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Use of Fall Cones to Determine Atterberg Limits: A Review 

B. C. O’Kelly, P. J. Vardanega and S. K. Haigh 

 

ABSTRACT 

This paper reviews the percussion-cup liquid limit (LL), thread-rolling plastic limit (PL), and 

various fall-cone and other approaches employed for consistency limit determinations on fine 

soil, highlighting their use and misuse for soil classification purposes and in existing 

correlations. Since the PL does not correspond to a unique value of remoulded undrained 

strength, there is no scientific reason why plastic limit measurements obtained using the 

thread-rolling and strength-based fall cone or extrusion methods should coincide. Various 

correlations are established relating LL values deduced using the percussion-cup and fall-cone 

approaches. The significance of differences in the strain-rate dependency on the mobilised 

fall-cone strength is reviewed. The paper concludes with recommendations on the 

standardisation of international codes and the wider used of the fall-cone approach for soft to 

medium stiff clays in establishing the strength variability with changing water content and 

further index parameters. 

 

Keywords: Atterberg Limits; Consistency Limits; Liquid Limit; Plastic Limit; Measurement; 

Review 

 

INTRODUCTION 

The liquid limit (LL) and plastic limit (PL) tests are among the most commonly specified tests 

in the geotechnical engineering industry and originate from the original research of Atterberg 

(1911a, 1911b), which was subsequently standardised for use in civil engineering applications 

by Terzaghi (1926a, 1926b) and Casagrande (1932, 1958) and adopted for the classification 

of fine-grained soils. These Atterberg limits have been used for numerous purposes, 

including: to estimate strength, deformation and critical-state soil mechanics parameters (e.g. 

Skempton (1944, 1954, 1957), Karlsson and Viberg (1967), Wroth and Wood (1978), Stroud 

(1974), Wroth (1979), Carrier and Beckman (1984), Larsson et al. (1987), Nakase et al. 

(1988), Wood (1990), Tripathy and Mishra (2011), Sorensen and Okkels (2013) and Farias 

and Llano-Serna (2016)). The liquidity index (IL) parameter is used in codified design 

approaches for deep foundations in Russia (see Vardanega et al. (2012), Vardanega and Haigh 
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(2014a) and Kolodiy et al. (2015)) and in geomorphological research to characterise soils at a 

more regional level (e.g., Amir-Faryar et al. (2015) and Stanchi et al. (2015)).  

 

The coincidence of Atterberg limit values obtained using different testing methods has been a 

subject of considerable discussion. This paper begins by defining the various consistency 

limit parameters, their measurement methods and associated problems. The significance of 

differences in operator performance and judgement in PL determinations from the rolling out 

of soil threads is assessed in terms of some established correlations with the consistency 

limits. Alternative methods for PL determination are reviewed, including various fall-cone 

approaches, but since these are strength-based they do not measure the onset of brittleness and 

hence cannot measure the true PL. The significance of plausible differences in the strain-rate 

dependency on the mobilised fall-cone strength for different test soils is demonstrated. 

Various correlations are established relating LL values deduced using the main measurement 

techniques and standards, such that discrepancies between the different liquid limit measures 

can be taken into account when these are substantial. The paper concludes with 

recommendations on the standardisation of international codes and the wider used of the fall-

cone approach as appropriate for soft to medium stiff clays in establishing the variability of 

strength with changing water content and further index parameters. 

 

Consistency limits 

Figure 1 shows schematically the relative locations of various index parameters positioned on 

the scale of water content, with their indicative remoulded undrained strength ranges 

presented in Fig. 2. A logarithmic scale is used for undrained strength since the correlation 

between the increase in undrained strength with reducing water content for a given soil can be 

derived from a semi-logarithmic plot or, alternatively, from a bi-logarithmic plot (after 

Kodikara et al., 1986, 2006). Each of these parameters is defined and their relative merit 

discussed in the following sections. 

 

Liquid limit 

Notionally the liquid limit of a soil is the water content at which it transitions from liquid to 

plastic behaviour. As the soil never has zero shear strength, the LL is determined as the water 

content associated with an arbitrarily chosen (low) strength on a continuum of ever-

weakening behaviour with increasing water content. The LL value is strongly dependent on 

the soil grading, composition and mineralogical properties, particularly those of the clay 
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fraction, and also the quantity of interlayer water in the case of expanding clay minerals 

(Dolinar and Trauner, 2004; Trauner et al. 2005; Wood, 1990).  

 

As the liquid limit is only precisely defined by the test used to measure it, rather than 

representing some sudden change in behaviour, the value obtained for liquid limit is highly 

dependent on the technique used to measure it. This is problematic owing to the lack of 

worldwide standardisation of liquid limit techniques and equipment. Two techniques, the 

Casagrande percussion cup and fall-cone (cone penetrometer) methods have been adopted as 

the standard measurement approaches, with the former favoured in the United States of 

America (ASTM, 2010; AASHTO, 2010) and the latter adopted as the preferred approach in 

the United Kingdom (BSI, 1990) and by Eurocode 7 (BSI, 2007).  

 

Within each of these two methods further variation exists. Casagrande (1958) bemoaned the 

lack of standardisation in percussion-cup device bases in use at that time, two decades after 

the test was introduced, saying “Unfortunately, no effort was made to specify the [base] 

hardness by a standard hardness test”. When the test was standardised, each country appears 

to have taken the approach of mandating the range of devices in use in their country at that 

time, leading to a wide variety of base hardness and resilience values being specified for the 

percussion cup device, with no standardisation between countries (Haigh 2016). While such 

devices are often distinguished as soft- and hard-base devices, considerable variability exists 

even within each of these categories. 

 

The fall-cone test is essentially an assessment of soil strength, relying on the work of Hansbo 

(1957) who related the penetration depth (d) of a fall-cone of weight W to the soil’s 

remoulded undrained strength via: 

𝑠u FC =
𝐾𝑊

𝑑2            (1) 

where K is the fall-cone factor. 

 

The effect of cone angle on the K factor from Equation (1) (and by definition the computed 

undrained shear strength) has been studied by various researchers (e.g., Houlsby, 1982; Wood 

1985; Brown and Huxley, 1996).  
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The fall-cone LL test suffers from less variability in equipment and execution than the 

Casagrande cup test, in most localities utilising a standard 30o–80g cone penetrating 20 mm at 

liquid limit (i.e. LLFC), this corresponding to a shear strength of approximately 1.7 kPa. Other 

cone angles and masses have been used, such as the ‘Swedish cone’ (i.e. 60o–60g cone 

penetrating 10 mm at LLFC (e.g., Karlsson (1961)), which was also advocated by Koumoto 

and Houlsby (2001). Other ‘non-standard’ cones have been reported; e.g. a 30o–148g cone 

was used in the study of Sivapulliah and Sridharan (1985). As with the Casagrande cup 

apparatus, there are variations in the fall-cone LL approaches specified in different codes 

(involving cones of different masses and apex angles, with the index property values usually 

deduced for different cone penetration depths), and as such, the strength assumed for the fall-

cone LL condition varies somewhat between different codes (cf. Budhu (1985), Leroueil and 

Le Bihan (1996) and Koumoto and Houlsby (2001)).  

 

Plastic limit 

The plastic limit of a soil is the water content at which it transitions from ductile to brittle 

behaviour. Unlike the liquid limit, this is a sudden definite change in behaviour that could in 

theory be measured with a variety of tests, each of which would be expected to give the same 

result. The international standard method for PL determination involves manually rolling out 

a thread of soil on a glass plate until it crumbles at a specified diameter (ASTM, 2010; BSI, 

1990), possibly being caused by air-entry or cavitation within the soil thread (Haigh et al. 

2013). It has been shown that the thread diameter requirement for the crumbling condition 

(specified as about 3.0 mm (BS 1377-2: BSI, 1990) or 3.2 mm (ASTM D4318–10e1: ASTM, 

2010)) is not critical, with no statistically significant trend of varying water content with the 

soil thread diameter at failure (2–6 mm range investigated) reported for a variety of mineral 

(Prakash et al., 2009; Haigh et al., 2013, 2014) and organic (O’Kelly, 2015) soils. 

 

REPEATABILITY OF THE THREAD ROLLING TEST 

It has been argued that the values deduced by the thread-rolling method are overly dependent 

on operator performance and judgement (e.g., Sherwood (1970), Sherwood and Ryley (1970), 

Whyte (1982), Belviso et al. (1985) and Sivakumar et al. (2009)). To investigate this point, 

reported PLs determined independently by four site investigation laboratories for 11 inorganic 

fine-grained soils of intermediate to very high plasticity (see Table 1) were considered. The 

maximum difference in the measured PLs for a given soil type was 8%, although Sherwood 
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(1970) reported that the variation for engineering practice can be up to 12%. Using the data in 

Table 1, the significance of the maximum variation in the measured PLs for the different soils 

was assessed in the present study for four established and widely used correlations that make 

use of PI or IL. 

 Insitu undrained shear strength (
(insitu)us ) as a function of plasticity index (PI) for 

normally consolidated soil given by Eq. 2 (e.g., Skempton (1954, 1957), which was later 

validated by an extended database in Wood (1990) — albeit with more scatter being 

shown than originally present in the work of Skempton). 

𝑠u (insitu)

𝜎𝑣𝑜
′ = 0.11 + 0.37𝑃𝐼        (2)  

where 'vo is the insitu vertical effective stress. 

 

 Effective angle of shearing resistance as a function of logarithm PI for normally-

consolidated reconstituted and undisturbed clays (Eq. 3, reported in Sorensen and Okkels 

(2013), based on a database of previously published data): 

 𝜙′
𝑛𝑐

= 43 − 10log10(𝑃𝐼)    [R2 = 0.41, n = 233]   (3) 

 

 The empirical factor ( FV ) used to obtain overconsolidation ratio (OCR) from normalised 

field vane strength ( voFVu  s ) data presented in Mayne and Mitchell (1988): 

  48.0

voFVu
FV 22





 PI

s

OCR


  [n = 263]     (4) 

 Remoulded undrained shear strength as a function of liquidity index (Eq. 5, after Wroth 

and Wood (1978)). 

 Lu 6.4exp170]kPa[ Is          (5) 

 

Based on the data in Table 1; for Eqs. 2–4 which make use of PI, the percentage variation in 

su (insitu)/'vo from its mean value would range between 2.2% and 10.7% considering all 11 

soils, with respective values of 0.33% and 1.72% for 'nc and 1.1% and 5.2% for FV . In all 

cases considered, the minimum and maximum variations from the mean occurred for the 

Donegal Clay and Kaolin material, respectively, with these examples demonstrating that 

depending on the correlation and soil type considered, the potential variation can be 
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significant (e.g., in the case of the su (insitu)/'vo value for the Kaolin), but in many correlations 

may not be. However, other correlations that make use of liquidity index (and activity) to 

evaluate other soil characteristics are likely to be influenced to a more significant degree. For 

instance, differentiating Eq. 5 gives 

Luu δ6.4δ Iss            (6) 

so that an error of, for instance, 0.1 in LI  would give rise to an error of 46% in the estimate 

of su. 

 

ALTERNATIVE APPROACHES FOR PL DETERMINATION 

Mechanical thread-rolling 

Attempts to improve on the standard PL test include the thread rolling methods proposed by 

Gay and Kaiser (1973) and Bobrowski and Griekspoor (1992), a mechanically adapted 

version of the Bobrowski and Griekspoor’s device (Temyingyong et al., 2002), and Barnes 

(2009, 2013a, 2013b). The Barnes’ apparatus can measure indicative stress and toughness 

values for the soil thread during the rolling out procedure, with control of the strain rate, but 

the added complexity introduced into the test does not substantially alter the results obtained 

for PL. Apart from the Bobrowski and Griekspoor (1992) approach, (a thread rolling device 

that comprised two flat plates covered with paper), which was subsequently adopted as a PL 

rolling device in ASTM (2010) and AASHTO (2000), none of the other proposed rolling 

methods have, to date, been adopted more widely. Further, the PLs obtained using the 

Bobrowski and Griekspoor device have been shown to generally underestimate the standard 

(thread rolling) PLs (Bobrowski and Griekspoor, 1992; Rashid et al., 2008; Ishaque et al., 

2010), most likely because the paper tends to lead to inhomogeneity of the soil thread, the 

outside becoming drier than its centre, during the rolling out procedure. 

 

Strength-based approaches 

Many researchers have attempted to devise various strength-based approaches to the 

measurement of plastic limit. These are, in general, based on the assumption of a 100-fold 

gain in strength between the liquid and plastic limits, as proposed by Wroth and Wood 

(1978). As evident from Fig. 3, the strength gain factor (RMW) for the traditionally defined 

plastic range is often significantly less than the assumed one-hundredfold increase. Prakash 

(2005) and Nagaraj et al (2012) also cautioned against assigning a fixed strength value at 

plastic limit. As explained in Haigh et al. (2013), the assumption of a 100-fold factor increase 
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derives from the following passage in Schofield and Wroth (1968), who were examining the 

data of Skempton and Northey (1952) (shown on Figure 4): 

“experimental results with four different clays give similar variation of strength 

with liquidity index . . . From these data it appears that the liquid limit and plastic 

limit do correspond approximately to fixed strengths which are in the proposed 

ratio of 1:100.” 

 

Houston and Mitchell (1969) also recognised that variability of undrained strength at PL was 

present (their bounds are shown also on Figure 4). However, (as reviewed in Vardanega and 

Haigh, 2014b) the data of Skempton and Northey (1952) show variations in the strength gain 

factor (RMW) value, which ranged between 70 and 160 for the four soils considered. Karlsson 

(1977) reported RMW = 50–100 for some Swedish clays and Whyte (1982) suggested RMW ≈ 

70. Vardanega and Haigh (2014b) demonstrated using a database of 101 soils that the ratio of 

computed strengths from plastic limit to liquid limit was on average to be closer to 34.3 

(when fall-cone strength, FCus , was fitted to IL) and 83.5 (when FCus  was fitted to 

logarithmic liquidity index). Simply based on analysis of historical data, as the ratio of 

strengths at the plastic and liquid limits varies substantially between soils, these strength-

based approaches can only coincidentally give true PL values, actually measuring what might 

be termed the plastic strength limit (PL100); i.e. the water content corresponding to FCus  = 100 

 )(FCu LLs . 

 

Fall cone (Wood and Wroth, 1978; Belviso et al., 1985; Wasti, 1987; Harison, 1988; Feng, 

2000, 2001, 2004; Koumoto and Houlsby, 2001; Sharma and Bora, 2003; Lee and Freeman, 

2009; Shimobe, 2010; Sivakumar et al., 2015), steady monotonic penetration (Stone and 

Phan, 1995; Stone and Kyambadde, 2007), fast-static loading (Sivakumar et al., 2009) and 

extrusion (Timár, 1974; Whyte, 1982; Medhat and Whyte, 1986; Kayabali and Tufenkci, 

2010a, 2010b; Kayabali, 2011a, 2011b, 2012; Kayabali et al., 2016) approaches for PL 

determination have all been suggested as alternatives to the conventional thread-rolling 

approach. As mechanical tests, these strength-based approaches are seen by some researchers 

as means of achieving higher degrees of repeatability and reproducibility of results, although, 

to date, most fall-cone research has been conducted on well-behaved clay-rich soils  that lie 

above the A-line on the standard plasticity chart (ASTM, 2011; BSI, 2015). While these tests 
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do not measure the onset of brittleness and hence cannot measure the true plastic limit, they 

may in many cases be measuring a more useful parameter. If what is wanted is an indication 

of the variability of strength with changing water content, a strength test seems much more 

appropriate than a test of the onset of brittleness. 

 

Other proposed approaches 

Some researchers have attempted to devise relationships between the PL and other soil 

parameter measurements, including suction data (Uppal, 1966; McBride, 1989; McBride and 

Bober, 1989), effective stresses from consolidation tests (Youssef et al., 1965; Nuyens and 

Kockaerts, 1967; McBride and Bober, 1989; McBride and Baumgartner, 1992) and soil 

moisture tension (Livneh et al., 1970; Gadallah, 1973). However, since there is no unique 

value of suction, effective stress or undrained shear strength at the plastic limit for all soils, 

this invalidates these techniques for PL determinations.  

 

As the plastic limit occurs at the onset of brittleness, methods of measurement based on the 

onset of cracking should in theory have a better chance of giving similar results. Attempts to 

do this include the cube method (Abdun-Nur, 1960) and indentation (de Oliveira Modesto and 

Bernardin, 2008) and thread bending (Moreno-Maroto and Alonso-Azcárate, 2015) tests; the 

latter based on the measurement of bending deformations. For the indentation test proposed 

by de Oliveira Modesto and Bernardin (2008), the force applied to a 30o cone was slowly and 

steadily increased in order to indent the soil test-specimen, which was considered to be in a 

plastic state if the perforation mark printed on it presented no cracks. In other words, the 

deformation response indicates whether the soil is in a brittle (crack formation) or plastic 

state, rather than the magnitude of the applied force or indentation hardness. This approach 

can be contrasted with cone penetration methods in which a specified indentation depth for a 

particular load (i.e. the soil strength) is taken as the measurement of the plastic strength limit 

(e.g. Stone and Phan (1995)). Andrade et al. (2011) present a review of some other 

approaches for determination of soil plasticity, such as the ‘Pferfferkorn’, ‘Penetration’, 

‘Capillary Rheometer’ and ‘Torque Rheometer’ methods. 

 

Other factors influencing deduced Atterberg limit values 

Other factors including the soil fraction tested, sample preparation technique adopted (i.e. 

testing of fine soil in its natural condition or of the homogenous soil paste produced using wet 

(preferred) or dry sample preparation techniques) and the chemistry and pH of any water 
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added to the soil sample in preparing the soil paste for testing (Jang and Santamarina, 2016) 

can also influence the deduced values of liquid limit and plastic limit. For instance, the LL and 

PL values measured for peats and other organics soils are invariably strongly dependent on 

these factors (Hanrahan et al., 1967; Hobbs, 1986; Yang and Dykes, 2006; Asadi et al., 2011; 

O’Kelly, 2015). In the case of fibrous peat material, preloading (which gives the organic 

solids some stress history because of their compressible nature) produces lower LL values. 

Greater mechanical breakdown of the peat solids during sample preparation produces lower 

LL, PL and PI values, especially for less humified material (O’Kelly, 2015), such that 

measured plastic ranges were notional and unlikely to meaningfully correlate with mechanical 

(strength) behaviour (Hobbs, 1986; O’Kelly, 2015, 2016a; O’Kelly and Zhang, 2013). 

Further, the pH of water affects the cation exchange capacity of fine soil, such that even usage 

of distilled water in changing the consistency of the material for laboratory testing can lead to 

different remoulded shear strength and hence different LL than what might happen for the 

field material (Torrance and Pirnat, 1984). Sridharan (1991, 2014) gives a detailed review of 

the effects of varying exchangeable sodium on the liquid limit of kaolinitic and 

montmorillonitic soils. 

 

PL100: A new parameter for soil mechanics practice? 

Having recognised the important distinction between the true plastic limit and that measured 

by strength based tests, the ‘PL’ determined by the fall-cone approach has been referred to as 

the plastic strength limit (Haigh et al., 2013) PL100 (Harison, 1988; Stone and Kyambadde, 

2007; Stone and Phan, 1995; Kyambadde and Stone, 2012; Haigh et al., 2013; O’Kelly, 2013; 

Kyambadde et al., 2014; Sivakumar et al., 2015), with the subscript 100 indicating that the 

defined strength is 100 times the strength mobilised for the fall-cone LL ( )(FCu LLs ). This 

assumes that cones having identical apex angle and surface roughness values are used in 

identifying both LLFC and PL100and, furthermore, that the strain-rate dependency of the soil 

remains the same (as considered in the next section).  

 

Vardanega and Haigh (2014b) demonstrated from analysis of a large database of fall-cone test 

results that, for any given soil, acceptable linear correlations could be drawn between both the 

logarithm of strength and liquidity index and the logarithm of strength and a logarithmic 

liquidity index. While the ratios of strengths at the plastic and liquid limits varied between 

soils, defining any two (or more) points on these linear relationships would give good 
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predictions of strengths at intermediate water contents. The measurement of PL100 together 

with the LLFC would achieve this. By adopting a strength gain factor of 100 for the plastic 

range in defining the PL100, however, more often than not, one would end up testing soils in 

their brittle state (i.e. w < PL) for water contents around PL100. This has implications for the 

preparation of the test-specimens for fall-cone testing near the PL100 (Wood and Wroth, 1978; 

Whyte, 1982; Wasti and Bezirci, 1986; Harison, 1988; Stone and Phan, 1995; Feng, 2000), in 

that for many cases sample preparation is difficult and some test-specimens are likely not to 

be saturated, and calls into question the use of Hansbo’s Eq. 1 for non-ductile materials. For 

PL100 < PL, the strain-rate dependence and deformation mode of the soil test-specimen will be 

significantly different for water contents between the PL100 and the PL (i.e. brittle state), as 

compared with w >PL, which brings into question the validity of any data extrapolation 

techniques for the scenario described. 

 

An alternative and prudent approach, therefore, is to employ a lower RMW value (<< 100) in 

defining the water content corresponding to the chosen fall-cone upper strength value (i.e. 

giving PLx > PL). For instance, Koumoto and Houlsby (2001) suggested using RMW = 10 (i.e. 

FCus  of 17 kPa), although this would result in a narrow strength range of 1.7–17 kPa in 

considering correlations between water content and FCus  values. By adopting a higher 

strength gain factor (RMW > 10), the likelihood of the test soil occurring in a brittle state for 

water contents about the associated upper FCus  value will progressively increase (refer to Fig. 

3). These tend to be conflicting requirements; on the one hand seeking to encompass a wide 

enough range of undrained strengths, but also requiring that the test soil is in a plastic state for 

water contents about the chosen upper FCus  value. On the basis of the ratios of strengths at 

the plastic and liquid limits reported in Haigh et al. (2013), the water content corresponding to 

25 times the strength mobilised at LLFC (defined as PL25; i.e. FCus  = 42.5 kPa) would 

approximate the lowest expected strength value at the PL and also allow a good prediction to 

be made of the strength variation between LL and PL. For the standard 30°–80g fall cone, the 

proposed PL25 corresponds to a 4-mm penetration depth.  
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STRAIN RATE EFFECTS 

For the fall-cone test, the strain rate changes continuously as the cone accelerates under 

gravity from a stationary position, penetrating the test-specimen and then decelerates before 

coming to rest, with the strain rate also dependent on the cone characteristics and penetration 

depth. For instance, typical mean strain rate (  ) values of ~ 1.0106%/h (0.89106–

1.15106%/h for d = 15–25 mm) and 2.5106%/h (1.94106–3.37106%/h for d = 15–25 mm) 

were reported for the 30o–80g and 60o–60g cones, respectively (Koumoto and Houlsby, 

2001). For fall-cones incorporating a falling distance before the cone tip contacts the surface 

of the test-specimen (e.g. Sivakumar et al. (2015)), the strain rate would be greater. 

 

The undrained strength of soil increases by approximately 10% per tenfold increase in strain 

rate (Ladd and Foott, 1974; Kulhawy and Mayne, 1990; Koumoto and Houlsby, 2001) (i.e. μ 

= 0.1, where μ is the rate dependence parameter). It is, however, not uncommon for the rate of 

strength increase to range between 5% and 15% (Ladd and Foott, 1974), with values of up to 

30% measured for high organic content soils (O’Kelly, 2014, 2016b).  Hence, for soil material 

having a greater rate dependence of strength, the average undrained strength value mobilised 

over the course of the cone penetration would be lower than that deduced from analysis of the 

fall-cone data using Eq. 1, and vice versa. 

 

To demonstrate the effect of plausible differences in strain rate dependence on the mobilised 

fall-cone strength for different mineral soils, it can be deduced from Eq. 7 and Fig. 5 that, 

compared with the commonly assumed μ value of 0.10, the K value for the same smooth 30o 

cone could potentially vary by –16.9% (μ = 0.15) to +25.4% (μ = 0.05). In other words, 

putting aside uncertainty regarding the cone roughness (adhesion factor), the static strength 

mobilised for the 30o fall cone can vary by up to ±20.3% from the value computed using Eq. 

1, depending on the soil’s level of strain-rate dependence in the probable range of μ = 0.05–

0.15. 

 2tan

3
2 



chN
K   (Koumoto and Houlsby, 2001)    (7) 

where  is the cone apex angle, Nch is a dimensionless bearing-capacity factor that takes into 

account the heave of the soil surface resulting from the cone’s penetration and ζ is the ratio of 

the ‘static’ ( FCus ) to fall-cone dynamic (
dus )strength  values. 
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For the 30o–80g fall-cone test (BS EN 1377–2: BSI, 1990) and assuming a semi-rough cone 

(i.e. with adhesion factor ( value of 0.5 => Nch = 7.952, after Hazell (2008)), this would 

imply an FCus  range of 1.6–2.4 kPa for the LLFC condition, as defined by d = 20 mm. Note, 

using Hansbo’s K values of 0.80 and 0.27 for the 30° (80 g) and 60° (60 g) cones, 

respectively, Farrell et al. (1997) computed )(FCu LLs of 1.57 and 1.59 kPa, respectively; 

consistent with the lower end of the identified LL strength range. Assuming the μ value of a 

given test soil remains unchanged with reducing water content and providing the test soil 

remains in a plastic condition; on this basis, the FCus  value mobilised for a heavier 30o–8kg 

fall cone at d = 20 mm (i.e. at PL100) could range between 160 and 240 kPa. Note that with 

RMW = 100 and )(FCu LLs  = 1.7 kPa, the FCus  value of 170 kPa is near the lower end of the 

identified PL100 strength range.  

 

Heretofore, it has generally been taken that the LLFC corresponds to a fixed strength value; 

e.g. from theory, FCus  = 2.66 kPa for the 30o–80g at LLFC, after Koumoto and Houlsby 

(2001), although this strength value seems rather high, with the Casagrande LL value 

normally taken, on average, as 1.7 kPa (Wroth and Wood, 1978). However, the above 

example demonstrates that even for a given cone setup, the )(FCu LLs value mobilised can vary 

relatively significantly and will also vary between setups having different cone characteristics 

and penetration depths used in defining the LLFC.  

 

For pile design, studies of glacial soils and submarine soil investigations for offshore 

structures, etc., the design engineer is interested in the remoulded undrained strength, but as 

demonstrated earlier, the soil’s level of strain rate dependence in the plausible range of μ = 

0.05–0.15 has a significant influence on the mobilised FCus  value. From this point of view, 

displacement-controlled fall cone devices (e.g., the soil mini-penetrometer for quasi-static 

undrained strength determinations described by Stone and Kyambadde (2007)) offer a more 

reliable approach in determining undrained strength and PL100 values since adjustments for 

strain-rate effects are not necessary. 
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GEOTECHNICAL CORRELATIONS 

It has been demonstrated that the precise liquid and plastic limit values obtained for any given 

soil depend substantially on the techniques used to measure them. The values of liquid and 

plastic limit obtained are used both in order to classify soil and to determine other soil 

parameters through correlation. It is the outcome of these processes which is more important 

to design than the precise values of liquid and plastic limit obtained. 

 

The standard plasticity chart (ASTM, 2011; BSI, 2015) was developed from that proposed by 

Casagrande (1947) based on LL and PL values deduced using the ASTM Standard 

percussion-cup and thread rolling methods. Hence, from a purist’s viewpoint, only the 

Casagrande LL (LLcup) and thread-rolling PL (but not LLFC (Prakash and Sridharan, 2006; 

Prakash et al., 2009)) values should be used for soil classification purposes using the standard 

plasticity chart or in the multitude of correlations with directly useful design parameters built 

up over the decades using LLcup and standard PL data. As in many countries the LLcup is no 

longer measured, it is useful to investigate the correlation between LLFC and LLcup values such 

that account can be taken of discrepancies between the different liquid limit measures when 

these are substantial. 

 

Comparison of the fall-cone LL and Casagrande LL 

Liquid limits obtained using the Casagrande cup and fall-cone apparatus share a similar 

approach, despite the difference in measurement technique. The Casagrande cup (Haigh, 

2012) and the fall-cone (Kuomoto and Houlsby, 2001) measure the shear strength of the soil 

and this is associated with LL. The Casagrande cup device imposes shock loading to the soil 

test-specimen as the cup repeatedly impacts against the apparatus base, initiating a slope 

failure. This scenario has been shown to measure a certain specific strength (i.e. strength 

divided by soil density) value at LLcup of approximately 1 m2/s2 (Haigh, 2012). The LLFC on 

the other hand corresponds to a fixed reference strength value, independent of soil density.  

This difference accounts for the systematic bias between these two approaches with higher 

values being obtained for the Casagrande cup device compared to the fall cone for high liquid 

limit materials. A semi-logarithmic relationship of decreasing shear strength for the LLcup with 

increasing values of liquid limit was identified by Youssef et al. (1965). Haigh (2012) 

demonstrated that using an appropriate correction for this factor gave good agreement 

between LLcup and LLFC results, without the necessity of invoking different strength regimes 
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for high PI and low PI soils, as has been suggested by Sridharan et al (1999) and Sridharan 

and Prakash (2000). 

 

Many studies have reported on the relationship between LLcup (Casagrande 1932, 1958) and 

LLFC (e.g., Karlsson, 1961; Škopek and Ter-Stepanian, 1975; Littleton and Farmilo, 1977; 

Garneau and LeBihan, 1977; Moon and White, 1985; Queiroz de Carvalho, 1986; Wasti and 

Bezirci, 1986; Wasti, 1987; Christaras, 1991; Koester 1992; Mohajerani, 1999; Prakash and 

Sridharan, 2006; Deka et al., 2009; Claveau-Mallet et al., 2012), with the divergence of these 

measurements well noted for w > ~ 120% (Škopek and Ter-Stepanian, 1975; Wasti, 1987; 

Leroueil and Le Bihan, 1996; Farrell et al., 1997; Mohajerani, 1999; Feng, 2001; O’Kelly, 

2013). 

 

For soil having a low liquid limt (< 50% (Budhu, 1985); < 60% (Prakash and Sridharan, 

2006)), the LLcup deduced for the hard base cup and the LLFC deduced for the 30o–80g fall-

cone produce broadly comparable results (Wasti and Bezirci, 1986), since this fall-cone setup 

was benchmarked to produce essentially the same results as the Casagrande cup device. For 

the low to medium LL soils commonly used in engineering works, LLcup is generally slightly 

lower than LLFC, as demonstrated by Belviso et al. (1985), Wasti and Bezirci (1986) and Di 

Matteo (2012), to name a few. For instance, Di Matteo (2012) reported that for fluvial-

lacustrine soils from Central Italy, LLFC was about 2.2–2.8 points higher than LLcup. Hence, 

with PL obtained from thread-rolling, a general small increase in PI occurs for low to medium 

liquid limit soil when LLFC is used in the calcualtion. While this small change in the measured 

liquid limit valuewith a change in method does not represent a change in material behaviour, 

in some instances it is sufficient to change the classification of a soil from suitable to 

unsuitable (or vice versa) owing to precise thresholds of allowable LL and (or) PI values. For 

instance, Di Matteo et al. (2016) reported specific problems that arose when LLFC was 

adopted over LLcup in PI calculations for assessments of the suitability of deposits for two 

earthworks projects in Italy. It was found that for 18% of the soil samples investigated, the 

classification position according to the standard plasticity chart changed, moving them toward 

groups with poorer geotechnical qualities, resulting in contradictory and wrong classification 

compared with that deduced for LLcup. 

 

Inconsistencies may also arise for fall-cone LL testing of fine soils having high silt and (or) 

sand contents, which plot below the A-line on the standard plasticity chart, and also for high 
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and very high plasticity soils (Prakash and Sridharan, 2006; Poulsen et al., 2012). These 

inconsistencies should be taken into account when changing the standard method of testing, 

with classification boundaries being moved to respect the inherent relationship between the 

liquid limit values obtained using the two different approaches. 

 

Correlating fall-cone LL with Casagrande LL 

In order to achieve the desired corrections to soil classification procedures, correlations are 

required between results obtained from the two approaches for LL determinations. In this 

section, using a large database (see Table 2) assembled from the literature, correlations are 

established relating LLFC with LLcup determined for different standards. For each dataset 

considered, LLcup results determined for the British and ASTM Standards’ soft- and hard-base 

percussion cups, respectively, were reported along with the corresponding British Standard 

(BS) (30°–80g cone) LLFC test results. The available data allowed separate regression analyses 

considering: (i) LLFC versus BS ‘soft base’cup (LLBS cup) (Figures 6 and 7); (ii) LLFC versus 

ASTM ‘hard base’cup (LLASTM cup) (Figures 8 and 9). The following regression curves were 

obtained from Figures 6 to 9: 

 

LLFC = 1.86  LLBS cup
0.84  [R2 = 0.98, n = 216] full range of LL  (8) 

 

LLFC = 1.62  LLBS cup
0.88  [R2 = 0.96, n = 199] for LLBS cup < 120%  (9) 

 

LLFC = 1.90  LLASTM cup
0.85  [R2 = 0.97, n = 199] full range of LL  (10) 

 

LLFC = 1.45  LLASTM cup
0.92  [R2 = 0.97, n = 188] for LLASTM cup < 120%  (11) 

 

Eqs. 8 to 11 are shown plotted on Fig. 10. Compared to the hard Micarta base of the ASTM 

cup device, the softer rubber base of the BS cup device consistently gives higher liquid limit 

values since more energy is absorbed by it during the repeated impacts of the cup holding the 

soil test specimen (Norman, 1958; Whyte, 1982; Sridharan and Prakash, 2000; Haigh, 2016). 

For this reason, Haigh (2016) cautioned against direct comparisons of LLcup results from the 

soft- and hard-base Casagrande cup approaches due to differences in base hardness. 
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Consistent with the findings of Belviso et al. (1985), Wasti and Bezirci (1986), Prakash and 

Sridharan (2006) and Di Matteo (2012); from Eqs. 8–11, the BS LLFC is slightly greater than 

both the LLBS cup and LLASTM cup for low and intermediate LL soil. Strong divergence between 

LLcup and LLFC is also evident for the combination of BS LLFC with both LLBS cup and LLASTM 

cup, as evident in Figs. 6, 8 and 10 (supporting the findings of Škopek and Ter-Stepanian, 

1975; Wasti, 1987; Leroueil and Le Bihan, 1996; Farrell et al., 1997; Mohajerani, 1999; Feng, 

2001). 

 

RECOMMENDATIONS FOR THE FUTURE 

Methods for measuring LL 

Despite the long history of the Casagrande cup apparatus and the enormous amount of data 

derived from it used in correlations, the lack of consistency between different apparatus (even 

when nominally they corresponding to the same standard) makes it non-ideal for such a 

widely used test. Even if the will were present to do so, the complexity of ensuring that base 

hardness was standard between devices at manufacture and remained so through their 

working life would be difficult with such a wide variety of devices in current usage. A 

standardised fall-cone device is a more appropriate methodology for measuring liquid limit in 

such a way as to get the same result, independent of where and when the test is undertaken. 

 

An internationally standardised fall-cone LL setup should specify the cone mass, apex angle, 

surface roughness and penetration depth at the LL. Although the 60o cone is less sensitive to 

variations in cone roughness (Koumoto and Houlsby, 2001) and, as a result, can arguably 

produce greater repeatability between geotechnical laboratories, the 30o cone is in much wider 

use and from this consideration would be the more obvious choice for international 

standardisation. However, an internationally standardised fall-cone LL setup will not 

overcome variations in mobilised )(FCu LLs arising from differences in the strain rate 

dependency of strength between different soils. 

 

Proposed method for measuring PL25 and PL100 

At present, no substantially better method of measuring the onset of brittleness has been 

developed than Atterberg’s thread-rolling method. If a standard fall-cone setup is to be used 

for the liquid limit test, however, it would be of value to consistently report a further 

parameter, termed the PL25; i.e. the water content corresponding to 25  )(FCu LLs  at which the 
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strength is approximately 42.5 kPa. For the standard 30°–80g fall cone, the proposed PL25 

corresponds to a 4-mm penetration depth. Note, the strengths corresponding to the LLFC and 

PL25 are termed the fall-cone lower strength parameter and fall-cone upper strength parameter 

( )(FCu 25PLs ), respectively. This approach would allow better correlations to be achieved 

between strength and a new fall-cone consistency index (IFC; Eq. 12) for soft to medium stiff 

clays than can be achieved with a conventional liquidity index based on the onset of 

brittleness at IL = 0. 

25FC loglog

loglog

PLLL

wLL
I FC

FC



   (12) 

 

with IFC being defined in logarithmic form since the bi-logarithmic undrained strength–water 

content correlation provides a regression coefficient value closer to unity compared with the 

semi-logarithmic form when considering a wide water content (plastic range) for a given soil. 

 

In the proposed framework, the fall-cone strength ( FCus ) value corresponding to any water 

content value within the plastic range (w < PL) can then be approximated as: 

  )(FCu)(FCu)(FCu)(FCuFCu log)25(loglogloglog
25 LLFCLLLLPLFC sIsssIs   (13) 

 

which simplifies to the following equation (i.e., assuming )(FCu LLs  = 1.7 kPa for IFC = 0): 

23.04.1log FCu  FCIs          (14) 

 

Equation 14 gives an FCus  value of 42.5 kPa for IFC = 1 (i.e. at PL25), with the approximation 

sign in this equation reflecting probable differences in the mobilised FCus  value on account of 

the different rate dependence of different soils. In a similar way, these equations can be used 

to estimate the FCus  values corresponding to PL100 (i.e. IFC = 25log100log = 1.43) and more 

generally PLx, including the corresponding water content values. Further, if the standard PL 

has also been measured using the thread-rolling method, the corresponding FCus  value and 

hence RMW value can be estimated using the same approach. 
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Consistency of reporting using appropriate terminology 

Liquid and plastic limit values are often reported in the literature without reference made to 

the methods and (or) standards used for their determination, which introduces additional 

uncertainty in using these data correctly for soil classification purposes or in correlations. 

Hence, it is important that appropriate terminology, including references to the test 

methodologies employed in deducing these index values, are reported (e.g. the fall-cone LL 

test performed to the British Standard gives the British Standard LLFC value (BS EN 1377–2: 

BSI, 1990)), both for the test results and when reporting allowable ranges in design codes of, 

for instance, liquid limit or in correlations with other soil parameters. 

 

SUMMARY 

The variation of techniques and equipment used to measure liquid limit can result in 

substantial variations in the measured values for a given soil. The fall-cone LL device is a 

more appropriate methodology, with the 30°–80g fall cone recommended as the international 

standard. As demonstrated in the paper, the mobilised liquid-limit strength will still vary 

slightly between different soils, depending on their strain-rate dependence of strength. 

 

While Atterberg’s thread-rolling method may appear unscientific, it is currently the most 

appropriate technique to use if the water content for the brittle–ductile state transition is 

required. The strength-based approach employed with the fall-cone methods cannot be used to 

determine Atterberg’s PL. Further, since the strength gain over the plastic range is, on 

average, significantly less than 100, the PL100 water content is frequently less than Atterberg’s 

PL water content; i.e. the soil would be tested while in a brittle state for water contents near 

the PL100. 

 

To overcome difficulties (e.g. specimen preparation, the need for significant extrapolation on 

cone penetration depth against water content plots and significantly different strain-rate 

dependence expected for the brittle and plastic soil), the authors recommend PL25 (to replace 

PL100) as the fall-cone upper strength parameter, which can readily determined along with the 

LLFC parameter value using the standard 30°–80g fall cone. From these two measurements, a 

methodology has been presented for the determination of the undrained strength 

corresponding to any water content within the plastic range for soft to medium stiff clays, 

allowing substantially better strength predictions than existing correlations based on liquidity 

index. 
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NOTATION 

The following symbols are used in this paper: 

d   = cone penetration depth; 

K   = cone factor; 

IFC  = fall-cone consistency index; 

IL   = liquidity index; 

LL  = liquid limit; 

LLASTM cup = Casagrande liquid-limit derived from ASTM ‘hard-base’cup; 

LLBS cup = Casagrande liquid-limit derived from BS ‘soft-base’cup; 

LLcup  = Casagrande liquid-limit water content; 

LLFC  = fall cone liquid-limit water content; 

Nch   = dimensionless bearing-capacity factor; 

n   = number of data points used to generate a regression; 

OCR = overconsolidation ratio; 

PI   = plasticity index ( = LL – PL); 

PL   = Atterberg’s plastic-limit water content; 

PLx  = water content corresponding to x times )(FCu LLs ; 

PL25 = water content corresponding to fall-cone upper strength parameter; 

PL100  = water content corresponding to FCus  = 100  )(FCu LLs ; 

RMW = strength gain factor; 

W   = weight of fall cone; 

(insitu)us  = insitu undrained shear strength; 

su   = saturated remoulded undrained strength; 

FCus  = fall-cone strength; 

)(FCu LLs  = fall-cone strength at liquid limit (i.e. fall-cone lower strength parameter); 

)(FCu 25PLs  = fall-cone upper strength parameter (i.e. 25  )(FCu LLs ); 

voFVu  s  = normalised field vane strength; 

dus    = dynamic undrained strength mobilised in fall-cone test; 

)(u LLs  = undrained strength at liquid limit; 

R2  = coefficient of determination; 
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w   = water content; 

   = cone adhesion factor; 

FV  = ratio of OCR to normalized field vane strength; 

   = cone apex angle; 

    = ratio of FCus  to 
dus ; 

'nc   = effective angle of shearing resistance of normally consolidated material; 

vo    = insitu vertical effective stress; 

    = strain rate; 

μ   = rate dependence parameter. 
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TABLE CAPTIONS 

 

 

Table 1. Liquid limits and plastic limits of soils obtained through different laboratories 

operating in Northern Ireland to BS EN 1377 (BSI, 1990). GSI: Glover Site Investigation 

Ltd; CPD: Central Procumbent Division, NI; WF: Whiteford Geoservices; QUB: 

Queen’s University Belfast. (table adapted from Sivakumar et al. 2015) © ICE 

Publishing 

 

Table 2. Sources of data in the database 

 

 

 

FIGURE CAPTIONS 

 

Figure 1: Schematic diagram for various index parameters 

 

Figure 2. Undrained strength ranges for various index parameters plotted on 

logarithmic strength scale. Note, † deduced in the present investigation 

 

Figure 3: Cumulative distribution of shear strengths of soil at plastic limit (Plot from 

Haigh et al. 2013) © ICE Publishing 

 

Figure 4: Variation of remoulded undrained strength with liquidity index (data from 

Skempton and Northey (1952) and Houston and Mitchell (1969)) [Plot from Haigh et al. 

2013] © ICE Publishing 

 

Figure 5: Plot of   against the rate dependence parameter (μ), determined from 

numerical analysis of the fall-cone test (smooth 30o cone) (data from Hazell, 2008, pp. 

136). 

 

Figure 6: British Standard fall cone limit versus British Standard Casagrande cup liquid 

limit (BS1377: BSI, 1975, 1990) (data of LL < 600%) 

 

 

Figure 7: British Standard fall cone limit versus British Standard Casagrande cup liquid 

limit (BS1377: BSI, 1975, 1990) (data of LL < 120%) 

 

Figure 8: British Standard fall cone limit versus ASTM Casagrande cup liquid limit 

(data of LL < 600%) 

 

Figure 9: British Standard fall cone limit versus ASTM Casagrande cup liquid limit 

(data of LL < 120%) 

 

Figure 10: Comparison of fitting equations 
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Table 1. Liquid limits and plastic limits of soils obtained through different laboratories 

operating in Northern Ireland to BS EN 1377 (BSI, 1990). GSI: Glover Site 

Investigation Ltd; CPD: Central Procumbent Division, NI; WF: Whiteford Geoservices; 

QUB: Queen’s University Belfast. (table adapted from Sivakumar et al. 2015) © ICE 

Publishing 

 

Type of Soil LLFC 

(%) 

Thread rolling PL (%) Average 

PL (%) 

Maximum 

difference 

(%) 
GSI CPD WF QUB 

Sleech 50 25 25 24 23 24.3 2 

Belfast Clay 55 24 26 26 23 24.8 3 

Oxford Clay 55 24 22 23 20 22.3 4 

Canadian 

Clay 

73 27 30 30 27 28.5 3 

Glacial till 36 17 17 16 14 16.0 3 

Tennessee 72 28 33 35 30 31.5 7 

Ampthill 77 31 32 33 30 31.5 3 

Donegal 

Clay 

43 21 20 20 20 20.3 1 

London Clay 71 28 21 30 27 28 3 

Enniskillin 36 18 19 17 16 17.5 3 

Kaolin 70 33 36 37 29 33.8 8 
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Table 2. Sources of data in the database 

 

Reference Fall cone used Percussion cup 

used 

No. 

soil 

tests 

Notes 

Sherwood and 

Ryley (1970) 

BS (30°–80g) BS 25 Interpretation of LLFC 

also given in Vardanega 

and Haigh (2014b) 

Littleton and 

Farmilo (1977) 

BS 

(BS1377-1975) 

BS (assumed) 19 Data digitised from 

original figure (2) 

Budhu (1985) BS 

(BS1377-1975) 

BS 17  

Belviso et al. 

(1985) 

BS 

(BS1377-1975) 

ASTM 

(ASTM D423-66) 

16  

Sampson and 

Netterberg (1985) 

BS 

(BS1377-1975) 

ASTM style cup 

(South African 

method)  

43  

Queiroz de 

Carvalho (1986) 

BS 

(BS1377-1975) 

BS 

(BS1377-1975) 

27  

Wasti (1987)  BS 

(BS1377-1975) 

ASTM 25 Data also in Wasti and 

Bezirci (1986) 

Koester (1992) Similar to BS 

(30°–76g cone, 

d = 17 mm) – 

quoted as PRC 

cone 

ASTM style cup 

(US Army Corps 

cup) 

26 Digitised from the 

original source 

Sridharan et al. 

(1999) 

BS 

(BS1377-1990) 

BS 19  

Mohajerani 

(1999) 

BS 

(AS2189-1991) 

BS 

(AS2189-1995) 

(2009 standard 

considered ‘soft 

base’ by Haigh 

(2016) 

19  

Prakash and 

Sridharan (2004) 

BS 

(BS1377-1990) 

BS 28  

Dragoni et al. 

(2008) 

BS 

(BS1377-1990) 

BS and ASTM 

(ASTM D4318-05) 

30 Not every soil was tested 

with the ASTM cup 

Stanchi et al. 

(2008) and 

Stanchi (2016) 

BS 

(BS1377-1990) 

ASTM 

(ASTM D4318-00) 

34  

Özer (2009) BS 

(BS1377-1990) 

BS and ASTM 

(ASTM D4318-05) 

32  

Di Matteo (2012) BS 

(BS1377-1990) 

ASTM 

(ASTM D4318-00) 

6  

Azadi and 

Monfared (2012) 

BS ASTM 2  

 

 

Table02 Click here to download Table Table02_sourcefile.docx 

http://www.editorialmanager.com/geo/download.aspx?id=168494&guid=eedcd677-361a-4712-aeb6-4be297439278&scheme=1
http://www.editorialmanager.com/geo/download.aspx?id=168494&guid=eedcd677-361a-4712-aeb6-4be297439278&scheme=1

