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Abstract

We present an isogeometric analysis technique that builds on manifold-based smooth basis functions for geometric
modelling and analysis. Manifold-based surface construction techniques are well known in geometric modelling and
a number of variants exist. Common to most is the concept of constructing a smooth surface by blending together
overlapping patches (or, charts), as in differential geometry description of manifolds. Each patch on the surface has
a corresponding planar patch with a smooth one-to-one mapping onto the surface. In our implementation, manifold
techniques are combined with conformal parameterisations and the partition-of-unity method for deriving smooth
basis functions on unstructured quadrilateral meshes. Each vertex and its adjacent elements on the surface control
mesh have a corresponding planar patch of elements. The star-shaped planar patch with congruent wedge-shaped
elements is smoothly parameterised with copies of a conformally mapped unit square. The conformal maps can be
easily inverted in order to compute the transition functions between the different planar patches that have an overlap
on the surface. On the collection of star-shaped planar patches the partition of unity method is used for approximation.
The smooth partition of unity, or blending functions, are assembled from tensor-product b-spline segments defined on
a unit square. On each patch a polynomial with a prescribed degree is used as a local approximant. In order to obtain
a mesh-based approximation scheme the coefficients of the local approximants are expressed in dependence of vertex
coefficients. This yields a basis function for each vertex of the mesh which is smooth and non-zero over a vertex
and its adjacent elements. Our numerical simulations indicate the optimal convergence of the resulting approximation
scheme for Poisson problems and near optimal convergence for thin-plate and thin-shell problems discretised with
structured and unstructured quadrilateral meshes.
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1. Introduction

The interoperability limitation of Computer Aided Design (CAD) and Finite Element Analysis (FEA) systems
has become one of the major bottlenecks in simulation-based design. CAD and FEA are inherently incompatible
because they use for historical reasons different mathematical representations. As advocated in isogeometric analysis
the use of identical basis functions for CAD and FEA can facilitate their integration. Today most of the research
on isogeometric analysis focuses on NURBS [1, 2] and the related t-splines [3] and subdivision basis functions [4].
The inherent tensor-product structure of NURBS means that additional techniques are required for geometries that are
composed out of several NURBS patches. Specifically, around extraordinary (or irregular) points where the number of
patches that join together is different than four, i.e. v , 4, alternative techniques are necessary to maintain smoothness.
One prevalent approach in geometric design is to introduce additional higher order patches around the extraordinary
point and to ensure that all patches match up Gk continuously at their boundaries. Gk refers to the notion of geometric
continuity and, for instance, G1 implying tangent plane continuity. As first pointed out by Groisser et al. [5] and later
by Kapl et al. [6], in isogeometric analysis Gk leads to Ck continuity because the geometry and field variables are
interpolated with the same basis functions. The utility of Gk constructions in isogeometric analysis with NURBS has
recently been investigated in a number of papers [7–10]. Gk constructions have also been explored in the context of
isogeometric analysis with t-splines [11]. A different approach for dealing with extraordinary points is provided by
subdivision surfaces. The neighbourhood of the extraordinary point is replaced by a sequence of nested Ck continuous
patches which join C1 continuously at the point itself [12, 13]. Subdivision basis functions for finite element analysis
have originally been proposed in [14] and have been more intensely studied in a number of recent papers [15–17].
The Gk constructions known from geometric design and subdivision basis functions usually do not lead to optimally
convergent finite elements. The development of Gk constructions that yield optimal convergence rates is currently an
active area of research [6, 9, 10].

We introduce in this paper an isogeometric analysis technique that builds on manifold-based basis functions for
geometric modelling and analysis. As known from differential geometry, manifolds provide a rigorous framework
for describing and analysing surfaces with arbitrary topology; see [18, 19]. Manifold techniques for mesh-based con-
struction of smooth Ck continuous surfaces were first introduced by Grimm et al. [20]. Other mesh-based manifold
constructions have later been proposed, e.g., in [21–24]. In all these approaches, a manifold surface in Euclidean
space �3 is obtained by mapping and blending together planar patches from �2. In the resulting approximation
scheme, similar to splines, a Ck continuous surface is described with a quadrilateral or triangular control mesh and
each vertex has a corresponding basis function with a local support, see Figure 1. In contrast to the aforementioned Gk

constructions, which rely on matching up separate patches, in the considered manifold-based technique a Ck continu-
ous surface is created by smoothly blending of overlapping patches. The idea of blending surfaces from overlapping
patches is a common theme in geometric modelling and has been used, for instance, for increasing the smoothness of
subdivision surfaces around the extraordinary vertices [25–27] or (meshfree) point-based surface processing [28, 29].
In Millan et al. [30, 31] point-based surface blending techniques have been used for meshfree thin-shell analysis.
There are also mesh-based surface constructions that use manifold techniques, but do not rely on smooth blending of
patches, see, e.g., [32, 33].

In the present work we follow Ying and Zorin [22] and construct smooth basis functions by combining manifold
techniques with conformal parameterisations and the partition of unity method. The control mesh consists of quadri-
lateral elements with some extraordinary vertices (i.e. v , 4 for some non-boundary vertices) and the construction
gives one basis function for each vertex. The first step is to assign each vertex of the control mesh and its adjacent
elements a planar sub-mesh with the same connectivity. The sub-meshes serve as control meshes for planar surface
patches, which can be understood as parameter spaces for basis functions. For Ck continuous basis functions the
planar patches have to have a Ck smooth parameterisation. Although other choices are conceivable, the patches are
parameterised using conformal (angle-preserving) maps. Since each surface point is represented on several patches,
transition functions composed of conformal maps are used to navigate between adjacent patches. In the second step
of the construction, on each planar patch the conventional partition of unity method (PUM) of Melenk et al. [34, 35]
is used for constructing basis functions. According to PUM, the basis functions are the product of a partition of unity
function and a patch specific polynomial approximant. In computer graphics literature the partition of unity function
and the patch specific polynomial basis are usually referred to as the blending function and the embedding function,
respectively. We use as blending functions b-splines that have zero value and zero k − 1 derivatives at the patch
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Figure 1: Isogeometric analysis using manifold-based smooth surfaces. The smooth surface in the middle is described by the control mesh on the
left and the corresponding manifold basis functions. The deflected geometry on the right is the result of a finite element thin-shell computation
with manifold basis functions.

boundaries. In order to enforce partition of unity, the b-splines on different patches overlapping the same point on the
manifold surface are first identified with transition functions and subsequently normalised as in usual PUM. The last
step in the basis function construction is to express the local PUM polynomial approximant in dependence of vertex
values using a least-squares approximation. In this mesh-based approach the degree of the polynomial approximant
and the number of vertices in a sub-mesh are correlated. In order to increase the polynomial degree the sub-meshes
are enlarged with mesh refinement by quadrisectioning. The basis functions depend only on the connectivity of the
control mesh but not its geometry so that they can be precomputed and tabulated for different valences v.

The outline of this paper is as follows. Section 2 reviews the relevant manifold concepts from differential geometry
and the partition of unity method. The mesh-based manifold basis functions are introduced in Section 3. First, one-
dimensional polygonal control meshes are considered, even though it is straightforward to combine one-dimensional
manifolds with the partition of unity method by using simple transition functions. Subsequently, two-dimensional
quadrilateral meshes are considered for which conformal maps are used as transition functions. In both dimensions,
it is shown how the polynomial coefficients in the partition of unity approximation can be expressed as a linear
combination of vertex coefficients. In Section 4 the derived mesh-based basis functions are applied to a number of
Poisson and thin-shell problems. Numerical convergence with increasing mesh size on meshes with and without
extraordinary vertices is investigated.

2. Preliminaries

2.1. Review of manifold concepts

In the following we provide an informal introduction to differentiable manifolds with the aim to introduce the
necessary terminology. For clarity, our discussion is restricted to surfaces, i.e. two-dimensional manifolds, embedded
in the three-dimensional Euclidean space�3. A similar introduction, but oriented more towards geometric modelling,
can be found in [36]. The manifold concept is much more general than needed in this paper. A more rigorous
discussion is found in most standard differential geometry textbooks, see, e.g., [18, 19].

A regular two-manifold, or surface, Ω is defined as the set of points in �3, which can be locally continuously
one-to-one mapped onto a set of points in �2. This definition naturally excludes surfaces with t-joints or isolated
points. In applications this is, however, not a major restriction since a geometry, for instance, with a t-joint can be
represented as a collection of several manifolds.

By definition on a regular surface Ω around each point P there is an open region Ωi ∈ Ω that can be mapped to an
open planar region Ω̂i ∈ �

2, see Figure 2. In line with the partition of unity method terminology, in the following Ωi

will be referred to as a patch and Ω̂i as a planar patch. Furthermore, we denote the function for mapping between two
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Figure 2: A manifold Ω and two of the charts (Ω̂i,ϕi) and (Ω̂ j,ϕ j) for representing it. A point P in the dark shaded area of the manifold Ω is
represented in both charts and has different coordinates in Ω̂i and Ω̂ j. The change of coordinates between the two charts is given by the transition
maps ti j = t−1

ji .

patches with ϕi : Ω̂i → Ωi. On the surface Ω there are many overlapping patches Ωi such that

Ω =
⋃
i∈�

Ωi (1)

and each point P lies at least on one patch. The pair consisting of (Ω̂i,ϕi) is called a chart. The set of all charts
{(Ω̂i,ϕi)} is referred to as an atlas for representing the surface Ω. As illustrated in Figure 2, each planar patch Ω̂i

has its own coordinate system ξi = (ξ1
i , ξ

2
i ). The same point P ∈ Ω in the intersection between the two patches

P ∈ (Ωi ∩ Ω j) has the coordinates ξi = (ξ1
i , ξ

2
i ) in Ω̂i and ξ j = (ξ1

j , ξ
2
j ) in Ω̂ j. In order to compute the underlying

coordinate transformations we introduce the transition functions

t ji = ϕ−1
j ◦ ϕi (2)

that are composed out of the mappings ϕ j. The transition functions are symmetric ti j = t ji and satisfy the cocyle
condition ti j ◦ tki = tk j when the preimage of P lies in three planar patches Ω̂i, Ω̂ j and Ω̂k. For a surface to be Ck

continuous the transition maps must be Ck continuous. Evidently, for a differentiable surface k has to be equal or
larger than one.

2.2. Review of the Partition of Unity Method (PUM)

The first use of PUM for creating finite element basis functions goes back to the seminal work of Babuska et
al. [37] and was subsequently further developed, for instance, in Melenk et al. [35] and Duarte et al. [38]. In PUM a
given domain Ω in the Euclidean space �d, with d ∈ {1, 2, 3}, is partitioned into overlapping patches Ωi such that

Ω =
⋃
i∈�

Ωi . (3)

As opposed to the manifolds introduced in previous Section 2.1, there is only one single coordinate system in the
Euclidean space �d and a point P ∈ Ω has the same coordinates on Ω and all patches Ωi. Hence, the transition
functions between the different patches are identity maps.
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Next, a blending function wi is defined on each patch Ωi. By definition the sum of the blending functions wi over
all the regions is∑

i

wi = 1 . (4)

The set of blending functions {wi} is also referred to as the partition of unity subordinate to the set of open patches {Ωi}.
As will become clear, in order to obtain smooth PUM basis functions the blending functions wi have to be smooth.
In addition, on the region boundaries ∂Ωi the function value and derivatives of wi have to be zero. After choosing on
each patch an arbitrary functions ŵi that have the prerequisite properties they can be normalised to yield a blending
function

wi =
ŵi∑
j ŵ j

. (5)

In our applications ŵi are usually b-spline basis functions.
On each patch Ωi, in addition to the blending functions wi a local polynomial approximant fi is considered

fi = αi · pi , (6)

where pi is vector containing a complete polynomial basis, αi is the corresponding vector of the coefficients and the
dot represents their scalar product. For instance, for one-dimensional domains and a monomial basis the two vectors
are of the form

α =
[
α1 α2 α3 α4 · · ·

]T
(7)

p =

[
1

(
x1

)1 (
x1

)2 (
x1

)3
· · ·

]T
. (8)

The global approximant f is the sum of the local approximants fi and their multiplication with the blending
functions wi, that is,

f =
∑

i

wi fi =
∑

i

wi (αi · pi) . (9)

The smoothness of this function depends on the smoothness of wi and fi. Since the polynomials in fi are infinitely
smooth, the smoothness of f is exclusively controlled by the blending functions wi. According to the convergence
estimates given in [35], the convergence rates for the approximant f depend on the degree of the polynomial basis pi

and the constants on the blending functions wi and the layout of the overlaps Ωi.
The illustrative one-dimensional example in Figure 3 showcases the construction of a smooth function using

PUM. On each patch Ωi one single cubic b-spline basis functions is used as ŵi for defining the (normalised) blending
function wi according to (5). The support size of a cubic b-spline ŵi is equal to the size of its corresponding patch Ωi.
The cubic b-spline is a C2 continuous function and at the boundaries of Ωi its value and first and second derivatives
are zero [39]. In addition to the blending functions wi, in Figure 3 the local quadratic polynomials fi are also shown.
The smooth function f constructed according to (9) is shown in Figure 3(b). It is evident that this curve is by
construction C2 continuous.

For the considered one-dimensional example, it is straightforward to use a manifold-based approach for construct-
ing the blending functions. As shown in Figure 4, the coordinate systems on each patch can be chosen differently. For
switching between the different coordinate systems the transition functions ti j are used. In this example one of the
chosen transition functions, i.e. t21, is quadratic and the other, i.e. t32 ,is linear. It is however possible to chose any
other monotone C2 function. Choosing other transition functions will lead to a change in the shape of the constructed
function f .

3. Mesh-based manifold basis functions

We are now in a position to introduce the construction of manifold-based basis functions on one- and two-
dimensional meshes. The idea of using manifolds for smooth interpolation on meshes has been originally introduced
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Figure 3: Construction of a smooth function with PUM on a domain with five overlapping patches. On the left the blending functions wi (solid)
and the local polynomials fi (dashed) are shown. On the right the obtained smooth function f is shown.

Figure 4: Construction of a smooth function with manifold-based PUM. The domain consists of three overlapping patches (top). On each patch the
blending function wi (solid) and the local polynomial fi (dashed) are shown. The transition functions between the overlapping patches are chosen

as t21 = −
(
ξ1

1

)2
+ 2ξ1

1 − 1 and t32 = ξ1
2 − 1. The obtained smooth function f is shown at the bottom.
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Figure 5: A control polygon (dashed) with the corresponding smooth curve (solid). On each of the two shown one-rings the blending function is a
normalised cubic b-spline and the local approximant is a quadratic polynomial.

in computer graphics by Grimm et al. [20]. The one-dimensional case is straightforward and is only discussed in
order to provide some intuition for the two-dimensional case. The essential difficulty in two-dimensions lies in defin-
ing suitable transition functions. We use the conformal maps as introduced in Ying and Zorin [22] for defining the
transition functions. Alternative definitions have been provided in [20, 21, 27].

3.1. One-dimensional meshes

First we aim to construct a smooth curve, i.e. a one-dimensional smooth manifold for a given coarse control
polygon in the Euclidean space �3. We begin with defining charts (Ω̂i,ϕi) for each vertex, see Figure 5. The planar
patch Ω̂i is formed from two segments and the attached three vertices. This is usually referred to as the one-ring of
the centre vertex. It is also possible to increase the size of Ω̂i to a two-ring or even larger. The chosen size of the
patches influences the number of overlapping patches at each point. As typical for manifolds, each planar patch Ω̂i

has its own coordinate system. The scalar transition functions ti j enable to navigate between the patches Ω̂i and Ω̂ j.
The transition functions are chosen as linear maps.

The coordinates of a point P(x1, x2, x3) on the smooth curve is now determined with the partition of unity method.
According to (9) we can write, for instance, for the x1 coordinate of the point P with a preimage on the planar patch Ω̂i

and coordinate ξi

x1(ξi) =
∑

j

w j(ξi)
(
α1

j · p(ξi)
)
. (10)

The summation is over all patches and in order to evaluate the sum it is necessary to use the transition maps. Although
we give here and in the following only the expression for x1, the other two coordinates x2 and x3 are expressed
similarly. On each one-ring there are three vertices, which motivates the choice of a quadratic basis for p(ξi). For a
quadratic Lagrangian basis L(ξi) the three coefficients are simply the coordinates of the vertices in the one-ring:

x1(ξi) =
∑

j

w j(ξi)
(
x1

j · L(ξi)
)
. (11)

Both vectors x1
j and L(ξi) have three components and the entries of x1

j are the x1 coordinates of the three control
polygon vertices. This equation is illustrated in Figure 5. As can be seen, the smooth curve passes exactly through the
vertices of the control polygon.
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Figure 6: Basis functions (left) and their derivatives (right) in two adjacent elements. In one element there are four non-zero basis functions with
two, i.e. the strictly negative ones in the left figure, corresponding to vertices on neighbouring elements.

Next, we rewrite equation (11) in index notation to define basis functions that can be used for finite element
analysis:

x1(ξi) =
∑

j

w j(ξi)

 3∑
I=1

x1
j,I LI(ξi)

 =

3∑
I=1

∑
j

w j(ξi)LI(ξi)

 x1
j,I =

3∑
I=1

NI(ξi)x1
j,I , (12)

where NI are the three basis functions corresponding to the three vertices in the patch Ω̂ j. In Figure 6 the non-zero
basis functions and their derivatives in one patch are shown. In the underlying construction the blending functions
are normalised cubic b-splines, local polynomials are quadratic and the transition function are linear. Note that the
support size of one basis function is two elements. Due to the overlaps there are four non-zero basis functions in one
element. The resulting basis functions are C2 continuous.

3.2. Two-dimensional quadrilateral meshes

We now consider the construction of a smooth surface, i.e. smooth two-manifold, for a given coarse control
mesh. Our approach follows closely the construction originally introduced in Ying and Zorin [22]. Although only
quadrilateral meshes are considered, it is straightforward to extend the technique to triangular meshes.

In addition to the smoothness properties of blending functions and local polynomials, the smoothness of transi-
tion functions is central in generating smooth surfaces. For implementation purposes, it is also important that the
transition functions and their inverses are readily computable. Similar to the one-dimensional construction, we define
charts (Ω̂i,ϕi) for each vertex of the mesh. The planar patch Ω̂i is chosen for now as the one-ring of elements around
a vertex. The number of elements in the one-ring of a vertex is referred to as the valence v of the vertex. On structured
meshes all vertices inside the domain have valence v = 4 and on unstructured meshes it can be arbitrary. Hence, in
the unstructured case the overlapping one-ring patches can have different valences, which makes the computation of
a smooth transition function challenging. Ying et al. [22] proposed conformal maps as smooth and easy computable
transition functions. Recall here that conformal mapping is an angle preserving transformation. The generation of
a conformal parameterisation for a one-ring of elements proceeds in several steps. In Figure 7 the procedure for a
vertex with valence v = 5 is illustrated. The smooth parameterisation is obtained by conformally mapping, rotating
and combining unit squares. The points of the unit square have the coordinates η = (η1, η2) and are expressed as a
complex number z = η1 + iη2. The conformal transformation z4/v maps the square to a wedge. In computing the
mapping recall the following standard relations:

z = η1 + iη2 = |z| (cos φ + i sin φ) = |z|eiφ with |z| =
√

(η1)2
+ (η2)2 and φ = arctan

(
η2/η1

)
. (13)

After the mapping the coordinates η = (η1, η2) of a point become ζ = (ζ1, ζ2) according to:

ζ1 + iζ2 = z4/v = |z|4/vei4φ/v . (14)

The wedge-shaped image of the conformally mapped unit square forms one sector of the one-ring patch. This wedge
is copied and suitably rotated to form a smoothly parameterised one-ring forming patch Ω̂i. The angle preservation
property of the conformal map ensures that the parameter lines on Ω̂i are smoothly connected across element edges,
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Figure 7: Conformal parameterisation of an one-ring patch with valence v = 5 (right). The unit square (left) is first conformally mapped to a wedge
(middle) with z4/5 = (η1 + iη2)4/5. Subsequently five copies of the wedge are suitably rotated and combined into a one-ring patch. The shown fine
meshes represent the parameter lines with either η1 = const. or η2 = const..

Figure 8: Conformal parameterisations one one-ring patches with valence three (left), four (middle) and six (right). The shown fine meshes
represent the parameter lines with either η1 = const. or η2 = const..

see Figure 7. For the sequence of transformations from the unit square to the smoothly parameterised patch Ω̂i we
abstractly write

ξi = Si(η) , (15)

where the non-linear mapping Si is comprised of the conformal transformation z4/v and a rotation. It it worth empha-
sising that it is straightforward to compute the inverse and derivatives of the mapping (15). Moreover, Si depends only
on the valence of the considered patch, but not on the vertex coordinates. See Figure 8 for conformal parameterisation
of one-ring patches with valences v ∈ {3, 4, 6}. The functions ŵi for computing the normalised blending functions wi

are also assembled from smooth functions defined on unit squares. In our computations ŵi is one quarter of a tensor-
product b-spline and covers the entire unit square. Figure 9 shows the procedure for constructing the blending function
on a valence five patch. It can be seen that the b-spline has its maximum at the corner which maps to the central vertex
of the one-ring patch Ω̂i. To normalise the functions ŵi, for a given point on patch Ω̂i the corresponding point on an
overlapping patch Ω̂ j is computed with transition functions, that is, ξ j = (S j ◦S−1

i )(ξi), cf. (15). The blending function
is then first mapped onto the conformal wedge and then appropriately rotated to construct the blending function on
the patch. In Figure 10 the normalised blending functions for one-ring patches with v ∈ {3, 4, 6} are shown.

In [22] the weight functions wi are chosen such that they are constant in a small neighbourhood of width δ close
to the unit square boundaries. This is motivated by the need to circumvent the singularity of the conformal map
at the central vertex of the one-ring patch. Our numerical experiments indicate that the finite element solutions are
insensitive to the choice of δ so that δ = 0 is chosen. Note that for evaluating the finite element integrals the surface
is only evaluated at quadrature points, which are usually away from the vertices. Alternatively, the one-ring patches
can also be parameterised with the characteristic map of Catmull-Clark subdivision surfaces, which is C2 smooth and
does not have a singularity at the extraordinary vertex, see [25, 27] for details.
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Figure 9: One quarter of a tensor-product cubic b-spline as the non-normalised blending function ŵi on the unit square (left). Normalised blending
function wi on the conformal wedge (middle) and on a conformal patch with valence five (right).

Figure 10: Blending functions wi for one-ring patches with valence three (left), four (middle) and six (right). The shown fine meshes represent the
parameter lines with either η1 = const. or η2 = const..

We now proceed to the construction of a smooth surface, i.e. a two-dimensional smooth manifold, for a given
coarse control mesh. The overall approach is very similar to the one-dimensional case introduced in the previous
section. We consider again a point P(x1, x2, x3) on the manifold with a preimage with the coordinates ξi on the planar
patch Ω̂i. Each of the coordinate components of P are interpolated with the partition of unity method. We write, for
instance, for the x1 coordinate

x1(ξi) =
∑

j

w j(ξi)
(
α1

j · p(ξi)
)
, (16)

where p(ξ) is a vector containing the components of a polynomial basis and α1
j are the unknown coefficients. Next,

the coefficients α1
j are expressed in dependence of the vertex coordinates of the control mesh. The dimension of the

polynomial basis has to be equal or smaller than the number of vertices in a patch Ω̂ j. Because on unstructured meshes
the valence of vertices is not fixed, we choose a polynomial basis based on the one-ring with the smallest valence in
the mesh. If a higher degree polynomial is desired, two or more rings of elements can be considered as patches Ω̂ j.
When the dimension of the polynomial basis is smaller than the number of vertices in the patch Ω̂ j, the polynomial
coefficients α1

j are determined with a local least-squares projection on each patch. Neglecting for the moment the
patch index, and denoting the parametric coordinates of the 2v + 1 vertices on patch Ω̂i as ξI and the corresponding
nodal control mesh coordinates as x1

I , the least-squares fit on Ω̂ j reads2v+1∑
I=1

p(ξI)pT(ξI)

α1 =

2v+1∑
I=1

p(ξI)x1
I . (17)

Note for a specific polynomial basis the matrix on the left hand side depends only on the valence of the one-ring and
can be precomputed and stored. We abbreviate the least-squares projection (17) with

α1 = Ax1 , (18)

where A is the projection matrix and the vector x1 contains the x1 coordinates of all the vertices in the one-ring, i.e.
on the planar patch.
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Finally, by making use of (18) we can write the partition of unity interpolation (16) in dependence of the vertex
coordinates of the control mesh

x1(ξi) =
∑

j

w j(ξi)
(
p(ξi) · Ax1

j

)
=

∑
j

w j(ξi)
2v+1∑
I=1

(p(ξi) · A)I x1
j,I

=

2v+1∑
I=1

∑
j

(
w j(ξi) (p(ξi) · A)I

)
x1

j,I =

2v+1∑
I=1

NI(ξi)x1
j,I .

(19)

This gives rise to the definition of basis functions NI(ξi), where I is the vertex id on patch Ω̂ j. In conventional
finite element implementations usually system matrices and vectors are evaluated by iterating over the elements in
the control mesh. Moreover, during numerical integration the basis function values at pretabulated points in the
integration element are needed. In manifold finite elements the unit square in the η1 − η2 coordinate system is chosen
as the integration element. Hence, the basis functions NI(ξi) have to be evaluated in a given element and integration
point η = (η1, η2).

We briefly consider the hand geometry shown in Figure 1 for illustrating the process of evaluating the basis
functions; see Appendix A for more details. On the control mesh in Figure 1 (left) one element is highlighted and
the four one-rings belonging to its four vertices are indicated. One of the element’s vertices has valence v = 5 and
the other three have valence v = 4. The interpolation within the highlighted element depends on the eighteen vertices
in the union of the four one-rings. In Figure 11 the four patches used for partition of unity construction are shown.
The unit square in the centre represents the integration element, equivalent to the parent element in isoparametric
finite elements. The conformal mapping Si(η) of the unit square to the four planar one-ring patches Ω̂i depends on
the valence of the respective one-ring. For the three patches with valence four, the mapping is (up to some rotations)
essentially an identity map. With the transition maps implied by the mappings Si it is straightforward to compute
the basis functions defined in (19) for a given integration point ηQ = (η1

Q, η
2
Q). In this specific example the minimum

number of vertices in a patch is nine so that the polynomial basis p(ξi) can be chosen either as a bilinear or biquadratic
Lagrangian basis. Note that on patches with valence v = 4 and a biquadratic Lagrangian basis the least-squares
projection matrix A is an identity matrix. Moreover, as also can be deduced from Figure 11 each basis function NI

has a support size consisting of two rings of elements around its associated vertex. In Figure 12 basis functions for
vertices with valence v ∈ {3, 4, 6} are shown.

4. Examples

We consider second and fourth-order partial differential equations to demonstrate the accuracy and convergence of
the introduced manifold basis functions when used in finite element analysis. For manifold construction, around each
vertex patches consisting of either one or two-rings of elements are considered. As blending functions we use either
normalised linear, quadratic or cubic b-splines. The element integrals are evaluated with 9 × 9 Gauss integration points
in all examples. This high number of integration points has been chosen in order to minimise the effect of integration
errors. In convergence studies the control meshes are refined with the Catmull-Clark subdivision scheme [40]. The
number of extraordinary vertices in a mesh remains constant because the new vertices introduced during the refinement
are all ordinary.

Surfaces with boundaries require modified charts for manifold constructions, such as those introduced in [41]. The
specialised treatment of elements close to the boundary can be avoided by introducing ghost elements just outside
the domain. This is achieved by reflecting sufficient number of internal elements and vertices along the boundary.
Furthermore, the manifold basis functions are non-interpolating at the boundaries. Therefore, we use the penalty
method for applying Dirichlet boundary conditions.

4.1. Two-dimensional Poisson problems
4.1.1. Square domain with a structured mesh

As an introductory example, we solve the Poisson-Dirichlet problem−∇ · ∇u = q on the domain Ω = (0, 1) × (0, 1),
discretised with a Cartesian grid, see Figure 13. The loading q is chosen such that the analytical solution is

u(x) = cos(4πx1) cos(4πx2) , (20)
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Figure 11: One integration element (centre) and its overlapping four conformally parameterised planar patches. The integration element represents
the highlighted blue element in the hand control mesh shown in Figure 1 (left).

Figure 12: Basis functions for vertices with valence three (left), four (middle) and six (right). The shown fine meshes represent the parameter lines
with either η1 = const. or η2 = const..
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Figure 13: Structured coarse control mesh (left) and contour plot of the solution uh (right, using a finer control mesh).

Figure 14: Square domain with a structured mesh. Influence of number of Gauss integration points on L2 norm error. The local polynomial basis p
is quadratic and the blending functions wi are normalised cubic b-splines.

where the variables x = (x1, x2) represent coordinates. In the partition of unity construction we use a biquadratic
Lagrangian basis as the local polynomial basis p(ξi) and as blending functions w(ξi) we consider normalised linear,
quadratic and cubic b-splines. To begin with, the number of Gauss points required for adequate integration is deter-
mined, see Figure 14. In Figure 14 only normalised cubic b-splines are used. Since the basis functions are rational,
due to the normalisation of the blending functions on each of the patches, a large number of Gauss points is unavoid-
able, especially for finer meshes. Furthermore, our findings indicate that blending functions with higher continuity
and patches with irregular vertices require, in general, more Gauss points. According to Figure 14, the chosen 9 × 9
Gauss points for all examples in the paper seems to provide a good trade-off between accuracy and efficiency. Fig-
ure 15 shows the L2 norm and H1 semi-norm of error u − uh as the mesh is uniformly refined with the Catmull-Clark
scheme. For this structured mesh Catmull-Clark refinement is equivalent to refinement by bisection. The error norms
for three different blending functions, namely normalised linear, quadratic and cubic splines, are shown. It can be
inferred from these convergence plots that the convergence rates are optimal and are unaffected by the blending func-
tions. Interestingly, the constants in the convergence plots increase when the smoothness of the blending function is
increased.

4.1.2. Square domain with an unstructured mesh
This example underlines the performance of manifold basis functions on unstructured meshes, and studies how the

convergence rates are influenced in the presence of extraordinary vertices. To this end, the Poisson-Dirichlet problem
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Figure 15: Square domain with a structured mesh. Convergence of the L2 norm (left) and H1 (right) semi-norm errors. The local polynomial
basis p is quadratic and the blending functions wi are normalised linear, quadratic or cubic b-splines.

Figure 16: Unstructured coarse control mesh (left) and the finite element solution (right).

with the analytical solution

u(x) = sin(4πx1) sin(4πx2) (21)

is considered. Figure 16 shows the unstructured mesh used in the computations and a representative finite element
solution. The mesh lines on the displaced solution in Figure 16 represent the edges of the elements on the exact surface.
The mesh has eight extraordinary vertices, with four vertices of valence v = 3 and the other four of valence v = 5. In
the convergence studies we use as local polynomials p(ξi) bilinear and biquadratic Lagrangian polynomials. As
patches one- and two-rings of elements are considered. However, in one-ring patches with valence v = 3 there are
only seven vertices so that instead of a biquadratic Lagrangian polynomial locally a complete quadratic polynomial
has to be used. In all cases the blending functions w(ξi) are normalised cubic b-splines.

Figure 17 shows the L2 norm and H1 semi-norm of the error u − uh as the mesh is successively refined with the
Catmull-Clark scheme. It can be seen that for all cases, the convergence rates are close to optimal. In the L2 norm and
for quadratic polynomials (µ = 2) the convergence rates for one- and two-ring patches are approximately 2.9 and 2.7
respectively. In the H1 semi-norm, the corresponding convergence rates are 1.9 and 1.7 respectively. We believe that
the reduction of convergence rates with increasing patch size is primarily due to the suboptimal integration of rational
polynomials. Next, we study the pointwise convergence of the solution at selected vertices. For this part of the studies
we use one- and two-ring patches and consider only biquadratic Lagrangian polynomials. As mentioned before for
one-ring patches with valence v = 3 instead of the biquadratic Lagrangian a complete quadratic has to be used. The
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Figure 17: Square domain with an unstructured mesh. Convergence of the L2norm (left) and H1 (right) semi-norm errors. The local polynomial
basis p is either linear (µ = 1) or quadratic (µ = 2) and the blending functions wi are normalised cubic b-splines.

Figure 18: Square domain with an unstructured mesh. Pointwise convergence of the solution at three selected vertices with valences v ∈ {3, 4, 5} for
one-ring (left) and two-ring patches (right). The local polynomial basis p is quadratic and the blending functions wi are normalised cubic b-splines.

blending functions are normalised cubic b-splines. Figure 18 (left) shows the convergence of the error at three selected
vertices with valences v ∈ {3, 4, 5} when one-ring patches are used. Figure 18 (right) shows the corresponding plots
when two-ring patches are used. For both types of patches, the convergence rate at extraordinary vertices is 2. It is
interesting to note that two-ring patches, in general, have smaller errors than the one-ring patches.

4.1.3. Circular domain
In this example the Poisson-Dirichlet problem with the same solution as in (21) is solved on a circular domain with

radius 0.5, see Figure 19. The aim is to illustrate the treatment of curved boundaries when manifold basis functions
are used. As previously mentioned, in our present implementation, ghost nodes are introduced at the boundaries,
which circumvents the use of modified charts close to the boundaries. With specialised boundary charts the treatment
of boundaries would be different.

Figure 19 (left) shows the coarse mesh containing four extraordinary vertices with valence v = 3. The domain
boundary is approximated by least-squares fitting an approximate circle described by the manifold basis functions to
the exact circle. In the least-squares problem the unknowns are the positions of the vertices close to the boundary.
This is performed as a preprocessing step each time after the mesh is refined with Catmull-Clark subdivision. In
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Figure 19: Exact and approximated circular domains and the coarse control mesh (left) and finite element solution (right).

Figure 20: Circular domain. Convergence of the L2 norm and H1 semi-norm errors. The local polynomial basis p is quadratic and the blending
functions wi are normalised cubic b-splines.

the convergence study shown in Figure 20 only one-ring patches are used. The local polynomials p(ξi) are either
biquadratic Lagrangian polynomials for patches with valence v , 3 or complete quadratic polynomials for patches
with v = 3. The blending functions w(ξi) are normalised cubic b-splines. As can be inferred from Figure 20, optimal
convergence rates for the L2 norm and the H1 semi-norm error are achieved.

4.2. Thin-plate and thin-shell problems

The linear Kirchhoff-Love model is used for computing the thin-plate and thin-shell problems introduced in the
following. The corresponding weak form depends on the metric and curvature tensors of the mid-surface in the refer-
ence and deformed configurations. Due to the presence of the curvature tensor, the basis functions have to be smooth,
or more precisely in space H2. The presented computations have been performed by replacing the subdivision basis
functions in our software [15, 42] with manifold-basis functions. Due to the algorithmic similarities between subdivi-
sion and manifold basis functions it is straightforward to replace one with the other. Out-of-plane shear deformations
have been neglected although it would be possible to take them into account as proposed in [42].

4.2.1. Simply supported square plate
We consider the deformation of a simply supported square plate of unit length subjected to an applied pressure

loading q = 10000. The thickness of the plate is h = 0.01, the Young’s modulus is E = 70 × 109, and the Poisson ratio
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Figure 21: Simply supported square plate. Deflected plate (left) and convergence of the L2 norm error (right). The local polynomial basis p is
quadratic and the blending functions wi are normalised cubic b-splines.

is ν = 0.3. Its analytical solution according to [43] is

u(x) =
16q
π6D

∞∑
i=1

∞∑
j=1

sin(iπx1) sin( jπx2)
i j(i2 + j2)2 , (22)

where D = Eh3/(12(1 − ν2) is the flexural rigidity.
The unstructured mesh shown in Figure 16, previously used for the Poisson-Dirichlet problem, is reused for this

plate problem. Recall that the mesh has eight extraordinary vertices, namely four with v = 3 and the other four
with v = 5. In the convergence study, one-rings and two-rings of elements are considered. Except on valence v = 3
one-ring patches, the local polynomials p(ξi) are biquadratic Lagrangian polynomials. As previously mentioned, on
one-ring patches with v = 3 only a complete quadratic polynomial can be used, because there are only seven vertices in
a patch. In all cases the blending function w(ξi) is a normalised cubic b-spline. In Figure 21 (left), the deflected shape
of the simply-supported plate for a relatively coarse mesh is shown. Figure 21 (right) illustrates the convergence of
the L2 norm error as the mesh is successively refined with the Catmull-Clark scheme. The constant in the convergence
plot decreases with increasing patch size. For both patch sizes, the convergence rate is approximately 1.7, which
is slightly lower than the optimum of 2. One possible reason for this is the inadequate integration of the rational
polynomials.

4.2.2. Pinched cylinder
The pinched cylinder is one of the benchmark examples for shell finite elements suggested in Belytschko et al. [44].

The unstructured coarse control mesh, material properties and the general problem setup are shown in Figure 22 (left).
The ends of the cylinder are unconstrained and the two diametrically opposite forces are applied within the middle
section of the cylinder. The deflected pinched cylinder is shown in Figure 22 (right). In Figure 23 the convergence
of the normalised maximum change in diameter of the Catmull-Clark and manifold finite element solutions are com-
pared, both structured and unstructured meshes are considered. The change in diameter is normalised with the exact
solution 4.52 × 10−4 for a membrane shell given in [43]. It can be seen that the Catmull-Clark and manifold solutions
converge to very similar values. The convergence of manifold functions with cubic polynomials (µ = 3) on two-ring
patches is comparable with subdivision basis functions. Note that for structured meshes Catmull-Clark subdivision
basis functions are identical to tensor-product cubic b-splines [12]. The slower convergence of the manifold basis
functions with quadratic polynomials (µ = 2) on one-ring patches is as expected.
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Figure 22: Definition of the pinched cylinder problem (left) and deformed pinched cylinder (right).

Figure 23: Pinched cylinder. Convergence of maximum change in diameter with manifold and Catmull-Clark basis functions for structured (left)
and unstructured (right) meshes. The local polynomial basis p is either quadratic (µ = 2) or cubic (µ = 3) and the blending functions wi are
normalised cubic b-splines.
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Figure 24: Definition of the pinched hemisphere problem (left) and deformed pinched hemisphere (right).

Figure 25: Pinched hemisphere. Convergence of maximum radial displacement with manifold and Catmull-Clark basis functions. The local
polynomial basis p is either quadratic (µ = 2) or cubic (µ = 3) and the blending functions wi are normalised cubic b-splines.

4.2.3. Pinched hemisphere
Our last example is the pinched hemisphere, which has also been suggested in Belytschko et al. [44] as a bench-

mark for shell finite elements. The coarse control mesh, material properties and the general problem setup are shown
in Figure 24 (left). The edge of the hemisphere is unconstrained and the four radial forces have alternating signs. The
sum of the applied forces is zero. In the control mesh the valence of the vertices range between 3 and 5.

The deformed surface of the pinched hemisphere is shown in Figure 24 (right). Figure 25 shows the convergence
of the normalised maximum radial displacement. The displacements are normalised by 0.0924, given in Belytschko et
al. [44]. The same plot also includes the convergence of the finite element solution when Catmull-Clark basis functions
are used. As in case of pinched cylinder example, the manifold basis functions are constructed with quadratic local
polynomials (µ = 2) on one-rings and cubic polynomials (µ = 3) on two-ring patches. In both cases, normalised cubic
b-splines were used as blending functions. Figure 25 illustrates that the manifold basis functions constructed using
cubic polynomial patches converges slightly faster than the Catmull-Clark subdivision basis functions.
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5. Conclusions

We introduced an isogeometric analysis technique that uses manifold smooth basis functions on quadrilateral
meshes. Manifold techniques have a long history in computer graphics and computer aided design and several variants
have been proposed over the years. Our implementation closely follows Ying and Zorin [22] and combines manifold
techniques with conformal parameterisations and the partition of unity method. The smoothness of the basis functions
is determined by the smoothness of the blending, or partition-of-unity, functions. The approximation properties of the
basis functions is mainly determined by the polynomial degree used in each patch. In the presented computations,
the blending function was chosen either as a normalised linear, quadratic or cubic b-spline leading to C0, C1 or C2

continuous basis functions, respectively. As patch sizes for the manifold construction, one- or two-ring layers of
elements around a vertex were considered. The number of vertices in a patch determines the maximum degree of the
local polynomial that can be used in the partition-of-unity interpolation. The polynomial coefficients in the partition
of unity interpolation are expressed as vertex coefficients using a least-squares procedure. The finally obtained basis
functions are smooth, locally supported and are associated to vertices in the mesh (similar to b-splines of odd degree).
The near optimal convergence of the introduced basis on meshes with extraordinary vertices could be numerically
confirmed.

For future research the combination of manifold basis functions with b-splines and the related NURBS or subdivi-
sion surfaces appears especially promising. B-splines have several compelling properties, including refinability, that
make them ideal for geometric modelling and numerical analysis on meshes with no extraordinary vertices. However,
most b-spline techniques for dealing with extraordinary vertices, including subdivision and many Gk constructions,
do not lead to optimally convergent finite elements [7, 8, 16]. In contrast, as numerically demonstrated manifold basis
functions yield nearly optimally convergent finite elements independent of the connectivity of the mesh. This suggests
to use b-splines in most of the domain and to introduce manifold basis functions only around extraordinary vertices.
In subdivision surfaces manifold techniques have already been used to obtain C2 continuity around extraordinary
vertices [25–27]. In these three papers, instead of the conformal map the characteristic map of subdivision surfaces
is used to parameterise the planar patches. The advantage of the characteristic map, in comparison to the conformal
map, is that it provides a more uniform parameterisation and does not have a singularity at the extraordinary vertex.
Additional directions for future research include the mathematical convergence analysis and the proof of the linear
independence of the introduced manifold basis function. To this end, the large number of results for partition of unity
methods provide a good starting point. Finally, for isogeometric analysis of three-dimensional domains the combina-
tion of manifold-based surface descriptions with either meshfree [45, 46] or immersed methods [47–49] appears to be
appealing and straightforward.

Appendix A. Implementation

In the following we discuss the implementation of manifold basis functions focusing on data structures and algo-
rithms. For clarity, the discussion is restricted to the case of patches Ω̂i consisting of one-ring elements. This section
should be read in conjunction with Section 3.2 and specifically Figure 11. In line with conventional finite element
implementations it is assumed that the element matrices and vectors are assembled by iterating over elements. For
computing the element matrices and vectors the basis function values and derivatives at integration points are required.
The basis functions depend only on the connectivity of the mesh but not on the coordinates of the vertices. Hence,
they can be precomputed as part of a preprocessing step and stored for later use.

The construction of the manifold basis functions proceeds in several steps. First, for each (non-boundary) vertex
in the mesh the elements and vertices in its one-ring are identified. Recall that we introduced one layer of ghost
elements just outside the domain of interest and that the charts which belong to the boundary vertices do not intersect
the domain. The elements and vertices in an one-ring can efficiently be identified, for instance, using a half-edge data
structure.

Following the assembly of the one-rings, we endow each patch Ω̂ j with a blending function w j(ξ) and a local
polynomial basis p(ξ). The degree of p(ξ) is chosen such that it is equal or less than the number of the vertices
in the corresponding one-ring, i.e., 2v + 1, where v is the valence of the centre vertex. Subsequently, the basis
functions NI(ηQ) and their derivatives ∇ηNI(ηQ) for each quadrature (or, Gauss) point ηQ = (η1

Q, η
2
Q) in an element �i

are precomputed. Each four-noded element in the mesh lies within the overlap of four patches, hence, with each

20



NI(ηQ) receiving four contributions. The contribution of one patch Ω̂ j to NI(ηQ) belonging to the vertex I is computed
as follows:

1. Determine the conformal coordinate ζQ by applying the conformal map z(ζQ) = z(ηQ)4/v.
2. Identify the image of the considered element �i in the patch Ω̂ j by comparing vertex ID’s. Based on that

determine the coordinate ξQ in Ω̂ j by applying the rotation

ξQ = RζQ ,

where the rotation R is a multiple of 2π/v.
3. Compute the contribution of patch Ω̂ j to basis function NI(ηQ) according to (19)

w j(ξQ)
2v+1∑

k

pk(ξQ)AkI ,

where the summation is over the components in the polynomial basis pk(ξQ). We choose for pk(ξQ) either a
monomial or a Lagrangian basis. The matrix AkI , which is the inverse of the least-squares matrix, does not
depend on the coordinates and can be precomputed for all possible valences and stored. For computing the
contribution of patch Ω̂ j to the derivatives ∇ηNI(ηQ) the above equation is differentiated, i.e.,

∇ηw j = ∇ξw jRT
(
∂η

∂ζ

)−1

.

After summing up the contributions of the four overlapping charts, the basis functions, their derivatives and corre-
sponding vertices are stored in maps. The number of (non-zero) basis functions in an element is equal to the number
of unique vertices in the union of the element’s four charts.
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[16] B. Jüttler, A. Mantzaflaris, R. Perl, M. Rumpf, On numerical integration in isogeometric subdivision methods for PDEs on surfaces, Computer

Methods in Applied Mechanics and Engineering 302 (2016) 131–146.
[17] X. Wei, Y. Zhang, T. J. R. Hughes, M. A. Scott, Truncated hierarchical Catmull–Clark subdivision with local refinement, Computer Methods

in Applied Mechanics and Engineering 291 (2015) 1–20.
[18] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[19] B. F. Schutz, Geometrical methods of mathematical physics, Cambridge University Press, Cambridge, UK, 1980.
[20] C. M. Grimm, J. F. Hughes, Modeling surfaces of arbitrary topology using manifolds, in: SIGGRAPH 1995 Conference Proceedings, 359–

368, 1995.
[21] J. C. Navau, N. P. Garcia, Modeling surfaces from meshes of arbitrary topology, Computer Aided Geometric Design 17 (2000) 643–671.
[22] L. Ying, D. Zorin, A simple manifold-based construction of surfaces of arbitrary smoothness, in: SIGGRAPH 2004 Conference Proceedings,

271–275, 2004.
[23] X. Gu, Y. He, H. Qin, Manifold splines, Graphical Models 68 (2006) 237–254.
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