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BOUNDED HEIGHT IN FAMILIES OF DYNAMICAL SYSTEMS

L. DE MARCO, D. GHIOCA, H. KRIEGER, K. D. NGUYEN, T. J. TUCKER, AND H. YE

Abstract. Let a, b ∈ Q be such that exactly one of a and b is an algebraic integer,

and let ft(z) := z2 + t be a family of polynomials parametrized by t ∈ Q. We prove

that the set of all t ∈ Q for which there exist positive integers m and n such that

fm

t
(a) = fn

t
(b) has bounded height. This is a special case of a more general result

supporting a new bounded height conjecture in dynamics. Our results fit into the

general setting of the principle of unlikely intersections in arithmetic dynamics.

1. Introduction

A subset of P1(Q) is said to have bounded height if the Weil height is bounded on

this set. To quickly illustrate the types of results and topics treated in this paper, we

state the following theorem about the family of quadratic polynomials {z2+t : t ∈ Q},

the most intensively family in complex and arithmetic dynamics:

Theorem 1.1. Let ft(z) = gt(z) = z2+ t and a, b ∈ Q such that exactly one of a and

b is an algebraic integer. Then the set

S := {t ∈ Q : fm
t (a) = gnt (b) for some m,n ∈ N}

has bounded height.

For the conclusion of Theorem 1.1 to hold, some conditions on a and b are necessary:

if a2 = b2, then fn
t (a) = gnt (b) for every t and every n ≥ 1, hence S = Q. However,

we expect that the condition a2 = b2 is the only obstruction to S having bounded

height.

The main goal of this paper is to formulate a web of bounded height results and

questions, in the context of dynamical systems on P1, inspired by the results of

Bombieri, Masser, and Zannier [BMZ99, BMZ07] and more recent work such as in

[AMZ]. Related results showing bounded height for dynamical systems have ap-

peared in [Ngu15, GN16]. These questions, in turn, belong broadly to the principle

of “unlikely intersections”, as described in [Zan12]. In the dynamical context, see

for example [BD11, GKNY17], which specifically address unlikely intersections in the

family of Theorem 1.1.

Let C be a smooth projective curve over Q. We fix a logarithmic Weil height hC on

C(Q) associated to a divisor of degree one. A subset of C(Q) is said to have bounded
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height if the function hC is bounded on this set; this is independent of the choice of

hC [HS00, Proposition B.3.5]. We are interested in the following:

Question 1.2. Let C be a projective curve defined over Q and F = Q(C). Fix r ≥ 2,

and f1(z), . . . , fr(z) ∈ F(z) of degrees d1, . . . , dr ≥ 2. Given points c1, . . . , cr ∈ P1(F),

let fn
i (ci) denote their iterates under fi in P1(F). Let V be a hypersurface in (P1)r,

defined over F . When can we conclude that the set

{ t ∈ C(Q) : there exist n1, . . . , nr ≥ 0 such that the specialization

(fn1

1 (c1), . . . , f
nr

r (cr))t lies in Vt(Q) }

has bounded height?

Example 1.3. The case when each fi is a power map z 7→ z±di is treated by [AMZ,

Theorem 1.2]. Indeed, let ci ∈ F∗ be multiplicatively independent modulo constants;

this means that for every (k1, . . . , kr) ∈ Zr \ {0}, we have ck11 · · · ckrr /∈ Q. Let V be

any hypersurface in (P1)r. Amoroso, Masser, and Zannier proved that the set

{t ∈ Q : (ck11 , . . . , ckrr )t ∈ Vt(Q) for some k1, . . . , kr ∈ Z}

has bounded height unless the ci satisfy a special geometric structure; namely, there

exists a tuple (k1, . . . , kr) ∈ Zr \ {0} so that (ck11 , . . . , ckrr )t ∈ Vt for every t ∈ Q.

Applying their result to powers of the form ki = ±dni

i gives boundedness of height

for the set of Question 1.2 for the dynamical systems fi(z) = zdi .

Example 1.4. Suppose that E is a non-isotrivial elliptic curve over F and φ1, φ2 are

endomorphisms of E of degrees > 1. Let f1(z), f2(z) ∈ F(z) be the associated Lattès

maps on P1; that is, fi is the quotient of φi via the projection π : E → P1 that

identifies a point on E with its additive inverse. Fix points P1, P2 ∈ E(F) that

are linearly independent on E, and let V be the diagonal in P1 × P1. We then let

ci = π(Pi) for i = 1, 2. The set in Question 1.2 consists of points t ∈ C(Q) for which

the specializations Pi,t satisfy a relation

φn1

1,t(P1,t) = ±φn2

2,t(P2,t)

on Et for some n1, n2 ≥ 0. This set has bounded height, as a consequence of Silver-

man’s specialization theorem [Sil83]. Indeed, the specializations Pi,t satisfy a linear

relation on Et if and only if det(〈Pi,t, Pj,t〉) = 0, where 〈·, ·〉 is the canonical height

pairing; we then apply [Sil94, III Corollary 11.3.1].

In this paper, we focus on Question 1.2 when r = 2 and V is the diagonal of

P1 × P1. We first exclude the cases where the maps are associated to an underlying

group structure; this will take us out of the contexts that are traditionally addressed

in the literature, such as those of Examples 1.3 and 1.4, but it also allows us to

describe more easily the conditions that should guarantee bounded height.

We will say that a function f(z) ∈ F(z) of degree d ≥ 2 is special if it is conjugate

by a Möbius transformation in F(z) to z±d, ±Td(z) or a Lattès map. The Chebyshev
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polynomial Td is the unique polynomial in Q[z] satisfying Td(z + 1/z) = zd + 1/zd,

so it is a quotient of the power map zd. A rational function f(z) ∈ F(z) of degree

d ≥ 2 is a Lattès map if there exist an elliptic curve E over F together with finite

morphisms π : E → P1
F
and φ : E → E such that π ◦ φ = f ◦ π.

Conjecture 1.5. Fix f(z), g(z) ∈ F(z) with degrees at least 2 and a, b ∈ P1(F).

Assume that at least one of f and g is not special. Set

S := {t ∈ C(Q) : fm
t (a(t)) = gnt (b(t)) for some m,n ≥ 0}.

Then at least one of the following statements must hold:

(1) Either (f, a) or (g, b) is isotrivial.

(2) There exist m,n ≥ 0 such that fm(a) = gn(b).

(3) S has bounded height.

A pair (f, c), with f(z) ∈ F(z) and c ∈ P1(F), is said to be isotrivial if there

exists a fractional linear transformation µ ∈ F(z) such that µ ◦ f ◦ µ−1 ∈ Q(z)

and µ(c) ∈ P1(Q). Condition (2) is clearly an obstruction to S having bounded

height. Condition (1) can also lead to unbounded height. To see this, assume that

f(z) ∈ Q(z) and a ∈ P1(Q) is such that a is not preperiodic for f . Then the sequence

{fm(a)}m≥0 has unbounded height in P1(Q), by the Northcott property of the Weil

height. Fixing n, the solutions to the equations

fm(a) = gnt (b(t))

as m goes to infinity will also have unbounded height.

Remark 1.6. One possible application of Conjecture 1.5 is to the theory of iterated

monodromy groups. Given a field L and a rational function ϕ(z) ∈ L(z) of degree

at least 2, one obtains Galois extensions Ln of L by considering the splitting field

of ϕn(z) − u over L(u) where u is a transcendental; equivalently, each field Ln may

be viewed as the Galois closure of the extension of function fields induced by the

map ϕn : P1
L −→ P1

L (see [Jon13] and [Odo85] for surveys). Passing to the inverse

limit of the Galois groups Gal(Ln/L) as n goes to infinity one obtains a group Gϕ

and a natural map from Gϕ to Aut(Td), where Td is the infinite rooted d-ary tree

corresponding to inverse images of u under iterates of ϕ. Pink [Pin13] has shown that

if ϕ is quadratic over a field of characteristic 0, then the map from Gϕ to Aut(T2) is

surjective unless ϕ is post-critically finite or there is an n such that ϕn(a) = ϕn(b)

for a, b the critical points of ϕ. Hence Conjecture 1.5, with f = g a rational function

of degree 2 and a, b the critical points of f , implies that if the map from Gf to

Aut(T2) is surjective, then for all t ∈ C(Q) outside of a set of bounded height, the

map from Gft to Aut(T2) is also surjective. More generally, combining the methods

of [JKMT16] with Conjecture 1.5, one might hope that within any non-special one-

parameter family f of rational functions over Q with degree d ≥ 2, the image of the

Gft in Aut(Td) is the same for all t outside a set of bounded height.
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Our next result allows us to produce many examples that satisfy Conjecture 1.5.

Let ĥf and ĥg denote the canonical height functions on P1(F) associated to dynamical

systems f and g (see [CS93]). Write d1 = deg(f) and d2 = deg(g); we say that d1
and d2 are multiplicative dependent if they have a common power. Define

M = {(m,n) ∈ N2 : dm1 ĥf(a) = dn2 ĥg(b)}

and

SM = {t ∈ C(Q) : fm
t (a(t)) = gnt (b(t)) for some (m,n) ∈ M}.

Obviously, if M is empty then SM is empty. We have the following:

Theorem 1.7. Let C, F , f(z), g(z), a, b, S, M, and SM be as above, and assume

that d1 = deg(f) ≥ 2 and d2 = deg(g) ≥ 2 are multiplicatively dependent. (We allow

the possibility that both f and g are special.) If the set SM has bounded height, then

one of the following holds:

(1) Either (f, a) or (g, b) is isotrivial.

(2) There exist m,n ≥ 0 such that fm(a) = gn(b).

(3) S has bounded height.

In particular, if M is empty, then Conjecture 1.5 holds for the pairs (f, a) and (g, b).

Example 1.8. C = P1, F = Q(t), f(z) = z4 + t, g(z) = z8 + t, a = t + 2017, and

b = t3 + 2018. Then (f, a) and (g, b) are not isotrivial. For every m,n ≥ 0, fm(a)

is a polynomial of degree 4m, and gn(b) is a polynomial of degree 3 × 8n. Therefore

fn(a) 6= gm(b) for every m,n ≥ 0. Moreover M = ∅ since
ĥg(b)

ĥf(a)
= 3 is not a power

of 2. By Theorem 1.7, the set S has bounded height.

Counter-example 1.9. Assume d1 and d2 are multiplicatively independent. Consider

C = P1, F = Q(t), f(z) = zd1 , g(z) = zd2 , a = t, b = 2t. It is not hard to show that

(f, a) and (g, b) are not isotrivial, and we have fm(a) 6= gn(b) for every m,n ≥ 0.

Moreover, we have ĥf(a) = ĥg(b) = 1 and so, M is empty (since d1 and d2 are

multiplicatively independent). The set S consists of elements of the form 2d
n
2
/(dm

1
−dn

2
)

for m,n ∈ N. From our assumption on d1 and d2, the numbers
dm1
dn2

−1 asm,n ∈ N can

be arbitrarily close to 1. Hence |dn2/(d
m
1 −dn2 )| can be arbitrarily large, and S does not

have bounded height. This is a case ruled out by the hypothesis of [AMZ] in Example

1.3 above. This also illustrates the exclusion of special maps from Conjecture 1.5.

The proof of Theorem 1.7 is given in Section 3. A key ingredient in the proof

is a well-known result by Call-Silverman [CS93]. It seems much harder to prove

Conjecture 1.5 when M 6= ∅ as in Theorem 1.1 (or the more general Theorem 7.1).

A natural approach to proving Theorems 1.1 and 7.1 (or other cases of Conjecture

1.5) as well as the main result of Amoroso-Masser-Zannier consists of two steps:



BOUNDED HEIGHT IN FAMILIES OF DYNAMICAL SYSTEMS 5

(i) Let K be a number field such that a, b ∈ K. For each t ∈ S, we construct a

polynomial P (x) ∈ K[x], depending on f, g, a, b, that vanishes at t and whose

degree is easy to compute. We then obtain an upper bound on the height of

the polynomial P .

(ii) The second step is to prove that t has a large degree over K, comparable to

the degree of P . This means that a certain factor of P with large degree is

irreducible over K.

While the first step is somewhat tedious, it only involves relatively straightforward

height inequalities. However the second step is a notoriously hard problem in dio-

phantine geometry. Amoroso, Masser, and Zannier get around the second step by

the construction of certain auxiliary polynomials using Siegel’s lemma, the use of

Wronskians for certain zero estimates, and various careful height estimates. In our

setting, we directly carry out the second step in this paper. For certain examples,

we can use basic tools (Eisenstein’s criterion) to deduce irreducibility. But for more

interesting examples, such as the setting of Theorem 1.1, we use the construction of

p-adic Böttcher coordinates for families of polynomials. This helps us relate t ∈ S to

a root of unity which automatically yields a very strong lower bound on the degree

of t. Our treatment of p-adic Böttcher coordinates extends earlier work of Ingram

[Ing13] in two important aspects. First, it treats families of polynomials, hence is

more flexible for applications to dynamics over parameter spaces. Second, it allows

the possibility that p divides the degree of the polynomials in families.

The organization of this paper is as follows. In the next section, we provide back-

ground on heights over number fields, function fields, and heights of polynomials

following [BG06, HS00]. This includes a well-known specialization theorem of Call-

Silverman [CS93] that plays an important role in the proof of Theorem 1.7, which we

give in Section 3. In Section 4 we provide upper bounds for heights of polynomials of

the form fn(a) ∈ Q[t] where f(z) ∈ Q[t][z]. Such upper bounds motivate a general

approach to Theorem 1.1 mentioned above and we give immediate examples based

on Eisenstein’s criterion in Section 5. In Section 6, we introduce non-archimedean

Böttcher coordinates for families of polynomials, and we apply these in Section 7 to

prove Theorem 7.1 which implies Theorem 1.1.

Acknowledgments. We thank the American Institute of Mathematics for its hospitality

and support during a SQuaRE meeting in May 2016 which led to the present work.

We are grateful also to Francesco Amoroso, David Masser and Umberto Zannier for

their comments on a previous version of our paper.

2. Heights

In this section we give background on heights.
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2.1. Heights over number fields. Let K be a number field and let MK be the

set of places of K. For each p ∈ MK , let p ∈ MQ denote the restriction of p to

Q, let Kp be the completion of K with respect to p, and let np = [Kp : Qp]. We

define | · |p to be the absolute value on Kp extending the standard absolute value

| · |p on Qp (see [HS00, pp. 171]). Let ‖ · ‖p = | · |
np

p so that the product formula∏

p∈MK

‖x‖p = 1 holds for every x ∈ K∗. Let r ∈ N, for P = [x0 : . . . : xr] ∈ Pr(K)

define HK(P ) =
∏

p∈MK

max
0≤i≤r

‖xi‖p. For P ∈ Pr(Q), pick a number field L such that

P ∈ Pr(L), then define H(P ) = HL(P )1/[L:Q]. This is independent of the choice of L.

Define h(P ) = log(H(P )). Finally, we have the height functions H and h on Q by

embedding Q → P1(Q). Let φ(z) ∈ Q(z) with degree d ≥ 2, define ĥφ on P1(Q) by

the formula:

ĥφ(x) = lim
n→∞

h(φn(x))

dn
.

The following will be used repeatedly:

Lemma 2.1.

(a) There is a constant c0 depending only on φ such that | ĥφ(x)−h(x)| ≤ c0 for every

x ∈ P1(Q).

(b) ĥφ(φ(x)) = d ĥφ(x) for every x ∈ P1(Q).

Proof. See [Sil07, Chapter 3]. �

2.2. Heights of polynomials over Q. Let K be a number field. Let P be a nonzero

polynomial in K[X1, . . . , Xn] written as

P =
∑

(i1,...,in)

ai1,...,inX
i1
1 . . .X in

m .

For every p ∈ MK , define |P |p = max(i1,...,in) |ai1,...,im |p and ‖P‖p = max
(i1,...,in)

‖ai1,...,im‖p =

|P |
np

p . We will also use ℓ1,p(P ) :=
∑

(i1,...,in)

|ai1,...,in|p. Then we define Hpol,K(P ) =

∏
p∈MK

‖P‖p and hpol,K(P ) = log(Hpol(P )) As before, for every P ∈ Q[X1, . . . , Xn] \
{0}, choose a number field L such that P ∈ L[X1, . . . , Xn] then define Hpol(P ) =

Hpol,L(P )1/[L:Q] and hpol(P ) = log(Hpol(P )) which is the height of the point whose

projective coordinates are the coefficients of P . Write MK = M0
K ∪M∞

K where M0
K

(respectively M∞
K ) is the set of finite (respectively infinite) places. We have the fol-

lowing:

Lemma 2.2. Let K be a number field.

(i) Let P,Q ∈ K[X1, . . . , Xn] \ {0} and p ∈ M0
K, we have |PQ|p = |P |p|Q|p.
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(ii) Let v ∈ M∞
K , let P1, . . . , Pm ∈ K[X1, . . . , Xn] and set P =

∏m
i=1 Pi. We have:

2−d
m∏

i=1

|Pi|v ≤ |P |v ≤ 2d
m∏

i=1

|Pi|v

where d = deg(P ) is the total degree of P .

(iii) With the notation as in part (ii), we have:

−d log 2 +

m∑

i=1

hpol(Pi) ≤ hpol(P ) ≤ d log 2 +

m∑

i=1

hpol(Pi).

Proof. Part (i) is Gauss’s lemma [BG06, Lemma 1.6.3] while part (ii) is Gelfond’s

lemma [BG06, Lemma 1.6.11]. Part (iii) follows from (i), (ii), the definition of hpol,

and the identity
∑

v∈M∞

K
nv = [K : Q]. �

Corollary 2.3. Let d, d′ ∈ N. Let P (X) ∈ Q[X ] be a polynomial of degree d and let

α ∈ Q be such that at least d′ Galois conjugates of α are roots of P (t). We have:

h(α) ≤
d log 2 + hpol(P )

d′
.

Proof. We may assume that P is monic and write P (t) =
∏d

i=1(t − αi). We apply

Lemma 2.2 for Pi(t) = t− αi and note that there are at least d′ Galois conjugates of

α among α1, . . . , αd. �

2.3. Heights over function fields. As in Section 1, let C be a smooth projective

curve over Q, let F = Q(C), and fix a Weil height hC on C(Q) associated to a divisor

of degree one. As in Subsection 2.1, we can define MF (with the extra condition that

absolute values are trivial on the field of constants Q), np := 1 for every p ∈ MF , and

the height functions HF and hF on Pr(F). For φ(z) ∈ F(z) with degree d ≥ 2, we

can also define ĥφ on P1(F) and Lemma 2.1 (with the extra condition that c1 depends

on F and φ) remains valid.

We say that f(z) ∈ F(z) has good reduction over an open subset U ⊂ C if f

induces a morphism f : U ×P1 → P1 over Q, given by (t, z) 7→ ft(z). In particular, if

f has degree d, then the specialization will be a well-defined rational map ft : P
1 → P1

of degree d.

The following are crucial ingredients in the next section:

Proposition 2.4. Let f(z) ∈ F(z) with degree d ≥ 2. Let C ′ be a dense open Zariski

subvariety of C such that f has good reduction over C ′. Let a ∈ P1(F). We have:

(a) There exist positive constants c1 and c2 depending only on C and f such that

| ĥft(x)− h(x)| ≤ c1hC(t) + c2

for every t ∈ C ′(Q) and x ∈ P1(Q).
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(b) Regard a as a morphism from C to P1 and let deg(a) denote the degree of this

morphism. Assume that hC is a height function corresponding to the divisor
1

deg(a)
a∗OP1(1). There is a constant c3 depending only on C and a such that

|h(a(t))− deg(a)hC(t)| ≤ c3 for every t ∈ C(Q).

(c)

lim
hC(t)→∞

ĥft(a(t))

hC(t)
= ĥf (a).

(d) Assume that a is not f -preperiodic. We have ĥf(a) = 0 if and only if (f, a) is

isotrivial.

Proof. For part (a), write f(z) =
P (z)

Q(z)
where P (z), Q(z) ∈ F [z] with gcd(P (z), Q(z)) =

1. Removing finitely many points from C ′ if necessary, we may assume that

gcd(Pt(z), Qt(z)) = 1

so that ft(z) =
Pt(z)

Qt(z)
for every t ∈ C ′(Q). Following [HS11], we can define the

height of ft, denoted h̃(ft), to be the height of the point whose projective coordinates

are coefficients of Pt(z) and Qt(z). Then [HS11, Proposition 6] gives that there are

positive constants c4 and c5 depending only on d such that | ĥft(x)−h(x)| ≤ c4h̃(ft)+c5
for every x ∈ P1(Q) and t ∈ C ′(Q). Since the coefficients of Pt(z) and Qt(z) are

obtained by evaluating at t the functions from Q(C) which are the coefficients of

P (z) and Q(z), we get that h̃(ft) ≤ c6hC(t) + c7 for some c6 and c7 that depend only

on C and f . This finishes the proof.

Part (b) follows from [HS00, Theorem B.3.2]. Part (c) is a well-known result of Call-

Silverman [CS93, Theorem 4.1]. Part (d) follows from a result of Baker [Bak09]. �

3. The proof of Theorem 1.7

Throughout this section, let C, F , and a, b ∈ P1(F) be as in Conjecture 1.5. Fix

a height hC on C(Q) as before. Let f(z), g(z) ∈ F(z) with d1 = deg(f) ≥ 2 and

d2 = deg(g) ≥ 2. In this section, we allow the possibility that both f and g are

special. Let S be the set defined in Conjecture 1.5. We start with an easy case:

Proposition 3.1. Assume that a is preperiodic for f . Then one of the following

holds:

(i) Either (f, a) or (g, b) is isotrivial.

(ii) There exist m,n ∈ N0 such that fm(a) = gn(b).

(iii) S has bounded height.

Proof. We assume that conditions (i)-(iii) do not hold and we will derive a contradic-

tion. The problem is easy when b is g-preperiodic. Indeed S is the set of t ∈ C(Q)
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satisfying finitely many equations; hence either S is finite or one of those equations

holds for every t.

Now assume that b is not g-preperiodic. Since we assumed that condition (i) does

not hold, then Propositon 2.4 (for the pair (g, b)) yields that ĥg(b) > 0.

Let (tj)j∈N be in S such that hC(tj) → ∞ as j → ∞. Since a is f -preperiodic,

after restricting to a subsequence of (tj)j∈N if necessary, we have the following. There

exist M ∈ N and a sequence (nj)j∈N ⊂ N such that for α = fM(a) and for every j,

we have

(3.2) α(tj) = g
nj

tj (b(tj)) .

Furthermore, since we assumed that condition (ii) does not hold, then we may assume

(perhaps at the expense of replacing {tj} by a subsequence) that nj → ∞ as j → ∞.

To avoid triple indices, let ĥ(j) denote the canonical height on P1(Q) associated to

the rational function gtj . Applying ĥ(j) to equation (3.2) and dividing by hC(tj), we

have

(3.3)
ĥ(j)(α(tj))

hC(tj)
= d

nj

2

ĥ(j)(b(tj))

hC(tj)

for every j. By Proposition 2.4:

(3.4) lim
j→∞

ĥ(j)(α(tj))

hC(tj)
= ĥg(α) < ∞.

On the other hand, using the fact that nj → ∞ as j → ∞ and also that

lim
j→∞

ĥ(j)(b(tj))

hC(tj)
= ĥg(b) > 0,

we get

(3.5) lim
j→∞

d
nj

2

ĥ(j)(b(tj))

hC(tj)
= ∞.

Equations (3.3), (3.4) and (3.5) yield a contradiction. �

For the rest of this subsection, we further assume that d1 and d2 are multiplicatively

dependent. Define

M = {(m,n) ∈ N2 : dm1 ĥf(a) = dn2 ĥg(b)}.

Also, we let C ′ be a Zariski dense open subset of C such that both f and g have good

reduction at the points of C ′(Q). We let

SM = {t ∈ C ′(Q) : there exist (m,n) ∈ M such that fm
t (a(t)) = gnt (b(t))}

as in Theorem 1.7.
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Proof of Theorem 1.7. We assume that both (f, a) and (g, b) are not isotrivial. We

also assume that SM has bounded height and we need to prove that either S has

bounded height or there exist m,n ∈ N such that fm(a) = gn(b). If either a is f -

preperiodic or b is g-preperiodic then Proposition 3.1 finishes our proof. So, from

now on, assume that neither a nor b is preperiodic. By Proposition 2.4 (d), we have

ĥf (a) > 0 and ĥg(b) > 0.

By Proposition 2.4 (a), there exist positive constants c8 and c9 depending only on

C, f , and g such that

(3.6) max{| ĥft(x)− h(x)|, | ĥgt(x)− h(x)|} ≤ c8hC(t) + c9

for every t ∈ C ′(Q) and every x ∈ P1(Q).

Let δ ≥ 2 be an integer such that both d1 and d2 are powers of δ. Since the set

{δs : s ∈ Z} is discrete in R>0, there is a positive lower bound c10 for the sets

{| ĥf(a)− δs ĥg(b)| : s ∈ Z} \ {0} and

{| ĥg(b)− δs ĥf(a)| : s ∈ Z} \ {0}.

Choose ǫ ∈ (0, c10/3). By Proposition 2.4 (c), there exist c11 depending only on C,

f , and g such that for every t ∈ C ′(Q) with hC(t) ≥ c11, we have:

(3.7) max

{∣∣∣∣∣
ĥft(a(t))

hC(t)
− ĥf (a)

∣∣∣∣∣ ,
∣∣∣∣∣
ĥgt(b(t))

hC(t)
− ĥg(b)

∣∣∣∣∣

}
≤ ǫ.

Let t ∈ S \ SM and assume for the moment that hC(t) ≥ c11. There exist m,n ∈

N0 with dm1 ĥf(a) 6= dn2 ĥg(b) and fm
t (a(t)) = gnt (b(t)). This gives h(fm

t (a(t))) =

h(gnt (b(t))) which together with (3.6) yield:

(3.8) | ĥft(f
m
t (a(t)))− ĥgt(g

n
t (b(t)))| ≤ 2c8hC(t) + 2c9.

By properties of canonical heights, we have:

(3.9) |dm1 ĥft(a(t))− dn2 ĥgt(b(t))| ≤ 2c8hC(t) + 2c9.

We consider the case dm1 ≤ dn2 . Inequality (3.9) yields:

(3.10)

∣∣∣∣∣
dm1
dn2

ĥft(a(t))

hC(t)
−

ĥgt(b(t))

hC(t)

∣∣∣∣∣ ≤
2c8
dn2

+
2c9

dn2hC(t)
≤

2c8
dn2

+
2c9
dn2c11

.

Using
dm1
dn2

≤ 1 and inequality (3.7), we have:

(3.11)

∣∣∣∣
dm1
dn2

ĥf (a)− ĥg(b)

∣∣∣∣− 2ǫ ≤

∣∣∣∣∣
dm1
dn2

ĥft(a(t))

hC(t)
−

ĥgt(b(t))

hC(t)

∣∣∣∣∣ .
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The left-hand side of (3.11) is at least c10 − 2ǫ which is greater than ǫ due to the

choice of c10 and ǫ. Together with (3.10) and (3.11), we have: ǫ ≤
2c8
dn2

+
2c9
dn2c11

which

implies dn2 ≤
1

ǫ

(
2c8 +

2c9
c11

)
.

The case dm1 ≥ dn2 is treated by completely similar arguments. We have proved the

following: if t ∈ S \ SM satisfies hC(t) ≥ c11 then

max{dm1 , d
n
2} ≤

1

ǫ

(
2c8 +

2c9
c11

)
.

Note that there are only finitely many such pairs (m,n). Hence such a t satisfies one

of finitely many equations. We conclude that either there are finitely many such t’s

or one of those equations holds for every t. This finishes the proof. �

4. Upper bounds on heights of polynomials

In this section, we provide some of the technical ingredients on heights of polyno-

mials needed for the proofs of Theorem 1.1 and other cases of Conjecture 1.5.

Fix d ≥ 2 and let

P (z) = zd + a1z
d−1 + . . .+ ad−1z + ad

be the generic monic polynomial of degree d in z. For each n ∈ N, write

P n(z) =

dn∑

i=0

An,iz
dn−i

where An,i ∈ Z[a1, . . . , ad]. Note that An,0 = 1 for every n. For each p ∈ MQ, n ∈ N,

and 0 ≤ i ≤ dn, our first goal is to give an upper bound on the total degree deg(An,i)

and the maximum |An,i|p of the p-adic values of the coefficients of An,i ∈ Z[a1, . . . , ad]

(see Subsection 2.2). We have:

Proposition 4.1. For every n ∈ N and 0 ≤ i ≤ dn, we have deg(An,i) ≤ i.

Proof. The proposition holds when n = 1, we now proceed by induction. We have:

P n+1(z) = (P n(z))d+
d∑

j=1

aj(P
n(z))d−j =

(
dn∑

i=0

An,iz
dn−i

)d

+
d∑

j=1

aj

(
dn∑

i=0

An,iz
dn−i

)d−j

.

Let 0 ≤ k ≤ dn+1. The coefficient of zd
n+1−k in

(
dn∑

i=0

An,iz
dn−i

)d

is

(4.2)
∑

(i1,...,id)

An,i1 · · ·An,id
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where
∑

is taken over the tuples (i1, . . . , id) in {0, . . . , dn}d such that (dn− i1)+ . . .+

(dn − id) = dn+1 − k, or equivalently i1 + . . .+ id = k. By the induction hypothesis,

the total degree of each term in (4.2) is

deg(An,i1 . . . An,ik) ≤ i1 + . . .+ id = k.

For 1 ≤ j ≤ d, the coefficient of zd
n+1−k in aj

(
dn∑

i=0

An,iz
dn−i

)d−j

is

(4.3)
∑

(i1,...,id−j)

ajAn,i1 . . . An,id−j

where
∑

is taken over the tuples (i1, . . . , id−j) in {0, . . . , dn}d−j such that (dn − i1) +

. . .+(dn−id−j) = dn+1−k, or equivalently i1+. . .+id−j = dn(d−j)−dn+1+k = k−dnj.

By the induction hypothesis, the total degree of each term in (4.3) is

deg(akAn,i1 . . . An,id−j
) ≤ 1 + i1 + . . .+ id−j = 1 + k − dnj < k

since j ≥ 1 and dn ≥ 2. Overall, the coefficient of zd
n+1−k is a polynomial in the ai’s

whose total degree is at most k. This finishes the proof. �

For the non-archimedean places p ∈ M0
Q, we have the following estimates:

Proposition 4.4. For n ∈ N and 1 ≤ i ≤ dn, we have:

|An,i|p ≤ min{1, |d|n−i
p }.

Proof. We proceed by induction on n. The case n = 1 is immediate. Let k ∈

{1, . . . , dn+1}, since An+1,k ∈ Z[a1, . . . , ad] we have |An+1,k|p ≤ 1. It remains to show

|An+1,k|p ≤ |d|n+1−k
p . When k ≥ n + 1, this holds trivially since |d|n+1−k

p ≥ 1. From

now on, we assume k < n+ 1, hence k < dn (since d ≥ 2).

As in the proof of Proposition 4.1, we have:

P n+1(z) =

(
zd

n

+

dn∑

i=1

An,iz
dn−i

)d

+ a1

(
zd

n

+

dn∑

i=1

An,iz
dn−i

)d−1

+ . . .

Since k < dn, the coefficient of zd
n+1−k must come solely from

(
zd

n

+

dn∑

i=1

An,iz
dn−i

)d

= zd
n+1

+

d∑

ℓ=1

(
d

ℓ

)
zd

n(d−ℓ)

(
dn∑

i=1

An,iz
dn−i

)ℓ

.

For each ℓ ∈ {1, . . . , d}, the coefficient of zd
n+1−k in

(
d

ℓ

)
zd

n(d−ℓ)

(
dn∑

i=1

An,iz
dn−i

)ℓ

is

(4.5)

(
d

ℓ

) ∑

(i1,...,iℓ)

An,i1 . . . An,iℓ
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where
∑

is taken over the tuples (i1, . . . , iℓ) in {1, . . . , dn}ℓ such that dn(d−ℓ)+(dn−

i1) + . . . + (dn − iℓ) = dn+1 − k, or equivalently i1 + . . . + iℓ = k. For such a tuple

(i1, . . . , iℓ), by Lemma 2.2 and the induction hypothesis, we have

(4.6)

∣∣∣∣
(
d

ℓ

)
An,i1 . . . An,iℓ

∣∣∣∣
p

≤

∣∣∣∣
(
d

ℓ

)∣∣∣∣
p

|d|nℓ−i1−...−iℓ
p =

∣∣∣∣
(
d

ℓ

)∣∣∣∣
p

|d|nℓ−k
p .

The right-hand side of (4.6) is equal to |d|n+1−k
p when ℓ = 1 and is at most |d|n+1−k

p

when ℓ ≥ 2. This finishes the proof. �

Remark 4.7. The upper bound |d|n−i
p in Proposition 4.4 is crucial for the construction

of p-adic Böttcher coordinates when p | d.

For the archimedean place of MQ, we have the following:

Proposition 4.8. Write M∞
Q = {v}, recall the notation ℓ1,v(P ) in Subsection 2.2.

For every n ∈ N and 0 ≤ i ≤ dn, we have:

|An,i|v ≤ ℓ1,v(An,i) ≤ 2i
(
dn

i

)
< 4d

n

.

Proof. A priori, it seems that expanding P n+1(z) and using Lemma 2.2 as in the proof

of Proposition 4.4 would not be enough to prove the proposition; the reason comes

from the large factor 2d in Lemma 2.2 (b) (which corresponds to the extra factor 2d
n+1

in our inductive step). However we can use the following simple trick.

The inequality |An,i|v ≤ ℓ1,v(An,i) is obvious from the definitions in Subsection 2.2.

It remains to prove the other inequality. Notice that all the polynomials An,i ∈

Z[a1, . . . , ad] have non-negative coefficients. Consider the polynomial:

P̃ (z) = (z + 2)d − 2 = zd + ã1z
d−1 + . . .+ ãd

where ãj ∈ N for 1 ≤ j ≤ d. We have:

(z + 2)d
n

− 2 = P̃ n(z) = zd
n

+
dn∑

i=1

Ãn,iz
dn−i.

On the one hand Ãn,i = An,i(ã1, . . . , ãd) ≥ ℓ1,v(An,i) since ãj ≥ 1 for every j. On

the other hand, we have Ãn,i = 2i
(
dn

i

)
if 1 ≤ i < dn and Ãn,dn = 2d

n

− 2. In any case,

we have Ãn,i ≤ 2i
(
dn

i

)
< 4d

n

. This finishes the proof. �

We have the following application:

Corollary 4.9. Let K be a number field. Let f(z) = zd + α1(t)z
d−1 + . . . + αd(t) ∈

K[t][z] and let a(t) ∈ K[t]; in particular, fn(a) ∈ K[t] for every n ∈ N.

(a) There exists a finite set of places S ⊂ MK and positive constants c12 and c13
depending only on K, f , and a such that the following hold.

(i) S contains M∞
K .

(ii) For every p ∈ MK \ S and every m ∈ N0, we have |fm(a)|p ≤ 1.
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(iii) For every p ∈ S and m ≥ 0, we have |fm(a)|p ≤ cd
m

12 .

(iv) For every m ≥ 0 such that fm(a) 6= 0, we have hpol(f
m(a)) ≤ c13d

m.

(b) Let D ≥ 2, g(z) = zD + β1(t)z
D−1 + . . . + βD(t) ∈ K[t][z], and b(t) ∈ K[t].

There exists a positive constant c14 depending only on K, f , a, g, and b such

that for every m,n ≥ 0 satisfying fm(a) 6= gn(b), we have

hpol(f
m(a)− gn(b)) ≤ c14 max{dm, Dn}.

Proof. Let S be a finite subset of MK containing M∞
K such that for every p ∈ MK \S,

the coefficients of a(t) and the αi(t)’s are p-adic integers. We have:

fm(z) = zd
m

+
dm∑

i=1

Am,i(α1(t), . . . , αd(t))z
dm−i,

therefore

fm(a) = a(t)d
m

+
dm∑

i=1

Am,i(α1(t), . . . , αd(t))a(t)
dm−i.

Lemma 2.2 and Proposition 4.4 shows that |fm(a)|p ≤ 1 for every p ∈ MK \S. Hence

S satisfies (i) and (ii) of part (a).

Let c15 be a positive constant such that:

max{|a|p, |α1|p, . . . , |αd|p} ≤ c15

for every p ∈ S. Let δ = max{deg(a), deg(α1), . . . , deg(αd)}. If p ∈ S is non-

archimedean, Lemma 2.2 and Propositions 4.1 and 4.4 give:

|fm(a)|p ≤ cd
m

15

for every m ≥ 0. If p ∈ S is archimedean, Lemma 2.2, Proposition 4.1, and Proposi-

tion 4.8 give:

|fm(a)|p ≤ (dm + 1)2δd
m

4d
m

cd
m

15

for every m ≥ 0. This shows the existence of c12 satisfying (iii) in part (a).

From the definition of hpol and the formula
∑

p∈MK ,p|p

np = [K : Q] for every p ∈ MQ,

we deduce (iv) from (i), (ii), and (iii).

For part (b), we apply part (a) to the pair (g, b). By extending S and increasing

c12, we may assume that (ii) and (iii) hold for the data (g, b,S, c12). The desired

upper bound on hpol(f
m(a)−gn(b)) is obtained from the corresponding upper bounds

for |fm(a)− gn(b)|p for p ∈ MK . �
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5. Examples using Eisenstein’s criterion

In this section, we prove some special cases of Conjecture 1.5. We begin with

a brief discussion of our strategy for proving Theorem 1.1, and then we prove two

propositions where the irreducibility step in the proof can be carried out by applying

Eisenstein’s criterion.

5.1. The proof strategy for Theorem 1.1. Consider f(z) = g(z) = z2+t ∈ Q[t][z]

and a, b ∈ Q. Assume that a2 6= b2. We have ĥf (a) = ĥg(b) =
1
2
, hence both (f, a)

and (g, b) are not isotrivial. Also, becuase a2 6= b2, we have fm(a) 6= gn(b) for every

m,n ≥ 0. Indeed, as a polynomial in t, we have that fn(a) and gn(b) have both degree

2n−1 (for n ≥ 1); so, if fm(a) = gn(b), then it must be that m = n. On the other

hand, the coefficient of t2
n−1−1 in fn(a) (respectively in gn(b)) is 2n−1a2 (respectively

2n−1b2); so, fm(a) 6= gn(b) for any m,n ∈ N. By Theorem 1.7, in order to prove that

the set

S = {t ∈ Q : fm
t (a) = gnt (b) for some m,n ∈ N}

has bounded height, it suffices to show that the set

SM = {t ∈ Q : fn
t (a) = gnt (b) for some n ∈ N}

has bounded height.

Let K be a number field such that a, b ∈ K. By Corollary 2.3 and Corollary 4.9,

it suffices to show that there exists a positive constant c16 depending only on K, f ,

a, and b such that the following holds. For every t0 ∈ S, if N denotes the smallest

positive integer such that fN(a)(t0) = gN(b)(t0), then [K(t0) : K] ≥ c162
N . Note that

deg(fN(a)−gN(b)) = 2N−1. Observing that fN−1(a)−gN−1(b) divides fN(a)−gN(b)

for all N , we aim to prove that the polynomial
fN(a)− gN(b)

fN−1(a)− gN−1(b)
∈ K[t] is “almost

irreducible” over K.

5.2. A variant of Theorem 1.1.

Proposition 5.1. Let p be a prime and let d > 1 be a power of p. Let f(z) = g(z) =

zd + t ∈ Q[t][z]. Let a, b ∈ Q ∩ Qp one of which is a p-adic unit while the other one

is in pZp. Then the set:

{t ∈ Q : there exist m,n ∈ N such that fm
t (at) = gnt (bt)}

has bounded height.

Proof. Exactly as discussed in §5.1 for d = 2, we have that ad 6= bd implies fm(a) 6=

gn(b) for every m,n ≥ 0. Therefore, we must only show that there exists a positive

constant c17 such that for every N ≥ 2, every root t0 of the polynomial

fN(a)− gN(b)

fN−1(a)− gN−1(b)
=

∏

ζ 6=1,ζd=1

(fN−1(a)− ζfN−1(b)) ∈ Q[t]
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satisfies [Q(t0) : Q] ≥ c17d
N .

We will show that for every d-th root of unity ζ 6= 1, the polynomial fN−1(a) −
ζfN−1(b) ∈ Qp[ζ ][t] is irreducible over the cyclotomic field Qp(ζ). For every c ∈ Zp,

as easy induction on N yields that

fN−1(c) = td
N−2

+ td
N−3

+ . . .+ t + cd
N−1

+RN−1,c(t)

where RN−1,c(t) ∈ ptZp[t] with degt (RN−1,c) < dN−2.

We have that λ = 1 − ζ is a uniformizer of Zp[ζ ] (note that d is a power of p).

When N ≥ 2, we have:

P (t) := fN−1(a)− ζfN−1(b) = (1− ζ)td
N−2

+
dN−2−1∑

i=0

ait
i + ad

N−1

− ζbd
N−1

where ai ∈ Zp[ζ ] with λ | ai for every i. The polynomial P (t) is irreducible over Zp[ζ ]

since td
N−2

P (1/t) is Eisenstein (note that our hypothesis on a and b guarantees that

ad
N−1

− ζbd
N−1

is a p-adic unit). Hence [Qp(t0) : Qp(ζ)] = dN−2 and this finishes the

proof. �

5.3. A second example with quadratic polynomials. In our next example,

g(z) = z2 is special while f 6= g is a quadratic polynomial.

Proposition 5.2. Let f(z) = 3z2 + 5, g(z) = z2, a = b = t ∈ Q[t]. The set

S = {t0 ∈ Q : fm(t0) = gn(t0) for some m,n ∈ N}

has bounded height.

Proof. First we notice that the canonical heights ĥf(a) and ĥg(b) are both equal to 1.

So, by Theorem 1.7, it suffices to prove that the set

SM = {t0 ∈ Q : fn(t0) = gn(t0) for some n ∈ N}

has bounded height. Now, for every n ∈ N, the leading coefficient of Pn(t) := fn(a)−

gn(b) ∈ Q[t] is 32
n−1 − 1 which is not divisible by 5, while the constant term is

congruent to 5 modulo 25, and the coefficients of the remaining terms are divisible

by 5. By Eisenstein’s criterion, Pn is irreducible over Q. By Corollary 2.3 and

Corollary 4.9, this proves that SM has bounded height thanks to Corollary 4.9 (exactly

as in the discussion of §5.1). By Theorem 1.7 we conclude that S has bounded height

as well. �

6. Non-archimedean Böttcher coordinates

In this section, we introduce p-adic Böttcher coordinates near infinity for a poly-

nomial. We use this analysis in our proof of Theorem 1.1 and its generalization in

Section 7. Compare the usual definition over the complex numbers in, e.g., [Mil06,

Chapter 9]. See also [Ing13] in the non-archimedean setting.
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Fix d ≥ 2, let P (z) = zd + a1z
d−1 + . . .+ ad−1z + ad, and write

P n(z) =

dn∑

i=0

An,iz
dn−i = zd

n

(
1 +

dn∑

i=1

An,i

zi

)

as in Section 4. Let P = Q[a1, . . . , ad] be the ring of polynomials in the ai’s with

rational coefficients and let R = P((1/z)) be the ring of Laurent series in 1/z with

coefficients in P. Define ν on R \ {0} by letting ν(F ) be the lowest power of 1/z

that appears in F (for example ν(z + 1
z5
) = −1). The subring R0 of R containing

all power series F such that ν(F ) ≥ 0 is precisely P[[1/z]]. We have that R0 is a

complete topological ring in which a basis of neighborhoods of 0 is:

1

z
R0 ⊃

1

z2
R0 ⊃

1

z3
R0 ⊃ . . .

If α ∈
1

z
R0 and m ∈ N, the series:

(1 + α)1/m := 1 +
1

m
α +

1

2!

1

m

(
1

m
− 1

)
α2 + . . .

is a well-defined element in R0 and its m-th power is 1 +α. For n ∈ N, we define the

series:

Fn = z

(
P n(z)

zdn

)1/dn

= z

(
1 +

dn∑

i=1

An,i

zi

)1/dn

= z

(
1 +

1

dn

(
dn∑

i=1

An,i

zi

)
+ . . .

)

=: z +

∞∑

j=0

Bn,j

zj

(6.1)

where Bn,j ∈ P for every j ≥ 0. We now compare Fn+1 with Fn. We have:

P n+1(z) = (P n(z))d + a1(P
n(z))d−1 + . . .+ ad−1P

n(z) + ad

=

(
zd

n

(
P n(z)

zdn

))d

+ a1

(
zd

n

(
P n(z)

zdn

))d−1

+ . . .+ ad

= zd
n+1

((
P n(z)

zdn

)d

+
a1
zdn

(
P n(z)

zdn

)d−1

+
a2
z2dn

(
P n(z)

zdn

)d−2

+ . . .+
ad

zdn+1

)

so that

Fn+1(z) = z

((
P n(z)

zdn

)d

+
a1
zdn

(
P n(z)

zdn

)d−1

+
a2
z2dn

(
P n(z)

zdn

)d−2

+ . . .+
ad

zdn+1

)1/dn+1

= z

((
P n(z)

zdn

)d

+ En

)1/dn+1
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where En ∈ R0 with ν(En) = dn. Put α =

((
P n(z)

zdn

)d

+ En

)1/dn+1

and β =

(
P n(z)

zdn

)1/dn

, we have ν(α−ζβ) = 0 for every dn+1-th root of unity ζ 6= 1. Therefore

ν



((

P n(z)

zdn

)d

+ En

)1/dn+1

−

(
P n(z)

zdn

)1/dn

 = ν(α− β) = ν(αdn+1

− βdn+1

)

= ν(En) = dn.

Therefore Fn+1 − Fn ∈
1

zdn−1
R0. Hence the sequence {Fn}n converges in R to a

series:

B(z) = z +
∞∑

j=0

Bj

zj

where Bj ∈ P for every j ≥ 0. Since Fn+1 − Fn ∈
1

zdn−1
R0, we have:

(6.2) Bj = Bn,j if j < dn − 1.

For every monic polynomial Q(z) ∈ P[z] \ P (i.e. deg(Q) ≥ 1), we have that

1/Q(z) belongs to R0 and ν(1/Q(z)) = deg(Q). Therefore, for every series F (z) =
∞∑

i=−m

ci/z
i ∈ R, the element F ◦ Q(z) = F (Q(z)) :=

∞∑

i=−m

ci/Q(z)i is a well-defined

element of R. From (6.1), we have:

Fn(P (z)) = Fn+1(z)
d.

Together with the definition of B, we have:

(6.3) B(P (z)) = B(z)d.

For each w ∈ M0
Q, let Cw denote the completion ofQw and we use the same notation

| · |w to denote its extension on Cw. Our goal is to provide a domain D ⊂ Cd+1
w such

that the series B is convergent at every (z, a1, . . . , ad) ∈ D.

We need the following:

Lemma 6.4. Let k,m ∈ N and let p be a prime not dividing m. Then

∏k−1
i=0 (1− im)

k!
is a p-adic integer.

Proof. One can obtain this result by simply counting the exponent of the prime p in

both the numerator and the denominator of the above fraction, but one can also use

the following clever observation suggested by David Masser. The binomial coefficient

Bk(x) given by

x 7→
x · (x− 1) · · · (x− k + 1)

k!
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sends Z into itself and so, since Z is dense in Zp, then it also sends Zp into itself.

Since p ∤ m, then 1
m

∈ Zp and so, Bk(1/m) ∈ Zp; in particular, mkBk(1/m) is a p-adic

integer, as desired. �

Theorem 6.5. Let w ∈ M0
Q.

• If w ∈ M0
Q corresponds to a prime which does not divide d, let

D :=
{
(z, a1, . . . , ad) ∈ Cd+1

w : max{1, |a1|w, . . . , |ad|w} < |z|w
}
.

• If w ∈ M0
Q corresponds to a prime p | d, let

D :=

{
(z, a1, . . . , ad) ∈ Cd+1

w :
max{1, |a1|w, . . . , |ad|w}

|d|w
p1/(p−1) < |z|w

}
.

Then the following hold:

(a) For every (z, a1, . . . , ad) ∈ D, the series

z +

∞∑

j=1

Bj(a1, . . . , ad)

zj

is convergent. This defines a function B̃ : D → Cw. Moreover, if z, a1, . . . , ad
belong to a finite extension κ of Qw then B̃(z, a1, . . . , ad) ∈ κ.

(b) For every (z, a1, . . . , ad) ∈ D:

B̃(zd + a1z
d−1 + . . .+ ad, a1, . . . , ad) = B̃(z, a1, . . . , ad)

d.

(c) If B̃(z, a1, . . . , ad) = B̃(z′, a1, . . . , ad) then z = z′.

Proof. Part (b) follows from (6.3). We will prove parts (a) and (c) for the case w ∤ d

first.

Let j ∈ N0 and choose n := n(j) := ⌈logd(j +2)⌉ so that j < dn − 1 and Bj = Bn,j

by (6.2). By (6.1), Bn,j is the coefficient of 1/zj+1 in

1

dn

(
dn∑

i=1

An,i

zi

)
+

1

2!

1

dn

(
1

dn
− 1

)( dn∑

i=1

An,i

zi

)2

+ . . .

For each k ∈ N with k ≤ j + 1, let cn,j,k be the coefficient of 1/zj+1 in

1

k!

1

dn
. . .

(
1

dn
− k + 1

)( dn∑

i=1

An,i

zi

)k

.

We have:

(6.6) cn,j,k =
1

k!

1

dn
. . .

(
1

dn
− k + 1

) ∑

(i1,...,ik)

An,i1 . . . An,ik

where
∑

is taken over the tuples (i1, . . . , ik) in {1, . . . , dn} such that i1+. . .+ik = j+1.

Let (z, a1, . . . , ad) ∈ D. Write M = max{1, |a1|w, . . . , |ad|w}.
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If w ∈ M0
Q with w ∤ d, from Proposition 4.1, Proposition 4.4, and Lemma 6.4, we

have:

(6.7) |Bn,j|w =

∣∣∣∣∣

j+1∑

k=1

cn,j,k

∣∣∣∣∣
w

≤ M j+1,

(6.8) and hence

∣∣∣∣
Bn,j

zj

∣∣∣∣
w

≤ M

(
M

|z|w

)j

.

Therefore for every (z, a1, . . . , ad) ∈ D, the series

z +

∞∑

j=0

Bj(a1, . . . , ad)

zj

is convergent. The last assertion in part (a) follows from the completeness of κ. For

part (c), we have:

(6.9) 0 = B̃(z, a1, . . . , ad)− B̃(z′, a1, . . . , ad) = (z− z′) +
∞∑

i=1

Bi(a1, . . . , ad)(z
′i − zi)

ziz′i
.

Assume z 6= z′ and we arrive at a contradiction as follows. Without loss of generality,

assume |z′|w ≥ |z|w. Let i ∈ N, we have:

(6.10)
|z′i − zi|w
|z′ − z|w

≤ |z′|i−1
w

Equation (6.7) yields that

(6.11)

∣∣∣∣
Bi(a1, . . . , ad)

ziz′

∣∣∣∣
w

≤

(
M

|z|w

)i+1

≤

(
M

|z|w

)2

Equation (6.10) and (6.11) give:
∣∣∣∣∣

∞∑

i=1

Bi(a1, . . . , ad)(z
′i − zi)

ziz′i

∣∣∣∣∣
w

≤

(
M

|z|w

)2

|z − z′|w < |z − z′|w

contradicting (6.9). This finishes the proof for the case w ∈ M0
Q.

If w ∈ M0
Q corresponds to a prime p | d, then we first note that the exponent of p

in k! is

⌊k/p⌋+ ⌊k/p2⌋+ . . . ≤
k

p− 1
.

From Proposition 4.1 and Proposition 4.4, we have:

|Bn,j|w ≤ max
1≤k≤j+1

|cn,j,k|w ≤ max
1≤k≤j+1

|d|−nk
p |d|nk−j−1

p pk/(p−1)M j+1

= (Mp1/(p−1)/|d|w)
j+1,

(6.12)

(6.13) and hence

∣∣∣∣
Bn,j

zj

∣∣∣∣
w

≤ (Mp1/(p−1)/|d|w)

(
Mp1/(p−1)

|d|w|z|w

)j

.
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We finish the proof using similar arguments as in the case w ∤ d in which equations

(6.12) and (6.13) play the role of equations (6.7) and (6.8). �

7. Bounded height in families

In this section we complete the proof of Theorem 1.1. In fact, we prove the more

general result of Theorem 7.1, relying on the results of Section 6. Throughout this

section, let F = Q(t).

Theorem 7.1. Let d ≥ 2, let f(z) = g(z) = zd + A1(t)z
d−1 + . . . + Ad(t) ∈ Q[t][z],

and let a, b ∈ Q. Assume the following:

(A) d is a prime power.

(B) There is a prime p and an embedding Q → Cp satisfying the following condi-

tions:

(i) Let Zp denote the set of elements of Qp that are integral over Zp. For

every i, Ai(t) ∈ Zp[t] (in other words, |Ai|p ≤ 1) and deg(Ai) < i.

(ii) a ∈ Zp while b /∈ Zp.

(iii) For some m ∈ N, the polynomial fm(a) ∈ Zp[t] is non-constant and its

leading coefficient is a unit.

Then the pairs (f, a) and (g, b) satisfy the conclusion of Conjecture 1.5.

Proof. Define the set S as in Conjecture 1.5. It suffices to assume that:

(C) the pairs (f, a) and (f, b) are not isotrivial, and

(D) for every m,n ∈ N0, f
m(a) 6= fn(b)

and prove that S has bounded height. DefineM and SM as in Theorem 1.7, it suffices

to prove that SM has bounded height. We may assume thatM 6= ∅; otherwise there is

nothing to prove. Let m0 ∈ N be minimal such that the polynomial fm0(a) ∈ Qp[t] is

non-constant (see condition B (iii)); let δ1 > 0 denote its degree. From condition (iii)

and the form of f , we have that deg(fm(a)) = dm−m0δ1 and the leading coefficient of

fm(a) is a unit for every m ≥ m0. Therefore ĥf(a) =
δ1
dm0

> 0. Since M 6= ∅, we have

ĥf (b) > 0. Hence there is minimal n0 ∈ N such that the polynomial fn0(b) ∈ Qp[t] is

non-constant; let δ2 > 0 denote its degree. Then a similar analysis as above yields that

ĥf (b) =
δ2
dn0

. By the minimality of m0 and n0, along with the form of the polynomial

f (see also condition B (i)), we have:

• 1 ≤ δ1, δ2 < d. And since M 6= ∅, we have that δ1/δ2 is a power of d. This

gives δ1 = δ2 =: δ ∈ {1, . . . , d− 1}.

• fm0−1(a) ∈ Q ⊂ Qp and |fm0−1(a)|p ≤ 1.

• fn0−1(b) ∈ Q ⊂ Qp and |fn0−1(b)|p > 1 (note that |b|p > 1 while each Ai ∈

Zp[t]).
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Therefore, after replacing (a, b) by (fm0−1(a), fn0−1(b)), from now on, we assume that

m0 = n0 = 1. We need to prove that the set

SM = {t ∈ Q : fn
t (a) = gnt (b) for some n ≥ 0}

has bounded height.

Let K be a number field such that a, b ∈ K and the polynomials Ai belong to K[t].

As in the discussion of §5.1, applying Corollaries 2.3 and 4.9, it suffices to prove the

following claim.

Claim: There exists a positive constant c19 depending on K, p, f , a, and b such

that the following holds. For every t0 ∈ SM, let N ∈ N be minimal such that

fN
t0
(a) = fN

t0
(b); then we have [K(t0) : K] ≥ c19d

N .

We prove this claim as follows. Fix a positive integer c18 such that |b|δd
c18−1−d

p >

p1/(p−1)/|d|p. Fix t0 ∈ SM and let N be as in the claim; we may assume N > c18.

First, we observe that |t0|p ≥ |b|p. Otherwise, we would have

|fN
t0
(a)|p ≤ max{1, |t0|p}

δ·dN−1

< |b|d
N

p ,

while |fN
t0
(b)|p = |b|d

N

p , contradiction.

Now since |t0|p ≥ |b|p > 1 and fn(a) ∈ Zp[t] is a polynomial of degree δdn−1 whose

leading coefficient is a unit, we have:

(7.2) |fn
t0(a)|p = |t0|

δdn−1

p for every n ∈ N.

On the other hand, let n1 ≥ 0 be minimal such that |fn1

t0 (b)|p ≥ |t0|p; note that n1

exists since |fN
t0 (b)|p = |fN

t0 (a)|p = |t0|
δdN−1

p ≥ |t0|p. From condition (i), we have:

(7.3) |fn
t0(b)|p = |fn1

t0 (b)|
dn−n1

p for every n ≥ n1.

From (7.2), (7.3), and fN
t0
(a) = fN

t0
(b), we have:

(7.4) |t0|
δdn1−1

p = |fn1

t0 (b)|p.

If n1 = 0, equation (7.4) would give:

|b|p = |f 0
t0
(b)|p = |t0|

δ/d
p < |t0|p,

contradicting the earlier observation that |t0|p ≥ |b|p. Hence n1 ≥ 1. We show next

that n1 = 1. Indeed, if n1 ≥ 2 then by using |fn1−1
t0 (b)|p < |t0|p due to the minimality

of n1 and by induction, we get that

|fn
t0(b)|p < |t0|

dn−n1+1

p ≤ |t0|
dn−1

p

for every n ≥ n1 − 1. In particular, when n = N , we have:

|fN
t0
(a)|p = |fN

t0
(b)|p < |t0|

dN−1

p

contradicting (7.2). Therefore n1 = 1.
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Let

D′ :=

{
(z, t) ∈ C2

p :
max{1, |A1(t)|p, . . . , |Ad(t)|p}

|d|p
p1/(p−1) < |z|p

}
.

From part (i) of condition (B), we have |Ai(t0)|p < |t0|
d
p. From the fact that n1 =

1 coupled with equations (7.2), (7.3), (7.4), along with the choice of c18, and the

inequality |t0|p ≥ |b|p, we have:

|f c18
t0 (a)|p = |t0|

δdc18−1

p > |t0|
d
pp

1/(p−1)/|d|p

and

|f c18
t0 (b)|p = |t0|

δdc18−1

p > |t0|
d
pp

1/(p−1)/|d|p.

Therefore (f c18
t0 (a), t0) and (f c18

t0 (b), t0) belong to D′. Let B̃ be the function in Theo-

rem 6.5 and define B̃′(z, t) = B̃(z, A1(t), . . . , Ad(t)) which is well-defined on D′ thanks

to the definition of D′ and Theorem 6.5 (regardless of whether p | d or not). From

fN
t0 (a) = fN

t0 (b) and the functional equation of B in Theorem 6.5, we have:

B̃′(f c18
t0 (a), t0)

dN−c18 = B̃′(f c18
t0 (b), t0)

dN−c18 .

In other words, we have ζ :=
B̃′(f c18

t0 (a), t0)

B̃′(f c18
t0 (b), t0)

is a dN−c18-th root of unity. On the

other hand, if the order of ζ divides dN−c18−1 then we have:

B̃′(f c18
t0 (a), t0)

dN−c18−1

= B̃′(f c18
t0 (b), t0)

dN−c18−1

which gives

B̃′(fN−1
t0 (a), t0) = B̃′(fN−1

t0 (b), t0)

thanks to the functional equation satisfied by B̃. By Theorem 6.5, we have fN−1
t0 (a) =

fN−1
t0 (b) contradicting the minimality of N .

Write κ = Kp(t0) where Kp ⊂ Qp is the completion of K under | · |p. We have

proved that the field κ contains a dN−c18-th root of unity ζ and the order of ζ does not

divide dN−c18−1. This is the only place where we use the technical assumption that d

is a prime power; we conclude that the order of ζ is a strict multiple of dN−c18−1 and

hence, see [Neu99, pp. 158–159], we have:

[Kp(ζ) : Kp] ≥ c20d
N−c18

for some constant c20 that depends only on Kp and d. Let c19 = c20d
−c18, we have:

[K(t0) : K] ≥ [κ : Kp] ≥ [Kp(ζ) : Kp] ≥ c19d
N

and this proves the claim. Then Corollary 4.9 (along with Corollary 2.3) allows us to

conclude the proof of Theorem 7.1. �

We have the following immediate corollary, which is itself a generalization of The-

orem 1.1.



24 L. DE MARCO, D. GHIOCA, H. KRIEGER, K. D. NGUYEN, T. J. TUCKER, AND H. YE

Corollary 7.5. Let d be a prime power and let f(z) = zd + t ∈ Q[t][z]. Let a, b ∈ Q

exactly one of which is an algebraic integer. Then the set

S = {t0 ∈ Q : fm
t0
(a) = fn

t0
(b) for some m,n ∈ N}

has bounded height.

Proof. We can easily check that (f, a) and (f, b) are not isotrivial. Without loss of

generality, assume that a is an algebraic integer while b is not. There is a prime

number p such that, under a suitable embedding Q → Qp, b is not integral over

Zp. We have that fm(a) ∈ Zp[t] while fn(b) /∈ Zp[t], hence fm(a) 6= fn(b) for every

m,n ∈ N. We apply Theorem 7.1 and get the bounded height result. �

It is an interesting problem to remove the technical condition that d is a prime power

in Theorem 7.1. This condition is only used at the end of the proof of Theorem 7.1

in order to show that the order of ζ is comparable to dN .
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