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Summary

I present the work completed during my time as a PhD student within the Exoplanet Group of
the Cavendish Laboratory, University of Cambridge, UK, as a part of the Centre for Doctoral
Training in Data-Intensive Sciences. Much of this work has been conducted as a part of the
NGTS consortium.

I implemented and tested a novel generalisation of the autocorrelation function (theG-ACF),
which applies to irregularly sampled data, such as photometric light curves from ground-based
telescopes. I demonstrated that this algorithm accurately estimated the standard ACF, even
for poorly sampled astrophysical data, and produced accurate rotation periods that agreed with
more complex and computationally expensive models.

I then applied the G-ACF to almost a million photometric light curves from NGTS, finding
16, 880 periodic variability signals from 829, 481 light curves. I combated the noise and aliasing
associatedwith ground-based photometry to produce a stellar variability sample that rivals those
from previous space-based photometric studies. I assessed how these variable objects were
distributed within colour–magnitude and colour–period space, highlighting distinct populations
of variable objects spanning late-A through to mid-M spectral types and with periods between∼
0.1and 130 days. Within colour–period space, I found a bi-modal structure previously observed
in Kepler data and find samples of stars on either side of the gap appear to be from similar
populations of stars in terms of colour, intrinsic brightness and multiplicity rather than distinct
epochs of star formation.

Finally, I developed a comprehensive period extraction software package, RoTo, which uses
multiple period extraction techniques to produce reliable period estimates from time-series data.
I applied RoTo to NGTS observations of the ∼ 500Myr old open cluster NGC 6633. I conducted
a detailed study of the rotational variability of member stars, using a combination of literature
and machine-learning methods to produce a robust membership list. I calculated distances and
extinction values and produced a rotation period sample for the cluster. I compared the slow-
rotator sequence of the cluster in colour–period space to similarly aged clusters. I conducted
gyro- and isochrone fits to derive probabilistic age estimates for the cluster from rotation, which
agreed with age estimates from other methods.
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This work is firmly rooted within the principles of Data-Intensive Sciences; I applied
performant algorithms to large photometric data sets to produce statistical results with minimal
manual input. All of the software developed as a part of this PhD is open-source, and I have
released two public Python packages.
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Introduction

This introductory Chapter will paint a picture of the landscape in which the work discussed
in this thesis is set. I will introduce the reader to concepts within time-domain astronomy,
specifically the techniques used to generate the time-series-based light curves used throughout
this work. I will walk through a brief history of the milestone photometric instruments and
surveys used to map sources of varying brightness across the sky. These instruments can be
broadly grouped into two classes: ground-based and space-based telescopes. I will discuss the
advantages and disadvantages of both methods and compare the data taken. I will introduce the
reader to the Next Generation Transit Survey, NGTS, whose data forms an integral part of this
work. This thesis relies on over one million light curves taken by NGTS from 2016 onward.

I will discuss some of the astrophysical objects of interest that photometric surveys have
targeted. Specifically, within the context of this thesis, I will focus on variable stars and open
star clusters. Although many of these surveys’ main scientific focus is on exoplanet detection
and characterisation, stellar variability is both a nuisance in the form of noise as well as its
own interesting and diverse scientific pursuit. A brief overview of the field of stellar variability
and clusters will be given in this Chapter, with a more detailed scientific background given in
Chapter 2.

Finally, I will introduce the reader to the concept of ‘big data’ and ‘data-driven astronomy’,
which motivate a large portion of the work done in this thesis as a part of the Centre for
Doctoral Training in Data-Intensive Science. As surveys become more powerful, the data
volume produced increases enormously. Much resource is now devoted to processing, storing
and analysing this huge volume of data, for which traditional, manual techniques are not viable.

1



2 Chapter 1. Introduction

1.1 Time-domain astronomy

Time-domain astronomy focuses on astrophysical objects and phenomena that cause detectable
variation in an observable (for example, brightness, a spectrum or on-sky position). Generally,
these variations will be on short timescales, extremely short when viewed in the context
of astrophysical processes. Some of the shortest astrophysical variability we can observe
falls under ‘high-speed astrophysics’, probing into physical processes taking place on milli-,
micro- and even nanosecond scales. Objects such as rapidly rotating pulsars and small-scale
magnetohydrodynamic instabilities require extremely fast observation cadences to capture such
short-term variability (Dravins 1994). For longer timescales, a long observation baseline is
required to collect enough data to observe such variability; for example, a small sample of
long-period variable stars was observed for 45 months with the Kepler space telescope, and
periodic signals with periods of 100 – 900 days were found (Hartig et al. 2014). Solar cycles
observed since 1750 have enabled the study of long-term solar variability and activity changes
(National Oceanic and Atmospheric Administration 2021).

Two important concepts within time-domain astronomy are sampling cadence and observa-
tion baseline. The sampling cadence is the spacing between observations. We will come across
a wide variety of sampling cadences, as one cadence is not suitable for all observations. For a
given observational setup a dim source will require a longer observation to combat photon noise
than a brighter source, so we are, in general, unable to observe these dim objects on as short
timescales as brighter objects. The positioning of the telescope will also affect sampling. One
large difference between ground-based and space-based observations is that ground-based tele-
scopes cannot observe during the day and may face additional periods of telescope downtime
due to poor visibility or bad weather. Both space- and ground-based telescopes are vulnerable
to technical downtime, for example, maintenance of ground-based surveys or satellite power
outages in the case of space-based telescopes.

Ideally, astronomers would take observations on a set of evenly spaced points in time (i.e.
regularly sampled); however, in practice, factors, as described above, will mean we end up with
an irregularly sampled time series. Irregular sampling has been the topic of much frustration
within signal processing, with Lomb (1976) and Scargle (1982) proposing the well-known
Lomb–Scargle Periodogram method to deal with such gaps in the context of periodic signal
detection. I will discuss further details of this method and other signal processing methods for
time series in more detail in Section 2.2.

The observation baseline is the total time extent of observations of an astrophysical object.
Often the observational baseline of a certain object is defined by celestial geometry: if we
cannot point a telescope at an object as it is blocked by another body such as the Earth or the
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Sun, we will be unable to observe it. Additionally, telescopes will have an operational lifetime,
so for example, in the case of the space telescope Kepler (Borucki et al. 2010), two failed
reaction wheels meant the telescope was unable to continue its ground-breaking long-baseline
observations of a patch of the sky (now known as the Kepler field, which Kepler observed
almost continuously from 2009–2013).

I will discuss three common observational methods in time-domain astronomy relevant to
this thesis: photometry, spectroscopy and astrometry. The most detailed description will be of
photometry, the method with which the data used in this work is taken. Spectroscopy is used
widely within exoplanet and variability detection, providing different insights into variability
through observations of shifting stellar spectra. Astrometry is an important technique used for
mapping the positions and movements of objects in the sky and is discussed here in the context
of the Gaia Mission (Gaia Collaboration et al. 2016). Gaia is an ongoing space-based mission
to create an extraordinarily precise three-dimensional positional map of more than a thousand
million stars throughout our Milky Way galaxy and beyond, mapping their positions, motions,
luminosities, temperatures and compositions.

1.1.1 Photometry

Photometry is the science of measuring an object’s brightness in a specific part of the elec-
tromagnetic spectrum. It is most often conducted by measuring the electromagnetic flux (i.e.
photons) incident on an imaging device such as a Charge Coupled Device (CCD). The incident
light is passed through a filter which allows only photons within a specific wavelength range to
pass through, commonly this is within the visible spectrum due to the widespread availability of
such CCDs. There are several standard astronomical filters used within the infrared, visible and
ultraviolet parts of the electromagnetic spectrum, one example is the Johnson–Cousins UBVRI
photometric system (for example as described in Landolt 2007). These wavelength bands split
this part of the spectrum into Ultraviolet, Blue, Visual, Red and Infrared and are motivated
by observations of standard stars from the Earth, accounting for absorption features in the
Earth’s atmospheric spectrum. By taking photometric measurements in multiple passbands, it
is possible to calculate colour information about a source. This colour information can be used
to infer temperature and aid in identifying specific classes of variable stars and binary systems.

By tracking the brightness of a source over time, we can produce a photometric light curve
for a star. In general, to produce a light curve, we must track an object’s movement across
our CCD and account for many sources of photometric noise, including background brightness
fluctuations. If we observe from the ground, there are many additional noise sources caused by
Earth’s atmosphere and the Moon. I will discuss these noise sources in more detail in Section
1.2.
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Photometric light curves can reveal information about the source and any orbiting bodies.
Asteroseismology, or the study of stellar oscillations, uses the frequency spectrum of a photo-
metric light curve to observe the oscillation modes of a star and gain insight into its internal
structure. Photometry also reveals information about the rotation and rotational evolution of a
star. I will give a detailed description of different sources of stellar variability in Section 2.1. If
objects pass in front of the star being observed, most interestingly companion stars or orbiting
planets, a photometric light curve will also reveal these. Further details of the transit method
will be outlined below.

1.1.1.1 How do we measure brightness?

Astronomers traditionally use magnitude to express the brightness of astrophysical objects.
Magnitude is a logarithmic brightness scale defined as:

< − <ref = −2.5 log10
�

�ref
, (1.1)

where < is the apparent magnitude of a source as observed from Earth and <ref is the apparent
magnitude of a suitable reference source. Here � is the total incident flux of the detected source,
and �ref is the total incident flux of the reference source. For a given photometric filter, there
exists a zero-point reference flux �ref for reference magnitude <ref = 0. Although apparent
magnitude is a measurable quantity and useful for comparing the brightness of objects as
observed from Earth, the absolute magnitude allows the comparison of the intrinsic brightness
of objects.

An object’s absolute magnitude is defined to be equal to the apparent magnitude that the
object would have if it were viewed from a distance of exactly 10 parsec, without extinction
of its light due to absorption by interstellar matter and cosmic dust. If we know the distance
to a source in parsec (3pc) (for example, from measuring the parallax), we can calculate the
absolute magnitude, " , as

" = < − 5 log10(3pc) + 5 − �, (1.2)

where � is the extinction or reddening of the object in this band. As light scatters off dust and
other matter in the interstellar medium, shorter-wavelength light from the emitted spectrum
is preferentially absorbed or scattered due to the average size of interstellar dust grains, leav-
ing a ‘reddened’ spectrum. Reddening is often measured as a ‘colour-excess’ by comparing
photometric observations in multiple passbands of an object against model photometry. A
commonly used colour excess is � (� − +), which is related to the observed objects � − +
colour: � (� −+) = (� −+)observed − (� −+)intrinsic.

Although the true relationship between reddening and extinction has a complex wavelength
dependence, Cardelli et al. (1989) demonstrated a simple relation which holds for a wavelength



1.1. Time-domain astronomy 5

Figure 1.1: An illustration of transits and occultations. The flux drops as the planet blocks a
fraction of the starlight during transit. The flux rises as the planet’s dayside comes into view.
The flux drops again when the planet is occulted by the star. Credit: Winn (2010).

range 0.125`< ≤ _ ≤ 3.5`< involving just one parameter, the total-to-selective extinction
ratio: 'V = �V/� (� − +). Furthermore, Cardelli et al. (1989) showed that 'V ∼ 3.1
characterises the mean extinction relation for stars in the Milky Way. This value is still widely
accepted to model the Galaxy’s extinction relation well.

1.1.1.2 The transit method for exoplanet detection

By taking photometric light curves, it is possible to detect orbiting bodies which transit their
parent. This is only possible when the system’s orbital plane aligns with the observer’s line
of sight; however, it has been exceptionally successful in aiding the discovery of exoplanets
and binary star systems. The first exoplanet to be discovered using the transit technique was
HD 209458b by Charbonneau et al. (1999). Since then, the transit technique has been the
most successful exoplanet discovery method, with almost 3,500 confirmed planets published
using this technique (over 75% of all confirmed planets) (NExSci 2021). Of these, just over
2,400 were detected using the Kepler space telescope (Borucki et al. 2010), the most successful
planet-hunting mission to date. In Section 1.2, I will discuss further details of Kepler and other
large photometric survey missions.

The transit technique allows insight into the radius ratio of the two orbiting bodies, as
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the expected ‘dip’ in the light curve during the transit can be modelled with a small number
of parameters. To first order, transit depth (the fractional change in brightness) is equal to
the radius ratio squared: '2

p/'2
∗ for a planet of radius 'p orbiting a star of radius '∗. The

shape of this dip is shown in Figure 1.1. This technique, as mentioned, is also suitable for the
detection and characterisation of binary star systems; Section 2.1.3 outlines further detail on
the photometric detection of binary star systems.

1.1.2 Spectroscopy

Spectroscopy utilises the multi-wavelength nature of detected light. The light’s wavelength
spectrum is spread out andmeasured on aCCDby passing the light through an optical dispersion
device such as a diffraction grating. By analysingmeasured spectra, it is possible to gain insights
into the chemical composition of the observed target. In particular, when considering stars,
their spectra can reveal chemical composition and aid in understanding temperature, density,
mass, distance, and luminosity.

1.1.2.1 Radial velocity (RV) spectroscopy

One notable and relevant use of spectroscopy is the detection of radial velocity (RV) signals.
RV signals are measured by periodically monitoring spectra of a target star and tracking the
change in the wavelength of spectral lines resulting from a Doppler shift. When considering
observations of stars with orbiting bodies, an RV Doppler shift signal will appear as a regular,
cyclical motion in wavelength as the source orbits the system’s centre of mass. The light from
the star is blue- and red-shifted as it moves towards and away from the observer, respectively.
This motion implies the presence of a companion object exerting a gravitational pull on the
star: either another star or a large or close-in exoplanet.

The RV technique allows us to extract information on the mass ratio of the two bodies
(subject to an unknown inclination factor). Combined with the transit technique described in
Section 1.1.1.2 enables an understanding of the two orbiting bodies’ mass ratio and radius ratio.
The discovery of the first exoplanet orbiting a main-sequence star 51 Pegasi b by Mayor &
Queloz (1995) was made using the RV technique. Since then, RV has proven to be an extremely
successful method of detecting exoplanets, with almost 900 confirmed planets published using
this technique (about 20% of all confirmed planets) (NExSci 2021).

There have been vast improvements in the range and sensitivity of RV spectrographs over
the last 20 years, with ELODIE (Baranne et al. 1996) and CORALIE (Queloz et al. 2000)
beginning the era of high-resolution spectrographs. More recently, HARPS (Mayor et al. 2003)
broke the precision barrier of 1 m s−1, and the ESPRESSO spectrograph installed on the Very
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Large Telescope (VLT) aims to further increase RV precision by an order of magnitude to
10 cm s−1 (Pepe et al. 2021). Such instruments may enable RV detections of Earth-sized
planets orbiting Sun-like stars.

The RV spectrometer installed on the space mission Gaia (Gaia Collaboration et al. 2016)
has several purposes. The astrometry conducted with Gaia will be discussed in Section 1.1.3,
and RVmeasurements provide additional insight into the kinematics of stars. RVmeasurements
can also be used to detect unresolved binary systems, where two stars appear as one light source,
but periodicRVmeasurements indicate the presence of a companion star. The instrument aboard
Gaia is not as high-resolution as some of the ground-based spectrographs; however, this is not
of concern for detecting similar-mass binary systems and large kinematic RVs.

1.1.3 Astrometry

Astrometry involves precise measurements of stars’ locations in the sky. There are a few
scientific objectives behind this. Firstly, to provide a stellar reference frame to which the
motions of astrophysical objects may be referred. Secondly, to provide a fixed catalogue of
astrophysical objects, including spatial distribution, motion and often basic stellar properties
such as luminosity and mass. It is also possible to detect binary systems and even extremely
large, wide-orbit exoplanets through astrometry, though astrometry is not a commonly used
exoplanet detection method. As of October 2021, just one planet, DENIS-P J082303.1-491201,
is listed on the exoplanet archivea (Sahlmann et al. 2013).

One of the most famous astrometric targets of interest is the binary star system 61-Cygni.
As early as 1804, astronomers took notice of 61-Cygni’s large proper motion. Not much later,
in 1838, the first stellar parallax was measured for the system, giving a distance estimate of
3.2 pc, which is very close to the more recently measured value of ∼ 3.5 pc (Hopkins 1916).

Astrometry, in principle, sounds straightforward. However, we must consider that due to
the distances involved, we only observe a 2D map of 3D space and must infer distance and
intrinsic brightness from the relative brightness and relative motion of the sources we observe.

The standard astrometric model contains six parameters, for example, as defined in Klioner
(2003) and Lindegren et al. (2012):

• the right ascension U and declination X define the position in some predefined coordinate
system, measured as angles in degrees or radians;

• the components of the proper motion in right ascension `U∗ and in declination `X are
the time derivatives of the barycentric coordinates, often measured in milli-arcseconds
(mas) per year;

ahttps://exoplanetarchive.ipac.caltech.edu/overview/DENIS-P%20J082303.1-491201%20b#planet_
DENIS-P-J082303-1-491201-b_collapsible. Accessed: 22/01/2022.

https://exoplanetarchive.ipac.caltech.edu/overview/DENIS-P%20J082303.1-491201%20b#planet_DENIS-P-J082303-1-491201-b_collapsible
https://exoplanetarchive.ipac.caltech.edu/overview/DENIS-P%20J082303.1-491201%20b#planet_DENIS-P-J082303-1-491201-b_collapsible
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• the parallax s, which is a proxy for the inverse of the distance to the source, measured
in mas;

• and the radial velocity of the source `r, which can be measured in mas per year or km/s.

In general astrometric surveys will only fit the first five parameters, as the radial velocity
can also be measured through spectroscopy. Right ascension (RA, U) and declination (dec, X)
are tied to the coordinate system of choice, several of which will be detailed in Section 1.1.3.1.

Decoupling the motions of an object requires a fit to the positions of the object taken over
time. The apparent position of this object will be affected by the motion of the object itself and
the motion of the observer. The observer’s motion can be useful here: to measure the parallax
as a proxy for distance, observing an object from multiple angles and mapping its motion will
allow a parallax measurement to be taken. I note here that, broadly, parallax is only a good
proxy for distance for nearby objects. A series of papers by C.A. Bailer–Jones starting with
Bailer-Jones (2015) demonstrate that for distant objects with large errors in their measured
parallax, a prior assumption on the distribution of distances is required to infer a distance from
a parallax measurement. Most recently, Bailer-Jones et al. (2018) estimates distances for 1.33
billion stars with parallax measurements from the Gaia survey’s second data release (Gaia
Collaboration et al. 2018c) and EDR3 (Bailer-Jones et al. 2021). I will use the catalogue from
Bailer-Jones et al. (2018) to gauge the distances to stars in Chapter 5 of this work.

1.1.3.1 A brief introduction to astronomical coordinate systems

Astronomical coordinate systems are well-defined customs for specifying positions of astro-
physical objects relative to physical reference points available to an observer. All coordinate
systems will include definitions of a fundamental plane (at 0° latitude) and a centre point from
which a pole extends toward another reference point. There will be a primary direction to define
0° longitude, and a set of coordinates defines a point on a sphere in this spherical coordinate
system.

Equatorial coordinates are definedwith a centre point at the centre of the Earth in geocentric
definitions and the centre of the Sun in heliocentric definitions. The celestial plane and the
celestial poles define this system. The celestial equator is at the Earth’s equator, and the
celestial pole runs directly north-south through the centre of the Earth, as shown in Figure 1.2.
Declination (X) and Right ascension (U) or sometimes hour angle (ℎ) are used in this coordinate
system as latitude and longitude.

Ecliptic coordinates are fairly similar to equatorial but use the plane of Earth’s orbit around
the Sun as the fundamental plane. This system defines Ecliptic latitude (V) and ecliptic longitude
(_). In both of the above systems, the primary direction at 0° longitude (or RA) is defined when
the Sun is at the March Equinox.
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Figure 1.2: A visual description of the relations between the celestial and ecliptic equators.
Credit: Dennis Nilsson, licensed under Creative Common Attribution 3.0 Unported license.

Galactic coordinates are always defined with the centre point at the centre of the Sun. The
fundamental plane is the plane of the Milky Way, with the pole as the galactic pole. The aptly
named galactic latitude and longitude (1, ;) are used in this system. The primary direction is
towards the galactic centre.

A further refinement of these coordinate systems is the often used International Celestial
Reference System and Frame, ICRS (Feissel &Mignard 1998). The origin lies at the barycentre
of the Solar System, with an axis ‘fixed’ with respect to the stars. This definition allows the
most appropriate coordinate system for defining reference positions andmotions of astrophysical
objects. In practice, the coordinate system is fairly similar to equatorial coordinates but uses
positions of fixed quasars in the sky to define the pole and primary direction to provide a more
static reference frame compared with astrophysical objects.

1.1.3.2 Astrometric surveys

Astrometric catalogues and surveys date back to as early as 275 BC when the Greek astronomer
Hipparchus measured and mapped the positions of the constellations and the celestial equator
with the positions of solstices and equinoxes. More recently, international efforts have been

https://commons.wikimedia.org/wiki/File:AxialTiltObliquity.png
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Figure 1.3: Gaia EDR3passband transmissivities. The coloured lines in the figure show theGaia
� (green), �BP (blue) and �RP (red) passbands, defining the Gaia EDR3 photometric system.
The thin, grey lines show the nominal, pre-launch passbands used for Gaia DR1. Credits:
ESA/Gaia/DPAC, P. Montegriffo, F. De Angeli, M. Bellazzini, E. Pancino, C. Cacciari, D. W.
Evans, and CU5/PhotPipe team.

made to map the positions and motions of as many stars in the sky as possible. The first was the
ESAHipparcos SpaceAstrometryMission and associated catalogue (ESA 1997; Perryman et al.
1997). The catalogue published positions, parallaxes and proper motions for about 100,000
stars with an accuracy of 0.7–0.9 mas for stars brighter than 9 mag, unprecedented at the time.
The latest version of the catalogue, Tycho-2 (Høg et al. 2000), provides positions and proper
motions for the 2.5 million brightest stars in the sky. Until the launch of Gaia in 2013, the
Hipparcos / Tycho-2 catalogue was the de-facto reference catalogue for astrometric data.

Gaia (Gaia Collaboration et al. 2016) is a space telescope designed to produce astrometric
solutions and two-colour photometry and radial-velocity spectrographs for as many sources as
possible. Following its launch in 2013, there have been two full data releases (DR1 Brown
et al. 2016) and (DR2 Brown et al. 2018), as well as an early data release 3 (EDR3) (Gaia
Collaboration et al. 2021) with improved precision on DR2. The full Gaia DR3 is expected in
2022, with many new sources and derived properties, including radial velocities, an extended
catalogue of variable stars and the first catalogue of binary stars.

Gaia takes photometric measurements of stars in three separate bandpasses: Gaia �, �BP

and �RP. The wavelength dependencies of these passbands are shown in Figure 1.3; roughly
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speaking, the �BP filter is bluer than the �RP filter, and the � filter spans both, although
with less power at the extreme blue/red colours. It is important to note that the passbands are
internally calibrated based on each data release cycle. So the magnitude of an object in the
same nominal passband will be slightly different between data releases.

Most of the work in this thesis utilises the astrometric parameters from the second Gaia data
release, with the final Chapter utilising the updated parameters from EDR3. This catalogue
features five-parameter astrometric solutions for more than 1.3 billion sources with a magnitude
range of 3 < � < 21. Additionally, there are �BP and �RP colour magnitudes for more than
1.38 billion sources, allowing insight into the colour of these objects. Of interest to this work,
550,000 variable sources have been detected from the photometric telescope on Gaia. As the
survey is firstly astrometric, the precision and cadence of the photometry are not optimised for
detecting variability. Thanks to a large number of sources, a wide range of stellar variability
signals have been detected: a number of these variable sources have also been observed and
detected with NGTS; Chapter 5 will compare these detections.

1.2 Photometric surveys

I have introduced the science behind photometric brightness monitoring of stars and some
scientific goals for doing so. This section will introduce some telescopes and surveys that
utilise photometry to detect and characterise millions of astrophysical objects of interest, both
on the ground and in space. I will give full details of the implementations and data structures
used in generating photometric light curves for millions of objects from a set of images in
Chapter 3 whilst introducing the Next Generation Transit Survey (NGTS) and the data used in
this work.

A major improvement in the precision of photometric astronomy comes in the form of
space-based telescopes. Observing from space comes with many improvements over ground-
based observations, including the lack of atmospheric noise and no day-night cycle causing
gaps in observation. Although we can improve precision and combat noise by observing from
space, the size of the instrument is limited by rocket launch size constraints and budget.

1.2.1 Ground-based

The first generation of ground-based photometric surveys began operation in the early 2000s,
with photometric precision of order 10 mmag (0.01 magnitude), which allowed exoplanet de-
tections of Jupiter-sized planets orbiting bright stars (typically V-band magnitude < 12). These
included the Transatlantic Exoplanet Survey (TrES, Alonso et al. 2007), XO (McCullough et al.
2005), the Hungarian-made Automated Telescope Network (HATNet, Bakos et al. 2002) and
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the Wide-Angle Search for Planets (WASP Pollacco et al. 2006). WASP employed extremely
wide-angle telescopes, allowing simultaneous monitoring of many photometric targets sim-
ultaneously. The SuperWASP system employs eight 0.11 m telescopes at two observatories
(SuperWASP-North is in the Canary Islands and SuperWASP-South in South Africa). Each
telescope array provides a field of view of 482 deg2. The first WASP data release (Butters
et al. 2010) contained 3,631,972 raw images and 17,970,937 light curves taken across the two
telescope arrays between 2004 and 2008.

The next generation of ground-based surveys includes the aptly-named Next Generation
Transit Survey (NGTS, Wheatley et al. 2018), as well as a few other wide-angle photometric
surveys, including the Qatar Exoplanet Survey (QES, Alsubai et al. 2013) and the Kilodegree
Extremely Little Telescope (KELT, Pepper et al. 2007). This generation of wide-angle surveys
boasts an order of magnitude increase in photometric precision, with NGTS able to reach 1
mmag precision across its 100 deg2 field-of-view with an extremely fast 12-second sampling
cadence.

Further improvements to photometric instruments have given rise to targeted surveys such
as MEarth (Irwin et al. 2014), as well as the TRAnsiting Planets and PlanetesImals Small
Telescope (TRAPPIST, Gillon et al. 2011) and its successor the Search for habitable Planets
EClipsing ULtra-cOOl Stars (SPECULOOS, Burdanov et al. 2018). These surveys select
candidate objects to observe rather than a wide-field approach. This can often lead to higher
precision, as well as being able to optimise the instrument for the type of object being observed.
In particular, the three surveys mentioned above focus on M-dwarf stars, a class of stars much
smaller and fainter than the Sun, around which it is possible to detect much smaller (and
potentially habitable) planets.

1.2.2 Space-based

The first notable space-based photometric survey was COnvection, ROtation and planetary
Transits or CoRoT (Auvergne et al. 2009), which launched in 2006 with the goals of detecting
transiting rocky planets and performing asteroseismology. CoRoT ran until 2012, during which
it observed thousands of target objects, with around 150 bright asteroseismic targets and 24
confirmed planet detections.

In 2009, NASA’s Kepler (Borucki et al. 2010) was launched. Kepler’s primary science
mission was to take continuous photometric observations of approximately 150,000 main-
sequence stars within a fixed field of view. This mission has led to one of the most widely used
publicly available photometric data sets, with thousands of planet discoveries (and many more
still to be confirmed) (NExSci 2021)b as well as large asteroseismological surveys (Yu et al.

bhttps://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html. Accessed: 22/01/2022.

https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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Figure 1.4: Kepler’s Field of View is shown as a series of squares, each square maps to a
set of two CCDs on Kepler’s detector. Nearby astronomical objects of interest are shown
and labelled. Credit: NASA, taken from https://www.nasa.gov/mission_pages/kepler/
multimedia/images/fov-kepler-drawing.html. Accessed: 22/01/2022.

https://www.nasa.gov/mission_pages/kepler/multimedia/images/fov-kepler-drawing.html
https://www.nasa.gov/mission_pages/kepler/multimedia/images/fov-kepler-drawing.html
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2018) and rotational analyses (McQuillan et al. 2014). I will further discuss the stellar rotation
data aspect of the Kepler data set in Chapter 5.

Kepler’s field of view was chosen based on its continuously observable position, away from
the ecliptic plane and with an appropriate stellar density to accurately resolve as many sources
as possible. Kepler looks towards The Cygnus–Lyra region in the northern sky, the FoV is
centred on RA = 19h22m40s and Dec = +44◦30′00′′ (J2000), and is around 15° across (115
deg2). The FoV is shown in Figure 1.4. The telescope was rotated by 90° every 90 days to
keep the solar panels pointing at the Sun; this means the Kepler data is divided into 90-day
quarters, of which there were 17 between 2009 and 2013. The full data set includes up to 3.5
years of continuous observation comprised of short (1-minute) and long (30-minute) cadence
light curves for ∼160,000 stars. Kepler observed with a broadband filter (covering a wavelength
range of ∼ 400 to 865 nm), which maximises the sensitivity of the telescope and detector
combination for detecting planets transiting main-sequence solar-type stars.

After the failure of a second reaction wheel (of four) in 2013, the telescope was unable to
remain fixed on the aforementioned ‘Kepler field’, so a modified observation programme called
K2 began (Howell et al. 2014). Although the observation baseline of these fields was much
shorter than the original Kepler field, the mission was able to detect many short-period planets
and provide useful insight into stellar variability at different pointings (Chaplin et al. 2015;
Gordon et al. 2021).

NASA’s current flagship space photometry mission is the Transiting Exoplanet Survey
Satellite (TESS, Ricker et al. 2014) that launched in 2018. TESS took a different observational
approach to Kepler, observing almost the entire sky over its primary 2-year mission whilst
monitoring 200,000 of the nearest and brightest stars. TESS will observe most of its fields
for 28 days; however, overlapping regions (as shown in Figure 1.5) will offer longer periods of
continuous observation suitable for detecting longer period variability and shallower transits.
In the extended mission, TESS has re-observed many fields observed in the first and second
years of observation and has also observed several fields within the ecliptic plane that overlap
with K2 campaign fields.

TESS provides data with different time cadences. 20-second cadence data is provided for
a small number of targets (∼ 600 per sector) in the extended mission. ‘Postage stamp’ regions
defined around bright asteroseismological targets are downloaded at a 20-second cadence in both
the primary and extended mission (approximately 16,000 targets per sector). The remaining
pixels not included in these regions are downloaded as 30-minute/10-minute cadence full-
frame images in the primary and extended missions, respectivelyc. TESS’s bandpass has been
constructed to be more sensitive to M-dwarfs than Kepler, which focussed on main-sequence

cTaken from https://heasarc.gsfc.nasa.gov/docs/tess/faq.html. Accessed: 22/01/2022

https://heasarc.gsfc.nasa.gov/docs/tess/faq.html
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Figure 1.5: Schematic of the TESS observing pattern demonstrates the total observation length
in each sector over the 2-year primary mission. Credit: (Ricker et al. 2014).

stars. The TESS bandpass is redder than that of Kepler, covering a wavelength range of
600–1000 nm, which allows much more precise measurements of cool stars.

The next generation of space-based wide-field photometric surveys will come in the form of
the PLATO mission (Rauer et al. 2014), which is due to launch in 2026. The primary mission
goal of PLATO is to detect and characterise planets transiting one million stars, focusing
particularly on dwarf stars. Similar to some of the recent ground-based photometric surveys,
PLATO employs an array of 26 cameras which allows a huge 1,100 deg2 field of view with up
to 2.5-second cadence on its fastest cameras.

1.2.3 Common noise sources in photometry

Errors and noise are an unfortunate part of any astronomical observations and can arise from
astrophysical and non-astrophysical sources. Non-astrophysical sources can be driven by the
physics of detectors or from engineering aspects of a telescope. Additionally, observations from
the ground will add further noise in the form of atmospheric noise and background light not
present in space-based observations. Astrophysical noise sources are nuisance signals arising
from astrophysical origins and therefore depend on the scientific goal of your analysis. For
example, in the case of exoplanet transit detection, stellar variability would be considered a
source of noise, whereas, for stellar variability detection, transiting planets could be viewed as
noise. Noise can be classified as correlated or uncorrelated; generally, uncorrelated or white
noise is more easily dealt with through binning or averaging. Correlated, systematic or red noise
requires complex treatment through statistical modelling; the covariance between light curve
data points arising from noise sources can have timescales similar to signals of interest. For
example, in the case of planetary transit detection, Pont et al. (2006) demonstrates correlated
noise from ground-based surveys can drastically reduce the expected yield of transiting planets.
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More recently, Gaussian process regression has been shown to accurately model astrophysical
and correlated systematic noise from K2 mission light curves (Aigrain et al. 2015).

Here I will briefly outline some of the more common sources of noise. I will give details
of how NGTS deals with several of these noise sources in Chapter 3.

With any form of astronomy, there exists a fundamental limit to the photometric precision in
the form of photon noise. The quantum nature of photons drives photon noise: when a detector
measures incident light, photons will hit the detector at time intervals dictated by a Poisson
distribution. Photon noise is often referred to as Poisson or shot noise. A Poisson distribution
has the property that variance is equal to expectation � [#] = Var[#] = _C, where _ is the
incident number of photons in a time interval C, and so the photon noise fphoton =

√
# . The

signal-to-noise ratio, #/f =
√
# , can be improved by receiving more photons, i.e. observing a

brighter target or using a longer observation window. In the limit of large numbers of photons,
photon noise is well modelled by a Normal distribution # ∼ N(_C, _C), and hence is a white
noise term.

Within the telescope, the detector can introduce systematics due to the nature of semicon-
ductors. Charge-Coupled Devices (CCDs) are the most common detectors used in photometric
instruments. The process of converting incident photons into scientific images provides a
myriad of errors not limited to quantisation noise, readout noise, dark current, pixel inhomo-
geneity and saturation overspill (Gary 2007). Beyond the detector, the telescope aperture and
dust may cause errors in the form of flat-field errors, and the autoguiding method used to track
individual sources is also prone to causing errors through imperfect source tracking. Source
tracking will require correction for Earth’s rotation in ground-based missions. In contrast, for
space-based missions, the correction can be extremely complex and will be dependent on the
orbit and rotation of the satellite (Gary 2007).

When observing from the ground, the atmosphere interacts with the incoming light from
astronomical sources. In particular, the atmosphere will cause scintillation noise due to vary-
ing refractive index through the thickness of the atmosphere. This causes stars in the sky to
‘twinkle’ as observed by eye. For a telescope, this will cause blurring of images and brightness
fluctuations, which are both large sources of noise in photometric data. Additional complica-
tions come from scattering from molecules in the atmosphere, causing differential extinction,
as different wavelengths of light are subject to different extinction levels. This causes sources
with different colours to appear at different brightness depending on the scattering through the
atmosphere. Finally, light pollution is a big problem for ground-based surveys, as diffuse light
from populated areas and airglow and scattered light from the Moon will appear as noise to a
detector. As discussed in Chapter 5, this sort of background light proves to be a large hurdle to
overcome to conduct stellar variability studies with the NGTS data. It is possible to reduce these
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Figure 1.6: TheHertzsprung–Russell (HR) colour–magnitude diagram. Annotations for various
stages of stellar evolution are included. A prominent feature is the main sequence (dark grey),
which runs from the upper left (hot, luminous stars) to the lower right (cool, faint stars) of
the diagram. Giant and supergiant stars lie above the main sequence, with the instability strip
shown perpendicular to the main sequence. Credit: R. Hollow, CSIRO.

atmospheric effects by selecting a good telescope site. An ideal observing site will be far from
any light pollution, with as little atmosphere as possible. Such sites are often in high, desert
locations such as the ESO site at La Silla, Paranal in Chile, where NGTS and SPECULOOS
are located. Further telescope design considerations such as large baffles can also limit stray
Moonlight.

http://outreach.atnf.csiro.au/education/senior/astrophysics/stellarevolution_hrintro.html
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1.3 Stars and the HR diagram

The Hertzprung–Russell diagram (HR diagram) is an extremely important tool to aid in clas-
sifying stars and studying stellar evolution. The HR diagram is similar to a colour–magnitude
diagram but plots theoretical quantities effective temperature )eff against luminosity ! rather
than observable quantities colour (such as � − + or ��% − �'%) against magnitude. The HR
has a clear grouping of regions that map closely to the evolution throughout a star’s life. This
grouping – and thus ageing – is directly related to the physical processes stars of a given mass
are undergoing. An example HR diagram is shown in Figure 1.6, with annotations indicating
distinct regions of interest in colour–magnitude space. I will briefly introduce the evolution of
stars of different masses and how their position on the HR diagram changes over their lifetimes.
For a more detailed description of the formation and evolution of stars, I refer the reader to
Stahler & Palla (2004).

A star is formed due to the gravitational collapse of gas and dust. As this matter collapses, it
heats up, forming a protostar. Depending on the mass of the protostar, the evolution will follow
a different track in HR space. Hayashi (1961) calculated these so-called ‘Hayashi tracks’ for
protostars of different masses as the protostar evolves onto the Main Sequence. Low mass stars
will evolve almost vertically down the HR diagram as they collapse isothermally towards the
main sequence. As the protostar gains mass from the gas cloud surrounding it, it evolves into a
pre-main-sequence (PMS) star. During the PMS, the star continues to collapse gravitationally
and gains very little additional mass. Once the star reaches a certain threshold temperature and
pressure, nuclear fusion begins at the centre of the star. Once hydrogen burning begins, the
star joins the Main Sequence; hence, a star at this age is known as a Zero Age Main Sequence
(ZAMS) star.

Around 90% of the stars in the universe are main sequence (MS) stars, fusing hydrogen
to helium whilst maintaining hydrostatic equilibrium. The amount of time spent on the main
sequence will depend entirely on the star’s mass, with more massive stars burning through their
hydrogen supplies much faster than smaller stars. Once a star has used its hydrogen supply,
the star’s mass will once again dictate how the star evolves from this point. For stars of solar
mass and similar, once the hydrogen in its core is used up, fusion will cease, and the core will
collapse under gravity. During this collapse, the star’s outer layers may be pushed outwards
due to the increased core temperature, and the star moves to the red-giant branch (RGB) on
the HR diagram. Sub-solar stars, such as red-dwarf stars, burn hydrogen extremely slowly and
can have main-sequence lifetimes longer than the age of the universe. As the core temperature
rises, helium fusion may begin in the core, slowing the cooling of the outer layers of the star
temporarily and moving the star to the Horizontal Branch. After this helium-burning phase
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ceases, the star moves into the Asymptotic Giant Branch (AGB), which lies almost parallel to
the RGB but at higher luminosity. Beyond this, the star will evolve along a post-AGB track to
hotter temperatures with roughly constant luminosity. Eventually, the star will eject its outer
layers, forming a white dwarf star at the bottom left of the HR diagram.

The extreme heat generated in the core of more massive stars will fuel the fusion of even
higher mass elements, causing the star to swell in size. Due to the battling forces of gravity
and radiation pressure, the star will pulsate. These stars lie along the instability strip; this strip
contains many well-documented variable stars such as RR-Lyrae and Cepheid variables.

For extremely massive stars, the end of life produces cataclysmic variability such as core-
collapse supernovae and can result in the formation of neutron stars and black holes in the case
of the most massive stars.

1.3.1 Evolutionary tracks

As briefly discussed above, the evolution of a star is highly dependent on its mass, amongst
other factors including chemical composition and the presence of circumstellar discs. Much
work has been conducted on accurately modelling how stellar parameters evolve for stars of
different masses and metallicities. Many of these models are a combination of several different
underlying physics models, the details of which are beyond the scope of this thesis. These
models offer insights into the behaviour of the interior and atmosphere of stars and consider
both radiative and convective physics and the implications of magnetic activity (Feiden 2016)
and rotation (Somers et al. 2020). Bressan et al. (2012) outline the input physics required for
their well-used ‘PARSEC’ (PAdova and TRieste Stellar Evolution Code) models; I will briefly
summarise some of the main points.

The chemical composition of the star affects a myriad of physical processes. One such
measure of composition is metallicity, or the fraction of a star’s mass not made up of hydrogen
and helium. For example, the Sun comprises 73.81% hydrogen and 24.85% helium by mass,
implying a solar metallicity of 0.0134 (Asplund et al. 2009). PARSEC models use more
complex models of stellar chemical abundances, often taken from extremely precise modelling
of the Sun, such as Caffau et al. (2010). The composition of a star’s interior will affect the
ability to absorb or transfer radiation (also known as the opacity). Once again, precise opacity
models are employed within evolution codes to model internal radiative transfer. In conjunction
with an equation of state (EOS), the opacity model effectively models the internal pressure and
energy transport in the radiative interior. The models must also consider the nuclear reaction
rates within the star. These are calculated from nuclear reaction networks, which consider the
rates of many nuclear reactions possible within the star.
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Convective regions of the star are often modelled using the mixing length theory (MLT)
of convection (Cox & Giuli 1968), which describes convection as a simple local model. The
gas is divided into rising and falling parcels of characteristic length ; (or sometimes U), where
; defines the mixing length, or the length travelled by a parcel of gas before it is absorbed
into the surrounding gas. This mixing length becomes the only free parameter in an MLT
convection model. Hydrodynamical mixing instabilities or overshoots can occur at convective
boundaries within the star (both in the core and the convective envelope). Internal overshoot
from a convective core can have stark implications on the evolutionary properties of a star
(Torres et al. 2014), and therefore is taken into consideration in most evolution models. Finally,
evolution models must take macroscopic temperature gradients and microscopic diffusion of
material into account.

The above physics is common to many evolutionary model codes, including the PARSEC
models (Bressan et al. 2012), MESA (Modules for Experiments in Stellar Astrophysics, Paxton
et al. 2010), the Dartmouth Stellar Evolution Database (Dotter et al. 2008), the .2 isochrones
(Yi et al. 2001; Demarque et al. 2004) and the BCAH98 and BHAC15 models (Baraffe et al.
1998; Baraffe et al. 2015). Each model will use different underlying physics models and
assumptions and a unique interpolation of masses and metallicities to produce tracks for input
parameters. Hence, different models have different strengths in terms of the type of star they best
approximate. In general, these models work best for solar-type stars, as many of the underlying
physics models are calibrated to solar values, which are most easily observed. An example of a
set of draws from the MESA model for stars of a range of sub-solar masses are shown in Figure
1.7. We can see the near-vertical Hayashi tracks as the isothermal collapse of stars onto the
main sequence is modelled. By around 300 Myr, we see that the stars have converged onto the
ZAMS. These models will also produce compositional information for the stars. For example,
we see Deuterium and Lithium depletion occurring as the stars evolve towards the ZAMS; in
Figure 1.7, the point at which these elements are depleted by a factor of 100 are shown along
the tracks.

Complex magnetic fields within a star will cause additional changes to the star’s evolution.
These magnetic field effects are often ignored in stellar evolution models due to the high
complexity and poor understanding of the physics involved due to limited observational capacity.
Feiden (2016) adapts the Dartmouth stellar evolution models to include a magnetic field that
interacts with the stellar plasma and is dependent on the internal structure. They demonstrate
for a small selection of stars that the inclusion of this magnetic field resolves discrepancies in
the reported ages and HR-diagram positions for K- and M-type stars in Upper Scorpius.
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1.3.2 Isochrones

By generating multiple evolutionary tracks for different mass stars (generally with fixed metal-
licity), it is possible to generate a line of equal age across these tracks, an isochrone. Isochrones
are an excellent tool for assessing where we would expect populations of similar ages to lie on
the HR diagram. Isochrone fitting works especially well in the case of low-mass PMS stars as
the isochrones lie almost parallel to the main-sequence but at higher luminosity. In Figure 1.7
(taken from Paxton et al. 2010), blue dashed lines join stars of different masses at the same
evolutionary stage, i.e. isochrones. Such temporal snapshots can be seen in the CMD of young
star clusters, which comprise populations of coeval stars with a range of masses.

1.4 Open star clusters

Clusters of stars within the Galactic disc are often referred to as open clusters. Open clusters
are populations of stars that span a range of masses but possess essentially the same age and
composition. Whilst observations of field stars provide insight into the wider stellar population,
observations of populations of fixed age aid greatly in assessing how stellar properties vary
with age. It is thought that stars within an open cluster were formed from the same giant
molecular cloud and hence should have similar ages and metallicities. Several prominent open
clusters have observations dating back thousands of years, such as the Pleiades, Hyades, or the
Alpha Persei cluster, which are observable with the naked eye. As early as 1767, astronomers
calculated that the observed star clusters must be physically related, as observing stars in such
an alignment by chance was extremely small (Michell 1767). With more modern methods
of astrometry and spectroscopy, it is possible to demonstrate that stars within a cluster have
proper motions similar to the mean of the cluster and common radial velocities, such as within
the Pleiades cluster (van Maanen 1945). Although most stars are observed in isolation, it is
hypothesised that most stars form within clustered environments and spend parts of their early
lives embedded in molecular clouds, gravitationally bound with other cluster members (for
example Lada & Lada 2003; Zwart et al. 2010). Observable open clusters span a wide range of
ages: from a few million years, with objects still exhibiting remnants of recent star formation,
through to several gigayears (as old as the galactic disc). The co-eval stellar populations within
open clusters are commonly used to provide snapshots of stellar evolution, and fitting them into
an age-ranked succession and comparing with stellar evolution models affords an empirical
understanding of the underlying phenomena. Observing clusters of similar age can also provide
insight into inter-cluster variations of stellar properties. However, due to the imprecise nature
of stellar age estimation, it is difficult to claim any significant differences in open cluster stars
beyond the composition of the cluster (Fritzewski et al. 2020).
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Figure 1.7: An example of some stellar evolution tracks from the Modules for Experiments
in Stellar Astrophysics (MESA) stellar evolution code on the HR diagram. Each black line
represents a stellar evolutionary track from PMS onto the ZAMS for stars of a different mass.
The blue dashed lines correspond to points of equal age along each track (isochrones). The
purple squares (red circles) show where D (7Li) is depleted by a factor of 100 during the PMS.
Credit: Paxton et al. (2010)
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During star formation, rotational effectswill influence a star’s evolution in terms of structure,
mixing and energy transport. Additionally, rotation gives rise to the stellar dynamo, which
drives magnetic activity, including starspots and stellar winds (Henning et al. 2014). Although
evolutionary models often do not account for the effects of rotation such as rotational mixing d,
empirical modelling and targeted observations of young objects and open clusters have aided
with our understanding of the evolutionary effects of rotation.

1.4.1 Rotational evolution of stars

Young, PMS stars of solar mass and below have been shown to have rotation periods between
1 and 10 days long, with a bi-modal distribution of rotation periods with peaks at about 2 and 8
days (Herbst et al. 2001). This distribution has been confirmed through observations of dwarf
stars in the Orion Nebula Cluster (ONC, Attridge & Herbst 1992; Choi et al. 1996; Herbst et al.
2001) and M dwarf members of the Pleiades cluster (Terndrup et al. 2000). Age estimates
of these clusters give the ONC about 2 Myr (Palla & Stahler 1999), the Pleiades an age of
110–160 Myr and the Hyades ∼ 680 Myr (Gossage et al. 2018). The bi-modal distribution
seen in very young stars has been attributed to the effects of star-disc interaction (Bouvier
et al. 1997). Slower rotating stars are believed to have circumstellar discs still, whereas fast
rotators have dissipated these discs and begin to spin up (i.e. decrease rotation period) to the
ZAMS (Barnes 2003; Hennebelle et al. 2013). When the star has a circumstellar disc, the star’s
spin is regulated by angular momentum exchange with the disc, which locks the boundary of
the magnetospheric cavity near the co-rotation radius, and hence maintains roughly constant
angular velocity (Collier Cameron & Campbell 1993). As the star contracts gravitationally
towards the ZAMS and the disc dissipates, the star’s rotation rate will increase (Eggenberger
2013).

Studies of young open clusters have provided a wealth of information about the rotation
periods of dwarf objects on the ZAMS. In particular, studies of the clusters NGC 2516 (Irwin
et al. 2007; Fritzewski et al. 2020), M35 (Meibom et al. 2009), M50 (Irwin et al. 2009), the
Pleiades (Hartman et al. 2010; Rebull et al. 2016b) and Blanco 1 (Cargile et al. 2014; Gillen
et al. 2020) demonstrate these ZAMS clusters all show a universal rotation period distribution
which appears to be age dependent. The existence of this age-dependent distribution lends
strength to the idea of gyrochronology, accredited to Barnes (2003). Gyrochronology will be
discussed in much detail throughout this thesis and is the theory that the rotation rate and the
age of stars are linked: by observing the rotation rate of stars, one can infer the age.

dSome models do attempt to include the effects of rotation, such as Ekström et al. (2012) and recently Nguyen
et al. (2022). Discussion of such models is beyond the scope of this work.
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During the main-sequence, rotation rates of main-sequence stars have been observed to gen-
erally decrease with age. This spin-down appears to be mass dependent, with higher mass stars
spinning down faster than lower mass M-dwarfs (Stauffer et al. 1987). This mass dependence
agrees with the hypotheses of mass and angular momentum (AM) loss through magnetised
stellar winds (Reiners & Mohanty 2012; Eggenberger et al. 2005) and the redistribution of AM
throughout the stellar interior (Chaboyer et al. 1995; Lagarde et al. 2012; Charbonnel et al.
2013). Despite the (initial) scatter of rotation periods at the ZAMS, rotation rates appear to
converge quickly. This is seen in observations of older star clusters such as M37 (∼ 550 Myr;
Hartman et al. 2009) and NGC 6811 (∼ 1 Gyr; Meibom et al. 2011). Skumanich (1972) found
a scaling relation E ∝ C−1/2 where E is the average equatorial velocity, and C is the age of the star,
now known in the literature as the Skumanich Law. The Skumanich law is driven by the physics
of the angular momentum of the solar wind, as described earlier by Weber & Davis (1967).
Kawaler (1988) demonstrates that the Skumanich law can be explained by a surface angular
momentum loss ∝ l3. Magnetised stellar winds are particularly prevalent in low-mass stars,
where deep surface convection zones will drive magnetic fields and magnetised stellar winds.
This appears to contradict the observation that higher mass stars spin down faster than lowmass
stars. However, Stauffer & Hartmann (1986), as well as Spada et al. (2016), hypothesise that
the deep convective envelope in low-mass stars contains a higher proportion of the star’s total
AM than high-mass stars with shallow convective envelopes. This slows the spin-down rate
in low mass stars, as the large AM of the convective zone resists the torque generated by the
stellar wind. Additionally, this two-part model agrees with later observations of large numbers
of rotating stars (e.g., McQuillan et al. 2014; Davenport & Covey 2018; Gordon et al. 2021;
Briegal et al. 2022). If the convective envelope and the radiative core spin down separately, we
expect the radiative core to continue to spin up due to contraction. Internal AM redistribution
from the spun-up core to the spinning-down envelope could cause a reduction in this rotation
period increase. This stalling of spin-down is a hypothesis for the observed rotation period gap
seen in field stars by McQuillan et al. (2014), Davenport & Covey (2018), Gordon et al. (2021)
and in the NGTS sample discussed later in this work.

Much less is known about the rotational evolution of post-MS stars into the RGB. Following
AM loss throughmagnetisedwinds on theMS, the inflation of a star into the RGB and associated
moment of inertia increase should result in a further slowing of the star’s rotation. Previous
spectroscopic studies show about 2% of observed giant stars exhibit rapid rotation (e.g., Fekel
& Balachandran 1993; Massarotti et al. 2008; Carlberg et al. 2011) in disagreement with the
expected slow down. These rapidly rotating stars may be due to two effects: companion star
interactions or extremely massive stars without convective envelopes. A study by Ceillier et al.
(2017) looked at the rotation rates of red giants observed with Kepler to aid understanding
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of the discrepancy between theoretical and observed rotation rates for giant stars, as the two
mechanisms described above should be more common than 2% of the population. This study
found a similar rate (2.08%) of ‘peculiar’, i.e. rapidly rotating, giants. Whilst the authors claim
this is in agreement with the expected rate of binary systems (e.g., Carlberg et al. 2011), for
the most massive stars, they observe a lower rate of rotation detections than expected. They
suggest that either the AM loss through winds is more than expected by Kawaler (1988), or that
there is a substantial amount of radial differential rotation in these giants. Such complications
sadly imply the lack of existence of a simple Skumanich-like scaling law for rotation periods
in giant stars, which hinders the application of gyrochronology to giant stars.

1.4.2 Gyrochronology

Gyrochronology is a method for estimating the age of low-mass main-sequence stars from
rotation periods. Empirical methods of stellar age estimation have existed for at least 20
years (such as Soderblom et al. 1991), however, the term ‘gyrochronology’ was coined in
Barnes (2003). This theory draws on the observations of convergence of periods during the
main sequence through AM loss by magnetised stellar winds for FGKM (solar-type) stars.
Barnes further refined empirical gyrochronology relations in Barnes (2007), expanding upon
the relation derived by Skumanich (1972) by adding a mass dependence (or colour correction)
omitted from this simple Skumanich relation. The relation, which estimates the age of an
FGKM star given its rotation period % in days and � −+ colour, is

log Cgyro =
1
=
[log % − log 0 − 1 log(� −+ − 0.4)], (1.3)

where t is in Myr and = = 0.5189 ± 0.007, 0 = 0.7725 ± 0.011, and 1 = 0.601 ± 0.024. These
coefficients were further updated empirically in Mamajek & Hillenbrand (2008) to better fit
cluster data than the original Barnes (2007) values.

Following this work, a plethora of research into gyrochronology and its limits has been
conducted. Using a sample of 24,124 stars observed by Kepler, Reinhold & Gizon (2015)
calculated gyrochronological age estimates from photometric light curves. As shown in Figure
1.8, they found a broad agreement with the derived gyrochrones (lines of constant age in colour–
period space) but highlight several assumptions without which gyrochronology becomes less
valid. In particular, they note that gyrochronological estimates are most reliable for stars
500–2500 Myr old and that careful consideration of binary stars and sub-giant stars must be
used when considering large samples. Furthermore, Gallet & Delorme (2019) demonstrates
that large orbiting bodies and planetary engulfment events will also reduce the accuracy of
gyrochronological estimates.
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Figure 1.8: Rotation periods plotted against �−+ colour for 18,691 stars observed with Kepler.
Black points indicate data using only one quarter of data, and green data points use an average
rotation period from multiple quarters. Red and blue dots show stars with periods very stable
in time. The blue dotted lines are gyrochrones of labelled ages. The blue star indicates the
position of the Sun. Credit: Reinhold & Gizon (2015).

The work conducted in Chapter 5 assesses some aspects of the validity of gyrochronology
when applied to a large sample of variable objects detected with NGTS. In particular, I will
discuss a region of reduced rotational period detection first observed byMcQuillan et al. (2014)
and additionally by Reinhold &Gizon (2015); Davenport & Covey (2018); Gordon et al. (2021),
which indicates a deviation from the expected Skumanich spin-down.

1.5 The Rise of ‘big data’ within astronomy

1.5.1 Big data sets

The use of wide-field cameras on large aperture telescopes and the use of multi-telescope arrays
has led to larger data sets within astronomy. Probing into shorter timescales requires faster
observations with more images taken per night, whilst long-baseline observations with space
telescopes such as Kepler generate extremely long time series of single objects. The scale of
data in astronomy is nicely summarised by the ‘3 V’s of big data’: Volume, Velocity and Variety.
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I will explain these three concepts in the context of wide-field photometric surveys and similar.

1.5.1.1 Volume

A 2048 × 2048 pixel CCD will produce a 16 MB image if stored at 32-bit integer precision.
Additionally, the telescope will store data for each image taken including time, pointing, details
on the filters used and how the measurement was taken (such as shutter speed and exposure
time). Ground-based instruments will also store information on the weather conditions such as
airmass, temperature andwind speed, and Sun andMoon positions. Over a night of observation,
a facility may take thousands of images, resulting in tens of gigabytes of raw image data per
night, not including additional data products such as sky background and flat-field images and
image metadata or any processed photometric data. For ground-based surveys, it is acceptable
to store this data volume on large hard-drive racks. However, the raw data volume for space
telescopes is often much greater than the maximum satellite downlink limit requiring either
reduced observation cadence or on-board pre-processing and data reduction. For example, in
the case of Gaia, only a few dozen pixels around each source can be downlinked, which reduces
the data output from Gbit/s to about 3 Mbit/s, in line with the downlink speed (Siddiqui et al.
2014). Future projects such as the Square Kilometre Array (SKA)e which will be the world’s
largest radio observatory, will produce approximately 0.5 to 1 TB of data per second for a
6-hour observation, which has resulted in the project focusing a huge amount of research effort
into data handling in the form of a dedicated on-site processing facility known as the Science
Data Processor. For further detail on the data considerations for the SKA, I refer the reader to
Scaife (2020).

1.5.1.2 Velocity

Velocity refers to the speed with which measurements are taken. When deciding on a suitable
observation cadence for a facility, you should take into account the timescale of the astrophysical
phenomena you wish to observe. For example, in the case of Gaia’s astrometric measurements,
observing the movement of stars can be done on a much-reduced cadence compared to a
dedicated asteroseismology mission for which measurements on timescales of seconds or
minutes are necessary to understand short timescale oscillations.

There are also hardware considerations to be made when deciding on an observation
cadence. Shorter observations will have higher photon noise and limit the magnitude of targets
able to be observed. This may be a positive for bright objects, as short observation windows
will avoid CCD saturation. A CCD has a finite readout time, and telescope design must draw a

ehttps://www.skatelescope.org/. Accessed: 22/01/2022.

https://www.skatelescope.org/
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balance between readout speed and readout noise. In the case of NGTS, the CCDs are read at
a speed of 3 MHz, reading an entire image in 1.5 seconds (Wheatley et al. 2018).

Should any data pre-processing be done, it will need to be optimised to reduce the lag
between images being taken and processed data being available. For an NGTS field with an
average of around 10,000 sources in each image taken at a 12-second cadence, this results in
a high throughput of data and further contributes to the total volume of data. A typical NGTS
field will contain around 10 GB of light curve data in the form of a time series, flux values, flux
error values and any data processing flags. In the case of crowded fields around clusters, this
can increase up to 200 GB per field.

1.5.1.3 Variety

Each source within an image requires individual treatment to ascertain what the source is.
Sources can be astrophysical or noise, and an astrophysical source could be a star, a galaxy, a
Solar System object or a transient such as a meteor. A more detailed description of the NGTS
source detection and photometric light curve generation pipeline will be given in Chapter 3,
demonstrating such individual treatment of sources within an image.

Some sources even claim there are ‘10 V’s of big data’: Volume, Velocity, Variety as well
as Variability, Veracity, Validity, Vulnerability, Volatility, Visualisation and Valuef. I will leave
it as an exercise to the reader to ascertain the value of the seven additional V’s mentioned.

1.5.2 High-performance computing

The huge amounts of data generated bymodern surveys have led to a need for suitable computing
facilities and data storage to manage this data throughput and volume. High-Performance
Computing (HPC) solutions have three main components: compute, network and storage.
Often HPC clusters are used, which are servers networked together to allow programs to run
simultaneously on individual servers. One way of measuring the performance of a computer
is in floating-point operations per second (FLOPS). A typical single laptop core in 2021 has a
power of approximately 5–6 GFLOPS, which provides ample computing power for everyday
operation. Much more power is required for large-scale scientific data processing or for the
training and evaluation of machine learning models. Launched in 2017, the Wilkes3 cluster
based at the University of Cambridge can process approximately 6 PFLOPS (6× 1015 FLOPS),
i.e. 1 million times more powerful than a standard home computerg.

The Wilkes3 cluster utilises Graphics Processing Units (GPUs) instead of the more tradi-
tional CPUs. GPUs harness the same advantages as HPC clusters: splitting operations into

fe.g., https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx. Accessed: 22/01/2022.
ghttps://www.hpc.cam.ac.uk/systems/wilkes-3

https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx
https://www.hpc.cam.ac.uk/systems/wilkes-3
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many small parallel computations increases the overall operating speed. Applications of GPUs
to scientific computing have come largely in machine learning, where simple multiplicative
operators are used in large numbers as opposed to more complex models that require a linear
throughput of data.

The work conducted in Chapters 5 and 6 uses the Cambridge HPC facilities extensively.
I developed the software used for variability extraction from NGTS light curves with HPC
performance in mind.

1.5.3 Machine learning

As the scale of astronomical data grows, machine learning (ML) techniques such as artificial
neural networks have been applied to many different problems and fields (Ball & Brunner
2010). Machine learning techniques differ from traditional model-fitting methods in that the
same ML model applies to a wide variety of problems. In contrast, a parametric model is often
predefined to best fit the application. ML models also allow the abstraction of complex non-
linear behaviour, which would be difficult or expensive to calculate with a parametric model.
This abstraction is a potential downside; machine learning is often referred to as a ‘black box’
as it is difficult to interpret why the ML model has made the decisions it has during training
and evaluation. Machine learning algorithms are often divided into two groups: supervised
and unsupervised.

Supervised machine learning algorithms are algorithms used to learn the relationship
between a set of measurements (inputs) and a target variable or set of variables (outputs)
given a set of provided examples (training data). Unsupervised models instead rely solely on
the data to find best-fit model parameters and are often employed on data exploration problems
such as clustering, dimensionality reduction and outlier detection. Details on implementing
several successful ML algorithms used within time-domain astronomy are given in Section 2.3.

Two relevant machine learning applications are in stellar variability detection and charac-
terisation and in candidate vetting and classification of transiting exoplanets from photometric
light curves. The classification of variable star light curves is well-suited to machine learning
but requires the selection of sensible input features. Namely, measurable quantities such as the
period and the amplitude of the signal, stellar properties such as the colour index and magnitude
and specific signal shape information such as the residual around the folded light-curve model
(Dubath et al. 2011). This method of parameter extraction has been applied to light curves
from the All-Sky Automated Survey (ASAS, Eyer & Blake 2005), Hipparcos (Dubath et al.
2011) and OGLE (Debosscher et al. 2007). A paper by Richards et al. (2011) provides a more
in-depth description of how feature extraction should be considered to optimise the performance
of classifiers such as a random forest (RF).
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As the number of planetary transit candidates increases in modern photometric surveys,
automated vetting of these candidates is preferable to the traditionally manual ‘eyeballing’
process. WithinNGTS, the first example of this was the successful application of self-organising
maps (SOMs) and random forests to candidate ranking. Armstrong et al. (2018) took a
set of features from each transit fit including transit depth, period and stellar parameters.
The algorithm generated a score for how likely the detection was to be a transit. The work
demonstrated that this method performed exceptionally well on a set of NGTS light curves. In
general, using such a tool to rank candidates could drastically reduce manual vetting time.

A notable advance in the application of ML to exoplanet detection came from Shallue &
Vanderburg (2018) and their development of Astronet, which used an artificial neural network
(ANN) to predict whether a given signal is a transiting exoplanet or a false positive caused by
astrophysical or instrumental phenomena. Specifically, the work used a convolutional neural
network (CNN), an architecture mainly used in image processing. The authors trained this on
Kepler data and detected two new planets not previously found in the Kepler dataset with this
method. Using a CNN does not rely on feature selection, as the CNN takes the light curve
as an input. Instead, the authors optimised the ‘views’ of data given to the network, such as
normalising by transit depth and providing zoomed ‘local’ views of the light curve around the
transit. Some more recent studies have taken this approach following the success of Astronet.
Exonet was proposed by Ansdell et al. (2018), which improved the performance of the CNN
through the addition of scientific domain knowledge; Exonet was additionally given CCD pixel
flux centroid information and stellar parameters to improve its classification. This model was
later applied to light curves fromTESS, where it performedwell on previously-confirmed transit
events and proposed a further 200 candidates (Osborn et al. 2020). Chaushev et al. (2019) was
able to apply a similar CNN-based method to the ground-based, non-continuous data from
NGTS. The authors claim that the time required for vetting can be reduced by half using a CNN
while still recovering the vast majority of manually flagged candidates. In addition, the CNN
was able to identify many new candidates with high probabilities which were not flagged by
human vetter.
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Scientific Background

This section aims to provide a theoretical background on the physics used in this work. I will
discuss the myriad forms of stellar variability that we can detect with NGTS and details of
methods used within signal processing, time series analysis, and machine learning.

2.1 Stellar variability

I will discuss different forms of stellar variability, which can be sorted into three groups of
periodic variables and eruptive or cataclysmic variables with no periodicity. The three groups
mentioned are rotational, pulsational, and external variability in binary and higher-order star
systems. Where a variability class is defined, the name often reflects the first or most significant
star found to exhibit this form of variability and is highlighted in bold in the text. With the
release of precise magnitude and colour information from Gaia, we can plot how variability
classes are distributed in HR diagrams. Works such as Eyer & Mowlavi (2008) were able to
create these plots prior to Gaia, however since then, a wealth of astrometric, photometric and
asteroseismological data has been released, and the work of Eyer et al. (2019) produced HR
diagrams using Gaia stellar parameters for known variables stars from published catalogues,
which are included throughout this Section to aid the reader in placing variability classes in HR
space (Figures 2.3, 2.7 and 2.9).

31



32 Chapter 2. Scientific Background

Figure 2.1: A ‘Variability Tree’, which organises variable objects according to the source of
their variability. Credit: Eyer et al. (2019).

2.1.1 Rotation

Photometric variability will arise from rotating stars due to photometrically active regions on
the stellar surface rotating into and out of view. These active regions are attributed to stellar
spots, convective regions, and more explosive events like flares or other magnetic activity.
These events can produce a photometrically variable signal with the same rotation period as
the star, subject to any characteristic timescales of the processes themselves, which will affect
the observed signal. Figure 2.3 places several distinct rotational variability classes on the HR
diagram, some of which are discussed in the following sections.

Solar-like stars, FGK dwarfs, will often exhibit photometric variability in the form of stellar
spot rotation. The periods for rotational variables vary from less than one day up to hundreds
of days. Observed periods of spot modulation are generally skewed towards shorter periods
in part because it is easier to observe faster rotators with short periods. Additionally, many
stars observed with spot-based variability are young, magnetically active stars with many spots
compared to less active but still rotating older stars (Strassmeier 2009). Figure 2.2 shows
an example light curve of such a star, KIC 5110407, a K-type star observed with Kepler
(Roettenbacher et al. 2013). We see an obvious sinusoidal variability signal evolve into a more
complex ‘double-dip’ modulation pattern and back into a single sinusoid. This phase-shifting
signal is typical of a spotted star; as groups of spots are formed, grow, shrink, and disappear on
the stellar surface, we observe phase shifts in these signals and complex photometric variability.
Over longer timescales, we know the Sun exhibits an 11-year-long magnetic cycle, causing an
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KIC 5110407 Quarter 7

Figure 2.2: Kepler data from quarter 7 of the spotted star KIC 5110407. Relative flux (in parts
per thousand, ppt) is plotted against time from the start of the quarter (in days).

ebb and swell in the magnetic activity. At solar maximum, we observe many more starspots
than at solar minimum, and it has been shown that G–K dwarf stars exhibit these many-year
long cycles as well (Oláh et al. 2016).

2.1.1.1 Spots, faculae and plages

Local magnetic fields create starspots on the photosphere of stars, where fields are strong
enough to suppress the regions of convective overturn and hence redirect the flow of energy
outwards. This results in cool and, therefore, dark regions on the surface of a star (Strassmeier
2009). It is possible to detect the presence of starspots through rotation, and in recent years
track their movement across the surface of the star through Doppler imaging (Vogt & Penrod
1983) or aperture synthesis imaging with interferometric telescopes (Parks et al. 2011). Despite
these advances, most of our knowledge of spots comes from the Sun.

Sunspots have been observed to have lifecycles from a few days to a few months, with larger
groupings of sunspots persisting for weeks to months. These sunspots expand and contract,
as well as drift in latitude on the surface of the Sun. Sunspots have typical diameters of tens
of thousands of km on the Sun, covering around 0.1% of the Solar surface. Extremely large
spots can be observed on smaller or more magnetically active stars; a spot on the active K-giant
star XX Tri covered about 22% of a hemisphere, estimated to be around 11 million km in
diameter (approximately eight times the Solar diameter) (Strassmeier 1999). Fully convective
and magnetically active M dwarf stars are predicted to be extremely spotty, with a relatively
uniform distribution of spots in longitude and latitude (Barnes et al. 2017). Spotted, active
K–M variable stars can be classed as BY Draconis variables; these stars have large numbers
of starspots and hence exhibit photometric variability at the period of their rotation. Typically
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these rotation periods are tens of days long, with amplitudes of 0.1–0.3mag in the visible (Percy
2007).

In addition to spots, there exist regions of increased brightness known as faculae and plages.
Faculae exist in the photosphere of the Sun, between the small and short-lived convection cells
known as solar granules. The concentration of magnetic field lines between these cells causes
a very small region of increased brightness. Within the chromosphere, we see similar small
regions of brightness known as plages, which appear to map closely to areas of increased
activity. It has been shown that on timescales comparable to the 11-year solar magnetic activity
cycle, the appearance of dark spots and bright plages are highly correlated, despite being formed
in different layers of the stellar surface (Mandal et al. 2017).

On rotational timescales, the Sun’s (and hence most likely FGK dwarfs) photometric bright-
ness variation is dominated by spot activity within the optical regime. Stellar activity is not
spot-dominated at shorter wavelengths (. 400 nm) and during magnetic cycle minima when
spot contribution is weak (Shapiro et al. 2016)a.

Other main-sequence rotational variability classes have been identified, in which variab-
ility can be attributed to different processes than described above. "2 Canum Venaticorum
variables are chemically peculiar late B to early F stars. Strong magnetic fields cause abundant
heavy elements to move towards the stellar surface, producing associated brightness changes
(Percy 2007). These brightness changes manifest as a sinusoidal signal in a photometric light
curve with a period the same as the star’s rotation period: typically a few days, and with
amplitudes of 0.02–0.05 mag (Percy 2007).

2.1.1.2 Pre-main-sequence stars

Extremely young PMS stars (<10 Myr) will still be contracting and will still be affected by the
presence of circumstellar material. The link between the star and any circumstellar material will
manifest in variability across a range of wavelengths and timescales. An important group of
PMS variables are T Tauri stars. A T Tauri star is best defined by its spectrum, as the regions
of low-density gas common to star-forming regions produce a well-defined set of spectral lines
(Percy 2007), the details of which are beyond the scope of this work. This spectrum is typical of
a star with an accretion disc (known as a classical T Tauri) or with the remains of the accretion
disc in the case of a weak-line T Tauri (WTTS). T Tauri stars are of spectral type FGKM and,
as PMS stars, will lie above the main sequence on an HR diagram.

aThis is not the case for spectroscopic measurements, however. Meunier et al. (2010) show the convective
blueshift suppression caused by plages can dominate the RV signal, even during magnetic cycle minima when spots
may not be present.



2.1. Stellar variability 35

Photometrically, T Tauri stars will exhibit fluctuations on time scales ranging from minutes
to days, with amplitudes ranging from 0.01mag through tomultiplemagnitudes. The variability
timescales can be associated with the star’s rotation and the orbit of any circumstellar disc
present, the free-fall timescale and flaring of the star (Percy 2007). Of note for this study are
timescales associated with rotation of the star and any obscuring by circumstellar material.
These timescales are generally between 0.5 and 18 days. Herbst et al. (2001) demonstrates that
the rotation periods of young stellar objects (YSOs) in the Orion Nebula Cluster (ONC) exhibit
a bimodal distribution of rotation periods with peaks at about 2 and 8 days. This bimodality
was attributed to disc-locking: contracting stars should spin up, but when magnetically linked
to a circumstellar disc, this can prevent such a reduction in rotation period (as seen in the stars
near the 8-day peak).

It is also possible for bothmain-sequence andPMSobjects to exhibit non-periodic brightness
variability. Although not studied in detail in this work, such sudden brightness changes will add
noise to observed light curves. Variability arising from obscuration of the star by surrounding
gas or dust can cause non-periodic variability. We have already seen systems that exhibit
this effect, in the case of T Tauri variables. Obscuration can also occur due to material being
separated from the star in the case of extremely rapidly rotating $CassiopeiaeB stars (Slettebak
1982). The magnitude of the obscuration can be extremely large: in the case of the star R
Coronae Borealis a sudden reduction in brightness of 10 magnitudes occurred, thought to be
attributed to a large dust cloud observed around the system with HST. This hypothesis was
confirmed via IR excess (Jeffers et al. 2012).

Flare stars or UV Ceti variables are dwarf K and M stars which exhibit rapid increases
in brightness of several magnitudes over short (seconds to minutes) timescales. This rapid
increase is followed by a slower exponential decay back to quiescence. Stellar flares are thought
to be driven by high-energy magnetic reconnection events like Solar flares. Flare occurrence
appears to be randomly distributed in time; however, the distribution of flare energies appears
to follow a well-defined power law as lower energy flares are much more likely than high energy
flares. For particular magnetically active M dwarf stars, the presence of nanoflares (extremely
low energy but frequent flares) may appear as additional noise in photometric measurements.
These nanoflares are a subject of study with NGTS; the work by Dillon et al. (2020) utilises
the high cadence sampling of NGTS photometry to correlate the presence of quasi-periodic
oscillations in M dwarf brightness with the presence of nanoflare activity.

2.1.2 Oscillations and pulsations

Stellar pulsations arise from the expansion and contraction of the outer layers of a star as it
attempts tomaintain equilibrium. Radial pulsations are caused by a feedbackmechanism known



36 Chapter 2. Scientific Background

Figure 2.3: Rotating variable stars from published catalogues are placed in the observational
colour–absolute magnitude diagram, with symbols and colours representing types as shown in
the legend. The background points in grey show non-variable sources from Gaia. Credit: Eyer
et al. (2019).

as the ^ mechanism in many variable stars. A rise in density within a partially-ionised layer of
a star (as a result of gravitational pressure, for example) creates increased opacity (^), causing
increased energy absorption from the stellar interior. This increased absorption causes heating
and expansion of the layer, reducing the opacity once again (Saio 1993). This mechanism is only
effective within partially ionised gas layers, as ordinarily, the strong temperature dependence
of opacity negates this feedback loop.b The position of stars on the HR diagram exhibiting ^
mechanism driven pulsations is along the instability strip, a line of increasing luminosity and
decreasing temperature where stars have ionisation zones at the right depths to drive pulsations.
The instability strip is labelled on the HR diagram in Figure 1.6, and several classes of pulsating
variables are shown in Figure 2.7.

Radial pulsations may also trigger higher-order modes of oscillation. These modes are
similar to spherical harmonic modes and can be modelled as such to infer their frequency
relationship. Some stars may exhibit pulsations occurring in multiple modes simultaneously,
such as multi-mode classical Cepheids, which exhibit multiple periods within their light curves,
and provide useful tools for probing stellar interior structure and testing stellar opacity models
(Moskalik & Dziembowski 2005).

bFor non-ionised gases, this strong temperature dependence arises from metals being stripped of electrons at a
higher temperature which reduces opacity at a much greater rate than the increase in pressure.



2.1. Stellar variability 37

(a) Two example light curves of classical Cepheid variable stars from OGLE.

(b) Two example light curves of RR Lyrae (RRab) variable stars from OGLE.

Figure 2.4: Example light curves of ^-mechanism driven variable stars from the Optical
Gravitational Lensing Experiment (OGLE) (Soszynski et al. 2015). The light curves are phase
folded on the displayed period. Credit: OGLE Atlas of Variable Star Light Curves.

Smaller, non-radial pulsations in stars such as internal pressure (p) or gravity (g) waves like
those seen within the ocean or Earth’s atmosphere will also be present. The physics of these
waves is much more complex than radial pulsations, as we have three degrees of freedom for
these waves rather than one; this will not be discussed in detail. p- and g-waves are the basis
of the signals observed in asteroseismological missions, which utilise these standing waves to
probe stellar interiors in much the same way geophysicists use earthquake signals to probe the
Earth’s interior. An excellent review of Asteroseismology, including the physics of non-radial
oscillations in stars, is given by Di Mauro (2016).

A common subdivide of classes of pulsating stars is by period. Broadly, this allows for a
division of pulsating stars into main-sequence and more evolved giant stars. Younger, more
compact stars will often have shorter period pulsations due to a higher sound speed internally,
compared to evolved giants, which have a lower material density corresponding to longer period
oscillations. I will outline several distinct variability classes that differ in period: firstly, stars
in the instability strip with the same underlying physics but a range of pulsation periods, and
secondly, stars with different pulsation mechanisms.

2.1.2.1 + mechanism variables

Cepheid variables, named after the homonymous X Cephei star first observed to display
pulsation by JohnGoodricke in 1786 (Goodricke 1786), display a distinctive light curve shape: a

http://ogle.astrouw.edu.pl/atlas/classical_Cepheids.html
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sharp increase in brightness followed by a slower dimming. Cepheid variables are separated into
classic Cepheids/Type I Cepheids and Type II Cepheids. Despite displaying similar variability,
these two groups exhibit markedly different ages, masses, and evolutionary histories. Classical
Cepheid Variables are comparably young, massive (> 1"�) G-type stars which have begun to
move off the main sequence, beginning helium core burning (Percy 2007). Classical Cepheids
are an example of pulsating stars driven by the ^ mechanism and hence exist in the instability
strip of the HR diagram. Typically they exhibit periods of 1 to 70 days, with the distinctive
shape described and shown in Figure 2.4a, in which two classic Cepheid variable light curves
taken with the Optical Gravitational Lensing Experiment (OGLE) (Soszynski et al. 2015) are
displayed. Most Cepheid variability amplitudes are of order 0.5 to 1 magnitude in the visible,
though smaller amplitude Cepheid variables have been detected, and this small amplitude
variability can be attributed to stars close to the border of the instability strip (Kovtyukh
et al. 2012). Classical Cepheid variables follow a tight period–luminosity relation known as
Leavitt’s law. This empirical law was first calibrated by Hertzprung in 1913 (Hertzsprung
1913) and is still used to calculate the distance to classical Cepheids, albeit re-calibrated using
measurements from the Hubble Space Telescope (Benedict et al. 2007). Type II Cepheids
are similarly located on the instability strip on the HR diagram. However, they are low mass
(< 1"�), metal-poor giant stars, typically much older than their classical counterparts. They
have higher effective temperatures than classical Cepheids, corresponding to late-F and G type
stars (Percy 2007). Within the class of type II Cepheids, stars are further separated into three
sub-classes based on variability period. BL Herculis variables vary over periods of 1 to 8
days, with amplitudes of about 0.1 mag. WVirginis variables have longer periods of 10 to 20
days, with larger amplitudes of around 1 mag. The longest period type II Cepheids are known
as RV Tauri variables, exhibiting variability periods of more than 20 days with amplitudes of
multiple magnitudes. These three sub-classes occupy different parts of the period–luminosity
relationship and the instability strip. BL Herculis variables cross the instability strip post
horizontal branch and towards the AGB. W Virginis variables are helium-burning stars within
the AGB, and RV Tauri stars begin to evolve beyond the AGB towards white dwarfs (Percy
2007; Soszyński et al. 2018). The period–luminosity relations for classic Cepheids and type II
Cepheids are displayed in Figure 2.5. This Figure highlights the tight relationships observed
between period and luminosity. We see also the three sub-classes of type II Cepheids separated
in period and luminosity.

RR Lyrae stars are the only stars within the group of short-period variables that are giant
stars. RR Lyrae variables span spectral classes from A to late F and are older stars often found
within globular clusters. They exhibit stable periods of 0.1 to 1 day, with visible amplitudes
of up to 1.5 mag (Percy 2007). Despite having pulsations driven by the same underlying ^
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Figure 2.5: Period–Luminosity relations of classicalCepheids (grey points) and type IICepheids
(coloured points) within the Magellanic cloud. Credit: Soszyński et al. (2018), taken from the
OGLE Atlas of Variable Star Light Curves.

process as Cepheid variables, they are given a separate variability classification due to their
much shorter periods and chemical differences (Smith 2003). RR Lyrae stars are separated into
sub-classes based on their pulsation modes. The fundamental mode pulsators are known as
RRab stars, with first-overtone stars RRc and double-mode RRd. Fundamental mode RRab
stars have asymmetric light curves with a steep rise in amplitude followed by a slow decrease
of brightness after the maximum: for example, the two phase-folded light curves in Figure
2.4b. Approximately 50% (Jurcsik et al. 2009) of RRab stars display long-term modulations
of the amplitudes and phases of their variability as shown in the OGLE light curve in Figure
2.6. This phenomenon has been termed Blazkho variability after Blažko (1907); however, the
origin of this effect is unknown. Kolenberg (2008) provides an excellent review of the history
and theories behind the Blazkho effect. RR Lyrae stars are on the horizontal branch of the HR
diagram, burning helium in their core. Although all RR Lyrae have very similar luminosity,
they span a large range in metallicity. The absolute magnitude and period of RR Lyrae stars
are slightly dependent on the metal abundance, although this dependence is very small. As RR
Lyrae stars are often found within dense globular clusters large distances from Earth, accurate
parallax measurements and metallicities are difficult to obtain (Borissova et al. 2009).

Where the instability strip crosses the main sequence on the HR diagram, we find % Scuti
variables. X Scuti variables are driven by the same ^ mechanism as Cepheids. They lie on the
instability strip and follow a similar period–luminosity relation, hence their original name of
dwarf Cepheids. They are stars of spectral types A to F with short-period regular variability of
typical amplitudes a few hundredths of a magnitude (Percy 2007). Typical periods for X Scuti

http://ogle.astrouw.edu.pl/atlas/type_II_Cepheids.html
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Figure 2.6: An example RRab star light curve exhibiting long-termmodulation on the amplitude
and phase of variability, known as Blazkhomodulation. The light curve fromOGLE (Soszyński
et al. 2014) is displayed on the left and phase-folded on the displayed period on the right. Credit:
OGLE Atlas of Variable Star Light Curves.

variables are in the range 0.02 to 0.3 days (0.5 to 7 hours). There are high-amplitude X Scuti
stars, with visible variability magnitudes larger than 0.3mag. These HADS variables exhibit the
‘saw-tooth’ variability pattern seen in the more evolved Cepheid variables. A distinct class of
HADS variables that appear much older with lower metal abundance are termed SX Phoenicis
stars with short period variability of 0.03 and 0.08 days and amplitudes of order 0.1 mag. SX
Phoenicis stars are a part of the so-called blue straggler population of stars. Where stars turn
off the main sequence as they exhaust their hydrogen reserves, some stars are observed to have
higher luminosity than expected from single-star evolutionary tracks. It is hypothesised that
these stars have increased mass and luminosity due to an unresolved or even merged binary
companion (Percy 2007; Sandage 1953).

2.1.2.2 Other pulsating variables

Stars may exhibit variability driven by non-radial pulsations compared to the ^ mechanism
pulsators. $ Doradus variable stars lie just beyond the red edge of the X Scuti instability strip
and are typically stars of spectral type F0–F2. They exhibit variability periods ranging from 0.4
to 3 days and amplitudes up to 0.1 magnitudes in the visible. Due to the high-order, non-radial
modes of pulsation, these stars often exhibit multi-period variability (Krisciunas 1993).

A-stars with ‘peculiar’ metal abundance of certain elements can exhibit extremely complex
variability caused by strong magnetic field interactions and rotational effects interacting with X
Scuti type oscillations. These stars are known as Rapidly Oscillating Ap (roAp) stars. RoAp
stars make excellent targets for asteroseismology studies. TESS has already found a number of
these roAp stars, including a short 4.7-minute long pulsation period on one object (Cunha et al.
2019). The introduction of this paper by Cunha et al. (2019) provides an excellent summary
of the status of modelling these complex stars, including the oblique pulsator model in which
pulsations along a magnetic axis offset from the rotation axis cause modulation of the expected
pulsation pattern.

http://ogle.astrouw.edu.pl/atlas/RR_Lyr.html
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Figure 2.7: The same CMD as Figure 2.3, but with classes of pulsating stars labelled. Credit:
Eyer et al. (2019).

There exist further classifications of short-period variable stars such as # Cephei, ZZ
Leporis, Slowly Pulsating B variables. The book ‘Understanding Variable Stars‘ by Percy
(2007) provides detailed descriptions of these minor variability classes and the distinctions in
stellar parameters and photometric variability observed by these stars.

2.1.3 Variable binaries

It is well known that multiple star systems are fairly common in the Milky Way. The PMS
population shows at least 50% of systems with multiple stars, indicating that binary systems
form early on in a system’s life (Mathieu 1994). Similarly, for theMS population, estimates from
Raghavan et al. (2010) suggest that around 44% of Solar-like stars have at least one companion.
Of particular interest to this work are close binary stars, in which the interactions between
two stars are large and the geometric probably of an eclipse being seen from Earth is larger.
Many of these systems will not be resolvable even by the most powerful telescopes due to their
extremely small on-sky angular separation. The binary systems’ photometry, spectroscopy,
and astrometry enable astronomers to detect multiple stars without fully resolving the system.
Photometric variations occur in both eclipsing and non-eclipsing binaries; however, eclipsing
binaries generally provide much more information. We refer to ‘primary’ and ‘secondary’
eclipses within an eclipsing binary system: the primary eclipse occurs when the fainter star
eclipses the brighter star and vice-versa for the secondary. Two equal brightness stars will result
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in the primary and second eclipses having equal depth. The exact geometry of the system and
the stellar parameters of the two bodies will affect the shape of the light curve seen.

Eclipsing Binary star systems can be classified into three broad classes, based on the shape
of the photometric light curve. EA binaries have light curves with almost flat out-of-eclipse
light curves, with well-defined eclipses (although the secondary may be barely visible if the
primary star is orders of magnitude brighter than the secondary). EB binaries have less well-
defined eclipses, with more rounded light curves, and EW binaries display almost continuous
variation. Although these classifications are based on observed photometry, the EA and EW
binary classifications represent two extremes of a set of similar systems. The stars within
an EA system are further apart than those within an EW system, with EB sitting somewhere
in-between. The separation of the two stars leads to the physical definition of different binary
systems in terms of star contact, formalised by Kopal (1955).

Within a binary system, the two bodies orbit a common centre of mass (the barycentre). If
the two bodies are of comparable masses (e.g., two stars, rather than a star and a planet), the
system’s barycentre will lie well outside the interior of either body. Within this binary system,
there exist surfaces of gravitational equipotential across which the gravitational potential from
both bodies is equal. There also exist a set of Lagrange points at which the gravitational forces
of the two bodies balance the centrifugal force arising from orbiting the barycentre. Within the
rotating frame of the system, these are stationary points. Of particular note is the !1 Lagrange
point, which lies along the line between the two objects where the gravitational forces balance.
In the case that "1 = "2, the !1 point and the barycentre will coincide.

It is possible to draw a gravitational isopotential surface that intersects the !1 Lagrange
point, which appears as a ‘figure-of-eight’ shaped surface. The two lobes of this surface define
the Roche Lobes of the two stars. Should one of the stars expand to fill its Roche lobe, material
will fall from this star towards the other star, carrying mass and angular momentum away from
the larger star and onto the smaller. The introduction of Roche lobes leads to the following
definitions of binary systems: Detached binaries are systems in which both components lie
within their Roche lobes. Tidal distortion of the stars is minimal, and the stars will be almost
spherical. In Semi-detached binaries one star has filled its Roche lobe, but the other has not.
The larger star will begin to distort, whilst the smaller remains spherical. The extreme of this
definition are Contact binaries, in which both stars have filled their Roche lobes and are hence
in contact. Within this designation of binary systems, we see that EA roughly correlates to
detached systems, EB to semi-detached and EW to contact. Note that these designations are not
exact; the prototype EA binary system, Algol, is a semi-detached system. The semi-detached
nature of Algol was proven by noting that the less massive star appeared to have evolved faster
than the massive one within the Algol system, in contradiction with basic stellar evolution
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theories. This evolutionary mismatch could only be the case in the system as observed if mass
transfer between the two stars had occurred, a scenario possible in a semi-detached binary
system (Pustylnik 1998). Figure 2.8 provides three example light curves with a corresponding
cartoon system. Typically periods of EA binaries are longer than those of EW binaries, as the
contact between the two companions implies a close orbital radius. However, periods of binary
systems range from as short as 17 minutes in the case of AMCanumVenaticorum (Roelofs et al.
2006) up to hundreds of thousands of years in the case of the Alpha Centauri system. Figure
2.9 shows the positions on the HR diagram of known eclipsing binary systems, categorised as
EA, EB and EW, along with stars with known exoplanets which also vary in brightness due to
planetary transits.

It is also possible to photometrically observe the effects of non-eclipsing binary systems:
Ellipsoidal Variables are small amplitude fairly sinusoidal variables that oscillate in brightness
due to changes in the shape of the stars within the systemwhich are almost in contact. This small
change in light emission area causes photometric brightness modulations. Such systems may
not eclipse, and as such, must be followed up spectroscopically or astrometrically to confirm
multiple stars, such as the spectroscopic binary and ellipsoidal variable system U Virginis
(Spica) (Palate et al. 2013).

Close binary stars with strong magnetic activity, such as RS Canum Venaticorum vari-
ables can exhibit unusual photometric activity outside of eclipse that can be observed in systems
that do not eclipse. Typically, this modulation is fairly sinusoidal, arising from spot groups
on one star driven by powerful magnetic fields from its binary companion (Hall 1976). In
general, the rotation period observed is similar to that of the binary system, and so periods of
these systems range from less than a day up to multiple days in length. The stars within an RS
Canum Venaticorum system can rotate significantly faster than a lone star of similar colour and
luminosity, as the tidal forces between the two stars ‘spin-up’ the rotation of the individual stars
(Percy 2007).

2.2 Signal processing & time series analysis

I will provide a theoretical background to some signal processing, time series analysis and
machine learning methods used in this work. In particular, I will detail methods used to extract
periodic variable signals from photometric light curves, including sinusoidal model fitting
such as a Lomb–Scargle Periodogram (Lomb 1976; Scargle 1982), correlation-based methods
such as the Autocorrelation Function, and phase folding methods including Phase Dispersion
Minimisation (Stellingwerf 1978). Each of these classes of methods has pros and cons and
performs better or worse depending on the characteristics of the underlying data. Such features
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Figure 2.8: Typical eclipsing binary light curves are shown for an EA (top panel), EB (middle
panel) and EW (bottom panel). On the right of each light curve is a cartoon of a binary system.
In the case of the EB and EW systems, we see that stars begin to distort due to filling their
Roche lobes. Credit: Jinbo Fu, Xiamen University.

https://jasonyanglu.github.io/files/lecture_notes/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0_2020/Project/Deep%20Learning%20Techniques%20for%20Eclipsing%20Binary%20Light%20Curves%20Classification.pdf
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Figure 2.9: The same CMD as Figure 2.3, but with eclipsing binary systems highlighted.
Credit: Eyer et al. (2019).

to consider are the sampling of the time series, the shape, period and amplitude of the signal
and any additional noise in the light curve.

2.2.1 Fourier transforms

The broad study of Fourier Analysis involves approximating functions by sums of simpler
trigonometric functions. One such example is a Fourier Transform, a mathematical transform
that decomposes a function in space or time into a spatial or temporal frequency function. One
definition of a complex Fourier transform of a continuous integrable function 5 (C) is

5̂ (a) =
∫ ∞

−∞
5 (C)4−2c8Ca3a (2.1)

where C ∈ R and a ∈ R represent time and frequency respectively. (Rahman 2011). In the case
of a finite sequence of equally-spaced samples of a function, rather than a continuous function,
a Discrete Fourier Transform (DFT) must be used. This is the case for astronomical time
series data, where we sample a star’s brightness function at a series of discrete time points. For
a set of data C1, ..., Cn we can define the discrete Fourier transform

3 (aj) = =−1/2
=∑
8=1

Ci4
−2c8ajC (2.2)
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for 9 = 0, 1, ..., = − 1. The frequencies aj = 9/= are the Fourier or fundamental frequencies
(Shumway & Stoffer 2017). Such discrete functions are prone to aliasing: a finite sampling of
functions can cause different signals to become indistinguishable when sampled. In the case
of simple sinusoidal functions, sampling at a frequency as, the set of functions {sin(2c(a +
#as)C + q), # = 0,±1,±2, ...} will generate identical samples. This will manifest in the
frequency spectrum or a discrete Fourier transform as large responses at each of the frequencies
in the set. The set of frequencies connected by aliasing with positive values will thus be

aalias = atrue ± = · asampling (2.3)

for a sinusoidal process of frequency atrue sampled at frequency asampling.
An important concept within signal processing is the Nyquist-Shannon sampling theorem

which states:

If a function 5 (C) contains no frequencies higher than B hertz, it is completely determined
by giving its ordinates at a series of points spaced 1/(2�) seconds apart. (Shannon 1984)

If this signal is sampled at anything less than 2� samples per second, it is undersampled
and missing information. Any reconstruction of this signal from its frequency spectrum will
be prone to aliasing. Inversely, for a sampling frequency as, the Nyquist frequency, as/2, is the
highest possible frequency for a signal to be perfectly sampled.

In this work, an implementation of the discrete Fourier transform known as theFast Fourier
Transform (FFT) is used. To speed up the calculation of the DFT, algorithms such as the
FFT proposed by Cooley & Tukey (1965) take a divide-and-conquer approach to reduce the
number of calculations required. Such optimisations rely on well-formed data. To improve
the complexity from the O(=2) of the standard DFT to O(= log =), a time series must be
approximately a power-of-two long. Steps such as padding the array with zeros at either end
can help to improve the speed of the calculation.

Discrete Fourier transforms are mathematically only defined for a regular set of sampling
points C8+1 = Ci + ΔC, and hence other methods must be used. One way to combat this problem
is to interpolate your signal onto a regular grid, but this will typically result in additional noise
and unreliable frequency spectra (VanderPlas 2018).

2.2.2 Lomb–Scargle periodogram

The Lomb–Scargle (LS) Periodogram (Lomb 1976; Scargle 1982) attempts to solve the
problems of approximating frequency spectra for unevenly sampled time series data. The LS
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periodogram is effectively a least-squares optimisation of a sinusoidal model for each frequency.
For a given frequency a, we propose a sinusoidal model of the form

H(C; a) = �a sin(2ca(C − qa)) (2.4)

where the amplitude �a and phase qa can vary with frequency. A least-squares optimisation is
performed to fit the model, by minimising the j2 statistic at each frequency:

j2(a) ≡
∑

n
(Hn − H(Cn; a))2 (2.5)

where Hn is the value of the time series at the =th data point. The work of Scargle (1982) was
to combine these functions and additionally propose an arbitrary phase term g to generalise the
frequency dependant qa phase terms. This creates a periodogram of the form

%(a) = �2

2

(∑
n
Hn cos(2ca(Cn − g))

)2

+ �
2

2

(∑
n
Hn sin(2ca(Cn − g))

)2

(2.6)

where %(a) is the periodogram power and �, � and g are functions of the frequency a and
observing times {Ci}. It can be shown that selecting functions for �, � and g such that

1) the periodogram reduces to the classic form in the case of equally-spaced observations,
2) the periodogram’s statistics are analytically computable and
3) the period is insensitive to global time-shifts in the data,

will produce an LS periodogram of the form:

%LS(a) =
1
2

{
(∑n Hn cos(2ca(Cn − g)))2∑

n cos2(2ca(Cn − g))
+ (

∑
n Hn sin(2ca(Cn − g)))2∑

n sin2(2ca(Cn − g))

}
, (2.7)

g =
1

4ca
tan−1

( ∑
n sin(4caCn)∑
n cos(4caCn)

)
. (2.8)

The LS periodogram provides an extremely useful and often accurate tool for extracting
periodicity from time-series data, with the caveat that the underlying model is sinusoidal.
Hence, the produced periodogram is a linear combination of sines that may not accurately
model all signal shapes. Phase shifting signals, such as the brightness variations of rotating
spotted stars, are one example of a signal shape not well modelled by a linear combination of
sines. I also note that the statistical guarantees of the LS periodogram only hold in the case
that observations contain only uncorrelated white noise. The LS periodogram is used widely
in extracting periodicity from astrophysical time series. Large numbers of variable stars have
been detected using such methods, such as The Zwicky Transient Facility (ZTF) catalogue
of periodic variable stars (4.7 million stars, Chen et al. 2020), the Asteroid Terrestrial-impact
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Last Alert System (ATLAS) catalogue (621,702 stars, Heinze et al. 2018) and the ASAS-AN
variability catalogue (687,695 stars, Shappee et al. 2014, and Jayasinghe et al. 2019 through to
Jayasinghe et al. 2020).

2.2.3 Autocorrelation function

The following section is taken from Briegal et al. (2022). Where the shape of the underlying
signal is not known, and in particular not sinusoidal, self-similarity may be an appropriate
method to extract periodicity. The autocorrelation function (ACF) is a measure of how
similar a signal is to itself shifted by a time lag : . Shumway & Stoffer (2017) define the ACF
of a regularly sampled time series -I(C) as the function

d : {0, 1, . . . , 8max} → [−1, 1] (2.9)

d(:) :=
1
#

8max−:∑
8=0
(-i − 〈-I〉) × (-8+: − 〈-I〉) (2.10)

where 〈-I〉 denotes the mean of the time series values and the normalisation # is the total sum
of squares # :=

∑
8∈�
(-i − 〈-I〉)2. The choice of this normalisation implies that d(0) ≡ 1, i.e. a

time series is maximally similar to itself when there is no lag.
While this is a standard way to introduce the ACF, it can be useful to think of the ACF as

a function with a time domain instead of an integer lag domain. We can make this domain
modification explicit by multiplying the argument by the sampling constant ΔC:

d(:ΔC) : {0,ΔC, . . . ,ΔC · 8max} → [−1, 1] . (2.11)

These descriptions are equivalent, but the latter view is more useful for the work presented
in this thesis. Specifically, the ACF is only directly applicable to time series where the
sampling is regular. However, it does not rely on underlying model assumptions, such as the
LS periodogram.

The position of the peaks in the ACF must be measured to extract a period from the
autocorrelation function, as the autocorrelation of a periodic function is itself periodic with
the same period as the underlying function. The ACF has been used to extract periodic
variability from photometric data taken with Kepler and K2 (McQuillan et al. 2014; Gordon
et al. 2021) and forms the basis of the technique developed as a part of this thesis, theGeneralised
Autocorrelation Function (G-ACF, Chapter 4).
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2.2.4 Phase folding and phase dispersion minimisation

Phase DispersionMinimisation (PDM) is a method based on phase- or epoch-folding of data.
Phase folding in this context transforms a function in time into a function in phase, where the
phase of a time point Ci (qi) is defined as

qi(%) ≡
��� Ci − C0
%

��� (2.12)

for a period % and an arbitrarily chosen epoch C0. A light curve can be ‘folded’ onto itself by
plotting the light curve in phase and overlaying successive periods of data. PDM (Stellingwerf
1978) selects the period for which the phase folded light curve has the least scatter. This scatter
is formally defined as a variance over a set of observations such that

f2 =

∑(Gi − Ḡ)
# − 1

(2.13)

for a set of # observations {(Ci, Gi)} representing a time value and a measurement value
respectively, where Ḡ represents the mean measurement value. The phase folded observations
are binned for each candidate period, and a scatter is calculated in each bin. The total scatter is
the sum across all bins, and the candidate period with the smallest total scatter is selected as the
‘correct’ period. PDM does not rely on model assumptions such as the LS periodogram and
does not require uniform sampling. It can be computationally expensive to run without prior
knowledge of the period, as for all candidate periods, a phase fold and set of scatters must be
calculated.

2.2.5 Bayesian approaches

Bayes’ theorem is used to calculate conditional probabilities: for two events, � and �, Bayes’
theorem is stated mathematically as

%(� | �) = %(� | �)%(�)
%(�) . (2.14)

%(� | �) is a conditional probability, the probability that A occurs given B is true. This is
known as the posterior probability of � given �. %(� | �) is known as the likelihood, and
%(�) and %(�) are marginal or prior probabilities, without any conditions. The power of
Bayes’ theorem is revealed in Bayesian inference when fitting a statistical model to data. In
this context, Bayes’ theorem is used to calculate the probability for a hypothesis given a set of
data as evidence. Mathematically, for a set of observed parameters ^ and a model with a set of
parameters ) we can calculate the posterior probability of the parameters given the observations
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Figure 2.10: An example Gaussian process with a squared exponential kernel (Equation 2.16).
Function draws from the (uniform) prior distribution are plotted in the left panel. Function
draws from the posterior distribution conditioned on the data are plotted in the centre panel. The
right panel shows the mean posterior prediction in blue, with shaded grey regions representing
1 standard deviation spread. Credit: Wikimedia user Cdipaulo96.

as
%() | ^) = %(^ | ))%())

%(^) . (2.15)

Within an inference setting, the likelihood is the distribution of the observed data conditional
on the model parameters, i.e. the probability of generating an observation Gi ∈ ^ given a
model k()). The prior, %()), is the distribution of model parameters before any observed
data. Careful thought must be given to ensure model priors are physically motivated and do
not introduce large biases into the posterior distribution. Finally, the denominator, %(^), is
known as the marginal likelihood or the evidence. This is the distribution of the observed data
marginalised over the parameter, and in general, the evidence is non-trivial to compute.

It is possible to introduce Bayes’ Theorem into period finding methods, which allows
the calculation of probabilistic errors on period estimates driven by prior knowledge of your
observations. Such methods include Gaussian process regression which will be discussed
in more detail or may be derived from other methods already mentioned, such as Bayesian
periodograms (which will not be discussed in this thesis).

2.2.6 GP regression

Gaussian process (GP) regression is a somewhat different approach to time series modelling
and periodicity detection. It is a non-parametric, Bayesian approach to regression. Instead of
optimising over sets of model parameters that best fit the data, it optimises over sets of functions
that best describe the data (Rasmussen &Williams 2006). Here non-parametric does not mean
there are no parameters, but there are infinite possible parameters that are not defined; the
number of parameters will change with the underlying model and data set size. We define a
prior distribution, representing the expected outputs of a set of functions without any observed

https://commons.wikimedia.org/wiki/File:Gaussian_Process_Regression.png
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data. For a Gaussian process, these functions are comprised of draws from multivariate normal
(MVN) distributions. The underlying assumption here is that every data point is drawn from
a multivariate Gaussian, and our time series consists of a set of draws from many MVNs.
It is necessary to define covariance kernels to constrain the relationship between subsequent
time points in our data, which defines how two samples from our MVNs at different times
are related. One such example of a covariance kernel is the radial basis function (RBF) or
squared-exponential kernel, defined as

cov(Gi, Gj) = � exp

(
−
(Gi − Gj)2

2;2

)
(2.16)

where Gi and Gj are measurements taken at times Ci and Cj and � and ; are the kernel hyper-
parameters. Kernel hyperparameter tuning forms a large basis of the modelling involved in
GP regression. Selecting a relevant kernel that best fits the data is an important part of GP
modelling. More complex covariance kernels such as Quasi-Periodic (QP) kernels can model
complex periodic signals. One such definition of a QP kernel from Rasmussen & Williams
(2006) is

:8, 9 = � exp

[
−
(Gi − Gj)2

2;2
− �2 sin2

(
c(Gi − Gj)

%

)]
+ f2Xij. (2.17)

Here, % can be interpreted as a rotation period with � controlling the amplitude of the sin2 term.
� parameterises how strongly correlated points lying one period apart are: large values of �
impose a more strict periodicity than small values, for which points separated by more or less
than a period are still correlated. Additionally, a white noise term f captures any remaining
jitter not well modelled by the GP. The paper by Angus et al. (2018) provides further insight
into this QP kernel.

GP regression has proven to be an extremely effective method of accurately modelling
complex stellar activity both photometrically (e.g., Evans et al. 2015; Vanderburg et al. 2015;
Grunblatt et al. 2016; Aigrain et al. 2016; Littlefair et al. 2017; Gillen et al. 2020) and spec-
troscopically (e.g., Gibson et al. 2012; Rajpaul et al. 2015, 2016; Angus et al. 2018). Utilising
complex kernels such as the QP kernel described above in addition to other kernel forms, it is
possible to model not only the rotation or activity of a star but also correlated and uncorrelated
noise arising from both astrophysical and instrumental sources.

A popular modelling framework with astronomy is EXOPLANET (Foreman-Mackey et al.
2021), which in turn uses Celerite2 (Foreman-Mackey 2018) formodel termsc, pymc3 (Salvatier
et al. 2016) for probabilistic inference and THEANO (The Theano Development Team et al. 2016)

cAs explained in Foreman-Mackey et al. (2017), Celerite optimises GP calculations for speed by restricting the
set of available kernels to a specific class generated by a mixture of exponentials.



52 Chapter 2. Scientific Background

for efficient model evaluation. I will further explain the phrase ‘probabilistic inference’ in the
context of GP regression and MCMC sampling in Section 2.3.4.

Stellar variability signals, particularly rotational signals, have been well modelled using
a sum of simple harmonic oscillator (SHO) kernels that are efficient to calculate (Foreman-
Mackey et al. 2017; Foreman-Mackey 2018). This kernel is used as part of the variability
detection pipeline in Chapter 6; I will explain it in detail here. The kernel contains a single
SHO term of the form

((l) =
√

2
c

(2
0l

4
0

(l2 − l2
0)2 + l

2
0l

2/&2
, (2.18)

where (0 is the power at l = 0, & is the quality factor, and l0 is the undamped angular
frequency of the system driven at an angular frequency l. Added to this SHO term is a
Celerite2 RotationTermd which is a mixture of two SHO terms used to model stellar rotation.
The term contains two modes, one at the period and another at half the period, describing
many astrophysical variability signals. The term is modelled precisely using the following
parameters:

&1 = 1/2 +&0 + X& (2.19)

l1 =
4c&1

%

√
4&2

1 − 1
(2.20)

(1 =
f2

(1 + 5 )l1&1
(2.21)

for the primary term and

&2 = 1/2 +&0 (2.22)

l2 =
8c&1

%

√
4&2

1 − 1
(2.23)

(2 =
5 f2

(1 + 5 )l2&2
(2.24)

for the second term. f is the standard deviation of the process, % is the primary period of
variability, &0 is the quality factor for the secondary oscillation. X& is the difference between
the quality factors of the first and second modes, which is constrained to ensure the primary
mode always has higher quality. 5 is the fractional amplitude of the secondary mode compared
to the primary and should be 0 < 5 < 1 to ensure the secondary mode has a smaller amplitude
than the primary. Additionally, white noise is modelled by adding a diagonal log-jitter term to
the kernel.

dhttps://celerite2.readthedocs.io/en/latest/api/python/#celerite2.terms.RotationTerm. Ac-
cessed: 22/01/2022.

https://celerite2.readthedocs.io/en/latest/api/python/#celerite2.terms.RotationTerm
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2.3 Machine learning for automatic detection and classification

The phrase Machine Learning has been accredited to Arthur Samuel from his 1959 paper to
describe a subset of artificial intelligence that utilises statistical methods to enable computers
to learn through progressively improving performance on a task using data rather than explicit
programming instructions. Since then, along with the exponential increase in computing power,
machine learning methodology has been applied to many fields, including scientific research,
health care, finance, sports betting, social media and more recently, the rise of automated
systems such as self-driving cars and smart assistants.

Machine learning is becoming a much more widely used tool for solving big data prob-
lems within astrophysics. Many different methods have been applied successfully, such as
Generative Adversarial Networks (GAN) for galaxy detection (Schawinski et al. 2017), Self
Organising Maps (SOM) and Random Forests (RF) for exoplanet detection (Armstrong et al.
2016, 2017, 2018) and Neural Networks (NN) for gravitational wave detection and parameter
estimation (George & Huerta 2018) and exoplanet detection and parameter estimation (Shallue
& Vanderburg 2018).

Machine learning algorithms fall broadly into two categories: supervised and unsupervised
learninge. There also exists a branch of machine learning based on probabilistic modelling,
which includes Gaussian process Regression and Markov-based models.

2.3.1 Supervised learning

Supervised learning algorithms rely on user-inputted Ground Truth data with initial solutions
(a training data set). This training set specifies a pre-defined output for each input. This output
could be a discrete class (a classification problem) or a continuous value (a regression problem).
The algorithm aims to learn a pattern or rule that maps the inputs to the outputs.

Many different algorithms exist, ranging from simple optimisation to complex neural net-
works that mimic the human brain’s connections, all of which broadly use a large number of
simple calculations to solve complex problems. A selection of well-defined and commonly
used supervised algorithms will be outlined in this Section, and Section 2.3.2 will outline some
unsupervised learning algorithms.

2.3.1.1 Decision trees

A decision tree is an intuitive classification tool. The input is at the tree’s root, with further
‘branches’ which can be evaluated and taken. As we move down the branches, we make further

eThere are other types of algorithms, for example, semi-supervised learning, but these will remain outside of
the scope of this thesis.
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decisions until we reach a ‘leaf’ node at the end of the tree. This leaf represents an output or
class. Decision trees are fairly simple to understand: they resemble human decision-making
as an iterative process. They could be classified as ‘white-box’ learning, as we can see what
decisions each node makes. Decision trees are relatively basic models, and as such, they are
often prone to overfitting the training data and are not robust to changes in this training data. One
can improve simple decision trees by using ensemble methods, combining simple algorithms
to create a more robust ensemble method that forgoes some of the shortcomings of an isolated
decision tree.

2.3.1.2 Ensemble methods

To prevent models from overfitting the data, often a useful tactic is to combine model outputs.
This can be done simply through averaging or by applying more complex methods such as
bootstrapping. One well-known and often used ensemble method is a random forest, which
improves the decision tree algorithm described previously. A random forest constructs many
decision trees by randomly distributing where features are split in each tree. The output
is determined as the average output of the forest of trees, and as such, should be robust
to overfitting, unlike a single tree. As a corollary, the random forest can map the relative
importance of features (i.e. decisions at each node) based on the collection of trees. RFs have
been employed successfully by Armstrong et al. (2018) in exoplanet transit detection using
NGTS data; by selecting a set of features from observed candidate transit events, a random
forest was able to predict the likelihood that these candidate events were real planetary transits.
Additionally, the use of an RF allowed for feature importance ranking, highlighting where the
RF model gained the most information. In this case, a transit shape statistic, the signal-to-noise
ratio and the transit depth were identified as key features. Jayasinghe et al. (2018) used a
random forest approach to generate the ASAS-SN variable star catalogue. To classify variable
stars, the authors used variability features such as period, amplitude and Fourier information in
addition to stellar parameters.

2.3.1.3 Neural networks and deep learning

Deep learning is a branch of machine learning based on algorithms that attempt to model high-
level abstractions in data using multiple processing layers, with a complex structure composed
of multiple non-linear transformations. Figure 2.11 shows a neural network composed of 3
layers: one input, one hidden and one output; in this example, 4 inputs provide one outcome.

Many network architectures exist and are often application dependent. Common to all neural
networks is a graph of connected nodes, where each node applies a non-linear transformation to



2.3. Machine learning for automatic detection and classification 55

Figure 2.11: A cartoon of a neural network diagram with a single hidden layer. The hidden
layer derives transformations of the inputs (non-linear transformations of linear combinations),
which are then used to model the output. Credit: Efron & Hastie (2016).

the input, which is a linear combination of previous outputs. The non-linear transformation is
known as an activation function and can take many forms, most commonly a sigmoid function,
a hyperbolic tangent or a ReLU function of the form q(Ii) = max(0, Ii)f.

The training of a neural network is conducted by optimising the weight and/or bias para-
meters which combine a layer into inputs for the next layer. The general form for layer : would
be:

G
(:+1)
i ≡ H (:)i = q(wi · x (:) + 1i) = q(I (:)i ) (2.25)

where wi is a vector of weights and 1i is a vector of biases to be optimised.
These parameters are optimised subject to the training data and a cost/loss function using a

technique known as Error Backpropagation (Rumelhart et al. 1986). Backpropagation enables
the calculation of the gradient of the cost function with respect to the weights and iteratively
descends upon the optimum network weights. The exact architecture of a neural network will
alter the input data and task to which a network is best suited. For example, convolution
neural networks (CNN) use a series of convolution layers to retain local spatial structure

fThere are many excellent introductions to the pros and cons of NN activation functions, such as https:
//www.v7labs.com/blog/neural-networks-activation-functions (accessed: 22/01/2022).

https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
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within image data by convolving nearby points and pooling the output. For time-series data,
such as natural language processing tasks, a recurrent neural network (RNN) architecture
may be more appropriate. Such networks contain a casual memory encoding through history
vectors, such that the previous set of inputs alters the output of a given layer. Networks such
as autoencoder networks can be used to reduce dimensionality. Encoding and subsequently
decoding an input vector can often find a lower-dimensional representation of the input, which
encodes all of the information necessary to decode the vector accurately. It is important to
ensure your network architecture is optimised for the task when utilising deep learning methods.
This architecture optimisation is an open topic of research for machine learning experts. Most
applications choose the architecture that best fits their data set, tested against a few alternatives.

Neural networks have been applied successfully to photometric light curves, most promin-
ently CNNs in the astronet series of papers for exoplanet discovery (Shallue & Vanderburg
2018; Ansdell et al. 2018; Dattilo et al. 2019; Osborn et al. 2020). The use of neural networks
within this context affords two benefits: firstly, discovering new planets not previously seen
by manual eyeballing such as Kepler-80g and Kepler-90i (Shallue & Vanderburg 2018) and
secondly, reducing manual eyeballing time required to identify planet transits. With the addi-
tion of scientific domain knowledge, the ML model can perform considerably better (Ansdell
et al. 2018), and this state-of-the-art NN model has been applied successfully to TESS data
more recently (Osborn et al. 2020). A CNN-based approach has been applied to the transit
identification stage of NGTS (Chaushev et al. 2019) and currently operates as a vetting stage of
the NGTS transit detection pipeline.

2.3.2 Unsupervised learning

Unsupervised learning algorithms rely solely on the data; there is no training data set as
with supervised learning algorithms. The algorithm must decide for itself what the outputs
are. Examples of unsupervised machine learning applications are cluster detection, anomaly
detection and expectation maximisation; some specific examples are discussed below.

2.3.2.1 k-means clustering

k-means clustering partitions the data into : clusters such that each point belongs to the cluster
with the nearest mean (or centroid). It is an extremely simple algorithm to implement; however,
it is non-trivial to solve computationally. It also relies on a fixed number of means as an input
parameter. However, given considerable computing resources, it is possible to determine this
number by calculating how well points lie within clusters for different values of : , such as
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with a ‘silhouette’ score (Rousseeuw 1987) which compares how well points lie within their
allocated cluster compared to nearby clusters.

2.3.2.2 Density-based clustering

A problem with simple clustering algorithms like k-means is that loosely related observations
may be clustered together based on the nearest centroid. The problem can be alleviated by
considering the spatial distribution of observations and the density of observations; a cluster
in data space can be thought of as a contiguous region of high density, separated from other
clusters by a contiguous region of low density. The use of data density as an additional metric
is the principle upon which the Density-Based Spatial Clustering of Applications with Noise
algorithm (DBSCAN, Ester et al. 1996) is derived.

DBSCAN requires two parameters: n and MinPoints. n defines the radius of a hypersphere
centred at each point in which the density should be considered, and MinPoints defines the
minimum number of data points within that sphere for that data point to be considered a core
point. Points are separated into three classes: core, border and noise. Border data points have
fewer than MinPoints nearby, and noise data points have no nearby data points. A cluster is
defined as a group of points that are ‘density-connected’; two points are density-connected if
there exists a core point that is density-reachable (connected via a series of core points) from
both points. Every core point will be assigned to a new cluster unless they share the space with
other core points, in which case they will be clustered together.

These simple rules and parameters generate excellent density-based clustering maps of
complex data sets, such as those demonstrated in Figure 2.12. DBSCAN is extremely sensitive
to the values of the parameters n and MinPoints, and more sophisticated algorithms such as
HDBSCAN (Hierarchical DBSCAN, Campello et al. 2013) seek to solve this problem by
heuristically assessing the density distribution of the data points to ascertain optimal thresholds
for cluster separation.

DBSCAN has been shown to effectively cluster real-world data, with applications in gene
clustering (Edla & Jana 2012), anti-money laundering transaction detection (Yang et al. 2014)
and astrophysics (Kounkel & Covey 2019; Kounkel et al. 2020; Cánovas et al. 2019; Hunt &
Reffert 2021).

2.3.2.3 Self-organising maps

A self-organising map (SOM)/ Kohonen Map (Kohonen 2001) is an unsupervised neural
network. The algorithm maps high dimensional data into a low dimensional feature space. It
calculates the shortest distance in this space from a point to a feature to classify or cluster the
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Figure 2.12: A comparison of the results of DBSCAN and k-means clustering algorithms
on a variety of toy data sets. Credit: https://github.com/NSHipster/DBSCAN. Accessed:
22/01/2022.

data. It is often useful to consider this Kohonen layer as a 2d grid of pixels. Each new data
point encountered is projected onto this layer and added to the closest pixel (for example, by
calculating Euclidian distance). SOMs have been employed successfully in transit detection;
Armstrong et al. (2016) demonstrated the use of SOMs in conjunction with RFs to classify
variable stars.

2.3.3 Probabilistic models

Machine learning algorithms may be used to fit probabilistic models to data. These can be
either supervised or unsupervised for classification or regression. A commonly used model
within astrophysics is the Gaussian process model (Section 2.2.6), which can be used to create
well-defined probabilistic predictions and interpolations of data sets. It is often impossible to
directly infer values with such complex probabilistic models, so approximation methods must
be used. One such way of approximating complex distributions is to sample the distribution
randomly and build up an approximation to the distribution from these samples. Generating a
set of independent draws from a distribution is known as Monte Carlo sampling. With small
changes to the assumptions made on each draw, it is possible to improve the performance of
Monte Carlo sampling.

2.3.4 Markov models

The Markov assumption is that a model state relies solely on the previous state of the model.
The simplest Markov model is a Markov Chain, which models a random variable changing
through time and uses the Markov property to stipulate that the distribution for this variable
depends only on the distribution of the previous state. Applying the Markov assumption to

https://github.com/NSHipster/DBSCAN
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Monte Carlo sampling allows for efficient random sampling of high-dimension probability
distributions; Markov Chain Monte Carlo (MCMC) samplers draw from a distribution where
each draw depends solely on the value of the previous sample. Several different algorithms
exist to calculate draws from a given distribution, the mathematical details of which are beyond
the scope of this introduction. Broadly, these algorithms will generate samples of a calculable
function proportional to the distribution of interest. The distribution of samples should more
closely approximate the distribution of interest over time. In the case of the Metropolis-
Hastings algorithm (Hastings 1970), this is done by accepting or rejecting each new sample
based on dynamically calculated acceptance criteria. For a new sample, drawn randomly from
a distribution about the previous sample, the probability of acceptance of the new sample is
decided based on the posterior value at this new value. If the new proposal has a higher posterior
value than the previous sample, the new sample is accepted. If the new proposal has a lower
posterior value than the previous sample, the new sample is accepted with a probability equal
to the ratio of the posterior value at the previous sample and the proposal. This algorithm is
repeated until enough samples have been generated; the number of samples deemed ‘enough’
will depend on how fast the chain converges. For a well-formed, single-peaked distribution with
good initial parameter estimates, MCMC can generate a good approximation rapidly. However,
in the case of more complex distributions or poor initial estimates, the random nature of the
MCMC sampling can mean the chain takes many steps or even fails to converge. Care should
be taken when using MCMC samplers to ensure that the chains are well-formed and appear to
converge sensibly. MCMC samplers are used frequently within computational astrophysics to
optimise model fits such as Gaussian processes.g

gOne popular package is emcee, an efficient Python basedMCMC implementation widely used within exoplanet
research (Foreman-Mackey et al. 2013) and used extensively in Chapter 6 of this thesis.
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The Next Generation Transit Survey
(NGTS)

As outlined in Wheatley et al. (2013), the primary science goal of NGTS is to extend the
wide-field ground-based detection of transiting exoplanets to at least the Neptune size range,
particularly for stars that are sufficiently bright for radial velocity confirmation and mass
determination. The purpose of this is to better populate the exoplanet mass–radius space with
information on density and bulk composition with planets which are suitable candidates for
atmospheric structure and composition follow-up. An important secondary scientific goal of
NGTS is for efficient ground-based follow-up of candidates identified in space-based transit
surveys. NGTS has a finer pixel scale than space telescopes such as TESS (Ricker et al. 2014)
and the future PLATO mission (Rauer et al. 2014), which allows resolution of blended sources,
detection of single transit events and ephemerides refinement of systems suitable for observation
with future telescopes such as JWST (Gardner et al. 2006).

The science goals of NGTS have altered since its inception, even throughout my PhD.
Working groups with different scientific goals now use NGTS data for more than just exoplanet
detection and characterisation. Theseworking groups include the traditional candidate selection
and follow-up group, as well as groups targeting:

• bright star observations;
• faint star observations;
• open cluster observations;
• M dwarf observations;
• monotransit detection;

61
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Figure 3.1: This nighttime long-exposure view shows the NGTS telescopes during testing. The
brilliant Moon appears in the centre of the picture, and the VISTA (right) and VLT (left) domes
can also be seen on the horizon. (Credit: ESO / G.Lambert).

• TESS collaboration and follow-up;
• photometric precision and
• citizen science projects.

These working groups have produced a plethora of different science in addition to the 18 and
rising confirmed new planet detections: The detection of giant quasi-periodic flare signals
on M-dwarf stars (Jackman et al. 2019a), confirmation of single transit candidates detected
with TESS (Gill et al. 2020), eclipsing M-dwarf systems close to the hydrogen-burning limit
(Acton et al. 2020), rotation within the Blanco 1 open cluster (Gillen et al. 2020), nanoflare
signatures on flaring stars (Dillon et al. 2020) and long-period modulation of accreting white
dwarf stars (Chote et al. 2021). The use of high-cadence, high-precision photometry from
NGTS for astrophysical analysis outside of transiting planet detection is a driving force behind
the scientific goals of this thesis.

3.1 Design

The design of NGTS was motivated by the consortium’s primary science goal. Based on
previous ground-based surveys, most transiting planets identified have around a 1 per cent
transit depth and a few with significantly shallower transits. Follow-up observations can often
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achieve considerably better than this, up to sub-mmag precision (for example, the <0.1 per
cent depth transits of WASP-5 (Southworth et al. 2009) and WASP-52b (Kirk et al. 2016)) and
secondary eclipses of hot Jupiters with 0.1 per cent depths, for example, OGLE-TR-56b (Sing
& López-Morales 2009) and WASP-19b (Burton et al. 2012).

A transit depth of 0.1 per cent would correspond to detections of super-Earths around early
M dwarfs. The target stars must be sufficiently bright for follow-up radial velocity confirmation
and mass determination. This brightness threshold was set based on the visual magnitude
thresholds of HARPS (Mayor et al. 2003) and ESPRESSO (Pepe et al. 2021) at around 13 and
15, respectively.

Yield simulations have shown that to detect a sample of tens of small planets, an instrument
with an instantaneous field of view (FoV) of around 100 deg2 is required for a survey lasting
a few years (Günther et al. 2017; Wheatley et al. 2013). It was decided that the large field
of view should be built up from an array of individual telescopes, as a single telescope with
such a large FoV would be subject to large atmospheric refraction effects. A further advantage
of the telescope array is that efficient follow-up observations of multiple candidates can be
carried out simultaneously. Alternatively, it is possible to maximise the collecting area and
photometric precision by pointing all the telescopes at the same target. Bryant et al. (2020b)
achieved a photometric precision of 152 ppm per 30 minutes for the bright (T-band magnitude
8.87) star WASP-166 using nine NGTS telescopes simultaneously, matching the precision of
simultaneous TESS observations of the transit event.

The NGTS I filter has been designed with a bandpass of 520–890 nm, providing good
sensitivity to late K and early M dwarfs. The red cutoff of the filter will minimise variations
in the atmospheric extinction caused by strong water absorption bands beyond 900 nm, which
are highly variable, even at Paranal, as shown by Noll et al. (2012). This cutoff ensures that the
effective bandpass of NGTS is defined primarily by the instrument and not by the sky.

3.1.1 Data management

The NGTS data is stored in 4 MySQL databases: operations, data tracking, data reduction
and candidate tracking. The operations database contains useful observation metadata such as
current time, pointing, focus, autoguiding statistics and environmental data such as weather and
the positions of the Sun and Moon. A subset of this data forms the FITS image headers.

The NGTS telescopes generate around 200 GB of image data per night. This data must be
transferred to the University of Warwick, UK. The data is first compressed and then stored on
2 TB hard drives, and shipped to Warwick fortnightly. This data is stored on the NGTS cluster
in Warwick and on a backup server in Cambridge. A database-driven tracking system jointly
manages the servers in Paranal and Warwick to ensure no data is lost during this transfer.
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Figure 3.2: This image shows the NGTS enclosure during the day at the ESO Paranal Obser-
vatory in Northern Chile. The VISTA (right) and VLT (left) domes can also be seen on the
horizon. (Credit: ESO/R. Wesson).

Figure 3.3: Most of the 20-centimetre telescopes that form the survey system are shown in this
picture, which was taken during testing. (Credit: ESO/R. West).
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The raw photometry and data reduction pipeline outputs (see section 3.3) are stored in the
pipeline database in Warwick. The candidate database is used to store measured exoplanet
candidate properties, external exoplanet catalogue data and summary statistics.

3.2 Operations

NGTS operates completely robotically aside from the human go/no-go decision each night.
Once the enclosure roof has opened, flat-field images are taken, followed by an analysis of the
optimum focus point for each telescope. Science data is taken when the sun is below −15◦.
Each telescope will operate in either survey or follow-up mode during the night.

Survey Mode The telescope will observe a sequence of survey fields. For baseline surveys,
these fields are spaced such that one field rises above 30° as the previous field sets below
30°. Each telescope will typically observe two fields per night, resulting in around 500
h coverage per field spread over 250 nights.

Follow-up Mode The telescope will target a particular star, placed in the centre of the field to
minimise differential atmospheric refraction effects.

For both modes, the default is to observe in focus, with a 10-second exposure time. A few
special observation programmes exist beyond these two modes, particularly relevant for open
clusters. I took the data used in Chapter 6 from cluster field observations, in which a single
telescope was centred on a known open cluster.

3.2.1 Field selection

Fields are selected based on the density of stars, the proportion of dwarf stars, the ecliptic
latitude and proximity to any bright or extended objects. Fields are typically selected with ≤
15,000 stars brighter than an � band magnitude of 16, of which ≥ 70% are dwarf stars. These
fields will be more than 20° from the Galactic plane. Fields within 30° of the ecliptic plane are
also avoided due to the Moon affecting readings during about three nights per month.

3.3 Data reduction and analysis

The NGTS data reduction pipeline is a custom-built, modular program run at the University of
Warwick. A catalogue of target stars is generated, the night’s science images are bias-corrected
and flat-fielded, astrometric solutions are found, and photometric measurements are made. I
will discuss each of these steps within the next sections. Once the data for a field have been
reduced and photometric measurements made per science image, a light curve is assembled
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per target star. This light curve is then detrended for red noise sources, and an exoplanet
transit search is conducted. These detections are vetted, and the best candidates are selected for
follow-up with further photometric and additional spectroscopic observations.

3.3.1 Catalogue generation

Source detection is done using the imcore module in CASUTOOLS (Irwin et al. 2004) to
generate an object list that is cross-matched against other catalogues. NGTS generates its own
input source catalogue, as explained in Section 5 of Wheatley et al. (2018). For pipeline runs
before 2021 (including the data used in Chapter 5), the pipeline used this internally generated
catalogue to generate light curves, with any catalogue cross-matching done post-pipeline. For
more recent runs, including the data used in Chapter 6, this source catalogue is cross-matched
against several external catalogues, including the Tess Input Catalogue (TICv8) and some
consortium curated special target catalogues, including clusters, WDs and other astrophysical
objects of interest. In both cases, cross-matching is done in position, colour and separation
to limit spurious matches. Separation cross-matching allows flagging of potential unresolved
binaries in NGTS apertures.

3.3.2 Astrometry

A full astrometric solution is required for each image to account for the stretching of the
field resulting from atmospheric refraction and field rotation due to imperfect polar alignment.
Individual images are solved for translation, rotation, skews and scales using thewcsfit program
from the casutools software suite (Irwin et al. 2004). The 2-MASS catalogue is used for
reference, with an initial estimated astrometric solution taken from astrometry.net (Lang et al.
2010).

3.3.3 Photometry

Photometric measurements are made using aperture photometry with the casutools im-
core_list program (Irwin et al. 2004). For each star in the input catalogue, a soft-edged
circular aperture of radial 3 pixels (15 arcsec) is placed using the per-image astrometric solu-
tions.

3.3.4 Light curve detrending

Light curve detrending is done with a custom implementation of the SysRem algorithm (Tamuz
et al. 2005), based on the version used by theWASP project (Cameron et al. 2006). SysRemwill
remove signals common to multiple stars and is amplitude independent. A mean light curve is
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calculated and used to correct first-order offsets seen in all the stars observed. SysRem does not
completely remove systematic signals correlated with theMoon phase and sidereal time as these
can have different shapes for different stars. Moon phase correlated signals generally arise from
imperfect sky subtraction or low-level non-linearity of the detectors. Signals correlated with
sidereal time can arise from airmass changes affecting sub-pixel movements of stars caused by
differential atmospheric refraction. Alternatively, such systematics could arise from imperfect
flat-fielding or sub-pixel sensitivity variations. The sky background is estimated using bilinear
interpolation of a grid of 64 × 64 pixel regions for which the sky level is determined using a
k-sigma clipped median. Significant periodic signals (which could arise from stellar variation,
for example) are identified and removed from the light curves if they do not appear to have a
transit shape by subtracting the calculatedmean in the phase-folded light curve. This detrending
step has been proven to increase transit detection efficiency by 10–30% (Wheatley et al. 2018);
however, in this thesis, I elect to use the light curves before this detrending step to retain any
significant stellar variability signals.

TheNGTS pipeline provides flags per image and per timestamp per object light curve, which
I use to pre-process light curves for variability analysis. These flags alert us to bad-quality data
points due to pixel saturation, blooming spikes from nearby bright sources, cosmics and other
crossing events (including weather and laser guide stars) and any sky background changes.

3.3.5 Transit detection

Detrended light curves are searched for transit-like signatures using a Box-Least-Squares (BLS)
algorithm, a standard algorithm for basic transit detection. NGTS uses a custom code, orion,
based on the code used by Cameron et al. (2006) for the SuperWASP survey. orion has several
improvements to the Cameron et al. code, namely the fitting of boxes of multiple widths to
allow detection of planets in inclined orbits. orion can combine data from multiple cameras,
fields and observing seasons; it also incorporates the Trend Filtering Algorithm from Kovács
et al. (2005), which is used to correct systematics arising from common instrumental effects
and data reduction anomalies.

Some transit detection pipeline steps are automated to reduce the dependence on manual
inspection or ‘eyeballing’ of sources. A box-least-squares (BLS) periodogram is calculated for
each light curve, and a transit model is fitted to significant peaks. Stellar parameters are taken
from external catalogues such as Gaia DR2 (Gaia Collaboration et al. 2018c) and the Tess Input
Catalogue (Stassun et al. 2019), and a spectral energy distribution (SED) model is fitted where
cross-matching is unavailable. Following the work of Chaushev et al. (2019), a CNN model
takes the stellar parameters, transit model fit and additional data on the transit and light curve
and ranks candidates based on their likelihood of being a transiting exoplanet.
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The Generalised Autocorrelation
Function (G-ACF)

This chapter is based on the paperG-ACF:A generalised autocorrelation function for irregularly
sampled time series (Kreutzer et al. submitteda). I will outline the development of the algorithm
and in particular the implementation and testing of the algorithm conducted in 2018. This
includes the development of a C++ and Python based implementation available via GitHubb and
PyPIc. The paper’s lead author, Lars Kreutzer, was a maths student working in the department
and, with the input of Edward Gillen and Didier Queloz, created the initial mathematical
definitions of the G-ACF. During the first year of my PhD, I worked with Ed, Didier and Lars
to implement the G-ACF in C++ and Python which involved parameter optimisation, functional
form decisions and the formalising of the G-ACF into a scientific paper. My main contribution
to this work is implementing and testing the functional forms and parameters used by the
G-ACF on both synthetic data and real data from the Kepler mission. Additionally, I was
heavily involved in the writing of the G-ACF paper. In particular, I conducted an extensive
literature review which I have included as a part of the introduction and motivation for this
Chapter. Where I describe work completed solely by me, I will use “I”, and where the work
was completed by others or as a joint effort I will use “we”.

I will present the generalised autocorrelation function, G-ACF, an extended and generalised
aSubmitted to MNRAS Feb 2022. Received a referee report March 2022 which was generally positive but

recommended moderate revisions.
bhttps://github.com/joshbriegal/gacf. Accessed: 22/01/2022.
chttps://pypi.org/project/gacf/. Accessed: 22/01/2022.

69

https://github.com/joshbriegal/gacf
https://pypi.org/project/gacf/


70 Chapter 4. The Generalised Autocorrelation Function (G-ACF)

version of the standard autocorrelation function (ACF). G-ACF is a versatile definition that
can robustly and efficiently extract periodicity and signal shape information from a time series,
essentially independent of both the time sampling and underlying process. Calculating the
autocorrelation of irregularly sampled time series becomes possible by generalising the lag of
the autocorrelation function to a real parameter and introducing the notion of selection and
weight functions. We showed that the G-ACF reduces to the standard ACF in the case of
regularly sampled time series. We demonstrated the application of the G-ACF to astrophysical
data by extracting rotation periods for KIC 5110407, which agree with periods obtained through
other methods. The G-ACF has a wide range of potential applications and will be useful in
quantitative science disciplines where irregularly sampled time series occur.

4.1 Background

The motivation behind developing a generalisation of the ACF lies in a broader context than
just astrophysics. Time series are ubiquitous throughout the experimental sciences, and their
analysis plays a central role in research. Fundamentally, they give insight into the temporal
evolution of systems and their underlying processes. As we have seen already in this thesis, time
series within astrophysics have been instrumental in our understanding of stellar and planetary
systems: stellar light and radial velocity curves yield information about the temporal evolution
of processes on the stellar surface, from the longitudinal inhomogeneity of starspot distributions
and magnetic field mechanisms to the presence of orbiting bodies and material.

I have already introduced several periodicity detection techniques, focusing on either Fourier
decomposition (for regularly sampled data) or fitting sinusoidal models (for irregularly sampled
data). An example of the former is the Fast Fourier Transform (FFT; Cooley et al. 1969), and
examples of the latter are the standard, modified and Bayesian Lomb–Scargle periodograms
(Lomb 1976; Scargle 1982; Zechmeister & Kürster 2009; Mortier et al. 2015). While the
Lomb–Scargle method can be used for arbitrary samplings, the accuracy of the estimated
periods can be limited for quasi-periodic processes and evolving periodic signals due to the
inherent assumption that the process is well-described by a pure sine wave of a fixed period.
Similar issues affect methods based on phase folding and then minimising the variance or
entropy of the data, such as Phase Dispersion Minimisation (PDM), as they also rely on strict
periodicity and negligible phase evolution (e.g., Stellingwerf 1978; Graham et al. 2013a,b).
More recently, flexible machine learning methods such as Gaussian processes, applicable to
both regular and irregular time series, have been used to describe quasi-periodic variations in
stellar light curves (e.g., Angus et al. 2018).

The above approaches share the same basic principle: they all fit a model to the data to
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determine whether periodicity is present. The concept of autocorrelation, i.e. correlating the
data with itself, is a distinct ‘model-free’ approach that uses only the time series data to extract
periodicity (e.g., Shumway & Stoffer 2017). The autocorrelation function (ACF) is a powerful
definition and a reliable method to obtain information from any regularly sampled time series.
It can capture both strictly periodic and quasi-periodic processes. It has been widely used
on space-based photometric data given the regular sampling available (e.g., McQuillan et al.
2013, 2014), as well as on solar data (Morris et al. 2019) for the same reason. However,
the requirement of the ACF for regularly sampled data can be a limiting factor in its broader
application, e.g., for ground-based photometric data.

Previous studies have attempted to address this problem by generalising the ACF to irreg-
ularly sampled data. Several of these methods create an approximately regularly sampled time
series to apply the standard autocorrelation function, enhanced with rules on which terms to
discard in the series. The method proposed in Lukatskaia (1975) assumes that the irregular
sampling arises from missing data points in a regularly sampled series and further assumes
that the statistical properties of the missing data are the same as the observed data. Therefore,
it is possible to calculate a standard autocorrelation using only data points that fall onto this
regular sampling, with the caveat that the time series must be much longer than the variability
period of the signal of interest. The method from Andronov & Chinarova (2005) interpolates
onto a regular sampling grid using a smoothing function. These methods can work well if the
sampling is almost regular and only a subset of values are missing from a regularly sampled
time series. As proposed in Edelson & Krolik (1988), The Discrete Autocorrelation Function
relies on binning values in time intervals to account for missing overlaps. A similar method
was also proposed in Mayo, Jr. et al. (1974) for laser velocimeter research.

As an extension of the binning proposed by Edelson & Krolik (1988) and drawing from the
available kernel-based methods proposed by Hall et al. (1994), Stoica & Sandgren (2006) and
Bjørnstad & Falck (2001) both use a kernel to weight the product of observations according to
the difference between the observation interval and the desired lag bin centre. This technique
is also known as ‘fuzzy slotting’. The kernels proposed are smooth density functions that
tend to zero as lag increases or decreases from the desired lag subject to a characteristic width
parameter. Stoica & Sandgren (2006) propose a sinc function, demonstrating the efficacy
of this weighting on examples from over-the-internet temperature data, pulsar time-of-arrival
measurements and ice core CO2 measurements. Bjørnstad & Falck (2001) use a Gaussian
kernel in the context of estimating a spatial autocorrelation for sparse ecological population
data. A comparison of correlation-analysis techniques for irregularly sampled time series
(linear interpolation, Lomb–Scargle periodogram, correlation slotting and several kernel-based
methods), in a geoscientific context, can be found in Rehfeld et al. (2011). These authors find
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that while all methods investigated lead to consistent results for time series with a relatively
constant sampling density, the kernel-based methods perform better for highly irregular time
series.

Related to the problem of finding the ACF of irregularly sampled time series is the problem
of finding the power spectral density (PSD); the Fourier transform of the power spectrum of a
(stochastic) time series is equivalent to the ACF (see, e.g., Scargle 1989; Merrifield &McHardy
1994).

I will present a different generalisation of the standard autocorrelation function (ACF),
named the generalised autocorrelation function, or G-ACF. The G-ACF is an extended and
generalised version of the ACF, which applies to both regularly and irregularly sampled time
series without making any assumptions about the time sampling or the statistical properties of
the data. In particular, there are no assumptions about regularity in the time series sampling.

4.2 Basic definitions

I will outline the notation and wording used in Kreutzer et al. submitted to describe time series
and autocorrelations.

4.2.1 Time series

A time-series -I(C) can be defined to be a finite ordered set

-I(C) := {(-i, Ci) ∈ R × R+ |8 ∈ � ⊂ N, (C8+1 − Ci) > 0 ∀8 ∈ �} (4.1)

with � ⊂ N being a finite index set, which we can choose to be � = {0, 1, 2, . . . , 8max}. The set
)I := {Ci |8 ∈ �} is the set of time labels and the set -I := {-i |8 ∈ �} the set of time series values.
In the case of a photometric light curve, the time labels would be the Julian-day time series and
the time series values the flux.

It can be useful to think of a time series -I(C) as a discrete sampling of a continuous process
- (C); the notation -i = - (Ci) will be used. Hence, in this definition, I define a time series to be
regularly sampled if there exists a sampling constant ΔC > 0, such that Ck = C0 + : ·ΔC ∀: ∈ �,
else we call the time series irregularly sampled.

4.2.2 Autocorrelation function (ACF)

We have already seen (in Section 2.2.3) one definition of an autocorrelation function, outlined in
Equations 2.9 and 2.10. From these definitions, it is clear that theACF can only be applied in this
form to regularly sampled time series with a discrete set of a lag values : ∈ {0,ΔC, . . . ,ΔC ·8max}.
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Previous efforts have been made to apply the ACF to irregularly sampled data, often employing
methods that approximate a regularly sampled time series by imputing missing values to apply
the standard ACF. These methods work well for ‘near-regular’ sampling, where only a few
missing values from a regularly sampled time series must be imputed. The accuracy of such
efforts will depend on the length of the gaps or irregularities in the time series sampling
compared to the scale of structures in the signal. Suppose the time series has large temporal
gaps compared to the scale of the underlying process. In that case, it will be very difficult to
restore the missing information using interpolation or regression.

The G-ACF was developed to obtain information from arbitrary time series, regardless of
their sampling. As the ACF is already applicable to any regularly sampled time series, this
provided an excellent formulation to generalise.

4.3 The Algorithm

4.3.1 Definition

To generalise the ACF on to arbitrarily sampled time series, we introduced two functions: the
selection function (̂ and the weight function ,̂ , as well as generalising the notion of the lag, : ,
to a generalised lag, :̂ ∈ [0 , (max()I) −min()I))].

The generalised autocorrelation function can then be defined, for a time series of any
sampling, to be the function d̂( :̂; ,̂, (̂) which, restricted to the generalised lag :̂ , is a function
of the form

d̂( :̂) : [0, (max()I) −min()I))] → [−1, 1] . (4.2)

A possible generalised definition is given by

d̂

(
:̂; ,̂, (̂

)
:=

1
#

∑
8∈�

Ci+:̂≤max()I)

[
(- (Ci) − 〈-I〉) ×

(
- ((̂(Ci + :̂)) − 〈-I〉

)

× ,̂
(���(̂ (

Ci + :̂
)
−

(
Ci + :̂

)���) ]
. (4.3)

Here # :=
∑
8∈�
(-i − 〈-I〉)2 denotes the total sum of squares and 〈-I〉 is the mean of the time

series values set. The general form of the G-ACF is very similar to that of the ACF (Equation
2.10). The G-ACF differs from the ACF by explicitly including the selection function in the
second factor, the restriction on the sum, the generalised lag and an additional third factor given
by the weight function. I will discuss in more detail the three new components: the generalised
lag :̂ and the selection and weight functions.
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4.3.2 The generalised lag :̂

As shown in Equation 4.3, the generalised lag :̂ ∈ [0 , (max()I) −min()I))] can now take any
value within an interval in time instead of solely integer values based on fixed regular sampling.

Even though the G-ACF is a well-defined function for any lag, it cannot contain meaningful
information at a higher resolution than the time series itself. So it would be sensible to set the
time-resolution of the generalised lag to values no smaller than the minimal difference between
two neighbouring time labels X:̂ ≥ min(Ci − C8+1) for {Ci, C8+1} ∈ )I. I use this default value
when calculating the G-ACF of light curves throughout this thesis.

The condition Ci + :̂ ≤ max()I) on the sum is the generalisation of the upper limit 8max − :
of the sum in the ACF definition (Equation 2.10). The bound on the (generalised) lag enforces
again that the maximum shifting of the process along itself is equal to the temporal length of
the time series and thus when the first time label is matched up with the last time label.

4.3.3 The selection function (̂

The selection function is an integral part of the G-ACF definition (Equation 4.3): it deals with
the irregular sampling issue at the core of the motivation behind this generalisation. A selection
function (̂ is defined to be a function (̂ : R+ → )I that projects an arbitrary point in time onto
the set of available time labels, thus selecting a specific time label for each point in time.
There are many sensible functions that one could choose to accomplish this; however, a natural
selection function is the one that, for each point in time, selects the closest allowed time label
(see Figure 4.1 for an illustration of this function). Suppose two time labels are equally close
to the argument. In that case, one can employ the convention of always choosing the smaller or
larger value or randomising the decision in any practical application of the G-ACF.

A possible alternative definition of the selection function would be to find the closest time
label for the first shifted time label and then pair up all subsequent labels instead of finding
the closest time label for each shifted label individually. While this definition reduces the
computational complexity, on testing, it did not produce as accurate a reconstruction of the
standard ACF as taking the closest time label for each particular time label when tested on
synthetic time series.

4.3.4 The weight function ,̂

We define a weight function ,̂ to be a function ,̂ : [0,∞) → [0, 1] with ,̂ (0) ≡ 1. An
interpretation of the weight function is as a function that assigns time differences XC ≥ 0 a
weight within the interval [0, 1]. From Equation 4.3, we see that the weight function is used to
assign a weight to the difference between the argument and the value of the selection function
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Figure 4.1: Each graphic (a) to (e) shows a set of time labels on the real axis and below them
the same set of time labels shifted by a real generalised lag :̂ . The red lines indicate how the
selection function (̂ matches the shifted time labels to the original set of time labels above by
choosing the closest time label from the set of time labels )I. The generalised lag increases
from panel (a) to (e), corresponding to the lower labels ‘shifting’ to the right.
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and can be considered to quantify the quality of the ‘selection’. Every fixed point of the selection
function (̂

(
Ci + :̂

)
= Ci + :̂ , such as in the case of regular sampling, will therefore lead to a term

in the G-ACF with weight equal to one because of the requirement that ,̂ (0) ≡ 1.
There are many choices for possible weight functions. However, the condition ,̂ (0) ≡ 1

must be observed since this is an important property in order to ensure the G-ACF is identical to
the ACF for regular sampling. It would be natural for the weight function to be a monotonically
decreasing function tending towards zero. This functional form reflects the interpretation that
terms that involve time series values at similar points in time should be preferred. There are
infinitely many such functions, including an exponential function or one half of a Gaussian
distribution, both of which I tested on synthetic and real data. The effect of the exact shape
of the weight function is not crucial to the overall shape of the ACF, provided it fits the above
criteria. We propose a rational weight function such as

,̂ (XC) = 1
1 + UXC , U > 0, XC ≥ 0 (4.4)

where U is the characteristic scale parameter of the time series labels, e.g., one may choose
U = 1/〈)I〉. The XC represents a generic time difference and should not be interpreted as a
sampling constant. In testing, I also considered a half-Gaussian weight function of the form:

,̂ (XC) = exp
(
− XC

2

2U2

)
, U > 0, XC ≥ 0. (4.5)

The G-ACF will depend on the scale of the time labels since we are free to re-scale time
labels arbitrarily, but the correlation between the different points in time of a process should
not depend on the overall time scale. The scale parameter U cancels out any re-scaling of
the time labels since it will re-scale inversely. Equation 4.4, the rational weight function, is a
simple continuous weight function that fits the above criteria and is also efficient for explicit
calculations. I use the rational weight function as the default weight function for the remainder
of this work.

A different weight function we considered was a function which satisfies ,̂ (0) = 1 but is
zero in all other cases, thus discarding all terms that do not havematching shifted time labels and
hence eliminating the selection function from the definition. However, in the case of irregularly
sampled time series, this choice of weight function is likely to eliminate the majority of the
terms contributing to the G-ACF for a given lag, including almost matching terms, which would
not be considered at all. The method proposed in Lukatskaia (1975) assumes that the irregular
sampling arises from missing data points in a regularly sampled series and further assumes that
the statistical properties of the missing data are the same as the observed data. Therefore, it is
possible to calculate a standard autocorrelation using only data points that fall onto this regular
sampling, with the caveat that the time series must be much longer than the variability period
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of the signal of interest. This method would be best suited for the case of an almost regular
sampling where a small percentage of values are missing from an otherwise regularly sampled
time series. In this case, most terms in the autocorrelation function will match when the lag
corresponds to an integer multiple of the ‘regular’ sampling constant. Only a few terms without
a matching time label would be discarded.

4.3.5 Reduction of the G-ACF to the ACF for regularly sampled time series

From the definition of the G-ACF (Equation 4.3), the selection function (Section 4.3.3), and
the property ,̂ (0) ≡ 1 of the weight function, Lars Kreutzer was able to derive a consistency
property of the G-ACF for the case of regularly sampled time series. The G-ACF reduces to the
ACF for regularly sampled time series when restricting the generalised lag to multiples of the
sampling constant. A full proof and detailed explanation of this property are given in Appendix
A of Kreutzer et al. submitted. This reduction to the ACF is one of the core requirements of the
generalisation and ensures that the G-ACF and the ACF are equivalent for regularly sampled
time series. This requirement motivated some of the restrictions imposed on the selection and
the weight functions.

Appendix B of Kreutzer et al. submitted demonstrates that the G-ACF predicts a perfect
correlation for a zero time shift. This is a trivial result of the ACF, but it is necessary to
demonstrate that if d(0) = 1 for the ACF, d̂(0) = 1 should also hold for the G-ACF.

4.4 Implementation and testing

4.4.1 Building the code base

The Python implementation used in this work is available open-source under the MIT license
on GitHub.d It can be installed through PyPI using the command: pip install gacf. It was
developed to allow testing of the G-ACF algorithm on both synthetic and real astrophysical
data, with the requirement that it calculates the G-ACF of a time series both accurately and
quickly.

The core algorithm, including the selection and weight functions, is written in C++ as this
provides a considerable speedup over the more commonly used Python through more precise
memory management and lower overheads at runtime as it is a compiled, not interpreted
language. In order to provide an easy to use package, the C++ code has a Pythonwrapper, which
is called similarly to the astropy Lomb–Scargle implementation (Robitaille et al. 2013).

dwww.github.com/joshbriegal/gacf

www.github.com/joshbriegal/gacf
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The most computationally expensive aspect of the G-ACF is the selection function: for
each lag time step, the closest point to each point in the lagged time series must be selected.
Naïvely, this is at worst an O(=2) operation as each of the = points in the time series will require
an O(=) lookup to be performed. As the lag increases, the computation time will decrease
as fewer selection functions are evaluated per lag timestep. An improvement that was not
implemented, but will result in fewer lookups, was to store the index of the previous closest
time label and begin the search at this time label rather than searching the whole time series.
The ‘natural selection function’ and the ‘fast selection function’ described in Section 4.3.3
were implemented. Although the fast selection function was considerably faster to evaluate,
the G-ACF produced deviated from the standard ACF at increasing lags and began to deviate at
small lags in the case of irregular sampling. I implemented the half-Gaussian and the rational
weight functions (Equations 4.4 and 4.5); the default option is the rational weight function. The
G-ACF can be calculated for a multi-dimensional array of values that share a common time
series to improve efficiency further. This optimisation will speed up the calculation of such
data arrays: the selection function needs to be evaluated on just one set of time labels rather
than for each set of values. As the selection function is the most costly part of the algorithm to
evaluate, we can achieve a speed-up of approximately # times when considering # light curves
sampled on the same time series.

4.4.2 Simple examples

The simplest example is the process defined by a sine function. I generated a regularly sampled
time series, a randomly sampled time series, and a structured but irregular time series. This
last time series consisted of clusters of time labels with a fixed periodicity but larger gaps
in between, representing a typical ground-based survey cadence for astronomical applications
(Figure 4.2). It is important to note that all three time series possessed the same number of time
labels (|)I | = 250) and differ only in the temporal distribution of the time labels.

As the time series differ only by their sampling, we can see how the distribution of time
labels influences the G-ACF. From Figure 4.2, we see that the G-ACF of the regularly sampled
time series (black) is identical to the ACF (by design), but the function is continuous due to
the definition of the G-ACF. In Figure 4.2, I evaluate the continuous G-ACF function at a finite
number of points and plot this as a line. The G-ACF of the random and cadence-like sampling
are similar to the ACF but with small differences driven by data gaps. The differences depend
on the exact position and size of gaps within the data. Increasing the sampling density will
improve the accuracy of the G-ACF; however, if large gaps such as the cadence-based sampling
gaps remain, there will be deviations from the regular ACF.

In Figure 4.3, I plot the sum of two sine functions, applying the three time-label sets
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Figure 4.2: The top panel shows three time-series with an underlying sine process (17.8
day period), sampled regularly (black), randomly (red) and with a cadence-like sampling that
possesses additional larger gaps (blue). All time-label sets have the same number of points
(250). The bottom panel shows the generalised autocorrelation functions (G-ACF) of the above
time series. A vertical green line is plotted at the period of the signal (17.8 days) in generalised
lag.

described above and calculating their G-ACF. As for the single sine function example, the
random (red) and cadence-like (blue) sampling cases displaymodest deviations from the regular
ACF.

In the case of cadence-like sampling, with a (mostly) fixed periodicity of sampling gaps,
alias signals can appear in the G-ACF due to the missing information in between well-sampled
clusters of time labels. These aliases can be easily identified since their periodicity will be equal
to the periodicity of the clusters of time labels. Their amplitude will be proportional to the
relative size of the gaps between clusters. This effect will not be relevant for most applications
unless one looks at the special case in which the structures of interest in the time series are of
a comparable period to the structure of the sampling clusters. We suspect it may be possible to
reduce this effect by generalising the normalisation to a lag and time label density-dependent
function. However, full removal of these aliases will likely not be possible since gaps imply
missing information that cannot be restored without additional information or assumptions. I
note, however, that these effects are small if there are sufficient time labels per period of the
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Figure 4.3: As Figure 4.2 but for a time series with an underlying process described by the sum
of two sine functions with 8.9 and 17.8 day periods. Vertical orange and green lines are plotted
at the periods of the signal (8.9 and 17.8 days, respectively) in generalised lag.

process.
The examples considered above both feature sampling such that the reconstruction of a

signal is fairly accurate as the period of the signal is much greater than the sampling cadence.
In cases where the signal is much less well sampled, the accuracy of any reconstruction (ACF
or G-ACF) will be reduced. I chose the periods in Figures 4.2 and 4.3 as clear examples of the
similarity between the G-ACF and the ACF. The periods are long enough to be sampled well
and not close to multiples of 1 day, which drastically reduces the accuracy of the G-ACF on
cadence-based sampled data.

In order to investigate the efficacy of the G-ACF on more realistic data sets, I generated
a periodic signal with a large stochastic noise component. The periodic signal was again a
sine function with a 17.8-day period. The stochastic component was drawn from a Gaussian
process (GP) using a simple harmonic oscillator (SHO) kernel (with quality factor & = 1/3
and characteristic timescale d = 5 days), as implemented in the celerite2 Python package
(Foreman-Mackey 2018). The amplitudes of the sinusoidal and stochastic components were
comparable.

The same three temporal samplings were used as in the simpler cases, and the resulting time
series and corresponding G-ACFs are shown in Figure 4.4. The G-ACF displays a prominent
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Figure 4.4: As Figure 4.2 but for a time series with an underlying process described by the sum
of a comparable amplitude sine function and stochastic Gaussian process. A vertical green line
is plotted at the period of the deterministic component of the signal (17.8 days) in generalised
lag.

peak corresponding to the period of the sinusoidal component. However, the exact position
of this peak will be moderately affected by the large noise component. The G-ACF can
accurately recover a clear periodic signal in all three sampling cases despite the periodic and
noise components having comparable amplitudes.

4.4.3 Application to real data: the Kepler light curve of KIC 5110407

The following section of work was conducted in collaboration with Ed Gillen. We tested the
efficacy of the G-ACF on real time-series data. While the applications of the G-ACF are not
restricted to astronomy, the standard ACF has been widely used to estimate the rotation periods
of stars from time-series photometry. Therefore, as an illustrative example, we selected a spotted
star observed by Kepler KIC 5110407 (e.g., Roettenbacher et al. 2013), and compare the period
predictions of G-ACF to two other techniques for rotation period estimation: Gaussian process
(GP) regression and Lomb–Scargle (LS) periodogram. Our approach to comparing these three
models follows Gillen et al. (2020) and Section 3 of that paper contains full details, but I will
give a brief overview below of the GP and LS models used here.
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Figure 4.5: Rotation period estimates for the spotted star KIC 5110407 from G-ACF, Gaussian
process (GP) regression, and Lomb–Scargle (LS) periodogram. Top panel: the system’s quarter
7Kepler light curve. Middle left: Generalised autocorrelation function (blue) with the identified
period highlighted (yellow). Middle centre: GP posterior period distribution (orange) with the
median and 1f uncertainties highlighted (solid and dashed orange lines). For comparison, the
G-ACF and LS periods are also shown (blue and green solid lines, respectively). Middle right:
LS periodogram (green) with the identified period highlighted (yellow). Bottom row: The
Kepler light curve phase-folded on the corresponding method’s period (G-ACF, GP and LS;
left-to-right) and coloured from the beginning (blue) to the end (yellow) of the observations.
Credit: Ed Gillen (Kreutzer et al. submitted).
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Figure 4.6: Same as Figure 4.5 but simulating KIC 5110407 being observed from the ground
(i.e. observations during night time only with additional gaps from bad weather). Credit: Ed
Gillen (Kreutzer et al. submitted).
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Figure 4.7: Rotation period estimates for KIC 5110407 fromG-ACF (blue), GP (orange) and LS
(green) for all quarters with Kepler data. Circles show the period estimates from the full Kepler
light curve and triangles from the ‘ground-based’ version of the light curve. The right-hand
panel shows the mean and standard deviation of the period estimates across all quarters. The
mean G-ACF periods agree with both the GP and LS periods, as do the values from the full and
‘ground-based’ versions of the light curves. The scatter in the G-ACF periods across quarters is
smaller than the scatter in LS periods but slightly larger than the scatter in GP periods. Credit:
Ed Gillen (Kreutzer et al. submitted).

The GP model is based on the celerite2 package (Foreman-Mackey et al. 2017; Foreman-
Mackey 2018), as implemented through the exoplanet framework (Foreman-Mackey et al.
2021; Foreman-Mackey & Barentsen 2019), and uses the standard rotation kernel with an
additional simple harmonic oscillator (SHO) kernel (with quality factor & = 1/3) to capture
any non-periodic structure in the light curves. The posterior parameter space was explored via
gradient-based Markov-chain Monte Carlo (MCMC) using the No U-Turn Sampler (NUTS), as
available through exoplanet, which in turn uses PyMC3 and theano (Hoffman & Gelman 2014;
Kumar et al. 2019; Salvatier et al. 2016; The Theano Development Team et al. 2016).

For each quarter, we ran five independent chains of 5,000 tuning steps followed by 10,000
sampling steps. It is worth noting that the GP model requires an initial period guess, in contrast
to both G-ACF and LS, for which we give the average of the G-ACF and LS period estimates.
The GP model is also sensitive to data not well captured by the chosen rotation kernel, such as
stellar flares, which we account for by performing an initial maximum a posteriori fit, masking
3f outliers, and refitting.

For the LS model, we use the version available through the astropy project (Robitaille
et al. 2013; Price-Whelan et al. 2018). This implementation uses the formalism defined in
Zechmeister & Kürster (2009), which introduced heteroscedastic weighting and zero-point
estimation to the algorithm first proposed by Lomb (1976) and Scargle (1982). The LS and
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G-ACF models were run on the data without further processing, such as flare masking. GP
periods are estimated from the period posterior distributions, LS periods are estimated from
the largest peak in the periodogram, and G-ACF periods are estimated by calculating a Fast
Fourier Transform (FFT) of the first three peaks of the G-ACF and taking the largest peak in the
periodogram. Restricting the lag time used in the period estimation reduces the effect of signal
shape evolution on the autocorrelation function at long lag times. It correspondingly improves
the accuracy of the period estimated. Using an FFT to calculate the periodicity of the G-ACF
is possible as the G-ACF is a continuous function by definition. I note that another method of
extracting periodicity from the G-ACF would be to calculate the position of the first peak in the
G-ACF and then use the positions of subsequent peaks to refine this period estimate, such as
the technique used in McQuillan et al. (2013).

Kepler observed KIC 5110407 for almost four years spanning 13 of the 17 quarters. Kepler
quarters typically last ∼90 days and have essentially continuous observations with a cadence
of ∼30 mins. The ACF has been successfully applied to such Kepler data (e.g., McQuillan
et al. 2013, 2014) but, as noted, the ACF does not apply to non-continuous data that cannot be
accurately interpolated onto a regularly spaced time series grid, i.e. time series with large data
gaps, such as ground-based photometry. We, therefore, estimated the stellar rotation period of
KIC 5110407 from two versions of its Kepler light curve: (i) the full Kepler light curve and (ii)
the Kepler light curve as though it had been observed from the ground (i.e. with gaps during
daytime and simulated ‘bad weather’ eventse).

Figure 4.5 shows the results for the full Kepler light curve observed during quarter 7, and
Figure 4.6 shows the results for the ‘ground-based’ version of the light curve. The Kepler
data from this quarter shows moderate evolution throughout the light curve and displays both
‘double-dip’ patterns (e.g., at ∼20 days) and sinusoidal modulation (e.g., at ∼40–80 days).
Therefore, the G-ACF and GP periods agree best for this quarter, whereas the LS period
prediction is slightly larger. This is the case for both the full and ‘ground-based’ light curves.
The better agreement between G-ACF and GP is because they are more flexible than LS (i.e.
they do not assume a rigid sinusoidal model) and are more applicable to such evolving time
series. The periods can be best compared in the middle centre panel of Figures 4.5 and 4.6 and
by comparing the phase-folded light curves.

We performed the same analysis on each available quarter of Kepler data: Figure 4.7
compares the period predictions for G-ACF, GP and LS across quarters. Across quarters, and
for both the full and ‘ground-based’ light curves, the G-ACF and GP periods agree best overall.
The LS predictions agree well for some quarters, mainly those that show sinusoidal modulation,

eAll quarters had the same relative times masked. Nighttime was considered to last 8 hours of each 24 hours,
and bad weather was simulated between the following times: 18.5–22.5, 34.5–37.5, 48.5–52.5, 62.5–64.5 and
76.5–81.5 days (relative to the start of each quarter).
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but less well for those that show evolving modulation patterns, resulting in a larger scatter and
correspondingly larger uncertainties on the mean rotation period prediction than the G-ACF or
GP. The mean periods and standard deviations across quarters are: G-ACF = 3.51 ± 0.06 and
3.51 ± 0.06 days for the full and ‘ground-based’ light curve, respectively; GP = 3.50 ± 0.04
and 3.50 ± 0.04 days; and LS = 3.53 ± 0.08 and 3.53 ± 0.08 days. Roettenbacher et al. (2013)
estimate a rotation period for KIC 5110407 through light-curve inversion of 3.4693 days, which
agrees to within 1f for all three methods.

This comparison between the G-ACF and the GP and LS methods, for both continuous
and irregularly sampled time series, illustrates the validity of the G-ACF for such applications.
Furthermore, as the G-ACF is ‘model-free’ it can be applied to time series data of essentially
any form without the need to adapt the kind of model chosen (in the case of GP) or assume a
rigid sinusoidal model (in the case of LS). Additionally, the G-ACF is efficient to calculate: for
example, calculating the G-ACF of the quarter 7 KIC 5110407 light curve took approximately
0.6 seconds with 4,117 data points on a single laptop coref. The GP regression was ∼14
times slower, taking ∼8.3 seconds for the maximum a posteriori fit (and ∼7 minutes for the
MCMC). The LS periodogram was the fastest, taking approximately 0.01 seconds to run on
the same laptop core, however the simple sinusoidal model employed may not well-model
complex time series. The G-ACF is a powerful and efficient approach to extracting periodicity,
quasi-periodicity and short-term self-similarity from time series data in general, and especially
data for which the true functional form is unknown.

4.5 Application to NGTS Data

The first published application of the G-ACF to NGTS data was the rotation study of the Blanco
1 open cluster by Gillen et al. (2020), as discussed in Section 8.1. The remaining Chapters of
work in this thesis discuss the wider application of the G-ACF to NGTS data in the form of a
large-scale rotation study and additional open cluster studies.

The methods used in this study for assessing the accuracy of the G-ACF in recovering
rotation periods are taken into account in the development of the RoTo package, which will be
discussed in Chapter 6, in which multiple period extraction methods are made available for use
on time series data in Python.

fThe run time of the G-ACF is dependent on both the number of data points and the number of lag time steps.
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4.6 Outlook

4.6.1 Accounting for measurement uncertainties

The definition of the G-ACF can be further extended to take into account the measurement
uncertainties of the time series values. One approach would be to define an extended weight
function that depends on the measurement uncertainties of both of the time series values in
each product, such as

,̂ (XC, f=-i
, f=-j
) = 1

1 + U XC ·
1

1 + V f=
-i

· 1
1 + V f=

-j

(4.6)

where f-i and f-j represent the measurement uncertainties on the 8th and 9 th time series values,
respectively, and where XC, f-i , f-j ≥ 0 and U = 1/〈)I〉 as previously. We could define
V = 1/〈-=I 〉. The =

th power could take a value of either 1 or 2 to weight by the inverse of the
measurement uncertainties or their variance, respectively.

This weight function does not satisfy the condition ,̂ (XC = 0) = 1 if the uncertainties
are non-negligible, and thus the G-ACF with this extended weight function does not reduce
to the ACF in the case of regular sampling. Instead, it reduces to a different generalisation
of the ACF, which still weighs each product according to the measurement uncertainties.
This result should be expected since the original definition of the ACF does not account for
uncertainties in the time series. If the uncertainties of the time series values are equal, this
method results in an overall re-scaling of the original G-ACF. Equation 4.6 does satisfy the
condition ,̂ (XC = 0, f=

-i
= 0, f=

-j
= 0) = 1 and thus this generalised and extended ACF

reduces to the ACF in the case of regular sampling if the uncertainty f-i for each time series
value is negligible and thus can be discarded. The viability of such an extension remains to be
investigated.

4.7 Conclusions

The G-ACF, or generalised autocorrelation function, is a new and versatile definition that
can reliably and efficiently extract, amongst others, periodicity and signal shape information
from any time series, virtually independent of the time series sampling and independent of
the underlying process. We show that the ACF can be generalised and applied to irregularly
sampled time series by generalising the lag to a real variable and introducing selection and
weight functions. We show that the G-ACF reduces to the ACF for regularly sampled time
series and possesses the property of maximal correlation at zero lag.
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I show that the G-ACF agrees well with the ACF for cases of aperiodic sampling, including
the case of randomly sampled time labels and cadence-like sampling; however, there are slight
deviations due to the data gaps and corresponding loss of information.

We compare the period predictions of G-ACF to those from GP regression and LS peri-
odograms by extracting rotation periods for the spotted star, KIC 5110407. The G-ACF and
GP periods typically agree best across the different Kepler quarters. LS periods are compar-
able in quarters with mainly sinusoidal modulation but more discrepant for quarters displaying
more complex or evolving patterns. All three methods achieve consistent mean periods and
uncertainties.

There are many potential applications for the G-ACFwithin astronomy and astrophysics and
in other quantitative sciences where irregularly sampled time series occur, such as economics,
climatology, geology, biology, and others.

I built and tested an implementation of the G-ACF algorithm in C++ and Python, which has
since been successfully applied to real astrophysical data beyond KIC 5110407, in the published
work of Gillen et al. (2020), Briegal et al. (2022), and the remaining chapters of this work.
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Periodic Stellar Variability from
almost a Million NGTS Light Curves

The following chapter is based on the paper Periodic stellar variability from almost a million
NGTS light curves. (Briegal et al. 2022), which was accepted for publication in MNRAS on
29th March 2022. I will outline the work completed for this study with a detailed explanation
of the methods used and the results obtained. I will discuss how these results fit into a wider
scientific context. This work draws on the stellar variability background outlined in Chapter
2 Section 2.1 and utilises the G-ACF method detailed in Chapter 4. I use data from NGTS as
in Chapter 3. Almost the entirety of this work was completed by me; where other authors are
responsible this will be made clear in the text.

I analyse 829, 481 stars from the Next Generation Transit Survey (NGTS) to extract vari-
ability periods. I utilise a generalisation of the autocorrelation function (the G-ACF), which
applies to irregularly sampled time series data. I extract variability periods for 16, 880 stars
from late-A through to mid-M spectral types and periods between ∼ 0.1 and 130 days with no
assumed variability model. I find variable signals associated with a number of astrophysical
phenomena, including stellar rotation, pulsations and multiple-star systems. The extracted
variability periods are compared with stellar parameters taken from Gaia DR2, which allows
me to identify distinct regions of variability in the Hertzsprung-Russell Diagram. I explore a
sample of rotational main-sequence objects in period–colour space, in which we can observe
a dearth of rotation periods between 15 and 25 days. This ‘bi-modality’ was previously only
seen in space-based data from Kepler and K2 (McQuillan et al. 2014; Gordon et al. 2021). I

89



90 Chapter 5. Periodic Stellar Variability from almost a Million NGTS Light Curves

demonstrate that stars in sub-samples above and below the period gap appear to arise from a
stellar population not significantly contaminated by excess multiple systems. I also observe
a small population of long-period variable M-dwarfs, which highlight a departure from the
predictions made by rotational evolution models fitted to solar-type main-sequence objects.
The NGTS data spans a period and spectral type range that links previous rotation studies such
as those using data from Kepler, K2 and MEarth.

Aswe have seen inChapters 1 and 2, many of a star’s physical properties can be inferred from
its brightness variations over time. This variability can arise from many mechanisms, either in-
trinsic to the star through changing physical properties of the star and its photosphere, or through
external factors such as orbiting bodies and discs. The rotation of magnetically active stars will
also cause visible brightness changes. Stellar rotation can be measured through photometric
observation, as magnetic surface activity such as spots and plages cause photometric brightness
fluctuations over time that is modulated by both the rotation of active regions across the star, as
well as active region evolution. Constraining stellar rotation rates is important, as this provides
insight into the angular momentum of the star. Skumanich (1972) first hypothesised that a
star’s rotation rate could be age dependent, obtaining the empirical relation between rotation
period %rot and age C: %rot ∝ C0.5. Knowing a star’s age is fundamental to fully understanding
its evolutionary state, and so being able to infer this property from an observable quantity such
as rotation would greatly improve our understanding of stars in the local neighbourhood. In
Barnes (2003) a semi-empirical model for deriving stellar ages from colour and rotation period
was suggested, and the term ‘gyrochronology’ was coined. This model was subject to further
improvements in Barnes (2007), a model which is commonly still used to age Solar-type and
late-type main-sequence stars. These models work especially well for stars older than the age
of the Hyades cluster, by which time we expect the initial angular momentum of stars to have
little effect on the rotation period, and the angular momentum evolution to follow a Skumanich
law (Kawaler 1988). For low mass stars, it is widely accepted that late-time angular momentum
loss will be governed by magnetised stellar winds which depend on magnetic field topology and
stellar mass (Booth et al. 2017). For young stars (< 10 Myr) angular momentum evolution may
be dependent on magnetic coupling between the star and disc. Studies of pre-main-sequence
stars in young clusters such as T-Tauri stars in the Taurus-Auriga molecular cloud (Hartmann
& Stauffer 1989) or NGC 2264 (Sousa et al. 2016) show high levels of short period (< 10 day)
photometric variability, but objects with circumstellar discs present appear to rotate slower than
those without, highlighting the effect of star-disc coupling on angular momentum evolution.

Understanding a star’s activity is important for exoplanet surveys. Not only is stellar
activity a large source of noise in both transit and RV surveys (e.g., Queloz et al. 2001;
Haywood et al. 2014; Dumusque et al. 2017), but stellar activity may also influence the potential
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habitability of orbiting planets. Stars that rotate rapidly, for example, often display higher flare
rates than their more slowly rotating cousins, and these flares can be important for potential
exoplanet habitability. On the one hand, flares can erode exoplanet atmospheres and modify
their chemistry (e.g., Segura et al. 2010; Seager 2013; Tilley et al. 2019), while on the other,
they can help initiate prebiotic chemistry and seed the building blocks of life (Ranjan et al.
2017; Rimmer et al. 2018), which may be especially important for M dwarf systems.

The angular momentum of a host star and its planets are intrinsically linked. Gallet et al.
(2018) demonstrate that tidal interactions between a host star and a close-in planet can affect
the surface rotation of the star. They observe a deviation in rotation period from the expected
magnetic braking law during the early MS phase of low-mass stars in the Pleiades cluster,
which the authors attribute to planetary engulfment events. Conversely, angular momentum
transfer through tidal interactions must be considered in the context of stellar spin-down through
magnetic braking. The analysis by Damiani & Lanza (2015) demonstrates that to accurately
model tidal dissipation efficiency and orbital migration the stellar angular momentum loss
through magnetised stellar winds must be accounted for.

Large-scale photometric variability studies have recently allowed for data-driven analysis
of stellar variability in extremely large samples. Stellar clusters allow studies of groups of stars
with similar formation epochs and evolutionary conditions, so historically have been targeted
by systematic surveys. These observations have come from ground-based surveys such as
Monitor (Hodgkin et al. 2006; Aigrain et al. 2007) with observations of NGC 2516 (Irwin et al.
2007), SuperWASP (Pollacco et al. 2006) with observations of the Coma Berenices open cluster
(Cameron et al. 2009) and HATNet (Bakos et al. 2004) with observations of FGK Pleiades
stars (Hartman et al. 2010). Recently, NGTS (Wheatley et al. 2018) observed the ∼ 115 Myr
old cluster Blanco 1, and a study by Gillen et al. (2020) demonstrated a well-defined single-
star rotation sequence which was also observed by KELT (Pepper et al. 2012) and studied in
Cargile et al. (2014). In both of these works, a similar sequence was observed for stars in
the similarly aged Pleiades, indicating angular momentum evolution of mid-F to mid-K stars
follows a well-defined pathway which is strongly imprinted by ∼ 100 Myr.

As part of the transient search conducted by the All-Sky Automated Survey for Supernovae
(ASAS-SN; Shappee et al. 2014), a catalogue of observed variable stars has been compiled.
This catalogue contains variability periods and classifications for 687,695 objectsa taken from
a series of publications entitled ‘The ASAS-SN catalogue of variable stars’ (e.g., Jayasinghe
et al. 2018, 2021). Such catalogues are not focused on specific clusters or stellar types, but
provide a broad view of different forms of stellar variability.

Space missions have allowed wide-field photometric variability surveys of stars with high
aAccessed on 09/11/2021
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precision and excellent time coverage. CoRoT (Auvergne et al. 2009), Kepler (Borucki et al.
2010), the extended Kepler mission (K2; Howell et al. 2014) and TESS (Ricker et al. 2014) have
provided a wealth of stellar photometric data, which in turn has been the subject of extensive
rotation studies (Ciardi et al. 2011; Basri et al. 2010; Affer et al. 2012; McQuillan et al. 2013;
Davenport & Covey 2018; Canto-Martins et al. 2020; Gordon et al. 2021), revealing large
scale trends in stellar variability periods. In particular, studies by McQuillan et al. (2013) and
Davenport & Covey (2018) demonstrated a distinct bi-modal structure in the rotation periods
of main-sequence stars with respect to colour. Gordon et al. (2021) followed up these studies
with an analysis of data from the K2 mission, hypothesising the bi-modal structure arises from
a broken spin-down law, caused by an internal angular momentum transfer between the core
and convective envelope. Further details of this model are discussed in Section 5.3.

NGTS routinely achieves milli-magnitude range photometric precision with 12-second
sampling cadence and long observation baselines (typically 250 nights of data per target field).
Such high-precision photometry lends itself well to ancillary stellar physics such as cluster
rotation analysis (Gillen et al. 2020) or stellar-flare detection and characterisation (Jackman
et al. 2019a). Ground-based observation adds extra layers of difficulty in variability studies
when compared to space telescope data, as we must consider irregular sampling and telluric
effects. In particular, for this study, I employ a generalisation of the autocorrelation function
(the G-ACF) which applies to this irregular sampling. I elected to use an autocorrelation
function to extract variability as this has proven to be successful for extracting stellar variability
by McQuillan et al. (2013, 2014) & Angus et al. (2018) and for NGTS data in Gillen et al.
(2020). An Autocorrelation Function (ACF) also allows better detection of pseudo-periodic
and phase-shifting variability often seen in young, active stars in comparison to a more rigid
variability extraction technique such as Lomb–Scargle periodograms.

5.1 Methods

5.1.1 Data pre-processing

The NGTS pipeline as described in Chapter 3 provides flags per image and per timestamp per
object light curve which I used to pre-process light curves for variability analysis. These flags
alert us to bad-quality data points as a result of pixel saturation, blooming spikes from nearby
bright sources, cosmics and other crossing events (including weather and laser guide stars) and
any sky background changes. I removed any flagged data points from each light curve, and
additionally checked if the majority of the light curve has been flagged (> 80% of data points).
If this was the case, I removed the objects from processing entirely.

I clipped the flux data to remove any points lying further than 3 median-absolute-deviations
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Figure 5.1: An ICRS plot of the position of the 94 NGTS fields used in this study (solid dark
blue squares). The Kepler and K2 fields are included as blue and orange squares respectively,
as well as the Galactic plane as a thick grey line.

(MAD) from the median to remove any outliers not caught by the NGTS pipeline flags. I
note this cut may remove some variability signals such as long-period eclipsing binaries where
the variability is a small fraction of the phase curve. Manual inspection of a single field
confirmed that this was not the case, however, this cannot be guaranteed for all fields processed
automatically. Finally, to speed up data processing, I binned each light curve into 20-minute
time bins. This reduces the number of data points to process per light curve from 200,000
to roughly 10,000. The G-ACF computation time scales as O(=2<) for = data points with <
lag time steps, so reducing the number of timestamps in the light curve significantly improves
processing time. This comes with a caveat that the pipeline will be unable to detect any periods
below 40 minutes, however for this study that is focused on longer period variability this limit
is not of concern.

I removed 6 fields identified as containing large open cluster populations. This study will
focus on stars in the field and this avoids contamination of large numbers of young variable
stars in open clusters. Removing these 6 fields reduced the number of light curves by 41,831,
which left a total of 829, 481 light curves to process. The positions of the 94 NGTS fields in
RA and DEC used in this study are shown in Figure 5.1. In this Figure, I plot the Kepler and
K2 field centre pointings, as well as the position of the Galactic plane.

The 94 fields used in this study were observed for an average of 141 nights during different
observation campaigns (lasting an average of 218 days) between September 2015 andNovember
2018. The shortest observational baseline for this data set was 84 days and the longest 272 days.
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73 of the 94 fields had observational baselines over 200 days. I detect periodic variability in
light curves spanning 8 < �NGTS < 16 mag with 50% (90%) of detections being brighter than
13.5 (15.4) mag.

5.1.2 Use of the Cambridge HPC cluster

Despite the computation considerations explained in the previous section, there were a large
number of light curves each with around 10,000 data points to process. The final manifestation
of the period detection pipeline (as detailed in the following Sections) contains many processing
steps per light curve. The light curves for all objects within a field are stored as FITS files (each
field between 5 and 20 GB, totalling around 1.8 TB). The processing pipeline was written with
this in mind, each field is processed separately and each light curve can be processed in parallel
within the field. Processing of a single NGTS field took between 10 and 30 minutes depending
on the number of objects in the field, which was processed on a single node with 32 CPUs
allowing 32 objects to be processed simultaneously.

5.1.3 Period detection

The period detection pipeline is outlined in the flowchart in Figure 5.2. Further details of each
step are given in the subsequent sections.

5.1.3.1 G-ACF

The G-ACF algorithm has already been described in detail in Chapter 4. In this work, I used the
Python package of the G-ACF algorithm as a part of the period finding pipeline. The G-ACF
was calculated using the ‘natural’ selection function and the rational weight function as given
in Equation 4.4. I calculated just the positive side of the ACF (i.e. positive lag values only),
with a lag resolution of 20 minutes that corresponds to the minimum gap between time points
as I have binned the data before processing.

5.1.3.2 FFT

To extract a period from the G-ACF I elected to use a Fast Fourier Transform (FFT; Cooley &
Tukey 1965). Extracting periods from an ACF can be done in several ways, most simply by
selecting the first (or largest) peak in the ACF (e.g., as in McQuillan et al. 2014). This can lead
to inaccuracies, in particular for weaker signals as this relies on the first peak being prominent
in the ACF. I elected to use an extraction method that relies on the periodicity of the ACF, and
the regular sampling of the G-ACF lends itself to an FFT. Other more complex methods such as
fitting a damped harmonic oscillator to the ACF have been used previously (Angus et al. 2018).
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This in general did not alter extracted periods enough to warrant the additional complexity for
such an exploratory work. I also experimented with using fewer ACF peaks rather than the
entire signal to refine the period, but again the additional complexity was deemed unnecessary
for a large-scale rotation study.

The FFT is a robust and well-documented method of extracting periodic signals. In this
study, I used the implementation in the numpy.fft package (Harris et al. 2020). I calculated the
FFT with a padding factor of 32 to allow precise resolution of peaks in the Fourier transform.
As phase information is lost in taking the ACF of the initial data, a real Fourier transform is
sufficient.

To extract the most likely frequencies I searched for peaks in the Fourier transform. I define
a peak as the central point in a contiguous sequence of 5 points which monotonically increases
to the peak, followed by a monotonic decrease from the peak. Additionally, the amplitude of
a peak must be greater than 20% of the highest peak in the periodogram to be included. Here
an automated cut was made: any Fourier transforms with more than 6 peaks were removed
as noise. This threshold was selected based on a manual vetting process for one NGTS field
(10,000 objects) which demonstrated that for these objects with ‘noisy’ Fourier transforms less
than 1% had genuine periodic signals. Removing these objects greatly reduces the number of
false positives extracted without removing many ‘real’ signals. 63% of processed objects were
flagged as having no significant periodicity based on this FFT check.

5.1.3.3 Long-term trend assessment

A time baseline of ∼ 250 days allows for robust extraction of periodic signals up to ∼ 125 days
long. Signals longer than this may be present in the data, however, observing one or fewer
complete variability cycles cannot definitively characterise a periodic signal. This variability
may not be periodic, but rather a long-term trend in the data arising from instrumental or telluric
changes over these timescales. These objects may still contain interesting periodic variability
at a shorter timescale, so by detecting and removing a long-term trend it is possible to more
accurately calculate the period and amplitude of this variability.

If the most significant peak in the FFT (see Section 5.1.3.2) was at a period greater than half
the length of the signal baseline it was flagged as a long-term trend. When this case occurred I
computed a high-pass filter for the signal by calculating the median flux at each time step in a
rolling window which is 10% of the time extent of the light curve. This will capture any long-
term behaviour without removing any shorter period variability. I divided this median filter
from the signal and re-ran the cleaned light curve back through the signal detection pipeline. If
no signal of interest was detected at this stage (either I found noise or residuals of the median
filter), the object was flagged as having a long-term trend and removed from processing.
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Figure 5.3: Two examples of typical Moon tainted signals. For each object, the light curve is
phase folded on the expected Moon period and epoch. 0.0 & 1.0 phase are at new Moon, 0.5
phase is at full Moon. We see an example of an over-corrected signal with a typical decrease
in flux at full Moon. An under-corrected signal demonstrates the opposite trend. Both signals
exhibit an increase in scatter at full Moon, with an otherwise fairly flat light curve.

5.1.3.4 Moon signal assessment

During the initial testing of the period extraction algorithm, I noted that a large number of
periods between 27 and 30 days were identified by the period search algorithm. Upon closer
inspection, these periods had very similar phases and could be split into two groups of signal
shapes. The two signal shapes, when phase folded on a new Moon epoch, appeared as a slight
increase or decrease in flux at 0.5 phase, i.e. full Moon. This was accompanied by an increase
in scatter in the flux measurements at full Moon. Examples of contaminated signals are shown
in Figure 5.3.

I fitted a model to these Moon correlated noise signals (‘Moon signals’) and flagged and
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Figure 5.4: The three-parameter Moon model fit is used to assess if a signal is contaminated by
the Moon. The flux data is phase folded on the period of the Moon and then again in half such
that 0.0 in phase corresponds to new Moon and 1.0 in phase corresponds to full Moon.

removed any objects which fit the expected trend. To systematically detect Moon contaminated
signals (for example as shown in Figure 5.3), I fitted a model to the flux data, phase folded
on the expected Moon period for each NGTS field. The expected Moon period was calculated
from a scaled expected Moon brightness curve, calculated as a product of the on-sky separation
of the field from the Moon and the Moon illumination fraction, � = (1 + cos(\phase))/2. \phase

is the Moon phase angle defined for a time and ephemeris. For most fields, this gave a period
of approximately 28.5 days, close to the 29.5-day synodic period of the Moon.

The model is a simple three-parameter piece-wise model described in Equation 5.1, where
the parameter G is the location in half phase G ∈ [0, 1].


flux0 0 ≤ G ≤ turnover

<G + 2 turnover < G ≤ 1
(5.1)

Where

< =
flux1 − flux0
1 − turnover

2 = flux1 − <

I fitted for the 3 parameters flux0, flux1 and turnover. This model fit was assessed by checking
the following criteria, with an example shown in Figure 5.4.

• Is the model turnover point at the expected point in phase? (between 0.2 and 0.8 in
half-phase).
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• Is there a flux RMS increase after the model turnover point?
• Is there a noticeable (i.e. > 1f) change in flux from new to full Moon?
• Is there any missing data at full Moon?

If 3 or more of these criteria were met, the object was flagged as Moon contaminated and
removed from the processing. The decision to remove these signals from processing rather
than attempting to remove the Moon signal and re-process was made after re-running a single
field with the Moon model subtracted, for which no new obvious periodic signals were found.
This may in part have been due to the simplicity of this model, as the Moon signals visible in
Figure 5.3 are not entirely modelled by the three-parameter solution. Given the scale of the
data processing, I decided to remove the object from processing rather than attempting a more
complex model fit which would require significantly more computation time for each object.
One such model would be a Savitzky–Golay (SG) filter followed by a convolution that more
accurately captures the Moon signal shape, as was applied to the Moon-affected light curves in
Gillen et al. (2020).

5.1.3.5 Alias checks

Using an FFT to extract periodicity from the G-ACF will be prone to aliasing. Aliasing is
a well-known and well-described problem in signal processing, and if the true frequency of
the signal and the sampling frequency are known it is trivial to calculate the frequency of
aliases using Equation 2.3. Note I define period as the inverse of frequency, i.e. % = 1

a
. In

the case of ground-based observation, the most common sampling period will be 1 day. In
addition, although the background correction should remove this, there will remain residuals of
the brightness trend expected throughout the night’s observation. Although the sampling of the
G-ACF is regular, the sampling of the inputted light curve will affect the shape of the G-ACF.
Thus one can expect peaks in the FFT associated with 1-day systematic signals, as well as the
true signal aliased with the 1-day sampling.

For each light curve, I first removed any periods arising from the 1-day sampling. I removed
periods within 5% of 1 day, as well as within 5% of integer multiples of 1 day in period and
integer multiples of 1 / day in frequency. I then assessed whether groups of periods were
aliases of one another with respect to common sampling periods using basic graph theory. I
constructed a graph of frequencies connected by the standard alias formula in Equation 2.3,
using sampling periods of one day, 365.25636 days (one year), 27.32158 days (Lunar sidereal
period) and 29.53049 days (Lunar synodic period). Each vertex in the graph represents an FFT
peak frequency, with connections (edges) made if two frequencies can be related to one another
through Equation 2.3 given one of the sampling frequencies listed. Note that I considered aliases
arising from both the synodic and sidereal Lunar period, however, given the 5% tolerance used
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for assessing similarity, these two sampling frequencies connected the same frequencies in the
majority of examples.

For each connected sub-graph (i.e. a group of frequencies connected by the same sampling
aliases) I determined the frequency for which the phase folded light curve had the lowest spread
in flux and took this to be the correct period. I calculated the 5th − 95th percentile spread in flux
within bins of 0.05 width in phase and then calculated the average of these values weighted by
the number of points within each flux bin. In addition to the FFT peak periods, I also checked
the RMS of twice and half the periods, as in some cases I found twice the FFT peak period was
the correct period. This was assessed by eye initially and appeared to be much more common
for short-period objects due to aliasing from the 1-day sampling. This same approach was
taken by McQuillan et al. (2013), however, I elected to automate the process rather than by-eye
confirmation of half- or double-period detections.

5.1.3.6 Further signal validation

Due to the ground-based nature of NGTS, some fields were not continuously observed for
the entirety of the field time-baseline. As a result of bad weather and technical downtime,
there are gaps in observations lasting several weeks for a number of the fields used in this
study. In these cases, it is no longer correct to use the entire time baseline as a cut-off for
robust periods. Instead, I elected to find the longest period of continuous observation within
these fields and remove any periods greater than half this time length. I define a period of
continuous observation as a period in which there are no observation time gaps of greater than
20% of the entire field baseline. For our 250-night observation baseline, this equates to gaps
of 50 days or longer. This removed 907 detected periodic signals from 11 different fields, and
manual inspection of the removed signals confirmed that many of the removed detections were
systematic periods arising from the long sampling gaps, rather than astrophysical variability.

Additionally, a number of detected periodic signals with unphysically large amplitudes
were detected. On inspection it appears these signals were incorrectly processed by the NGTS
pipeline, resulting in non-physical flux values. In the final sample, I elected to remove any
signals with a relative amplitude > 1.0. This removed 58 signals, and manual inspection of all
the removed signals confirmed the majority of signals removed were non-physical; especially
for the largest amplitude signals. The cut-off was chosen empirically based on the signal
amplitude distribution of the sample.

The initial search resulted in 17,845 periodic detections. Removing 907 long-term trends
left 16,938 detections. Finally, removing 58 unphysically large amplitude signals resulted in
16,880 detections.
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5.1.3.7 Cross-matching with Gaia

To assess this variability period sample within a meaningful scientific context, I elected to use
Gaia Data Release 2 (DR2, Gaia Collaboration et al. 2018a) for cross-matching and to identify
the nature of corresponding objects and their stellar parameters. The NGTS database contains
cross-matching information with many external catalogues, including Gaia DR2. Detail on
how the cross-matches are found is given in Section 5 of Wheatley et al. (2018) and briefly in
Section 3.3.1 of this thesis.

As an extension of the Gaia DR2 data, the most recent Tess Input Catalogue (TICv8, Stassun
et al. 2018) contains Gaia DR2 data relevant to this study plus additional calculated values and
cross-match data. These include more accurate calculated distances from Bailer-Jones et al.
(2018) and reddening values which have been used to calculate absolute magnitudes.

More recently, the Gaia Early DR3 (EDR3, Gaia Collaboration et al. 2021) contains
improved precision on the astrometric fits to many objects from Gaia DR2, however as I
use many derived parameters from external catalogues I elected to continue using the DR2
parameters throughout this study. The strengths of the EDR3 data will be demonstrated in
Chapter 6.

5.1.3.8 Extinction correction

In the final data products, I assess variability in the context of the colour–magnitude diagram
which requires the calculation of absolutemagnitudes. To be as accurate as possible, I combined
Gaia G magnitudes (�) with distance estimates derived from Gaia parallax and accounted for
extinction. I used the per-object reddening values from TICv8, multiplied by a total-to-selective
extinction ratio of 2.72 to account for the Gaia G-band extinction (�G). Further details on how
the reddening values and the total-to-selective extinction ratio were calculated can be found in
Section 2.3.3 of Stassun et al. (2018). The final value for absolute magnitude was calculated
using the formula:

"G = � − 5 log10(distance) + 5 − �G. (5.2)

5.2 Results

Using the G-ACF period extraction pipeline, I derived variability periods for 16, 880 stars
observed with NGTS. A subset of these results is shown in Table 5.2, along with positions and
cross-match data. The format of the results table is shown in Table 5.1.



102 Chapter 5. Periodic Stellar Variability from almost a Million NGTS Light Curves

Table 5.1: Variability periods, amplitudes and catalogue-cross-match identifiers for all variable
objects in the NGTS data set (table format).

Column Format Units Label Description

1 A18 — NGTS_ID NGTS source designation
2 F9.5 deg NGTS_RA Source right ascension (J2000)
3 F9.5 deg NGTS_DEC Source declination (J2000)
4 F8.5 mag NGTS_MAG NGTS I-band magnitude
5 F9.5 days PERIOD Extracted variability period
6 F7.5 — AMPLITUDE 5-95 percentile relative flux
7 I19 — GAIA_DR1_ID Cross-matched Gaia DR1 identifier
8 I19 — GAIA_DR2_ID Cross-matched Gaia DR2 identifier
9 I10 — TIC_ID Cross-matched Tess Input Catalogue (v8) identifier
10 A16 — TWOMASS_ID Cross-matched 2MASS identifier
11 A19 — WISE_ID Cross-matched WISE identifier
12 A10 — UCAC4_ID Cross-matched UCAC4 identifier

Table 5.2: A sample of variability periods, amplitudes and catalogue cross-match identifiers in
the NGTS data set. Some catalogue cross-match columns have been excluded for publication
clarity. The full table is available in a machine-readable format as supplementary material on
the online journal and at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS.

NGTS ID NGTS RA NGTS Dec NGTS Mag Period Amplitude Gaia DR2 ID TICv8 ID

NG0613-3633_231 94.88721 −35.20762 14.77188 117.30427 0.07218 2885392740653834368 124854845
NG0613-3633_234 91.91176 −35.20084 15.86231 128.42220 0.18731 2885953869540806656 201389809
NG0613-3633_235 94.93884 −35.20675 12.91320 117.53460 0.04857 2885392878092780544 124854842
NG0613-3633_262 94.95269 −35.20598 14.51873 109.77205 0.11461 2885392225257749760 124854841
NG0613-3633_481 93.77213 −35.22205 13.69049 0.29365 0.13175 2885521658392050944 124689517
NG0613-3633_598 93.31896 −35.22787 11.48757 92.88398 0.00860 2885530999944081792 201530507
NG0613-3633_773 95.01907 −35.23832 12.55225 110.36974 0.07016 2885380160692365824 124855736
NG0613-3633_1101 95.06110 −35.25333 15.16207 128.42220 0.22943 2885381333220681216 124855723
NG0613-3633_1181 95.06864 −35.25766 13.60488 100.74969 0.08537 2885380577306436736 124855720
NG0613-3633_1479 95.12023 −35.27187 14.86311 100.46635 0.25487 2885380439867479040 124922604

Table 5.3: A table of the output states of the 829, 481 NGTS objects analysed by the signal
detection pipeline. Note a further 907 objects were removed due to large observation gaps in a
number of fields, and an additional 58 with spuriously large amplitudes resulting in a final total
of 16, 880 variability periods (see Section 5.1.3.6).

Output State Count % of total % of detections

Bad Data 43,358 5.227 —
Noisy FFT 528,105 63.667 —
Moon 175,565 21.166 67.043
Alias 57 0.007 0.022
Long Term Trend 64,551 7.782 25.018
Periodic Signal 17,845 2.151 6.916

cdsarc.u-strasbg.fr
https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS
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Figure 5.5: Binned colour–magnitude (HR) diagram of the NGTS variability sample. PARSEC
v1.2 (Bressan et al. 2012) Solar metallicity isochrones of ages 10 Myr and 1 Gyr are included
as solid black and orange lines respectively. The colour indicates the empirical detection
percentage per bin. This is defined as the ratio of the number of detected periodic signals to all
observed objects per bin. 0 detections within bins are coloured grey.

5.2.1 Periodicity in colour–magnitude space

Figure 5.2 shows the variability sample in colour–magnitude space. Table 5.3 details the
breakdown of outputs from the pipeline. Once cross-matched with TICv8, I was left with a
total of 16, 880 variable light curves from the initial sample of 829, 481 light curves. This gives
a final detection percentage of 2.04%. The detection percentage varies in colour–magnitude
space as shown in Figure 5.5, highlighting potential regions of increased variability or increased
sensitivity of NGTS and the signal detection pipeline.

All conversions between )eff, ��% − �'% and � − �'% in the following sections are
calculated using relations defined in the ‘Modern Mean Dwarf Stellar Colour and Effective
Temperature Sequence’ (Pecaut & Mamajek 2013)b, interpolated using a univariate cubic
spline. The isochrones in the HR diagrams are taken from PARSEC v1.2S (Bressan et al.

bA more recent version of the table including Gaia DR2 colours is maintained at http://www.pas.rochester.
edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt

http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt
http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt
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Figure 5.6: As Figure 5.5. The colour indicates the number of objects with detected variability
within each colour–magnitude bin.

2012). I elected to use these isochrones as they have been proven to fit the Gaia DR2 main
sequence well in Gaia Collaboration et al. (2018a). I produce isochrones using PARSEC v1.2S,
selecting the Gaia DR2 passbands from Gaia Collaboration et al. (2018a)c. The isochrone at
1 Gyr gives a good indication of where the main sequence lies, with the earlier age isochrone
at 10 Myr indicating locations on the HR diagram of potentially younger stellar populations. I
note, as shown in Gillen et al. (2020), that the PARSEC v1.2 models appear to be less reliable
at pre-main-sequence ages, but should be sufficient for their indicative use in this study.

Figure 5.5 highlights regions of interest in terms of detection percentage. Additionally,
Figure 5.6 shows the number of detections in each bin. Where detection percentage approaches
100% this is often indicative of a single variable object falling in this colour–magnitude bin.
As in Gaia Collaboration et al. (2019), I identify distinct regions of variability within the HR
diagram and suggest the types of variable objects which may lie at each location.

The region at the top of the main sequence (��% − �'% ∼ 0.4, � ∼ 1.0) reveals a high
proportion of variable objects. We can also see a region of increased variability at the ‘elbow’

cusing the CMD 3.4 input form at http://stev.oapd.inaf.it/cgi-bin/cmd

http://stev.oapd.inaf.it/cgi-bin/cmd
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Figure 5.7: As Figure 5.5. The colour indicates the median variability period within each
colour–magnitude bin.

of the main sequence and the Red-Giant Branch (RGB) (��% − �'%∼ 1.5, � ∼ 4). These
objects may be young, massive objects with high levels of activity, or RS Canum Venaticorum
variable binaries, such as those observed spectroscopically by Strassmeier et al. (1993).

In Figure 5.7 I plot the median period in each colour–magnitude bin. Of particular interest,
we can see distinct regions of different variability periods on the HR diagram. There is a
region of short median period at the top of the main sequence (��% − �'% ∼ 0.4, � ∼ 1.0).
Typical spot-driven photometric modulation will not be present on these hotter, radiative stars.
The majority of variability seen in this region will be attributed to pulsations; a comparison
to Figure 2.7 indicates this region of the HR-diagram is occupied by pulsating variables such
as RR-Lyrae, W-Doradus and X-Scuti stars on the instability strip. There may also be magnetic
OBA or chemically peculiar Ap stars within this region. In these stars, photometric brightness
fluctuations are seen as a result of fossil magnetic fields imprinting chemical abundance in-
homogeneity on the stellar surface (Sikora et al. 2019; David-Uraz et al. 2019). These targets
are prime candidates for future spectropolarimetric observations to detect and characterise the
magnetic fields of these stars (e.g., Grunhut et al. 2017).
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Figure 5.8: Histogram of the empirical detection percentage for all sources against luminosity,
as well as the luminosity distribution for all observations.

A large number of the longest period variability signals lie on the RGB (��% − �'%
' 1.0, � / 2.0. These signals could indicate extremely slowly rotating large stars or other
photometrically varying sources such as giant star pulsations.

I also note a clear trend of increasing period as we move perpendicular down towards the
main sequence along the Hayashi tracks (Hayashi 1961). There are potentially several effects
at play here:

1) One would expect a population of equal mass binary stars with short rotation periods
to lie 0.75 in absolute magnitude above the main sequence, contributing to the shorter
median period in this range.

2) Onewould also expect a population of young stars to lie in this region of colour–magnitude
space. In particular, we see short-period objects which lie between the 10 Myr and 1 Gyr
isochrones.

In this region of the HR diagram potentially lie pre-main-sequence (PMS) Young Stellar
Objects (YSO) such as T-Tauri stars with protostellar debris discs, which we expect to have
shorter rotation periods than main-sequence stars. The median period observed for the bulk of
main-sequence objects is 20 to 30 days, as expected.

I plot detection percentage vs luminosity in Figure 5.8. Luminosity values are taken from
ticv8 (Stassun et al. 2018), calculated as:

!

!�
=

(
'

'�

)2
·
(
)eff

5772

)4
. (5.3)
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I use the radii values provided by TICv8. These radii values are either taken from pre-
existing dwarf catalogue values (from Muirhead et al. 2018) orwhen these are not available (as is
the case for a large majority of the NGTS sources) they are calculated from distance, bolometric
corrections, G magnitude and a preferred temperature. Full details of this calculation are
given in Stassun et al. (2018). )eff values come from spectroscopic catalogues where available,
otherwise they are derived from the de-reddened ��% − �'% colour.

As expected, I recover a much higher fraction of variable signals from more luminous stars,
with up to 15% of the brightest objects in the sample having detectable variability signals.
These objects will correspond to extremely bright giant stars, where one would expect large-
amplitude variability arising from pulsations. The lowest number of variable objects coincides
with the peak in the number of objects (at 1.5–2.5 !�), where I detect variability in < 2% of
objects. I also observe an increase in detection percentage for the faintest objects. Here one
should expect to be observing cooler dwarf stars and young stars which generally have higher
levels of magnetic activity and could lead to increased detection of photometric variability.
Additionally, close binaries may appear more luminous than single stars and from their position
above the main sequence in the HR diagram (Figure 5.2), appear to have a higher detection
percentage than equivalent single stars. Given the width of the luminosity bins used is larger
than the expected luminosity increase from a single star to an equal luminosity binary (0.2 dex,
a factor ∼ 1.6 in luminosity), this will not have a large effect on the plotted distribution.

I also assessed the distribution of detection percentage against on-sky RA and Dec for the
population. The distribution of detection percentage for field stars did not appear to have any
obvious correlation with the on-sky position.

5.2.2 Example variability signals

I show six examples of variability signals in Figure 5.9. A table of stellar parameters for each
object is included for reference.

I selected the included objects to demonstrate a small selection of the variability I am able
to extract from NGTS light curves. The stars are selected to have a range of spectral types,
and demonstrate variability with different periods, amplitudes and signal shapes. In particular,
using the object numbering as in Figure 5.9 (1 to 6, top to bottom):

1) An extremely short period, semi-detached eclipsing binary. This object lies above the
main sequence, as expected for a near-equal mass binary system.

2) A typical short-period pulsation signal from an RR-Lyrae object.
3) A candidate young stellar object (YSO). Objects above the main sequence with peri-

ods of 5 to 10 days are excellent YSO candidates, suitable for follow-up infrared and
spectroscopic observations.
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4) An example of a variable red-giant star. These are stars such as Cepheids, semi-regular
variables, slow irregular variables or small-amplitude red giants.

5) A main-sequence late-G dwarf star, with small amplitude 20- to 30-day variability.
6) A long period M-dwarf.

Within the observed G-ACF signals we see artefacts arising from 1-day sampling aliases.
These aliases are particularly relevant for signals of period < 1 day, where it was necessary to
perform the additional verification steps outlined in Section 5.1.3.5.

5.2.3 Cross-matching with previous catalogues

I cross-matched the NGTS variability periods with photometric variability catalogues in the
literature. The ASAS-SN variability catalogue is a large catalogue of photometric variability.
I took the latest available data, containing 687,695 variable stars from Jayasinghe et al. (2018)
through to Jayasinghe et al. (2021)d. I cross-matched my catalogue with the ASAS-SN cata-
logue, matching on TICv8 ID and Gaia DR2 ID. I found 2,439 matches with periods in both
catalogues. A period-period comparison is shown in the left panel of Figure 5.10. The majority
(about 1,500 stars) had similar periods from both catalogues. For approximately 750 stars, the
periods differed by a factor of 2. This was most common for eclipsing binary targets in which
the primary and secondary eclipses were of similar depths, and either the NGTS or ASAS-SN
period was half the correct period. Periods with large discrepancies appear to be long-term
trends within the NGTS or the ASAS-SN data masking any shorter-term variability, or period
aliasing resulting from the 1-day sampling seen in both surveys. The NGTS period extraction
pipeline will not return periods close to 1 day or multiples thereof to reduce the number of
systematic false positive detections. We see many periods in the ASAS-SN catalogue falling
on exact fractions of 1 day, resulting in the ‘stripes’ of periods seen in the lower right of the
Figure. We see structures within the period-period diagram resulting from objects for which
the NGTS and ASAS-SN detections are aliases of one another with respect to 1-day sampling.
Equation 2.3 can be used to calculate these connections and relations of the form

%ASASSN =
1

%sampling ± 1
%NGTS

(5.4)

are shown in Figure 5.10. Three obvious sets of aliased periods exist that trace these relations,
accounting for approximately 114 matches. We see two sets of related periods arising from
1-day sampling, with the same double phase folding for eclipsing binaries resulting in the set of
periods approaching 2 days. There is also a small group of periods connected by aliases arising
from 2-day sampling, however, the form of the relation is not shown in the Figure.

dThe full catalogue is available at https://asas-sn.osu.edu/variables

https://asas-sn.osu.edu/variables
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Figure 5.9: Example variable star signals across the HR diagram. From left to right: A table
of stellar parameters. The NGTS light curve, binned to 20 minutes. The G-ACF of the light
curve, with a green line indicating the extracted period. The light curve phase folded on
the extracted period, each successive period is coloured according to a perceptually uniform
sequential colourmap.
The position of each star on the HR diagram is shown, the numbered labels 1 to 6 correspond
to the stars top to bottom. Solar metallicity PARSEC isochrones of ages 10 Myr and 1 Gyr are
included as solid black and orange lines respectively.
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Figure 5.10: NGTS variability periods from this study compared with ASAS-SN periods (left)
and Gaia (right). Lines of equal period from both surveys are plotted in light grey, and for
the ASAS-SN comparison lines showing periods differing due to incorrect phase folding by a
factor of two shorter or longer are also plotted in light grey. The red dashed lines and associated
equations indicate relations between periods arising from 1-day sampling. Light grey dotted
horizontal lines in the left-hand figure and corresponding periods indicate where ASAS-SN has
recovered periods corresponding to exact fractions of a day.

I was able to find three cross-matches with the MEarth rotation catalogue from Newton
et al. (2018). Of these, NGTS was able to extract a short 0.4-day rotation period for an object
which not present in the MEarth catalogue (NG1444−2807.12982). For the two other objects
(NG1214−3922.6732 and NG0458−3916.13434), NGTS detected a near 100-day period, sim-
ilar to MEarth. The length of these periods would require extended observation from either
survey to improve the accuracy as both surveys were only able to observe two to three complete
variability cycles.

A variability study was conducted as part of the Gaia Data Release 2 (DR2, Gaia Collab-
oration et al. 2018c), where photometric time-series data was processed to detect and classify
variable sources (as described in Holl et al. 2018). Photometric time series from Gaia are
sparsely sampled and not optimised to detect photometric variability, so may produce an in-
correct period. I cross-matched 126 objects against the rotation period database provided by
the Gaia Collaboration on VizieRe, these period comparisons are shown in the right panel of
Figure 5.10. For 60 of the 126 periods that differed, I phase folded the NGTS data on both
periods and manually inspected which phase fold appeared to be favourable. The NGTS period
was favoured in the majority of cases through visual inspection. As expected for space-based
data we do not see any aliasing artefacts in the Gaia periods as in the cross-matching with
ASAS-SN. This is a clear demonstration that the NGTS period recovery pipeline is well suited

ehttps://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=I/345/rm

https://vizier.cds.unistra.fr/viz-bin/VizieR-3?-source=I/345/rm


5.2. Results 111

to deal with aliases arising from 1-day sampling
Finally, I cross-matched the NGTS sample with the variability catalogue from Canto-

Martins et al. (2020), which searched for rotation periods in 1000 TESS objects of interest. I
found six objects in both catalogues by matching on TIC id. These come from three different
results tables from Canto-Martins et al. (2020): TIC 14165625 and 77951245 contain ‘unam-
biguous rotation periods’, TIC 100608026 and 1528696 contain ‘dubious rotation periods’ and
TIC 150151262 and 306996324 contained no significant variability in the TESS data. Manual
inspection of these objects confirmed the NGTS light curves contained variability at the repor-
ted period from this study. For TIC 14165625, the reported TESS period was approximately
half the NGTS period, and for TIC 77951245 the reported periods were similar (5.8 days and
5.4 days for NGTS and TESS respectively), although the phase fold on the NGTS data was
cleaner using the NGTS period.

Although a large number of photometric variable stars are known in the Kepler field, I
am unable to cross-match with these catalogues as NGTS does not observe this part of the
sky. Additionally, I do not attempt to cross-match with small catalogues and papers reporting
detections of individual variable objects. Two large variability catalogues I do not attempt cross-
matcheswith are The Zwicky Transient Facility (ZTF) catalogue of periodic variable stars (Chen
et al. 2020) or the catalogue of variable stars measured by the Asteroid Terrestrial-impact Last
Alert System (ATLAS) (Heinze et al. 2018). The ZTF catalogue contains 4.7 million candidate
variables and the ATLAS catalogue 621,702 candidate variables. Both surveys target much
fainter objects than NGTS: the brightest candidates in both surveys are approximately as bright
as the faintest objects observed by NGTS (Masci et al. 2018; Tonry et al. 2018). Due to the
small overlap in brightness and a large number of candidates in each catalogue, I elected not
to perform a cross-match. Further cross-matching with smaller catalogues will be possible,
as I provide the position in RA and Dec, as well as TICv8 and Gaia DR2 identifiers (where
available) for all 16, 880 variable sources as a part of the paper.

5.2.4 Period ranges of interest

I break the results down into unevenly spaced intervals in variability period to assess how
samples of similar variability periods are distributed in colour–magnitude space in Figure 5.11.
This reveals more information than Figure 5.2 as it is possible to probe into the high-density
main sequence. I have selected the period ranges empirically taking into account the sampling
gaps at 14 and 28 days arising from Moon contaminated signals.

The majority of the shortest period variability lies at the top of the main sequence. This
could be indicative of X-Scuti, RR-Lyrae or rapidly oscillating Ap stars in the instability strip.
Typically, RR-Lyrae-type objects lie in this region at the lower end of the instability strip and
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Figure 5.11: HR diagrams for the NGTS variability sample broken down into period ranges.
Periods in the sample range from ∼ 0.1 to 130 days. The colour bar indicates the percentage
of all variable objects across all period ranges that lie in this specific colour–magnitude–period
bin. The sum of each bin across all 5 subplots will equal 100%. Solar metallicity PARSEC
isochrones of ages 10 Myr and 1 Gyr are included as solid black and orange lines respectively.
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Figure 5.12: Effective temperature and Gaia ��% − �'% colour against period for 16, 880
stars. The colour indicates the 5th − 95th percentile spread of the signal in relative flux. To aid
the eye, horizontal strips indicate regions of period space likely affected by systematics arising
from the Moon or the 1-day sampling alias, with multiples of these periods more transparent.

pulsate with periods of less than 1 day. The peak density for less evolved stars is above the
main sequence at this period range. Between 1 and 10 days, we would expect to observe the
rotation of YSOs such as T-Tauri stars or young main-sequence stars (e.g., as seen in Gaia
Collaboration et al. 2019). We may also observe short-period binary star systems at this period
range, which would also lie above the main sequence on the HR diagram. In the period range
of 3 to 14 days, we continue to see a peak density above the main sequence, though the bulk
moves towards later spectral types compared to the very short periods.

Between 16 and 26 days, we see the peak density move towards the main sequence as well
as a distinct lack of objects above the main sequence. At > 30 days, we start to see detections
into the RGB as well as more M-type stars. We would expect giant, evolved stars to have
longer-period rotation or pulsations. Moving from 32 − 50 to > 50 day periods we see the
bulk of objects move further up the RGB and further down the main sequence towards cooler
temperatures and redder colours.

5.2.5 Periodicity-colour comparison

I plot my variability periods against colour in Figure 5.12 and see several prominent features.
Most striking is the high density of stars known in the literature as the ‘I-Sequence’ (Barnes
2003) or the ‘Ridge’ (Kovács 2015) spanning a period range from 4− 40 days and ��% −�'%
0.75 − 3.5. The shape of this envelope has been empirically defined by Angus et al. (2019),
using a broken power-law gyrochronology model calibrated against the ∼ 800Myr old Praesepe
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cluster.
We see a large number of long-period (> 40 days) objects at ��% − �'% of ∼ 1.0. We

would expect a higher density of detections at this colour due to the high-density main-sequence
turnoff and red clump, as shown in Figure 5.2(b). Older main-sequence stars in this colour
range may exhibit long period rotational modulation. Within this colour range lies the Cepheid
instability strip, and we would expect to see long-period oscillations from evolved stars driven
by the ^ mechanism (Saio 1993)

Far below the I-sequence we see a high density of much shorter period, high amplitude
variability amongst hot objects at ��% − �'% ∼ 0.5 → 1.5, and Period < 1 day. This
population corresponds to the top of the main sequence on an HR diagram.

We see two distinct groups of objects in a period range shorter than 1 day, trending to
short periods with increasing colour index (��% −�'% ∼ 0.75→∼ 1.5). On further analysis,
I confirmed that the two distinct groups are from the same region of the HR diagram: the
equal-mass binary main sequence. The light curves showed distinct eclipsing binary signals (as
seen in object 1 in Figure 5.9), however, the longer period branch contained light curves phase
folded on the correct period and in the shorter period branch light curves phase folded on half
this period. This is an artefact of the RMS minimisation step described in Section 5.1.3.5. For
eclipsing binaries with slightly different primary and secondary eclipse depths the full period
will show a ‘cleaner’ phase folded light curve with separate primary and secondary eclipses.
In comparison, for an equal depth binary, the phase folded light curve will have a similar RMS
if folded on the correct period or half the period, with the primary and secondary plotted over
one another in phase space.

Finally, we can observe a period upper envelope of stars from ��% − �'% > 1.5 with the
period increasing for the reddest stars. We see some objects with ��% − �'% > 2.5 having
variability periods up to and exceeding 100 days. These objects are discussed in detail in
Section 5.3.2.

5.2.6 Period bi-modality

Within the I-sequence envelope we can see a hint of a region lacking in periodic signals between
∼ 3500 K and ∼ 4500 K (��% − �'% ∼ 2.5 to 1.5) and ∼ 15 to ∼ 30 days. This gap has been
the topic of extensive discussion in recent papers (such as McQuillan et al. (2013); Davenport &
Covey (2018)), and although faint, I do observe this gap in this ground-based data set. This gap
has previously been fitted using a gyrochrone, roughly following a )eff1/2 relation (Davenport
& Covey 2018), as well as an empirical model using a similar )eff1/2 relation (Gordon et al.
2021).
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Figure 5.13: Distribution of the distance from a 600 Myr gyrochrone of the log periods for
stars 1.4 < ��% −�'%< 2.2. We see two peaks in the distribution, with a reduced number of
rotation periods along the model gyrochrone (grey vertical line). The range of distances from
the model to the Moon and half Moon period is included to demonstrate the lower density of
objects does not arise from a gap due to the Moon.

To demonstrate the gap is present in my data, I conduct the same analysis as in Figure 3 of
Davenport & Covey (2018). I subtract model periods calculated with a 600 Myr gyrochrone
defined in Meibom et al. (2011) from our periods. I constrain the data set to objects such that
1.4 < ��% − �'%< 2.2 to avoid the gyrochrone crossing the Moon signal sampling gaps. In
Figure 5.13 we observe a dearth of objects along the gyrochrone, demonstrating the same gap
as in the Kepler field is present within the NGTS data.

In Figure 5.14 I separate the sample into three sub-samples based on a bi-modality gap
model and empirical short-period lower limit from Gordon et al. (2021). I calculate how far
these objects lie in absolute magnitude from an approximate main-sequence isochrone defined
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at 1 Gyr with Solar metallicity (Δ�), as plotted in Figure 5.2. I use this to assess where the
three sub-samples lie on the CMD, to ascertain if they arise from distinct stellar populations in
terms of colour and intrinsic brightness.

For this part of the analysis, I elect to remove potentially evolved stars, giants and sub-giants
to ensure the models from Gordon et al. (2021) and Angus et al. (2019) which are fitted to
main-sequence stars from Kepler and K2 are applicable. I use the evolstate code described
in Huber et al. (2017) and Berger et al. (2018). The code gives crude evolutionary states for
stars based on temperature and radius, with the models derived from Solar-type stars. I remove
objects with the ‘subgiant’ or ‘RBG’ flags.

I define 3 sub-samples using several model constraints in period–colour space. I use the
fifth-order polynomial model defined in Angus et al. (2019) to constrain the long-period upper
envelope of stars, and the edge-detection-based fit from Gordon et al. (2021) to constrain the
short-period lower envelope. I calculate the upper and lower edge of the gap using the model
defined in Gordon et al. (2021), and select stars from the I-sequence envelope on either side of
this branch. This model was only defined for 0.8 < � − �'% < 1.05, so I only use objects
within this bound to define the sub-samples. The third sub-sample is defined as all objects
below this boundary in period and will consist of stars not included in the Kepler and K2 data
sets which fall well below the well-defined I-sequence in period. The precise details of the two
models are given below and plotted in Figure 5.14a.

Angus model

I use the Praesepe-calibrated gyrochronology relation defined in Angus et al. (2019), as well
as the parameters defined in Table 1 of this paper. The mathematical form of this fifth-order
polynomial relationship is given in Equations 5.5 & 5.6 below for two different ��% − �'%
regimes:

log10(%rot) = 2A log10(C) +
4∑
==0

2n [log10(��% − �'%)]= (5.5)

for stars with ��% − �'% < 2.7 and

log10(%rot) = 2A log10(C) +
1∑
<=0

1m [log10(��% − �'%)]< (5.6)

for stars with ��% − �'% > 2.7. Here %rot is the rotation period in days, and C is age in years.
I use the best-fit coefficients from Angus et al. (2019) in Table 5.4.
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Table 5.4: A table of model coefficients used in Equations 5.5 & 5.6 as defined in Angus et al.
(2019).

Coefficient Value

2A 0.65 ± 0.05
20 −4.7 ± 0.5
21 0.72 ± 0.05
22 −4.9 ± 0.2
23 29 ± 2
24 −38 ± 4
10 0.9 ± 0.5
11 −13.6 ± 0.1

Table 5.5: A table of model coefficients used in Equation 5.7 as defined in Gordon et al. (2021).

� (days) � (days) G0

upper edge 68.2277 −43.7301 −0.0653
lower edge 34.0405 -2.6183 0.3150

Gordon model

I use the K2 calibrated model from Gordon et al. (2021) to define the upper and lower edges of
the bi-modality gap seen in the I-sequence envelope. The gap edges are fitted using a function
of the form:

% = �(� − �'% − G0) + �(� − �'% − G0)1/2 (5.7)

where % is the rotation period in days. This equation is defined empirically for K2 stars with
0.8 < � −�'% < 1.05. We use the best fit coefficients defined by Gordon et al. (2021) in Table
5.5.

The lower edge of the K2 sample from Gordon et al. (2021) used an edge-detection method,
and as such no parametric model form was given. I instead define the lower edge by eye, taking
the edge-detection fit line from the Gordon et al. (2021) paper.

The histograms in Δ� plotted in Figure 5.14b show two similar single-peaked distributions
from the two longer period sub-samples and a distinct double-peak distribution for the shorter
period sub-sample. I note that this second peak lies approximately 0.75 magnitudes above the
peaks of the two longer period sub-samples which could indicate a population of binary objects
which is not present in the upper two sub-samples. This confirms a previous observation from
the HR diagram: a group of very short period objects just above the main sequence, which
could correspond to a sample heavily contaminated by binary sources. The two longer period
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Figure 5.14: Panel (a): period–colour diagram of our sample, with three sub-samples defined
by empirical models from Gordon et al. (2021) and Angus et al. (2019). Panel (b): Histograms
of the magnitude difference in each of the three sub-samples from a main-sequence isochrone.

sub-samples appear to have by-eye similar distributions of Δ�, which leads me to believe the
two branches are drawn from similar stellar populations in terms of colour, intrinsic brightness
and multiplicity.

5.3 Discussion

5.3.1 Comparison to similar studies

The NGTS data set demonstrates that it is possible to use ground-based photometry to conduct
stellar variability studies previously only done on this scale using space-based data. In contrast
to, for example, the Kepler data set used by McQuillan et al. (2013) and Davenport & Covey
(2018), NGTS sources are not pre-selected. This provides a much more representative sample
of field stars which is demonstrated in the much higher number of objects which lie away from
the high-density I-sequence envelope of stars in period–colour space. Objects which lie within
the I-sequence will encompass a selection of stars most likely to be main-sequence, single
objects similar to the Kepler input catalogue. I overlay data from the Kepler rotation study by
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Figure 5.15: Effective Temperature vs Period data compared for this study (NGTS data, green
circles), McQuillan et al. (2013) (Kepler data, grey squares) and Newton et al. (2018) (MEarth
data, blue squares).

McQuillan et al. (2013) with my variability sample in Figure 5.15. In particular, we see a high
density of objects at ��% − �'% ∼ 1.0 with periods longer than roughly 40 days not present
in the Kepler data set. These objects lie in the RGB and AGB on the HR diagram, so will be
giant objects which have not been removed from the NGTS study. We also see a large number
of objects with much shorter periods than the I-Sequence envelope. These objects lie above the
main sequence on the CMD and will be either short-period binary sources or potential YSOs.

In addition to finding astrophysical signals of interest, I was also able to detect systematic
periodicity within the entire data set down to amplitudes of 0.3%. As NGTS’s primary scientific
goal is to search for planets, in this context these very low amplitude systematic signals rarely
matter, especially when follow-up observations and precise modelling are factored in. This
study highlights the power of ground-based photometric surveys in terms of the size and
precision of the data set. I have been able to extract a data set that rivals that of the Kepler
and K2 missions, with a much longer baseline (in the case of K2) and a much greater range
of pointings (in the case of Kepler). As a corollary, this study also serves as an exercise that
ground-based photometric data may prove more difficult to analyse systematically than space-
based data due to many increased sources of noise and aliasing. I note a lower recovery rate
of periodic signals than in other studies. McQuillan et al. (2013) found variability in 25.6% of
their ∼ 130, 000 objects, Gordon et al. (2021) found variability in almost 13% of their 69, 000
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objects, and NGTS was able to find variability in about 2% of 829, 481 objects. I note that
21% of all objects were flagged as having signals arising fromMoon contamination, the largest
source of systematic noise in this study.

The combination of a relatively long baseline (∼ 250 days) and multiple pointings (94 used
in this study) allows the NGTS data set to probe out to reasonably long period regimes (∼
0.1–130 days) and across a range of spectral types (late-A to mid-M).

5.3.2 Long period M-dwarfs

Previous studies such as Newton et al. (2018) have used targeted ground-based photometry to
extract very long period variability forM dwarfs. I also find these extremely long periods (> 100
days) in the M-dwarf population of this sample. Figure 5.12 shows an upwards trend in period
in the mid-M dwarf sample at < 3500 . To provide a useful comparison to the MEarth rotation
study, I also assessed this trend for just dwarf stars (as defined by evolstate). This sample
contains751 non-evolved, dwarf objects with variability periods with Gaia ��% −�'%> 2.21,
which is the bluest limit of the MEarth rotation study catalogue.

In this study, the fields chosen had at most a 250-day time series, which allows robust
extraction of periods up to roughly 125 days in length. Newton et al. (2018) observed periods
up to 140 days long for some of these objects, hypothesising that an upper limit close to
this period would occur through Skumanich-like angular momentum loss for stars of the ages
observed in the local thick disc. Using the Skumanich C1/2 relation and taking the age of the
local thick disc to be 8.7 ± 0.1 Gyr (Kilic et al. 2017) we calculate the longest Skumanich
relation period to be approximately 145 days. The NGTS rotation periods qualitatively agree
with the distribution of rotation periods seen in M dwarfs by Newton et al. (2018), however,
these data reach the detectable period limit of these NGTS observations just shy of the ∼ 140
day limit in the MEarth detections. It is interesting to note the Skumanich relation still appears
to hold from the longest period objects across samples, even into the fully convective M-dwarf
population for which the physics of spin-down is not fully understood. Further observations
of much older open clusters could shed light on this interesting long-period M-dwarf sample,
and observations with much longer time baselines would allow us to probe into period regimes
where spin-down could be more efficient than the Skumanich relation. I note that current
photometric space missions such as TESS (Ricker et al. 2014) may be useful to shed light on
this long-term variability across the sky, but only at the ecliptic poles where objects will be
observed for up to 1 year continuously, with a one-year gap before another year of continuous
observation. Most of the sky will only be observed for 28 days at a time, meaning a maximum
of 14-day periods could be reliably extracted.
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This NGTS study overlaps both the Kepler rotation period data and the MEarth rotation
period data, allowing more robust comparisons to be made between the two previously disjoint
samples. The NGTS data set provides a broad view into stellar rotation, targeting similar Solar-
type stars as observed by Kepler, as well as more diverse populations across the HR diagram
and a range of pointings.

5.3.3 Period bi-modality

I continue the ongoing discussion regarding the rotation period gap (McQuillan et al. 2013;
Davenport & Covey 2018; Reinhold et al. 2019; Reinhold & Hekker 2020; Angus et al. 2020;
Gordon et al. 2021), including the first ground-based data set to have observed this feature in
period–temperature space. Although the gap is not as clear as in the space-based data, I align
models from several previous works to a region of lower density in the NGTS data, as shown in
Figure 5.13. To show this, I apply the same analysis as in Davenport (2017) and Davenport &
Covey (2018), subtracting a 600 Myr gyrochrone taken from Meibom et al. (2011) which was
assessed as the best fit for the observed gap in the Kepler data. A histogram of distance from
this gyrochrone in log10(%rot) demonstrates a region of lower density close to this gyrochrone.
The aliasing gaps created by theMoon and half-Moon period signals mean I am unable to probe
the gap as it approaches these period ranges.

By utilising empirical models from previous studies on Kepler and K2 data, I separated
my sample into three sub-samples: this is seen in Figure 5.14. Within the two upper sub-
samples, we see the highest period objects are on average further above the main sequence
in � than the lower period objects. This effect has been previously observed, as Davenport
& Covey (2018) saw a small increase in period as we move up in magnitude from the main
sequence, but not as far as to be influenced by large numbers of binary objects. I note, similar
to the Davenport & Covey (2018) study that I have not accounted for metallicity or age when
considering the distance from a Solar metallicity defined main-sequence isochrone at 1 Gyr.
Metallicity has been shown to affect the amplitude of variability signals and additionally may
lead to observational biases whereby for a given mass, higher metallicity stars’ variability is
more easily detected (See et al. 2021). There is also the possibility of contamination by lower
mass-ratio binary systems. Further observations of open clusters with defined stellar ages and
a tight single-star main sequence may afford more conclusive evidence towards this period
gradient across the main sequence. Such studies have been conducted on open clusters across
a large range of ages such as Blanco 1 (∼ 100 Myr) (Gillen et al. 2020), Praesepe (∼ 800 Myr)
(Rebull et al. 2016a, 2017), Ruprecht 147 (∼ 3 Gyr) (Gruner & Barnes 2020) and M67 (∼ 4
Gyr) (Barnes et al. 2016).

The two sub-samples do not appear to be significantly contaminated by multiple systems
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and arise from similar locations on the HR diagram. Combined with the knowledge that these
objects are from a range of pointings, this supports the conclusion of Gordon et al. (2021) that
these two sub-samples do not derive from two distinct star formation epochs.

A broken spin-down law as discussed inGordon et al. (2021) would be explainedwell by this
data, including the possibility that the (very few) objects observed within this gap are currently
transitioning between the two longer period sub-samples. In this broken spin-down law, the
angular momentum change of the star will deviate from the expected C1/2 relation proposed by
Skumanich (1972) due to the transfer of angular momentum between the envelope and the core.
Before this transfer of angular momentum, the core and envelope are decoupled, resulting in
the expected C1/2 spin-down of the envelope but with a rapidly rotating core which will then
reduce or even stop the spin-down once the core and envelope re-couple. This model has been
suggested to fit Kepler data in addition to K2 data (Angus et al. 2020; Gordon et al. 2021),
and theorists such as Lanzafame & Spada (2015) and later Spada & Lanzafame (2020) have
incorporated these effects into stellar evolution models which have been shown to fit observed
cluster data of different ages. The proposed models include a two-zone model of internal stellar
coupling, with a parameter describing the mass dependence of the coupling. The recent analysis
of the ∼ 3 Gyr old open cluster Ruprecht 147 by Gruner & Barnes (2020) demonstrates that
the model from Spada & Lanzafame (2020) incorporating internal angular momentum transfer
is best suited to model the rotational evolution of stars redder than K3 in comparison to more
naive gyrochronology models.

Another suggestion for the origin of this gap comes from analyses by Reinhold et al. (2019)
and Reinhold & Hekker (2020) of K2 data. In their proposed model, the gap arises from objects
in which the photometric variability arising from spots and faculae is of similar magnitude, thus
cancelling out, resulting in lower amplitude variability that is correspondingly harder to detect.
They observed a slight decrease in signal amplitude on either side of the gap in period and
hypothesised objects of this period could exhibit spot-faculae photometric cancellation. I do
not observe such an obvious decrease in signal amplitude in the full NGTS sample, and when
considering a smaller range of amplitudes more aligned with the K2 sample I again did not see
this amplitude gradient. This may be attributed to NGTS photometry being less precise than
Kepler, and a small change on a signal of 1% amplitude may not be detectable. To accurately
determine the dominant surface feature of a star requires observations of spot-crossing events
during planetary transits or Doppler images, neither of which are appropriate for follow-up
from a large-scale photometric study.
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5.4 Conclusions

In this study I extracted robust variability periods for 16, 880 stars out of 829, 481 stars observed
with the Next Generation Transit Survey (NGTS), based in Paranal, Chile. This is the largest
ground-based systematic photometric variability study conducted to date with such precise
and high-cadence photometry and highlights both the advantages of such studies as well as the
challenges. Using precise ground-based photometry, plus a generalisation of the autocorrelation
function to irregularly sampled data, I detected variability amplitudes down to levels of 0.3%.
The contamination of signals by systematics demonstrates that using ground-based photometry
requires further thought than usingmuch cleaner space-based data to avoid false positives arising
through aliases. The most common source of aliases arose from Moon contaminated signals
as well as aliasing from the 1-day periodic sampling intrinsic to ground-based observations. I
demonstrated I can overcome these limitations and produce robust variability signals across the
sample.

In comparison to previous large-scale stellar variability studies, I note that with NGTS we
observe across the Southern sky (in comparison to Kepler’s single pointing, as in McQuillan
et al. (2013) and Davenport & Covey (2018)). We do not pre-select our targets as is the case for
Kepler and K2, so I can observe variability across a more varied stellar sample. In particular, I
extracted long-term variability periods for a population of cool dwarfs, similar to a population
observed by Newton et al. (2018) using MEarth. This was made possible through our longer
observation baseline than space-based missions such as K2. This large population, sampled
across the sky over a long (250-day) baseline allowed this study to connect previous space-based
studies on main-sequence, predominantly Solar-type stars with ground-based M-dwarf studies,
which were previously unconnected.

Within the bulk of the rotation period ‘I-Sequence’, I observed a gap between 15 and 25
days, first observed byMcQuillan et al. (2013), and later studied in detail by Davenport & Covey
(2018), Reinhold et al. (2019), Reinhold & Hekker (2020), Angus et al. (2020) and Gordon
et al. (2021). Using models from Gordon et al. (2021), Angus et al. (2019) and Meibom et al.
(2011) I demonstrated that the gap is present in this data set, and also showed that the two
sub-samples of main-sequence objects above and below this gap appear to arise from similar
stellar populations on the CMD which are not contaminated by high levels of binarity. This
supports the hypothesis of a broken spin-down model as proposed by Lanzafame & Spada
(2015) and Spada & Lanzafame (2020) rather than distinct populations of star formation.

I also concluded that although a large population study of field stars is useful for assessing
trends in the wider stellar population, without well-defined ages of target stars it is difficult to
confirm angular momentum models. I suggest that studies of open clusters with well-defined
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ages and tight rotation sequences such as the recent study by Gruner & Barnes (2020) will yield
the most conclusive evidence of how stellar angular momentum evolves over the lifetime of a
star. These conclusions lead to the work conducted in Chapter 6, in which open clusters are
observed with NGTS and a search for variable signals is conducted. Additionally, I observed
several interesting non-main-sequence populations, including a small population of objects
which lie well above the main sequence with short rotation periods. Follow-up observations of
these targets would aid in confirming whether these stars are young, single stars such as T-Tauri
objects, or multi-object systems. This data set presents a wealth of additional data with many
avenues for follow-up science. These include both continued systematic variability analysis
of the NGTS data and also more in-depth analysis of interesting sub-populations of variable
objects not explored in this cardinal NGTS variability study.

The rotation period data produced in this Chapter will be made publicly available through
the Vizier catalogue access tool and the MNRAS online journal upon publication in MNRAS.
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Periodic Stellar Variability in the
Open Cluster NGC 6633

In this Chapter, I will outline rotational analysis completed on a subset of the NGTS data set
targeting the young open cluster NGC 6633. This work draws upon the large-scale rotational
study conducted in Chapter 5 but with a focus on open clusters for reasons explained in both
Chapter 1 and the conclusions of Chapter 5. I will provide some background context for this
work, describe the data taken with NGTS, discuss the methods used and the implementations
and finally report the rotational results found.

The NGTS Open Clusters Working Group identified NGC 6633 as an open cluster of
interest for observation during 2019 and 2020. NGC 6633 is a fairly young open cluster (∼
500 Myr, slightly younger than the Hyades and Praesepe), and at the time of observation,
had limited previous photometric survey data available. As we have seen in Chapter 1, open
clusters provide excellent stellar laboratories to understand stellar evolution. In particular,
studying co-eval populations of stars allows us to understand the similarities and differences in
stellar properties of stars of a given age, such as mass, temperature, surface gravity and angular
momentum.

It is possible to place age estimates on open cluster populations more easily than single
stars. Using complimentary ageing techniques can afford even greater precision, for example,
combining isochrone ageing and gyrochronology such as in Angus et al. (2019) or the combin-
ation of lithium abundance and rotational age estimates in open clusters (Jeffries et al. 1997;
Jeffries 1997). I have already touched on gyrochronology in Section 1.4.2, which fits empirical
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relations to spectral type, rotation period and age. By measuring rotation periods of stars within
open clusters, it is possible to fit calibrated gyrochronology relations to the colour–period dia-
gram to estimate the age of the cluster (such as James et al. 2010; Delorme et al. 2011; Angus
et al. 2015; Gillen et al. 2020; Gruner & Barnes 2020).

Isochrone fitting (Section 1.3.2) can also aid in understanding the age of an open cluster,
however, with several caveats. It is possible to estimate the cluster’s age by fitting an isochrone
to the observed colour–magnitude diagram. The accuracy of this fit will depend on the spacing
of isochrones of different ages and, in particular, along the main sequence, isochrones are
extremely close together. Low mass stars with convective outer shells will remain on the
main sequence considerably longer than high mass stars that will more rapidly deplete their
hydrogen reserves and begin to evolve, adding further difficulty to isochrone ageing for main-
sequence low-mass stars. At the main-sequence turnoff, isochrones are spread further apart;
with sufficiently precise measurements for stars in an open cluster, it is possible to produce
age estimates with errors of order 5–10% (Angus et al. 2019). Isochrone fitting works in
complement to gyrochrone fitting; gyrochronology is best suited to main-sequence stars that
exhibit spin-down, whereas isochrone fitting better suits off-main-sequence stars for which the
rotational evolution is less well modelled.

It is also possible to age open clusters with fractional surface lithium abundance measure-
ments. Lithium is the only metal produced in significant quantities in the big bang, and as such,
stars are created with lithium fractions similar to primordial levels. Lithium is destroyed in the
inner layers of stars through proton capture reactions when temperatures exceed 2.5 million
Kelvin. Lithium is transported to these inner layers through internal mixing processes such as
convection (Pinsonneault 1997). The presence (or absence) of photospheric lithium provides
evidence as to whether enough time has passed for lithium to be transported and destroyed in
the inner layers of a star. The Lithium Depletion Boundary (LDB) is the observational limit
below which cores of low-mass stars do not reach high enough temperatures for lithium burning
to occur; measurements of the LDB for low-mass stars within a cluster can yield accurate age
measurements independent of other ageing techniques such as isochrones or rotation (Burke
et al. 2004). Lower mass PMS stars (. 0.5"�) will rapidly burn lithium as they are fully
convective during the pre-main-sequence, which enables rapid transport of surface lithium to
the inner layers. However, lithium destruction will only occur once the stellar interior has
reached a high enough temperature to enable Li-burning. The rate at which the stellar core tem-
perature approaches the lithium destruction temperature is a strong function of mass. Hence, by
measuring the luminosity dependence of lithium fractions in a cluster, it is possible to calculate
an approximate age for open clusters (Burke et al. 2004; Jeffries & Oliveira 2005). Lithium
depletion in the context of this work is used as a complementary source of literature ages for
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open clusters; for more details on the technique, I refer the reader to a theoretical examination
by Burke et al. (2004); Bildsten et al. (1997) or the Li-depletion ageing studies of open clusters
such as Jeffries et al. (1997); Jeffries (2000); Jeffries & Oliveira (2005); Martín et al. (2018).

NGC 6633 is an open cluster in the constellation Ophiuchus thought to be of a similar or
younger age to Praesepe and the Hyades at roughly 500 Myr, with lower metallicity (Harmer
et al. 2001; Lyngå 1988; Strobel 1991). There has not been significant directed research
towards NGC 6633: a study by Jeffries (1997) analysed a small sample of lithium abundances
and spectroscopic rotation (E sin 8) rates for low-mass stars in the cluster, noting a similar rotation
rate in cluster member stars to the Hyades but with a different lithium depletion pattern. Jeffries
hypothesised that the increased lithium abundances, as well a greater spread in Li abundance
values observed in NGC 6633 compared to the Hyades, could be as a result of lower metallicity
and shallower convective zones of member stars rather than a significant age difference. They
concluded that their spectroscopic rotational measurements were insufficiently sensitive to yield
interesting results for this cluster. The relatively low metallicity of NGC 6633 was confirmed
more precisely by Jeffries et al. (2002), spectroscopically estimating [Fe/H] = −0.096 ± 0.081
for the cluster. This follow-up study also estimated the age of NGC 6633 as being marginally
younger than Praesepe and the Hyades. A later study, by Harmer et al. (2001), analysed X-ray
data from the cluster to determine whether the magnetic activity was similar to that of stars
within the Hyades and Praesepe; however, their work was fairly inconclusive due to weak X-ray
signals resulting in a high luminosity threshold for detection.

The previous inconclusive studies may be due to the large distance and interstellar extinction
of NGC 6633. The distance to the NGC 6633 has previously been reported as ∼ 348 pc by
Schmidt (1976), ∼ 312 pc in Lyngå (1988) and more recently as 394.3 ± 2.4 pc by Pang
et al. (2021) using the latest Gaia EDR3 data. Pang et al. (2021) find significant extinction of
about 0.558 mag in the visual using Gaia’s latest data release (EDR3): this extremely precise
astrometry and photometry allows insight into this distant cluster not previously possible.

NGTS has previously conducted similar targeted observations of open clusters, and Gillen
et al. (2020) (described in Section 8.1) has demonstrated the utility of NGTS photometry in
the context of open cluster variability studies. This study draws on the methods used by Gillen
et al. (2020), particularly the use of a combination of period extraction techniques to confirm
stellar variability periods from photometric light curve data. I extend the variability analysis
techniques developed in earlier chapters of this thesis, particularly the G-ACF as a variability
extraction tool in conjunction with previously well-established variability detection methods.

This Chapter is laid out as follows: Section 6.1 will explain the data used in this study:
NGTS photometry and Gaia astrometry, and the literature membership lists used for the cluster.
Section 6.2 will detail the methods used for extracting rotation periods from NGTS light curves,
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Table 6.1: A comparison of approximate open cluster properties for four open clusters discussed
in this study. References: 1Rebull et al. (2016a). 2Melis et al. (2014). 3Soderblom et al. (2009).
4Jeffries et al. (2002). 5Pang et al. (2021). 6Douglas et al. (2016). 7van Leeuwen (2009).
8Cummings et al. (2017).

Cluster Age Distance # of Members [Fe/H]
The Pleiades 125 ± 8 Myr1 136.2 ± 1.2 pc2 >10001 +0.03 ± 0.023

NGC 6633 400 – 600 Myr4,5 394 ± 2.4 pc5 3004 −0.096 ± 0.084

Praesepe 670 ± 67 Myr6 181.5 ± 6.0 pc7 7436 +0.156 ± 0.0048

The Hyades 727 ± 75 Myr6 46.5 ± 0.5 pc7 7866 +0.146 ± 0.0048

as well as the development of the open-source rotational period finding tool RoTo. I will outline
the results of this study in Section 6.3, exploring both the rotational modulation of individual
objects and assessing the period–colour slow-rotator sequence of the cluster. I compare the
slow-rotator sequence of NGC 6633 to clusters of a similar age (Praesepe and the Hyades) and
metallicity (the Pleiades) and discuss the gyrochronological results of this study. Table 6.1
outlines some basic properties for the four open clusters discussed in this Chapter to aid the
reader with comparisons.

6.1 Data

6.1.1 Literature membership lists and clustering

Cluster membership was determined from previous catalogues and clustering analysis of the
Gaia EDR3 astrometric data. I will briefly explain the catalogues used in this study in this
Section; Section 6.1.2 will detail how I combined these catalogues to assess cluster membership
for candidate NGC 6633 members.

Two large cluster survey catalogues pre-dating Gaia DR2 were included in the global
membership list: the cluster survey from Kharchenko et al. (2013) and the catalogue from Dias
et al. (2014). Kharchenko et al. (2013) used stellar data from the PPMXL all-sky catalogue
(Roeser et al. 2010) and 2MASS (Skrutskie et al. 2006) to determine kinematic and photometric
membership probabilities for stars in a cluster region. Dias et al. (2014) presented a catalogue
of mean proper motions and membership probabilities using data from the UCAC4 catalogue
(Zacharias et al. 2013). Both of these catalogues used astrometric measurements pre-Gaia, and
as such, contain large errors, with Dias et al. (2014) claiming positional errors of 15 to 100 mas
and proper motion errors from 4 to & 10 mas/yr.

Since Gaia’s second data release (Gaia Collaboration et al. 2018c), precise stellar positional
and kinematic parameters have allowed cluster membership lists to be refined. The Zari et al.
(2018) catalogue used this data to construct precision three-dimensional maps of stellar density
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within 500 pc to assess the distribution of young star-forming regions. Two catalogues from
Cantat-Gaudin et al. (2018, 2019) used Gaia astrometry to compile a list of 1,229 clusters using
an unsupervised membership assignment algorithm. Over-densities of stars within astrometric
space (`U∗ , `X , s) were found using an iterative k-means clustering approach to produce
membership probabilities for each star. The slightly more recent catalogue from Cantat-
Gaudin et al. (2020) uses a neural-network-based approach on the Gaia DR2 astrometry to
assign membership probabilities and predict cluster parameters such as age, distance modulus,
extinction, and sometimes, metallicity. Kounkel & Covey (2019) applied an unsupervised
machine learning algorithm toGaiaDR2’s 5-dimensional dataset (3d position and 2d velocity) to
identify clusters, associations and co-moving groups. They used HDBSCAN to find clusters of
varying densities within the large DR2 dataset and identified 1,901 individual groups consisting
of a total of 288,370 stars. These groups were not initially linked to previously known clusters
but referred to as ‘Theia’. Once linked with Cantat-Gaudin et al. (2018), 198 known open
clusters were found, including NGC 6633, which, based on other membership catalogues, is
contained within Theia 924. Finally, as part of the work of Gaia Collaboration et al. (2018b),
32 open clusters were analysed, and membership lists were generated based on an agreement
of astrometric solutions of candidate cluster members to the assumed astrometric motion of
the cluster centre (taken from previous catalogues such as Kharchenko et al. 2013), including
radial velocities where available. This membership test was conducted iteratively; I refer the
reader to Appendix A of Gaia Collaboration et al. (2018b) for full details of the process.

The release of Gaia Early DR3 (EDR3) (Section 6.1.3, Gaia Collaboration et al. 2021)
provided even more precise astrometric parameters. Pang et al. (2021) produced a membership
catalogue of 13 open clusters using this data release, including NGC 6633. The authors used an
unsupervised machine learning method on the 5-dimensional astrometric solution from Gaia
EDR3 (StarGO, from Yuan et al. 2018) based on self-organising maps. StarGO was originally
developed to cluster stars kinematically using DR2 data to determine the galactic origins of
halo stars in the Milky Way.

Additionally, I conducted a machine-learning-based clustering analysis using the Gaia
EDR3 astrometric parameters. I used the unsupervised clustering algorithm DBSCAN (Ester
et al. 1996) to cluster objects based on distance and proper motion from Gaia EDR3. Although
the hierarchical version of DBSCAN (HDBSCAN) has previously been shown to be an effective
tool for clustering DR2 astrometric data (Kounkel & Covey 2019; Kounkel et al. 2020; Cánovas
et al. 2019), since NGTS observed just a single field centred around NGC 6633, I elected to
use the standard DBSCAN algorithm to identify candidate cluster members and outliers from a
single cluster. Furthermore, as the NGTS field is centred around NGC 6633, I do not consider
the positions in RA and Dec when clustering.
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I ran DBSCAN in three dimensions: distance (derived from EDR3 parallax, see Section
6.2.1 for details), proper motion in right ascension (`U∗) and declination (`X). I first make
broad cuts on the data to remove far-outliers in distance and proper motion: I do not attempt to
cluster any objects further than 900 pc or with `U∗ > 3 mas y−1 mas y−1 or `X > 6 mas y−1.
These cuts were determined empirically based on the observed distributions of distances and
proper motions from EDR3 for the sample and broadly agree with the limits of these values
from previous catalogues (9 candidate members were outside this range). I normalised the three
dimensions using a linear min-max scaling and ran DBSCAN using n = 0.1, with a minimum
number of samples of 10.a Varying the value of n between 0.05 and 0.15 altered the number of
identified candidate cluster members by ±77, highlighting the strong dependence of DBSCAN
on n . I decided the value of 0.1 based on visualising the three dimensions: this gave a tight
grouping of candidate cluster members, with clear outliers in each of the 2d plots of the 3d
space (as shown in Figure 6.1). Varying the minimum number of samples did not affect the
clustering above a value of 5, for which DBSCAN always returned a single cluster and outliers.
I elected to use 10 to ensure this property.

Further work could be conducted into optimising the parameters of DBSCAN used, such
as cross-validation against other catalogues. In this study, the groupings from DBSCAN are
used to ensure no highly-probable new members with updated EDR3 parameters have been
missed by previous catalogues and that any candidate members flagged by previous catalogues
do not appear spurious. It is immediately noticeable from Figure 6.1 that several candidate
members from previous catalogues appear to have large calculated distances, which are not
flagged as cluster members by DBSCAN. I do not remove these objects at this stage, but further
considerations are taken for these objects when assessing the rotational properties of the cluster.

6.1.2 NGTS Observations and membership

NGTS observed a ∼ 9 deg2 region around NGC 6633 between 21/03/2019 and 24/07/2019,
taking 134,597 images centred on right ascension 18:27 and declination +06.36 deg. Due to
the COVID-19 pandemic, these images were not processed until August 2021. The standard
NGTS photometric pipeline was run on the field, resulting in 11,335 candidate light curves.
Membership data from all the catalogues listed in Section 6.1.1 provided 1,340 candidate cluster
members, of which NGTS was able to produce photometric light curves for 1,042. I searched
for periodic signals within these 1,042 candidate cluster members. 342 candidate members
with NGTS light curves were cross-matched with catalogues using DR2 and EDR3 data. I
found 235 matches from Gaia Collaboration et al. (2018b), 41 from Zari et al. (2018), 184 from
Cantat-Gaudin et al. (2018), 319 from Kounkel & Covey (2019), 117 from Cantat-Gaudin et al.

aSee Section 2.3.2.2 for details on DBSCAN parameters
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Figure 6.1: Cluster membership for a subset of 342 candidate NGC 6633 cluster members is
shown in three dimensions (distance, proper motion in right ascension (`U∗) and in declination
(`X), coloured by the source of the cluster membership prediction. Red points have been
identified as candidate cluster members in previous literature catalogues (52 points). Green
points have been identified as candidate cluster members by both DBSCAN and found in
previous literature catalogues (281 points). Gray points indicate objects identified as NGC
6633 members by literature catalogues prior to Gaia DR2 which are not contained in later
catalogues or predicted to be cluster members by DBSCAN.

(2020), and 45 from Pang et al. (2021). Objects were often contained in multiple lists, so the
catalogue cross-match numbers do not sum to 342. The 342 objects had an observed Gaia �
magnitude ranging from 17.9 to 9.8 mag.

Before searching for periodic signals, the data were binned into 20-minute bins to allow
faster computation. This binning will prevent any signals shorter than around 40 minutes from
being detected, but based on the expected rotation periods for main-sequence cluster members;
I do not expect this to limit our detections (for example Gruner & Barnes 2020).
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Figure 6.2: The positions of candidate members of the open cluster NGC 6633. Grey points
indicate candidate members from all cluster membership lists available. The blue rectangle
indicates the NGTS field of view around the cluster. Blue points are stars with available NGTS
photometry, and yellow points are candidate cluster members from cluster membership lists
that use Gaia DR2 or EDR3 data, which have been observed by NGTS. The yellow points are
taken as the cluster sample in this work.
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6.1.3 Gaia

The third Gaia data release is split into two instalments, with the early data release (EDR3, Gaia
Collaboration et al. 2021) at the end of 2020 and the full Gaia DR3 planned for the first half of
2022b. EDR3 contains five-parameter astrometric solutions for around 1.468 billion sources,
boasting improved precision over DR2 with an overall reduction in systematic noise. Due to its
increased precision, the EDR3 catalogue can resolve previously unresolved binary star systems
or faint background objects which appeared as one source in DR2. When cross-matching with
this catalogue, it is essential to ensure the EDR3 source matches with the DR2 source. The
Gaia catalogue enables this to be done easily by ensuring the DR2 and EDR3 source_idmatch
for objects for which the stellar parameters are not vastly different between the two catalogues.
In cases where the single DR2 source became multiple EDR3 sources with a poor match on
all EDR3 sources, I removed this object from the catalogue. Figure 6.2 shows the position of
candidate NGC 6633 members in RA and Dec, as well as the extent of the NGTS observation
field of view. The 342 candidate members taken from Gaia DR2 and EDR3 confirmed sources
are highlighted.

Despite the increased precision of the Gaia EDR3 photometry, Riello et al. (2021) suggests
setting limits on a calculated quality metric (the �% and '% flux excess factor, �) when using
Gaia EDR3 data. This is defined as a simple ratio between the total flux in �BP and �RP,
and the �-band flux: � = (�BP + �RP)/�G. Where an object has considerably more flux in the
�BP and �RP bands than the � band, this is indicative of problems in the �BP and/or �RP

photometry. Due to the design of the Gaia telescope, the �% and '% flux is measured using a
wider photometric aperture than the � flux, which is much more susceptible to contamination
from nearby sources or an unusually bright sky background than the� flux (Gaia Collaboration
et al. 2018a).

I followed the formulation outlined in Sections 6 and 9.4 of Riello et al. (2021) to flag
potentially problematic sources. Firstly, I calculated a colour-corrected �% and '% flux excess
value (�∗) using the polynomial relation and Table 2 of coefficients defined in Riello et al.
(2021) for each candidate NGC 6633 member to remove the dependence of colour on the flux
excess. The�∗ values for all 342 candidate stars are plotted against Gaia� magnitude in Figure
6.3. Secondly, I considered a magnitude dependent threshold in �∗ defined in Section 9.4 of
that work:

f�∗ (�) = 20 + 21�
<, (6.1)

with 20 = 0.0059898, 21 = 8.817481× 1012, and < = 7.618399. This relation was considered
to represent the 1 f scatter for a sample of well-behaved isolated stellar sources with good

bhttps://www.cosmos.esa.int/web/gaia/release. Accessed: 22/01/2022.

https://www.cosmos.esa.int/web/gaia/release
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Figure 6.3: Gaia corrected colour excess (�∗) vs � magnitude for 342 candidate members of
NGC 6633. The dotted line indicates a 5 f colour dependant limit on flux excess, 19 objects
above this threshold (red points) are flagged as having potentially bad Gaia photometry, the
remaining points are shown in green.

quality Gaia photometry (Riello et al. 2021). I used their conservative limit of 5 f from their
good photometry sample, which flagged 19 of 342 objects as having potentially spurious Gaia
photometry. The 5 f threshold is plotted in Figure 6.3. The 342 candidate members of NGC
6633 all lay well below the �∗ cutoff of 5.0 in the Gaia catalogue; the highest value of �∗ in
my sample was ∼ 0.5. I did not remove objects which were flagged as having potentially bad
Gaia photometry, but I consider this flag when assessing cluster properties.
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6.2 Methods

6.2.1 Distance calculations

Distances to each star are required to calculate absolute magnitudes and interstellar extinction.
As the distance to NGC 6633 is approximately around 400 pc, a simple inverse parallax will
not be appropriate as a distance estimate. Furthermore, catalogues such as Bailer-Jones et al.
(2018) and Bailer-Jones et al. (2021) use a galactic stellar density prior with assumptions
that are statistically sensible for the entire galactic stellar population but may not hold for
a cluster population at a specific pointing (Meingast et al. 2021). I elected to use a simple
exponentially decreasing density prior and the EDR3 parallaxes for each star. This density
prior has been demonstrated to work well for data sets when we have very little information
other than parallax and want to makeminimal assumptions (Bailer-Jones 2015). To generate the
posterior distribution, the authors first assume that the parallaxs is normally distributedwith an
unknown mean 1/A and known standard deviation fs . Secondly, they assume that the volume
density of stars is exponentially decreasing, i.e. %(+) ∼ exp(−A/!) for some characteristic
length scale !. I used the formalism outlined in Section 7 of Bailer-Jones (2015) with the
following functional form for the distance posterior %:

%(A | s, fs) =


A24−A/!

fs
exp

[
− 1

2f2
s

(
s − 1

A

)2
]

if A > 0

0 otherwise

for distance A , where s is the parallax, fs is the error on the parallax, and ! > 0 is a
characteristic length scale, here taken to be 1000 pc as in Bailer-Jones (2015). For distances
A � ! this corresponds to a constant space density of stars; the approximate distance to NGC
6633 is 400 pc, so most of the stars fitted will fall into this regime. I found the modal distance
value for this posterior given a Gaia EDR3 parallax and error value by setting 3%/3A = 0 and
numerically solving for the roots. The error on each distance measurement was calculated as ±
half the FWHM spread in the distance posterior.

I calculated an estimated median distance to NGC 6633, considering only the 281 candid-
ate members confirmed by previous catalogues and the DBSCAN clustering. This removes
potential distance outliers as seen in Figure 6.1. The calculated median distance and 16th to
84th percentile spread was (394±13) pc, which agrees with the EDR3 estimate from Pang et al.
(2021) (394.2 ± 2.4 pc, derived from 300 candidate members).



136 Chapter 6. Periodic Stellar Variability in the Open Cluster NGC 6633

6.2.2 Extinction correction

It has previously been noted by Pang et al. (2021) that NGC 6633 has a significant reddening
coefficient (� (� −+) = 0.18 mag) which would correspond to an expected extinction of 0.558
mag in the V-band using 'V = 3.1 (Cardelli et al. 1989). I calculated differential extinction
values for each star within the cluster, using the precise positions and distances calculated from
Gaia EDR3. I referenced a 3-dimensional dust map of the Galaxy to calculate the line-of-sight
interstellar extinction for each object. I then converted this extinction into the three Gaia EDR3
bandpasses: �, �BP and �RP. Although Gaia provides extinction values within DR2, these
extinction values are often unreliable as they only use data from the Gaia bandpasses, train on
synthetic photometry, and use inverse parallax as a distance proxy without an informed priorc.

I used the 3d dustmaps from Green et al. (2019), hereafter referred to as ‘Bayestar19’.
The latest iteration of this dustmap uses parallaxes from Gaia in conjunction with stellar
photometry from Pan-STARRS and 2MASS to produce detailed 3d dustmaps of the Galaxy
with reported reddening uncertainties approximately 30% smaller than those reported in the
Gaia DR2 catalogue. Bayestar19 can be queried using the Python package dustmapsd for any
right ascension, declination and distance north of a declination of -30°.

The units of Bayestar19 extinction differ slightly from standard units such as � (� − +)
colour excess. Green et al. (2019) provides empirical conversions into standard reddening
units; I used the conversion � (� − +) = 0.884× (Bayestar19). To calculate the effect of
extinction, I converted into the V band using �V = 'V × � (� − +) with 'V = 3.1 (Cardelli
et al. 1989) and then into the three Gaia EDR3 passbands using the following relations:

�G = 0.87�V, (6.2)

�BP = 1.10�V, (6.3)

�RP = 0.636�V. (6.4)

The coefficients were taken from the SVO Filter Profile Servicee (Rodrigo & Solano 2020),
which provides the ratio between the V-band extinction and the extinction in a large number of
survey filters, which in turn are calculated using the extinction law from Fitzpatrick (1999).

For the 281 members of NGC 6633 confirmed by both literature sources and DBSCAN, the
median extinction and 16th to 84th percentile spread in the three EDR3 bands were calculated as
�G = (0.41 ± 0.08) mag, �BP = (0.45 ± 0.09) mag and �RP = (0.26 ± 0.05) mag. The EDR3
G-band median extinction value is slightly lower than the value estimated by Pang et al. (2021)

cA full explanation of the Gaia DR2 catalogue extinction value calculations is given here:
https://gea.esac.esa.int/archive/documentation/GDR2/Data_analysis/chap_cu8par/sec_cu8par_

process/ssec_cu8par_process_priamextinction.html. Accessed: 22/01/2022.
dhttp://argonaut.skymaps.info/usage. Accessed: 22/01/2022.
ehttps://svo.cab.inta-csic.es/. Accessed: 22/01/2022.

https://gea.esac.esa.int/archive/documentation/GDR2/Data_analysis/chap_cu8par/sec_cu8par_process/ssec_cu8par_process_priamextinction.html
https://gea.esac.esa.int/archive/documentation/GDR2/Data_analysis/chap_cu8par/sec_cu8par_process/ssec_cu8par_process_priamextinction.html
http://argonaut.skymaps.info/usage
https://svo.cab.inta-csic.es/
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(converted to the G band using the relation in Equation 6.2), however, agrees within 1 standard
deviation. I calculated a fairly wide spread of differential extinction values for candidate cluster
members of ∼ 0.2 < �G < 1.0.

6.2.3 � −+ to ��% − �'% conversion

In Chapter 5, I convert between passbands using the relations defined in the ‘Modern Mean
Dwarf Stellar Colour and Effective Temperature Sequence’ (Pecaut & Mamajek 2013). It is
possible to use more accurate passband conversions within open clusters with a tightly defined
colour–magnitude main sequence. The Pecaut & Mamajek (2013) relations are defined only
on a relatively sparse grid in colour and not specifically calibrated to the Gaia passbands, so
interpolation would be necessary. Gruner & Barnes (2020) define empirical, formulaic colour
transformations between ��% − �'% and � − + . These transforms are fitted to photometric
data for the Hyades, the Pleiades, Ruprecht 147 and a selection of red stars taken from Pecaut
& Mamajek (2013), which have colour information in both � −+ and Gaia DR2 ��% −�'% .
I refer the reader to Appendix A of Gruner & Barnes (2020) for full details of the transforms,
for which both forward and inverse transformations are given. For the cluster data used in this
study, I convert from ��% − �'% to � − + and vice-versa using the Gruner & Barnes (2020)
transforms.

6.2.4 Identifying single stars

I identified potential photometric binary and higher-order systems by assessing their position on
the colour–magnitude diagram (CMD). I fitted a single-star cluster sequence and flagged stars
lying above this trend as potential multiple-star systems. The CMD I used compared Gaia "G

(absolute magnitude) versus ��% − �'% colour, using extinction corrected EDR3 data. This
will identify any near-equal-mass binary systems; I note that lower mass-ratio binary systems
may not be flagged using this method, and using multiple CMDs in different bands would help
to identify lower mass-ratio binary systems with different spectral types (e.g., as in Gillen et al.
2020). I elected to fit a cluster sequence over using an isochrone fit as this provided a tighter
fit to the entirety of the cluster sequence in comparison to the PARSEC isochrones, which
struggled to fit the exact shape of the cluster sequence, particularly at roughly 0.6 <��% −�'%
< 1.4. Figure 6.4 shows both the line of best fit for the cluster main-sequence and a PARSEC
isochrone of similar age and metallicity to NGC 6633.

I use a fifth-order spline fit in "G versus ��% − �'% for all DR2/EDR3 identified cluster
members as this was by eye determined to be the best order spline fit across the entire��%−�'%
range. The spline is fitted to the entire data set, and an iterative removal and re-fitting procedure
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is implemented. I calculate residuals of the spline fit for all points and remove any data points
which lie greater than three standard deviations from the spline fit. I then re-fit the same
fifth-order spline to the remaining points. This procedure is repeated until only one point is
removed from the fit. The natural stopping criterion would be when zero points are removed;
in practice, the final removal steps just removed points one by one, so a stopping criterion of
one point was deemed sensible. The final spline fit was fitted to "G and ��% − �'% values
for 14 stars of the 342 initially used for NGC 6633.

A binary cutoff was defined as 0.375 mag above this line: an equal-mass binary system will
lie 0.75 mag above the main sequence, so 0.375 mag halves this distance. I consider any points
above this line candidate binary or higher-order systems. The spline fit appears to turn off the
main sequence at ��% −�'% ∼ 2.2, and based on the PARSEC isochrone, the main-sequence
turnoff for this cluster occurs around��%−�'% ∼ 0.2. There are very few objects in the sample
outside of this range 0.2 < ��% −�'% < 2.2; 1 object was flagged as a potential binary below
��% − �'% ∼ 0.2 and 11 were flagged above ��% − �'% ∼ 2.2. These objects were flagged
as potential binaries in my sample, and extra care was taken when analysing these stars. In
practice, this made no difference to the rotational analysis, as none of these objects had detected
periodic variability. This cut-off flagged 78 objects as potential binary or higher-order systems
and 65 objects within the colour range 0.2 < ��% −�'% < 2.2. I note that I do not include the
errors on the calculated absolute magnitudes when flagging potential binary systems, although
I expect this to affect a small number of stars with imprecise distance estimates.

6.2.5 The RoTo package

I use three methods to determine rotation periods from the NGTS light curves. We have
already been introduced to these three methods throughout this work: The G-ACF (Kreutzer
et al. submitted), a Lomb–Scargle Periodogram (Lomb 1976; Scargle 1982) and a Gaussian
process model. To streamline the process of period retrieval and confirmation, I developed
a software package, RoTo, to allow myself and other users to quickly and repeatably detect
periodic variability from photometric light curves. The package provides tools for period
determination with user-defined parameters for all models and plotting tools to confirm periodic
variability signals. As well as the three methods used to analyse this NGTS data set, RoTo will
provide additional period finding algorithms such as Fourier Transforms and Phase Dispersion
Minimisation (not currently implemented, Stellingwerf 1978), which provides greater freedom
to the user in finding and using a suitable method for their data set.
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Figure 6.4: Gaia EDR3 "G (absolute magnitude) plotted against Gaia ��% − �'% for NGC
6633 objects. Light grey points indicate all possible cluster members. Purple points indicate
cluster members confirmed using DR2 or EDR3 data. Objects not flagged as possible binaries
based on the main sequence fit are circled in blue. The black line is an isochrone generated
using PARSEC v1.2 in EDR3 passbands of age 426 Myr and [M/H] = −0.1. A fifth-order
iterative spline fit is plotted in green, with a main sequence binary cutoff plotted in orange,
which lies 0.375 mag above the green line.
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6.2.5.1 Lomb–Scargle periodogram

I use the astropy Lomb–Scargle implementation (Robitaille et al. 2013) to calculate a Lomb–
Scargle periodogram for each light curve. To provide an error estimate on this value and confirm
the stability of any variability signal within the light curve, I implement a ‘sliding Lomb–Scargle
periodogram’. A window of 5 times the initial period estimate (i.e. highest peak in the Lomb
Scargle periodogram of the entire light curve) is stepped along the light curve. A Lomb–Scargle
periodogram is calculated for each windowed data set; the largest peak for each periodogram is
selected and used as the variability period within this window. The variability periods across
all windows are aggregated, and a representative period is selected. RoTo provides flexibility
on the window size, number of windows and aggregation function. The default window size
is five times the initial period estimate, with a maximum of 100 windows allowed before this
window is increased in size. By default, the representative period is selected as the median
across windows, with an error given as the 16th to 84th percentile spread (i.e. 1 f). Users may
also use mean and standard deviation or the modal period and a percentile spread.

6.2.5.2 G-ACF

I use the same parameters for the G-ACF as in Chapter 5. I calculate the positive lag values
only, using a lag resolution of the minimum time difference between data points. I use a natural
selection function (Section 4.3.3), and rational weight function (Equation 4.4) with the scaling
parameter U taken as the median time value of the time series.

To extract a period from the G-ACF, RoTo provides twomethods: an FFT period or a G-ACF
peak-based period. An FFT (Cooley & Tukey 1965) of the G-ACF is calculated, and the largest
FFT peak is taken as the period. This does not provide an error estimate on the peak. The
latter, peak based method, is similar to the method employed by McQuillan et al. (2013). The
G-ACF is convolved with a 1-D Gaussian Kernel of FWHM 18 lag points over a window of
56 lag points. These values are taken directly from McQuillan et al. (2013), which provides
a good compromise between noise reduction and ensuring a strong ACF signal without prior
knowledge of the period. This smooths the G-ACF signal, and the smoothed G-ACF is then
assessed for peaks. If there is just one peak in the smoothed G-ACF, the period and error are
taken as the centre point and FWHM of the single smoothed peak. Where multiple peaks are
found (up to a maximum of 10), the period is taken as the median of the gap between peaks.
The period uncertainty is calculated using the scatter of these values, calculated as

fP =
1.483 ×MAD
√
# − 1

(6.5)

where # is the number of peaks and MAD is the median absolute deviation from the median
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period value. The MAD is used as a proxy for standard deviation but is more robust to outliers
than the standard deviation of a Gaussian.

In practice, the FFT often provided more robust period estimates than the peak finding
method, and so the FFT method was adopted as the default for RoTo at this stage. Further
investigation of the peak finding method should be conducted to assess its shortcomings on this
dataset.

6.2.5.3 Gaussian process regression

I adapt the Gaussian process fitting for period extraction as used in Gillen et al. (2020), which
utilised a quasiperiodic kernel composed of a sum of SHO terms. The details of the kernel used
as a part of RoTo (which is slightly different from the kernel used in Gillen et al. 2020) were
given in Section 2.10. The default parameters for the SHO kernel terms are fixed, taken from the
EXOPLANET documentationf, however, can be specified as user-defined parameters within RoTo.
The sampler is initialised with a period estimate taken from a Lomb Scargle periodogram, and
a maximum a posteriori (MAP) fit is performed. Should the MAP fit produce a good solution,
3f outliers from this model are removed from the data and, the model is re-fitted. This masking
will remove non-rotational variability phenomena such as flares and deep eclipses. A full model
fit is performed using the ‘No U-Turn Sampler’ (Hoffman &Gelman 2014) MCMC sampling. I
used seven independent Markov chains for this work, each running on a separate CPU core with
500 tuning steps followed by 2000 production steps. This typically took around 20 minutes to
run for NGTS light curves using the Cambridge HPC cluster.

The GP model is the most computationally expensive period determination method within
RoTo and the total run-time of each light curve with RoTo was determined almost entirely by the
speed of the GP modelling. When running on the HPC cluster, it was necessary to implement
a timeout for the GP MAP fit and MCMC posterior sampling of 40 minutes. In cases where
the GP model was difficult to fit (for example, light curves with rapidly evolving signals or data
with poor error estimates), I re-ran the processing with a longer timeout. For a few light curves,
RoTowas still unable to compute a GP model solution within a feasible time, and in these cases,
just the G-ACF and LS periods were considered.

6.2.5.4 Combining period estimates

In addition to the period detection methods described above, RoTo provides methods for out-
putting a ‘best’ period for a photometric light curve. RoTo will run a user-specified set of
period detection methods using user-specified parameters and will return a ‘best’ period using

fhttps://gallery.exoplanet.codes/tutorials/stellar-variability/. Accessed: 22/01/2022.

https://gallery.exoplanet.codes/tutorials/stellar-variability/
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Figure 6.5: Example RoTo data plot. The light curve is plotted as black points with error bars
(top). A GPmodel fit is overlaid in red, with 1f uncertainty intervals in light red. The residuals
of the GP model fit are plotted in black (bottom), with the uncertainty of the GP model overlaid
in light red.

Figure 6.6: Example RoTo combined period estimate plot. Outputs from three period estimation
methods are plotted (left). Vertical blue and green lines show the period estimate from an LS
periodogram and a G-ACF, respectively, with error bars plotted as the same colour shading.
The GP posterior is shown as a red line, with the mean (vertical red line) and 1 f uncertainty
(light red shading). The combined period and uncertainty are plotted as a black point with an
error bar. The right-hand plot shows the light curve phase folded on this combined period.

a user-specified aggregation method. The aggregation method can return the period estimate
from one method if one performs best; otherwise, I calculate a median and MAD or a mean
and standard deviation. In practice, this combined rotation period estimate may be less useful
than the individual period estimates from all methods.

6.2.5.5 Plotting tools

RoTo can generate plots that show the estimated periods from each method, as well as diagnostic
plots and phase folds for each method, to enable validation of the estimated periods. I split an
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Figure 6.7: Example RoTo method plot. The Lomb–Scargle periodogram of the entire light
curve is shown (right). The estimated period is plotted as a blue line with errors plotted as a
light blue region. In this example, the errors on the estimated period are extremely small, and
hence may not be visible. The left plot shows the light curve phase folded on this LS estimated
period.

Figure 6.8: Example RoTo method plot. The G-ACF of the light curve is plotted (right). The
estimated period is shown as a green line with errors plotted as a light green region. In this
example there are no error estimates on the period, and hence not visible. The left plot shows
the light curve phase folded on this G-ACF estimated period.

Figure 6.9: Example RoTo method plot. The GP model period posterior is plotted as a black
histogram, with the estimated period and 1 f uncertainty shown as a red point with error bars
(right). The left plot shows the light curve phase folded on this GP estimated period.
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example of a RoTo generated .pdf into five plots (Figures 6.5 – 6.9), and explain each plot in
turn. Examples of the full .pdf are shown for NGC 6633 in Appendix A.

At the top of a RoTo output .pdf (Figure 6.5), the entire light curve is plotted as black
scatter points, with errors on each point. Overlaid is the MAP GP model fit in red, with 1 f
uncertainty intervals in light red. Below this, the residuals of this model fit are plotted in black.
1 f uncertainty intervals for the GP model are plotted in light red.

The second row of the .pdf output is shown in Figure 6.6. The left plot shows the results
of the individual RoTo methods overlaid with error bars. In the case of the GP model (red),
the period posterior distribution is plotted, along with the mean (vertical red line) and 1 f
uncertainty (light red). For the G-ACF (green) and LS (blue), the estimated period is shown
as a vertical line, with uncertainty as light shading of the same colour. In this example, the
uncertainty on the LS period extends beyond the x-axis. The combined period and uncertainty
are shown as a black point with error bars. The right plot shows the light curve phase folded
on this combined period.

Figures 6.7, 6.8 and 6.9 include the remainder of the RoTo output. The left-hand plots show
details of the method, which can be a periodogram, an ACF or a period posterior distribution.
The right-hand plot in each example will show the light curve phase folded on the period found
by that method.
RoTo will dynamically generate the plot based on the methods specified by the user and

the data available for each method. For example, if RoTo has produced a MAP fit with no
MCMC solution, the package will plot a MAPmodel, but the plot will show no period posterior
distribution. Additionally, RoTo can plot detailed diagnostic plots for the GP, including a corner
plot for all parameter distributions and associated trace plots for the MCMC chains.

6.2.6 Rotational analysis pipeline

For each of the NGTS objects identified as a candidate cluster member by any of the catalogues
mentioned in Section 6.1.1, I ran RoTo to determine any periodic variability signals present in
the light curve. I calculated a period from a G-ACF, an LS periodogram and a GP regression
model, using the parameters and settings defined in Sections 6.2.5.1, 6.2.5.2 and 6.2.5.3. I
generated an array of jobs to run on the Cambridge HPC system, each using seven cores
to evaluate seven MCMC samplers simultaneously. Each run produced a .csv file with the
estimated rotation period and errors for each method successfully run, plus the combined period
estimate. A .pdf of the outputs, plus any diagnostic plots for the MCMC fit where applicable,
were also generated for each run. I combined the .csv files, and I joined the rotation period
data with the cross-match data from Gaia.
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The validation of the rotation periods was done manually: each object was assessed by
eye using the generated .pdf file showing phase folded data, model fits and periodograms.
Identifying many systematically incorrect period estimates from 1-day aliasing and Moon
correlated background noise was straightforward. I elected not to run the period validation
pipeline developed in Chapter 5 due to having fewer objects and the increased complexity in
the period extraction stages. Where the signal was not systematic, I assessed if the phase fold
of the light curve appeared to be a valid variability signal. Running multiple period extraction
methods also allowed cross-validation of the estimated periods; if multiple methods agree on
the period and it is not an obvious systematic, it is likely a real signal in the data. This also had
the advantage of highlighting spurious detections if just one method detects a signal and other
methods detect common systematics.

Gillen et al. (2020) applied additional data cleaning to the NGTS light curves by using a
Savitzky–Golay (SG) filter followed by a convolution to remove any longer-term trends, namely
signals arising from the Moon. I did not apply this step in this analysis. However, manual
inspection of the RoTo data products showed a large number of variability signals that could be
attributed to Moon correlated signals. It is unclear how many more variable objects would have
been detected due to this processing step; in Chapter 5, I found approximately 68% of periodic
variability signal detections (21% of all light curves analysed) from NGTS light curves were
dominated by Moon correlated noise; however no attempt at correction of these signals was
made using the simple three-parameter model.

6.3 Results and discussion

I generated variability periods, extinctions and distances for 58 NGC 6633 objects in total, of
which 11 were flagged as possible photometric binary systems based on CMD position. Table
6.2 outlines the format of the provided data tables; the full tables and object plots are given in
Appendix A. Of the 342 candidate cluster members analysed, 214 stars lie within the colour
range 0.47 < ��% − �'% < 1.49 for which periodic signals were detected. The detection
efficiency for this sample of stars within NGC 6633 was 27%.

6.3.1 Individual light curves

All 58 manually vetted RoTo outputs are shown in Appendix A and follow the same format
described in Section 6.2.5.5.

Of the 58 objects assessed to be variable, 11 were flagged as potential binary objects based
on CMD position. Manual inspection of these objects highlights examples of clear eclipsing
binary signals, for example, NG1827+0636.1025611 for which the G-ACF finds a 3.66 day
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Table 6.2: Table format for the final data product of this study.

Column Format Units Label Description
1 A19 — NGTS_ID NGTS source designation
2 F9.5 deg RA Gaia EDR3 Source right ascension (J2000)
3 F7.5 deg DEC Gaia EDR3 Source declination (J2000)
4 F8.5 mag G_MAG Gaia EDR3 G-band magnitude
5 A8 — METHOD Period extraction method
6 F8.5 days PROT Extracted variability period
7 F7.5 days PROT_ERR_N Extracted variability period negative error
8 F7.5 days PROT_ERR_P Extracted variability period positive error
9 F8.5 days PROT_LS LS Extracted variability period
10 F7.5 days PROT_LS_ERR_N LS Extracted variability period negative error
11 F7.5 days PROT_LS_ERR_P LS Extracted variability period positive error
12 F8.5 days PROT_GACF GACF Extracted variability period
13 F7.5 days PROT_GACF_ERR_N GACF Extracted variability period negative error
14 F7.5 days PROT_GACF_ERR_P GACF Extracted variability period positive error
15 F8.5 days PROT_GP GP Extracted variability period
16 F7.5 days PROT_GP_ERR_N GP Extracted variability period negative error
17 F7.5 days PROT_GP_ERR_P GP Extracted variability period positive error
18 F7.5 — AMPLITUDE 5–95 percentile relative flux
19 F9.5 parsec DISTANCE Estimated distance to source
20 F7.5 mag A_0 Estimated V-band Extinction
21 I1 — BINARY Possible Photometric Binary Flag
22 I19 — GAIA_DR2_ID Cross-matched Gaia DR2 identifier
23 I19 — GAIA_DR3_ID Cross-matched Gaia EDR3 identifier
24 I10 — TIC_ID Cross-matched Tess Input Catalogue (v8) identifier
25 A16 — TWOMASS_ID Cross-matched 2MASS identifier
26 A19 — WISE_ID Cross-matched WISE identifier
27 A10 — UCAC4_ID Cross-matched UCAC4 identifier

period which appears to be a rotation signal, but additionally, we see clear flux drops which are
indicative of eclipses in an EA (Algol-type) system. Some light curves did not show flux drops
indicative of an eclipse but displayed signals with multiple rotation period detections within the
target aperture. Object NG1827+0636.1233779 displays clear photometric variability; however,
the three period-recoverymethods find different periods within the data. In the LS periodogram,
we can see a large peak at 1.42 days and approximately 3.5 days, which the G-ACF picked up.
This could indicate the presence of a two-star system, in which one has a rotation period of
∼ 1.4 days and the other a period of ∼ 3.5 days. I note, however, that these signals may be
aliases of one another with respect to 1-day sampling. There is a third large peak in the LS
periodogram at ∼ 0.6 days, and it is possible to relate 0.6, 1.4 and 3.5 days as sampling aliases
with respect to 1-day sampling. Other potential binary objects, such as NG1827+0636.1401169
and NG1827+0636.1452024 display single variability periods of 3.88 and 4.14 days, respectively,
with no indication of eclipses or multiple rotation periods. The signals are fairly sinusoidal,
which could indicate that the rotation periods of the stars are synchronised to the orbital period
via tidal interactions (Pan 1997). Follow-up of such objects spectroscopically would aid in
revealing multiple stars, if present.
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For objects where RoTo returned periods that disagreed betweenmethods, manual inspection
provided the ‘best’ variability period. Object NG1827+0636.1010770 was one such example,
where the G-ACF and the GP model found a long-term trend within the data of period ∼ 120
days, whereas, within the LS periodogram, there was a clear peak at ∼ 6.2 days, which when
phase folded appears to be a real periodic signal. In this case, the LS period was deemed the
correct one and used as the reported rotation period of this object. Object NG1827+0636.1041927
had a well-bounded period posterior sampled by the GP centred at 7.28 days, which did not
appear to agree with the LS or G-ACF rotation periods within error. In this case, combining
the rotation period estimates would result in a less accurate rotation period for the object than
found with the GP, so the GP and associated error was adopted as the correct period. For some
binary objects, as described above, and such as object NG1827+0636.1025611, the G-ACF was
able to extract a rotation-like periodic signal of ∼ 3.66 days, but the GP and LS methods return
poor period estimates due to the in-transit flux drops of the eclipsing system. In this case, the
G-ACF was reported as the correct signal with a zero error estimate.

6.3.2 Global variability

I plot the rotation periods against extinction corrected Gaia ��% − �'% colour to ascertain
if there is a tight cluster rotation sequence as expected. Figure 6.10 shows a well-defined
sequence, broadly increasing in rotation period for redder stars. To aid the eye, I plot two model
gyrochrones from Angus et al. (2019) as defined in Section 5.2.6 at 400 and 600 Myr, hereafter
referred to as the ‘AngusModel’. I plot two gyrochronemodels fromSpada&Lanzafame (2020)
at 400 and 600 Myr (dotted lines). The literature age of NGC 6633 is roughly 500 Myr, and the
rotation periods found for the cluster lie broadly between the 400 and 600 Myr gyrochrones for
both models, particular around Solar colour where the models are well-calibrated. The Angus
models do not well-describe the rotation periods of stars hotter than around 6250K; these stars
will have thin convective layers and weak magnetic dynamos and hence will not converge onto
the Skumanich braking law Angus et al. (2019). This behaviour is noticeable as the model fails
to accurately model the sharp dip in rotation period observed for the bluest stars in the NGC
6633 sample.

The majority of objects flagged as binary systems are below the well-defined slow-rotator
sequence of NGC 6633 in period, which is indicative of potentially tidally locked close-in
binary systems (Gillen et al. 2020). I highlight two stars of ��% − �'% colour ∼ 1.8 and
period ∼ 4 days, which have not been flagged as binary systems based on their position on
the CMD. Neither of these systems appeared to be a photometric binary upon inspection of
the light curves, implying that these systems are either multiple star systems containing very
low mass companions or single stars whose angular momentum loss has been reduced during
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Figure 6.10: Period vs Gaia ��% − �'% colour for objects in NGC 6633. Two gyrochrones
using models from Angus et al. (2019) are plotted for 400 and 600 Myr (labelled). Two
gyrochrone models from Spada & Lanzafame (2020) are plotted for 400 and 600 Myr (dotted
lines). 58 stars in total had rotation periods, of which 11 were flagged as possible photometric
binary systems based on CMD position. Three objects (in red) had significant �% and '%
excess flux.

evolution. One of these objects, NG1827+0636.1794649 has been flagged as having significant
�% and '% flux excess; this may indicate the colour of the star is incorrect, however, given the
magnitude of the colour excess it is unlikely that the true colour would place this object onto
the slow-rotator sequence of NGC 6633. Two other objects with significant �% and '% flux
excess have been flagged at ��% −�'% ∼ 1.0. I looked at the nearest neighbour objects within
the Gaia EDR3 catalogue and it appears that the closest sources to these two objects were of
similar��% −�'% colours, implying that the contamination of these sources giving rise to the
flux excess does not appear to significantly affect their ��% − �'% colours.

One object, NG1827+0636.1439675, has a rotation period of ∼ 4.43 days, and ��% − �'%
of ∼ 1.0. It has not been flagged as a binary system, and manual inspection of the light curve
revealed a clear single-peaked periodicity. The calculated distance to this object was 518 ± 8
pc, which is well beyond the expected cluster distance of ∼ 400 pc. This object was not flagged
as a cluster member by DBSCAN and additionally was only confirmed as a cluster member
by one literature source (Kounkel & Covey 2019). Based on the poor fit to the slow-rotator
sequence and the poor agreement to the cluster astrometry, I remove this object from further
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processing because it is likely not a member of NGC 6633.
As is visible on the CMD, NGTS observed objects up to (�BP − �RP) . 2.0, and so I am

unable to trace the period–colour relation beyond this point. Previous studies of the Hyades
and Praesepe demonstrate this relationship holds up to (�BP − �RP) . 3.0 (Douglas et al.
2019), where rotation periods of approximately 20 days are seen in the reddest stars. The large
distance and high interstellar reddening of NGC 6633 will increase the telescope power required
to observe the cluster, particularly for the already faint redder objects within the cluster. This
potentially means that detailed observations of redder stars within NGC 6633 will fall below
the precision threshold of NGTS.

6.3.3 Spada and Lanzafame (SL20) model

As discussed briefly in Section 5.3, Spada & Lanzafame (2020) developed a set of stellar
evolution codes which incorporate the competing effects of wind-braking and interior angular
momentum coupling to the rotational evolution of solar-like stars. Thesemodels weremotivated
by observations of the slow-rotator sequence in the open-clusters Praesepe and the ∼ 1Gyr NGC
6811 cluster, which was previously not well modelled by stellar evolution codes or empirical
gyrochronology models. The authors claim the model well captures the mass dependence of the
slow-rotator sequence in the range 0.4–1.3 "� for stars between 700 Myr and 1 Gyr. However,
the model was also shown to reproduce the slow-rotator sequence of the younger Pleiades
cluster satisfactorily. The model provides a more physically motivated gyrochronology relation
by considering the internal transport of angular momentum in a two-zone stellar interior. This
model is therefore not valid for fully convective stars due to the two-zone nature of the model.

An analytic form of the gyrochronology relations is not feasible; however, the authors
provide a grid of gyrochrones in � −+ colour for ages ranging from 0.1 to 4.57 Gyr. To allow
fitting of the models, I interpolate this provided model grid in two dimensions. Firstly the �−+
colour is converted into a��% −�'% colour using the equations from Gruner & Barnes (2020)
(as described in Section 6.2.3), this provides a valid range of 0.57 < ��% − �'% < 2.1 For
this work, the interpolation will not allow model periods to be calculated for colours outside
of the colour range defined by the provided model grids. The interpolation is conducted using
scipy.interp2d (Virtanen et al. 2020), in which I interpolate in both ��% − �'% and age
using a 2-dimensional cubic spline. This interpolation was deemed appropriate: for the range
of interest for NGC 6633 (400–600 Myr), three model gyrochrones are provided (at 400, 500
and 600 Myr), which are of similar shape and close together in period. I will refer to this model
as the ‘SL20 Model’.
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6.3.4 Comparison to other clusters

To contextualise the rotation sequence for NGC 6633, I plot the period–colour diagram for NGC
6633 alongside data from 3 other well-studied clusters: Figure 6.11 shows the period–colour
relationship for NGC 6633 (this work), as well as Praesepe (Douglas et al. 2019), the Hyades
(Douglas et al. 2019) and the Pleiades (Rebull et al. 2016a) clusters. I cross-match these three
catalogues with Gaia EDR3 parameters to avoid any possible colour-related inconsistencies. I
de-redden the ��% −�'% colours, using average values for each of the clusters converted into
Gaia �BP and �RP bandpasses as in Section 6.2.2. The + band extinction values for each of
the clusters are as follows: Praesepe �V = 0.035, the Hyades �V = 0 (Douglas et al. 2019) and
the Pleiades �V = 0.12 (Rebull et al. 2016a). Although the extinction values for Praesepe and
the Pleiades are small compared to NGC 6633, this aids in ensuring a fair comparison is being
made of the slow-rotator sequences. Figure 6.11 also shows two gyrochronology period–colour
relations: a 480 Myr Angus model as a dashed line and a 575 Myr SL20 model as a dotted line.
The model ages for these two gyrochrones best fit the NGC 6633 cluster sequence; Section
6.3.6.1 will detail how these best-fit models are calculated.

Qualitatively, it appears that the slow-rotator sequence of NGC 6633 agrees with those of
the Hyades and Praesepe. This confirms previous conclusions that NGC 6633 is approximately
the same age as these two clusters. The slow-rotator sequence appears to be fractionally lower
in period than these two clusters but above the younger Pleiades cluster. Again, this would be
expected given previous conclusions that NGC 6633 is fractionally younger than the Hyades
and Praesepe.

It is immediately noticeable that the NGTS NGC 6633 data does not extend into as red
colours as the three comparison cluster data sets. There are two objects at ��% − �'% &
1.5 that have not been identified as possible binary systems, which appear to drop below the
slow-rotator sequence of the cluster. For the younger Pleiades cluster, the slow-rotator sequence
breaks down for objects redder than this, however for the older Hyades and Praesepe clusters,
we do not see this rotational slow-sequence turnoff until ��% − �'% & 2.5. There are just
two objects observed in NGC 6633 at these colours, so it is difficult to confirm a trend, but
these objects may indicate that NGC 6633 is younger than the Hyades and Praesepe due to this
turnoff. This trend was coined the fast-rotator or C-sequence in Barnes (2003) and bifurcates
off the slow-rotator I-sequence at redder colours for older clusters, as seen in Figure 6.11. I
note that we do see shorter period stars of these older clusters from Douglas et al. (2019) which
do not lie on the C-sequence, and so these two NGC 6633 objects may be outliers.

Studying redder stars within clusters of similar ages to NGC 6633 is a vital step in helping
to establish gyrochronology relations for M-dwarf cluster stars, which are currently ill-defined.
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Figure 6.11: Period vs Gaia ��% − �'% colour for objects in NGC 6633 (purple), Praesepe
(green, Douglas et al. 2019), the Hyades (red, Douglas et al. 2019) and the Pleiades (yellow,
Rebull et al. 2016a) clusters. The NGTS data for NGC 6633 are plotted in purple as in Figure
6.10, with possible binary objects highlighted with blue circles. A 480 Myr Angus et al. (2019)
gyrochrone (dashed) and a 575Myr Spada & Lanzafame (2020) gyrochrone (dotted) are plotted
as best fitting to the NGC 6633 data.

The recent work by Popinchalk et al. (2021) combines data from clusters ranging from 10 Myr
(Upper Sco) to 750 Myr (the Hyades) and older field stars to ascertain if age-rotation relations
exist with M-dwarf populations. They observe the ‘elbow’ of the slow-rotator sequence of
clusters moves to redder colours with increased age (the elbow of Praesepe can be seen at
��% − �'% ∼ 2.75 in Figure 6.11). However, the authors note a distinct lack of M-dwarf
rotation periods in clusters aged between 200 and 700 Myr: exactly the age of NGC 6633.

The metallicity of NGC 6633 is closer to that of the relatively metal-poor Pleiades than
the near-solar metallicity of Praesepe and the Hyades. Gyrochronology models have only been
calibrated for near-solar metallicity stars, and the full effect of metallicity on these relations is
not well understood (Metcalfe & Egeland 2019).

6.3.5 Extinction

Jeffries (1997) claim their measurements rule out any differential reddening within the cluster
above 0.04 mag through the observed scatter of equivalent line widths (EWs). This contradicts
the large differential reddening calculated using 3d dustmaps and EDR3 positions and distances
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Figure 6.12: A stacked histogram of the dustmap calculated Gaia � band extinction (�G) for
342 NGC 6633 cluster members. Objects identified in the literature and by the DBSCAN
clustering are shown in green, while objects outside the DBSCAN cluster identified in the
literature are plotted in red. The orange vertical line and shaded region represent the median
and 16th–84th percentile spread of 0.43 ± 0.10 mag.

in this study. Figure 6.12 shows a histogram of the Gaia � band extinction (�G) for NGC
6633 calculated in this study, clearly demonstrating a large scatter in �G, which corresponds
to a range in � (� − +) from ∼ 0.05 to ∼ 0.35. I calculated reddening values for 342 cluster
members confirmed with Gaia DR2 or later astrometric parameters compared to the 23 stars
used in Jeffries (1997). Furthermore, it is highly probable that with astrometry from Gaia DR2
and sophisticated dustmap models, the reddening calculated in this work is more accurate than
those derived through EW calculations.

6.3.6 Gyrochronology

From Figure 6.10, it is clear that the rotation period for stars within NGC 6633 follows a colour–
period relationship as expected for an open cluster. No previous studies of NGC 6633 have
derived gyrochronological ages for the cluster due to poor photometry, which means a good
rotational sample is not available. Therefore, confirming the previously derived Li-abundance
and isochrone age of NGC 6333 through gyrochronology is an important result. The two plotted
gyrochrones from both the Angus and SL20 models at 400 and 600 Myr are extremely close
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together; the spread of rotation periods within NGC 6633 is of a similar order of magnitude
to the difference between these two gyrochrones. It is, therefore, possible to state NGC 6633
appears to be 400–600 Myr old, which agrees with the LDB measurement of ∼ 600 Myr
(Jeffries et al. 2002) and the isochrone measurement of 426 Myr (Pang et al. 2021).

6.3.6.1 Gyrochronology model fitting

To generate a probabilistic age estimate for NGC 6633, I elected to fit two gyrochronology
models (from Angus et al. (2019) and Spada & Lanzafame (2020)) to the slow-rotator sequence
for the cluster. These models should be suitable as age estimators as they are both fitted on the
similarly aged Praesepe cluster within a colour range similar to the population observed with
NGTS.

I fitted the models by sampling a posterior distribution with an MCMC sampler, emcee
implemented in Python (Foreman-Mackey et al. 2013). Assuming the errors on the period
estimates are Gaussian, the log-likelihood can be defined as

ln ?(%rot | ) , 5 ) = −
1
2

∑
n

[ (%rot,= − k()))2
B2

n
+ ln(B2

n)
]
, (6.6)

where
B2

n = f
2
n + 5 2(k()))2 (6.7)

for a model k with parameters ) which estimates a rotation period %rot. fn is the error on a
measured rotation period %rot. This likelihood function is a Gaussian, but the standard deviation
is underestimated by some fraction 5 . The introduction of the parameter 5 affords some
flexibility in the model fit by assuming that the period’s error values are often underestimated.
The simplest way to include this into the model fit is as a constant fractional underestimation of
the errors. This parameter 5 is marginalised over in the quoted age estimates for the model fit.

I used the same uniform priors for fitting both models: ln ?( 5 ) ∼ * [−10.0, 1.0] and
?(age) ∼ * [100, 800] Myr for the Angus model and ?(age) ∼ * [0.1, 0.8] Gyr for the SL20
model. The SL20 model is defined in Gyr, so I fitted in Gyr. The Angus model is defined
in Myr, and so I re-scaled using a base-10 logarithm to a similar scale to 5 in order to fit this
model.

TheMCMC sampler was run for 10,000 steps, with initial solutions of 500Myr and 5 = 0.5.
Of the 58 objects with detected periodic variability detected, I first removed the 11 possible
photometric binaries. I removed object NG1827+0636.1439675 as a possible false member. I
removed the two objects with ��% − �'% ∼ 1.8 and period ∼ 3 days, as these are not on the
slow-rotator sequence for NGC 6633. Finally, I removed the two bluest objects of the sample
with rotation periods of approximately 1–2 days (��% − �'% ∼ 0.5) as these fall outside the
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(a) Period plotted against Gaia ��% − �'% for the 38 NGC 6633 objects, which best follow
the cluster slow-rotator sequence (purple points with black error bars in period). Model draws
from the MCMC sampler of the fitted Angus model (left), and the SL20 model (right) are
shown in orange.
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(b) A comparison of posterior samples from the MCMC model fits to the Angus and SL20
models for NGC 6633. The model posteriors have been transformed into Myr for comparison;
the Angus model was fitted in log years and the SL20 model in Gyr.

Figure 6.13: Two models were fitted to the slow-rotator sequence of NGC 6633, the Angus
model (Angus et al. 2019) and the SL20 model (Spada & Lanzafame 2020). The model fits in
colour–period and posterior samples in age are shown in (a) and (b), respectively.

colour range for which the models appear well defined. This left a sample of 38 stars that appear
to follow the slow-rotator sequence of the cluster to fit the gyrochronology relations. Several
model draws from the sampler are plotted in Figure 6.13a for the Angus model (left) and the
SL20 model (right), and the sample distribution of the posterior for both model fits is shown in
Figure 6.13b. The best fit age for the Angus model to NGC 6633 was 496+20

−46 Myr and for SL20
587+43

−49 Myr.
Both estimates agreewith previous studies, which give an age slightly younger than Praesepe
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and the Hyades, and the two model-fit age estimates are less than 2-sigma discrepant. Despite
small errors on the MCMC best-fit age of both models, there are likely much larger errors on
the models themselves, which are harder to quantify. I converted models defined in � −+ into
��% −�'% (Section 6.2.3), which will introduce a small error into these results, though this is
difficult to quantify. Interestingly, the SL20 model gives a significantly older age estimate for
the cluster than the Angus model. This model was derived for the slow-rotator sequences of
clusters older than NGC 6333, which may explain the older age estimate. However, the model
was shown to fit well to the much younger Pleiades rotation sequence (Spada & Lanzafame
2020). Fitting a gyrochronological model may not yield an accurate age estimate for the
cluster; Bouma et al. (2021) labels this ‘an exercise in tautology’, as gyrochronology models
are empirically calibrated to a small number of clusters (in the case of the Angus models, just
Praesepe). This leads me to the conclusion that although the age estimates are derived with
errors for each of the models, the implicit error on the models themselves will outweigh any
small calculated errors from an MCMC fit. Taking a mean and min/max spread of the two age
estimates would give 542+88

−92 Myr as an age estimate for NGC 6633 from these two model fits,
which well agrees with the by-eye estimate of 400–600 Myr, as well as quantitatively with the
Li-abundance and main-sequence isochrone turnoff estimates.

6.3.6.2 Simultaneous gyrochronology and isochrone model fitting

Following the formulation from Angus et al. (2019) and using the stardate Python package
from the same work, I also conducted simultaneous gyro- and iso-chronological fits to each
of the rotationally variable stars in NGC 6633 not flagged as potential photometric binaries.
Isochrone fitting and gyrochronology provide complimentary ageing methods for a wide range
of spectral types. Gyrochronology is well calibrated for FGK dwarfs, whereas isochrone fitting
works better for hotter, evolved objects. stardate (Angus et al. 2019)g combines isochrone
fitting with gyrochronology in order to increase the precision of stellar age estimates. The
gyrochronology model has already been discussed in Section 5.2.6, empirically calibrated to
Praesepe. The isochrone fitting is done through the Python package isochrones(Morton 2015)h

which is a simple interface to interact with stellar evolution models from the MESA Isochrones
and Stellar Tracks (Paxton et al. 2010)i.

For each star, I supplied stardate with extinction corrected relative �, �BP and �RP

magnitudes and parallax from EDR3 as well as the calculated extinction values in the + band
(Section 6.2.2) and derived )eff and log 6 from TICv8 (Stassun et al. 2019). The errors on

ghttps://github.com/RuthAngus/stardate. Accessed: 22/01/2022.
hhttps://github.com/timothydmorton/isochrones. Accessed: 22/01/2022.
ihttp://waps.cfa.harvard.edu/MIST/. Accessed: 22/01/2022.

https://github.com/RuthAngus/stardate
https://github.com/timothydmorton/isochrones
http://waps.cfa.harvard.edu/MIST/
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the magnitudes were taken to be the expected Gaia EDR3 photometric magnitude errors:
fG = 0.001 mag, f�BP = 0.006 mag and f�RP = 0.012 magj. I assumed the metallicity of the
objects to be [Fe/H] = −0.096 ± 0.0081, as in Jeffries et al. (2002).

For the rotation period, I used the adopted period from RoTo, and initially, the error on the
period estimate from RoTo. Following a trial run of stardate with 10,000 MCMC steps per
star, the age estimates appear to be non-physically large. One object, NG1827+0636.1378217,
had an estimated age of 2211+4092

−1572 Myr. This could be attributed to a zero error on the period as
the best estimated period came from the FFT of the G-ACF. Other large errors on age estimates
were for stars with small errors on their period estimates. Angus et al. (2019) assume a constant
underestimation of period errors, as Aigrain et al. (2015) and Angus et al. (2018) suggest that
often measured rotation period errors are smaller than the true error on the rotation period,
which can also arise from a highly non-Gaussian noise distribution. They assume a constant
measurement uncertainty of 5% on both their simulated data set and Kepler data of the ∼ 2.5
Gyr open cluster NGC 6819. The measurement uncertainties on RoTo periods were roughly
an order of magnitude below this. To provide more realistic period uncertainties, I elected to
adopt the same approach as Angus et al. (2019) by adding a 5% period uncertainty to all period
estimates prior to running stardate.

I used the standard priors from stardate as described in the Appendix of Angus et al.
(2019), noting that the only significant difference to the rest of this Chapter’s work is the
distance prior for which the package uses a distance-squared prior (%(�) ∝ �2) in comparison
to the exponentially decreasing distance prior as defined in Section 6.2.1. I used non-default
initial estimates of log(age) = 8.7 (500 Myr), [Fe/H] = −0.1, distance = 400 pc and �V = 0.558,
taken from my previous calculations or other studies. I found the optimum parameters using
an MCMC sampler; I ran 50 walkers, each with 100,000 steps per star, which took around 40
minutes to run on a single laptop core. These are the recommended settings from Angus et al.
(2019), and manual inspection of the MCMC chains and derived posteriors of several objects
showed well-converged solutions; however, the walkers in age were fairly noisy.

The outputted ages are plotted against ��% − �'% in Figure 6.14. Most noticeably, there
are extremely large error bars for several points that extend beyond the y-axis. Error bars were
particularly large for objects with small errors on the estimated period, even with the inflated
period error estimates as described above. Angus et al. (2019) emphasises the importance of
good estimates on the errors for stellar parameters and period to well-constrain stellar ages from
stardate. The period estimates from RoTo contain reasonable period estimates where available,
but for cases with just two methods of estimation or just a G-ACF period estimate, the error
on the estimated period may be underestimated, which causes a much less precise estimate of

jTaken from https://www.cosmos.esa.int/web/gaia/earlydr3. Accessed: 22/01/2022.

https://www.cosmos.esa.int/web/gaia/earlydr3
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Figure 6.14: stardate derived ages and error bars for 38 NGC 6633 stars plotted against
Gaia ��% − �'% colour. The orange line shows the error-weighted mean age (532 Myr), and
the green line and shaded region show the combined sampled posterior median and 16th–84th
percentile range (524+209

−145 Myr).

the stellar age. The combination of the period estimates from RoTo is not physically motivated;
taking a mean or median of the period estimates will not reflect uncertainty in the period arising
from astrophysical noise such as latitudinal movement of spots. A full understanding of how
period uncertainties affect gyrochronology-derived ages should be explored in subsequent work,
beyond the scope of this thesis. Additionally, the relative importance of physical variations in
rotation period versus measurement error must be better understood. However, it is clear from
this study that with a poor understanding of the period uncertainty, gyrochronological fitting of
individual stars will result in poor age estimates.

There is also a slight trend with age; we see bluer stars have, on average, lower ages than
redder stars. This is not surprising as stardate uses theAngusmodel to fit for gyrochronological
ages. We see from the model’s shape (e.g., in Figure 6.10) that the slope appears shallower
than the data may suggest, leading to younger age estimates for bluer stars and vice versa.

I combined the age estimates for the cluster stars in two ways: firstly, I calculated an error-
weighted mean and error-weighted standard deviation of the sample of 30 stardate derived
ages. This gave an estimated age for NGC 6633 of 532 ± 531 Myr (plotted as an orange line in
Figure 6.14). This result is largely skewed by the large error estimate on the upper age limit of
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these stars, so I discarded this estimate. Secondly, I combine posterior samples from each star
to create an overall distribution of age samples from the cluster. This combined age posterior
distribution gives an age estimate for NGC 6633 of 524+209

−145 Myr when taking the 16th, 50th and
16th percentiles (plotted as a green line and shaded region in Figure 6.14). Although the errors
are large, this age estimate agrees with previous literature values.

The age estimates of young clusters from isochrone turnoff ageing can be unreliable (Barnes
2003) as, by the age of NGC 6633, most of the cluster members will be on the main sequence.
Isochrone fitting will not yield accurate age estimates for populations of main-sequence dwarf
stars as low mass stars will spend a significant amount of time on the main sequence, leading to
very small changes in the best-fit isochrone. So, including isochrone information for each star
may not provide an age estimate as precise as gyrochronological ageing. I have not considered
the relative accuracy of each star’s isochrone and gyrochronology age estimates; however, this
would be possible by running separate isochrone and gyrochronology fits per star (as in Figure
7 of Angus et al. 2019). As I compare each star individually, I cannot use the data from all stars
observed to generate an age prediction using based on the slow-rotator sequence fit, potentially
reducing the accuracy of any age estimates over the gyrochronological estimates.

6.4 Conclusions

I have developed a general-purpose variability detection pipeline and associated Python package,
RoTo, which is freely available online. RoTo combines several variability extraction methods to
produce robust period estimates from variable light curve data. Currently, I have implemented
Lomb–Scargle periodograms, the generalised autocorrelation function (G-ACF) and Gaussian
process (GP) regression. The package also provides simple plotting tools to allow quick and
easy validation of the results.

I applied RoTo to NGTS observations of the young open cluster NGC 6633 to find rotational
signals. NGTS light curves for 1,042 stars were analysed, of which 342 were from cluster
members confirmed using Gaia DR2 and EDR3 astrometry. I computed accurate distances
and interstellar extinctions for candidate NGC 6633 cluster members using Gaia EDR3 stellar
parameters and 3d galactic dustmap models. For NGC 6633, the calculated median extinction
and 16th to 84th percentile spread in the three EDR3 bands were �G = (0.41 ± 0.08) mag,
�BP = (0.45 ± 0.09) mag and �RP = (0.26 ± 0.05), which agrees within 1 standard deviation
of previous studies.

I produced validated rotation periods for 58 candidate NGC 6633 cluster members, of
which 11 are flagged as potential near-equal-mass binaries based on their position on the CMD.
I plotted a period–colour diagram for the cluster which shows a reasonably tight slow-rotator
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sequence that broadly follows empirical gyrochronological relations. The slow-rotator sequence
ofNGC6633was shown to roughly agreewith the slow sequences of the similarly aged Praesepe
and Hyades open clusters. However, it may indicate that NGC 6633 is fractionally younger.
Based on a by-eye gyrochrone fit, I conclude that the rotational age of NGC 6633 is 400–600
Myr, which agrees with previous age estimates from Li-abundance data and isochronal fitting.
I fit two model gyrochrones from Angus et al. (2019) and Spada & Lanzafame (2020) and
run a simultaneous isochrone and gyrochrone fit on each of the cluster members to produce
probabilistic age estimates, which give a cluster age of 479+18

−20 Myr, 567+52
−50 Myr and 524+209

−145 Myr
respectively. These age estimates agree quantitatively with previous results from Li-abundance
ageing and main-sequence isochrone turnoff fitting and with the statement that NGC 6633 is
slightly younger than the Hyades and Praesepe clusters. I note that these age estimates do not
account for the relatively low metallicity of NGC 6633 compared to the Hyades and Praesepe.
However, the cluster slow-rotator sequence broadly fits into the collective knowledge of the
rotational evolution of stars in open clusters.
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Overall Conclusions and Future Work

I present a summary of the three major projects undertaken during my PhD, including important
results and findings. I consider these results within the context of this PhD and suggest further
improvements and next steps for each of the three studies.

7.1 Development of the G-ACF

This project aimed to implement and test a generalisation of the autocorrelation function (ACF),
which applies to irregularly sampled data. This algorithm was developed in collaboration with
Lars Kreutzer, Edward Gillen and Didier Queloz to allow fast estimation of the ACF of ground-
based photometric data. TheACF has been previously shown to be a robustmethod of extracting
non-sinusoidal periodicity from astrophysical data. My contribution to this project was in the
implementation and testing of the algorithm, which was implemented in C++, with a Python
wrapper for ease of use. I experimented with the functional form of the weight function and the
parameters of the G-ACF, using three simulated data sets: two simple sine-waves and a more
complex stochastic process with a periodic component. I also demonstrated the similarity of
the G-ACF to a standard ACF for these three data sets when sampled regularly, randomly and
with a cadence-like sampling structure similar to ground-based data.

In collaboration with Ed Gillen, I applied the G-ACF to real astrophysical data: a photo-
metric light curve from the Kepler mission of the previously studied spotted star KIC 5110407.
We demonstrated that the G-ACF can extract rotation period information with comparable
accuracy to a much more complex Gaussian process for this phase-shifting signal, but with a

161
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much shorter computation time and fewer model assumptions.
The G-ACF applies to any time series domain data where the sampling is not regular, and

an ACF would yield interesting information within the time series. Despite testing the G-ACF
on synthetic and real astrophysical data, I did not apply the G-ACF to any other problems. The
sampling of these data sets can differ from astronomical data, and the scales and forms of noise
within these data sets may also pose additional problems. It may transpire that the optimal set
of parameters and the form of the weight function differ within different contexts. Additionally,
I only tested a few simple, functional forms for the weight function. There are strict criteria on
the form of the weight function, and a simple function brings fewer assumptions to the model.
It would, however, be interesting to include the effects of any errors on the data into the weight
function, down-weighting points with large errors. This has not been implemented yet into the
G-ACF; however, the codebase and testing framework would make it simple to implement and
test.

It would also be interesting to compare the results of the G-ACF with other generalisations
of the ACF, particularly the ‘slotting’ based approaches and the discrete correlation function.
A few algorithmic improvements could speed up the compute time of the G-ACF, which are
not yet implemented; however, in general, it should be faster than any approach that requires
aggregation or binning.

Finally, further assessments of the mathematics of the G-ACF could shed light on errors on
G-ACF-derived periods, which in turn can be used to assess how wide a range of circumstances
the algorithm can be effectively used. This includes assessing how the G-ACF is affected by
sampling and formally defining sampling-related aliases that plague the G-ACF of cadence-like
sampled data.

The motivation for this project was within time-domain astrophysics, particularly photo-
metric light curve analysis, and I was able to successfully demonstrate that for typical data sets
within this field, the G-ACF can accurately reproduce the ACF of data with irregular sampling.
The G-ACF is available for use in Python and C++ for users to begin to experiment with the
G-ACF within wider contexts.

7.2 Periodic stellar variability from almost a million NGTS light
curves

I applied the G-ACF algorithm to the entirety of the NGTS photometric light curve data
set to extract periodic variability. This involved the development of a large data processing
pipeline, which was able to process almost one million photometric light curves rapidly with
consideration of the noise sources and aliasing present within this data. This work represents
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the largest ground-based systematic variability study using such precise and high-cadence
photometry but highlights the advantages and challenges of such a data set. In particular,
systematic variability arising from imprecise background correction and aliased signals from
the 1-day sampling cadence of ground-based telescopes caused large numbers of systematic
noise detections. Despite these challenges, I was able to extract periodic variability signals
from 16, 880 photometric light curves down to amplitudes of 0.3% in relative flux.

The large data set of NGTS spans a range of positions and types of stars, and I was able
to produce a sample of field star variability periods on stars from late-A through to mid-M
spectral types, with rotation periods from ∼ 0.1 to 130 days. I compared this sample with
several previous variability studies, demonstrating the power of the period extraction pipeline
and the precision of the NGTS photometry compared to ASAS-SN, Gaia, MEarth and TESS.
The data set contains a large number of main-sequence stars, similar to the rotational data
sets from Kepler and K2, but also contains many redder objects and giants, which highlight
interesting and diverse variability. I explored how this variability was distributed within the
HR diagram to highlight interesting populations of objects such as binary stars, PMS objects
and giant pulsating variables. I also assessed the variability sample in period–colour space,
where I observed an absence of detected variability (most likely rotation of main-sequence
stars) between 15 and 25 days. This gap was previously observed within Kepler and K2 data;
this study confirms the presence of this gap from the ground. The presence of a rotation period
gap aids the development of rotational evolution models by providing empirical evidence for
such models as Lanzafame & Spada (2015) and Spada & Lanzafame (2020), which include a
‘broken spin-down’ evolution of stellar rotation.

One line of investigation not conducted during this work was into the prevalence of half- and
twice-period aliases. Such aliases could arise as a result of the period detection pipeline, or from
astrophysical phenomena such as a spotted star with active regions on opposing hemispheres.
Despite this work demonstrating the clear presence of a dearth of detected stellar rotation
signals, the two distinct branches may in related by these half- and twice-period aliases. A
similar gap was noticed in flux–colour diagrams when measuring the chromospheric Ca–II H
and K emissions in field stars (The ‘Vaughan–Preston Gap’, Vaughan & Preston 1980), however
recent works by Zhao et al. (2015) and Boro Saikia et al. (2018) have called into question the
existence of the Vaughan–Preston Gap based on recent large scale analyses. If the observed
rotation period gap could be explained by such %/2 aliases, this would negate the need for
complex stellar evolution models such as Spada & Lanzafame (2020).

Studying large populations of field stars is useful for analysing broad trends within stars
grouped into regions within the CMD or period–colour space, however as field stars will
range in age, this is not a useful exercise for calibration of empirical ageing methods such
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as gyrochronology. This requires targeted observations of fixed-age populations, such as
open clusters, which have been considered in the final chapter of this thesis. However, this
does not mean that additional follow-up work is not possible from field studies. Populations
of interesting objects highlighted within the study are suitable for follow-up; for example,
objects with short variability periods above the main sequence in the CMD may be interesting
candidates for spectroscopic follow-up as PMS stars. These early-age stars provide insights
into the beginnings of the lives of stars and may shape stellar evolution models, which are often
poorly defined at these early ages.

Since the publication of this work, NGTS has observed an additional 158 fields (as of Feb
2022), and the period detection pipeline could easily be re-run on these. Further modifications
and improvements to the NGTS light curve processing pipeline are constantly being made, such
as a finer grid for the background correction and a more comprehensive systematic removal
step. Running the periodicity detection software on these re-processed light curves may yield
fewer false-positive detections and bring to light signals which were previously below the noise.

Beyond this re-processing, it would be a fairly straightforward task to run the outputs of
the period detection pipeline through a machine-learning-based classifier to characterise the
variability detected. This has been done for other variability studies to great success, and by
using either a neural-network-based approach on the light curve data or a clustering approach
using derived rotation periods and stellar parameters, it would be possible to generate clusters
of similar periodic signals in terms of period, amplitude and signal shape as well as by spectral
type. Further to this, this work may be able to be linked back to the original scientific goals
of NGTS, exoplanet discovery. By assessing the types of variable signals typical of intrinsic
stellar variability and binary systems, it may be possible to filter out false-positive detections
from the exoplanet search pipeline. Furthermore, understanding the typical variability signals
associated with a certain spectral type may aid in understanding the likelihood of (potentially
habitable) planets existing around such stars.

7.3 Periodic stellar variability in the open cluster NGC 6633

NGTS observed the ∼ 500 Myr old open cluster NGC 6633 during 2019 and 2020. This study
aimed to assess the rotational variability of stars within this cluster using NGTS photometry.
As highlighted in the rotational study of field stars, rotational analysis of groups of coeval
populations such as open clusters provides much more insight into the rotational evolution of
stars.

To facilitate this, I developed a general-purpose periodicity extraction software package,
RoTo. RoTo combines multiple periodicity detection methods, currently a Lomb–Scargle peri-
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odogram, the G-ACF and a Gaussian process (GP) regression method, to provide precise period
information from a time series. Using multiple period detection aids in confirming whether a
detected period is a real signal or a false positive of that specific method.

I conducted an in-depth study of the open cluster NGC 6633, which has previously not
been studied in great detail; in particular, this cluster lacks targeted photometric data, of which
rotational variability is one data product. I produced robust membership lists for the cluster,
drawing from literature periods using a variety of clustering algorithms on Gaia DR2 data and
implemented a clustering algorithm using DBSCAN and the latest Gaia EDR3 parameters to
confirm potential members.

I confirmed the distance of the cluster using Gaia EDR3 stellar parameters and derived
differential extinction values for cluster members using EDR3 parameters and a 3d-dustmap
model. These values are particularly important for this cluster, as it is fairly distant, which
will cause significant reddening, and hence may bias any results which rely on uncorrected
magnitude values or colour.

I assessed how the cluster members are positioned in a CMD and period–colour space.
I identified a clear main sequence for the cluster in colour–magnitude space and highlighted
potential binary systems that lie above this. Within period–colour space, there is a clear
slow-rotator sequence for the cluster, which qualitatively agrees with previous age estimates,
lying fractionally below the slow-rotator sequences of the similarly but slightly older Praesepe
and Hyades clusters. I produced probabilistic age estimates for the cluster by fitting two
gyrochronology models (fromAngus et al. 2019 and Spada & Lanzafame 2020) and conducting
a simultaneous gyrochronology and isochrone fit. These methods produced estimated cluster
ages of 479+18

−20 Myr, 567+52
−50 Myr and 524+209

−145 Myr respectively. These age estimates all
agree quantitatively with previous age estimates for NGC 6633, although the different models
produced slightly different age estimates. This highlights the errors associated with empirical
gyrochronology models, and once again, the importance of targeted observations of similar age
populations to calibrate stellar evolution models.

Improvements could be made to the rotational analysis pipeline, such as the inclusion of
the data pre-processing steps conducted in previous NGTS studies to remove systematic signals
including Moon correlated signals.

In several objects, a GP model was not fitted to the light curve. By re-running the analysis
pipeline with longer timeouts, it may be able to fit a GP model to such objects. Alternatively,
an in-depth analysis of these objects may provide clues to further refinements to the GP model
which result in a better fit, such as alterations to the default kernel hyperparameters.

Within the NGC 6633 sample, several objects lie well below the slow-rotator sequence.
These objects provide interesting candidates for follow-up observations: spectroscopic, astro-
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metric or photometric. Confirmation of a binary rotational sequence in the cluster (such as
in Gillen et al. 2020) may illuminate how stars evolving in these systems differ from their
single-star counterparts. Alternatively, a similar half-period aliasing effect as hypothesised in
the further work to Chapter 5 may affect the rotation period of these stars and should be taken
into consideration.

There is also the open question of how metallicity affects the angular momentum evolution
of stars. Previous studies are mainly theoretical, providing insights into how metallicity may
affect the internal structure and hence chemical and angular momentum transport within stars.
Continuing to observe and produce rotational information for clusters of differing ages and
metallicities should enable a picture to be painted of how metallicity affects the rotational
distribution of stars of a specific age.

Further development of the RoTo package, such as the implementation of additional period
detection methods, would be straightforward. The package is written in a modular format,
meaning that new period detection methods are straightforward to implement. The first new
method to be implemented will be phase-dispersion minimisation, which has been proven to
work well for photometric light curve data. Further refinements to the GP model could be
made, as the model itself is currently a ‘one-size-fits-all’ stellar rotation model. For example,
the package should allow the usermore freedom to specifymodel terms and parameters. Further
testing should be conducted on how to best combine periods outputted by RoTo. In this study,
manual inspection of the outputs was deemed the most appropriate method for assessing the
‘best’ period, which may not always be feasible. Furthermore, it was unclear how best to
combine the period estimates and their errors to produce a sensible period range. This was
further highlighted in the simultaneous gyro- and isochrone fit, in which underestimated errors
on the period led to unphysically large age estimate errors. Not only should the combination
of period estimates be further considered, but also the errors within each period estimate. This
leads back to further work for the G-ACF project, including flux errors in theG-ACF calculation,
and gaining a better understanding of how sampling affects the G-ACF may also allow a better
understanding of the order of the error in the G-ACF period estimate.

Finally, NGTS has observed a number of other potentially interesting clusters as part of the
open clusters working group. One such cluster is the ∼ 50–60 Myr old Trumpler 10 cluster.
This cluster has very little previous data, in particular photometric, and so conducting a similar
study to that of NGC 6633 would be both straightforward and also informative. The rotation of
extremely young stars and in particular star-disc interaction for such stars is an active topic of
scientific interest.
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7.4 Summary

In summary, I have developed and tested algorithms and pipelines for extracting periodic signals
from irregularly sampled data. This work has been conducted within the astrophysical context
of detecting and characterising the periodic variability of stars observed photometrically.

I aided in developing the generalised autocorrelation function (G-ACF), a generalisation of
the ACF to irregularly sampled data. My contributions to this project were implementing and
testing the algorithm, including computational considerations and the optimal functional forms
and parameters of the weight and selection functions central to the G-ACF. I demonstrated that
the implementation of the G-ACF accurately reproduces the expected ACF for simple synthetic
data, as well as more complex stochastically driven examples and real Kepler photometry.

I then applied the G-ACF to the entirety of the NGTS photometric light curve data set. This
project’s scientific focus was to search for and characterise periodic variability observed with
NGTS, as well as demonstrate the usefulness of the G-ACF within astrophysics. In Briegal
et al. (2022), I presented 16, 880 variability periods from 829, 481 objects observed with NGTS
between 2015 and 2018, which span late-A through to mid-M spectral types and with periods
between ∼ 0.1 and 130 days. I explored how these variable objects are distributed in colour–
magnitude and colour–period space and demonstrated we could observe a distinct bi-modality
in colour–period, previously only observed within space-based data.

Finally, based on the conclusions of the NGTS periodic variability study, I applied period
finding algorithms to the ∼ 500 Myr open cluster NGC 6633 observed by NGTS from 2019
to 2021. I conducted an in-depth search for periodic variability within NGC 6633, using a
periodicity detection package, RoTo, which I developed to include three commonly used period
extractionmethods: a Lomb–Scargle periodogram, anACF (usingmyG-ACF implementation),
and a Gaussian-Process regression method. Using the latest Gaia EDR3 astrometry, I derived
accurate distances and differential extinction values for cluster members. I assessed the colour–
period distribution for NGC 6633, comparing it with other cluster rotational main-sequences
and gyrochronology models, to give a probabilistic age estimate for NGC 6633 that agrees with
age estimates from complementary methods.

This work is firmly rooted in big data principles: I applied complex algorithms to large data
sets to ascertain statistical summaries of the data set in terms of rotation period and other stellar
parameters. I made extensive use of the CambridgeHPC facilities and spent time implementing,
testing, and optimising algorithms and periodicity detection pipelines to streamline discoveries.
I have contributed a large amount of open-source code from this project, including two publicly
available Python packages: GACF and RoTo, which astronomers are already using within UK
universities. I have also demonstrated that large ground-based photometric datasets can give
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statistical results comparable with those from space-based data. The caveat is that this requires
comprehensive analysis pipelines that account for the complex noise sources within this data.
I have also highlighted the importance of ancillary science focuses within telescope consortia.
This project started within an exoplanet detection context but has produced many interesting
empirical results within stellar evolution and gyrochronology. This view is synonymous with
the recent introduction of the NGTS working groups, which target results beyond exoplanet
detection and characterisation with NGTS.
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Publications and other work

Over the course of my PhD, I have been involved with the NGTS consortium. This includes
responsibilities for manual eyeballing of fields to select potential planet candidates, attendance
at quarterly meetings and participation in collaborative research. I will briefly discuss my
contributions to a number of papers I have been authored on over the course of my PhD,
including a significant contribution to the first NGTS clusters working group publication on
rotation in the open cluster Blanco 1. A full list of publications I have been authored on is given
in Table 8.1.

As a part of the CDT in Data Intensive Sciences, I spent six months (from August 2019
to January 2020) working full-time at the AI cyber-security firm Spherical Defence. During
this work placement, I worked on many aspects of the production codebase for their anomaly
detection pipeline; this included a large-scale refactor of their data delivery pipeline. This
placement allowed me to further develop my skills working with production code, including
aspects of version control and DevOps, which I have applied to the open source code produced
throughout this PhD.

8.1 NGTS clusters survey – I. Rotation in the young benchmark
open cluster Blanco 1

This study, led by Edward Gillen with me as second author, determined rotation periods for
127 stars in the ∼ 115-Myr-old open cluster Blanco 1 using NGTS data. We determined
rotation periods using three methods: GP regression, the Generalised Autocorrelation Function

169
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Table 8.1: A list of authored publications during my PhD, as well a brief summary of my
contribution to the work.
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(G-ACF, Chapter 4) and LS periodograms; the period determination using the G-ACF was
conducted by me.

As we saw in Chapters 1 and 2, open clusters are an excellent target for observations and
science programmes seeking information on the rotational evolutions of stars. Blanco 1 is
a similar age to the Pleiades cluster, and pairs of similarly aged clusters provide a means to
determine the rotation period distribution at a given age from two independent samples of stars
in different cluster environments. This was the motivation behind the NGTS observations of
Blanco 1, as the Pleiades has a rich history of previous rotational studies (Hartman et al. 2010;
Rebull et al. 2016a,b; Covey et al. 2016; Stauffer et al. 2016) in comparison to the relative dearth
of rotational detections within Blanco 1: just 33 photometric rotation periods were reported by
Cargile et al. (2014).

NGTS observed Blanco 1 using a single camera over a 195-night long baseline from May
to November 2017, taking a total of 201,773 images at 13-second cadence on 134 nights. Light
curves were extracted for confirmed cluster members; the membership list of the cluster was
taken fromGaiaCollaboration et al. (2018b) inwhich groups of objects clustered astrometrically
are selected and assessed for tight main-sequence distributions in colour–magnitude. NGTS
was able to generate photometric light curves for 429 of the 489 members of Blanco 1 from
Gaia Collaboration et al. (2018b).

Thiswork presented the first use of theG-ACFon a large astrophysical data set and compared
the outputs from the G-ACF with two other periodicity detection methods. In order to extract a
rotation period from the computed G-ACF, I elected to use a two-stage fast Fourier transform
(FFT): the FFT of the entire G-ACF was calculated to find an approximate first period, and
this period is then refined using a smaller section of the G-ACF up to 5 times the initial period
estimate in lag. This refinement reduces signal degradation caused by the evolution of the
rotational signals of solar-type stars: at large lag values, we will be shifting the time series
against another part of the time series in which the signal shapes are no longer matching, Figure
8.1 show two such examples. This Figure shows NGTS light curves and detected periods for
two stars within Blanco 1; in both stars, the G-ACF and the GP fit have excellent agreement
with the LS lying outside the bulk of the GP posterior. This highlights the importance of using
non-sinusoidal models when evaluating rotation within stars, and in particular young stars such
as the stars within Blanco 1. The rotation periods of all 127 stars were manually assessed for
validity, and the by-eye best method was selected in each case. The GP method produced the
most reliable periods across the entire sample, however in the case of four short period stars
the other methods were used. We note that the GP is the only method to produce an error on
the outputted periods as it is able to sample a posterior distribution. The multiplicity of each
star was also considered, as the presence of companion stars will affect the rotational evolution
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Figure 8.1: NGTS light curves and detected periods from two Blanco 1 stars. The top three
plots show the NGTS light curve, with a GPmodel overlayed in the middle plot and the residuals
of this model fit in the bottom plot. The bottom six plots represent the periods extracted from
the GP, LS and G-ACF methods, as well as phase folded light curves on each of the periods on
the right. The GP period shows the posterior period distribution, as well as lines showing the
period detections from the G-ACF and LS. The LS periodogram is shown in the middle-left
plot and the G-ACF of the light curve in the bottom left plot, with lines in both plots indicating
the position of the detected period. (Credit: Gillen et al. 2020).

of the system. This was done using two complementary approaches: firstly by fitting the
single-star cluster sequence in colour–magnitude space and identifying stars above this trend
and secondly through cross-matching with literature RV surveys.

The colour–period diagram of the rotation periods detected within Blanco 1 shows a strong
sequence between mid-F and mid-K stars in colour, with photometric multiples in general
sitting below this sequence (Figure 8.2). It was noted that the rotation sequence appears to
break down for the redder objects, with a much broader distribution of rotation periods in the
M-dwarf sample of the population. Conversely, the M stars appeared to show much more
stable rotation periods than the FK stars, which exhibited significant phase evolution within the
observation spans. This could be attributed to different magnetic field morphologies between
the two populations and hints at a possible relation between magnetic field topology and the
convergence onto the well-defined rotation sequence for a given age.
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Figure 8.2: Rotation period versus colour for stars in Blanco 1. The left plot shows all objects,
including those identified as multiple star systems. The right plot shows only the apparent
single-star systems, highlighting a clear rotation period dependence on colour. (Credit: Gillen
et al. 2020).

8.2 NGTS planet discoveries

Additionally, I have been authored on a number of NGTS planet discovery papers during my
PhD. My contributions to these papers have been in the form of confirming the rotation period
of the host star (or lack thereof) using the G-ACF stellar variability pipeline from Chapters 4
and 5 and in manual candidate eyeballing. As most of the NGTS planet detections have been
planets orbiting main-sequence Solar-type stars, generally the rotational signals have been weak
and without significant phase evolution.
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NGC 6633 RoTo objects

Tables A.1 through to A.5 give the estimated variability periods and derived stellar parameters
for the 58 objects analysed from the open cluster NGC 6633 in Chapter 6. I include the RoTo
generated plots for these objects. The format of these plots is explained below, taken from
Section 6.2.5.5.
RoTo can generate plots that show the estimated periods from each method, as well as

diagnostic plots and phase folds for each method, to enable validation of the estimated periods.
I split an example of a RoTo generated .pdf into five plots (Figures A.1 – A.5), and explain each

Figure A.1: Example RoTo data plot. The light curve is plotted as black points with error bars
(top). A GPmodel fit is overlaid in red, with 1f uncertainty intervals in light red. The residuals
of the GP model fit are plotted in black (bottom), with the uncertainty of the GP model overlaid
in light red.

175
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FigureA.2: Example RoTo combined period estimate plot. Outputs from three period estimation
methods are plotted (left). Vertical blue and green lines show the period estimate from an LS
periodogram and a G-ACF, respectively, with error bars plotted as the same colour shading.
The GP posterior is shown as a red line, with the mean (vertical red line) and 1 f uncertainty
(light red shading). The combined period and uncertainty are plotted as a black point with an
error bar. The right-hand plot shows the light curve phase folded on this combined period.

Figure A.3: Example RoTo method plot. The Lomb–Scargle periodogram of the entire light
curve is shown (right). The estimated period is plotted as a blue line with errors plotted as a
light blue region. In this example, the errors on the estimated period are extremely small, and
hence may not be visible. The left plot shows the light curve phase folded on this LS estimated
period.
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Figure A.4: Example RoTo method plot. The G-ACF of the light curve is plotted (right). The
estimated period is shown as a green line with errors plotted as a light green region. In this
example there are no error estimates on the period, and hence not visible. The left plot shows
the light curve phase folded on this G-ACF estimated period.

Figure A.5: Example RoTo method plot. The GP model period posterior is plotted as a black
histogram, with the estimated period and 1 f uncertainty shown as a red point with error bars
(right). The left plot shows the light curve phase folded on this GP estimated period.

plot in turn.
At the top of a RoTo output .pdf (Figure A.1), the entire light curve is plotted as black

scatter points, with errors on each point. Overlaid is the MAP GP model fit in red, with 1 f
uncertainty intervals in light red. Below this, the residuals of this model fit are plotted in black.
1 f uncertainty intervals for the GP model are plotted in light red.

The second row of the .pdf output is shown in Figure A.2. The left plot shows the results
of the individual RoTo methods overlaid with error bars. In the case of the GP model (red),
the period posterior distribution is plotted, along with the mean (vertical red line) and 1 f
uncertainty (light red). For the G-ACF (green) and LS (blue), the estimated period is shown
as a vertical line, with uncertainty as light shading of the same colour. In this example, the
uncertainty on the LS period extends beyond the x-axis. The combined period and uncertainty
are shown as a black point with error bars. The right plot shows the light curve phase folded
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on this combined period.
Figures A.3, A.4 andA.5 include the remainder of the RoTo output. The left-hand plots show

details of the method, which can be a periodogram, an ACF or a period posterior distribution.
The right-hand plot in each example will show the light curve phase folded on the period found
by that method.
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Table A.1: Adopted rotation periods and method used for the 58 objects with detected periodic
variability in NGC 6633. Objects are sorted by period, with potential binary objects separated
at the end of the table. The page number of each object’s corresponding RoTo plot is given.

NGTS ID %rot Δ%−rot Δ%+rot Method Figure Page Number

NG1827+0636_1321241 1.25610 0.00547 0.00527 GP 184
NG1827+0636_1451334 2.01984 0.13767 0.13767 Combined 185
NG1827+0636_1100060 3.18430 0.05449 0.05449 Combined 186
NG1827+0636_1794649 3.58670 0.02526 0.02526 Combined 187
NG1827+0636_1097244 3.83260 0.02541 0.02541 Combined 188
NG1827+0636_1008149 3.88881 0.01768 0.01768 Combined 189
NG1827+0636_1439675 4.43841 0.01877 0.01877 Combined 190
NG1827+0636_1422346 4.44441 0.00153 0.00153 Combined 191
NG1827+0636_1319323 4.70421 0.00059 0.00059 Combined 192
NG1827+0636_1439611 5.71558 0.02011 0.02011 Combined 193
NG1827+0636_1452712 6.04603 0.05811 0.05811 Combined 194
NG1827+0636_1010770 6.19723 1.46872 1.46872 LS 195
NG1827+0636_1329847 6.75315 0.01451 0.01451 Combined 196
NG1827+0636_1328554 7.24699 0.01334 0.01334 Combined 197
NG1827+0636_1327844 7.27716 0.04115 0.04115 Combined 198
NG1827+0636_1041927 7.27979 0.09911 0.10627 GP 199
NG1827+0636_1300498 7.31989 0.14121 0.14121 Combined 200
NG1827+0636_1106701 7.35425 0.01780 0.01780 Combined 201
NG1827+0636_1027580 7.56903 0.01087 0.01087 Combined 202
NG1827+0636_1769107 7.57452 0.01025 0.01025 Combined 203
NG1827+0636_558862 7.71833 0.09950 0.09950 Combined 204
NG1827+0636_958489 7.72781 0.01946 0.01946 Combined 205
NG1827+0636_849720 8.43288 0.16477 0.16477 Combined 206
NG1827+0636_2096690 8.44428 0.06988 0.06988 Combined 207
NG1827+0636_1447254 8.47575 0.00337 0.00337 Combined 208
NG1827+0636_1321895 8.54611 0.00367 0.00367 Combined 209
NG1827+0636_1435074 8.58229 0.00993 0.00993 Combined 210
NG1827+0636_885537 8.60776 0.00086 0.00086 Combined 211
NG1827+0636_1429043 8.63872 0.07396 0.07396 Combined 212
NG1827+0636_1376142 8.81288 0.04790 0.04790 Combined 213
NG1827+0636_868397 8.82793 0.01365 0.01365 Combined 214
NG1827+0636_641157 8.84373 0.05506 0.05506 Combined 215
NG1827+0636_1378217 8.88301 0.00000 0.00000 GP 216
NG1827+0636_869793 9.18723 0.00441 0.00441 Combined 217
NG1827+0636_870224 9.19814 0.01212 0.01212 Combined 218
NG1827+0636_1258396 9.40107 0.01105 0.01105 Combined 219
NG1827+0636_539015 9.43472 0.03092 0.03092 Combined 220
NG1827+0636_1764944 9.54031 0.03821 0.03821 Combined 221
NG1827+0636_1394490 9.57805 0.08676 0.08676 Combined 222
NG1827+0636_1422940 10.03600 0.10067 0.10067 Combined 223
NG1827+0636_1453345 10.16039 0.04369 0.04369 Combined 224
NG1827+0636_842826 10.59263 0.00625 0.00625 Combined 225
NG1827+0636_1191801 11.36309 0.02239 0.02239 Combined 226
NG1827+0636_1032588 11.43760 0.01836 0.01836 Combined 227
NG1827+0636_1346046 11.45982 0.09839 0.09839 Combined 228
NG1827+0636_639925 11.57708 0.02392 0.02392 Combined 229
NG1827+0636_1427699 12.17651 0.06126 0.06126 Combined 230
NG1827+0636_1233779 1.42685 0.13324 0.13324 LS 231
NG1827+0636_1291615 2.66976 0.00000 0.00000 G-ACF 232
NG1827+0636_1025611 3.66796 0.00000 0.00000 G-ACF 233
NG1827+0636_1401169 3.88896 0.00629 0.00629 Combined 234
NG1827+0636_1452024 4.14111 0.01876 0.01876 Combined 235
NG1827+0636_1371389 7.04782 0.10702 0.10702 Combined 236
NG1827+0636_1321860 7.95933 0.02446 0.02446 Combined 237
NG1827+0636_1344805 8.23295 0.02147 0.02147 Combined 238
NG1827+0636_1119676 9.17334 1.45090 1.45090 Combined 239
NG1827+0636_907345 11.36973 0.04146 0.04146 Combined 240
NG1827+0636_1317309 12.23621 0.00391 0.00391 Combined 241
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Table A.2: Estimated variability periods for 58 objects in NGC 6633 from Lomb–Scargle,
G-ACF and a Gaussian Process model estimate. The table is continued in Table A.3.
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0
0

N
G
1827+0636_1422346

4.44657
4.32100

4.32100
4.44225

0
0

N
G
1827+0636_1319323

4.70338
0.36841

0.36841
4.70504

0
0

N
G
1827+0636_1439611

5.74402
0.46440

0.46440
5.68713

0
0

N
G
1827+0636_1452712

5.90711
5.77667

5.77667
6.14234

0
0

6.08864
0.04824

0.04790
N
G
1827+0636_1010770

6.19723
1.46872

1.46872
123.76466

0
0

129.99061
22.74655

53.92254
N
G
1827+0636_1329847

6.77367
0.57694

0.57694
6.73263

0
0

N
G
1827+0636_1328554

7.22813
0.40286

0.40286
7.26586

0
0

N
G
1827+0636_1327844

7.33535
0.37706

0.37706
7.21897

0
0

N
G
1827+0636_1041927

7.43146
1.05312

1.05312
7.98961

0
0

7.27979
0.09911

0.10627
N
G
1827+0636_1300498

7.12019
7.08664

7.08664
7.51960

0
0

N
G
1827+0636_1106701

7.37942
0.34794

0.34794
7.32907

0
0

N
G
1827+0636_1027580

7.58440
0.93082

0.93082
7.55366

0
0

N
G
1827+0636_1769107

7.56001
0.19989

0.19989
7.58902

0
0

N
G
1827+0636_558862

7.85904
7.41169

7.41169
7.57762

0
0

N
G
1827+0636_958489

7.75533
6.50077

6.50077
7.70028

0
0

N
G
1827+0636_849720

8.66590
0.71198

0.71198
8.19985

0
0

N
G
1827+0636_2096690

8.54310
0.33157

0.33157
8.34545

0
0

N
G
1827+0636_1447254

8.48052
8.14058

8.14058
8.47099

0
0

N
G
1827+0636_1321895

8.54092
0.20670

0.20670
8.55130

0
0

N
G
1827+0636_1435074

8.59633
0.23388

0.23388
8.56825

0
0

N
G
1827+0636_885537

8.60898
4.92148

4.92148
8.60654

0
0

N
G
1827+0636_1429043

8.53413
1.24647

1.24647
8.74331

0
0
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Table A.3: (Continued from Table A.2.)
N
G
TS

ID
%
rot (LS)

Δ
%
−rot (LS)

Δ
%
+rot (LS)

%
rot (G

ACF)
Δ
%
−rot (G

ACF)
Δ
%
+rot (G

ACF)
%
rot (G

P)
Δ
%
−rot (G

P)
Δ
%
+rot (G

P)

N
G
1827+0636_868397

8.80863
0.39164

0.39164
8.84723

0
0

N
G
1827+0636_641157

8.76587
1.09832

1.09832
8.92160

0
0

N
G
1827+0636_1378217

8.65059
7.76979

7.76979
8.97982

0
0

8.88301
0.00000

0.00000
N
G
1827+0636_869793

9.19346
0.57445

0.57445
9.18099

0
0

N
G
1827+0636_870224

9.21529
0.56225

0.56225
9.18099

0
0

N
G
1827+0636_1258396

9.38544
0.39442

0.39442
9.41669

0
0

N
G
1827+0636_539015

9.39099
2.33039

2.33039
9.47845

0
0

N
G
1827+0636_1764944

9.59434
0.95097

0.95097
9.48627

0
0

N
G
1827+0636_1394490

9.50376
5.40119

5.40119
9.78762

0
0

9.44277
0.09727

0.10986
N
G
1827+0636_1422940

9.79105
3.05091

3.05091
10.18317

0
0

10.13377
0.17834

0.19019
N
G
1827+0636_1453345

10.22217
0.12857

0.12857
10.09860

0
0

N
G
1827+0636_842826

10.58380
0.41146

0.41146
10.60147

0
0

N
G
1827+0636_1191801

11.33143
0.36395

0.36395
11.39476

0
0

N
G
1827+0636_1032588

11.46357
0.47101

0.47101
11.41164

0
0

N
G
1827+0636_1346046

11.22286
5.71205

5.71205
11.54030

0
0

11.61631
0.15190

0.16374
N
G
1827+0636_639925

11.61091
0.34615

0.34615
11.54325

0
0

N
G
1827+0636_1427699

12.26314
0.53292

0.53292
12.08988

0
0

N
G
1827+0636_1233779

1.42685
0.13324

0.13324
3.45437

0
0

2.83745
0.00593

0.00567
N
G
1827+0636_1291615

2.61056
1.07780

1.07780
2.66976

0
0

0.50142
0.00000

0.00000
N
G
1827+0636_1025611

1.86713
3.02680

3.02680
3.66796

0
0

N
G
1827+0636_1401169

3.88007
1.47594

1.47594
3.89785

0
0

N
G
1827+0636_1452024

4.11457
1.48303

1.48303
4.16764

0
0

N
G
1827+0636_1371389

6.89647
3.81839

3.81839
7.19917

0
0

N
G
1827+0636_1321860

7.99392
0.65009

0.65009
7.92475

0
0

N
G
1827+0636_1344805

8.18387
0.18470

0.18470
8.24113

0
0

8.27385
0.04947

0.05113
N
G
1827+0636_1119676

10.80983
10.52993

10.52993
11.08720

0
0

5.62299
0.00000

0.00000
N
G
1827+0636_907345

11.42836
0.45170

0.45170
11.31109

0
0

N
G
1827+0636_1317309

12.24174
0.80835

0.80835
12.23067

0
0
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Table A.4: Stellar parameters and cross-match identifiers for 58 objects in NGC 6633. A subset
of the table columns have been printed for publication clarity. The table is continued in Table
A.5.

N
G
TS

ID
RA

D
ec

G
M
ag

�
0

D
istance

Binary
A
m
plitude

G
aia

ED
R3

ID
TICv8

ID

N
G
1827+0636_1321241

276.83235
6.85826

11.32500
0.56808

391.96335
0

0.02219
4477266156402806784

319341055
N
G
1827+0636_1451334

276.73081
6.46595

10.94568
0.35625

387.23465
0

0.01420
4477215544507181568

414958614
N
G
1827+0636_1100060

277.47710
6.09102

12.60373
0.73384

407.12855
0

0.01149
4284992736985442304

320631423
N
G
1827+0636_1794649

276.66243
7.74214

16.10443
0.35625

404.07005
0

0.03796
4477642120658537984

1677163143
N
G
1827+0636_1097244

277.18675
6.39579

12.52017
0.57548

393.70056
0

0.01572
4477158399947061760

320152834
N
G
1827+0636_1008149

278.13127
5.87808

13.46705
0.79472

480.63865
0

0.01800
4284935905976928256

371346403
N
G
1827+0636_1439675

276.45135
6.86242

14.94039
0.41106

518.05328
0

0.01429
4477436271461228032

25747566
N
G
1827+0636_1422346

276.60439
6.50090

16.31666
0.52068

390.25558
0

0.05904
4477219392798051328

26026946
N
G
1827+0636_1319323

277.01167
6.64042

12.58592
0.52068

390.23586
0

0.01381
4477247773942721536

319768780
N
G
1827+0636_1439611

276.47980
6.84072

12.75196
0.42140

384.09316
0

0.00909
4477433247804199424

25747465
N
G
1827+0636_1452712

276.69507
6.50287

12.80034
0.40098

393.91653
0

0.01275
4477218838735244800

414958465
N
G
1827+0636_1010770

277.17824
7.08946

12.94473
0.49327

390.63119
0

0.01247
4477370811849637888

320145514
N
G
1827+0636_1329847

276.93383
6.88011

13.08959
0.56982

393.40048
0

0.01151
4477267599512021504

319708851
N
G
1827+0636_1328554

276.84236
6.90705

12.87522
0.46587

383.82754
0

0.01908
4477271001126161408

319341296
N
G
1827+0636_1327844

276.97754
6.92862

13.72151
0.52068

384.61132
0

0.01563
4477274089194001408

319708610
N
G
1827+0636_1041927

277.57377
6.53746

13.87438
0.63029

391.97390
0

0.01874
4477186819764957696

320634537
N
G
1827+0636_1300498

276.54043
7.02682

13.03638
0.43846

388.93988
0

0.01494
4477463450015170560

26024570
N
G
1827+0636_1106701

277.36945
6.24886

13.90143
0.74595

403.19491
0

0.02279
4284998887379010048

320159454
N
G
1827+0636_1027580

277.19727
6.69302

13.38575
0.40619

394.05667
0

0.01630
4477202311692687360

320149744
N
G
1827+0636_1769107

277.10842
7.39866

13.72388
0.43846

389.44539
0

0.02196
4477570514961452032

319774610
N
G
1827+0636_558862

276.47947
5.57290

13.42785
0.60289

378.13901
0

0.01257
4476727941145239040

170038531
N
G
1827+0636_958489

276.07148
6.11632

15.60070
0.65770

1020.99258
0

0.03545
4476818169823058944

25547760
N
G
1827+0636_849720

276.82120
5.95099

14.66889
0.49327

405.41464
0

0.02408
4476767699673917952

415076095
N
G
1827+0636_2096690

277.33510
7.17360

14.29588
0.38366

374.81009
0

0.02246
4477372534154684416

320169391
N
G
1827+0636_1447254

276.74850
6.64141

14.16443
0.43846

391.79277
0

0.01868
4477238428093129216

414957895
N
G
1827+0636_1321895

276.85330
6.81253

13.77254
0.39864

387.85112
0

0.02045
4477265778445672960

319340834
N
G
1827+0636_1435074

276.89305
6.57332

14.30510
0.52068

387.33913
0

0.01794
4477223550326185984

1676842474
N
G
1827+0636_885537

276.70398
5.98499

14.04281
0.54808

404.59781
0

0.01616
4476768627386930176

1676541723
N
G
1827+0636_1429043

276.93956
6.60999

13.47312
0.53916

390.71403
0

0.01400
4477224100081995776

319710165
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Table A.5: (Continued from Table A.4.)
N
G
TS

ID
RA

D
ec

G
M
ag

�
0

D
istance

Binary
A
m
plitude

G
aia

ED
R3

ID
TICv8

ID

N
G
1827+0636_868397

276.49618
5.70217

13.14814
0.62988

397.75949
0

0.02000
4476734233288121856

170039786
N
G
1827+0636_641157

277.62850
5.21160

14.17656
0.74275

378.08550
0

0.01878
4284326707816352768

404856397
N
G
1827+0636_1378217

276.87885
6.00200

14.05823
0.54808

396.61832
0

0.01577
4476769486380313600

415380280
N
G
1827+0636_869793

276.49196
5.74903

14.17095
0.59506

391.61327
0

0.01737
4476735435878983168

170040275
N
G
1827+0636_870224

276.49186
5.74986

15.39047
0.59507

391.62027
0

0.02205
4476735435867877376

1676517940
N
G
1827+0636_1258396

276.33414
7.34938

14.21571
0.34362

387.68541
0

0.02339
4477534643395003392

25661732
N
G
1827+0636_539015

277.05452
5.34018

14.46555
0.87886

598.07846
0

0.02247
4284506134368316416

415383151
N
G
1827+0636_1764944

277.12697
7.28314

13.77982
0.49327

386.77430
0

0.01154
4477565494129081344

319774064
N
G
1827+0636_1394490

276.55874
6.32616

14.29897
0.43128

395.11513
0

0.01751
4476840267443301376

26027722
N
G
1827+0636_1422940

276.50520
6.53974

13.15397
0.38366

395.42900
0

0.01318
4477230692842056704

25746131
N
G
1827+0636_1453345

276.73117
6.51187

14.48681
0.46587

390.20313
0

0.03153
4477218907451595776

414958433
N
G
1827+0636_842826

276.01531
5.81078

13.74564
0.16442

281.78407
0

0.01959
4476792507405858304

169359509
N
G
1827+0636_1191801

275.83430
7.68878

16.04301
0.43846

365.79650
0

0.03947
4478320274506277376

319003107
N
G
1827+0636_1032588

277.27183
6.49468

15.18019
0.52401

378.47693
0

0.03468
4477194447626711040

320162057
N
G
1827+0636_1346046

276.21393
6.63765

15.21300
0.21923

370.49096
0

0.01427
4477051408031741952

414817093
N
G
1827+0636_639925

277.77033
5.28017

15.41872
1.06202

472.81685
0

0.03938
4284329044278504448

370256692
N
G
1827+0636_1427699

276.81451
6.68094

15.47711
0.34308

387.24461
0

0.02677
4477228360689766400

319340171
N
G
1827+0636_1233779

276.70201
7.13871

12.06443
0.43846

397.76036
1

0.02279
4477466022687624192

414955846
N
G
1827+0636_1291615

276.97616
7.01612

14.52250
0.43846

385.26114
1

0.03502
4477277941793605632

1676882623
N
G
1827+0636_1025611

277.37405
6.53937

14.90309
0.63029

401.86635
1

0.04763
4477184723821187584

320521170
N
G
1827+0636_1401169

276.62705
6.34842

12.27502
0.41106

396.66303
1

0.01445
4477212761368341504

26027621
N
G
1827+0636_1452024

276.72816
6.55827

12.05453
0.38366

405.54492
1

0.01193
4477225676323174912

414958238
N
G
1827+0636_1371389

277.09436
5.83923

13.13597
0.68510

396.63868
1

0.01351
4284606842764014080

415380975
N
G
1827+0636_1321860

276.87528
6.79426

13.60107
0.41092

397.99392
1

0.02061
4477264953811943936

319340743
N
G
1827+0636_1344805

276.41318
6.65606

13.61859
0.41075

375.59065
1

0.01887
4477423180400704512

25746616
N
G
1827+0636_1119676

277.82113
6.34166

14.81098
0.60289

398.25100
1

0.01909
4285014486700919296

405008485
N
G
1827+0636_907345

276.37611
6.42734

15.01244
0.38366

412.07283
1

0.02400
4476854213190251520

25742487
N
G
1827+0636_1317309

277.02126
6.68363

12.70012
0.54808

394.02860
1

0.01164
4477248289338945536

319769244
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