric approach of using a single high-capacity
model with appropriate complexity controls.

Deep Gaussian processes [Damianou and Lawrence, 2013] may provide a framework
for combining the best of both worlds, by using non-parametric Gaussian processes
as layers in deep models. Deep GPs still require significant development before they
can considered to improve on current deep learning, with the two usual questions in
Bayesian modelling remaining open:

• How do we perform accurate inference?
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• What needs to change in the model for it to be useful on datasets we care about?

Many different inference methods have been proposed, all of which are derived from a
well-known single layer approximations, e.g. Random Fourier Features [Cutajar et al.,
2017], EP [Bui et al., 2016], or variational inference [Damianou and Lawrence, 2013;
Salimbeni and Deisenroth, 2017]. However, all approaches start with the same model,
using multiple independent GP priors for each layer.

It is within this context that this thesis is best understood, with us aiming to
contribute new insight, inference methods, and models which can be used towards the
goal of creating more flexible models with Gaussian processes.

7.2 Summary of contributions

In this thesis, we only consider inference and modelling using single-layer Gaussian
process models. This is of importance, as we can not expect to create good deep models
without good understanding, approximations, and modelling capabilities in single layer
models. In this thesis, we broadly address four questions:

• What properties do we want from Gaussian process approximations? (Chapter 2)

• How well do current objective functions live up to our requirements? (Chapter 3)

• How can we better approximate Gaussian process models? (Chapters 4 and 5)

• How can we create better Gaussian process models? (Chapter 5)

Chapter 2 focuses on reviewing existing approximations in the light of some desider-
ata for approximations to non-parametric basis function models that we propose.
While these desiderata have been implicit in much of the work on variational GP
approximations we discussed, the goal of these approximations is not always clearly
recognised in other works. We hope that stating these desiderata will also provide
some guidance to how to assess new approximations. Following this with chapter 3, we
use our desiderata to perform an in-depth investigation of the two popular FITC and
VFE objective functions for selecting approximate posteriors. We show that FITC is
biased away from solutions that accurately approximate the model, despite its (often)
good performance in testing metrics. This serves as an example that assessing whether
approximate Bayesian inference is truly accurate, we need more empirical assessment
than test set performance.



142 Discussion

Chapter 4 and 5 both investigate using inter-domain inducing variables for rep-
resenting posteriors. In chapter 4, we aspired to the common goal of improving the
approximation of a kernel with very general properties (squared exponential), in our
case with a more flexible posterior that could add basis functions to the mean at
a sub-cubic cost. Particularly in very resource constrained situations, our method
yielded sparser, more compressed approximations. In some cases, we noticed that in
higher capacity regimes, the increased flexibility in the approximate posterior was not
utilised fully, and any improvement was marginal over standard methods due to poor
hyperparameter fitting.

More use can be gained from inter-domain inducing variables if they are tailored to
the model they are approximating. In chapter 5 we used specially designed inter-domain
inducing variables to cheaply and accurately approximate kernels with invariances,
notably convolutions. Convolutions have been widely utilised in neural networks for
improving generalisation performance on image data, but until now, have not been used
within the GP framework. We showed an improvement from 2.0% to 1.17% classification
error on MNIST compared to earlier work using the squared exponential kernel. The
matched inter-domain approximation was crucial for obtaining a computationally
practical method. One result that is particularly appealing in light of the aim of
allowing differentiable hyperparameter selection (discussed in section 7.1) was the
ability of the marginal likelihood to select weightings for convolutional and squared
exponential kernels that improved performance.

Finally, in chapter 6, we discuss conceptual issues surrounding random input GP
models. While correct, previous expositions of the GPLVM and GPSSM obscured the
link to the underlying process. As a consequence, derivations were often complicated,
and did not clearly highlight mean-field assumptions. Using the recent insights from
the “process view” of variational inference in GP models, we simplify the derivations
and clarified assumptions.

7.3 Future directions

We now briefly discuss some possible future directions for research based on the issues
we address throughout this thesis. In section 7.1 we discussed the current pervasiveness
of deep learning, and that a Bayesian non-parametric approach has potential to offer
solutions to concrete problems with current deep learning systems. Consequentially,
we will mostly discuss future work in this vein.
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Objective functions for GP inference

While section 3.2 illustrated situations where EP/FITC does not behave as the model
it is supposed to approximate, this does not imply that the alternative VFE approach
is the only method worth investing future research efforts in. In our set-up, VFE was
favourable for the same reason which makes it convenient in general: Since VFE is
guaranteed to improve the approximation (in terms of KL) when given a more flexible
class of approximate posteriors to choose from, a general recipe to improve it in failure
cases is to widen the class of approximate posteriors. Optimising the inducing points
therefore did not present any trouble. EP/FITC did not share this property, as the
true posterior was not preferred when it was available.

However, we are generally interested in situations where the class of posteriors is
constrained, with Gaussian process regression being perhaps slightly unusual due to
sparse approximate GP posteriors being able to get very close to the true posterior. In
non-sparse classification tasks, EP is known to perform very well [Kuss and Rasmussen,
2005; Nickisch and Rasmussen, 2008]. Variational methods struggle due to the heavy
penalty that the KL objective applies when the approximate posterior assigns mass
where the true posterior does not.

Whether variational inference or EP will provide a future way forward seems to
depend on the extent to which approximate posteriors that are flexible enough to make
VFE work are computationally tractable. In situations where the required flexibility is
too expensive, EP style methods may be able to provide a good limited approximation
more quickly. This may be an increasingly important question for Bayesian deep
models, where independence assumptions between layers are common.

Deep Gaussian processes

Given the impact that convolutional layers have had on deep learning practice, it is
tempting to investigate whether convolutional GP layers can form a similar building
block for deep GP models. The main modification that would be required, is the
definition of an image to image Gaussian process, which can be achieved by not
performing the pooling summation.

In chapter 5, we also used the marginal likelihood selecting a weighting between
a convolutional and fully connected GP. While we only considered a single layer, the
ability to do this automatically in deep models could significantly simplify the search
for good architectures.
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In section 7.1 we discuss uncertainty quantification and continual learning as
additional benefits of the Bayesian framework. Demonstrating these capabilities
requires significant extra work, particularly as these properties are most useful when
integrated into larger systems.

Learning model invariances

We viewed the convolutional model discussed in chapter 5 as an interesting case within
more general invariances. The inter-domain approach we introduced is equally applica-
ble to kernels with generally invariant kernels. If we would be able to parameterise a
large class of kernels with different invariances, we could use the marginal likelihood
to select useful ones. This is a large opportunity, as invariances provide very strong
and non-trivial generalisation biases. So far, the usefulness of the marginal likelihood
has been limited as it is only used to select very simple properties of kernels (like
lengthscale). Selecting invariances may provide a very strong use case for the Bayesian
framework.

Computational properties of Gaussian processes

Despite the advances of sparse approximation methods, Gaussian process models
are still at a strong computational disadvantage to neural networks. Even sparse
methods still require the inversion of a matrix, which is often done using a Cholesky
decomposition. Deep neural networks require only matrix multiplications, which
are efficiently parallelisable, and require less numerical precision. The popularity of
deep neural networks has also had the effect of modern computing hardware being
tailored to their needs, with GPUs and TPUs increasingly focusing on high-parallelism,
low-precision computations. This presents an extra challenge for future Gaussian
process work, as current linear algebra based implementations require high-precision
computation. Iterative matrix product based algorithms like Conjugate Gradients
have been proposed in the past [Gibbs and MacKay, 1997] as a way to speed up GP
inference.

Leveraging the advances in hardware made for deep learning is likely to be crucial
for GPs to remain practically relevant. The convolutional GP already presents an
example of how deep learning advances can be useful, due to the ability to leverage
optimised GPU implementation of convolution operations section 5.10.
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Optimisation

Similar to the development of hardware tailored to deep learning, significant effort in
the deep learning community is expended on more efficient optimisation, with Adam
[Kingma and Ba, 2014] being a prime example. Adam works very well for optimising
neural networks, despite questions about convergence guarantees [Reddi et al., 2018].
The lack of convergence guarantees perhaps do not present as much of a problem for
training neural network models, as for Gaussian processes. For models trained with
maximum likelihood, not converging may be helpful to prevent overfitting. When
training Gaussian process models we put a lot of effort into constructing objective
functions which are less susceptible to overfitting, and so we ideally would want to
train them to convergence. This raises the question of whether optimisation routines
designed for neural networks may need modification to work well for Gaussian processes.
One benefit of the variational inference, is that there are frameworks for understanding
and improving optimisation behaviour. Natural gradients have been used with success
in the past [Hensman et al., 2013], and perhaps may provide a useful direction in the
future.

Software

Finally, a large contributor to the uptake of methods in the community, is the avail-
ability of easily usable software packages. The growth in both deep learning research
and practice has been largely influenced by very popular software packages, such as
Theano [Theano Development Team, 2016], Caffe [Jia et al., 2014], and Keras [Chollet
et al., 2015]. Providing good software is a research challenge that requires a strong
understanding of how the mathematical choices that can be made influence the model,
and how software abstractions can be made to flexibly allow a wide range of possibilities.
Gaussian processes have seen some excellent, and highly used, software packages, such
as GPML [Rasmussen and Nickisch, 2010], and GPy [The GPy authors, 2012–2014].
This thesis heavily used and contributed to GPflow [de G. Matthews et al., 2017],
which uses TensorFlow [Abadi et al., 2015] for automatic differentiation. Automatic
differentiation has greatly simplified the creation of GP models, as it did for deep
learning models.

The future success of Bayesian deep learning models using GPs will similarly depend
on the quality of the software available, and how well the mathematics is abstracted
into software. Recent development in deep GPs [Salimbeni and Deisenroth, 2017]
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provides hope that accurate inference methods can be conveniently expressed in code
as well.

7.4 Conclusion

Bayesian non-parametric modelling in general, and Gaussian processes in particular,
provide many advantages that modern machine learning methods can still benefit from.
Computational drawbacks have been a large obstacle preventing the large-scale uptake
of Gaussian processes, and widespread experimentation with different models. While
there are still many open challenges, I hope that this thesis provides additional clarity
which will help guide future work, and some useful models and tools that will prove to
be useful in future solutions.
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Appendix A

Inter-domain inducing features

A.1 Time-Frequency Inducing Features

The Time-Frequency Inducing Feature (TFIF) is obtained by shifting the Frequency
Inducing Feature (FIF) integral projection [Lázaro-Gredilla and Figueiras-Vidal, 2009;
Lázaro-Gredilla, 2010], giving:

gT F IF (x, z) = gF IF (x − µ, z)

=
D∏

d=1

(
2πc2

d

)− 1
2 exp

(
−

D∑
d=1

(xd − µd)2

2c2
d

)
cos
(

ω0 +
D∑

d=1
(xd − µd)ωd

)
(A.1)

Where z = {µ, ω}. The expression for the covariance of the inducing variable
kT F IF (z, z′) given in Lázaro-Gredilla and Figueiras-Vidal [2009]; Lázaro-Gredilla [2010],
however, is incorrect. Here we present the corrected expression, which turns out to
differ only in a few terms from the expressions originally reported.

The covariance of interest is given by a double integration. The first integration
simply returns the cross-covariance kT F IF (x, z), which is correctly given in the earlier
references. The second integral can be written as convolution of a Gaussian-cosine
product with another Gaussian. This can be solved by using standard Fourier transform
identities for convolutions and the spectra of Amplitude Modulated signals. We start
from the expressions for the inducing output covariance, and express it in terms of a
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convolution involving the cross-covariance of FIF.

kT F IF (z, z′) =
∫∫

k(x, x′)g(x, z)g(x′, z′)dxdx′

=
∫

kT F IF (x, z)g(x, z′)dx =
∫

kF IF (x − µ, ω)gF IF (x − µ′, ω′)dx

=
∫

kF IF (µ − µ′︸ ︷︷ ︸
=τ

−x, ω)gF IF (x, ω′)dx

= kF IF (τ , ω) ∗ gF IF (τ , ω′) (A.2)

∴ F{kT F IF (τ , ω, ω′)} = F{kF IF (τ , ω)}F{gF IF (τ , ω)} (A.3)

In the Fourier domain, the convolution is a multiplication, solving the integral. The
trick is to use the identity

F{cos(f0t)s(t)} = 1
2S(f − f0) + 1

2S(f + f0) , (A.4)

to obtain the necessary Fourier transforms. Both will turn into a sum of two sums,
symmetric about the origin. Multiplying these, we get a sum of 4 Gaussians. Using
the same identity in the inverse, we obtain the result:

kT F IF (z, z′) = 1
2

D∏
d=1

(
l2
d

l2
d + c2

d

) 1
2

exp
(

−1
2

D∑
d=1

c2
dl2

d(wd + w′2
d )

2c2
d + l2

d

)
exp

(
−1

2
(µd − µ′

d)2

2c2
d + l2

d

)
 exp

(
−1

2

D∑
d=1

c4
d(ωd − ω′

d)2

2c2
d + l2

d

)
cos
(

D∑
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d(ωd + ω′

d)
2c2
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(µd − µ′
d) − (ω0 − ω′
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)

+

exp
(

−1
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d=1

c4
d(ωd + ω′

d)2

2c2
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d
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cos
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d=1

c2
d(ωd − ω′

d)
2c2

d + l2
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(µd − µ′
d) − (ω0 + ω′

0)
)

(A.5)



Appendix B

Inducing point updates for VFE
and FITC

Here, we prove the claims of chapter 3 on how the objective functions for VFE and
FITC change after adding an inducing input. From equation 3.1 we see that the only
term that depends on the inducing inputs, is Qff = KfuK−1

uuKuf . We can examine the
effect of adding a new inducing input on the objective, by considering rank 1 updates
to this matrix.

B.1 Adding a new inducing point

We begin with the covariance matrix for M inducing points Kuu, and the corresponding
approximate covariance Qff . We denote versions of these matrices with a new inducing
point added with a superscript +. We are interested in the updated Qff :

Q+
ff = K+

fu(K+
uu)−1K+

uf . (B.1)

To perform the rank 1 update, we simply perform a block inversion of K+
uu [Ras-

mussen and Williams, 2005, p. 201]:

(K+
uu)−1 =

Kuu ku

kT
u k

−1

=
K−1

uu + 1
c
aaT −1

c
a

−1
c
aT 1

c

 a = K−1
uuku
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where c = k −kT
uK−1

uuku, kT
u = (k(z1, zM+1), . . . , k(zM , zM+1)) (the vector of covariances

between the old and new inducing inputs), and k = k(zM+1, zM+1).

K+
uf =

Kuf

kT
f


where kT

f = (k(zM+1, x1), . . . , k(zM+1, xN)) is the vector of covariances between the
data points and the new inducing input. Q+

ff can now be found by a simple matrix
product, resulting in a rank 1 update.

Q+
ff = K+

fu(K+
uu)−1K+

uf

= KfuK−1
uuKuf + 1

c
(KfuaaTKuf + KfuaaTKuf

−KfuakT
f − kf aTKuf + kf k

T
f )

= KfuK−1
uuKuf + 1

c
(Kfua − kf )(Kfua − kf )T

= KfuK−1
uuKuf + bbT

= Qff + bbT

Q+
ff = Qff + bbT

We obtain b = 1√
c
(KfuK−1

uuku − kf ) for the rank 1 update.

B.2 The VFE objective function always improves
when adding an additional inducing input

The change in objective function can now be computed using Q+
ff .

2(F+ − F) = log
∣∣∣Q+

ff + σ2
nI
∣∣∣− log

∣∣∣Qff + σ2
nI
∣∣∣+ yT(Q+

ff + σ2
nI)−1y − yT(Qff + σ2

nI)−1y

+ 1
σ2

n

Tr(Kff − Q+
ff ) − 1

σ2
n

Tr(Kff − Qff)

= log
∣∣∣Qff + bbT + σ2

nI
∣∣∣− log

∣∣∣Qff + σ2
nI
∣∣∣

+ yT(Qff + bbT + σ2
nI)−1y − yT(Qff + σ2

nI)−1y − 1
σ2

n

Tr(bbT)
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We extensively use the Woodbury identity [Rasmussen and Williams, 2005, p. 201]
and to decompose Q+

ff into Qff and its rank 1 update.

2(F+ − F) = log(1 + bT(Qff + σ2
nI)−1b) + log

∣∣∣Qff + σ2
nI
∣∣∣− log

∣∣∣Qff + σ2
nI
∣∣∣

+ yT(Qff + σ2
nI)−1y − yT (Qff + σ2

nI)−1bbT (Qff + σ2
nI)−1

1 + bT (Qff + σ2
nI)−1b

y

− yT(Qff + σ2
nI)−1y + 1

σ2
n

Tr(bbT)

= log(1 + bT(Qff + σ2
nI)−1b) − 1

σ2
n

Tr(bbT)

− yT (Qff + σ2
nI)−1bbT (Qff + σ2

nI)−1

1 + bT (Qff + σ2
nI)−1b

y

We can bound the first two terms by noting that

Tr(bbT) = bTb ,

log(1 + x) ≤ x ,

bT(Qff + σ2
nI)−1b ≤ 1

σ2
n

bTb .

As a consequence, we have that the first two terms are bounded by zero:

log(1 + bT(Qff + σ2
nI)−1b) − 1

σ2
n

Tr(bbT) ≤ 0 .

The final term is bounded in the same way:

−yT (Qff + σ2
nI)−1bbT (Qff + σ2

nI)−1

1 + bT (Qff + σ2
nI)−1b

y = − (yT(Qff + σ2
nI)−1b)2

1 + bT (Qff + σ2
nI)−1b

≤ −(yT(Qff + σ2
nI)−1b)2

≤ 0

Equalities hold when f = 0, which is the case when an existing inducing point is added.
The FITC objective can increase or decrease with an added inducing point. While

the complexity penalty seems to always improve by adding an inducing input, the data
fit term can outweigh this benefit. We do not have a proof for the complexity penalty,
but we hypothesise that it is true. The diagonal of Qff + G is always constrained to be
the marginal GP variance. The correction term G is the heteroskedastic noise term.
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As we add inducing points, the volume of Qff increases, reducing the amount of noise
that is added. This improves the complexity penalty.

B.3 The heteroscedastic noise is decreased when
new inducing inputs are added

While the objective function can change either way, the heteroscedastic noise, which is
given by diag(Kff − Qff) always decreases or remains the same when a new inducing
input is added:

diag(Kff − Q+
ff ) = diag(Kff − (Qff + bbT)) (B.2)

= diag(Kff − Qff) − diag(bbT) (B.3)

The diagonal elements of bbT are given by b2
m, which are always larger or equal to zero,

such that the heteroscedastic noise always decreases (or stays the same).



Appendix C

Marginalisation of latent function
in GPSSM

Here, we discuss the steps needed to marginalise out f(·) in the GPSSM to obtain the
exact model formulated in Frigola et al. [2014]. The steps are straightforward, but
confusing in notation, given common over-loadings of operators. Usually, when we
refer to densities, we use the name of the random variable as both the identifier of
the density, and as the location the density is evaluated at. I.e. p([f ]t|f(·), xt−1) is the
density of [f ]t evaluated at whatever value [f ]t takes. When this becomes ambiguous in
the following, we will make this explicit by subscripting the density with its random
variable, e.g. pf(xt)(v). It should be clear that pf(xt)(v) is the density function of the
random variable f(xt) evaluated at v.

x0 x1 x2 x3

f1 f2 f3

y1 y2 y3

f(·)

Fig. C.1 GPSSM with explicit evaluation variables.
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We start with the formulation in figure 6.4, but we add the explicit evaluation
variables as in figure 6.2.

p(ft|f(·), xt−1) = δ(ft − f(xt−1)) . (C.1)

To integrate out f(·), we have to solve the integral (we consider f1 . . . f3):

p(f1, f2, f3|x0, x1, x2) =
∫

df(x0:3)p(f(x0:3))
∏
t=1

p(ft|f, xt−1)

=
∫

df(x1:3)
(∫

df(x0)p(f(x0))δ(f1 − f(x0))p(f(x1:3)|f(x0))
) T∏

t=2
p(ft|f, xt−1)

= pf(x0)(f1)
∫

df(x2:3)
( ∫

df(x1)p(f(x1)|f(x0) = f1)δ(f2 − f(x1))

p(f(x3)|f(x0) = f1, f(x1))
)

p(f3|f, x2)

= pf(x0)(f1)pf(x1)(f2|f(x0) = f1)
∫

df(x3)p(f(x3)|f(x0) = f1, f(x1) = f2, f(x2))δ(f3 − f(x2))

= pf(x0)(f1)pf(x1)(f2|f(x0) = f1)p(f3|f(x0) = f1, f(x1) = f2) (C.2)

The density function for fn is simply a GP conditioned on f1:n−1 at the inputs x0:n−2.
This structure of density function also shows the conditioning structure shown in
figure 6.5.
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