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Abstract

We present a Bayesian inference methodology for the estimation of orbital parameters on single-line spectroscopic
binaries with astrometric data, based on the No-U-Turn sampler Markov chain Monte Carlo algorithm. Our
approach is designed to provide a precise and efficient estimation of the joint posterior distribution of the orbital
parameters in the presence of partial and heterogeneous observations. This scheme allows us to directly incorporate
prior information about the system—in the form of a trigonometric parallax, and an estimation of the mass of the
primary component from its spectral type—to constrain the range of solutions, and to estimate orbital parameters
that cannot be usually determined (e.g., the individual component masses), due to the lack of observations or
imprecise measurements. Our methodology is tested by analyzing the posterior distributions of well-studied
double-line spectroscopic binaries treated as single-line binaries by omitting the radial velocity data of the
secondary object. Our results show that the system’s mass ratio can be estimated with an uncertainty smaller than
10% using our approach. As a proof of concept, the proposed methodology is applied to 12 single-line
spectroscopic binaries with astrometric data that lacked a joint astrometric–spectroscopic solution, for which we
provide full orbital elements. Our sample-based methodology allows us also to study the impact of different
posterior distributions in the corresponding observations space. This novel analysis provides a better understanding
of the effect of the different sources of information on the shape and uncertainty in the orbit and radial velocity
curve.

Unified Astronomy Thesaurus concepts: Binary stars (154); Astrometric binary stars (79); Spectroscopic binary
stars (1557); Bayesian statistics (1900); Markov chain Monte Carlo (1889); Trigonometric parallax (1713); Stellar
parallax (1618); Visual binary stars (1777); Prior distribution (1927); Posterior distribution (1926); Mass ratio
(1012); Stellar masses (1614)

1. Introduction

Mass is the most critical parameter that determines the
structure and evolution of stars. In binary stellar systems, the
masses of their individual components can be directly
calculated from the orbital parameters through Keplerʼs laws
using astrometric and spectroscopic observations. In some
spectroscopic binary systems, the spectral lines of both
components are visible (the so-called double-line spectroscopic
binaries, or SB2 thereinafter). However, in most cases, only
one component can be seen in the spectra (single-line
spectroscopic binaries, or SB1 from now on). In the absence
of companion star spectra, the mass ratio of the stellar binary
system cannot be determined. This lack of information limits
the astrophysical study and usefulness of this abundant family
of stellar systems. The 9th Catalog of Spectroscopic Binary
Orbits (hereafter SB9;4 Pourbaix et al. 2004) is the most
comprehensive compilation of SB1 and SB2 binary systems
that contains radial velocity (RV) amplitudes for all published
binary systems for which it has been possible to fit an RV
curve. As of 2022 January 12 SB9 lists 4014 binary systems

with measured radial velocities, of which 2704, or 67%, are
SB1 binaries.
The problem of estimating the orbital parameters of binary

stellar systems has been studied for decades. The first proposed
methods that solved the problem of astrometric orbital fitting
on visual binaries used graphical and analytical formulations
from physical models. These methods require a set of three
complete and highly precise and homogeneous observations of
relative position on the apparent orbit, of the form (t, ρ, θ)
(epoch of observation, angular distance between the primary
(the brightest star) and the secondary, and position angle of the
secondary with respect to the primary, respectively), and a
double areal constant obtained from additional data
(Thiele 1883), an additional incomplete observation of the
form (t, θ) (Cid Palacios 1958), or an auxiliary angular variable
that maps a set of feasible apparent orbits (Docobo 1985). All
of these methods require highly precise observations because
they ignore the different levels of precision and uncertainties of
the measurements. To obtain robust solutions to the orbital
fitting problem considering multiple observations (with differ-
ent levels of precision), optimization-based approaches have
been then proposed. These family of optimization-based
methods minimize a sum of weighted square errors between
the physical model estimates and the observations by using,
e.g., the Levenberg–Marquardt algorithm (Tokovinin 1992),
simulated annealing (Pourbaix 1994), the downhill simplex
method (MacKnight & Horch 2004). The strategies mentioned
above focus on fitting positional (astrometric) observations of
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the orbit, ignoring the other important source of evidence
obtained through spectroscopic measurements: the radial
velocities of each systemʼs component. The first attempts to
estimate the orbital parameters using positional and RV
observations were made by fitting each source of information
separately. They used the estimates obtained by fitting one of
the sources of observations to determine some orbital
parameters, where the remaining orbital parameters were
estimated by fitting the other source of observations (Docobo
et al. 1992; Hummel et al. 1994). Unfortunately, this separate
fitting strategy yields a suboptimal determination of the
complete set of orbital parameters. Indeed, it has been noted
that there is no guarantee that the solutions obtained by both
fittings were consistent. To avoid this issue, Morbey (1975)
addressed the problem of determining the orbital parameters of
a visual-spectroscopic binary system by fitting each source of
observations jointly. They used a maximum likelihood
estimation and a method based on Lagrange multipliers. More
recently, the methods developed for fitting astrometric
observations were extended to fit both astrometric and RV
observations simultaneously (Pourbaix 1998). Similar
approaches were performed for the estimation of the individual
masses in SB1 binaries. In this context, a supplementary
observation of the systemʼs parallax (using other techniques
besides relative astrometry of the binary pair and spectroscopy
for the RV) was used as a fixed value within the estimation of
the orbital parameters (Docobo et al. 2018), or it was used as an
additional observation to perform the estimation jointly
(Muterspaugh et al. 2010). Overall, one of the major drawbacks
of the optimization-based methods is that the obtained solution
is entirely deterministic. Therefore, these strategies do not
provide a reliable characterization of the estimation uncertainty.
In contrast, the Bayesian-based approach is a powerful
alternative, because it offers both an estimate, e.g., through
the posterior mean, median, maximum a posteriori probability
(MAP), as well as a robust characterization of the uncertainty
about the estimation (using the complete posterior distribution)
of all the relevant parameters.

Bayesian methodologies have been widely used in exoplanet
orbit estimation. This approach computes the posterior
distribution of the orbital parameters through Markov Chain
Monte Carlo (MCMC) sampling. Many variants of the MCMC
algorithm have been explored for a characterization of the
posterior distributions in exoplanet research, such as the
Metropolis–Hastings within the Gibbs sampler (Ford 2005),
the Parallel Tempering sampler (Gregory 2005, 2011), the
Affine Invariant MCMC Ensemble sampler (Hou et al. 2012),
the Differential Evolution Markov Chain sampler (Nelson et al.
2013), and the Hamiltonian Monte Carlo (Hajian 2007), among
others. One of the most popular MCMC samplers in the
statistical community is the No-U-Turn sampler, due to its
efficiency on high-dimension problems and its capacity to
express complex-correlated scenarios. The No-U-Turn sampler
has been explored in the exoplanets context by, e.g., Ji et al.
(2017) and Shabram et al. (2020).

The Bayesian approach was also adapted to the astrometric
orbital estimation of visual binaries (Burgasser et al. 2012;
Sahlmann et al. 2013; Lucy 2014). More recently, Bayesian
estimation of orbital parameters considering both positional
and RV sources of observations jointly has been addressed by
Mendez et al. (2017), Claveria et al. (2019), and Mendez et al.
(2021). This method uses the Metropolis–Hastings within the

Gibbs sampler method to provide the posterior distribution of
SB2 visual-spectroscopic binaries. A similar Bayesian-based
approach for the joint orbital parameters estimation on these
types of binary systems was also developed by Lucy (2018),
and the Hamiltonian Monte Carlo was used for the determina-
tion of the orbital parameters for a binary neutron star
(Bouffanais & Porter 2019). However, to our knowledge, the
Bayesian approach has not been explored with SB1 binaries for
the task of estimating the individual masses of the system. In
this context, the incorporation of suitable priors on specific
observable parameters of the system has the potential to
characterize the posterior distributions of the individual masses
and all the orbital parameters. These informative priors can
significantly enrich the analysis of these type of binary systems.
The present work introduces a Bayesian methodology based

on the MCMC algorithm No-U-Turn sampler to address the
orbital parameters inference problem in SB1 binaries, including
a determination of the individual component masses. This
methodology provides a precise characterization of the
uncertainty in the estimates in the form of the joint posterior
distribution of the orbital parameters. We address the lack of
observations of the RV of the secondary star by incorporating
suitable prior distributions on some critical parameters of the
system, such as its trigonometric parallax, and an estimate of
the mass of the primary component (for further details, see
Section 2.4). The methodology is evaluated on several binary
systems, providing an exhaustive analysis of the obtained
results by comparing the estimated posterior distributions in
different information scenarios (incorporating different obser-
vational sources and priors). The analysis performed consists
not only in the comparison of the estimates and associated
errors of the orbital parameters (as is commonly done in binary
star research), but also analyzing the complete posterior
distributions and the derived uncertainty in the orbit and RV
spaces through the projection of the estimated posterior
distributions in the observations space. We show that this last
analysis (only possible through the Bayesian approach) allows
a much richer and complete understanding of the associated
uncertainties in the study of binary systems. The software is
available on GitHub5 under a 3-Clause BSD License.
The paper is organized as follows. In Section 2 we introduce

the basics of our Keplerian model and the Bayesian inference
with priors. In Section 3 we provide an experimental validation
of our methodology by comparing our results to a group of
benchmark SB2 systems treated as SB1 binaries. In Section 4
we provide a proof of concept, by applying our Bayesian
inference with priors to a group of SB1 s for which we
compute, for the first time, a combined astrometric–spectro-
scopic orbit, and an estimate of their mass ratio. Finally, in
Section 5 we provide the main conclusions of our work.

2. Bayesian Inference in Single-line Spectroscopic Binaries

In this section we introduce the proposed Bayesian inference
strategy for SB2 and SB1 binaries with a visual orbit. This
section presents a brief explanation of the well-known
Keplerian model adopted, the assumptions and reparameteriza-
tions considered for the statistical modeling, and the algo-
rithmic tools used for the inference process. For full details, the
reader is referred to the Appendices.

5 BinaryStars code base: https://github.com/mvidela31/BinaryStars.
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2.1. Keplerian Orbital Model

Neglecting the effects of mass transfer and complex
relativistic phenomena as well as the interference of other
celestial bodies, the orbit of binary stellar systems is
characterized by seven orbital parameters: the time of
periastron passage T, the period P, the orbital eccentricity e,
the orbital semimajor axis a, the argument of periapsis ω, the
longitude of the ascending node Ω, and the orbital inclination i.
The precise definition of these elements is given in
Appendix A. The orbit of a binary system, i.e., the position
in the plane of the sky (X(t), Y(t)) at a given time t, can be
calculated through the following steps:

1. Determination of the so-called eccentric anomaly E(t) at a
certain epoch t by numerically solving Keplerʼs equation:

E t e E t t T Psin 2 . 1( ) ( ) ( ) ( )p- = -
2. Calculation of the auxiliary normalized coordinates (x(t),

y(t)):

x t E t e

y t e E t

cos ,

1 sin . 22

( ) ( )

( ) ( ) ( )

= -

= -

3. Determination of the Thiele–Innes constants:

A a i
B a i
F a i
G a i

cos cos sin sin cos ,
cos sin sin cos cos ,

sin cos cos sin cos ,
sin sin cos cos cos . 3

( )
( )
( )
( ) ( )

w w
w w
w w
w w

= W - W
= W + W
= - W - W
= - W + W

4. Calculation of position in the apparent orbit (X(t), Y(t)):

X t Ax t Fy t
Y t Bx t Gy t

,
. 4

( ) ( ) ( )
( ) ( ) ( ) ( )

= +
= +

To compute the RV of each component of the binary system
(V1(t), V2(t)) for the primary and secondary, respectively), it is
necessary to incorporate additional parameters: the parallax ϖ,
the mass ratio of the individual components q=m2/m1, and the
velocity of the center of mass V0. Thereby, the calculation of
RV of each component of the system involves the following
steps:

1. Determination of the true anomaly ν(t) at a specific time t
using the eccentric anomaly E(t) determined in
Equation (1):

t e

e

E t
tan

2

1

1
tan

2
. 5

( ) ( ) ( )n
=

+
-

2. Calculation of the RV of the systemʼs individual
components (V1(t), V2(t)):

V t V
a i

P e
t e

2 sin

1
cos cos , 61 0

1

2
( ) [ ( ( )) ( )] ( )p

w n w= +
-

+ +

V t V
a i

P e
t e

2 sin

1
cos cos , 72 0

2

2
( ) [ ( ( )) ( )] ( )p

w n w= -
-

+ +

where a a q q11 · ( )v= ¢¢ + , a a 1 12 · (v= ¢¢ +
q), and a¢¢ is the semimajor axis in seconds of arc.

Note that the determination of the true anomaly ν(t) in
Equation (5) presents no ambiguity, because this parameter has
the same sign as the eccentric anomaly E(t). Furthermore, the
expression for the RV in Equations (6) and (7) contains the

orbital parallax ϖ explicitly, with the aim of exploding the full
interdependence relations of the orbital parameters, avoiding to
condense some of the parameters in those expressions as an
independent parameter on the amplitude of the RV curve
K a i P e2 sin 11 1

2( ) ( )p= - in Equation (6) and K2 =
a i P e2 sin 11

2( ) ( )p - in Equation (7), as discussed in
Mendez et al. (2017).
If RV observations of each component (V1(t) and V2(t)) are

available (SB2 case), the combined model that describes the
positional and RV observations is characterized by the vector
of orbital parameters ϑSB2= {P, T, e, a, ω, Ω, i, V0, ϖ, q}.
However, if the RV observations of only one component are
available (SB1 case), parameters q and ϖ cannot be
simultaneously determined.

2.2. Bayesian Model and Inference

In this section we introduce the Bayesian model used to
perform the inference in SB2 and SB1 binary systems. These
models will be presented as a suitable reparameterization of the
Keplerian orbital model introduced in Section 2.1. We will
assume that the positional and RV observations follow a
Gaussian distribution, while we consider uniform priors on the
modelʼs parameters. These assumptions are design choices of
the proposed methodology but not limitations, i.e., any other
distributions for the observations and the priors could be
assumed instead.
Let t X Y, ,i i i i

n
1{ }= be a set of n positional observations of the

companion star relative to the primary of a binary stellar system
in rectangular coordinates and let t V t V, , ,i i i

n
i i i

n
1 1 2 1

1 2{¯ } {˜ }= = be a
set of n1 and n2 RV observations of the primary and companion
stars, respectively. Given a parameter vector θ (fixed but
unknown), we have that each observation (measurement)
distributes as an independent Gaussian distribution centered
in the value obtained by the Keplerian modelʼs with a standard
deviation equal to the corresponding observational error σi:

 

 

X X t Y Y t

V V t V V t

, , , ,

, , , , 8

i i i i i i

i i i i i i

2 2

1 1
2

2 2
2

( ( ) ) ( ( ) )
( (¯ ) ) ( (˜ ) ) ( )

s s

s s

~ ~

~ ~
q q

q q

where (Xθ(ti), Yθ(ti)) denotes the obtained position in the orbit at
epoch ti for parameter vector θ, which follows Equation (4),
and V t V t,i i1 2( (¯) (˜))q q are the obtained RVs of each star at time tī
and tĩ for parameter θ, which follow Equations (6) and (7),
respectively.
The positional (Xθ(ti), Yθ(ti)) and RV V t V t,i i1 2( (¯) (˜))q q

nominal values in Equation (8) are determined through the
visual-spectroscopic binary system model presented in
Section 2.1. Therefore, the vector of orbital parameters that
characterizes the estimates is ϑSB2= {P, T, e, a, ω, Ω, i, V0, ϖ,
q} for SB2 binaries with a visual orbit, and ϑSB1= {P, T, e, a,
ω, Ω, i, V0, f/ϖ} for SB1 binaries with a visual orbit, where
f= q/(1+ q) is the so-called fractional mass of the system. For
SB1 systems, parameter f/ϖ condenses the pair of parameters
ϖ, q in Equations (6) and (7), as they are not determinable due
to the absence of V i i

n
2 1

2{ } = observations. The auxiliary parameter
f/ϖ has units of parsecs, as it is inversely proportional to the
parallaxϖ, which has units of seconds of arc. The range of f/ϖ
is d0, 2max( ], considering that q 0, 1( ]Î and ϖ> 0, with
dmax the maximum distance of observation determined by the
measurement instrument.
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Denoting the complete observation vector as  =
t X Y t V t V, , , ,i i i i

n
i i i

n
i i i

n
1 1 1 2 1

1 2{ } {¯ } {˜ }È È= = = , the log-likelihood of
the observations given the vector of parameters θ is expressed
as:

 







p X X t

Y Y t

V V t

V V t

log log ,

log ,

log ,

log , . 9

i
n

i i i

i
n

i i i

i
n

i i i

i
n

i i i

1
2

1
2

1 1 1
2

1 2 2
2

1

2

( ∣ ) ( ∣ ( ) )
( ∣ ( ) )
( ∣ (¯ ) )
( ∣ (˜ ) ) ( )

q s

s

s

s

= å

+ å

+ å

+ å

q

q

q

q

=

=

=

=

The prior distribution of each orbital parameter in θ is modeled
as independent uniform priors on their valid physical range
(defined in Appendix A). Therefore, the prior distribution of the
vector of orbital parameters is expressed as:

p Ulog log min , max , 10
i

i i
1

( ) ( ) ( )
∣ ∣

åq = Q Q
q

=

with i, 1, ,i i { ∣ ∣}"q Î Q Î ¼ q , and Θi is the valid physical
range of the orbital parameter θi, and where U is the density
function that generates a uniform distribution of points between
min iQ , and max iQ .

According to Bayesʼ theorem, the posterior distribution is
proportional to the likelihood times the prior, i.e.,

 p p p( ∣ ) ( ∣ ) ( )q q qµ , and therefore, it can be estimated
through any sampling technique. For this purpose we use the
state-of-art MCMC method No-U-Turn sampler (Hoffman &
Gelman et al. 2014).

The No-U-Turn sampler is an MCMC method that avoids
the random-walk behavior and the sensitivity to correlated
parameters of other commonly used MCMC algorithms
(mentioned in Section 1) by incorporating first-order gradient
information of the parameter space to guide the sampling steps
(such as in the Hamiltonian Monte Carlo; Neal et al. 2011) with
an adaptive criterion for determining their lengths. This method
has been widely adopted by the statistical community in recent
years due to its computational efficiency, effectiveness in high-
dimensional problems, and theoretical guarantees, but to the
best of our knowledge, it has not been applied in the context of
binary stellar systems. Further explanation about the theory
behind the No-U-Turn sampler method and the implementation
details in the context of binary stellar systems is presented in
Appendix B.

2.3. Design Considerations

For the inference process, the reparameterization of the time
of periastron passage T proposed by Lucy (2014) is adopted in
this work. The author suggests to sample from T T(¢ = -
t P0) instead of T, as it is beneficial to sample from a well-
constrained parameter space, restricting the range of the time of
periastron passage to [0, 1). On the other hand, reparameter-
izations that involve a dimensionality reduction in the
parameter space (e.g., Mendez et al. 2017) or transformations
of well-constrained parameters (e.g., Ford 2005) were avoided
as it is shown to have a negative impact on the correlation of
the obtained parameters, considerably hindering the exploration
of the parameter space through first-order gradient information.
This design choice increases the computational cost of the
gradient calculation required by the No-U-Turn sampling
routine.

Finally, as the parameter space of binary stellar systems (and
especially in hierarchical stellar systems, an application which
will be presented in a forthcoming paper) is highly correlated,
many authors recommend choosing a starting point that lies in
areas of high posterior mass (further details are presented in
Appendix B.1) to avoid misconvergence issues of the sampling
process. In this paper, we adopt the quasi-Newton optimization
method L-BFGS (Liu & Nocedal 1989) to find a good starting
point that alleviates convergence issues of the Bayesian
inference, as it allows to perform the optimization using any
prior distribution on the parameters. In contrast, other
commonly used optimization methods in the astronomical field
are restricted to least-squares problems (e.g., the Levenberg–
Marquardt algorithm; Moré 1978), limiting considerably the
family of prior distributions that can be used.

2.4. Determining the Mass Ratio in Single-line Binaries

SB1 binaries with a visual orbit are an abundant type of
stellar objects. Unfortunately, the lack of observations of the
RV of the companion (i.e., the V i i

n
2 1

2{ } = observations in
Equation (9)) does not allow a determination of the mass ratio
of the system and hence their individual masses (as the visual
orbit provides the mass sum of the system). This limits the use
of this type of SB1 binaries in astronomical studies and justifies
the relevance of the much less abundant SB2 binaries.
However, as it will be shown below, suitable additional (prior)
information about the system can be incorporated to estimate
(i.e., resolve with good precision) the individual masses for
SB1 binaries, such as the systemʼs trigonometric parallax (e.g.,
from Gaia), and an estimation of the mass of the primary
object, e.g., via its spectral type and luminosity class from low-
resolution spectra.
As presented in Section 2.2, the Bayesian model for SB1

systems is characterized by the vector of orbital parameters
ϑSB1= {P, T, e, a, ω, Ω, i, V0, f/ϖ}. Here, parameter f/ϖ
replaces the individual parameters ϖ and q, as they are
nonidentifiable in the absence of RV observations of the
companion object, i.e., there exist different values of the pair
ϖ, q that map on the same value of the posterior distribution,
preventing a determination of their values individually. The
nonidentifiability of the mass ratio implies that the individual
masses of this type of binary systems cannot, in principle, be
determined. As the individual masses are relevant for the study
of these systems, many authors addresses the nonidentifiability
problem on SB1 systems by incorporating information about
the parallax parameter from external measurements (indepen-
dent from relative astrometry and RV observations). This
information is usually added in a posteriori manner, i.e., once
the initial vector of orbital parameters ϑSB1 is estimated from
the observations (e.g., Docobo et al. 2018). An important
disadvantage of this approach is that it ignores the influence of
the external information (in this case a trigonometric parallax)
on the estimation, which can lead to a lack of self-consistency.
Moreover, if the additional information about the parallax is
highly uncertain or biased, the estimated mass ratio—given the
previously estimated orbital parameters and the adopted
parallax—can be out of the valid physical range q 0, 1( ]Î .
Another common approach in the literature to address the
nonidentifiability problem is incorporating this external
information in a prior manner as an additional observation to
fit (e.g., Muterspaugh et al. 2010). The main disadvantage of
this approach is that the estimation is done deterministically
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(through optimization-based methods), poorly characterizing
the uncertainty in the incorporated information and its impact
on the orbital parameters estimation. Accordingly, our
approach addresses these disadvantages by providing an all
at-once self-consistent solution, while considering the uncer-
tainty in all the information incorporated (in a complete
probabilistic manner) and its impact in the orbital parameters
estimation.

In order to overcome the nonidentifiability problem of the
mass ratio q in SB1 binaries, two different approaches are
proposed in this work: one based on the incorporation of prior
information about the trigonometric parallax p(ϖ), and the
other based on the incorporation of prior information about the
derived parameter (from the vector of orbital parameters θ)
corresponding to the mass of the primary object p(m1|θ). These
two sources of information are commonly available for SB1 s,
and are thus natural choices for this exercise.

The first proposed approach makes use of the SB2 orbital
model described in Section A.3, characterized by the parameter
vector ϑSB2= {P, T, e, a, ω, Ω, i, V0, ϖ, q}, with the
incorporation of an informative prior distribution on the
parallax p(ϖ). Specifically, p(ϖ) is modeled as a normal
distribution with the mean and standard deviation determined,
respectively, by the measurement v̄ and error σϖ of the
(typically) trigonometric parallax. Nowadays these measure-
ments are precisely determined by Gaia for most of the
observed systems (Wenger et al. 2000; Prusti et al. 2016;
Brown et al. 2018). The addition of the prior

p , 2( ) ( ¯ )v v s= v makes the model soft-identifiable, i.e.,
the indeterminable parameters turn out to be determinable (in a
probabilistic sense) through the incorporation of suitable priors.
This allows a determination (estimation with good precision) of
the mass ratio q of the system.

Alternatively, as only the spectral lines of the primary object
of SB1 systems are visible, these observations can be used to
estimate the mass of the primary object m1 through empirical
relations (see, e.g., Abushattal et al. 2020), providing additional
external information that allow us to alleviate the nonidentifia-
bility problem of the mass ratio as well. In fact, the primary
object mass m1 can be calculated from the vector of orbital
parameters ϑSB2 using the third law of Kepler:

m
a

P q

1

1
. 111

3

2
⎛
⎝

⎞
⎠

∣ ·
( )

( )q
v

=
+

Therefore, by assuming that the generated parameter m1|θ
(random variable) is independent from the other sets of
observations (random variables), and that it follows a Gaussian
prior distribution with a mean m1¯ and a standard deviation m1s
(from measurement/calibration uncertainty), the distribution

p m m , m1 1
2

1
( ∣ ) ( ¯ )q s= can be directly incorporated into the

likelihood term in Equation (9) to estimate the log-posterior
distribution plog ( ∣ )q .

Finally, these two approaches can be incorporated simulta-
neously in the inference routine, i.e., incorporating a prior p(ϖ)
and also adding the term p(m1|θ) in the likelihood computation.
In what follows we present the results of applying this
methodology to a set of benchmark systems, to asses the
effectiveness of our estimations.

3. Experimental Validation

We perform the inference of the orbital parameters on eight
SB2 binaries with visual orbits, which will be used in
subsequent subsections as benchmark (full-information) sys-
tems. We compare the estimated posterior distributions and
their projection in the observations space, which allows us to
carry out an analysis and a quantification of the change in
uncertainty due to the absence of an RV of the companion
object.
Additionally, a comparative study of the estimated posterior

distributions of our benchmark systems, treated as SB1
binaries, is presented for three cases: incorporating prior
information on the parallax alone, on the mass of the primary
object alone, and on both the parallax and the mass of the
primary object. These results are also compared to the inference
from the SB2 full-information (benchmark) scenario, with a
special focus on the estimation of the mass ratio parameter q.
Our selected benchmarks, without being exhaustive of all
possible orbital configurations, span a wide range in their q
values 0.36, 0.96( )Î .
In the case of our tests in the SB1 scenario with priors, the

adopted trigonometric parallax, primary objectʼs spectral type
(both from SIMBAD; Wenger et al. 2000, unless otherwise
noted), and corresponding primary object mass for each of the
benchmark systems are presented in Table 1. The mass has
been derived from the mass versus spectral type and luminosity
class calibrations provided by Habets & Heintze (1981),
Straizys & Kuriliene (1981), Schmidt-Kaler (1982), Aller et al.
(1996), Carroll & Ostlie (2014), Gray (2021), and Abushattal
et al. (2020). The dispersion in mass comes from assuming a
spectral type uncertainty of± one subtype, which is customary
in spectral classification.

3.1. Initial Validation of our Methodology and Comparisons
with Previous Studies

In this subsection we compare the results of our code on the
benchmark SB2s mentioned before, with the equivalent of their
SB1 counterparts, by omitting altogether the RV observations
of the companion object, as well as with previous studies of
these systems treated as SB2s. The obtained estimates and their
uncertainties are compared in the parameter space through the
visualization of the posterior marginal distributions. The
trigonometric parallax and primary objectʼs mass presented in
Table 1 are visualized as error bars (±2σ) in their

Table 1
Reported Trigonometric Parallax, Primary Objectʼs Spectral Type, and Derived

Primary Mass for Benchmark SB2 Systems

HIP # Discovery ϖ SpTyp m1

Designation (mas) (M e)

677 MKT11Aa,Ab 33.62 ± 0.35 B8IV 3.09 ± 0.45
5531 HDS155 16.6508 ± 0.2131 G0V 1.047 ± 0.025
14157 HJL1114 19.5354 ± 0.0557 K0V 0.851 ± 0.040
20601 BU1177 17.3199 ± 0.1297 G8V 0.912 ± 0.020
89000 YSC132Aa,Ab 21.4561 ± 0.0937 F6V 1.167 ± 0.035
108917 MCA69Aa,Ab 32.170 ± 0.621a AV 1.740 ± 0.075
111170 CHR111 39.1884 ± 0.6249 F8V 1.096 ± 0.025
117186 HJL1116 8.2150 ± 0.0438 F2 1.349 ± 0.050

Note.
a From Gaia DR2.
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corresponding marginal posterior distribution plot for compar-
ison. We emphasize that, in the case of the SB2 solutions, the
vector of parameters to estimate, ϑSB2= {P, T, e, a, ω, Ω, i, V0,
ϖ, q}, include the parallax ϖ rather than a value known in
advance. This is the so-called orbital parallax, based solely on
the orbital motion of the pair, and which is different and
independent from the trigonometric parallax, thus putting into
practice the somewhat unexplored possibility of utilizing
combined data (i.e., astrometry and radial velocity) to estimate
parallax-free distances (Pourbaix 2000; Mason 2015). The
dynamically self-consistent orbital parallaxes may or may not
be similar to trigonometric parallaxes, as discussed further
below.

We also compute the posterior distribution in the observa-
tions space, through the projection of 1000 randomly selected
samples of the posterior distribution in the observations space,
drawing trajectories from the time of the first observations t0 to
the first completion of the orbit t0+ P. The maximum
a posteriori MAP estimate (the most probable sample of the
posterior distribution) and the 95% high posterior density
interval (HPDI; defined as the narrowest interval that contains
95% of the posterior distribution, including the mode) are
summarized in Table 2. For comparison we also show, in the
first line for each object, the values reported for the same
parameters by the Sixth Catalog of Orbits of Visual Binary
Stars maintained by the US Naval Observatory (Mason et al.
2001, hereafter Orb66) and by SB9, or from references therein.

The whole inference process is performed through the
simulation of 10,000 samples of the respective posterior
distributions (discarding the first half for warm-up) on four
independent Markov chains using the No-U-Turn sampler
algorithm mentioned before, and explained in more detail in
Appendix B. Each chain starts from an initial point determined
by the results of the quasi-Newton optimization method
L-BFGS (see previous section).

To avoid redundancy in the analysis, we select three of the
eight most representative systems: HIP 89000, HIP 111170,
and HIP 117186.

3.1.1. HIP 89000

System HIP 89000 (discovery designation YSC132AaAb) is
an SB2 binary presented and solved most recently by Mendez
et al. (2017). The available data consist of relatively low-
precision interferometric observations mostly concentrated
around the apastron passage, but with abundant and precise
observations of the RVs of both components. The observations
and their errors are visualized in Figure 1. This systems has the
highest q value of our selected benchmarks, ∼0.96.

The estimated posterior distributions of all parameters,
presented in Figure 2, show a Gaussian shape with the
exception of parameters i, f/ϖ, and m1, whose distributions
show a large positive skewness. Slight differences in the means
and significant differences in the dispersion of the posterior
distribution are observed between the SB2 and SB1 cases. As
expected, the SB2 case offers less posterior uncertainty (more
concentration) than its SB1 analog in all the orbital parameters.
This reflects the significant impact in this case of incorporating
observations of both RVs instead of that for only the primary
component.

The estimated posterior distribution in Figure 2 projected in
the observations space is presented in Figure 1. The first
column shows the MAP estimate (curve) in the observations
space, and the second and third columns show the projection of
1000 uniformly selected samples (curves in this case) of the
posterior distribution for the SB2 and SB1 cases, respectively.
A slight difference is observed between the MAP orbits of the
SB2 and SB1 cases. In contrast, there is no appreciable
difference between the MAP curves in the RVs between both
cases. The posterior projection in the orbit space of the SB2
case shows the lowest uncertainty in the apastron, which is the
zone that has more observations. The zones of the orbit with
higher uncertainties are located between the peri- and apastron,
which coincide with the lack of precise observations there.
Notably, the periastron preserves the same amount of projected
uncertainty as the apastron despite the fact that this zone has no
observations. This nonintuitive behavior shows the relevance
of analyzing the projected posterior distribution in the
observations space, where the obtained uncertainty depends
not only on the location of the observations, but also on the
parametric configuration of the system itself. The posterior
projection in the RV space on the SB2 case shows very small
uncertainty along all the curves. This is explained by the high
number of data points for both components. The projected
posterior distribution for the SB1 in the RV space exhibits no
obvious differences with respect to the SB2 case. In contrast,
the projection of the posterior distribution on the orbit space
presents more fuzziness for the SB1 in comparison to the SB2,
which is explained by the differences in their respective
estimated posterior distributions in the parameter space (see
Figure 2).

3.1.2. HIP 111170

System HIP 111170 (discovery designation CHR111) is an
SB2 binary presented and solved most recently by Mendez
et al. (2017), with an intermediate value of q∼ 0.54. The
available data consist of astrometric observations mostly
concentrated around apastron passage with a few observations
scattered on the rest of the orbit, but with abundant
observations of the RVs of both components. The observations
and their errors are visualized in Figure 3.
The estimated posterior distributions shown in Figure 4

present a Gaussian shape with almost no differences in mean
value and dispersion between the SB2 and SB1 cases. The SB2
case is slightly more constrained than its SB1 counterpart, but
the difference is almost negligible (see also Table 2). This
reflects the expected precision gain due to the incorporation of
both RV observations instead of only the RV for the primary
object. However, due to the highly precise RV observations
and relatively good coverage of the astrometrical observations,
the information gain is minimal.
Similarly to the case of HIP 89000, the projection of the

estimated posterior distribution in the observations space is
presented in Figure 3. In this case, a small (almost negligible)
difference is observed between the MAP orbit for the SB2 and
SB1 cases. There is no perceived difference between the MAP
posterior projections in the RV space between both cases.
However, the posterior projection in the orbit space case shows
less uncertainty than in the apastron, which is the zone that has
more observations, like in the case of HIP 89000. Similar
uncertainties are noticed in the opposite zone—the periastron—
where only two observations are available. The zones of the

6 Updated regularly and available at https://www.usno.navy.mil/USNO/
astrometry/optical-IR-prod/wds/orb6.
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Table 2
MAP Estimates and 95% HDPIs from the Marginal Posterior Distributions of Orbital Parameters Considering the RVs of Both Components (SB2), and the RV of the Primary Component Only (SB1)

HIP # Case System P T e a ω Ω i V0 ϖ f/ϖ m1 q
(yr) (yr) (arcsec) (°) (°) (°) (km s−1) (mas) (pc) (M e)

677 SB2 (a) 0.265 1988.583 0.535 0.024 79.000 104.400 105.600 −11.000 33.620 10.023 3.441 0.508
SB2 (b) 0.2650.265

0.265 1988.8471988.842
1988.851 0.5350.470

0.589 0.0240.022
0.025 78.33973.740

81.112 104.952101.653
108.823 106.172102.450

109.408 12.465 14.043
9.567- -

- 32.79629.447
35.930 10.5009.113

12.139 3.6972.983
4.461 0.5250.449

0.600

SB1 (b) 0.2650.264
0.265 1988.8481988.843

1988.852 0.5290.461
0.599 0.0240.022

0.026 77.50473.201
81.426 104.112100.809

108.109 106.075102.329
109.601 10.194 13.237

7.576- -
- L 10.9529.117

12.265 L L

5531 SB2 (a) 7.454 2002.952 0.743 0.083 215.600 151.300 50.900 −9.570 16.400 29.048 1.222 0.910
SB2 (b) 7.4557.450

7.458 1995.4941995.490
1995.502 0.7440.741

0.746 0.0820.082
0.083 215.006214.532

215.803 152.001151.314
152.497 50.66949.926

51.606 9.526 9.596
9.477- -

- 16.20115.952
16.572 29.37928.751

29.857 1.2441.176
1.294 0.9080.894

0.925

SB1 (b) 7.4547.450
7.458 1995.4951995.488

1995.500 0.7430.741
0.746 0.0830.082

0.083 214.978214.050
215.449 152.032151.580

152.828 50.78249.865
51.528 9.500 9.551

9.417- -
- L 29.34528.914

30.048 L L

14157 SB2 (a) 0.119 1999.844 0.759 0.006 174.690 19.141 92.240 30.743 19.557 24.193 0.982 0.898
SB2 (b) 0.1190.119

0.119 1993.7951993.795
1993.796 0.7610.758

0.763 0.0060.006
0.006 175.114174.829

175.564 19.43719.092
19.924 91.53290.104

92.968 30.68230.573
30.780 19.43619.279

19.604 24.36724.145
24.616 1.0030.982

1.018 0.9000.891
0.910

SB1 (b) 0.1190.119
0.119 1993.7951993.795

1993.796 0.7610.758
0.765 0.0060.006

0.006 175.044174.479
175.503 19.53019.089

19.905 91.45490.131
92.966 30.69530.569

30.841 L 24.40124.146
24.652 L L

20601 SB2 (a) 0.428 2013.942 0.851 0.011 202.026 340.526 103.138 41.623 16.702 25.486 0.980 0.741
SB2 (b) 0.4280.428

0.428 1971.9831971.983
1971.983 0.8520.849

0.854 0.0110.011
0.012 202.260201.535

203.109 340.812339.649
341.814 103.636101.114

105.151 42.09741.940
42.251 16.71016.429

16.991 25.67725.178
26.099 0.9840.947

1.013 0.7520.742
0.759

SB1 (b) 0.4280.428
0.428 1971.9831971.983

1971.983 0.8520.849
0.855 0.0110.011

0.012 202.428201.639
203.518 340.506339.570

341.959 102.627100.916
105.761 42.22541.922

42.433 L 25.62325.163
26.184 L L

89000 SB2 (a) 0.546 1990.675 0.302 0.019 86.650 51.189 146.167 −14.131 21.308 22.938 1.214 0.956
SB2 (b) 0.5460.546

0.547 1990.6751990.673
1990.677 0.3010.297

0.307 0.0200.017
0.023 86.77585.787

87.484 49.63845.879
53.981 143.278133.337

157.681 14.129 14.173
14.090- -

- 23.85813.194
33.457 20.48413.426

34.668 1.0410.495
3.494 0.9560.949

0.963

SB1 (b) 0.5460.546
0.547 1990.6771990.674

1990.680 0.3030.294
0.311 0.0210.016

0.022 86.38184.949
88.248 54.63647.403

60.572 142.729135.808
173.393 14.155 14.247

14.077- -
- L 19.75313.071

89.385 L L

108917 SB2 (a) 2.241 1970.992 0.496 0.080 92.870 268.341 74.479 −10.743 32.170 8.246 2.246 0.361
SB2 (b) 2.2452.245

2.246 1968.7501968.744
1968.756 0.4630.452

0.469 0.0720.071
0.072 90.34389.919

90.644 273.135272.559
273.573 67.58267.044

67.983 10.796 11.394
10.035- -

- 37.24334.622
40.090 7.2396.073

8.181 1.0430.807
1.266 0.3690.300

0.425

SB1 (b) 2.2452.245
2.246 1968.7511968.745

1968.759 0.4610.452
0.468 0.0720.071

0.072 90.30689.940
90.695 273.266272.696

273.690 67.50567.005
67.956 10.791 11.745

10.193- -
- L 7.1306.002

8.091 L L

111170 SB2 (a) 1.731 1965.475 0.367 0.066 172.100 261.393 67.141 −9.573 35.542 9.842 1.389 0.538
SB2 (b) 1.7311.730

1.732 1965.4711965.452
1965.488 0.3660.348

0.386 0.0680.066
0.069 172.194168.423

175.407 261.648260.027
263.951 67.58162.243

70.742 9.590 9.742
9.377- -

- 36.66533.559
38.620 9.5729.214

10.242 1.3681.132
1.739 0.5410.493

0.584

SB1 (b) 1.7311.730
1.732 1965.4771965.453

1965.492 0.3650.346
0.387 0.0670.066

0.069 173.312168.692
176.002 261.302259.930

263.951 66.75062.154
70.758 9.518 9.711

9.341- -
- L 9.6649.213

10.262 L L

117186 SB2 (a) 0.235 2013.301 0.327 0.005 176.070 16.928 88.054 −19.890 8.445 53.509 1.686 0.824
SB2 (b) 0.2350.235

0.235 1987.9231987.922
1987.924 0.3230.320

0.327 0.0050.005
0.005 175.150174.106

175.971 16.95616.500
17.415 87.97487.683

88.420 19.783 19.903
19.632- -

- 8.4708.366
8.580 53.04351.939

54.212 1.7221.690
1.765 0.8160.799

0.833

SB1 (b) 0.2350.235
0.235 1987.9241987.922

1987.927 0.3250.317
0.333 0.0050.005

0.005 177.074174.193
181.159 16.97916.446

17.354 87.99987.717
88.459 20.250 20.830

19.843- -
- L 53.95352.613

55.459 L L

Note. (a) Results reported by Orb6, SB9, and references therein (see text); (b) Results obtained in this work.
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Figure 1. Estimated orbit and RV curves of the HIP 89000 binary system. First column: MAP point estimate projection of the posterior distribution for the SB2 and
SB1 cases (note that in the lower left panel, the curves for the SB2 and SB1 cases overlap). Second and third columns: projected posterior distribution of the SB2 and
SB1 cases, respectively.

Figure 2. Marginal posterior distribution for the orbital parameters of the HIP 89000 binary system in the SB2 and SB1 cases. In each panel, we indicate the MAP
estimate for the SB2 and its SB1 analog. Of course, at this stage, we can estimate the orbital parallax, the mass for the primary, and the mass ratio only in the SB2 case.
The small dot with 2σ error bars in the pdfs for ϖ and m1 indicate the values shown in Table 1. For this particular case, the good correspondence between the orbital
and trigonometric parallax is evident; this was documented already by Mendez et al. (2017).

Figure 3. Similar to Figure 1, but for the HIP 111170 binary system.
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orbit with a higher uncertainty are located between peri- and
apastron, which coincides with the lack of observations there.
The posterior projection in the RV space of the SB2 case shows
very small uncertainty, attributed to the dense phase coverage
for both components, except for a slight increase in the
uncertainty in the RV curves of both components near their
maximum and minimum amplitudes. The estimated posterior
distributions of the SB1 case in both the orbit and RV spaces
present no appreciable differences with respect to the SB2 case.
This is consistent with the similarities observed in the
parameter space, mentioned in the previous paragraph.

3.1.3. HIP 117186

System HIP 117186 (discovery designation HJL1116) is an
SB2 binary presented and solved in Halbwachs et al. (2016).
The available data consist of highly precise astrometric
observations dispersed along the entire orbit, along with
abundant and precise observations of the RVs for both
components. The observations and their errors are visualized in
Figure 5.
The estimated posterior distributions are presented in

Figure 6. All the posterior marginal distributions exhibit a

Figure 4. Similar to Figure 2, but for the HIP 111170 binary system. In this case there is a more noticeable difference between the orbital and trigonometric parallaxes,
also documented in Mendez et al. (2017), who used the pre-Gaia trigonometric parallax 39.35 ± 0.70 [mas].

Figure 5. Similar to Figure 3, but for the HIP 117186 binary system.

Figure 6. Similar to Figure 4, but for the HIP 117186 binary system. In this case we appreciate a large discrepancy between the orbital and trigonometric parallaxes.
The impact of this difference is further discussed in Section 3.2.
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Gaussian shape. There are noticeable differences in the means
and significant differences in the dispersions of the posterior
distribution between the SB2 and the SB1 cases. As before, the
SB2 case offers less posterior uncertainty than the SB1 case in
almost all the orbital parameters. The exceptions to this rule are
the angular parameters Ω and i (usually mostly constrained by
astrometric observations on visual binaries), where the
dispersion between both cases are almost the same. As in the
previous two cases, the evident differences on the dispersion of
the posterior distribution between the SB2 and SB1 cases
reflect the impact of the incorporation of RV observations from
both components on the estimated uncertainties.

The projection of the estimated posterior distribution in the
observations space is presented in Figure 5. As in the other two
cases, a slight difference is observed between MAP projection
on the orbit between the SB2 and SB1 cases. There is no
difference between the MAP posterior projection in the RV
space between both cases. The posterior projection in the orbit
space for the SB2 case shows small uncertainty in the zones
with observations and a slight increase in the uncertainty in the
other zones. Remarkably, the uncertainty throughout the whole
orbit is negligible, which is attributed to the extremely high
precision and orbital coverage of the positional observations,
even considering that only seven observations are available,
and that this is our most inclined system (with i∼ 88°). The
posterior projection in the RV space for the SB2 case shows
also very small uncertainty along the entire curves, which
coincides with the large number of observations of the RVs for
both components. Finally, the projected posterior distribution
of the SB1 counterpart in the observations space shows no
appreciable differences with respect to the SB2 case.

3.1.4. Concluding Remarks

The experiments presented in this section show an
uncertainty reduction in the estimated posterior distributions
when RV observations of both components are available
instead of only one component, as well as a slight shift in the
MAP value of the posterior distributions in some orbital
parameters. The orientation and magnitude of the shift between
the posterior distribution of the SB1 and SB2 cases, as well as
the magnitude of the uncertainty reduction does not follow an
evident pattern along the dimensions of the posterior distribu-
tion, neither between the different systems studied. The
magnitude of the shift and the dispersion differences among
the posterior distribution between the SB2 and SB1 cases
depends on the system itself, as well as on the quality and
quantity of the observations available, so it is difficult to draw
general conclusions. However, we can say that all the studied
systems exhibit an almost negligible difference in the MAP
estimations and the dispersion of the posterior distribution on
both cases. Finally, the MAP estimates on the SB2 and SB1
cases for all the systems studied are very similar compared to
the values reported by other authors, using different methodol-
ogies (see Table 2). This is a remarkable finding that validates
our general approach. We note that our estimated orbits and RV
curves for all the other benchmark systems, as well as their
respective marginal posterior distributions for the orbital
parameters, in a format similar to those of Figure 1 and 2
can be found in this site: http://www.das.uchile.cl/~rmendez/
B_Research/MV_RAM_SB1/SB2/.

We find that the projected uncertainty in the observations
space is lower in the zones where observations are available,

and higher in the zones without observations, as intuitively
expected. The only exception to this rule was observed in
system HIP 89000, where the observations in the zone of the
orbit populated with observations (the apastron) allow to
reduce the uncertainty in the opposite zone of the orbit (the
periastron) even considering that this zone has no observations.
This result shows the relevance of analyzing the uncertainty in
the observations space (through the projection of the posterior
distribution), avoiding to waste resources on observing zones
of the orbit that are apparently unresolved (to the complete
absence of observations there), but that are actually accurately
resolved due to the parametric configuration of the system
itself. The joint estimation of the orbit and RV curves allows to
share the knowledge provided by both sources of information,
reducing the uncertainty in the estimates in the observations
space significantly, even if one source of information is highly
noisy. This is observed in particular in system HIP 108917,
incidentally our lowest q∼ 0.36 system (not discussed here
explicitly, but available on our web page), where the projected
RV curves exhibit low uncertainty despite the fact that the
respective observations are very noisy. The projected orbits and
RV curves of the SB2 and SB1 cases show almost no
differences in all the studied systems, as well as the MAP
estimate projections (curve) obtained from the posterior
distributions. The only appreciable difference between the
uncertainty estimated by projections in the observations space
was in the orbit of the HIP 89000 system, were the SB1 case
was slightly more uncertain than its SB2 counterpart. We
attribute this to the higher uncertainty in its positional
observations compared to the other studied systems.
Finally, as all the studied systems are well determined

through abundant and good quality observations, the differ-
ences observed between the posterior distributions in the
parameter and observations spaces were in general negligible.
This means that the information provided by the RV
observations of the companion object is somewhat redundant
in these cases, being less relevant in the inference process, and
hence, in the orbital parameters estimation. However, we
anticipate that in regimes where the observations are not
abundant or precise enough (as in the HIP 89000 system), the
use of RV observations for both components might clearly
reduce the posterior uncertainty compared to the use of only
one of them.

3.2. Incorporation of Priors for Estimating the Mass Ratio in
SB1 Systems

In this section, the inference for the eight benchmark well-
studied SB2 binaries with visual orbits (described in
Section 3.1) is compared with its counterpart omitting the
RV observations of the companion object. For this comparison,
we use three different approaches to determine the mass ratio:
the incorporation of a prior on the parallax p(ϖ), denoted as
SB1+ p(ϖ) hereinafter; the incorporation of a prior on the
primary object mass p(m1|θ), denoted as SB1+ p(m1|θ)
hereinafter; and incorporating both priors, denoted as
SB1+ p(ϖ)+ p(m1|θ) hereinafter. The adopted parallax and
primary objectʼs mass for the priors, as presented in Table 1,
are visualized as error bars (± 2σ) in their corresponding
marginal posterior distribution plot. Note that, in this case, the
inferred parallaxes cannot be properly called orbital parallaxes
as, while they are derived self-consistently from the model and
data, they are only resolvable by the incorporation of the priors.
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The estimates and their uncertainties are compared, again, in
the parameter space through visualization of the posterior
marginal distributions, as well as in the observations space,
through the projection of 1000 randomly selected samples of
the posterior distribution in the observations space. For the last
analysis, we draw trajectories from the time of the first
observations t0 to the first completion of the orbit t0+ P. The
maximum a posteriori estimation and the 95% confidence
interval around the MAP solution are summarized in Table 3.
The MAP estimation error, high-density intervals lengths, and
estimated Kullback–Leibler divergence (KLD thereafter7)
between the marginal posterior distributions for the mass ratio
q between the full-information SB2 case and the SB1 cases
with priors SB1+ p(ϖ), SB1+ p(m1|θ), and SB1+ p(ϖ)+
p(m1|θ) are presented in Table 4.

Just as done in Section 3.1, the inference process is
performed through the simulation of 10,000 samples of the
respective posterior distributions (discarding the first half for
warm-up) on four independent Markov chains using the No-U-
Turn sampler algorithm as presented in Section 2.2.

While the analysis is done over the same eight benchmark
objects introduced on Section 3.1, for brevity the analysis is
focused on the same three systems discussed in detail
previously, namely, HIP 89000, HIP 111170, and HIP 117186.

3.2.1. HIP 89000

Figure 7 shows that the posterior distributions of the SB1
cases with priors are almost equal except for parameters ϖ, m1,
and q, which are identified through the incorporation of the
priors p(ϖ) or p(m1|θ) (and in this particular case, also the orbital
parameters a and i). The posterior distribution of the other orbital
parameters are equal to the posterior distributions of the SB1
case presented in the previous section. Naturally, for the
SB1+ p(ϖ) case, the posterior distribution of ϖ is equal to
the prior p(ϖ) (represented with the purple error bar), while for
the SB1+ p(m1|θ) case, the uncertainty in the posterior
distribution of m1 is equal to the prior p(m1|θ) (represented with
the blue error bar). Interestingly, all the cases with priors present
a significant reduction in the uncertainty in the posterior
distribution of ϖ, m1, a, i with respect to the full-information
scenario SB2, attributed to the narrow uncertainty in the priors.
In contrast, they show an increase in the uncertainty in the
posterior distribution of q. This is an interesting result that differs
with that observed in the system HIP 111170 (see below),
showing that narrower priors (on ϖ or m1) do not necessarily
lead into narrower marginal distributions on the mass ratio q,
depending on the priors, the observations, and the geometry of
the system itself, and which highlights the fact that SB2s are still
the best way to determine individual masses. The mixed priors
case SB1+ p(ϖ)+ p(m1|θ) presents the lowest uncertainty inϖ,
m1, q, followed by the SB1+ p(m1|θ) and SB1+ p(ϖ) cases.
The posterior distribution of the angular parameters a, i of the
SB1+ p(ϖ) and SB1+ p(m1|θ) cases are pretty similar between
each other, but significantly different from the mixed priors case
SB1+ p(ϖ)+ p(m1|θ). Finally, the posterior distribution of q in
the SB1+ p(ϖ)+ p(m1|θ) scenario is significantly different
from all other cases. This last result is particularly interesting, as

it shows that the mixed prior case can fit both priors individually
at the same time, but deriving into different estimates of the mass
ratioʼs posterior distribution.
The projection of the posterior distributions in the observa-

tions space are presented in Figure 8. The trajectories of the
MAP estimates (i.e., the most likely curves in the orbit space)
present some differences between all the cases. The SB1+ p(ϖ)
and SB1+ p(m1|θ) cases presents a slight reduction in the
projected uncertainty in the orbit space with respect to the SB2
case, while the mixed priors case SB1+ p(ϖ)+ p(m1|θ) presents
a significant uncertainty reduction. The orbital posterior
distribution of the mixed case presents also a different orbital
shape with respect to all other cases, with a worst fitting on the
most precise observations (in rectangular coordinates X∼− 15
[mas], Y∼+ 15 [mas]). This exemplifies how the narrow priors
incorporated play a major role on the inference procedure, to the
detriment on the fitting of some positional observations. Finally,
no significant differences are observed for the MAP and
uncertainty projections in the RV space between all four cases.

3.2.2. HIP 111170

Figure 9 shows that the posterior distributions are almost
equal for all the orbital parameters, except for parameters ϖ,
m1, and q, which are identified through the incorporation of the
priors in the SB1 case. It is noted that, for this last trio of
parameters, their distributions are shifted with respect to the
distributions of the SB2 case, i.e., they show a slight
discrepancy with respect to the full-information scenario
SB2. Again, as was the case for HIP 89000, we see that the
posterior distribution of ϖ for the SB1+ p(ϖ) case is equal to
the prior p(ϖ) (represented with the purple error bar), while for
the SB1+ p(m1|θ) case, the uncertainty in the posterior
distribution of m1 is equal to the prior p(m1|θ) (represented
with the blue error bar), which follows the soft-identifiability of
both models on the corresponding parameters. Here, too, all the
cases with priors offer a significant reduction in the uncertainty
in the posterior distribution of ϖ, m1, q relative to the full-
information scenario SB2. This apparently nonintuitive beha-
vior is explained to the fact that the sources of information of
the SB2 case (astrometric+RV1+RV2) are different from
those in the SB1 cases with priors (astrometric+RV1+prior),
and therefore, the inference exercise renders different results
too. Hence, very constrained priors could derive into more
constrained distributions than the SB2 case. The mean values
of the posterior distribution of ϖ, m1, q are almost the same
for the SB1 cases with priors, but are slightly biased with
respect to the full-information scenario SB2, denoting a slight
bias of the trigonometrical parallax and/or the spectral primary
objectʼs mass with respect to their orbital counterparts, as was
already mentioned in Figure 4. The mixed priors case
SB1+ p(ϖ)+ p(m1|θ) presents the lowest uncertainty in ϖ,
m1, q, followed by the SB1+ p(m1|θ) and SB1+ p(ϖ)
cases, denoting the information gain of incorporating
both priors simultaneously, instead of only one. The
SB1+ p(ϖ)+ p(m1|θ) scenario is the only case that presents
a variation in the mean and variance of the posterior
distribution of the semimajor axis a, showing that very narrow
priors can also affect the inference of the orbital parameters that
are already identifiable from the astrometric and RV1
observations. This is an important point that is further
discussed in the context of the inference of the mass ratio q in
Section 3.2.4. Finally, it can be observed that in the mixed

7 The KLD is a measure of similarity between probability distributions and, in
this work, it has been estimated through the k-nearest neighbor method (Wang
et al. 2009). The KLD between two identical probability distributions is 0,
while the greater the discrepancy between them, the higher its corresponding
KLD value.
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Table 3
MAP Estimates and 95% HDPIs from the Marginal Posterior Distributions of Orbital Parameters Incorporating Priors on the Mass of the Primary (m1) and the Trigonometric Parallax (ϖ)

HIP # Case P T e a ω Ω i V0 ϖ f/ϖ m1 q
(yr) (yr) (arcsec) (°) (°) (°) (km s−1) (mas) (pc) (M e)

677 SB2 0.2650.265
0.265 1988.8471988.842

1988.851 0.5350.470
0.589 0.0240.022

0.025 78.33973.740
81.112 104.952101.653

108.823 106.172102.450
109.408 12.465 14.043

9.567- -
- 32.79629.447

35.930 10.5009.113
12.139 3.6972.983

4.461 0.5250.449
0.600

SB1 + p(ϖ) 0.2650.264
0.265 1988.8471988.843

1988.852 0.5200.459
0.594 0.0230.022

0.025 77.12373.047
81.221 105.402100.932

108.246 106.471102.514
109.817 10.481 13.177

7.438- -
- 33.73232.956

34.333 10.9229.367
12.515 3.0312.408

4.170 0.5830.453
0.718

SB1 + p(m1|θ) 0.2650.264
0.265 1988.8481988.843

1988.852 0.5230.462
0.596 0.0240.022

0.026 78.61772.973
81.262 105.264100.708

108.133 106.524102.460
109.760 10.154 13.267

7.524- -
- 34.20930.839

38.681 10.8579.255
12.434 3.0632.032

3.879 0.5910.477
0.734

SB1 + p(ϖ) + p(m1|θ) 0.2650.264
0.265 1988.8481988.843

1988.851 0.5300.461
0.582 0.0240.022

0.025 77.90373.038
80.879 103.764100.862

108.126 105.992102.974
109.822 9.832 13.250

7.476- -
- 33.72432.968

34.315 10.8979.693
12.377 3.2232.548

3.737 0.5810.478
0.704

5531 SB2 7.4557.450
7.458 1995.4941995.490

1995.502 0.7440.741
0.746 0.0820.082

0.083 215.006214.532
215.803 152.001151.314

152.497 50.66949.926
51.606 9.526 9.596

9.477- -
- 16.20115.952

16.572 29.37928.751
29.857 1.2441.176

1.294 0.9080.894
0.925

SB1 + p(ϖ) 7.4547.450
7.458 1995.4951995.488

1995.500 0.7440.741
0.746 0.0830.082

0.083 214.783214.054
215.452 152.208151.574

152.808 50.81949.962
51.529 9.481 9.550

9.418- -
- 16.43516.247

16.987 29.39028.909
29.962 1.1791.029

1.223 0.9340.915
1.000

SB1 + p(m1|θ) 7.4557.450
7.458 1995.4941995.488

1995.501 0.7440.741
0.746 0.0830.082

0.083 214.764214.090
215.469 152.228151.622

152.848 51.03250.093
51.629 9.474 9.553

9.418- -
- 16.91016.636

17.138 29.27528.853
29.855 1.0571.015

1.098 0.9800.965
1.000

SB1 + p(ϖ) + p(m1|θ) 7.4547.450
7.458 1995.4931995.489

1995.501 0.7440.741
0.746 0.0820.082

0.083 214.597214.045
215.429 152.306151.589

152.832 50.84950.006
51.444 9.490 9.553

9.419- -
- 16.80616.619

17.041 29.42928.983
29.899 1.0741.027

1.102 0.9790.963
1.000

14157 SB2 0.1190.119
0.119 1993.7951993.795

1993.796 0.7610.758
0.763 0.0060.006

0.006 175.114174.829
175.564 19.43719.092

19.924 91.53290.104
92.968 30.68230.573

30.780 19.43619.279
19.604 24.36724.145

24.616 1.0030.982
1.018 0.9000.891

0.910

SB1 + p(ϖ) 0.1190.119
0.119 1993.7951993.795

1993.796 0.7620.758
0.765 0.0060.006

0.006 174.912174.469
175.445 19.53219.092

19.937 91.43289.917
92.890 30.69230.581

30.844 19.52419.425
19.640 24.33324.138

24.645 0.9850.947
1.009 0.9050.891

0.932

SB1 + p(m1|θ) 0.1190.119
0.119 1993.7951993.795

1993.796 0.7610.758
0.765 0.0060.006

0.006 174.952174.476
175.429 19.44519.093

19.925 91.27290.098
92.977 30.70530.573

30.837 20.06419.798
20.543 24.37924.146

24.639 0.8820.810
0.924 0.9570.937

0.998

SB1 + p(ϖ) + p(m1|θ) 0.1190.119
0.119 1993.7951993.795

1993.796 0.7620.758
0.765 0.0060.006

0.006 175.002174.532
175.496 19.52719.080

19.940 91.34989.958
92.911 30.70330.579

30.841 19.61019.470
19.677 24.50524.233

24.722 0.9540.932
0.990 0.9250.900

0.939

20601 SB2 0.4280.428
0.428 1971.9831971.983

1971.983 0.8520.849
0.854 0.0110.011

0.012 202.260201.535
203.109 340.812339.649

341.814 103.636101.114
105.151 42.09741.940

42.251 16.71016.429
16.991 25.67725.178

26.099 0.9840.947
1.013 0.7520.742

0.759

SB1 + p(ϖ) 0.4280.428
0.428 1971.9831971.983

1971.983 0.8520.849
0.855 0.0110.011

0.012 202.630201.691
203.725 340.619339.625

341.903 102.796100.728
105.558 42.31141.920

42.486 17.34717.072
17.577 25.71225.184

26.188 0.8490.797
0.924 0.8050.768

0.836

SB1 + p(m1|θ) 0.4280.428
0.428 1971.9831971.983

1971.983 0.8520.849
0.855 0.0110.011

0.012 202.553201.665
203.542 340.930339.542

341.811 103.282100.685
105.232 42.26241.913

42.476 17.04416.746
17.346 25.66725.171

26.113 0.9160.873
0.954 0.7780.755

0.797

SB1 + p(ϖ) + p(m1|θ) 0.4280.428
0.428 1971.9831971.983

1971.983 0.8520.849
0.855 0.0110.011

0.012 203.013201.789
203.748 340.443339.572

341.980 102.590100.697
105.291 42.25541.930

42.498 17.18617.031
17.421 25.45025.069

25.976 0.9050.865
0.934 0.7770.761

0.806

89000 SB2 0.5460.546
0.547 1990.6751990.673

1990.677 0.3010.297
0.307 0.0200.017

0.023 86.77585.787
87.484 49.63845.879

53.981 143.278133.337
157.681 14.129 14.173

14.090- -
- 23.85813.194

33.457 20.48413.426
34.668 1.0410.495

3.494 0.9560.949
0.963

SB1 + p(ϖ) 0.5460.546
0.547 1990.6771990.673

1990.680 0.3030.294
0.311 0.0210.019

0.022 86.56785.092
88.254 55.71447.554

61.296 140.938136.198
147.662 14.178 14.241

14.075- -
- 21.41021.271

21.636 18.55515.978
23.353 1.9501.182

2.524 0.6590.524
1.000

SB1 + p(m1|θ) 0.5460.546
0.547 1990.6771990.673

1990.680 0.3010.294
0.311 0.0210.019

0.023 86.89584.988
88.268 54.41747.335

61.069 141.071135.668
146.270 14.159 14.240

14.077- -
- 24.40521.731

27.054 18.71715.412
22.656 1.1711.100

1.236 0.8410.727
1.000

SB1 + p(ϖ) + p(m1|θ) 0.5460.546
0.547 1990.6761990.673

1990.680 0.3050.296
0.312 0.0190.019

0.019 86.57385.116
88.296 52.00046.786

59.727 145.730144.563
146.826 14.155 14.243

14.078- -
- 21.52921.296

21.660 22.90822.432
23.417 1.2061.141

1.260 0.9730.935
1.000

108917 SB2 2.2452.245
2.246 1968.7501968.744

1968.756 0.4630.452
0.469 0.0720.071

0.072 90.34389.919
90.644 273.135272.559

273.573 67.58267.044
67.983 10.796 11.394

10.035- -
- 37.24334.622

40.090 7.2396.073
8.181 1.0430.807

1.266 0.3690.300
0.425

SB1 + p(π) 2.2452.245
2.246 1968.7521968.745

1968.758 0.4590.452
0.468 0.0720.071

0.072 90.30889.925
90.659 273.234272.691

273.706 67.37767.005
67.944 11.090 11.747

10.181- -
- 31.85830.990

33.415 7.1166.027
8.186 1.7491.473

1.930 0.2930.241
0.361

SB1 + p(m1|θ) 2.2452.245
2.246 1968.7531968.745

1968.758 0.4590.452
0.468 0.0720.071

0.072 90.29789.944
90.665 273.152272.676

273.707 67.45566.985
67.941 10.889 11.743

10.158- -
- 32.09630.969

32.948 6.9366.107
8.256 1.7221.593

1.893 0.2860.242
0.348

SB1 + p(π) + p(m1|θ) 2.2452.245
2.246 1968.7511968.746

1968.758 0.4600.452
0.469 0.0720.071

0.072 90.35489.936
90.669 272.995272.694

273.697 67.44767.004
67.955 10.901 11.760

10.195- -
- 31.98231.284

32.814 7.2176.003
8.099 1.7211.601

1.855 0.3000.240
0.346

111170 SB2 1.7311.730
1.732 1965.4711965.452

1965.488 0.3660.348
0.386 0.0680.066

0.069 172.194168.423
175.407 261.648260.027

263.951 67.58162.243
70.742 9.590 9.742

9.377- -
- 36.66533.559

38.620 9.5729.214
10.242 1.3681.132

1.739 0.5410.493
0.584

SB1 + p(ϖ) 1.7311.730
1.732 1965.4681965.454

1965.492 0.3620.346
0.386 0.0680.066

0.069 171.085168.731
176.150 262.168259.960

263.976 67.38061.975
70.685 9.531 9.713

9.336- -
- 39.11337.957

40.408 9.6009.207
10.270 1.0770.884

1.211 0.6010.556
0.681

SB1 + p(m1|θ) 1.7311.730
1.732 1965.4711965.452

1965.491 0.3640.345
0.386 0.0680.066

0.069 172.181168.497
175.902 261.729260.019

263.988 66.41862.114
70.835 9.566 9.713

9.349- -
- 39.09437.470

39.923 9.5889.203
10.243 1.0921.046

1.143 0.6000.569
0.641

SB1 + p(ϖ) + p(m1|θ) 1.7311.730
1.732 1965.4751965.453

1965.491 0.3640.344
0.383 0.0680.066

0.069 172.577168.539
175.718 261.601259.927

263.912 67.53562.458
70.829 9.551 9.723

9.345- -
- 39.17138.068

39.817 9.4829.229
10.106 1.1021.046

1.140 0.5910.568
0.637

117186 SB2 0.2350.235
0.235 1987.9231987.922

1987.924 0.3230.320
0.327 0.0050.005

0.005 175.150174.106
175.971 16.95616.500

17.415 87.97487.683
88.420 19.783 19.903

19.632- -
- 8.4708.366

8.580 53.04351.939
54.212 1.7221.690

1.765 0.8160.799
0.833

SB1 + p(ϖ) 0.2350.235
0.235 1987.9251987.922

1987.926 0.3240.318
0.334 0.0050.005

0.005 178.492174.029
180.950 16.83616.451

17.332 88.16187.722
88.457 20.233 20.812

19.847- -
- 8.2238.131

8.299 54.01752.632
55.526 1.8591.747

1.968 0.7990.759
0.841

SB1 + p(m1|θ) 0.2350.235
0.235 1987.9251987.922

1987.927 0.3240.317
0.334 0.0050.005

0.005 178.207173.818
180.990 16.80616.406

17.320 88.13887.693
88.451 20.397 20.797

19.828- -
- 8.9618.735

9.127 53.84752.571
55.490 1.3401.251

1.439 0.9320.892
0.980

SB1 + p(ϖ) + p(m1|θ) 0.2350.235
0.235 1987.9231987.921

1987.925 0.3350.328
0.344 0.0050.005

0.005 175.004172.090
178.279 16.92516.460

17.383 88.01487.595
88.392 20.580 21.030

20.051- -
- 8.3438.271

8.421 56.62655.163
57.942 1.5951.530

1.669 0.8960.854
0.933
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Table 4
Comparison of the Difference in the Marginal Posterior Distribution for the Mass Ratio q between the SB1 Cases with Priors, and the Full-information (Benchmark) SB2

MAP Estimate Error [%] HPDI Length KLD

HIP # SB1 + p(ϖ) SB1 + p(m1|θ) SB1 + p(ϖ) + p(m1|θ) SB1 + p(ϖ) SB1 + p(m1|θ) SB1 + p(ϖ) + p(m1|θ) SB1 + p(ϖ) SB1 + p(m1|θ) SB1 + p(ϖ) + p(m1|θ)

677 −5.81 −6.57 −5.58 0.265 0.257 0.226 0.485 0.834 0.728
5531 −2.60 −7.21 −7.03 0.085 0.035 0.037 2.507 8.844 8.821
14157 −0.54 −5.78 −2.55 0.041 0.061 0.039 0.826 7.038 2.346
20601 −5.36 −2.62 −2.58 0.068 0.042 0.045 4.723 3.471 4.76
89000 +29.67 +11.49 −1.73 0.476 0.273 0.065 3.533 3.014 2.146
108917 +7.60 +8.28 +6.91 0.12 0.106 0.106 2.064 2.856 2.932
111170 −6.05 −5.88 −5.02 0.125 0.072 0.069 3.804 5.778 5.647
117186 +1.66 −11.67 −7.98 0.082 0.088 0.079 0.772 9.201 7.285

absmean 7.41 7.44 4.92 0.158 0.117 0.083 2.339 5.129 4.333
std 11.20 7.56 4.35 0.136 0.088 0.058 1.481 2.857 2.609
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priors case the posterior distribution of ϖ is between the
posterior distributions of the SB1+ p(ϖ) and SB1+ p(m1|θ)
cases, and the posterior distributions of m1 and q are almost
equal to the posterior distribution of the SB1+ p(m1|θ) and
different from the SB1+ p(ϖ) case.

Moving to the estimated (by projection) posterior distribu-
tions in the observations space, these distributions are presented
in Figure 10. No significance differences in the distribution are
observed in each of the four cases, which translates into no
significant difference in the MAP curves and uncertainty
projections between all the cases considered.

3.2.3. HIP 117186

To conclude this analysis, Figure 11 shows that the posterior
distributions of the SB1+ p(ϖ) and SB1+ p(m1|θ) cases are

almost equal except in parameters ϖ, m1, and q, which are
identified through the incorporation of the priors p(ϖ) or
p(m1|θ). The posterior distribution of the other orbital
parameters are equal to the posterior distributions of the SB1
case presented in the previous section. For the SB1+ p(ϖ) and
SB1+ p(m1|θ) cases, the posterior distribution of ϖ is equal to
the prior p(ϖ) and the posterior distribution of m1 is equal to
the prior p(m1|θ), as in the previous systems, and as intuitively
expected. All the studied cases with priors present a significant
increase in the uncertainty in the posterior distribution of all the
orbital parameters (with the exception of the angular
parameters Ω and i) with respect to the full-information
scenario SB2. The mixed priors case SB1+ p(ϖ)+ p(m1|θ)
presents the lowest uncertainty inϖ, m1, q, closely followed by
the SB1+ p(m1|θ) and SB1+ p(ϖ) cases. The posterior

Figure 7. Marginal posterior distribution and MAP estimates of orbital parameters for the HIP 89000 binary system as an SB2, and in the SB1 + p(ϖ), SB1 + p(m1|
θ), and SB1 + p(ϖ) + p(m1|θ) scenarios.

Figure 8. Estimated orbit and RV curves for the HIP 89000 binary system. First column: MAP point estimate projection of the posterior distribution for the SB2,
SB1 + p(ϖ), SB1 + p(m1|θ), and SB1 + p(ϖ) + p(m1|θ) cases. Second to fifth columns: projected posterior distribution for the SB2, SB1 + p(ϖ), SB1 + p(m1|θ),
and SB1 + p(ϖ) + p(m1|θ) cases, respectively.

Figure 9. Similar to Figure 7 but for the HIP 111170 binary system.
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distribution of the mixed case SB1+ p(ϖ)+ p(m1|θ) presents a
slight bias in all the orbital parameters except for the angular
parameters Ω and i, with respect to the SB1 case, and therefore
also with respect to the SB1+ p(ϖ) and SB1+ p(m1|θ) cases.
It can be observed that, in the mixed priors case, the posterior
distribution of ϖ is between the SB1+ p(ϖ) and
SB1+ p(m1|θ) but nearest to the first one. On the other hand,
the posterior distribution of m1 is between the SB1+ p(ϖ) and
SB1+ p(m1|θ) distributions with a similar distance between
them, and the posterior distribution of q is between the SB1+
p(ϖ) and SB1+ p(m1|θ) but nearest to the second one.

Finally, the estimated (by projection) posterior distributions
in the observations space are presented in Figure 12, where
again no significant differences are observed in the MAP
curves and uncertainties between all four cases.

3.2.4. Concluding Remarks

The experiments described in the previous subsections
demonstrate a relevant uncertainty reduction in the estimated
posterior distributions with respect to the SB1 case when priors
on the parallax or mass of the primary object are incorporated.
In general, we observe that the more information is available,
the less is the uncertainty obtained in the estimates, as one
would expect. Consequently, the case that incorporates both
priors, i.e., SB1+ p(ϖ)+ p(m1|θ), presents the lowest uncer-
tainty. Due to the nonidentifiability of parameters ϖ, m1, and q
in the SB1 system with a visual orbit model, the prior p(ϖ)
results equal to the marginal posterior distribution of ϖ and the
prior p(m1|θ) results equal to the marginal posterior distribution
of m1. The major differences in the posterior distributions of the
cases with priors are observed in the trio of orbital parameters

Figure 11. Similar to Figure 9 but for the HIP 117186 binary system.

Figure 12. Similar to Figure 10 but for the HIP 117186 binary system.

Figure 10. Similar to Figure 8 but for the HIP 111170 binary system.

15

The Astronomical Journal, 163:220 (29pp), 2022 May Videla et al.



ϖ, m1, q. Here, the marginal posterior distribution of these
parameters on the mixed case SB1+ p(ϖ)+ p(m1|θ) lie
between the posterior distributions of the SB1+ p(ϖ) and
SB1+ p(m1|θ) cases. These distributions can be equidistant to
the SB1+ p(ϖ) and SB1+ p(m1|θ) cases, if both sources of
information are equally likely according to the model and the
available data, or can be near to one of them, if one source of
information is more likely than the other. The similarity of the
posterior distribution observed in the SB1+ p(ϖ)+ p(m1|θ)
scenario to one of the simpler cases, SB1+ p(ϖ) or
SB1+ p(m1|θ), allows to determine the most reliable prior
according to the model and the observations. For example, if
the posterior distributions (in the trio of parameters ϖ, m1, q) of
the mixed priors case are nearest to the distribution of the
SB1+ p(m1|θ) than to the SB1+ p(ϖ) case, then one might
conclude that the constrain imposed by the mass of the primary
object is more reliable than the trigonometric parallax
constrain, as the last one is less relevant in the inference
process in the mixed scenario. This is particularly important in
the context of the already noted differences between the orbital
and trigonometric parallaxes for HIP 111170 and HIP 117186.
We should recall that it is a well-known fact that Hipparcos
trigonometric parallaxes were indeed biased due to the orbital
motion of the binary (i.e., the parallax and orbit signal are
blended), as shown by Söderhjelm (1999; see in particular his
Section 3.1, and Table 2), and it is likely that Gaia will suffer
from a similar problem.8 Indeed, during each observation, Gaia
is not expected to resolve systems closer than about 0 4,
though over the mission there will be a final resolution of 0 1.
This is shown graphically in Figure 1 from Ziegler et al.
(2018), where the current resolution of the second Gaia data
release is shown to be around 1″, being a function of the
magnitude difference between the primary and secondary. It is
expected that, from the third Gaia data release and on (∼2024),
the treatment of binary stars will be much improved, by
incorporating orbital motion (and its impact on the photocenter
position of unresolved pairs) into the overall astrometric
solution, thus suppressing/alleviating the parallax bias
significantly.

As we are also adopting a spectral type (and a luminosity
class) as a proxy for the mass of the primary, we should be just
as careful as with the trigonometric parallaxes, as these
assumptions could also bias our inference if the assumed
spectral type is in error. Therefore, it is important to assess the
reliability of our adopted spectral types. One very important
source of comparison are compilations of spectral types, the
most authoritative being the “Catalogue of Stellar Spectral
Classifications” by Skiff (2014), which provides a compilation
of spectral classifications determined for stars from spectra only
(i.e., no narrowband photometry), collected from the literature,
and which is updated regularly in VizieR (catalog B/mk/
mktypes, currently containing more than 90,000 stars). One
interesting case in question is HIP 111170, which we have
adopted to be an F8V from SIMBAD. However Skiffʼs catalog
gives the possible range F7V to G0V, and even F9IV subgiant,
from five different literature sources. If we consider its reported
V-band mag in SIMBAD (V= 6.160), and its trigonometric

parallax in Table 1, this implies an MV=+ 4.126, which is
totally consistent with an F8-F9 spectral type of luminosity
class V from Abushattal et al. (2020), whereas an F9IV should
have an MV=+ 2.88, completely off our value. This suggests
that our adopted spectral type is indeed correct (unless, of
course, the Gaia parallax is completely off).
The estimation from the joint use of astrometry (positions)

and RV observations, as well as the incorporation of priors,
have a nonnegligible impact on the estimated posterior
distribution of some the identifiable orbital parameters as well.
Indeed, we observe cases where the impact on the posterior
uncertainty of including additional sources of information
(priors) is of the same order of magnitude as the uncertainty
reduction obtained from actual observations (measurements).
For example, the binary system HIP 89000 exemplifies the
impact of the priors on the posterior distribution of the
identifiable orbital parameters a and i. In contrast, other binary
systems, like HIP 108917, exhibit null impact on the marginal
distributions of the identifiable orbital parameters when adding
priors.
The estimated posterior distribution and the MAP estimates

in the observations space present no appreciable differences
between all the cases studied (SB2, SB1+ p(ϖ),
SB1+ p(m1|θ), and SB1+ p(ϖ)+ p(m1|θ)). The only signifi-
cant difference is observed in the orbit of system HIP 89000,
where the mixed case SB1+ p(ϖ)+ p(m1|θ) presents the
lowest uncertainty, even lower than the full-information case
SB2, but at the cost of a slightly worst fitting of some of the
orbital observations.
Based on the posterior distribution for the mass ratio q, we

can see from Table 4 that the case that offers the highest
similarity with the full-information scenario SB2, according to
the KLD measure, is the SB1+ p(ϖ) case, followed by the
mixed case SB1+ p(ϖ)+ p(m1|θ) and the SB1+ p(m1|θ) case.
However, the lowest mean absolute error between the MAP
estimates, as well as the high posterior density interval range, is
obtained in the SB1+ p(ϖ)+ p(m1|θ) scenario (4.92%),
followed by the SB1+ p(ϖ) (7.41%) and SB1+ p(m1|θ)
(7.44%) cases. There is a rather complex interplay between
orbital parameters and the final value of q. In the SB1 scenario,
the mass of the primary is mostly constrained by the prior
imposed by its spectral type; hence, in principle, the largest the
value of m1 (in comparison to the value of m1 derived from the
equivalent SB2), the smallest the value of the inferred q.
However, m2 itself is inferred from the mass sum of the orbital
solution, i.e., m a P m2

3 3 2
1( )v~ - . Therefore if the trigono-

metric ϖ (imposed in the prior) is different from the orbital
parallax, this will also have an impact on the estimated m2. Our
three described cases are a clear example of this complex
behavior. For HIP 89000 the trigonometric and orbital
parallaxes are almost the same while the mass of the primary
derived form the SB2 is almost the same as that from its
spectral type (see Figures 2 and 7). As a consequence, the q
values in both cases are very similar, 0.973 versus 0.956 (see
first and last line for this object in Table 3). HIP 111170
exhibits a different situation. Its trigonometric parallax is larger
than its orbital parallax (thus implying a smaller mass sum),
while its spectral mass is smaller than its orbital mass for the
primary; they both seem to compensate each other, ending with
a similar mass ratio of 0.541 versus 0.591 for the SB2 and SB1
+priors cases, respectively. Finally, for HIP 117186 we have
that its trigonometric parallax is smaller than its orbital

8 For example, according to Tokovininʼs multiple star catalog, HIP 64421
contains a binary with a 27 yr orbit. Its Hipparcos parallax is 8.6 mas, its
dynamical parallax is 8.44 mas, and its Gaia DR2 parallax is 3 mas. However,
Gaia does give a consistent parallax for the C component at 1 9:
9.7 ± 0.3 mas; see http://www.ctio.noao.edu/~atokovin/stars/. There are
other examples like this in the cited catalog.
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parallax, and its spectral mass is smaller than its orbital for the
primary. In this case, one would expect that the mass of the
secondary is substantially larger than in the SB2 case (and thus
a larger q as well); however this is compensated by a smaller
value of the semimajor axis (see Figure 11), which decreases
the estimated value of m2. The next result in this cases is that
the q values are, again, similar, 0.816 versus 0.896 for the SB2
and SB1+priors cases, respectively. We can surely envision
cases where this combination could be more damaging, in the
sense of rendering erroneous q values (not seen among our
benchmark systems though; compare the first and last lines in
Table 3). We emphasize however that ours is a method to
provide rough informed estimates (in a statistical sense) of the
mass ratio, but definitive values are still provided by SB2s.

In summary, the obtained results indicate that the closest
estimation to the full-information scenario is obtained through
the incorporation of prior information on the parallax ϖ.
However, the most robust point estimates are obtained by
incorporating both sources of priors, allowing to correct the
estimation through p(m1|θ) when p(ϖ) is biased. This is clearly
illustrated by system HIP 89000, at a cost of a slight increase in
the average estimation error. The lowest performance accord-
ing to all the comparison metrics is achieved by the
SB1+ p(m1|θ) case. This is attributed to the fact that the
additional information on m1 comes from an approximate
empirical rule that relates the mass with the spectral type of the
object, while the additional information on ϖ has a direct
relationship to the systemʼs geometry.

4. Application to Unresolved SB1s with Visual Orbits

In this section we apply the methodology described in the
previous sections to study 12 SB1s systems with a visual
orbit using the SB1, SB1+ p(ϖ), SB1+ p(m1|θ), and SB1+
p(ϖ)+ p(m1|θ) scenarios. We note that, for all these binaries,
there is no published joint estimation of their orbital parameters
using the available astrometric and spectroscopic data, so this is
the first study of these binaries from this point of view as well,
with the exception of HIP 7918, which has a combined solution
by Agati et al. (2015). They represent an heterogeneous group
of binaries, with masses in the range between 0.85Me and
slightly above 20Me, located at distances between 12 and
150 pc, and with very different data quality and orbital phase
coverage. The adopted parallax, primary objectʼs spectral type,
and derived mass for the prior of each system are presented in
Table 5. These values are also visualized as error bars (± 2σ)
in their corresponding marginal posterior distribution plot. We
emphasize that, through this exercise, we do not intend to carry
out an in-depth analysis of the selected objects (which will be
presented in a forthcoming paper), but rather provide a proof of
concept of the methodology introduced previously.

Similarly to what we showed for our benchmark systems, the
orbital parameter estimates and their uncertainties are compared
in both the parameter space, through a visualization of the
posterior marginal distributions, as well as in the observations
space, through the projection of 1000 randomly selected
samples of the posterior distribution in the observations space,
drawing trajectories from the time of the first observations t0 to
the first completion of the orbit t0+ P. The MAP estimators
and their respective 95% high posterior density interval
estimates for these systems are summarized in Table 6. For
comparison purposes, in this table we also report the values
provided by the Orb6 and SB9 catalogs for each target. From

this table we see, in general, good agreement between our
orbital parameters and those from orbital or spectral fitting (see,
e.g., HIP 171, 7918, 65982, 69962,9 81023, 109951). We note
that the argument of periapsis (ω) is typically well determined
by RV observations as long as the distinction between the
primary and secondary is unambiguous (difficult, e.g., for
equal-mass binaries), and ambiguous from astrometric data
alone. On the other hand, the longitude of the ascending node
(Ω) can be well determined from astrometric observations
alone, but it suffers from the same ambiguity in the case of
equal-brightness binaries. In general, purely astrometric solu-
tions can exhibit an offset of 180° in both ω and Ω, which
would affect both angles simultaneously. Two textbook
examples of this behavior in our sample are HIP 6564 and
78401 (adding 180° to both ω and Ω lands in our results). The
few cases in which there are discrepancies of unclear origin
with SB9 and/or Orb6 could be due, e.g., to quadrant
ambiguities in the input astrometric position angle data, like
in HIP 6564, 79101, 99675, and 115126, all of which indeed
have rather large predicted values of q (and could thus be more
prone to quadrant ambiguity).
To avoid redundancy, the analysis is focused only on 3 of

the 12 systems studied: HIP 3504, HIP 99675, and HIP
109951. However, we provide estimated marginal posterior
distribution and MAP estimates of orbital parameters as well as
orbit and RV curves for all our studied systems, similar to
Figures 13 and 14, in our website http://www.das.uchile.cl/
~rmendez/B_Research/MV_RAM_SB1/SB1/.

4.1. HIP 3504

This a very challenging system, because the available data
consist of few and imprecise astrometric observations, which
only cover three distinct points on the orbit. Very few and
imprecise RV observations of the primary object, covering less

Table 5
Reported Trigonometric Parallax, Primary Objectʼs Spectral Type, and Derived

Primary Mass of SB1 Stellar Systems

HIP # Discovery ϖ SpTyp m1

Designation (mas) (M e)

171 BU733AB 79.0696 ± 0.5621 G5V 0.955 ± 0.015
3504 NOI3Aa,Ab 4.705 ± 0.431a B5III 5.623 ± 1.190
6564 BU1163 21.44 ± 0.61 F4V 1.250 ± 0.050
7918 MCY2 76.5204 ± 0.2142 G1V 1.023 ± 0.024
65982 HDS1895 37.7582 ± 0.6272 G8V 0.912 ± 0.020
69962 HDS2016AB 44.3763 ± 0.7670 K5 0.646 ± 0.040
78401 LAB3 6.64 ± 0.89 B0IV 21.878 ± 6.524
79101 NOI2 14.8990 ± 0.4039 B9V 2.390 ± 0.140
81023 DSG7Aa,Ab 24.0090 ± 0.3582 K0V 0.850 ± 0.040
99675 WRH33Aa,Ab 4.3432 ± 0.3464 K3Ib 10.000 ± 0.707
109951 HDS3158 15.1176 ± 0.5342 G5V 0.955 ± 0.015
115126 MCA74Aa,Ab 44.8996 ± 0.5572 G8IV 1.202 ± 0.025

Note.
a From Gaia DR2.

9 As an aside, for this object, Skiff (2014) report spectral types from K5V to
M0V, while we adopt K5V. With a V = 9.112 from SIMBAD, and the
trigonometric parallax in Table 5, MV = + 7.35 is implied, which indeed
corresponds to a K5V from Abushattal et al. (2020), while an M0V would have
MV = + 8.83, completely off the measured value. This confirms the adequacy
of our assumption on the adopted spectral type.
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Table 6
MAP Estimates and 95% HDPIs Derived from the Marginal Posterior Distributions of the Orbital Parameters Incorporating Priors on the Mass of the Primary (m1) and the Trigonometric Parallax (ϖ) of SB1 Binary

Systems with Astrometric Data as Derived from This Work

HIP # System P T e a ω Ω i V0 ϖ f/ϖ m1 q
(yr) (yr) (arcsec) (°) (°) (°) (km s−1) (mas) (pc) (M e)

171 Orb6 26.28 1989.4 0.38 0.83 290. 96. 49. L L L L L
SB9 26.31 1989.57 0.372 L 285.0 L L −36.22 L L L L
SB1 26.60626.589

26.627 1882.9871882.887
1883.058 0.3570.355

0.360 0.8170.814
0.820 279.150278.804

279.427 109.239108.948
109.675 49.75849.475

50.058 36.292 36.325
36.250- -

- L 5.6505.568
5.761 L L

SB1 + p(ϖ) 26.60926.590
26.628 1882.9791882.898

1883.065 0.3570.354
0.360 0.8170.814

0.820 279.137278.788
279.402 109.350108.965

109.681 49.74549.481
50.064 36.285 36.326

36.251- -
- 78.97177.995

80.177 5.6625.571
5.766 0.8630.811

0.910 0.8090.780
0.844

SB1 + p(m1|θ) 26.61426.589
26.628 1882.9531882.891

1883.061 0.3570.354
0.360 0.8180.814

0.820 279.111278.790
279.410 109.307108.956

109.677 49.79749.485
50.059 36.279 36.327

36.251- -
- 77.07576.198

77.714 5.6605.568
5.760 0.9500.925

0.983 0.7740.753
0.794

SB1 + p(ϖ) + p(m1|θ) 26.60326.587
26.627 1882.9971882.897

1883.070 0.3580.355
0.360 0.8190.816

0.822 279.052278.767
279.371 109.314108.960

109.671 49.91249.592
50.161 36.296 36.329

36.255- -
- 77.78977.016

78.314 5.6265.531
5.714 0.9270.907

0.959 0.7780.754
0.795

3504 Orb6 2.835 2006.966 0.019 0.017 92.9 88.6 113.4. L L L L L
SB9 2.828 1972.95 0.11 L 79. L L −18.7 L L L L
SB1 31.21231.040

31.426 1975.2931975.190
1975.346 0.8080.790

0.828 0.1090.088
0.128 6.8410.003

11.662 64.24228.695
89.024 100.84292.580

110.403 47.145 52.121
40.366- -

- L 183.910157.710
199.999 L L

SB1 + p(ϖ) 2.4852.473
2.499 1975.4741975.202

1975.705 0.1580.040
0.281 0.0210.016

0.024 41.1380.002
74.341 273.802247.323

297.566 109.85692.933
127.432 14.867 16.746

13.255- -
- 4.5243.762

5.391 84.16373.702
119.872 10.1552.958

15.745 0.6150.537
1.000

SB1 + p(m1|θ) 2.4862.472
2.591 1975.3891975.208

1975.772 0.1520.003
0.250 0.0210.011

0.024 26.6870.059
80.380 270.54680.951

296.478 104.78894.145
129.009 14.670 17.029

13.440- -
- 5.0482.638

6.008 90.79969.584
166.468 6.0043.830

7.825 0.8460.700
1.000

+ SB1 + p(ϖ) + p(m1|θ) 2.4882.472
2.498 1975.5041975.211

1975.702 0.1470.031
0.264 0.0190.015

0.022 45.1180.053
73.485 266.125247.068

297.564 105.62993.597
126.030 15.252 16.741

13.262- -
- 4.6503.925

5.436 96.12080.178
120.024 5.7653.812

7.726 0.8080.707
1.000

6564 Orb6 16.110 1988.84 0.93 0.199 348.00 29. 117. L L L L L
SB9 16.140 1972.74 0.92 L 0.0 L L L L L L L
SB1 16.08516.069

16.105 1924.5581924.497
1924.604 0.9330.926

0.939 0.1970.195
0.198 170.355167.258

172.614 209.454207.753
210.863 120.621118.557

122.872 99.74392.647
105.991 L 29.46824.258

34.375 L L

SB1 + p(ϖ) 16.07816.064
16.095 1924.5751924.525

1924.619 0.9400.936
0.945 0.1960.195

0.198 168.056165.407
170.139 207.952206.326

209.158 122.092120.661
124.688 92.26089.137

94.517 20.87019.795
22.108 23.19321.506

24.880 1.6631.375
1.969 0.9380.848

1.000

SB1 + p(m1|θ) 16.07516.063
16.093 1924.5821924.530

1924.621 0.9420.938
0.947 0.1970.195

0.198 166.560164.749
169.507 207.002205.779

208.712 123.031121.150
125.147 89.72287.754

91.881 22.85422.061
23.324 21.36520.490

22.533 1.2611.177
1.372 0.9540.905

1.000

SB1 + p(ϖ) + p(m1|θ) 16.08016.065
16.095 1924.5691924.523

1924.614 0.9420.938
0.947 0.1960.195

0.197 167.417165.156
169.743 207.453206.090

208.844 122.719121.119
125.011 90.70288.307

92.123 22.44021.938
22.976 21.92321.103

22.750 1.3171.225
1.396 0.9680.926

1.000

7918 Orb6 18.12 1993.630 0.434 0.631 144.3 205.0 98.8. L L L L L
SB9 19.73 1996.999 0.43 L 203.4 L L 3.31 L L L L
SB1 19.73119.701

19.761 1996.9691996.914
1997.007 0.4390.434

0.444 0.6080.603
0.613 201.731200.528

202.536 208.513208.049
208.814 97.54997.045

97.998 3.3233.305
3.331 L 2.9282.893

2.964 L L

SB1 + p(ϖ) 19.72719.702
19.762 1996.9551996.913

1997.007 0.4400.434
0.444 0.6070.602

0.613 201.486200.488
202.522 208.430208.038

208.798 97.65397.008
97.981 3.3193.305

3.331 76.57776.120
76.951 2.9322.893

2.965 0.9910.968
1.032 0.2900.284

0.294

SB1 + p(m1|θ) 19.72919.701
19.761 1996.9621996.913

1997.008 0.4390.434
0.444 0.6090.603

0.613 201.562200.508
202.548 208.476208.037

208.798 97.51197.038
98.000 3.3203.305

3.331 76.05474.771
77.192 2.9252.894

2.966 1.0260.976
1.069 0.2860.281

0.292

SB1 + p(ϖ) + p(m1|θ) 19.73019.703
19.763 1996.9591996.913

1997.006 0.4380.434
0.443 0.6100.604

0.613 201.562200.557
202.583 208.344208.033

208.803 97.40597.023
97.980 3.3203.306

3.332 76.55576.067
76.856 2.9152.892

2.958 1.0080.981
1.035 0.2870.284

0.292

65982 Orb6 3.2448 1994.324 0.551 0.0938 352.3 315.2 10. L L L L L
SB9 3.2526 1994.332 0.641 L 355.8 L L −51.148 L L L L
SB1 3.2323.229

3.236 1984.7021984.663
1984.732 0.5170.503

0.537 0.0990.096
0.101 5.3780.023

12.820 303.150297.656
308.949 25.07816.692

29.869 51.128 51.295
51.020- -

- L 5.7554.465
8.515 L L

SB1 + p(ϖ) 3.2323.229
3.237 1984.7021984.668

1984.734 0.5170.505
0.539 0.0990.096

0.101 5.8340.007
12.737 303.021297.249

308.552 23.46814.228
29.192 51.184 51.297

51.021- -
- 37.85236.578

39.030 6.0174.444
9.592 1.3100.955

1.549 0.2950.201
0.567

SB1 + p(m1|θ) 3.2323.229
3.237 1984.7061984.666

1984.733 0.5180.504
0.538 0.0990.096

0.101 7.1460.014
13.025 301.829297.396

308.687 23.82815.341
29.627 51.161 51.299

51.026- -
- 42.13839.069

44.251 6.1624.463
9.126 0.9090.873

0.951 0.3510.238
0.551

SB1 + p(ϖ) + p(m1|θ) 3.2333.229
3.237 1984.7011984.671

1984.735 0.5370.523
0.546 0.0960.095

0.097 5.8020.291
12.429 302.935296.521

308.101 14.49211.058
17.042 51.202 51.291

51.021- -
- 38.24536.710

39.264 10.1208.577
12.578 0.9200.878

0.955 0.6310.502
0.865

69962 Orb6 18.67 2003.74 0.302 0.348 71.0 285.0 107.9 L L L L L
SB9 18.67 1984.79 0.306 L 67.1 L L 11.55 L L L L
SB1 18.80218.706

18.924 1984.9331984.798
1985.069 0.3010.290

0.313 0.3490.345
0.352 71.74170.489

73.544 285.358284.712
285.900 107.950107.294

108.443 11.54811.391
11.752 L 7.1636.571

7.656 L L

SB1 + p(ϖ) 18.81518.703
18.921 1984.9161984.790

1985.066 0.3010.290
0.312 0.3490.345

0.352 71.96270.453
73.483 285.430284.693

285.877 107.836107.323
108.467 11.50311.389

11.744 44.50442.880
45.843 7.1676.599

7.669 0.9280.827
1.059 0.4680.412

0.525

SB1 + p(m1|θ) 18.83818.707
18.928 1984.8861984.791

1985.071 0.3010.290
0.313 0.3480.345

0.352 71.99670.372
73.510 285.375284.693

285.841 107.840107.308
108.453 11.56411.393

11.747 48.76647.657
51.324 7.2436.597

7.680 0.6640.566
0.721 0.5460.488

0.609

SB1 + p(ϖ) + p(m1|θ) 18.81818.716
18.933 1984.9001984.759

1985.033 0.2980.287
0.310 0.3470.344

0.351 71.62170.232
73.357 285.200284.737

285.920 108.155107.461
108.585 11.55611.404

11.757 46.79345.742
47.815 7.4286.945

7.994 0.7520.700
0.814 0.5330.481

0.593

78401 Orb6 10.802 2011.501 0.9373 0.09894 359.5 175.0 34.12 L L L L L
SB9 10.58 2000.69 0.94 L 179. L L −6.0 L L L L
SB1 10.80810.807

10.810 1979.0721979.069
1979.076 0.9350.934

0.936 0.0990.099
0.099 173.337173.243

173.422 0.0220.000
0.074 35.17034.400

35.937 5.756 6.690
5.131- -

- L 53.31151.447
54.849 L L

SB1 + p(ϖ) 10.80810.807
10.809 1979.0791979.075

1979.082 0.9390.938
0.940 0.0990.099

0.099 180.473179.422
181.696 354.172353.085

355.012 32.22431.268
33.017 6.417 7.127

5.664- -
- 6.3455.120

8.381 56.35254.467
58.265 20.9175.995

38.771 0.5570.381
0.868

SB1 + p(m1|θ) 10.80810.807
10.809 1979.0781979.075

1979.082 0.9390.938
0.940 0.0990.099

0.099 180.786179.448
181.696 353.898353.137

355.054 32.22231.313
33.062 6.308 7.157

5.657- -
- 6.3605.513

8.378 56.30854.391
58.241 20.7635.792

29.902 0.5580.439
0.885
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Table 6
(Continued)

HIP # System P T e a ω Ω i V0 ϖ f/ϖ m1 q
(yr) (yr) (arcsec) (°) (°) (°) (km s−1) (mas) (pc) (M e)

SB1 + p(ϖ) + p(m1|θ) 10.80810.807
10.809 1979.0791979.075

1979.082 0.9390.938
0.940 0.0990.099

0.099 180.822179.417
181.757 353.867353.075

355.062 32.07431.248
33.037 6.571 7.170

5.665- -
- 6.6115.549

7.687 56.23154.481
58.350 18.0908.753

29.606 0.5920.453
0.770

79101 Orb6 1.546 1996.105 0.522 0.0321 351.9 9.1 12.1 L L L L L
SB9 1.535 1969.829 0.47 L 357. L L −16.79 L L L L
SB1 1.5451.544

1.547 1966.7301966.719
1966.748 0.4690.446

0.487 0.0340.031
0.035 351.266348.282

357.003 186.628180.994
192.459 26.9200.929

34.953 16.684 16.769
16.649- -

- L 7.2654.199
143.186 L L

SB1 + p(ϖ) 1.5461.544
1.546 1966.7301966.719

1966.748 0.4680.446
0.488 0.0330.031

0.035 352.102348.254
357.043 187.885180.877

192.396 26.3895.418
31.660 16.691 16.767

16.648- -
- 14.88614.101

15.649 7.4805.522
32.833 4.1362.035

4.975 0.1250.080
0.933

SB1 + p(m1|θ) 1.5441.543
1.546 1966.7581966.751

1966.765 0.4550.439
0.480 0.0330.031

0.035 0.4920.000
1.777 179.048175.432

183.776 20.5205.355
31.150 16.770 16.813

16.712- -
- 17.44614.306

18.710 9.4375.134
32.671 2.3812.104

2.657 0.1970.104
0.937

SB1 + p(ϖ) + p(m1|θ) 1.5461.544
1.547 1966.7281966.719

1966.748 0.4750.450
0.490 0.0330.031

0.034 351.371348.320
357.075 188.084181.365

192.976 7.1865.485
8.725 16.700 16.762

16.644- -
- 15.25814.369

15.716 27.49122.763
34.582 2.3502.147

2.661 0.7230.544
1.000

81023 Orb6 0.61867 1988.4316 0.3067 0.016 20.46 162.7 117.9 L L L L L
SB9 0.6190 1988.431 0.3114 L 20.4 L L −51.33 L L L L
SB1 0.6190.618

0.619 1987.8131987.806
1987.820 0.3100.294

0.328 0.0160.014
0.018 20.19516.889

23.999 161.069153.844
170.946 119.061112.704

130.369 51.260 51.621
50.997- -

- L 33.10228.415
43.433 L L

SB1 + p(ϖ) 0.6190.618
0.619 1987.8191987.812

1987.824 0.2900.279
0.311 0.0230.022

0.024 24.22120.134
27.072 159.663152.259

165.390 107.091103.961
110.598 51.259 51.590

50.999- -
- 23.31422.638

23.984 21.29820.627
21.966 1.2321.117

1.342 0.9860.957
1.000

SB1 + p(m1|θ) 0.6190.618
0.619 1987.8161987.811

1987.823 0.3210.304
0.339 0.0170.015

0.019 21.41218.731
25.428 153.044145.578

160.873 104.075101.142
107.873 51.527 51.858

51.277- -
- 18.01716.349

20.571 27.68824.016
30.199 1.0420.987

1.095 0.9960.988
1.000

SB1 + p(ϖ) + p(m1|θ) 0.6190.618
0.619 1987.8201987.814

1987.826 0.3110.291
0.324 0.0220.021

0.022 23.83420.695
27.220 156.601148.529

161.970 102.925100.258
106.190 51.549 51.785

51.210- -
- 23.64522.849

24.166 21.08320.645
21.844 1.0190.972

1.076 0.9940.989
1.000

99675 Orb6 10.040 1963.012 0.118 0.043 129.8 144.9 104.7 L L L L L
SB9 10.358 2002.19 0.2084 L 204.5 L L −6.421 L L L L
SB1 10.28910.266

10.334 1950.5761950.371
1950.673 0.2010.195

0.210 0.0320.026
0.036 199.239196.551

201.265 306.561294.070
317.579 108.62881.075

134.172 6.377 6.469
6.281- -

- L 158.901142.079
199.955 L L

SB1 + p(ϖ) 10.30310.266
10.333 1950.5171950.374

1950.673 0.2040.195
0.210 0.0360.032

0.041 199.260196.552
201.314 308.176295.824

317.199 100.16378.550
115.655 6.398 6.476

6.292- -
- 3.6293.065

4.082 132.787117.708
155.199 4.9334.031

7.012 0.9300.808
1.000

SB1 + p(m1|θ) 10.29810.266
10.332 1950.5291950.367

1950.668 0.2020.195
0.210 0.0300.026

0.036 198.843196.568
201.305 306.782294.111

316.830 100.93782.350
131.660 6.394 6.476

6.287- -
- 2.4922.094

2.943 160.514142.528
199.997 10.0838.536

11.302 0.6670.623
0.924

SB1 + p(ϖ) + p(m1|θ) 10.30110.264
10.331 1950.5081950.379

1950.679 0.2030.195
0.210 0.0380.033

0.043 198.619196.656
201.390 307.271296.018

317.073 101.00782.384
129.779 6.369 6.474

6.286- -
- 3.1742.716

3.570 128.212113.424
162.508 9.4408.048

10.949 0.6860.631
0.910

109951 Orb6 50.49 1989.88 0.451 0.2834 45.2 206.0 17.7 L L L L L
SB9 50.49 1989.88 0.452 L 45.2 L L −23.04 L L L L
SB1 54.79648.371

61.195 1990.0811989.393
1990.829 0.4070.373

0.465 0.3040.275
0.334 53.91938.455

69.076 262.597256.406
267.213 26.3892.533

34.976 22.921 23.167
22.726- -

- L 22.35613.693
139.427 L L

SB1 + p(ϖ) 54.14549.892
61.842 1990.0331989.503

1990.923 0.4120.371
0.448 0.3010.282

0.336 52.66041.197
70.223 262.345256.813

267.118 24.98015.139
36.338 22.941 23.142

22.705- -
- 15.23314.064

16.111 22.50717.239
33.170 1.7341.174

2.337 0.5220.348
0.974

SB1 + p(m1|θ) 57.14250.329
61.911 1990.2771989.567

1990.943 0.3950.369
0.442 0.3150.285

0.336 59.71742.404
70.114 261.708257.161

267.265 30.19816.674
36.155 22.869 23.137

22.710- -
- 18.46316.757

19.099 20.12717.627
29.597 0.9550.926

0.985 0.5910.506
0.992

SB1 + p(ϖ) + p(m1|θ) 53.03550.393
54.951 1989.7171989.475

1990.167 0.4210.405
0.448 0.2930.284

0.301 49.69441.413
56.121 261.708256.664

267.486 19.87715.208
23.874 22.957 23.153

22.814- -
- 16.84316.488

17.234 29.10926.896
30.299 0.9580.934

0.990 0.9620.859
1.000

115126 Orb6 6.321 2012.301 0.173 0.189 28.3 314.9 44.5 L L L L L
SB9 6.292 2006.032 0.1620 L 212.13 L L 9.9 L L L L
SB1 6.3256.321

6.328 1980.7381980.724
1980.755 0.1600.158

0.163 0.1910.189
0.193 212.995212.552

213.564 341.293340.775
341.807 49.71248.803

50.741 1.613 1.622
1.594- -

- L 8.6958.503
8.856 L L

SB1 + p(ϖ) 6.3256.322
6.328 1980.7371980.724

1980.755 0.1610.158
0.163 0.1910.189

0.193 213.001212.543
213.586 341.154340.807

341.829 49.90048.771
50.711 1.606 1.622

1.595- -
- 44.74943.846

46.018 8.6588.512
8.859 1.1881.055

1.282 0.6330.609
0.676

SB1 + p(m1|θ) 6.3256.322
6.328 1980.7381980.724

1980.754 0.1600.158
0.163 0.1900.189

0.192 213.114212.569
213.577 341.212340.773

341.790 49.57348.802
50.741 1.610 1.623

1.595- -
- 44.29943.910

45.266 8.7268.503
8.853 1.2171.154

1.253 0.6300.615
0.649

SB1 + p(ϖ) + p(m1|θ) 6.3266.322
6.328 1980.7391980.724

1980.755 0.1600.158
0.163 0.1910.189

0.193 213.227212.546
213.570 341.296340.764

341.813 49.88748.835
50.741 1.611 1.623

1.596- -
- 44.75844.095

45.270 8.6478.507
8.837 1.1951.151

1.241 0.6310.615
0.648

Note. In the first two lines of each target we report the values provided by the Orb6 and SB9 catalogs, preserving the significant figures included in those catalogs as an indication of their precision (continued on
next page).
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than one period, are also available. The observations and their
errors are visualized in Figure 14.

Figure 13 shows the posterior distributions of the SB1 cases
with priors as well as the reference case without priors (i.e., a
traditional SB1). These distributions are considerably different
in their MAP values and dispersion compared to the reference
SB1 case. The most significant difference is presented in the
period P, where the posterior distribution of the SB1 case
presents an extremely high uncertainty with an MAP of 31.15
[yr], while the posterior distribution of all the cases with priors
presents much less uncertainty with an MAP of only 2.48 [yr].
The uncertainty in the orbital parameters T, e, ω, i is higher in
the cases with priors compared to the SB1 case, while in the
orbital parameters P, a, Ω, V0, f/ϖ it is lower. The marginal
posterior distribution of the mass ratio q shows that the
uncertainty in the SB1+ p(ϖ) case is the highest, while the
uncertainties in SB1+ p(m1|θ) and SB1+ p(ϖ)+ p(m1|θ) are
almost identical.

The posterior distributions in the observations space are
presented in Figure 14. The MAP estimates in the orbit space in
the cases with priors are almost identical, but very different
from the SB1 case. This is consistent with the important
difference of the posterior distributions obtained for the period
P. The orbital uncertainty in the SB1 case is very high in this
analysis, projecting a dense cloud of feasible orbits. In contrast,
the orbital uncertainty with priors SB1+ p(ϖ), SB1+ p(m1|θ),
and SB1+ p(ϖ)+ p(m1|θ) are confined to a much more limited
ring of possible orbits. All those solutions are less uncertain
than that of the SB1. The projected uncertainties in the orbit
space of the SB1+ p(ϖ) and SB1+ p(m1|θ) cases are very

similar, while the mixed case SB1+ p(ϖ)+ p(m1|θ) presents a
slightly lower uncertainty. Similarly, the uncertainty in the RV
curve on the SB1 case is reduced around the epoch of
observations, but very high at future epochs. In contrast, the
RV uncertainty in the cases with priors presents no variation
between the times with and without observations, preserving
the uncertainty in the SB1 case at the epochs with observations.
No significant differences in the RV curveʼs uncertainty are
observed between the cases with priors. Another relevant
difference between the cases with and without priors is that the
RV curves in the SB1+ p(ϖ), SB1+ p(m1|θ), SB1+ p(ϖ)+
p(m1|θ) cases present a visible lower period than that in the
SB1 case. The period of the first one is visible in the figureʼs
time window, while the period of the last case is much larger
and is not visible in the figureʼs time window. This behavior
coincides with the dramatic differences between the marginal
posterior distributions of the period in the cases with and
without priors presented in Figure 13. Evidently, RV and/or
astrometric observations over a short timescale will quickly
resolve if this is indeed a short-period system.
The tremendous differences observed between the cases with

and without priors show the crucial role that prior information
can play, helping to pin down some orbital parameters, the
orbit, and the RV curves of binary systems when not enough
observations are available.

4.2. HIP 99675

The data for this object consist of few and highly imprecise
astrometric observations in two extreme zones of the orbit, and
abundant and highly precise RV observations of the primary

Figure 13. Marginal posterior distribution and MAP estimates of orbital parameters for the HIP 3504 binary system in the SB1, SB1 + p(ϖ), SB1 + p(m1|θ), and
SB1 + p(ϖ) + p(m1|θ) cases.

Figure 14. Estimated orbit and RV curves for the HIP 3504 binary system. First column: MAP point estimate projection of the posterior distribution for the SB1,
SB1 + p(ϖ), SB1 + p(m1|θ), and SB1 + p(ϖ) + p(m1|θ) cases. Second to fifth columns: projected posterior distribution of the SB1 SB1 + p(ϖ), SB1 + p(m1|θ), and
SB1 + p(ϖ) + p(m1|θ) cases.

20

The Astronomical Journal, 163:220 (29pp), 2022 May Videla et al.



object. The observations and their errors are visualized in
Figure 16.

Figure 15 shows that the posterior distributions of all the
cases are identical for almost all the orbital parameters, with the
exception of a, i, ϖ, f/ϖ, m1, q, where the most significant
differences are observed for parameters ϖ, m1, q. The marginal
posterior distribution ϖ of the mixed case SB1+ p(ϖ)+
p(m1|θ) is between those of the SB1+ p(ϖ) and SB1+ p(m1|θ)
cases presenting the lowest uncertainty, where its MAP
estimation is almost equidistant to the other cases. The
marginal posterior distribution m1 of the mixed case is almost
equal to that obtained with the SB1+ p(m1|θ) case, but the
MAP estimate is very different from the one obtained with the
SB1+ p(ϖ) case, which has the lowest uncertainty. The
posterior distributions of the mass ratio q of the
SB1+ p(ϖ)+ p(m1|θ) and SB1+ p(m1|θ) are very similar,
but quite different from that of the SB1+ p(ϖ) case. Overall,
SB1+ p(ϖ) offers the posterior distribution with the least
uncertainty, followed by the SB1+ p(ϖ)+ p(m1|θ) and
SB1+ p(m1|θ) cases. Unlike all the previous systems studied,
the estimated marginal posterior distribution of ϖ is not equal
to the prior p(ϖ) (represented with the purple error bar) in the
case SB1+ p(ϖ), presenting an appreciable bias even
considering that parameter ϖ is soft-identifiable (i.e., identifi-
able through p(ϖ)). However, this phenomenon is explainable
noting that the estimated posterior distribution of q is saturated
(to it upper bound 1) in this case, not allowing the estimated
posterior distribution of ϖ to fit the imposed prior p(ϖ).

The obtained posterior distributions in the observations
space are presented in Figure 16. The MAP estimators in the
orbit space of all the cases are significantly different and none
of them fit the positional data particularly well. The orbit
uncertainty obtained from those distributions is extremely high

in all the cases, which is expressed by a dense cloud of possible
orbits. The SB1 case presents the highest uncertainty in the
orbit space, followed by the SB1+ p(m1|θ) and SB1+
p(ϖ)+ p(m1|θ) cases, with the SB1+ p(ϖ) case being the
less uncertain. In contrast, the MAP estimates in the RV space
of all the cases are identical, which offers a highly precise
estimation of the RV measurements not directly observed. In
this scenario, we could conclude that future measurements in
the orbit space could really contribute to improve the
estimation of parameters while no further evidence is needed
from RV observations.

4.3. HIP 109951

In this case, the available data consist of abundant and
precise astrometric observations that cover less than half of the
orbit with only one less precise observation in the other half.
There are abundant and highly imprecise RV observations of
the primary object, which are mostly concentrated in a small
segment of the phase, near periastron. The observations and
their errors are visualized in Figure 18.
Figure 17 shows the posterior (marginal) distributions of all

the cases and parameters. They are similar in almost all the
orbital parameters, with the exception of parameters i, ϖ, f/ϖ,
m1, q. The most significant differences are observed for
parameters ϖ, m1, q. The marginal posterior distribution ϖ of
the mixed case SB1+ p(ϖ)+ p(m1|θ) is between those of the
SB1+ p(ϖ) and SB1+ p(m1|θ) cases, exhibiting the lowest
uncertainty, where its MAP estimation is almost equidistant to
the other cases. The marginal posterior distribution m1 of the
mixed case is almost equal to that of the SB1+ p(m1|θ) case,
but very different in its MAP estimates to that of the SB1+
p(ϖ) case, which has the lowest uncertainty. The posterior

Figure 15. Same as Figure 13 but for the HIP 99675 binary system.

Figure 16. Same as Figure 14 but for the HIP 99675 binary system.

21

The Astronomical Journal, 163:220 (29pp), 2022 May Videla et al.



distribution of the mass ratio q of the SB1+ p(ϖ) and
SB1+ p(m1|θ) cases are very similar, but they are quite
different from the SB1+ p(ϖ)+ p(m1|θ) case, where the
mixed case SB1+ p(ϖ)+ p(m1|θ) presents the lowest uncer-
tainty, distantly followed by the SB1+ p(m1|θ) and SB1+
p(ϖ) scenario. In all the cases, the uncertainty in the period P is
very high due to the poor orbital coverage in the astrometric
and RV data. This is reflected in a wide dispersion of the
corresponding marginal posterior distributions.

The obtained posterior distributions in the observations
space are presented in Figure 18. The MAP estimates in the
orbit and RV spaces shows slight but almost negligible
differences between all the cases. The orbit uncertainty
(obtained from the posterior distribution) is high in the segment
of the orbit with no observations, and very small in the segment
of the orbit with observations, which is an expected pattern.
The SB1 case presents the highest uncertainty in the orbit
space, followed by the SB1+ p(m1|θ) and SB1+ p(ϖ) cases,
and concluding with the SB1+ p(ϖ)+ p(m1|θ) case. This last
case has considerably lower uncertainty when compared to all
the other cases. The uncertainty in the RV is low in the zones
with observations, but high in the zones with no observations.
Unlike all the other studied systems, the uncertainty in the RV
increases with time, which is a very interesting feature. This
behavior is attributed to the high uncertainty in the orbital
period P, as all the positional and RV observations are
constrained to a small portion of the orbit. This fact does not
allow an accurate estimation of the orbital period. The lack of a
well-determined period causes the possible RV trajectories to
get out of phase, increasing the uncertainty as time progresses.
Similarly to the results obtained in the orbit space, the SB1 case
presents the highest posterior uncertainty in the RV space,
followed by the results obtained in the SB1+ p(m1|θ) and

SB1+ p(ϖ) cases. In this scenario, the mixed case
SB1+ p(ϖ)+ p(m1|θ) has the lowest uncertainty, being
considerably lower compared to the uncertainties in the RV
space of all the other cases.

4.4. Concluding Remarks

The experimental results presented in this section show the
adequacy and usefulness of the proposed Bayesian inference
methodology to characterize and visualize the posterior
uncertainty in SB1 visual-spectroscopic binary systems.
Interesting results are obtained in some of the binary systems
evaluated. For example, HIP 3504 shows an extremely high
uncertainty in its orbit and RV curve, due to the few available
observations. However, the incorporation of the priors allows
us to radically reduce the (posterior) uncertainty in the
estimates, reaching completely different solutions to the ones
obtained without the prior information. This is reflected in the
tighter orbit and in the RV curve with a lower period in
Figure 14. The drastic change in period is also reflected in the
large difference in the predicted systemic velocity V0 (see
Table 6).
The results obtained for system HIP 99675 show that the

effect of the prior incorporation is mostly concentrated in the
trio of soft-identifiable parameters ϖ, m1, and q, affecting only
slightly the other orbital parameters. This behavior express the
robustness of the estimation when abundant and precise
observations are available. On the soft-identifiable parameters,
we observe that the posterior distributions of the SB1+ p(m1|θ)
and the SB1+ p(ϖ)+ p(m1|θ) cases are similar, but usually
quite different from the case SB1+ p(ϖ). This behavior can be
interpreted as the prior information of the primary object mass
p(m1|θ) being more reliable than the prior on the parallax p(ϖ)

Figure 17. Same as Figure 13 but for the HIP 109951 binary system.

Figure 18. Same as Figure 14 but for the HIP 109951 binary system.
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for this system. Finally, the results obtained for system HIP
109951 show the usefulness of providing a good characteriza-
tion of the uncertainty. In this case, we observe that the
uncertainty in the half portion of the orbit with no observations
is considerably higher than the other half, but most importantly,
the uncertainty in the RV curve visibly increases with time.
This behavior is attributed to the large uncertainty in the period
of the system, making the trajectories of the RV get out of
phase with time.

On the prior information incorporated, we observe that the
posterior distribution of the cases SB1+ p(ϖ) and p(m1|θ) are
very similar to the one obtained in the SB1 case. However the
mixed case SB1+ p(ϖ)+ p(m1|θ) shows a visible uncertainty
reduction in all the orbital parameters with a very similar MAP
value. Regarding the posterior distribution of the mass ratio q
for HIP 109951, we observe that the cases SB1+ p(ϖ) and
p(m1|θ) provide a poor estimation, reflected in a very high
uncertainty. However, the mixed case SB1+ p(ϖ)+ p(m1|θ)
exhibits a much more constrained posterior distribution than
the other cases, considerably differing in their MAP estimates.
It is important to note that, as the posterior distribution on the
mass ratio q of the SB1+ p(ϖ) and p(m1|θ) cases present a
very high uncertainty (with the shape of an almost uniform
distribution), its corresponding MAP estimates are not very
reliable, but the mixed case SB1+ p(ϖ)+ p(m1|θ) does. This
last result shows the relevance of incorporating both sources of
prior information to obtain more robust estimates, and it
explains the large variation in the predicted q in the three cases
with priors. Indeed, a similar behavior was already seen in the
case of the benchmark HIP 89000 (see the bottom right panel
on Figure 7).

By looking at Table 6 we can see that, besides HIP 109951
discussed above, two other cases have large variation in the
predicted q depending on the prior used, namely, HIP 65982
and 79101, and we discuss them in turn. For HIP 65982 the
mixed case induces a large bias in some orbital parameters and
a considerable increase in the uncertainty for q; see the
corresponding probability density functions (pdfs) in our
website. For these reasons, in this case, one should probably
favor the SB1+ p(ϖ) solution (which is similar to the
SB1+p(m1|θ) case), and a rather small value of q∼ 0.3

For HIP 79101, the most notable ”feature” is a bimodal
distribution of the pdf (see our website) for the auxiliary
parameter f/π in the SB1+ p(π) and SB1+ p(m1|θ) scenarios
(the MAP value is the left peak), which is ”resolved” by the
mixed priors case (unimodal), in which the MAP value
coincides now with the right peak (which shows also that the
value is not biased), all of which is also reflected in the
distribution of q values. Therefore, in this case it would seem
that the mixed case is preferred as it has less uncertainty in q
(for the other scenarios the distribution of q is very broad), and
it is not biased. A final note regarding this system: Skiffʼs
catalog of spectral types (Skiff 2014) gives a broad range of
possibilities between B8V and A0V, B9IV, B9III, and even
A0II, from 15 different sources, our adopted value being a
B9V. Considering its reported V= 4.27 on SIMBAD, and its
adopted trigonometric parallax in Table 5, we predict
MV=+ 0.14; this corresponds indeed to a B8V–B9V from
Abushattal et al. (2020). On the other hand, a B9IV should
have MV=− 0.05, a B9II should have MV=− 0.50, and an
A0II should have MV=− 3.4, all of which are far from our

observed values. We thus conclude that our adopted spectral
type is indeed reasonable.

5. Conclusions and Final Comments

The Bayesian methodology for the inference of orbital
parameters in SB1 binary systems with a visual orbit proposed
in this paper allows us to provide a computationally efficient,
robust, and precise estimation of the corresponding joint
posterior distributions of these parameters. This inference is
implemented through the No-U-Turn sampler MCMC algorithm,
which allows the incorporation of prior information of the stellar
system to constrain the inference in scenarios with imprecise or
missing data. The flexibility of this sampling scheme to add prior
information is very useful for an estimation of individual
component masses in SB1 visual-spectroscopic binaries.
An exhaustive experimental analysis has been carried out for

the validation of the proposed methodology. We study the quality
of the inference by comparing the estimated posterior distribution
of well-studied SB2 visual-spectroscopic binaries with their SB1
visual-spectroscopic counterparts by omitting the RV observations
of the companion object. Our results show a negligible difference
between the estimated posterior distributions of the orbital
parameters (and their uncertainties) and the benchmark (full
observation) case, in which the RVs of both components are
considered. This is a very promising result, showing that partial
observations (SB1 case) offer a good estimation performance.
Our empirical results indicate that the incorporation of prior

information of the system (through the trigonometric parallax
and the mass of the primary object) allows an estimation of the
mass ratio of the system (and hence the individual component
masses) with good precision. The incorporation of the prior
distributions makes those parameters identifiable, where the
derived estimationsposition, dispersion, and shape of the
marginal posterior distribution strongly depend on the prior
chosen. This prior knowledge has also an influence on the
estimated posterior distribution of the other orbital parameters.
The impact and relevance of incorporating priors on the
inference of previously identifiable orbital parameters (that are
already identifiable without the incorporation of the priors)
depend on the abundance, precision, and orbital coverage of the
available observations. In particular, it is observed that if the
system is precisely determined, the impact of the prior on the
estimation of those set of parameters is negligible, as expected.
Our numerical results show that the lowest estimation error

(from the optimal MAP estimator of all the systems analyzed)
on the systemʼs mass ratio, with respect to the full-information
scenario (with both RV observations), was achieved by the
mixed case that incorporates prior information of trigonometric
parallax and a mass for the primary object simultaneously
(4.92 %), while the highest error was obtained by incorporating
a prior only to the mass of the primary alone (7.44%),
achieving a percentage error lower than 8%. It is shown that the
closest marginal posterior distribution to the full-information
scenario in the KLD sense was achieved by the incorporation
of a prior on the system parallax alone. The lowest similitude
was obtained by the incorporation of a prior on the primary
object mass alone, which is attributed to the fact that the
parallax prior information is probably more reliable and precise
than the prior on the mass of the primary star, at least for our
benchmark systems. Overall, the incorporation of both priors
was the most beneficial to the accuracy of the MAP estimates,
where, when more information is provided, better estimation
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can be obtained. Large differences in the posterior distribution
of parameters depending on the prior imposed could signal that
one of them is biased, and should thus be taken with caution.

Taking advantage of the flexibility and richness of our
sample-based methodology, the differences between the
estimated posterior distributions in all the studied cases was
also analyzed in the corresponding observations space. This
novel analysis provides a better understanding of the effect of
the different sources of information on the shape and
uncertainty in the orbit and RV curves of the stellar systems.
Finally, we applied the proposed Bayesian framework to 12
previously unstudied SB1s with astrometric data, providing a
complete analysis of the obtained results.

The present work addresses the classical orbital parameters
estimation of binary stellar systems through a Bayesian
perspective, emphasizing the importance of providing not only
an estimation, but also a complete characterization of the
posterior distribution of the orbital parameters. This approach
allows us to provide an uncertainty quantification of the
inference process (as many classical optimization-fitting
methods roughly provide), but it also allows us to visualize
the uncertainty in the orbit itself in the observations space. This
last dimension in our analysis is fundamental to decide what
(and when) future measurements are required to improve the
precision of the estimation. In this way we show how an in-
depth statistical analysis can provide important insight from an
observational planning perspective.
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Appendix A
Orbital Model

A.1. Visual Binary Systems

A visual binary (or visual double system) corresponds to a
gravitationally bound binary system in which the relative

positions of both components are observable. The positional or
astrometric observations in binary systems measure the relative
position of the fainter or companion object with respect to the
brighter or primary object. Depending on the technique used to
obtain the astrometric observations, these can be classified
roughly into micrometric, photographic, or interferometric
positional measurements.
The solution of the differential equation of the motion is

described by Keplerʼs laws (Equation (A2)), assuming both
objects behave as point masses (detached binaries), where in
the case of binary stars, it corresponds to an elliptical orbit
where the primary star is in the focus and the area swept by the
radius vector is constant per unit time. This elliptical orbit,
denoted as the real (relative) orbit, is characterized by four
orbital parameters:

Period (P): The revolution period in years.
Time of periastron passage (T): One epoch of passage through

the periastron (minimum true distance between the
components) in years and fraction of a year.

Semimajor axis (a): The major semiaxis of the elliptical true
orbit in seconds of arc.

Eccentricity (e): The numerical eccentricity.

The astrometric observations are position measurements of
the projection of the real orbit on the plane of the sky relative to
the observer (plane of reference), denoted as apparent orbit.
Three additional parameters are necessary to project the real
orbit into the apparent orbit:

Longitude of the ascending node (Ω): The position angle from
a reference direction to the ascending node10 in the plane
of reference (ranging from 0° to 360°).

Argument of periapsis (ω): The angle from the node to the
periastron in the real orbit, following the direction of
motion (ranging from 0° to 360°).

Inclination (i): The angle between the plane of projection and
that of the true orbit (ranging from 0° to 180°).

It is worth pointing out that two values for the longitude of
the ascending node (Ω and Ω+ϖ) result in identical apparent
orbits. Therefore, the ascending node cannot be identified by
positional observations. By convention in astronomy, if the
ascending node is undetermined, the value of Ω is placed in the
first two quadrants, i.e., from 0o to 180o.
On the specifics, the position on the apparent orbit (ρ, θ) at a

certain time t (the ephemerides formulae) involves the
determination of the position in the real orbit and its projection
to the apparent orbit. The position on the real orbit involves the
determination of the three orbital anomalies: the true anomaly ν
(t), the eccentric anomaly E(t), and the mean anomaly M(t), in
terms of the orbital parameters P, T, a, and e.
The true anomaly ν(t) is defined as the angle between the

periapsis and the current position of the companion object in
the orbit, as seen from its main focus (the position of the
primary object). This angular parameter can be determined by
the following geometrical identity:

t E t
tan

2
tan

2
, A1e

e

1

1

( ) ( ) ( )n
= +

-

where E(t) is the eccentric anomaly. The eccentric anomaly is
defined as the angle between the periapsis and the intersection

10 Point where the real orbit of the object passes through the plane of reference.
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of a perpendicular line to the semimajor axis of the orbit and
the position of the companion object in the orbit, as seen from
its central point. This angular parameter can be determined by
the numerical resolution of Keplerʼs equation11:

M t
t T

P
E t e E t

2
sin , A2( ) ( ) ( ) ( ) ( )p

=
-

= -

where M(t) is the mean anomaly of the orbit. The mean
anomaly represents the angular movement of the companion
object in the orbit (similar to the true anomaly) but at a uniform
rate. The uniform rate of movement is represented by a circle
circumscribed to the orbit. Therefore, the mean anomaly is
defined as the angle between the periapsis and the point in the
circle circumscribed to the orbit, as seen from its central point,
that covers the same area per unit time as the true anomaly.
This angular parameter corresponds to the revolution period of
the companion object in the orbit, i.e., M(t)= 2π(t− T)/P.

Finally, the position on the real orbit is projected to the
apparent orbit through the angular parameters ω, Ω, and i:

t t i
t r t t t

tan tan cos ,
cos sec , A3

( ( ) ) ( ( ) ) ( )
( ) ( ) ( ( ) ) ( ( ) ) ( )

q n w
r n w q

- W = +
= + + W

where r t a e e t1 1 cos2( ) ( ) ( ( ( )))n= - + is the radius
vector.

The procedure to compute the position on the apparent orbit
in rectangular coordinates (X, Y) at a certain time t involves
determining the normalized rectangular coordinates in the true
orbit x, y:

x t E t e

y t e E t

cos ,

1 sin , A42

( ) ( )

( ) ( ) ( )

= -

= -

with E(t) the eccentric anomaly determined in Equation (A2).
Therefore, the position on the true orbit is computed by a
ponderation of the normalized coordinates:

X t Ax t Fy t
Y t Bx t Gy t

,
, A5

( ) ( ) ( )
( ) ( ) ( ) ( )

= +
= +

where A, B, F, and G are the so-called the Thiele–Innes
elements, defined as:

A a i
B a i
F a i
G a i

cos cos sin sin cos ,
cos sin sin cos cos ,

sin cos cos sin cos ,
sin sin cos cos cos . A6

( )
( )
( )
( ) ( )

w w
w w
w w
w w

= W - W
= W + W
= - W - W
= - W + W

The terms (A/a, B/a) and (F/a, G/a) are interpreted as the
direction cosines of the major and minor axes, respectively, of
the orbit in the rectangular coordinate system formed by the
tangential plane and the north direction (more specifically, X
(or x) and Y (or y) point in the north and east directions,
respectively). The Thiele–Innes elements form a one-to-one
correspondence with the elements a, Ω, ω, i.

A.2. Spectroscopic Binary Systems

A spectroscopic binary system corresponds to a binary
system in which the spectral lines of the light emitted by its

components are observable. The movement of the stars in the
orbit produces variations in the spectral lines observed as a
consequence of the Doppler effect: Blue or redshifted lines are
measured when the stars move toward or away from the
observer. The Doppler shift of the components’ spectral lines
measured through a spectrometer results in RV observations of
the objects.
The RV V at a certain time t can be calculated as the sum of

the RV of the systemʼs center of mass VCoM (a constant as the
system is assumed to be free from external forces), and the
radial part of the orbital velocity of the observed component
relative to the center of mass of the system, z dz dt = :

V t V z t . A70( ) ( ) ( )= +

Following the resolution of the two-body problem, the radial
component of the system can be expressed as:

z t r t isin sin , A8( ) ( ( ) ) ( ) ( )n w= +

and therefore by taking the first temporal derivative, we have
that:

z t
a i

P e
e t

2 sin

1
cos cos . A9

2
( ) ( ) [ ( ( ) )] ( ) p

w n w=
-

+ +

Denoting K a i P e2 sin 1 2( )p= - as the semi-amplitude
of the RV curve, the above expression becomes:

V t V K e tcos cos . A100( ) [ ( ( ) )] ( )w n w= + + +

Therefore, the RV V(t) is characterized by six orbital
parameters:

Period (P): The revolution period in days.
Time of periastron passage (T): One epoch of passage through

periastron, typically expressed in Julian Date (J.D.).
Eccentricity (e): The numerical eccentricity.
Argument of periapsis (ω): The periastron longitude, counted

from the maximum of the RV curve.
Semi-amplitude (K ): The semi-amplitude of the RV curve in

km s−1.
Velocity of the center of mass (V0): The RV of the center of

mas of the system in km s−1 (sometimes referred to as the
systemic velocity as well).

Although parameters P and T do not appear directly in the
expression of the RV in Equation (A10), they are implicit in the
determination of the true anomaly ν (Equation (A1)).
According to the convention for the units of the orbital
parameters involved, the semi-amplitude K is measured in
km s−1, whereby a isin( ) must be measured in km, and P must
be converted to seconds through P[s]= 86400 · P[days].
Equation (A10) is valid for the relative orbit r r r2 1

  
= - ;

however, the RV observations are relative to the center of mass
of the system. To correct this discrepancy, the semimajor axis a
of the relative orbit must be replaced by their counterparts a1
and a2 of the components relative to the center of mass of the
system.
By the definition of the center of mass of a system composed

by two particles of mass m1 and m2, the following relation is
directly obtained:

m a m a , A111 1 2 2 ( )=
11 The Kepler equation is commonly resolved using the Newton–Raphson
method (Ypma 1995).
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and noticing that a= a1+ a2, the following expressions for a1
and a2 are obtained:

a a
m

m m
a

q

q

a a
m

m m
a

q

1
,

1

1
, A12

1
2

1 2

2
1

1 2

· ·

· · ( )

=
+

=
+

=
+

=
+

where q=m2/m1 is defined as the mass ratio. Consequently,
the semi-amplitude of each component becomes:

K
a i

P e

K
a i

P e

1

86400

2 sin

1
,

1

86400

2 sin

1
. A13

1
1

2

2
2

2

( )
( )

( )
( )

( )

p

p

=
-

=
-

Finally, noting that the argument of periapsis of the primary
ω1 and companion ω2 components of the system differs by
180°, we have that ω= ω1= ω2+ π, the expression for the RV
of each component of the binary system becomes:

V t V K e t
V t V K e t

cos cos ,
cos cos . A14

1 0 1

2 0 2

( ) [ ( ) ( ( ) )]
( ) [ ( ) ( ( ) )] ( )

w n w
w n w

= + + +
= - + +

It is important to note that the terms a isin1 ( ) and a isin2 ( ) in the
definition of the semi-amplitudes (Equation (A13)) cannot be
separated through RV observations.

When the spectra of both components are distinguishable,
i.e., the RV of the primary and the companion object are
observable, the system is denoted as SB2 and is characterized
by the vector of orbital parameters ϑSB2= {P, T, e, K1, K2, V0}.
However, this is an infrequent case as most of the spectroscopic
binary system observations are only from the primary (brighter)
object (∼80%). When the primary object spectrum is the only
observable, the system is denoted as SB1 and is characterized
by the vector of orbital parameters ϑSB2= {P, T, e, K1, V0}, as
parameter K2 is undetermined.

A.3. Visual-spectroscopic Binary Systems

The term visual-spectroscopic binary systems corresponds to
binary systems in which the relative position and the RVs of its
components are observable. As four orbital parameters P, T, e,
ω are common in the visual and spectroscopic binary systems,
the dynamical equations are coupled and joint modeling that
describes both sources of information (positional and RV
observations) allows to lift the ambiguities and indeterminacy
of each individual set of equations. Furthermore, joint
modeling allows to determine the individual masses of the
system and its parallax, called orbital parallax.

RV observations allows us to solve the indeterminacy of the
longitude of the ascending node Ω in the visual binary case, as
the maximum/minimum of the RV curve of each component is
reached in the ascending/descending node. Conversely, the
positional observations allow us to decouple the term a isin( ) in
the spectroscopic binary case, as we can determine the
inclination i of the orbit.

The individual masses of a binary system can be computed
through the determination of the total mass of the system
m1+m2 and the mass ratio q=m2/m1. According to the third

law of Kepler, the total mass of the system is obtained through:

m m
a

P

au
, A151 2

3

2

[ ] ( )+ =

where a[au] is the relative semimajor axis of the system (in
astronomical units), P the period of the system (in seconds),
and m1, m2 are the masses of the primary and the companion
objects (in solar masses), respectively. As positional observa-
tions in the plane of the sky only allow us to determine the
semimajor axis a in angular units (seconds of arc), the
conversion to linear distance units (au) is determined by the
following expression:

a
a

au , A16[ ] [ ] ( )
v

=
¢¢

where ϖ is the system parallax (in seconds of arc), which
becomes then an additional orbital parameter required to
determine the individual masses.
For the computation of the mass ratio q, the combination of

positional and RV observations is required. Considering that
the RV observations can determine the terms a isin1 ( ) and
a isin2 ( ) and the positional observations can determine the
inclination i, both sources of observations allow to determine
the individual semimajor axis of each component (a1 and a2)
and the mass ratio q= a1/a2 (A11).
Considering Equation (A16), the RV expression in

Equation (A14) becomes12:

V t V
a i

P e
t e

V t V
a i

P e
t e

2 sin

1
cos cos ,

2 sin

1
cos cos , A17

1 0
1

2

2 0
2

2

( ) [ ( ( )) ]

( ) [ ( ( )) ] ( )

p
w n w

p
w n w

= +
-

+ +

= -
-

+ +

with a a q q11 · ( )v= ¢¢ + , a a q1 12 · ( )v= ¢¢ + , and
a¢¢ the semimajor axis in arcseconds.

If the RV observations of each component (V1(t) and V2(t))
are available (SB2 case), the combined model that describes the
positional and RV observations is characterized by the set of
orbital parameters ϑVB+SB2= {P, T, e, a, ω, Ω, i, V0, ϖ, q}.
However, if the RV observations of only one component are
available (SB1 case), parameters q and ϖ cannot be
simultaneously determined.

Appendix B
The Hamiltonian Monte Carlo and the No-U-Turn Sampler

B.1. Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (Neal et al. 2011; Betan-
court 2017), also known as hybrid Monte Carlo, is an instance
of the Metropolis–Hastings algorithm that makes use of the
geometry of the target probability distribution to guide the
transitions of the Markov chain. This allows to perform the
sampling very efficiently, avoiding a random-walk behavior of
the solution and oversensitivity to correlated parameters. These
features facilitate convergence on high-dimensional target
distributions much more quickly than with other simpler
methods, such as the random-walk Metropolis–Hastings
(Metropolis et al. 1953; Hastings 1970) or the Gibbs samplers
(Geman & Geman 1984).

12 The units conversion between the common orbital parameters of
Section A.1 and Section A.2 is omitted for simplicity.
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The core of the Hamiltonian Monte Carlo method is to
sample from the zone of the parameter space that contributes
highly to the computation of the expectation of a target
distribution P(x) given a parameterization f (x) of the parameter
space  :


f f x P x dx, B1P( ) ( ) ( ) ( )ò=

or in other words, to sample from the area of the parameter
space of highest mass P(x)dx given a parameterization f (x).
This zone is denoted as the typical set.

For that purpose, the transitions of the Markov chain must be
guided by a vector field in the direction of the typical set by
exploiting the differential structure of the target distribution.
Hence, the vector field is generated by using the gradient of the
target distribution together with auxiliary parameters of the
momentum, which compensates for the attractive force of the
gradient to the target distribution mode, preserving a dynamical
equilibrium that allows to align the generated vector field with
the typical set.

A conservative dynamic in physical systems requires that
any compression or expansion in the position space must be
compensated with a respective expansion or compression in the
momentum space, preserving the volume in the joint space of
position and momentum. To ensure this conservative dynamic
behavior, the transition probabilities of the chain follows the
Hamiltonian dynamics. The Hamiltonian dynamical system is
described by a function over the position x and momentum p
variables, known as the Hamiltonian function H(x, p).

Let x dÎ  be the vector of parameters of the space state and
P(x) the target distribution, each dimension of the space state is
complemented by a fictitious momentum variable:

x x p, , B2( ) ( )

where p dÎ  . The combined space of the parameters
x p, d2( ) Î  is denoted as the phase space and the respective
induced distribution P(x, p) is denoted as the canonical
distribution.

To mimic the conservative dynamic behavior of the space
variables and the momentum variables, the canonical distribu-
tion is written in terms of the Hamiltonian function13:

P x p e, , B3H x p,( ) ( )( )= -

which implies that:

H x p P x p, log , . B4( ) ( ) ( )= -

Hence, the Hamiltonian function captures the probabilistic
structure of the phase space and consequently the geometry of
its typical set.

A marginalization of the canonical distribution P(x, p) in
terms of the state variable p induces the following decomposi-
tion of the Hamiltonian function H(x, p):

H x p P p x P x
K p x V x

, log log
, . B5

( ) ( ∣ ) ( )
( ) ( ) ( )

=- -
º +

The decomposition can be interpreted in terms of a kinetic
energy K(p, x) function, dependent upon both the spatial and
momentum variables, and a potential energy function V(x),
dependent upon the momentum variables only. The potential

function is simply the negative logarithm of the target
distribution, while the kinetic energy is usually expressed as
a quadratic term on p:

K p p M p
1

2
, B6T 1( ) · · ( )= -

where M is a symmetric, positive-definite matrix denoted as
mass matrix. The mass matrix is typically a scalar multiple of
the identity matrix, but can it explicitly depend on x as in
Equation (B5).
With these elements, the vector field oriented in the direction

of the typical set can be defined through the Hamiltonian
equations:

dx

dt

H

p

K

p

dp

dt

H

x

K

x

V

x
. B7( )

=+
¶
¶

=
¶
¶

=-
¶
¶

= -
¶
¶

-
¶
¶

Following the vector field (determined by the Hamiltonian
equations for a time t), we can generate trajectories ft(x, p) that
move along the typical set. To compute these trajectories, the
solution of Equation (B7) is obtained by numerical methods. In
particular, the trajectory fT(x, p) at a time T can be
approximated by the leap-frog integration method iterating
the following expressions L times:

 

  

   

p t p t
V

x
x t

x t x t
m

p t

p t p t
V

x
x t

2
2

2

2
2

, B8

i i
i

i

i i
i

i

i i
i

i

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( ( )) ( )

/

/

/

+ = -
¶
¶

+ = + +

+ = + -
¶
¶

+

where L is the number of integration steps, i is the integration
step index,  Î + is the step size, and T= ⌊L/ò⌋ is the
integration time. The adequate selection of the algorithm
hyperparameters ò and L is crucial for a good sampling
performance.
In summary, the Markov chain that samples from the target

distribution P(x) will follow the Metropolis–Hastings algorithm
defined in the phase space (x, p) with the transition probabilities
T x p x p, , ,L L0 0( ) ( ) determined by the solution of the Hamiltonian
equations, following the leap-frog integration method for a
fixed number of steps L and step size ò. The momentum
variables are sampled from a proposal marginal distribution
P(p|x) and the final samples of P(x) are obtained by projecting
the samples of the phase space on the state space (x, p)→ x,
i.e., ignoring the momentum variables.
The transition probabilities of the current Markov Chain

must be modified as the transition ratio in the Metropolis–
Hastings (Hastings 1970) acceptance probability T x p x p, , ,L L 0 0( ) ( )
T 0 1 0x p x p, , ,L L0 0( ) ( ) = = , because the leap-frog integration
does not allow reverse trajectories. Thus, the transition
probabilities are modified to be reversible by augmenting the
numerical integration with a negation step that flips the sign of
momentum (x, p)→ (x, − p). Thereby, the Metropolis–
Hastings acceptance rate becomes:

13 It follows the Boltzmann canonical distribution P(x) = z−1e−E( x)/ t, with z a
normalization constant and t the temperature variable fixed to one.
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The complete Hamiltonian Monte Carlo sampling procedure is
described in Algorithm 1.

Algorithm 1. Hamiltonian Monte Carlo.

Parameters: N T M, , ,
Initialize x 0( )

for i N0 < do
Sample u ~ ([0, 1]), p ~ (0, M)


x x p p L, ,i T

0 0 ⎢
⎣

⎥
⎦

( )¬ ¬ ¬
for l L0 < do

p p xl l
V

x l2
1
2

( )¬ -+
¶
¶

x x pl l l1 1
2

¬ ++ +
p p xl l

V

x l1 2
1
2

( )¬ -+ +
¶
¶

if u emin 1, H x p H x p, ,L L 0 0( )( ) ( )< - - + then
x xi

L
1( ) ¬+

else
x xi i1( ) ( )¬+

B.2. No-U-Turn Sampler

The No-U-Turn sampler algorithm (Hoffman & Gelman
et al. 2014) is an extension of the Hamiltonian Monte Carlo
algorithm that adaptively sets the number of steps L of the
trajectories, facilitating the use of the sampling tool by avoiding
a low-performance selection of the Hamiltonian Monte Carlo
user-defined hyperparameters. The selection of the number of
steps L follows the computation of forward and backward
exploration trajectories of the Hamiltonian Monte Carlo
algorithm until an end condition is met, where the new sample
is obtained by a random selection of the generated trajectories.

To generate the exploration trajectories, a binary tree is
constructed iteratively. Let (xn(0), pn(0)) be an initial particle
composed by the position and momentum of the n-th iteration
of the Markov chain, x p,n n( )+ + be a forward-in-time particle,
and x p,n n( )- - be a backward-in-time particle. In each iteration j,
the binary tree selects at random uniformly to move the ( j− 1)
particle forwards or backwards in time, with 2j number of leap-
frog integration steps.

The iterative procedure continues until the following
condition (namely, the U-Turn condition) is met:

x x p x x p0 0, B10n n n n n n( ) · ( ) · ( )- <  - <+ - - + - +

e U e U , B11H x p
n

H x p
n

, ,n n n nmax max ( )( ) ( )<  <- +D - +D+ + - -

where U e0,n
H x p0 , 0n n( )( ( ) ( ))~ - is the slice random variable

sample, and maxD is the maximum energy hyperparameter. The
idea of the No-U-Turn condition is to avoid the generation of

redundant trajectories by stopping the exploration when the
trajectory begins to turn back to previous explored zones.
Finally, the new sample (xn+1, pn+1) is selected by a uniform

sampling of the generated trajectory that satisfies the precision
conditionU en

H x p,n n1 1( )< - + + . The complete No-U-Turn sampler
sampling procedure is described in Algorithm 2.

Algorithm 2. No-U-Turn Sampler.

Parameters:  x M, , ,0  Plog=
for m = 1 to M do
Sample   p I u x p p0, , 0, exp m0 1 1

2
0 0( ) ([ ( ( · ))])~ ~ --

Initialize x x x x p p p p x x, , , ,m m m m1 1 0 0 1= = = = =- - + - - + -

Initialize j n s1, 1, 1= = =
while s = 1 do
Sample v 1, 1j ({ })~ -
if v 1j = - then

x p x n s, , , , , ,- - ¢ ¢ ¢¬- - BUILDTREE ( x p u v j, , , , ,j
- - )

else
x p x n s, , , , , ,- - ¢ ¢ ¢¬+ + BUILDTREE ( x p u v j, , , , ,j

+ + )
if s 1¢ = then
With probability min 1, n

n( )¢ : x xm ¬ ¢

n n n s

s x x

p

x x

p

j

j

,

0

0 ,

1

[( ) ·

] [( ) ·

]

¬ + ¢

¬ ¢ -

-

¬ +

+ -

-

+ -

+









BUILDTREE( x p u v j, , , , , ):
if j = 0 then

  x x p xx
1

2
( ( ))¢ ¬ + + 

 p p xx
1

2
( )¢ ¬ ¢ +  ¢

n u x p pexp 1

2
[ { ( ) · }]¢ ¬ ¢ - ¢ ¢ 

s u x p pexp max
1

2
[ { ( ) · }]¢ ¬ < D + ¢ - ¢ ¢

return x p x p x n s, , , , , ,¢ ¢ ¢ ¢ ¢ ¢ ¢
else

x p x p x n s, , , , , ,¢ ¢ ¢¬- - + + BUILDTREE( x p u v j, , , , 1,- )
if s 1¢ = then
if v 1= - then

x p x n s, , , , , ,- - ¢¢ ¢¢ ¢¢¬- - BUILDTREE( x p u v j, , , , 1,-- - )
else

x p x n s, , , , , ,- - ¢¢ ¢¢ ¢¢¬+ + BUILDTREE( x p u v j, , , , 1,-+ + )
With probability n

n n

¢ ¢
¢ + ¢ ¢

: x x¢ ¬ ¢¢
s s x x p x x p0 0[( ) · ] [( ) · ]¢ ¬ ¢¢ - -+ - - + - +   

n n n¢ ¬ ¢ + ¢¢
return x p x p x n s, , , , , ,¢ ¢ ¢- - + +

B.3. Implementation Considerations in the Binary Stars
Context

The implementation of the proposed Bayesian inference
methodology based on the No-U-Turn sampler algorithm
requires to compute the gradient of the posterior function,
which can be analytically derived from the Keplerian model
formulae presented in Section A by taking the partial
derivatives with respect to each orbital parameter that
characterizes the binary stellar system. However, a special
consideration must be taken with the partial derivatives of
the eccentric anomaly E, as it is not analytically calculated,
but rather numerically approximated. The nonzero partial
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derivatives of the eccentric anomaly can be expressed as a
function of the variable itself as follows:

E

e

E

e E
E

T P e E
E

P

t T

P e E

sin

1 cos
,

2 1

1 cos
,

2 1

1 cos
, B12

2

·

( ) · ( )

p

p

¶
¶

=
-

¶
¶

=-
-

¶
¶

=-
-

-

with the value of E previously approximated by any numerical
method (e.g., the Newton–Raphson method; Ypma 1995).
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