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Supplementary Information S1 

Specimen information 

Nile crocodile. 

All animal data were collected as part of previous studies 1,2 at the Royal Veterinary College, 

UK under the Home Office (United Kingdom) project license P0806ABAD and approval of 

the College's Ethics and Welfare Committee (approval number 2016-0089 N). After 

euthanasia and following standard ethical procedure using anaesthetic overdose 1,2, a Nile 

crocodile (Crocodilus niloticus; specimen DDNC03; Wiseman et al. 2021) was stained with 

Lugol's solution 3, 4% iodine with 10% neutral-buffered formalin, for 93 days and then 

microCT scanned at the University Museum of Zoology Cambridge, UK using a Nikon 

XTEK XTH 225 ST scanner (see CT scan parameters below). The bone and muscle volumes 

were manually segmented and extracted in MATERIALISE MIMICS 22.0 

(https://www.materialise.com/en/medical/mimics-innovation-suite).  

 

Euparkeria capensis. 

CT data of several specimens of the Triassic stem-archosaur Euparkeria capensis from the 

Iziko South African Museum (SAM) and the University Museum of Zoology Cambridge 

(UMZC) were obtained from a previous study (Demuth et al., 2020; see CT scan parameters 

below). The bones were segmented in AVIZO 9.7 Lite 

(https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-

vis/avizo-software.html) and combined into a composite hindlimb with elements from the 

individual specimens scaled isometrically to the most complete specimen (SAM PK 5867) 

and articulated in an osteologically feasible posture 4.  
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Western lowland gorilla. 

A single western lowland gorilla (Gorilla gorilla gorilla) specimen was used in this study. 

The specimen, published on previously 5, was a zoo animal, which was euthanized at the age 

of 48.8 years in December 2012 after suffering from various age-related ailments, and was 

subsequently ethically acquired through the Cleveland Museum of Natural History, Erie Zoo 

and Cleveland Metroparks Zoo 5. The CT scan to extract the bone models was conducted at 

the Ohio State University College of Veterinary Medicine using a Revolution Evo Lightspeed 

(see CT scan parameters below). The shoulder and upper arm bone geometries were manually 

segmented and extracted from the CT data using AVIZO 9.3 

(https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-

vis/avizo-software.html).  

 

CT scan parameters 

TABLE S1. CT scan settings and scan resolutions for all datasets. Gorilla gorilla gorilla, 

Crocodilus niloticus (DDNC03) and Euparkeria capensis (prefix ID-codes: SAM and 

UMZC). The scanned blocks of both SAM PK 5867 and SAM PK 6047A are the ones 

containing the pelvis. UMZC T.692 1, 2 and 3 correspond to ankle bones scan 1 and 2 and the 

scan of the foot block. 

Specimen Voltage 
(kV) 

Current 
(µA) 

Exposure 
duration 

(ms) 

Voxel size 
(µm) 

Number of 
slices 

Resolution 
(pixels) 

Gorilla 120 319 600 625-977 1843 512x512 

DDNC03 200 200 708 92-125 1998 738 x 1999 

SAM PK 5867 170 400 500 90 1792 1387 × 515  

SAM PK 6047A 170 400 500 90 1618 673 × 971  

SAM PK K8309 170 400 500 50 1617 1206 × 550 

UMZC T.692 1 115 120 1000 200 1568 1266 × 1197 

UMZC T.692 2 115 120 1000 200 1799 1447 × 1301 

UMZC T.692 3 190 170 1415 200 1999 1418 × 2000 
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Supplementary Figures 

 

Figure S1. Slices through a right Alligator thigh. Slices follow from the lower right corner 

in a Z-like fashion from proximal to distal. Scale bar in cm. For labelled muscles, please see 

Figure 2. 
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Figure S2. Slices through a right Alligator knee and proximal shank. Slices follow from 

the lower right corner in a Z-like fashion from proximal to distal. Scale bar in cm. 
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Figure S3. Slices through a right Alligator shank and ankle. Slices follow from the lower 

right corner in a Z-like fashion from proximal to distal. Scale bar in cm. 
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Figure S4. Comparison between different numbers of vertices used to describe the M. 

flexor tibialis externus (FTE) muscle belly. Left before and right after smooth preview using 

the OpenSubdiv Catmull-Clark algorithm 6. Blue, 8 vertices; green, 12 vertices; yellow 16 

vertices. 
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Figure S5. Trimming of tendons for LoA estimation for Euparkeria. The additional 

tendons for M. flexor digitorum longus (green face outlines) and M. flexor hallucis longus 

(white face outlines) before (A) and after (B) trimming of the tendons. Only the tendon to the 

third digit has been retained for LoA estimation for musculoskeletal simulations, otherwise 

the LoA would move erratically across the foot between the different tendons. If desired the 

LoA could be estimated for each individual tendon through removal of the other tendons and 

computation of the MAYA muscle line of action estimation script for each case. Superficial 

muscles have been removed to show the relevant muscles.  
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Figure S6. Line of action artefact of the M. deltoideus spinalis in Gorilla. Due to wide and 

sheath-like attachment on the scapula the muscle slices incorporated the attachment area (A) 

and thus dragged the slice centroids medially (B,C) until the attachment was no longer part of 

the slices (D). 
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Figure S7. Iterative polygonal muscle modelling workflow. (A) Placement of the individual 

vertices describing the muscle attachment surface of the M. iliofemoralis (IF) of Euparkeria 

onto the ‘live’ ilium in the Modelling Toolkit in MAYA. (B) Creation of the origin attachment 

surface through connection of the vertices with faces in the Modelling Toolkit. (C) Extrusion 

of the edge loops to build the muscle belly. (D) Creation of the insertion on the ‘live’ femur in 

the Modelling Toolkit. (E) Iterative adjustment of the vertices of a muscle belly in comparison 

with the surrounding muscle bellies and the alligator lower hindlimb cross-sections. Note that 

the smooth muscle meshes are displayed using the OpenSubdiv smooth preview and thus still 

retain the flexibility of the low number of vertices (as highlighted on the M. flexor hallucis 

longus, FHL). Note that the Modelling Toolkit in MAYA highlights the faces of an edited 

object in transparent blue (B, D) while in basic mesh editing only the selected components are 

highlighted, e.g. the selected edges in orange (C) or the selected vertices in yellow (E). 
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Figure S8. Iterative polygonal muscle modelling workflow for surface data. (A) Placement 

of the individual vertices onto the ‘live’ surface of the M. deltoideus clavicularis of the 

Gorilla specimen using the Modelling Toolkit in MAYA (frontal view). (B) Creation of the 

faces connecting the vertices to create a surface approximation (frontal view). (C) Placement 

of the vertices and faces on the surface scan after removal of the M. deltoideus clavicularis to 

capture the negative space (frontal view). (D) Combination of both surfaces using the Append 

to Polygon mesh tool to create a closed ‘cylinder’ from origin to insertion (oblique medial 

view). Note the face to be created is highlighted in pink. The surface meshes have been made 

semi-transparent (shown as grey and pink triangle edges) to improve the visibility of the 

mesh-closing process. The M. supraspinatus is visible in the background (green surface). (E) 

In absence of direct bone attachment information edges can be collapsed at the estimated 

attachment area to create a watertight mesh. 

 



  15 

Supplementary Method S1. Step-by-step workflow description of iterative polygonal 

muscle modelling 

1. After the origin(s) and insertion(s) were determined for a muscle, i.e., either through 

dissection, muscle scars and/or the EPB for extinct taxa; e.g., see 7–13, the bone where 

the muscle attaches to was converted into a ‘live surface’ 14. This allowed drawing 

individual vertices directly onto the bone surface using the Modelling Toolkit in Maya. 

This is approach is frequently used in the 3D modelling industry to remesh or 

retopologise an existing model to get a more uniform topology 15–17. Here, we used it 

to establish and define the 3D surface of the muscle attachment area. The vertices 

were arranged to uniformly surround the attachment area (Figure S7A). Depending on 

the complexity of this area, either 8, 12 or 16 vertices were used. This decision 

involves a trade-off between accuracy and complexity further downstream in the 

method. We concluded that 12 vertices are usually enough to define the outline of the 

muscle (see Figure S4), because they could reasonably track the tomographic muscle 

cross-sections, especially as the muscles are smoothed later on. 

2. Additional vertices were added within the attachment area to refine the surface shape 

and make sure that the muscle surface accurately tracked the bone surface. The 

vertices were connected, and the faces were closed to produce the attachment surface 

of the muscle (Figure S7B). 

3. In the next step, the live object was turned off to allow the individual vertices to be 

positioned independently from the surface of the bone within the 3D space; otherwise 

they would stay bound to the live object’s surface. The edges surrounding the 

attachment area were extruded and the individual vertices repositioned to start shaping 

the muscle surface.  
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4. This edgeloop (i.e., the edges forming a closed loop perpendicular to the muscle long 

axis) was further extruded in a stepwise fashion towards the muscle’s insertion or 

origin to start fleshing out the 3D shape of the muscle. Additional edgeloops were 

added where necessary to subdivide the faces and the muscle was adjusted to match 

the tomographic sections (Figure S7C). This was repeated until a rough shape of the 

muscle was obtained.  

5. When the second bone attachment was reached (i.e., origin or insertion, depending on 

which direction the muscle was constructed from), the bone was converted into a live 

surface again and the vertices were placed onto the bone in the same manner as in 

steps 1 and 2 (Figure S7D). 

6. Muscles with multiple heads and a common tendon (e.g. PIFE1-3 of Archosauria) 

should be modelled individually, i.e., each with an individual tendon attaching to the 

bone. Muscles with multiple insertions (e.g. M. flexor digitorum longus in the lower 

hindlimb of most Tetrapoda) should be modelled with multiple tendons, which can 

then be trimmed for the LoA estimation (see Figure S5). One of the advantages of 

polygonal modelling is that an additional tendon(s) can easily be extruded from 

polygonal faces, an option not readily available in NURBS modelling.  

7. Steps 1 to 6 were repeated to model each individual muscle.  

8. After two or more neighbouring muscles were completed, the positions of individual 

vertices of each muscle were re-examined and readjusted in an iterative manner to fill 

in any open spaces/gaps between the muscles as realistically as possible until an 

anatomically satisfactory result was achieved (Figure S7E). Additionally, the overall 

muscle shapes were examined to detect unrealistic shapes and modelling errors, such 

as double-bellied muscles (whereas a muscle has a thin part in the middle and bulges 

out proximally and distally) and corrected in comparison with the cross-sections. 
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9. After muscle construction, each muscle was smoothed, i.e., the faces were subdivided 

to obtain a higher resolution and more uniform curvature using the Maya inbuilt 

OpenSubdiv Catmull-Clark algorithm 6. A division level of 2 or 3 was found to be 

sufficient. The number of faces grows exponentially with each division level, resulting 

in longer computational time further downstream with relatively little gain in fidelity. 
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Supplementary Method S2. Step-by-step workflow description of application of iterative 

polygonal muscle modelling to surface data 

1. Before creating individual muscles, the superficial 3D surface scans captured during 

the dissection had to be aligned with the underlying surface scans and the bone 

reconstructions of the CT-scan data. Several discrete, homologous landmarks in the 

different scans, which were labelled during the dissection using pins, were used to 

orient and translate the models into position; see 5. 

2. Instead of converting the bone surface into a ‘live surface’, the superficial-most scan 

was made ‘live’. Whilst in the iterative muscle modelling workflow (above), the caps 

(i.e., attachment area) of the cylinder were created using the Modelling Toolkit, in this 

surface retopology the sides of the cylinder were constructed. Individual vertices were 

placed on the scan surface from origin to insertion in evenly spaced rows and columns 

(Figure S8A). The number of columns depended on the assumed portion of the muscle 

visible. The cylinder representing the muscle should have between 8 and 16 faces, as 

in the iterative modelling workflow.  

3. The vertices placed on the muscle surface were then connected through faces and 

relaxed to receive a more uniform distribution of the vertices, approximating the scan 

surface (Figure S8B). 

4. After the visible surface of a muscle was captured, the superficial-most muscle mesh 

was hidden, and the subsequent layer of the musculature (i.e., in order from superficial 

to deep) was made visible and ‘live’. The negative space that the now hidden muscle 

left behind was captured by placing vertices onto the now visible adjacent muscle 

and/or bone surfaces (Figure S8C). The rows of the vertices were matched to the ones 

previously placed on the outer surface, thus ensuring that the vertices formed loops 

around the muscle with its long axis subdivided into several rows.  
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5. Step 3 was repeated for the newly placed vertices. 

6. After we were satisfied with the retopology of the muscle surface and its negative 

space, both meshes were combined and connected using the Append to Polygon mesh 

tool (Figure S8D).  

7. If the bone was exposed in any of the lower surface models (e.g. M. supraspinatus) or 

if derived from CT data, the origin and insertion of said muscle was created identically 

to steps 1 and 2 in the iterative muscle modelling workflow (see above). However, if 

this process is repeated in future studies and in the case that the bone cannot directly 

be exposed and/or a surface scan cannot be aligned with CT scan-based bone models, 

the origins and insertions will have to be approximated based on the anatomical 

understanding of the animal/specimen in question. The proximal and distal edgeloops 

should be positioned at their estimated attachment areas, extruded and merged to their 

centre to create a ‘watertight’ 3D model of the muscle (Figure S8E).  

8. After each muscle was reconstructed, the meshes were smoothed using the 

OpenSubdiv Catmull-Clark algorithm 6 in MAYA. As above, a division level of 2 or 3 

was sufficient. 
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Supplementary Method S3. MAYA polygon surface centroid calculation MEL script 

To calculate the centroid of a polygonal surface, or in this case the centroid(s) of the muscle 

attachment area(s), i.e. origin and insertion, select the faces describing the attachment(s) and 

run the following script. 

 

1

/* Maya polygon surface centroid calculation  
 
    This script creates a Locator at the position of each surface centroid based on the 
    selected faces of any mesh surface. The centroid is calculated based on the weighted  
    average of the face centroids. 
     
    This script works for single or multiple surfaces. For example when the faces of only  
    one muscle attachment area are selected or when the faces of both origin and insertion  
    are selected. 
     
    Written by Oliver Demuth 26.03.2021 
    Last updated 19.08.2021 - Oliver Demuth 
     
    Note, before running the script make sure to have all relevant faces of the polygon 
    surfaces (e.g. the muscle attachments) selected. 
 
*/ 
 
//=========================================================// 
 
/************  CALCULATE SURFACE CENTROID(S)  **************/ 
 
 
// get object name and faces from selection 
 
string $selection[] = `ls -sl`; 
int $sizeSelection = `size($selection)`; 
 
string $t[]; 
string $tempT[]; 
string $mT[]; 
 
for ($i = 0;$i<$sizeSelection;$i++) 
{ 
    tokenize $selection[$i] "." $tempT; 
 
    $t[2*$i] = $tempT[0]; 
    $t[2*$i +1] = $tempT[1]; 
} 
 
tokenize $t[0] "|" $mT; 
 
 
// create temporary object duplicate 
 
int $sizeBuff = size($mT); 
string $nCopy = $mT[$sizeBuff-1] + "_duplicate"; 
 
duplicate -n $nCopy $t[0]; 
 
 
// project selection onto object duplicate 
 
string $copySel[]; 
 
for ($k = 0;$k<$sizeSelection;$k++) 
{ 
    $copySel[$k] = $nCopy + "." + $t[2*$k +1]; 
} 
 
 
// extracts object surfaces 
 
string $nShape = $nCopy + "Shape"; 
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2

polyChipOff -ch 1 -kft 1 -dup 1 -off 0 $copySel; 
polySeparate -rs 1 -ch 1 $nShape; 
 
 
// define and name object surfaces 
 
string $sel[] = `ls -sl`; 
int $sizeSel = size($sel); 
 
string $att = $mT[1] + "_attachment"; 
string $orig = $mT[1] + "_origin"; 
string $ins = $mT[1] + "_insertion"; 
 
string $mAtt[]; 
 
if ($sizeSel < 3) 
{ 
    rename $sel[1] $att; 
    $mAtt[0] = $att;  
}  
else  
{ 
    rename $sel[1] $orig; 
    rename $sel[2] $ins; 
    $mAtt[0] = $orig; 
    $mAtt[1] = $ins; 
} 
 
select -clear; 
 
 
// calculate the centroid for each object surface 
 
for ($j = 0;$j<($sizeSel-1);$j++) 
{ 
     
    // triangulate attachment for centroid calculation 
     
    select $mAtt[$j]; 
    polyTriangulate $mAtt[$j];   
 
 
    // get vertex and face IDs from triangulated attachment 
 
    string $vertIndicesStr[] = `polyInfo -fv`; 
    int $sliceFaceNum = `size($vertIndicesStr)`;   
 
 
    // calculate area and center of each triangle of the attachment 
 
    string $vertIndices[]; 
    float $s; 
    float $attFaceArea[]; 
    float $attFacetotArea = 0; 
    vector $attFaceCenter[]; 
         
    for ($l = 0;$l<$sliceFaceNum;$l++) 
    { 
        tokenizeList($vertIndicesStr[$l], $vertIndices); 
    
        string $VtxA = (string)$mAtt[$j] + ".vtx[" + $vertIndices[2] + "]"; 
        string $VtxB = (string)$mAtt[$j] + ".vtx[" + $vertIndices[3] + "]"; 
        string $VtxC = (string)$mAtt[$j] + ".vtx[" + $vertIndices[4] + "]"; 
         
         
        // querry position of each vertex and calculate distances between them 
         
        vector $VtxAPos = `xform -q -t -ws $VtxA`; 
        vector $VtxBPos = `xform -q -t -ws $VtxB`; 
        vector $VtxCPos = `xform -q -t -ws $VtxC`; 
         
        float $DistA = mag ($VtxBPos-$VtxCPos); 
        float $DistB = mag ($VtxAPos-$VtxCPos); 
        float $DistC = mag ($VtxAPos-$VtxBPos); 
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3

        //calculate area and center position of each triangle 
         
        $s = ($DistA + $DistB + $DistC)/2; 
        $attFaceArea[$l] = sqrt($s * ($s-$DistA) * ($s-$DistB) * ($s-$DistC)); 
        $attFacetotArea += $attFaceArea[$l]; 
         
        $attFaceCenter[$l] = ($VtxAPos + $VtxBPos + $VtxCPos)/3; 
    } 
 
    // calculate attachment centeroid by weighting the center position of each triangle by their 
respective face area (i.e. COM calculation) 
 
    float $wPos[]; 
    float $wPosSum = 0; 
         
    float $attPosSumX = 0; 
    float $attPosSumY = 0; 
    float $attPosSumZ = 0; 
     
    vector $centerPos; 
         
    for ($m = 0;$m<$sliceFaceNum;$m++) 
    { 
        // calculate weighting factor for each triangle 
         
        $wPos[$m] = ($attFaceArea[$m] / $attFacetotArea); 
        $attPosVec = $attFaceCenter[$m]; 
         
         
        // weight each triangle center by its area 
         
        $attPosX[$m] = (($attPosVec.x) * $wPos[$m]); 
        $attPosY[$m] = (($attPosVec.y) * $wPos[$m]); 
        $attPosZ[$m] = (($attPosVec.z) * $wPos[$m]); 
         
         
        // caluclate X, Y, Z coordinates of slice center 
         
        $attPosSumX += $attPosX[$m];  
        $attPosSumY += $attPosY[$m]; 
        $attPosSumZ += $attPosZ[$m]; 
 
        $wPosSum += $wPos[$m]; 
    }      
                
    select -clear; 
    select $selection; 
     
     
    // set center position for attachment $j and create Locator 
 
    string $attLoc = $mAtt[$j] + "_LOC"; 
 
    spaceLocator - p 0 0 0 -n $attLoc;    
    select $attLoc; 
    move -r $attPosSumX $attPosSumY $attPosSumZ; 
    select -clear;   
 
} 
 
// clean up 
 
delete $nCopy; 
clear $copySel; 
clear $mAtt; 
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Supplementary Method S4. MAYA muscle line of action estimation MEL script 

To calculate the line of action (LoA) of a muscle, select the origin and insertion locators (as 

calculated from the Method S1. MAYA polygon surface centroid calculation MEL script or 

imported from another dataset) and the muscle mesh and execute the following MEL script in 

the Script Editor in MAYA. The number of slices and the radius of the LoA can be specified in 

line 24 and 28, respectively. Additionally, there is an option to place Locators at the muscle 

slice centroids in line 32.  

 

1

/* Maya muscle line of action (LOA) estimation  
 
    This script creates a polygonal LOA for a muscle based on a user specified number of 
    slices. The muscle is cut into a number of equidistant slices from origin to insertion. 
    The centre of mass (COM), through which the LOA passes, is then calculated for each  
    slice. A curve from origin to insertion through each slices' COM is created and  
    converted into a polygonal mesh. 
     
    Written by Oliver Demuth 19.02.2021 
    Last updated 26.07.2021 - Oliver Demuth 
     
    Note, before running the script make sure to have a locator for the origin and insertion 
    at their respective world position as well as the muscle mesh selected.  
    The script can take several minutes to run (depending on muscle mesh resolution). 
 
*/ 
 
//=========================================================// 
 
/******************  SET VARIABLES BELOW  ******************/ 
 
// Set the number of slices the muscle is cut into 
 
int $numberOfDivisions = 50; 
 
// Set radius of the line of action 
 
float $LOARadius = 0.2; 
 
// Do you want to place locators at the centroid of each slice?  
 
int $createLOCs = 0; // 0 = no; 1 = yes 
 
 
//=========================================================// 
 
/************  SELECT 1. ORIGIN, 2. INSERTION,  ************/ 
/************   3. MUSCLE MESH AND RUN SCRIPT   ************/ 
/************      NO CHANGES NEEDED BELOW      ************/ 
 
 
//=========================================================// 
 
/***************  CUTS MUSCLE INTO SLICES  *****************/ 
 
 
// get objects and their position 
 
string $selection[] = `ls -sl`; 
$origin = $selection[0]; 
$insertion = $selection[1]; 
$muscle = $selection[2]; 
 
string $mT[]; 
tokenize $muscle "|" $mT; 
 
int $sizeBuff = size($mT); 
string $nClean = $mT[$sizeBuff-1]; 
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2

string $nCopy = $nClean + "_duplicate"; 
duplicate -n $nCopy $muscle; 
 
vector $oPos = `xform -q -t -ws $origin`; 
vector $iPos = `xform -q -t -ws $insertion`; 
 
 
// get closest points on mesh to attachments 
 
string $cPOMo = `createNode closestPointOnMesh`; 
connectAttr -f ($muscle + ".outMesh") ($cPOMo + ".inMesh"); 
connectAttr -f ($origin + ".translate") ($cPOMo + ".inPosition"); 
 
string $cPOMi = `createNode closestPointOnMesh`; 
connectAttr -f ($muscle + ".outMesh") ($cPOMi + ".inMesh"); 
connectAttr -f ($insertion + ".translate") ($cPOMi + ".inPosition"); 
 
vector $cPOMoPOS = `getAttr ($cPOMo + ".position")`; 
vector $cPOMiPOS = `getAttr ($cPOMi + ".position")`; 
 
 
// calculate vector from origin to insertion 
 
vector $anlgleOffset  = $oPos - $iPos; 
vector $offset = $cPOMoPOS - $cPOMiPOS; 
vector $delta = $offset/$numberOfDivisions; 
 
 
// calculate direction to cut the muscle into equidistant slices 
 
vector $cutAim = `angleBetween -euler -v1 0 0 1 -v2 ($anlgleOffset.x) ($anlgleOffset.y) 
($anlgleOffset.z)`; 
 
vector $centerPos; 
vector $sliceCenterPos[]; 
$sliceCenterPos[0] = $oPos; 
$sliceCenterPos[$numberOfDivisions] = $iPos; 
 
select -clear; 
 
 
// create locator group if locators are to be created 
 
if ($createLOCs > 0) 
{ 
    string $tempLoc; 
    string $centroidGRP;  
    $centroidGRP = $nClean + "_LOC_GRP"; 
    group -em -n $centroidGRP; 
    $createLOCs = 1; 
} 
else 
{ 
    $createLOCs = 0; 
} 
 
 
// set progressBar 
 
progressBar -edit 
    -beginProgress 
    -isInterruptable true 
    -status "Estimating Line of Action" 
    -maxValue $numberOfDivisions 
    $gMainProgressBar; 
 
 
// loop to slice muscle into specified number of divisions and calculate the center position of 
each slice 
 
for ($i = 1;$i<$numberOfDivisions;$i++) 
{         
    int $numFace[] = `polyEvaluate -f $muscle`; 
    int $numMF = $numFace[0] - 1; 
    string $mF = (string)$muscle + ".f[0:" + $numMF + "]"; 
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3

     
    // cut muscle into slices 
         
    polyCut  
            -pc (($cPOMoPOS.x) - $i*($delta.x)) (($cPOMoPOS.y) - $i*($delta.y)) (($cPOMoPOS.z) - 
$i*($delta.z)) 
            -ro ($cutAim.x) ($cutAim.y) ($cutAim.z) 
            -ps 2 2 
            -ef 1 
            -eo 0 0 0 
            $mF; 
                 
    select $muscle; 
     
    polyCloseBorder; 
         
    int $numSlice[] = `polyEvaluate -f $muscle`; 
    int $numSF = $numSlice[0] - 2; 
    string $nF = (string)$muscle + ".f[" + $numSF + "]"; 
     
     
    // selects newly generated face (slice of muscle at cut $i) and triangulate face 
         
    resetPolySelectConstraint;  
    selectType -pf true; 
    select $nF; 
    polyTriangulate $nF;     
 
 
    // get vertex and face IDs from triangulated slice 
 
    string $vertIndicesStr[] = `polyInfo -fv`; 
    int $sliceFaceNum = `size($vertIndicesStr)`;   
 
 
    // calculate area and center of each triangle of the slice 
 
    string $vertIndices[]; 
    float $s; 
    float $sliceFaceArea[]; 
    float $sliceFacetotArea = 0; 
    vector $sliceFaceCenter[]; 
         
    for ($l = 0;$l<$sliceFaceNum;$l++) 
    { 
        tokenizeList($vertIndicesStr[$l], $vertIndices); 
        
        string $VtxA = (string)$muscle + ".vtx[" + $vertIndices[2] + "]"; 
        string $VtxB = (string)$muscle + ".vtx[" + $vertIndices[3] + "]"; 
        string $VtxC = (string)$muscle + ".vtx[" + $vertIndices[4] + "]"; 
         
         
        // querry position of each vertex and calculate distance between them 
         
        vector $VtxAPos = `xform -q -t -ws $VtxA`; 
        vector $VtxBPos = `xform -q -t -ws $VtxB`; 
        vector $VtxCPos = `xform -q -t -ws $VtxC`; 
     
        float $DistA = mag ($VtxBPos-$VtxCPos); 
        float $DistB = mag ($VtxAPos-$VtxCPos); 
        float $DistC = mag ($VtxAPos-$VtxBPos); 
         
         
        //calculate area and center position of each triangle 
         
        $s = ($DistA + $DistB + $DistC)/2; 
        $sliceFaceArea[$l] = sqrt($s * ($s-$DistA) * ($s-$DistB) * ($s-$DistC)); 
        $sliceFacetotArea += $sliceFaceArea[$l]; 
     
        $sliceFaceCenter[$l] = ($VtxAPos + $VtxBPos + $VtxCPos)/3; 
    } 
 
 
    // calculate slice center by weighting the center position of each triangle by their 
respective face area (i.e. COM calculation) 
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    float $wPos[]; 
    float $wPosSum = 0; 
     
    float $sfcPosSumX = 0; 
    float $sfcPosSumY = 0; 
    float $sfcPosSumZ = 0; 
 
    vector $centerPos; 
         
    for ($m = 0;$m<$sliceFaceNum;$m++) 
    { 
        // calculate weighting factor for each triangle 
         
        $wPos[$m] = ($sliceFaceArea[$m] / $sliceFacetotArea); 
        $sfcPosVec = $sliceFaceCenter[$m]; 
         
         
        // weight each triangle center by its area 
         
        $sfcPosX[$m] = (($sfcPosVec.x) * $wPos[$m]); 
        $sfcPosY[$m] = (($sfcPosVec.y) * $wPos[$m]); 
        $sfcPosZ[$m] = (($sfcPosVec.z) * $wPos[$m]); 
         
         
        // caluclate X, Y, Z coordinates of slice center 
         
        $sfcPosSumX += $sfcPosX[$m];  
        $sfcPosSumY += $sfcPosY[$m]; 
        $sfcPosSumZ += $sfcPosZ[$m]; 
 
        $wPosSum += $wPos[$m]; 
    }      
                
    select -clear; 
    select $selection; 
     
    // update ProgressBar 
     
    progressBar -edit 
        -status "Estimating Line of Action" 
        -step $i $gMainProgressBar;  
     
    // set center position for slice $i 
     
    $centerPos = <<($sfcPosSumX), ($sfcPosSumY), ($sfcPosSumZ)>>; 
    $sliceCenterPos[$i] = $centerPos; 
     
     
    // creates locator at the centroid of slice $i and groups all into the centroid locator group 
     
    if ($createLOCs == 1) 
    { 
        $tempLoc = $nClean + "_Centroid_Slice" + $i; 
        $centroidGRP = $nClean + "_LOC_GRP"; 
        spaceLocator - p 0 0 0 -n $tempLoc; 
        select $tempLoc; 
        move -r ($centerPos.x) ($centerPos.y) ($centerPos.z); 
        select -clear; 
        parent $tempLoc $centroidGRP; 
    } 
} 
 
select -clear; 
resetPolySelectConstraint; 
 
progressBar -edit 
    -endProgress 
    $gMainProgressBar; 
 
 
/**********  CREATES LOA BASED ON MUSCLE SLICES  ***********/ 
 
 
// create variables for LOA creation 
 
string $n = $nClean; 



  27 

 

5

string $nc = $n + "_path"; 
string $np = $n + "_poly"; 
string $npf = $np + "Shape.f[0]"; 
string $nGRP = $n + "_LOA_GRP"; 
 
string $CRVPtsArray[]; 
string $NumArray[]; 
string $t[]; 
 
int $j = 0; 
 
 
// read slice center points into array for curve construction 
 
clear $CRVPtsArray; 
 
for ($j = 0;$j<$numberOfDivisions + 1;$j++) 
{ 
    tokenizeList($sliceCenterPos[$j], $t); 
    $CRVPtsArray[($j*4)] = "-p"; 
    $CRVPtsArray[($j*4)+1] = $t[0]; 
    $CRVPtsArray[($j*4)+2] = $t[1]; 
    $CRVPtsArray[($j*4)+3] = $t[2]; 
} 
 
clear $NumArray; 
 
for ($k = 0;$k<$numberOfDivisions - 1;$k++) 
{     
    $NumArray[($k*2)] = "-k"; 
    $NumArray[($k*2)+1] = $k; 
} 
 
 
// create strings for curve construction (i.e. curve points and knots) 
 
string $curveDataAsString = stringArrayToString($CRVPtsArray," "); 
string $NumArrayAsString = stringArrayToString($NumArray," "); 
string $curveString = $curveDataAsString + " -k 0 -k 0 " + $NumArrayAsString + " -k " + 
($numberOfDivisions - 2) + " -k " + ($numberOfDivisions - 2); 
 
 
// creat curve based on slice center position 
 
eval curve -d 3 $curveString -n $nc; 
reverseCurve -rpo 1 $nc; 
rebuildCurve -rpo 1 -rt 0 -end 1 -kr 0 -kcp 0 -kep 1 -kt 1 -s 0 -d 1 -tol 1e-08 $nc; 
rebuildCurve -rpo 1 -rt 0 -end 1 -kr 0 -kcp 0 -kep 1 -kt 1 -s 0 -d 3 -tol 1e-08 $nc; 
 
 
// creates temporary helper to aim polyDisc along curve 
 
spaceLocator - p 0 0 0 -n helper; 
select helper; 
move -r $CRVPtsArray[($numberOfDivisions*4)-3] $CRVPtsArray[($numberOfDivisions*4)-2] 
$CRVPtsArray[($numberOfDivisions*4)-1]; 
select -clear; 
 
 
// creates polyDisc to extrude onto curve 
 
polyDisc -sides 12 -subdivisionMode 4 -subdivisions 0 - radius $LOARadius;     
rename "pDisc1" $np; 
select $np; 
move -r $CRVPtsArray[($numberOfDivisions*4)+1] $CRVPtsArray[($numberOfDivisions*4)+2] 
$CRVPtsArray[($numberOfDivisions*4)+3]; 
select -clear; 
 
 
// aim polyDisc along first curve point and extrude it onto curve 
 
aimConstraint -offset 0 0 0 -weight 1 -aimVector 0 1 0 -upVector 1 0 0 -worldUpType "scene" -n 
aimhelper helper $np; 
polyExtrudeFacet - kft 1 -divisions ($numberOfDivisions * 2) -inputCurve $nc $npf;  
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// clean up  
 
delete helper aimhelper $muscle; 
rename $nCopy $nClean; 
select $np $muscle; 
makeIdentity -apply true -t 1 -r 1 -s 1 -n 0 -pn 1; 
doBakeNonDefHistory( 1, {"prePost" }); 
group -n $nGRP $nc $np; 
 
if ($createLOCs == 1) 
{ 
    $centroidGRP = $nClean + "_LOC_GRP"; 
    parent $centroidGRP $nGRP; 
} 
 
select -clear; 
select $selection; 
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