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Abstract: The Cimmino algorithm is an iterative algorithm used for solving linear equations
(Ax=0>) and is part of a wider family of algebraic reconstruction algorithms. Despite being
used in computed tomography and digital signal processing, we present an approach for using
it in holographic projections in the Fraunhofer region. Following the work carried out by our
group on Kaczmarz holography, an earlier algebraic linear equation solver, we compare the
performance and speed of Cimmino against this algorithm. Three versions of the Cimmino
algorithm, Cimmino full, Cimmino eye, and Cimmino FFT, are evaluated and compared to both
Kaczmarz and Gerchberg-Saxton. Interestingly, the derivation and simplification of Kaczmarz
and Cimmino leads to the input-output algorithm originally derived by Fienup and while the
solution is well-known, the link between these algorithms is not and despite being around since
the 1930s, it was originally used to solve linear equations and not phase retrieval. While the
Cimmino full and Cimmino eye reflect fairly poorly against Cimmino FFT and Kaczmarz in
terms of image quality and speed, the Cimmino FFT delivers better results in terms of image
quality than all algorithms considered. It is significantly faster than Kaczmarz, being only a few
milliseconds slower than Gerchberg-Saxton.
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Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Holography has seen a significant development since its discovery in the 1940s by Dennis Gabor
[1]. However, the advancements made in computer technology and its natural improvements in
processing power contributed towards the evolution of computer-generated holography (CGH).
Conventional holography records the interference pattern between a coherent reference light
source and this coherent light scattered off an object onto a photographic plate. This interference
pattern is known as a hologram and when a coherent light source shines through it, a replay field
(projected image) is generated.

Computer-generated holography allows the user to digitally generate these interference patterns
without previously recording the object onto a photographic plate [2]. The evolution of computer
controlled spatial light modulators (SLMs) allowed these devices to be incorporated in optical
tweezing [3] and telecommunications [4] as well as digital holographic imaging in the form of
augmented reality and virtual reality systems (AR and VR respectively) [5-7].

The push to incorporate computer-generated holography into VR and AR systems comes from
the desire to have full 3-dimensional images with true depth cues. Current "3D" alternatives,
whether they are stereoscopic or light field displays, are not capable of delivering these images
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with full depth cues without a loss in resolution. The main benefit of being capable of delivering
these images will full depth cues is that it mitigates what is known as vergence-accomodation
conflict (VAC) [8,9].

While computer-generated holography has notorious 3-dimensional benefits, this paper will
primarily focus in projecting 2-dimensional objects since it emphasizes on the effectiveness of
the algorithm in holographic displays as opposed to its direct applicability to VR and AR.

In this system, a spatial light modulator (SLM) is used to modulate the coherent light beam and
allows either the amplitude or the phase of this incident light to be controlled and the interference
pattern to be subsequently influenced. Its digital interface restricts the modulation of light into
discrete energy levels. This device is pixelated and is in the diffraction field (H). As a result, the
projected image or replay field (R) in the Fraunhofer region is also portrayed as discrete pixels
[10]. This relationship is depicted in Fig. 1.

Replay Field

Viewer

Fig. 1. Diffraction and replay fields coordinate system

From Goodman [11], we have proof that the discrete Fourier transform (DFT) of the aperture
function of the SLM will recreate the desired replay field in the Fraunhofer region (far-field).
Equations (1) and (2) demonstrate the relationship between the diffraction and replay fields. The
Fourier transform is typically represented as an integral function, however, in this instance it is
portrayed as a DFT sum.
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The SLM used to modulate the coherent light source is restricted to modulating either the

phase or the amplitude of this source. The challenge therefore lies in reconstructing the intended
replay field in spite of these SLM restrictions.
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Our earlier investigation, on Kaczmarz holographic projections in the Fraunhofer region
[12] revealed that while very high quality replay fields are generated, it is still comparatively
slower than the more widely used Gerchberg-Saxton. The Kaczmarz algorithm iterates the Ax
component in a linear equation on a row-by-row basis and therefore explains the slower running
of this phase retrieval method.

Error metrics used throughout this investigation are the same as Kaczmarz holography whereby
mean squared error (MSE) and peak signal to noise ratio (PSNR) are used to compare the
generated replay fields (R), to the target (7).

me—1ny—=1
1 X )
MSE(T.R) = | T — Rul? 3)
PSNR(T,R) = 201og ( Mlly )
s - 10
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2. Algebraic reconstruction techniques

The 1970s saw a remarkable progression in the image reconstruction field with the first successful
implementation of the algebraic reconstruction technique (ART) by Gordon, Bender and Herman
[13]. It is mainly used in computed tomography and reconstructs an image from a large
number of projections at uniformly distributed angles. These are then used to reconstruct a
two-dimensional beam density distribution [14]. The method used in this approach was the
iterative algorithm developed by Polish mathematician, Stefan Kaczmarz [15] in the 1930s, aptly
named the Kaczmarz algorithm. It is used to solve linear equations in the form of Ax = b and has
been used in a variety of field ranging from computed tomography to microscopy and metasurface
antennas [16-19].

More recently, the Kaczmarz algorithm was shown to be effective in computer-generated
holography, projecting holographic images in the Fraunhofer region [12]. It is therefore very
suitable to resolving the phase retrieval problem associated with holographic projections.

The original simple Kaczmarz algorithm, seen in Eq. (5) solves overdetermined linear systems
and works by sequentially iterating in a row-action manner, suggesting the overall solution to x is
updated one row of matrix A at a time. The row iterates sequentially with » =7+ 1 mod m. For
that reason, this approach is referred to as a fully sequential method in the algebraic reconstruction

field [20-22]. b
A )
1413

Xip1 = X1+

Wei [23] more recently adapted the Kaczmarz algorithm to solve phase retrieval problems

where the magnitude of Ax is equated to b. The phase is then a free parameter and determined as
6; = ZA,x;. The original approach can therefore be written as:

be? — A,
xlA*

. ©)
AP

X+l = X +

The rth row of A is A, while A,* is the complex conjugate transpose of A,.

Our previous work on using the Kaczmarz algorithm to project replay fields in the Fraunhofer
region [12] demonstrates that while high image quality is obtainable, its row-action approach
makes it much slower than alternative methods that compute the product of Ax simultaneously.
Furthermore, iterative algorithms such as Gerchberg-Saxton use Fast Fourier Transforms (FFTs),
a significantly more time-effective approach to resolve this phase retrieval problem, O(NlogN) as
opposed to O(N?).
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This investigation, therefore, evaluates a mechanism that is still encompassed within the
algebraic reconstruction group, however, rather than updating the overall solution of x one row
of A at a time, it determines x using all rows of A simultaneously. This approach is known
as the Cimmino algorithm and is part of the fully simultaneous family within the algebraic
reconstruction mechanisms.

2.1.  Cimmino algorithm

First published in 1938, after Kaczmarz, G. Cimmino developed a mechanism that resolves linear
equations in the form of Ax = b, simultaneously updating solution x without sequentially iterating
through the rows of matrix A [24].

Rather than updating the vector x;;; after each row, it determines the average of all the previous
iteration vectors [22,25]. The Kaczmarz approach is therefore adapted as follows:

X4l =X+ — A where 6, = /A, x; @)

m i
1 Z brelgl —A,xl .

b
m Az "

r=1

This equation can therefore be expressed as follows:

Xip1 = X + A*M(be’” — Ax)); where M = diag( ®)

1 )

The Cimmino algorithm is widely recognized as being useful in computed tomography and digital
signal processing, however, much like in our previous work involving the Kaczmarz algorithm
we are adapting these algorithms to project 2-dimensional holographic images in the Fraunhofer
region. Our motivation involves finding a mechanism that involves fewer computational steps as
well as delivering high quality replay fields. Kaczmarz delivered higher quality projections but
required significantly more time to update the hologram after each iteration.

Much like our previous Kaczmarz work, this problem has to be adapted to suit the nature of
this algorithm. As opposed to Gerchberg-Saxton and Fienup, for instance, that solve this phase
retrieval problem through fast Fourier transforms (FFTs) [26,27], Kaczmarz and Cimmino use
discrete Fourier transform (DFT) matrices to generate the replay field in the far-field. This is
achieved by multiplying the 2-dimensional DFT matrix with a vector of the hologram.

aip - a X11 b1
aml  *°° Amn Xml b1
2D DFT Holo  Target

In this Ax = b linear system, A is the 2D DFT matrix, x is the vector of the hologram and b
is the target image. The hologram is configured with a constant phase at the start throughout
this investigation and the target image will be iteratively compared to the updated replay fields.
The Cimmino algorithm will be compared to Kaczmarz and Gerchberg-Saxton and the results
discussed in the subsequent sections.

It is worth noting at this stage, however, that the main challenge faced when adapting Kaczmarz
and Cimmino to computer-generated holography is adjusting to the constraints imposed by the
spatial light modulator (SLM). When using these devices, one can modulate the phase or the
amplitude of the coherent light source, not both, and in this case we constrained the amplitude of
the hologram. This was accomplished by multiplying a mask of ones by the angle of the updated
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iteration of the hologram. If Illum below is a mask of ones and theta is the angle of the updated
iteration of the hologram.

X141 = HMlum.e®;  where 6, = /x4 ©)]

The Cimmino algorithm was divided into three sections with three different approaches to
resolving this phase retrieval problem. These will be addressed as full Cimmino, Cimmino eye
and Cimmino FFT.

3.1.  Full Cimmino algorithm

The full Cimmino algorithm refers to the original algorithm initially developed by G. Cimmino
[24] and seen in Per Christian Hansen’s and Tommy Elfving’s [20,22,25] work with algebraic
reconstruction techniques (ART). The matrix version seen in Eq. (8) has been adopted to represent
this version of Cimmino.

X1 = x + A*M(be'? — Ax));  where M = diag( (10)

)

The Cimmino eye algorithm replaces the diagonal matrix, represented as M, with an identity
matrix, I. Depending on the size of the matrices being computed, the diagonal matrix, M, can
take some time to initially calculate and determine. Replacing this with an identity matrix should
cut down this time and consequently the overall time to process this phase retrieval algorithm.
The expression would therefore now read as:

X1 = x; + A*I(be/% — Ax)) (11)
Interestingly, this is also a well known Landweber iteration [28].

3.3.  Cimmino FFT algorithm

Following the use of an identity matrix in the Cimmino eye equation, one can simplify and greatly
increase the speed of this algorithm. If we interpret A* as the complex conjugate transpose of the
original DFT matrix A and similarly if we know that the inverse fast Fourier transform (IFFT) is
the complex conjugate transpose of the fast Fourier transform (FFT), we can replace A* in the
equation with an IFFT.

The diagonal matrix is now an identity matrix, following the Cimmino eye approach, and
finally we maintain the difference between the target » and the fast Fourier transform of the
hologram from the previous iteration, x;. By adopting this FFT approach, we add a weighting
parameter, W, replicating Fienup’s input-output algorithm [27].

X1 = x4+ WE LB - F(x)) (12)

The significant reduction in matrix multiplications suggests this algorithm computes much
faster than the alternatives.

Interestingly, as previously mentioned, from a completely different starting point and different
method, James Fienup has achieved the same result by computing the difference between the
target and current replay field, taking the inverse FFT of the product and adding a weighting
parameter [27]. This is more commonly known as the input-output method he developed from
the error-reduction algorithm, Gerchberg-Saxton.
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4. Holographic image projection using the Cimmino algorithm

The following test images of 128x128 pixels, seen in Fig. 2, were used to test the aforementioned
algorithms, as well as the Kaczmarz and Gerchberg-Saxton algorithms. The Kaczmarz, Cimmino
full and eye algorithms are constrained by image size, since they heavily rely on matrix
multiplications, however, the remaining two algorithms, Cimmino FFT and Gerchberg-Saxton do
not have this issue. Larger 512x512 pixels of the same target images tested experimentally, seen
in Section 5 to further compare these algorithms.

Fig. 2. Target images used throughout this investigation

All algorithms were evaluated in the far-field for ten iterations and their performances in terms
of image quality, via mean squared error (MSE) and peak signal to noise ratio (PSNR), as well as
overall algorithm runtime was assessed.

4.1. Algorithm replay field image quality

This section quantitatively assesses the image quality of the replay fields generated by the
aforementioned algorithms. The mean squared error and peak signal to noise ratio metrics were
used throughout to assess the quality of the replay fields. The performance of the algorithms in
successfully retrieving the target images seen in Fig. 2 can be seen in Figs. 3 and 4.

The retrieved replay fields vary in performance. For consistency all algorithms have the same
starting conditions, with the hologram having a constant phase, and the target image a random
phase. Cimmino FFT/ input out algorithm, Kaczmarz, Cimmino eye are displaying better results
when compared to Cimmino full and Gerchberg-Saxton. While all algorithm successfully retrieve
the correct phases and neatly reconstruct the original target image, the variations in image quality
is still apparent. It must be noted at this stage the weight parameter adopted on the Cimmino FFT
method is m72 where m? is the dimension of the image. The results are consistent irrespective
of the target image. The metrics in Figs. 5 and 6 confirm this disparity in performances. It is
noticeable that all Cimmino variations and Kaczmarz outperform Gerchberg-Saxton in terms of
image quality metrics in 10 iterations, with Cimmino FFT displaying the clearest image.

From the work previously conducted on Kaczmarz holographic projections [12], it is noticeable
the image quality for Kaczmarz outperforms Gerchberg-Saxton in 10 iterations. However, the
main drawbacks of implementing Kaczmarz are its slow running time and ability to solely be
adopted on smaller images 128x128 pixels since it relies on discrete Fourier transform (DFT)
matrices. Cimmino FFT is shown to be of adequate usage on larger images as seen in Fig. 7
where the 512x512 pixel target image is successfully recreated in the far-field. In this case,
100 iterations were used rather than 10 since using fast Fourier transforms is both faster to run
and not as heavy computationally as Kaczmarz, Cimmino full and Cimmino eye rely on matrix
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Fig. 3. Simulated replay fields retrieved from target image CM; Top Left: Cimmino FFT
(CM FFT); Top Middle: Cimmino Full (CM Full); Top Right: Cimmino Eye (CM Eye);
Bottom Left: Gerchberg-Saxton (GS); Bottom Right: Kaczmarz (KZ)

Fig. 4. Simulated replay fields retrieved from smiley face target image; Top Left: Cimmino
FFT (CM FFT); Top Middle: Cimmino Full (CM Full); Top Right: Cimmino Eye (CM Eye);
Bottom Left: Gerchberg-Saxton (GS); Bottom Right: Kaczmarz (KZ)
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Fig. 5. Mean squared errors (MSE) of Cimmino FFT, Cimmino full, Cimmino eye,
Gerchberg-Saxton, and Kaczmarz
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calculations. Cimmino FFT still outperforms Gerchberg-Saxton in 100 iterations according to
the metrics seen in Fig. 8 and 9.

Fig. 7. Simulated replay fields on larger 512x512 pixel target images; Left: Cimmino FFT
(CM FFT); Right: Gerchberg-Saxton (GS)
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Fig. 8. MSE of 512x512 pixel replay fields

It must be noted, however, the stagnation seen in Gerchberg-Saxton is expected when applying
an initial constant phase [29]. This does not happen with Cimmino FFT and while it could be
argued an initial random phase is more suitable, when it comes to assessing image quality, an
initial random phase may be counter-productive in obtaining a high quality image. By adding a
random phase, we are essentially distributing and elevating the phase across the entire hologram
plane [29]. On the other hand, a constant phase does not distribute this phase and it is concentrated
at a single point in the hologram plane. This can be broadly extended to consequently distributing
noise across the replay field using random phase while this does not happen using a constant
phase. Similarly, using a constant phase will bandlimit the signal considerably when compared
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Fig. 9. PSNR of 512x512 pixel replay fields

to the random phase counterpart. Nevertheless, with algorithms such as Gerchberg-Saxton,
randomizing the phase will avoid stagnation and convergence can be obtained significantly faster.

Wyrowski and Bryngdahl [29] also suggested using a quadratic phase as a means of improving
the overall image quality of the holographic display. More recently, Wu et al., have also looked
into adapting Gerchberg-Saxton with this technique, and have seen significant improvements in
image quality with a PSNR improvement of 4.8dB on average [30].

Furthermore, related to the work carried out by Wu et al. [30], Chen et al. have used Stochastic
gradient descent to demonstrate improvements in image quality [31]. Deep learning and neural
networks in holography are additional separate methods for improving image quality, however,
these are not covered in this work [7,32,33], since the purpose of this work is finding the link
between the traditional linear algebraic solving algorithms such as Kaczmarz and Cimmino, with
more modern holography display algorithms.

4.2.  Algorithm running times

This section analyzes the time taken for each algorithm to complete 10 iterations. A comparison
between the performance of each approach in terms of speed will subsequently be made.

As well as only being capable of reconstructing replay fields of smaller dimensions, the
Kaczmarz algorithm is also slower than fast Fourier transform (FFT) based algorithms such as
the Gerchberg-Saxton, as seen in our previous work [12]. As a result, alternative algorithms
that compute the full image simultaneously rather than relying on row-by-row iteration, as seen
by Kaczmarz, were evaluated. The family of simultaneously iterative algebraic reconstruction
techniques, known as the Cimmino algorithms were therefore considered.

Despite simultaneously resolving the linear equation Ax = b, the Cimmino full and Cimmino
eye mechanisms still rely on discrete Fourier transform matrices and as a result, are not comparable
in terms of speed to Gerchberg-Saxton. The overall runtimes of all the algorithms for 128x128
target images is shown in Fig. 10.

Despite solving the linear equations simultaneously, both the Cimmino full and Cimmino eye
are significantly slower than the Kaczmarz algorithm. The multiple large matrix multiplications
required to successfully compute these Cimmino approaches explain this extended runtime.
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Fig. 10. Algorithm runtimes for 128x128 pixel target images

When smaller matrices are used, for instance, for target images 32x32 pixels, this runtime is
considerably reduced, running faster than its Kaczmarz counterpart, Fig. 11.

Phase Retrieval Algorithm Runtime
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Cimmino FFT
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Cimmino Full

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175
Runtime (seconds)

Fig. 11. Algorithm runtimes for 32x32 pixel target images

As expected, Cimmino FFT is slightly slower than Gerchberg-Saxton, since it relies on more
computations than the latter. Nevertheless, the disparity in speed between both approaches is
minimal.

5. Experimental analysis

This section is a validation that these algorithms effectively run on a far-field holographic projector.
The main comparison drawn in this section is between Cimmino FFT and Gerchberg-Saxton
since out of all these algorithms, these can be successfully implemented on larger images. For
that reason, 512x512 pixel replay fields are displayed throughout this section.
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The projector uses a 520nm laser and its light is modulated by a multiphase Himax 7322
spatial light modulator (SLM) with a 1920x1080 pixel resolution. The generated replay fields are
single frame and the results can be seen in Fig. 12.

Fig. 12. Algorithm experimental analysis; Left: Cimmino FFT; Right: Gerchberg-Saxton

Comparing the mean squared error and peak signal to noise ratios of the retrieved experimental
replay fields with the target image seen in Fig. 2, we obtained 114.58 and 80.53 (MSE and PSNR
respectively) for Cimmino FFT, against 115.68 and 80.49 (MSE and PSNR) for Gerchberg-Saxton.
There is some improvement when comparing Cimmino FFT to Gerchberg-Saxton experimentally.

6. Conclusion

Our previous work analyzing the performance of the Kaczmarz algorithm in projecting replay
fields in the far-field, demonstrated this algorithm delivered higher quality images than Gerchberg-
Saxton in 10 iterations [12]. Nevertheless, while it does outperform in terms of image quality, it
relies on matrix computations, making it slower than the alternative and difficult to process on
very large images. The Cimmino algorithm should therefore be a viable alternative to Kaczmarz
since it computes the whole image simultaneously rather than on a row-by-row basis. In fact, as
seen from this earlier analysis, as well as delivering poorer results, Cimmino full and Cimmino
eye are also significantly slower than Kaczmarz when running on larger 128x128 images.

The Cimmino FFT, on the other hand, performs significantly faster than Kaczmarz, Cimmino
full and Cimmino eye whilst solely being a few milliseconds slower than Gerchberg-Saxton.
It delivers better image quality than all remaining algorithms, whilst also being successfully
implemented on larger 512x512 images.

While these results validate Fienup’s work [27], they also demonstrate a parallel between
two fields that have co-existed without this link. Kaczmarz [15] and Cimmino [24] originally
conceived this work in the 1930s to solve linear equations in the form of Ax = b and not for phase
retrieval. Fienup developed his algorithm in the 1980s specifically comparing input-output to
Gerchberg-Saxton, or the error-reduction algorithm. While the motivations for these works were
different, the link between these fields is evident and interesting to note.
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