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Validity of visceral adiposity estimates from DXA against
MRI in Kuwaiti men and women
A Mohammad1,5, E De Lucia Rolfe2,5, A Sleigh3, T Kivisild4, K Behbehani1, NJ Wareham2, S Brage2,6 and T Mohammad4,6

OBJECTIVES: The prevalence of obesity and diabetes in the Middle East is among the highest in the world. Valid measures of
abdominal adiposity are essential to understanding the metabolic consequences of obesity. Dual-energy X-ray absorptiometry
(DXA) is increasingly being utilised to assess body composition in population studies, and has recently been used to estimate
visceral adipose tissue (VAT). The aim of this study was to determine the accuracy of DXA-derived VAT in a Middle Eastern
population using magnetic resonance imaging (MRI) as the criterion measure.
METHOD: VAT was estimated from abdominal DXA measures in 237 adult men (n= 130) and women (n= 107), aged 18–65 years,
participating in the Kuwait Wellbeing Study. These estimates were compared with MRI measures of the corresponding anatomical
region. The agreement between methods was assessed using Bland–Altman as well as correlation analysis.
RESULTS: Median MRI VAT was 1148.5 cm3 (95% confidence interval: 594.2–1734.6) in men and 711.3 cm3 (95% confidence
interval: 395.5–1042.8) in women. DXA estimates of VAT showed high correlations with corresponding MRI measures
(r= 0.94 (Po0.0001) in men; r= 0.93 (Po0.0001) in women). DXA overestimated VAT with a mean bias (95% limits of agreement)
of 79.7 cm3 (−767 to 963) in men and 46.8 cm3 (−482 to 866) in women. The imprecision of DXA increased with increasing VAT level
in both men and women.
CONCLUSION: DXA estimates of VAT are valid for use in Middle Eastern populations, although accuracy decreases with increasing
level of visceral adiposity.
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INTRODUCTION
Obesity and its related comorbidities have become a major public
health challenge in the Middle East and North Africa (MENA)
region.1–4 Data published by the International Diabetes Federation
have shown that the MENA region has the highest prevalence of
diabetes in the world, and the country of Kuwait is ranking top in
this region at 20.7%.5 Obesity is particularly prevalent in this
country, where 59% of women and 46% of men are either
overweight or obese.6 Lifestyle changes, such as decreasing levels
of physical activity and increased consumption of energy-dense
diets, resulting from rapid urbanisation and economic growth over
recent decades, are possible contributing factors to this high
prevalence.7

Abdominal obesity, and in particular increased visceral adipose
tissue (VAT), is associated with insulin resistance, glucose
intolerance and type 2 diabetes.8–10 VAT is considered to be
more sensitive to lipolytic stimuli than other adipose depots,11,12

and it has been suggested that visceral obesity decreases insulin
action via increased delivery of free fatty acids in insulin-sensitive
tissues.13,14 It is therefore plausible that VAT is implicated in the
pathophysiology of type 2 diabetes, the investigation of which
relies on accurate quantification of VAT. However, limited data are
available on VAT and how this parameter relates to overall obesity
and diabetes in populations in the MENA region.

Direct imaging techniques such as computerised tomography
(CT) and magnetic resonance imaging (MRI) are the reference
methods used for the quantification of VAT. Their use in large-
scale population studies is, however, limited because of cost,
lengthy data post processing and the exposure to ionising
radiation in the case of CT.15,16 Consequently, only standard
anthropometry measures, which lack the ability to distinguish
between visceral and subcutaneous adipose compartments, are
typically used in such studies. Dual-energy X-ray absorptiometry
(DXA) is increasingly being implemented in large-scale epidemio-
logical studies to assess overall and regional body composition.
The recent introduction of DXA instruments that provide an
estimate of VAT from the abdominal DXA scan has opened
potential avenues to the measurement of VAT in large-scale
population studies.15 However, the algorithms involved in the
process of quantifying VAT from DXA are not publically available
and verification of this measure has only been investigated in
American and Asian Chinese adults.15,17,18 The aim of this
study was to validate the estimation of DXA-derived VAT using
MRI-measured VAT as the criterion method in Kuwaiti men and
women aged 18 to 65 years. This DXA method could aid large-
scale studies investigating VAT in MENA region populations that
may help elucidate the interplay between this fat compartment
and the metabolic consequences associated with obesity.
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MATERIALS AND METHODS
Study participants
The study included a total of 237 adult men (n= 130) and woman (n=107)
between the ages of 18 and 65 years who took part in the Kuwait
Wellbeing Study. Participants attended the Kuwait Wellbeing Unit at
Dasman Diabetes Institute between November 2012 and April 2013.
The exclusion criteria included pregnancy, known diabetes, standard
MRI contradictions, inability to walk unaided, psychosis or terminal illness.
All measurements on each individual were performed on the same day.
This study was approved by the Ethical Review Board of the Dasman

Diabetes Institute, Safat, Kuwait, and all participants provided informed
signed consent.

Anthropometric measurements
Anthropometry was performed by trained nurses. Weight was measured
using a calibrated scale (TANITA model BC-418 MA, Tokyo, Japan) and
recorded to the nearest 0.1 kg. Height was measured by a wall mounted
stadiometer (SECA model 240, Birmingham, UK) and recorded to the
nearest 0.1 cm. Body mass index was calculated as weight/height2

(kg m− 2). Waist and hip circumferences were measured with a D-loop
tape measure at the mid-point between the lowest rib margin and the iliac
crest and the widest level over the greater trochanters respectively. Both
measurements were recorded to the nearest 0.1 cm. The participants were
fasted and wearing loose clothing during the measurements.

DXA measurements
Total body imaging was acquired using the Lunar iDXA (GE Healthcare,
Bedford, UK). Estimates of total body fat mass, android fat mass and
VAT content (mass and volume) were derived using the iDXA enCORE
software (version 14.10.022; GE Heathcare). The software estimates the
VAT content within the android region; the software automatically places a
quadrilateral box, that is, the region outlined by the iliac crest and with a
superior height equivalent to 20% of the distance from the top of the iliac
crest to the base of the skull17 (Figure 1a).

Individuals who were broader than the scanning area (n= 80) were
positioned for either a sagittal half-body scan (the left side of the body) or
placed to exclude the right arm in the field of view. Body composition
variables were then recalculated in those participants to include the
missing regions by assuming left–right body symmetry.
Daily quality assurance and quality controls were carried out during the

study period before using the equipment according to standard
procedures supplied by the manufacturer. The volunteers were scanned
using standard imaging and positioning protocols19,20 by three trained
operators. All the images were processed by one trained researcher (AM).

MRI measurements
The MRI images were acquired by trained radiographers. The participants
were placed supine in a GE 3T Discovery 750 whole body scanner.
A 32-channel torso coil was used to acquire 21 FSE-IDEAL transaxial slices
with respiratory gating, centred on the L4 vertebral level. The in-plane
resolution was 0.94 × 0.94 mm, field of view 480× 480 mm, slice thickness
10 mm with an interslice gap of 2 mm. The GE reconstructed fat images
from the IDEAL sequence were used to calculate the volume of VAT using
the software Analyze 11.0 (BIR, Mayo Clinic, Rochester, MN, USA) as
described previously.
MRI VAT volumes were calculated from the same android region defined

by the DXA to enable an accurate comparison between MRI and
DXA estimates of VAT. This was achieved on an individual basis by
defining the MRI slices to match the region used by the DXA method
(see DXA methods). The MRI VAT area from each of these slices was
multiplied by 12 mm (the interslice distance, Figure 1b) to convert it to
a volume before summation to yield an MRI VAT that is comparable to
DXA VAT. If the DXA region did not match an integer number of MRI slices,
the contribution from the final MRI slice was weighted accordingly.
The fraction of the final slice (last slice factor), was defined as follows: Last
slice factor = [0.2A− (10 NS+2 (NS− 1))]/11, where A is abdomen length in
mm and NS is number of full slices.
An estimate of total abdominal fat (TAF) was also calculated to compare it

against DXA-derived TAF. TAF was defined as VAT+SCAT, where SCAT is the

Figure 1. (a) Image of a full-body DXA scan. The red box depicts the region automatically outlined by iliac crest and with a superior height
equivalent to 20% of the distance from the top of the iliac crest to the base of the skull, used to calculate VAT. (b) An illustration of the
MRI slices (10 mm) and interslice gaps (2 mm) that match the region used by the DXA method to measure VAT.
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subcutaneous adipose tissue measured from the same abdominal region as
the VAT. The images were processed and analysed by one researcher.

Statistical analysis
Statistical analyses were performed using STATA (version 12; StataCorp,
College Station, TX, USA). Statistical significance was set at Po0.05.
Results are reported as mean ± s.d. or if the variables were not normally
distributed as median and interquartile ranges. Unpaired t-test
and Kruskal–Wallis tests were used to compare sample characteristics
by sex. Spearman’s rank coefficients were calculated to investigate
correlations between MRI criterion measures and different measures of
abdominal fat.
Linear regression analysis was used to quantify the proportion of

variance of VAT measured by MRI explained by DXA and anthropometry.
The level of agreement in VAT and TAF between DXA and MRI was

determined using Bland–Altman plots, with mean difference (bias) tested
using paired t-tests. A regression line was added to the Bland–Altman plots
indicating error trend throughout the measurement range. Limits of
agreement were calculated as bias ± 1.96 s.d. of the difference, and
heteroscedasticity was determined using correlation of absolute differ-
ences against the MRI criterion. Non-normally distributed variables were
log transformed before analysis.

RESULTS
The characteristics of the study participants are shown in Table 1.
Men were taller, had larger waist circumference and waist to hip
ratio than women and had more VAT (DXA and MRI).

Relative validity
Table 2 shows Spearman’s correlation coefficients between anthro-
pometry and DXA measures and abdominal adiposity volumes (total
and VAT) as measured by MRI (the criterion method) in men and
women separately. VAT volume from DXA was most strongly related
to VAT from MRI in men (r=0.94) and women (r=0.93). Of the
anthropometry measures, body mass index and waist circumference
showed the strongest correlations with VAT (r=0.72 to r=0.77).
A multiple regression model including weight, waist and hip
circumference explained 56–59% of the variance in MRI-measured
VAT, whereas DXA-measured VAT volume explained 80% and 86% of
the variance in MRI in women and men, respectively. Adding all

predictors to the same model rendered only the DXA variable
significant.

Absolute validity
DXA overestimated VAT by roughly 7% in both men and women;
the mean biases (95% limits of agreement) were 79.7 cm3 (−565.3
to 724.7; P= 0.006) in men and 46.8 cm3 (−406.4 to 498.5; P= 0.04)
in women. As can be seen in the Bland–Altman plots (Figure 2),
there was evidence of heteroscedasticity, that is, increasing scatter
with increasing VAT, in both men (r= 0.94, P⩽ 0.00010) and
women (r=0.93, P⩽0.0001). In contrast to the VAT results, DXA
significantly underestimated TAF compared with MRI in men and
women (Figure 3). The mean difference was −492.5 cm3 (−1165.5 to
180.5) in men (Po0.0001) and −522.9 cm3 (−1229 to 185) in women
(Po0.0001) or roughly 16% of the mean values. Estimation errors
did not differ significantly by sex (P= 0.32).

Table 1. Characteristics of the study sample; the Kuwait Wellbeing Study 2012–2013 (n= 237)

Median (interquartile range) Men Women P-valuea

(n= 130) (n= 107)

Age (years) 38.8± 10.4 43.1± 11.3 0.003

Anthropometric measures
Weight (kg) 83.1 (74.3–95.6) 73.6 (64.1–85.3) o0.0001
Height (cm) 173.3± 6.6 159.4± 5.4 o0.0001
BMI (kg m− 2) 28.4± 4.6 29.6± 6.1 0.09

MRI measures
VAT (cm3) 1148.5 (594.2–1734.6) 711.3 (395.5–1042.8) 0.0001
Abdominal fat (cm3) 3217.9 (2385.5–4392.8) 2958.5 (2359.6–3959.8) 0.25

DXA measures
VAT (cm3) 1232.6 (516.3–1852) 789.4 (410.2–1090) o0.0001
VAT (kg) 1.2 (0.5–1.7) 0.7 (0.387–1.0) o0.0001
Abdominal fat (cm3) 2797.7 (2032.6–3829) 2559.3 (1930–3408) 0.15
Body fat % 32± 6.9 44.3± 5.5 o0.0001

Abbreviations: BMI, body mass index; DXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging; VAT, visceral adipose tissue. Data are
presented as mean± s.d. or median (interquartile ranges). aSex differences by t-test or Kruskal–Wallis rank test. DXA AF is derived variable from DXA android
fat–DXA-estimated VAT.

Table 2. Spearman’s rank correlation coefficients between
anthropometry DXA and MRI measures of abdominal adiposity in both
men and women; the Kuwait Wellbeing Study 2012–2013 (n= 237)

MRI measures

Men Women

VAT
(cm3)

AFa

(cm3)
VAT
(cm3)

AF
(cm3)

Anthropometry Weight (kg) 0.69 0.82 0.7 0.87
BMI (kg m− 2) 0.74 0.85 0.73 0.87
Body fat % 0.75 0.87 0.61 0.9

DXA
VAT (cm3) 0.94 0.84 0.93 0.82
AF (cm3) 0.65 0.97 0.49 0.95

Abbreviations: AF, android fat; BMI, body mass index; DXA, dual-energy X-ray
absorptiometry; MRI, magnetic resonance imaging; TAF, total abdominal fat;
VAT, visceral adipose tissue. All correlations had a P value o0.0001. aMRI
abdominal fat AF (subcutaneous adipose tissue (SCAT)+VAT).
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DISCUSSION
In this study, we assessed the validity of DXA-derived
VAT estimates in a cohort of Kuwaiti men and women using
MRI as the criterion method. The results showed a small positive
bias of ∼ 7% for DXA-based VAT estimates, but high correlations in
both men and women, associations that were much stronger than
those found for anthropometric measures.
These results provide justification to using DXA as an alternative to

standard epidemiological estimation techniques of abdominal
obesity such as waist and hip circumference, but likely only in the
scenario where DXA was included in the study design for its primary
purpose of measuring whole-body composition. Clearly, the
feasibility of DXA is much lower than for example a waist
circumference measurement, but if the X-ray images are acquired
anyway, our results indicate that more accurate estimates of VAT can
be obtained. Despite the strong associations, DXA overestimated
VAT, particularly in individuals with higher content of VAT; the
overestimation was more apparent in participants with VAT of
4750 cm3 for women and 1500 cm3 for men. That being said,
individuals with the very lowest VAT levels were underestimated by
DXA, as indicated by the error trend line in the Bland–Altman plots.
Our findings concur with other studies in adult men and

women of different ethnicity. A validation study carried out in
Chinese adults using CT as criterion also found a significant
overestimation of DXA-derived VAT,18 with biases of 143 cm3 for
women and 379 cm3 in men and 95% limits of agreement
of − 232 to 755 cm3 for both sexes combined.
Strong correlations were also observed in a Chinese population

reporting correlations of 0.947 for women and 0.891 for men.18

Even stronger correlations were reported for an American
population, ranging from 0.959 in women to 0.949 in men.17

Our study population had similar DXA-derived VAT volumes
(1232 (516.3–1634.6) in men and 789.4 (410.2–1090) in women)
compared with the sample of American adults who were
predominantly Caucasian; the mean DXA VAT volumes in that
study were 1382 ± 945 (men) and 800 ± 960 (women).17

In contrast, the mean DXA-derived VAT in this adult Kuwaiti
cohort was lower than that observed in the Chinese population,
with values ranging between 1560 ± 587 (men) and 1000 ± 715
(women). The higher mean observed in the Chinese study may be
a consequence of the older average age of the Chinese
participants (~51 years) compared with the Kuwaiti participants
(~40 years), as visceral adiposity increases with increasing age.18

The overestimation of VAT observed in this and other studies
may be explained by DXA relying on differential attenuation of
two X-rays of different wavelengths; consequently, in larger
individuals where the X-rays of both wavelengths will be more
attenuated, the signal-to-noise ratio between them, and hence the
ability to differentiate tissues, will be diminished.21 Another
explanation for the discrepancy may be due to the fact that fat
is also found in muscle, solid organs and bones. Although these
fat compartments are much smaller, all fat is captured by the
DXA method, but the fat from these other compartments is
removed in MRI method when assessing VAT.22 Abdominal fat
measured by DXA showed strong correlations with MRI in both
men (r= 0.97) and women (r= 0.95). However, when compared

Figure 2. Bland–Altman analysis for men (upper panel) and women
(lower panel) comparing the difference between visceral adipose
tissue (cm3) from DXA and visceral adipose tissue (cm3) from
MRI with the mean visceral fat from the two methods; the Kuwait
Wellbeing Study 2012–2013 (n= 237).

Figure 3. Bland–Altman analysis for men (upper panel) and women
(lower panel) comparing the difference between abdominal fat
mass (cm3) from DXA and abdominal fat mass (cm3) from MRI with
the mean abdominal fat from the two methods; the Kuwait
Wellbeing Study 2012–2013 (n= 237).
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with MRI, DXA significantly underestimated this compartment in
both men and women, findings that are concordant with other
studies. In these studies, the investigators defined subregions on
the DXA that corresponded to the CT anatomical abdominal area
and showed that DXA underestimation ranged from 10 to 26%.23–25

The underestimation might be a result of the variation in fat
content and differences in the relative amounts of fat in
subcutaneous and visceral adipose tissue.24

The main strengths of our study were the large sample size,
covering a wide range of adiposity, and the inclusion of an equal
number of men and women with an evenly distributed age range.
The main limitations of the study include potential mismatch
of the anatomical areas that were assessed by the two methods.
The DXA method uses 20% of the length of the abdomen from the
iliac crest, and although the MRI slice region was chosen and
processed to cover the same as the DXA, there may still be a small
degree of non-overlap of the regions. However, previous work
only used a set of number of slices.17

In conclusion, DXA estimates of VAT have a small positive bias,
but are valid for ranking individuals with higher or lower visceral
fat volumes and may be considered an alternative assessment
to employ when reference methods like MRI and CT are not feasible.
Although the DXA method is poor at determining absolute
values of VAT volumes at the individual level, this approach for
estimating VAT may aid the study of the mechanisms involved in
metabolic regulation and the effects of different abdominal fat
depots on the risk of developing obesity-related disorders in the
MENA region.
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