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Abstract. Bayesian optimisation is a sample-efficient search methodology that holds
great promise for accelerating drug and materials discovery programs. A frequently-
overlooked modelling consideration in Bayesian optimisation strategies however, is the
representation of heteroscedastic aleatoric uncertainty. In many practical applications
it is desirable to identify inputs with low aleatoric noise, an example of which
might be a material composition which displays robust properties in response to
a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian
optimisation scheme capable of representing and minimising aleatoric noise across the
input space. Our scheme employs a heteroscedastic Gaussian process (GP) surrogate
model in conjunction with two straightforward adaptations of existing acquisition
functions. First, we extend the augmented expected improvement (AEI) heuristic
to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised
expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising
aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved
performance relative to homoscedastic Bayesian optimisation and random sampling
on toy problems as well as on two real-world scientific datasets. Code is available at:
https://github.com/Ryan-Rhys/Heteroscedastic-BO
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Robust Bayesian Optimisation 2

1. Introduction

Bayesian optimisation is proving to be a highly effective search methodology in areas such
as drug discovery [1, 2, 3], materials discovery [4, 5, 6], chemical reaction optimisation
[7, 8, 9], robotics [10], sensor placement [11], tissue engineering [12] and genetics [13].
Heteroscedastic aleatoric noise however, is rarely accounted for in these settings despite
being an important consideration for real-world applications. Aleatoric uncertainty
refers to uncertainty inherent in the observations (measurement noise) [14]. In contrast,
epistemic uncertainty corresponds to model uncertainty and may be explained away
given sufficient data. Heteroscedastic aleatoric noise refers to aleatoric noise which
varies across the input domain and is a prevalent feature of many scientific datasets;
perhaps suprisingly not only experimental datasets, but also datasets where properties are
predicted computationally. One such source of heteroscedasticity in the computational
case might be situations in which the accuracy of first-principles calculations deteriorate
as a function of the chemical complexity of the molecule being studied [15].

(a) Density plot of computational errors (b) Density plot of experimental errors

Figure 1. (a) The density histogram of computational errors (kcal/mol) for the
FreeSolv hydration energy dataset ([16]). The computational errors in the hydration
free energy arise from systematic errors in the force field used in alchemical free energy
calculations based on classical molecular dynamics (MD) simulations. (b) A similar
density histogram for the experimental errors where the source of uncertainty stems
from the instrumentation used to obtain the measurement. The histograms are overlaid
with kernel density estimates.

In Figure 1 we illustrate real-world sources of heteroscedasticity using the FreeSolv
dataset of [16]. The consequences of misrepresenting heteroscedastic noise as being
homoscedastic, i.e. constant across the input domain, are illustrated using a second
dataset [17] in Figure 2. The homoscedastic model can underestimate noise in certain
regions of the input space which in turn could induce a Bayesian optimisation scheme to
suggest values possessing large aleatoric noise. In an application such as high-throughput
virtual screening [18] the cost of misrepresenting noise during the screening process could
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Robust Bayesian Optimisation 3

(a) Homoscedastic GP Fit (b) Heteroscedastic GP Fit

Figure 2. Comparison of homoscedastic and heteroscedastic GP fits to the soil
phosphorus fraction dataset [17].

lead to a substantial loss of time in material fabrication [19]. In this paper we present
a heteroscedastic Bayesian optimisation algorithm capable of both representing and
minimising aleatoric noise in its suggestions. Our contributions are:

(1) The introduction of a novel combination of surrogate model and acquisition function
designed to minimise heteroscedastic aleatoric uncertainty.

(2) A demonstration of our scheme’s ability to outperform naive schemes based on
homoscedastic Bayesian optimisation and random sampling on toy problems as well
as two real-world scientific datasets.

(3) The provision of an open-source implementation.

The paper is structured as follows: section 2 introduces related work on
heteroscedastic Bayesian optimisation. Section 3 provides background on Bayesian
optimisation and homoscedastic GP surrogate models. Section 4 provides background
on the heteroscedastic GP surrogate model used in this work and introduces the novel
HAEI and ANPEI acquisitions functions. Section 5 considers experiments on synthetic
and scientific datasets possessing heteroscedastic noise where the goal is to be robust to,
i.e. minimise, aleatoric noise in the suggestions. Section 6 presents an ablation study on
noiseless tasks as well as tasks with homoscedastic and heteroscedastic noise in order
to determine whether there is a detrimental effect to using a heteroscedastic surrogate
when the noise properties of the problem are a priori unknown. Section 7 concludes with
some limitations of the approach presented as well as fruitful sources for future work.

2. Related Work

The most similar work to our own is that of [20] where experiments are reported on a
heteroscedastic Branin-Hoo toy function using the variational heteroscedastic Gaussian
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Robust Bayesian Optimisation 4

process (GP) approach of [21]. This work defines and optimises a robustness index,
making a compelling case for penalisation of aleatoric noise in real-world Bayesian
optimisation problems. A modification to expected improvement (EI), expected risk
improvement is introduced in [22] and is applied to problems in robotics where robustness
to aleatoric noise is desirable. In this framework however, the relative weights of
performance and robustness cannot be tuned [20]. [23, 24] implement heteroscedastic
Bayesian optimisation but do not introduce an acquisition function that penalises
aleatoric noise. [25, 26] consider the related problem of safe Bayesian optimisation
through implementing constraints in parameter space. In this instance, the goal of the
algorithm is to enforce a performance threshold for each evaluation of the black-box
function. Recently, the winners of the 2020 NeurIPS Black-Box Optimisation Competition
applied non-linear output transformations in their solution to tackle heteroscedasticity.
The authors however are not interested in explicitly penalising aleatoric noise in this case.
In terms of acquisition functions, [27, 28] propose principled approaches to handling
aleatoric noise in the homoscedastic setting that could be extended to the heteroscedastic
setting. Our primary focus in this work however, is to highlight that heteroscedasticity
in the surrogate model is beneficial and so an examination of a subset of acquisition
functions is sufficient for this purpose. We take the opportunity here to note earlier
unpublished workshop versions of this paper which consider the same problem [29, 30].

3. Background

3.1. Bayesian Optimisation

Bayesian optimisation [31, 32, 33] solves the global optimisation problem defined as

x∗ = arg min
x∈X

f(x)

where x∗ is the global optimiser of a black-box function f : X → Y. X is the design
space and is typically a compact subset of Rd. What makes this optimisation problem
practically relevant in applications are the following properties:

(i) Black-Box Objective: We do not have the analytic form of f . We can however
evaluate f pointwise anywhere in the design space X .

(ii) Expensive Evaluations: Choosing an input location x and evaluating f(x) takes a
very long time.

(iii) Noise: The evaluation of a given x is a noisy process. In addition, this noise may
vary across X , making the underlying process heteroscedastic.

We have a dataset D = {(xi, ti)}ni=1 consisting of observations of the black-box
function f and fit a probabilistic surrogate model to these datapoints. We then leverage
the predictive mean as well as the uncertainty estimates of the surrogate model to
guide the acquisition of the next data point xn+1 according to a heuristic known as an
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Robust Bayesian Optimisation 5

acquisition function. In Bayesian optimisation, exact GPs are the most popular choice
of surrogate model because of their ability to represent posterior uncertainty without
resorting to approximate Bayesian inference.

3.2. Gaussian Processes

In the terminology of stochastic processes we may formally define a GP as follows:

Definition 1. A GP [34] is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

GPs can be used to set a prior over functions in Bayesian modelling applications. In
this setting, the random variables consist of function values f(x) at different locations x
within the design space. The GP is characterised by a mean function

m(x) = E[f(x)]

and a covariance function

k(x,x′) = E[(f(x−m(x))(f(x′)−m(x′))].

The process is written as follows

f(x) ∼ GP
(
m(x), k(x,x′)

)
.

In our experiments, the prior mean function will be set to the empirical mean of the data.
The covariance function or kernel computes the pairwise covariance between two random
variables (function values). The covariance between a pair of output values f(x) and
f(x′) is a function of an input pair x and x′. As such, the kernel encodes smoothness
assumptions about the latent function being modelled. The most widely-utilised kernel
is the squared exponential (SE) kernel

kSQE(x,x′) = σ2
f · exp

(−‖x− x′‖2

2`2

)
(1)

where σ2
f is the signal amplitude hyperparameter (vertical lengthscale) and ` is the

(horizontal) lengthscale hyperparameter. Although Equation 1 is written with a single
lengthscale shared across dimensions, for multidimensional input spaces we optimise a
lengthscale per dimension. For consistency, we use the squared exponential kernel in all
experiments reported in the main paper. In Appendix C we compare the performance
of different kernels on a set of synthetic optimisation functions. For a more detailed
introduction to GPs the reader is referred to [34].
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Robust Bayesian Optimisation 6

4. Heteroscedastic Bayesian Optimisation

We wish to perform Bayesian optimisation whilst minimising input-dependent aleatoric
noise. In order to represent input-dependent aleatoric noise, a heteroscedastic surrogate
model is required.

4.1. The Most Likely Heteroscedastic Gaussian Process

We adopt the most likely heteroscedastic Gaussian process (MLHGP) approach of [35],
and for consistency, we use the same notation as the source work in our presentation.
We have a dataset D = {(xi, ti)}ni=1 in which the target values ti have been generated
according to ti = f(xi) + εi. We assume independent Gaussian noise terms εi ∼ N (0, σ2

i )

with variances given by σ2
i = r(xi). In the heteroscedastic setting r is typically a non-

constant function over the input domain x. In order to perform Bayesian optimisation,
we wish to model the predictive distribution P (t∗ | x∗1, . . . ,x∗q) at the query points
x∗1, . . . ,x

∗
q. Placing a GP prior on f and taking r(x) as the assumed noise function, the

predictive distribution is multivariate Gaussian N (µ∗,Σ∗) with mean

µ∗ = E[t∗] = K∗(K +R)−1t

and covariance matrix

Σ∗ = var[t∗] = K∗∗ +R∗ −K∗(K +R)−1K∗T ,

where K ∈ Rn×n, Kij = k(xi,xj), K∗ ∈ Rq×n, K∗ij = k(x∗i ,xj), K∗∗ ∈ Rq×q,
K∗∗ij = k(x∗i ,x

∗
j), t = (t1, t2, . . . , tn)T , R = diag(r) with r = (r(x1), r(x2), . . . , r(xn))T ,

and R∗ = diag(r∗) with r∗ = (r(x∗1), r(x
∗
2), . . . , r(x

∗
q))

T .

The MLHGP algorithm [35] executes the following steps:

(i) Estimate a homoscedastic GP, G1 on the dataset D = {(xi, ti)}ni=1

(ii) Given G1, we estimate the empirical noise levels for the training data using
zi = log(var[ti, G1(xi,D)]) where var[ti, G1(xi,D)] ≈ 1

s

∑s
j 0.5 (ti − tji )

2 with tji
a sample from the predictive distribution induced by the GP at xi, forming a new
dataset D′ = {(xi, zi)}ni=1

(iii) Estimate a second GP, G2 on D′.
(iv) Estimate a combined GP, G3 on D using G2 to predict the logarithmic noise levels

ri.

(v) If not converged, set G3 to G1 and repeat.

In essence, the defining characteristic of the MLHGP approach is that G1 learns the
latent function and G2 learns the noise function.
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Robust Bayesian Optimisation 7

4.2. Bayesian Optimisation with Aleatoric Noise Penalisation

Our heteroscedastic Bayesian optimisation problem may be framed as

x∗ = arg min
x∈χ

h(x),

where the black-box objective h, to be minimised has the form

h(x) = αf(x) + (1− α)g(x).

where f(x) is the black-box function of the principal objective i.e. the objective
corresponding to classical Bayesian optimisation where noise is not optimised, and
g(x) is the latent heteroscedastic noise function which governs the magnitude of the
noise at a given input location x. α is a parameter chosen, for the purposes of evaluation,
by a domain expert that trades off the weight of the principal objective relative to the
noise objective. It is worth noting that α is a parameter that affects only the evaluation
of an algorithm and not the execution. The evaluation criteria however, will dictate the
optimal hyperparameters of the acquisition function.

4.3. Heteroscedastic Acquisition Functions

We investigate extensions of the expected improvement [33] acquisition criterion, the
form of which may be written in terms of the targets t and the incumbent best objective
function value, η, found so far as

EI(x) = E
[

(η − t)+
]

=

∫ ∞
−∞

(η − t)+ p(t |x) dt

where p(t |x) is the posterior predictive marginal density of the objective function eval-
uated at x. (η − t)+ ≡ max (0, η − t) is the improvement over the incumbent best
objective function value η. Evaluations of the objective are noisy in all of the problems
we consider and so we use expected improvement with plug-in [36], the plug-in value
being the GP predictive mean [37].

We propose two extensions to the expected improvement criterion. The first is an
extension of the augmented expected improvement criterion

AEI(x) = E
[
(η − t)+

](
1− σn√

var[t] + σ2
n

)
,

of [38] where σn is the fixed aleatoric noise level. AEI is introduced as a heuristic for the
optimisation of noisy functions. EI is recovered in the case that σ2

n = 0 and in the case
that σ2

n > 0 AEI operates as a rescaling of the EI acquisition function, penalising test
locations where the GP predictive variance is small relative to the fixed noise level σ2

n.
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Robust Bayesian Optimisation 8

We extend AEI to the heteroscedastic setting by exchanging the fixed aleatoric noise
level with the input-dependent one:

HAEI(x) = E
[
(η − t)+

](
1−

γ
√
r(x)√

var[t] + γ2r(x)

)
, (2)

where r(x) is the predicted aleatoric uncertainty at input x under the MLHGP and
var[t] is the predictive variance of the MLHGP at input x. γ in this instance is defined
to be a positive penalty parameter for regions with high aleatoric noise.

Proposition 1 (Limit of Large Epistemic Uncertainty). The HAEI acquisition function
reduces to EI when the ratio of epistemic uncertainty to aleatoric uncertainty is much
greater than γ2.

Proof. Let k = var[t]
r(x)

denote the ratio of epistemic to aleatoric uncertainty at an arbitrary
input location x. Dividing the numerator and the denominator of the second term in
the second factor of Equation 2 by

√
r(x) yields

HAEI(x) = EI(x)

(
1− γ√

k + γ2

)
. (3)

Taking the limit analytically as k tends to infinity and assuming finite γ

lim
k→∞

EI(x)

(
1− γ√

k + γ2

)
= EI(x),

recovers the expected improvement acquisition.

Proposition 2 (Limit of Large Aleatoric Uncertainty). The HAEI acquisition function
goes to zero as the ratio of epistemic uncertainty to aleatoric uncertainty goes to zero.

Proof. Taking the limit as k tends to zero in Equation 3 yields

lim
k→0

EI(x)

(
1− γ√

k + γ2

)
= 0.

Remark. In the limit of large aleatoric uncertainty there is an approximation that is
linear in k for the HAEI scaling factor.

Letting S(k) = 1− γ√
k+γ2

such that HAEI = EI(x)S(k), consider the MacLaurin

expansion of S(k),

S(k) = S(0) + S ′(0)k +
S ′′(0)

2!
k2 +

S ′′′(0)

3!
k3 + . . . ,
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Robust Bayesian Optimisation 9

Figure 3. The HAEI scaling factor S(k), now written as a function of k for different
values of γ. When k, the ratio of epistemic to aleatoric uncertainty is small, the scaling
factor goes to zero to reflect the penalty for regions of high aleatoric uncertainty. γ
controls the decay rate of this penalty. Also shown is the linear approximation to the
scaling factor for γ = 10.

Dropping terms of O(k2) and higher we obtain

S(k) ≈ k

2γ2
.

This approximation may be used when k is small relative to γ and could provide guidance
in setting the γ parameter if prior knowledge about k and the desired trade-off between
the principal and noise objectives is available. In Figure 3 we provide insight into the
effect that different values of γ will have on the scaling factor S(k).

In addition to HAEI, we propose a simple modification to EI that explicitly penalises
regions of the input space with large aleatoric noise. We call this acquisition function
aleatoric noise-penalised expected improvement (ANPEI) and denote it

ANPEI = βEI(x)− (1− β)
√
r(x), (4)

where β is a scalarisation constant. In the multiobjective optimisation setting a particular
value of β will correspond to a point on the Pareto frontier. We showcase the advantages of
both HAEI and ANPEI acquisition functions in conjunction with the MLHGP surrogate
model in section 5.
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Robust Bayesian Optimisation 10

(a) Latent Function (b) Noise Function (c) Objective Function

Figure 4. Illustrative Toy Problem. The latent function in a) is corrupted with
heteroscedastic Gaussian noise according to the function in b) where g(x) is a constant
multiplier of a sample from a standard Gaussian. The combined objective is given in c)
and is obtained by subtracting the noise function from the latent function.

Figure 5. Noisy samples yi = f(xi)+g(xi)ε from the heteroscedastic sin wave function.

5. Experiments on Robustness to Aleatoric Uncertainty

5.1. Implementation

Experiments were run using a custom NumPy [39] implementation of GP regression
and MLHGP regression. All code to reproduce the experiments is available at https:
//github.com/Ryan-Rhys/Heteroscedastic-BO. The squared exponential kernel was
chosen as the covariance function for both the homoscedastic GP as well as G1 and G2

of the MLHGP. Across all datasets, the lengthscales, `, of the homoscedastic GP were
initialised to 1.0 for each input dimension. The signal amplitude σ2

f was initialised to
a value of 1.0. The lengthscale, `, of G2 of the MLHGP [35] was initialised to 1.0, the
initial noise level of G2 was set to 1.0. The EM-like procedure required to train the
MLHGP was run for 10 iterations and the sample size required to construct the variance
estimator producing the auxiliary dataset was 100. All standard error confidence bands
are computed using 50 independent random seed initialisations. Hyperparameter values,
including the noise level of the homoscedastic GP, were obtained by optimising the
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Robust Bayesian Optimisation 11

marginal likelihood using the scipy implementation of the L-BFGS-B optimiser [40],
taking the best of 20 random restarts. The objective function is

h(x) = αf(x)− (1− α)g(x)

for the one-dimensional sin wave experiment which is a maximisation problem and as
such has a subtractive penalty for regions of large noise. For the remaining experiments,
which are minimisation problems, the objective is

h(x) = αf(x) + (1− α)g(x) (5)

The sin wave and Branin-Hoo tasks are initialised with 25 and 100 data points respectively
drawn uniformly at random within the bounds of the design space. The soil and FreeSolv
experiments are initialised with 36 and 129 data points respectively drawn uniformly
at random from the datasets. α is set to 0.5 for all experiments while β is set to
0.5, 1

11
, 0.5 and 0.5 for the sin, Branin-Hoo, soil and FreeSolv experiments. γ is set

to 1, 500, 1 and 1 for the sin, Branin-Hoo, soil and FreeSolv experiments. We run 5
acquisition functions in all experiments: random sampling, homoscedastic EI, AEI, HAEI
and ANPEI. Homoscedastic EI is included as a baseline to demonstrate the difference
consideration of aleatoric noise yields in the optimisation of the objective. AEI is included
to demonstrate the difference consideration of heteroscedastic aleatoric noise yields and
random sampling is included as a baseline as it is known to be highly competitive with
Bayesian optimisation in noisy settings.

5.2. Heteroscedastic Sin Wave Function

The objective function has the form

h(x) = f(x)− g(x)

where f(x) = sin(x)+0.2(x)+3 and g(x) = 0.5(x). In this instance α from subsection 5.1
has a setting of 0.5 but we omit it explicitly as the objectives have equal weight. Over
the course of the experiment samples

yi = f(xi) + g(xi)ε, ε ∼ N (0, 1)

are observed. The problem setup is depicted in Figure 4 and Figure 5. The Bayesian
optimisation problem is constructed such that the first maximum in Figure 4(a) is to be
preferred as samples from this region of the input space will have low aleatoric noise.
The black-box objective in Figure 4(c) illustrates this trade-off. In Figure 6 we compare
the performance of all surrogate model/acquisition function combinations. We observe
the low aleatoric noise-seeking behaviour of HAEI and ANPEI on g(x) as well as their
ability to optimise the composite objective h(x).
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Robust Bayesian Optimisation 12

(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure 6. Comparison of heteroscedastic and homoscedastic Bayesian optimisation
on the sin wave problem. (a) shows the optimisation of h(x) = f(x)− g(x) (higher is
better) whereas (b) shows the values g(x) obtained over the course of the optimisation
of h(x). This latter plot demonstrates the propensity of ANPEI to seek low aleatoric
noise solutions.

5.3. Heteroscedastic Branin-Hoo Function

In the second experiment we consider the objective

h(x) = f(x) + g(x)

with an additive penalty because the task is a minimisation problem and an α setting of
0.5 for equal-weight objectives.

f(x) =
1

51.95

[(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos (x̄1)− 44.81

]
(6)

with x̄1 = 15x1 − 5, x̄2 = 15x2 and x = (x1, x2) is the standardised Branin-Hoo function
introduced in [36]. The noise function g(x) is in this instance

g(x) = 15− 8x1 + 8x22. (7)

Samples are again generated according to

yi = f(xi) + g(xi)ε, ε ∼ N (0, 1)
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Robust Bayesian Optimisation 13

(a) Latent Function (b) Non-linear Noise Function (c) Objective Function

Figure 7. Branin-Hoo Optimisation Problem. The latent function in a) is corrupted by
heteroscedastic Gaussian noise function according to the function in b) The combined
objective function is given in c) and is obtained by summing the functions in a) and b).
The sum is required to penalise regions of large aleatoric noise because the objective is
being minimised.

(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure 8. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on
the Branin-Hoo problem. (a) shows the optimisation of h(x) = f(x) + g(x) (lower is
better) whereas (b) shows the values g(x) obtained over the course of the optimisation
of h(x).

The problem setup is shown in Figure 7 and the performance of all surrogate
model/acquisition function pairs is depicted in Figure 8. The gulf in performance
between the heteroscedastic and homoscedastic surrogate models is more pronounced in
this case because the noise function is more severe relative to the sin wave problem.
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Robust Bayesian Optimisation 14

5.4. Soil Phosphorus Fraction Optimisation

In this experiment we consider the optimisation of the phosphorus fraction of soil. Soil
phosphorus is an essential nutrient for plant growth and is widely used as a fertiliser in
agriculture. While the amount of arable land worldwide is declining, global population
is expanding concomitantly with food demand. As such, understanding the availability
of plant nutrients that increase crop yield is a topic worthy of attention. To this end,
[17] have curated a dataset on soil phosphorus, relating phosphorus content to variables
such as soil particle size, total nitrogen, organic carbon and bulk density. We choose to
study the relationship between bulk soil density and the phosphorus fraction, the goal
being to minimise the phosphorus content of soil subject to heteroscedastic noise. In
lieu of performing a formal test for heteroscedasticity, we provide evidence that there is
heteroscedasticity in the dataset by comparing the fits of a homoscedastic GP and the
MLHGP in Figure 2 and provide a predictive performance comparison based on negative
log predictive density values in Appendix A.

In this problem, we do not have access to a continuous-valued black-box function
or a ground truth noise function. As such, the surrogate models were initialised with
a subset of the data and the query locations selected by Bayesian optimisation were
mapped to the closest datapoints in the heldout data. The following kernel smoothing
procedure was used to generate pseudo ground-truth noise values:

(1) Fit a homoscedastic GP to the full dataset.
(2) At each point xi, compute the corresponding squared error s2i = (yi − µ(xi))

2.
(3) Estimate variances by computing a moving average of the squared errors, where the

relative weight of each s2i was assigned with a Gaussian kernel.

The performances of heteroscedastic and homoscedastic Bayesian optimisation are
compared in Figure 9. Given that regions of low phosphorus fraction coincide with
regions of small aleatoric noise, we apply an α value of 1

6
to the composite objective h(x)

to admit a finer granularity for distinguishing between degrees of low aleatoric noise in
the solutions.

5.5. Molecular Hydration Free Energy Optimisation

We perform a retrospective virtual screening experiment with the aim of identifying
molecules with favourable hydration free energy, a property important in determining the
binding affinity of a drug candidate. Experiments were performed with an initialisation
of 129 out of the 642 molecules in the FreeSolv dataset [41, 16] over 10 iterations of data
collection. Unlike the soil phosphorus fraction dataset, ground truth measurement error
(aleatoric noise g(x)) values are available for the FreeSolv dataset. The remaining 513
molecules were reserved as a heldout set where at each iteration of data collection one
of the heldout molecules was selected. Chemical fragments computed using RDKit [42]
were used as the molecular representation based on the fact that these global features,
unlike local Morgan fingerprints, act as good predictors of the hydration free energy.
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(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure 9. Comparison of heteroscedastic and homoscedastic Bayesian optimisation
on the soil phosphorus fraction optimisation problem. (a) shows the optimisation of
h(x) = f(x) + g(x) (lower is better) where x is the dry bulk density of the soil. (b)
shows the values g(x) obtained over the course of the optimisation of h(x).

The fragment features were projected down to 14 components using principal component
analysis, retaining more than 90% of the variance on average across random trials. The
results are shown in Figure 10. Compared to previous experiments, the noise is smaller
in this instance relative to the magnitude of the hydration free energy (Signal-to-noise
ratio of approximately 10) and as such the heteroscedastic modelling problem is more
difficult, leading to only very marginal gains in obtaining low noise solutions. While
ANPEI obtains the lowest objective function value over the Bayesian optimisation trace,
the results are unlikely to be statistically significant according to the standard error
bands.

5.6. Heteroscedastic Acquisition Function Hyperparameters

The β hyperparameter of ANPEI in Equation 4 and the γ hyperparameter of HAEI in
Equation 3 are designed to modulate the avoidance of aleatoric noise in the acquisitions.
In Figure 11 we offer some intuition as to the effect of various settings of β and γ by
examining the heteroscedastic Branin-Hoo function introduced in subsection 5.3. The
results demonstrate that the performance of the algorithms is strongly dependent on
the setting of the β hyperparameter for ANPEI whereas γ is less influential on the
performance of HAEI. It is worth noting in Figure 11(b) that if too large a value of γ
is chosen the principal objective f(x) may be compromised through overly aggressive
avoidance of aleatoric noise. In practice choosing the value of β in line with the value of
the evaluation criterion parameter α in Equation 5 is likely to be a sensible approach i.e.
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(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure 10. Comparison of heteroscedastic and homoscedastic Bayesian optimisation
on the FreeSolv hydration free energy optimisation problem. (a) shows the optimisation
of h(x) = f(x) + g(x) (lower is better) where x is the fragment set of molecular
descriptors, f(x) is the hydration free energy and g(x) is the aleatoric noise. (b) shows
the values g(x) obtained over the course of the optimisation of h(x).

if the noise objective is more important relative to the principal objective by a factor of
10 then the value of β should be 1

11
.

5.7. Robustness Experiments Summary

The experiments of this section provide strong evidence that modelling heteroscedasticity
in Bayesian optimisation is a useful approach for problems in which there is a strong
degree of aleatoric noise present. The ANPEI acquisition tends to outperform HAEI
on the majority of the tasks where there is a small degree of aleatoric noise whilst the
acquisitions are more evenly matched when the extent of the aleatoric noise is high.
The outstanding questions for these methods however, is how well they perform on
tasks where heteroscedastic noise is not present. Such a situation may easily arise for
real-world problems where the noise properties of the tasks are a prior unknown and as
such, it is important to ascertain whether there is a deleterious effect on performance in
noiseless and homoscedastic noise settings.

6. Ablation Study on Noiseless, Homoscedastic Noise and Heteroscedastic
Noise Tasks

In this section we perform an ablation study where components of the ablation constitute
different noise properties. We examine the noiseless case as a base task before adding
first a homoscedastic noise component and second, a heteroscedastic noise component.
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(a) ANPEI (b) HAEI

Figure 11. Performance of ANPEI and HAEI plotted for different values of the β and
γ hyperparameters respectively. Smaller values of β encourage avoidance of regions of
high aleatoric noise whilst larger values of γ encourage avoidance of regions of high
aleatoric noise.

Additionally, we examine the effect of the size of the initialisation grid on performance
in the heteroscedastic noise tasks.

6.1. Ablation

The ablation study makes use of three synthetic optimisation functions: The Branin-Hoo
function, the Hosaki function and the Goldstein-Price function. The form of the Branin-
Hoo function is the same standardised Branin-Hoo function introduced in Equation 6
with heteroscedastic noise function given in Equation 7. The Hosaki function, defined
on the domain x1, x2 ∈ [0, 5], is

Hosaki(x1, x2) =
(

1− 8x1 + 7x1
2 − 7

3
x1

3 +
1

4
x1

4
)
x2

2 exp(−x2).

To facilitate the GP fit, the Hosaki function is subsequently standardised by its mean
(0.817) and standard deviation (0.573). The noise function is

gHosaki(x1, x2) = 50 · 1

(x1 − 3.5)2 + 2.5
· 1

(x2 − 2)2 + 2.5
. (8)

The logarithmic Goldstein-Price function [36] is
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(a) Latent Function (b) Noise Function (c) Objective Function

Figure 12. (a) The latent Hosaki Function f(x) together with (b) its heteroscedastic
noise function g(x) and (c) the objective function f(x) + g(x).

G-P(x1, x2) =
1

2.427

[
log
(

[1 + (x̄1 + x̄2 + 1)2(19− 14x̄1 + 3x̄21 − 14x̄2 + 6x̄1x̄2 + 3x̄22)]

(9)

[30 + (2x̄1 − 3x̄2)
2(18− 32x̄1 + 12x̄21 + 48x̄2 − 36x̄1x̄2 + 27x̄22)]

)
− 8.693

]
(10)

where x̄1 = 4x1 − 2 and x̄2 = 4x2 − 2. The Goldstein-Price noise function is

gG-P(x1, x2) =
3

2
· 1

(x1 − 0.5)2 + 0.2
· 1

(x2 − 0.3)2 + 0.3
. (11)

For clarity, only the results of the Hosaki function are presented in the main paper
with the Branin-Hoo and Goldstein-Price results presented in Appendix B. The Hosaki
function is visualised in Figure 12. The value of β for ANPEI is set to 0.5 and the value
of γ is set to 500 for all Hosaki function experiments.

6.1.1. Noiseless Case In this case, the synthetic functions do not possess any observation
noise and the optimisation function corresponds to the situation in Figure 12(a). 9 points
sampled uniformly at random are used for initialisation and the results are displayed in
Figure 13. As expected, all Bayesian optimisation methods outperform random search in
the noiseless case. In this example it is unclear as to whether heteroscedastic Bayesian
optimisation methods are detrimental as HAEI performs best whereas ANPEI performs
worst.

6.1.2. Homoscedastic Noise Case In this case the functions are subject to homoscedastic
noise of the form 25ε where epsilon is noise sampled from a standard Gaussian N (0, 1).
The GP surrogates are again initialised with 9 points. The results are displayed in
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Robust Bayesian Optimisation 19

Figure 13. Hosaki function noiseless case. All Bayesian optimisation methods
outperform random search. HAEI performs best and ANPEI performs worst.

Figure 14. The Bayesian optimisation methods perform worse in the homoscedastic noise
case relative to the noiseless case although the rank order of the methods mirrors that of
the noiseless case.

6.1.3. Heteroscedastic Noise In the heteroscedastic noise case the Hosaki function is
subject to the noise function given in Equation 8 and visualised in Figure 12. 144
points were used to initialise the GP surrogates. The results are shown in Figure 15. In
this instance, given that the extent of heteroscedastic noise is very strong (relative to
the homoscedastic noise case), random search is highly competitive with the Bayesian
optimisation methods. ANPEI however, is the best-performing algorithm. The large
number of initialisation points chosen for this experiment reflects one limitation of the
heteroscedastic surrogate approach; for the MLHGP to effectively learn a decomposition
of the function into signal and noise components it needs access to more samples. As such,
this merits an investigation into the effect of the number of samples on the performance
of the heteroscedastic acquisitions.

6.2. Effect of Initialisation Set Size

The effect of the size of the initialisation set on the heteroscedastic Branin-Hoo task
is investigated in Figure 16. The value of β used for ANPEI is 1

11
and the value of γ

used for HAEI is 500. The performance of the heteroscedastic acquisitions ANPEI and
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Robust Bayesian Optimisation 20

Figure 14. Hosaki function homoscedastic noise case. All Bayesian optimisation
methods outperform random search with HAEI the best and ANPEI the worst.

(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure 15. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on
the heteroscedastic 2D Hosaki function. (a) shows the optimisation of h(x) = f(x)+g(x)

(lower is better) where g(x) is the aleatoric noise. (b) shows the values g(x) obtained
over the course of the optimisation of h(x).
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(a) 9 Points (b) 49 Points (c) 100 Points

Figure 16. The effect of the initialisation set size on the heteroscedastic Branin-
Hoo function. The performance of heteroscedastic acquisitions ANPEI and HAEI
increases as they are given access to more samples. An excess of samples do not help
the homoscedastic Bayesian optimisation methods as they are unable to model the
heteroscedastic noise component.

HAEI is observed to improve as the size of the initialisation set increases. In contrast,
the homoscedastic methods EI and AEI do not improve on obtaining access to more
samples as they are unable to model the heteroscedastic noise component of the task.

6.3. Conclusions from Ablation Experiments

Synthesising the results from the additional ablation experiments in Appendix B some
trends may be observed:

(i) All Bayesian optimisation methods outperform random search in the noiseless case
and homoscedastic noise cases on aggregate across the three synthetic functions.

(ii) On aggregate there is no significant difference between Bayesian optimisation
methods in the noiseless or homoscedastic noise cases (HAEI marginally outperforms
ANPEI on 2/3 noiseless tasks and 2/3 homoscedastic noise tasks).

(iii) The heteroscedastic acquisitions ANPEI and HAEI perform competitively on the
noiseless and homoscedastic noise tasks most likely because the MLHGP is capable
of effecting nonstationary behaviour by "fantasising" heteroscedastic noise. As
such, the MLHGP surrogate may be achieving enhanced flexibility relative to the
homoscedastic GP in this setting.

(iv) The heteroscedastic acquisitions tend to outperform other Bayesian optimisation
approaches on the heteroscedastic noise tasks although crucially this depends on the
size of the initialisation set. In order to detect heteroscedastic noise the MLHGP
surrogate needs access to more samples relative to the noiseless and homoscedastic
cases.

(v) ANPEI outperforms HAEI.
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In summary, the experiments would appear to show that there is no significant
downside to employing a heteroscedastic surrogate and acquisition function on noiseless
tasks or tasks with homoscedastic noise save for the increased training time for the
model.

7. Conclusions

We have presented an approach for performing Bayesian optimisation with the explicit
goal of minimising aleatoric noise in the suggestions. We posit that such an approach
can prove useful for the natural sciences in the search for molecules and materials that
are robust to experimental measurement noise. The synthetic function ablation study
highlights no particular downside to the use of the MLHGP in conjunction with ANPEI
or HAEI in cases where the noise structure of the problem is a priori unknown i.e the
black-box optimisation problem is either noiseless or homoscedastic. Nonetheless, we
anticipate that this type of approach may be particularly relevant for the experimental
natural sciences where noiseless objectives or those with homoscedastic noise are highly
uncommon. In terms of concrete recommendations on when to apply the algorithm, we
foresee the best performance in situations where the user has access to a moderately-sized
initialisation set in order to provide the MLHGP with enough samples to distinguish
heteroscedastic noise from intrinsic function variability. There are a number of possible
extensions to the current approach which may facilitate its application to high-dimensional
datasets and act as fruitful sources for future work:

(1) Surrogate Model: One disadvantage of the MLHGP model is the lack of
convergence guarantees for the EM-like procedure required for fitting. Various other
forms of heteroscedastic GP exist [43, 44, 45, 46, 47, 48, 49] and have demonstrated
success in modelling applications [50, 51, 52, 53]. Of particular interest for real-
world problems are scalable heteroscedastic GPs [54, 55] which could circumvent the
computationally-intensive bottleneck of fitting multiple exact GPs as a subroutine
of the MLHGP Bayesian optimisation procedure.

(2) Advances in Surrogate Model Machinery: Advances in areas such as efficient
sampling of GPs [56] are liable to yield improvements to sampled-based acquisition
functions such as Thompson sampling [57] while fully Bayesian approaches to
hyperparameter estimation for sparse GPs [58] are liable to yield improvements in
model fitting procedures.

(3) Scalable Bayesian Optimisation: Scalable Bayesian optimisation can also be
enabled via dimensionality reduction techniques [59, 60, 61]. Such approaches, when
combined with efficient libraries [62, 63] could facilitate heteroscedastic Bayesian
optimisation in high-dimensional settings.

(4) Acquisition Function Optimisation: Recent developments in acquisition
function optimisation including Monte Carlo reformulations [64, 65], compositional
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optimisers [66, 65] and tight relaxations [67] of common acquisition functions have
the potential to yield gains in empirical performance.

(5) Data Transformation: Input-warping [68] and output transformations [69] have
recently shown success towards addressing heteroscedastic datasets.

(6) Approaches for Molecular Bayesian Optimisation: In relation to molecules,
the use of tailored GP kernels such as Tanimoto kernels [70, 71] and more expressive
dimensionality reduction techniques [72] could lead to performance gains and
enhanced scalability respectively.

(7) Exploration in the Noise Objective: Incorporating exploration in the noise
objective in the multi-objective setting as in [22].

Lastly, a further use-case of the machinery developed in this paper is obtained by turning
the noise minimisation problem into a noise maximisation problem. As an example, in
materials discovery, we may derive benefit from being antifragile [73] towards (i.e. derive
benefit from) high aleatoric noise. In an application such as the search for performant
perovskite solar cells, we are faced with an extremely large compositional space, with
millions of potential candidates possessing high aleatoric noise for identical reproductions
[74]. In this instance we may want to guide search towards a candidate possessing a high
photoluminescence quantum efficiency with high aleatoric noise. If the cost of repeating
material syntheses is small relative to the cost of the search, the large aleatoric noise
will present opportunities to synthesise materials possessing efficiencies far in excess of
their mean values.
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Appendix 30

Appendix A. Heteroscedasticity of the Soil Phosphorus Fraction Dataset

Table A1 is used to demonstrate the efficacy of modelling the soil phosphorus
fraction dataset using a heteroscedastic GP. The heteroscedastic GP outperforms the
homoscedastic GP on prediction based on the metric of negative log predictive density
(NLPD)

NLPD =
1

n

n∑
i=1

− log p(ti|xi)

which penalises both over and under-confident predictions.

Table A1. Comparison of NLPD values on the soil phosphorus fraction dataset.
Standard errors are reported for 10 independent train/test splits. Lower scores are
better.

Soil Phosphorus Fraction Dataset GP Het GP

NLPD 1.35± 1.33 1.00± 0.95

Appendix B. Additional Ablation Experiments

In this section we present the ablation results on noiseless, homoscedastic and
heteroscedastic noise tasks in line with section 6 of the main paper.

Appendix B.1. Goldstein-Price Function

The form of the Goldstein-Price function is given in Equation 9 with noise function
in Equation 11. The function is visualised in Figure B1. 9 data points are used for
initialisation in the noiseless and homoscedastic noise cases whereas 100 data points are
used for initialisation in the heteroscedastic noise case. β is set to 0.5 for the noiseless
and homoscedastic noise tasks and 1

11
for the heteroscedastic noise task. γ is set to 500

for all experiments.

Appendix B.1.1. Noiseless Case The results of the noiseless case for Goldstein-Price
are given in Figure B2. All Bayesian optimisation methods outperform random search
with ANPEI best and HAEI second best.

Appendix B.1.2. Homoscedastic Noise Case The results of the homoscedastic noise case
for Goldstein-Price are shown in Figure B3. In this instance HAEI performs best.

Appendix B.1.3. Heteroscedastic Noise The results of the heteroscedastic noise case for
Goldstein-Price are shown in Figure B4. ANPEI performs best whilst HAEI performs
worse than random search.
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Appendix 31

(a) Latent Function (b) Noise Function (c) Objective Function

Figure B1. (a) The latent Goldstein-Price Function f(x) together with (b) its
heteroscedastic noise function g(x) and (c) the objective function f(x) + g(x)..

Figure B2. Goldstein-Price function noiseless case. All Bayesian optimisation methods
outperform random search. ANPEI performs best and HAEI is runner-up.

Appendix B.2. Branin-Hoo Function

The form of the Branin-Hoo function is given in Equation 6 with noise function in
Equation 7. The function is visualised in Figure B5, a figure from the main paper
repeated here for clarity. 9 data points are used for initialisation in the noiseless and
homoscedastic noise cases whereas 100 data points are used for initialisation in the
heteroscedastic noise case. β is set to 0.5 and γ is set to 500 for all experiments.

Appendix B.2.1. Noiseless Case The results of the noiseless case for the Branin-Hoo
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Appendix 32

Figure B3. Goldstein-Price function homoscedastic noise case. HAEI performs best.

(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure B4. Comparison of heteroscedastic and homoscedastic Bayesian optimisation
on the heteroscedastic 2D Goldstein-Price function. (a) shows the optimisation of
h(x) = f(x) + g(x) (lower is better) where g(x) is the aleatoric noise. (b) shows the
values g(x) obtained over the course of the optimisation of h(x).

function are given in Figure B6. HAEI performs best in this case whereas ANPEI
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Appendix 33

(a) Latent Function (b) Noise Function (c) Objective Function

Figure B5. Heteroscedastic Branin Function.

Figure B6. Branin-Hoo function noiseless case. HAEI performs best. ANPEI performs
worst.

performs worst.

Appendix B.2.2. Homoscedastic Noise Case The results of the homoscedastic noise case
for the Branin-Hoo function are given in Figure B7. All Bayesian optimisation methods
outperform random search yet perform comparably against each other.

Appendix B.2.3. Heteroscedastic Noise The results of the heteroscedastic noise case for
the Branin-Hoo function are shown in Figure B8. ANPEI performs best whilst HAEI
performs worse than random search.
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Appendix 34

Figure B7. Branin-Hoo function homoscedastic noise case. All Bayesian optimisation
methods outperform random search.

(a) Best Objective Value Found so Far (b) Lowest Aleatoric Noise Found so Far

Figure B8. Comparison of heteroscedastic and homoscedastic Bayesian optimisation on
the heteroscedastic 2D Branin function. (a) shows the optimisation of h(x) = f(x)+g(x)

(lower is better) where g(x) is the aleatoric noise. (b) shows the values g(x) obtained
over the course of the optimisation of h(x).
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Appendix 35

Appendix C. Performance Impact of the Kernel Choice

In this section we analyse the impact that the choice of GP kernel has on Bayesian
optimisation performance. We select three kernels for this purpose: the squared
exponential kernel

kSQE(x,x′) = σ2
f · exp

(−‖x− x′‖2

2`2

)
used for all experiments in the main paper, the exponential kernel

kexp(x,x′) = σ2
f · exp

(−‖x− x′‖
`

)
,

a special instance of the Matérn kernel for values of ν = 1
2
[34] as well as the Matérn 5/2

kernel

kMatérn(5/2)(x,x
′) = σ2

f ·
(

1 +

√
5‖x− x′‖

`
+

5‖x− x′‖2

3`2

)
· exp

(−√5‖x− x′‖
`

)
which is one of the most popular kernels for large scale empirical studies [64, 65]. It
should be noted that while the equations are written assuming a single scalar lengthscale,
in practice for the experiments in greater than 1D, each lengthscale is optimised per
dimension under the marginal likelihood. For all experiments we choose the same kernel
for both GPs of the MLHGP model i.e. the GP modelling the objective as well as the
GP modelling the noise. 100 points are used for initialisation in the Branin-Hoo and
Goldstein-Price functions and 144 points are used for the Hosaki function. β is set to
0.5 for the Branin-Hoo and Hosaki functions and 1

11
for the Goldstein-Price function. γ

is set to 500 for all experiments. The results are shown in Figure C1, Figure C2 and
Figure C3 for the Branin-Hoo function, Goldstein-Price function and Hosaki functions
respectively. There is no significant difference in performance using each kernel save
for the Branin-Hoo function where ANPEI underperforms using the somewhat rougher
exponential kernel.
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(a) ANPEI (b) HAEI

Figure C1. Branin-Hoo function kernel comparison.

(a) ANPEI (b) HAEI

Figure C2. Goldstein-Price function kernel comparison.
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(a) ANPEI (b) HAEI

Figure C3. Hosaki Function kernel comparison.
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