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Abstract

Background: Influenza remains a significant burden on health systems. Effective responses rely on the timely
understanding of the magnitude and the evolution of an outbreak. For monitoring purposes, data on severe cases of
influenza in England are reported weekly to Public Health England. These data are both readily available and have the
potential to provide valuable information to estimate and predict the key transmission features of seasonal and
pandemic influenza.

Methods: We propose an epidemic model that links the underlying unobserved influenza transmission process to
data on severe influenza cases. Within a Bayesian framework, we infer retrospectively the parameters of the epidemic
model for each seasonal outbreak from 2012 to 2015, including: the effective reproduction number; the initial
susceptibility; the probability of admission to intensive care given infection; and the effect of school closure on
transmission. The model is also implemented in real time to assess whether early forecasting of the number of
admissions to intensive care is possible.

Results: Our model of admissions data allows reconstruction of the underlying transmission dynamics revealing:
increased transmission during the season 2013/14 and a noticeable effect of the Christmas school holiday on disease
spread during seasons 2012/13 and 2014/15. When information on the initial immunity of the population is available,
forecasts of the number of admissions to intensive care can be substantially improved.

Conclusion: Readily available severe case data can be effectively used to estimate epidemiological characteristics
and to predict the evolution of an epidemic, crucially allowing real-time monitoring of the transmission and severity
of the outbreak.

Keywords: Epidemic monitoring, Bayesian inference, Epidemic models, Influenza, Reproduction number,
Severe cases

Background
Recent annual epidemics of influenza have resulted in
about 3 to 5 million cases of severe illness each season
worldwide [1]. Historically, influenza has always placed a
large burden on many national health systems [2], partic-
ularly as a result of severe cases in the most at risk groups
[3] (e.g. elderly [4], children and people with underlying
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chronic medical conditions [5], persons living in deprived
areas [6]).
Measures of different characteristics of an outbreak,

whether from seasonal or a newly emergent strain, are
crucial to understand the healthcare burden and plan
appropriate response measures. For seasonal influenza,
retrospective knowledge of severity and transmissibility
provides a valuable baseline measure against which to
compare the severity and transmissibility of future pan-
demics. Prospectively, predictions of the likely extent of
transmission and the resulting number of severe cases
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are crucial to anticipate demands on health care facil-
ities (e.g. number of beds in hospital) for each sea-
son. These timely predictions are even more crucial
to inform prompt targeted responses in the event of
a new emerging strain with the potential to cause a
pandemic [7].
Epidemic models are increasingly used to understand

the effect of particular interventions including: vaccina-
tion policies [8]; school closures to reduce transmission in
a pandemic [9–11]; reinforced use of antiviral drugs [12];
or changes in hospital management policies.
These models are generally applied to data, such as

General Practitioner (GP) consultations for influenza-like
illness (ILI) [8, 13] or health-related online queries [14],
which are only loosely related to the actual burden and are
characterized by highly volatile noise.
By contrast, more specific timely data on a

sample of confirmed cases (e.g. confirmed influenza
hospitalizations) might be collected routinely by national
health systems. An example of these data is the UK
Severe Influenza Surveillance System (USISS) [15] that
records counts of the weekly Intensive Care Unit (ICU)
and High Dependence Unit (HDU) admissions and
deaths with confirmed influenza in all hospital trusts in
England.
Recently, and in the context of a pandemic, some atten-

tion has been paid to estimating and predicting pandemic
transmission from routinely collected confirmed-case
data [16]. This has entailed the development of a very
complicated model which is difficult to use in a sea-
sonal monitoring setting (when less effort is placed on
data collection) with a prediction goal. Here we explore a
much simpler model to be applied to seasonal influenza,
and possibly during a pandemic, relying only on simpler
data on severe cases alone, which are timely available.
We therefore investigate if data collected through USISS
can characterise both seasonal and pandemic epidemics,
aiming to achieve both the estimation and the prediction
goal.
We formulate an epidemic model that links the

available USISS data to the underlying unobserved
dynamics of influenza in the UK. The model param-
eters are inferred using data from the seasonal epi-
demics in 2012-2015, to obtain nation-level estimates
of transmission, as measured by Rn, the average num-
ber of new cases generated by an infectious individ-
ual in a partially immune population, and severity, as
measured by the probability of ICU admission given
infection.
Additionally, to assess the predictive power of the

model, we perform analyses at different dates within
each season. Finally, we study what would happen in the
event of a pandemic, when the USISS surveillance scheme
would be upgraded to collect more information.

Methods
Data
Following the 2009 pandemic, the World Health Organi-
zation (WHO) declared the beginning of a post-pandemic
phase [17], encouraging national public health agencies
to establish hospital-based surveillance systems to mon-
itor the epidemiology of severe influenza. In response to
these guidelines, and to understand the baseline epidemi-
ology of severe influenza, the UK developed a surveillance
system to monitor severe cases of influenza, the USISS
[18, 19]. After a pilot phase in 2010/11, USISS has run
for each influenza season, providing data on laboratory-
confirmed ICU/HDU influenza cases and on laboratory-
confirmed hospitalized cases.
According to the USISS protocol [18], all National

Health Service (NHS) trusts report the weekly num-
ber of laboratory-confirmed influenza cases admitted to
ICU/HDU and the number of confirmed influenza deaths
in ICU/HDU via a web tool. An ICU/HDU case is defined
as a person who is admitted to ICU/HDU and has a
laboratory-confirmed influenza A (including H1, H3 or
novel) or B infection.
USISS runs annually from week 40 to week 20 of the

following year but, in the event of a pandemic, it can be
activated out of this window and will collect the same data
at all levels of care, not only ICU/HDU.
Data are available by age group and influenza

type/subtype. However, when stratified by both, as well
as week, many zero counts are observed. We therefore
consider the total ICU/HDU admissions by week only
(Fig. 1). Each season between 2012 and 2015 is shown,
with each epidemic varying substantially across seasons.
In the 2012/13 season, mainly characterized by Influenza
B and Influenza A(H3N2) outbreaks, the number of
admissions peaks early, maintaining this plateau for
several months [20]. In 2013/14, when the predominant
strain was A(H1N1), the time series displays a smoother
increase, a well localized peak and a subsequent regular
decrease [21]. Lastly, in 2014/15, the number of ICU
admissions peaks earlier and has a dramatic drop at the
beginning of the new year, which is followed by a smaller
wave resulting in a time series characterized by a double
peak. During this season, Influenza A(H3N2) was the
predominant virus circulating and the total number of
ICU admissions was higher; this strain is well-known
to lead to more severe outcomes, particularly in the
elderly [22].

Additional sources of information
In addition to the mandatory scheme, a subgroup
of NHS trusts in England is recruited every year
to participate in the USISS sentinel scheme [19,
23], which reports weekly numbers of laboratory-
confirmed influenza cases hospitalised at all levels of
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Fig. 1Weekly ICU/HDU admissions by season. Time is measured in week number as reported on the x axis

care. From this scheme, individual-level data on all
ICU/HDU admissions (until season 2012/13) or on
hospital admissions in the young (≤ 17 years old)
population (from season 2013/14 onwards) are available,
including clinical details such as date of symptom onset,
of hospital and ICU admission, and date of discharge
from ICU.
These data provide useful information on the process

between influenza infection and ICU admission (e.g. the
time elapsing from symptom onset to ICU admission).
Further information on this process (e.g. proportion of
symptomatic cases) can be found in the existing litera-
ture about the incubation period of influenza [24] and the
hospitalization fatality rate [25].

Model
We used an epidemic model (Fig. 2) to describe the spread
of influenza in England [26]. We assumed that the pop-
ulation changes according to a deterministic model in
continuous time. Time is measured in days and denoted
by t ≥ 0.

Fig. 2 The model. Schematic diagram representing the epidemic
model and the model linking transmission to ICU/HDU admissions (in
blue)

The population is divided according to health status
into four compartments: susceptible (S), exposed (E),
infectious (I) and removed (R). The E and I compartment
are further divided into two (E1,E2 and I1, I2, respec-
tively) so that the waiting times in the E and I states
are distributed according to gamma rather than exponen-
tial distributions [27]. In the formulas below, the letters
S,E1,E2, I1, I2,R denote the number of people in each
compartment. The total size of the population is fixed
over every season and denoted by N . The change of com-
partment is determined by the transition rates: λ(t), σ and
γ explained below.
The infection rate λ(t) is proportional to the proportion

of people in the infectious compartment at t, I1(t)+I2(t)
N and

a time varying transmission rate β(t):

λ(t) = β(t)
I1(t) + I2(t)

N
. (1)

β(t) is a function of time and it allows for a scaling factor
κ ∈ (0, 2] that expresses the change due to school closure
applied to the transmission rate during school opening β0
[10] as reported in Eq. 2.

β(t) =
{

κ · β0, t ∈ school holidays
β0, otherwise. (2)

The transition rates σ and γ are related to the mean
latent period, dL, and the mean infectious period, dI , by:

σ = 2/dL, γ = 2/dI (3)

The system of differential equations that defines the epi-
demic model is reported in Eq. 4.
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dS
dt

= −λ(t) · S
dE1
dt

= λ(t) · S − σ · E1
dE2
dt

= σ · E1 − σ · E2
dI1
dt

= σ · E2 − λ · I1
dI2
dt

= λ · I1 − λ · I2
dR
dt

= λ · I2

(4)

Here we have assumed homogeneous mixing among
contacts (i.e. people are all equally likely to meet, irrespec-
tive of their age class and residence, for example).
This transmission model is linked to the data on ICU

admissions through an observational model that defines
the time elapsing from infection to ICU admission and the
probability of ICU admission conditional on infection.
Denote with fICU|I(w) the probability that w weeks

elapse from infection to ICU admission, and with pICU the
probability of ICU admission given infection. We can link
μw, the average number of ICU admissions during week
w, to the weekly new infections in the previous weeks via
a convolution:

μw =
w∑

v=0
fICU|I(w − v) · �IvpICU (5)

where �Iw = (S(w−7)−S(w)) ·N is the count of the new
infections during week w.
To formulate the likelihood of the data, we assumed that

the observed number of ICU admissions is the realisation
of a Negative Binomial random variable centred on μw
with over dispersion parameter η:

ICUw ∼ NegBin(μw, η), (6)

i.e ICUw has density function:

f (ICUw = x) = 	(x + rw)

	(x)	(x + rw)

(
1
η

)rw (
1 − 1

η

)x
(7)

with rw = μw
η−1 .

The Additional file 1 contains the full specification of
the transmission model, its re-parametrization and full
derivation of fICU|I(w).

Parameter estimation
To define the epidemic we need to estimate
or set both the transitions rate parameters (i.e.
β , κ , σ , γ ) and the initial state of the epidemic (i.e.
S(0),E1(0),E2(0), I1(0), I2(0),R(0)).
The epidemic model can be re-parametrized [27] and a

number of quantities may be defined, including: π , the ini-
tial proportion of non-immune people; Itot(0) = (I1(0) +

I2(0)), the total number of infectious people at t = 0; the
basic reproduction number R0 that is the average num-
ber of successful transmissions per infectious person in a
fully susceptible population; and the effective reproduc-
tion number Rn that is the average number of successful
transmissions per infectious person in a partially suscep-
tible population. All these parameters are useful under a
health-policy perspective.
The parameters σ and γ are assumed known from pre-

vious studies [13, 24], as they can be inferred only with
detailed information at the individual level. Likewise, the
population sizeN is assumed known and fixed to the values
estimated by the Office of National Statistics (ONS) [28].
We used a Bayesian approach to draw inference on the

other parameters. Bayesian inference consists in summa-
rizing prior information on a general parameter θ in a
distribution π(θ) and updating it with the information
deriving from a set of data x, contained in its likelihood
L(θ |x), to derive the posterior distribution:

p(θ |x) ∝ π(θ) · L(θ |x). (8)

We considered two scenarios. In the first one we
assumed we have no prior information on the values of
the parameters except for lower and upper bounds, hence
the prior distributions on all the parameters are non-
informative (see Additional file 1). Table 1 lists the lower
and upper limits of some transformations of the parame-
ters and the values assumed known in this scenario.

Table 1 Prior distributions of the parameters in the
non-informative scenario

Unknown parameters Lower limit Upper limit

Susceptibility π 0 1

Initial number
of infectious

Itot(0) = (I1(0) + I2(0)) 0 10000

Transmission rate β 0 1.12

Over-dispersion η 1 100

P of ICU
admission given
infection

pICU 0 1

Scaling factor
for school
closure

κ 0 2

Parameters assumed known Value

Rate of becoming
infectious

σ 1

Rate of recovery γ 0.5797

Population of
2012/13

N2012/13 53,679,750

Population of
2013/14

N2013/14 54,091,200

Population of
2014/15

N2014/15 54,551,450
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In the second scenario we used sero-prevalence data
from the 2010/11 season [29] to formulate a prior dis-
tribution for the initial susceptibility π . The use of sero-
prevalence data to describe the immunity of a population
could be debatable, since the results may be extendible
only to seasons with similar predominant strains circu-
lating. Here, sero-samples were taken during an H1 pre-
dominant season: this sub-type was prevalent also in the
2012/13 season, but not in 2014/15. However, combining
this prior with the data allows us to test how much prior
knowledge is needed to overcome the lack of informa-
tion about susceptibility from the data. We also derived
an informative prior distribution on pICU by combining
estimates of the probability of hospitalization given infec-
tion from a previous severity study [25] with estimates of
the probability of ICU/HDU admission given hospitaliza-
tion from the aggregate data of the USISS sentinel scheme.
Table 2 lists the prior distributions of the two parameters
that change in the informative scenario. The remaining
parameters are again assumed to be uniformly distributed.

Analyses
For both the prior settings we performed two types of
analysis: firstly we considered all the data reported in
Fig. 1 and we analysed them retrospectively. Secondly, to
assess the predictive ability of our model, we performed
estimation and forecasting assuming only an initial por-
tion of the data are available. We used the data up to week
w as a training dataset to estimate the parameters. Then
we predicted the evolution of the epidemic after week
w, based on the estimates from the training dataset. We
tested the following prediction time points: w = 3, 8, 13,
and 18 from the beginning of the new year.
To approximate the posterior distribution, we used

a Metropolis Hastings block updated sampling algo-
rithm [30], coded using the R programming language
[31]. The system of differential Eq. (4) was solved using
the R package deSolve [32]. Details on the algo-
rithm are available in the Additional file 1 and the code
is available at http://www.mrc-bsu.cam.ac.uk/software/
miscellaneous-software/.

Results
Retrospective analysis
The retrospective analysis of the data was first performed
in the uninformative scenario. The resulting posterior

Table 2 Prior distributions of the parameters that change in the
informative scenario

Parameters Distribution

Susceptibility π ∼ LogNorm(logμ = log(0.401),
log σ = 0.2) [29]

P of ICU admission
given infection

pICU ∼ LogNorm(logμ = log(0.000239),
log σ = 1) [25]

distributions are displayed in Fig. 3 with the posterior
median and 95% Credible Intervals (CrI)s of some of
the parameters reported in Table 3. Note that the pos-
terior distribution of the basic reproduction number R0
is almost identical to the prior. This is due to the fact
that the information contained in the data is not suffi-
cient to determine separately the values of the parameters
describing both the initial immunity and the transmis-
sion rate. For the same reason the posterior distribution
of the parameter π doesn’t change significantly from its
prior, only excluding those small values that would com-
pletely prevent an epidemic to take place. This problem is
explored in detail in the Additional file 1.
Data are much more informative about parameters η,

pICU and κ . The highly variable behaviour of the ICU
admissions count in season 2014/15 is reflected by the
over-dispersion parameter η, whose distribution is signif-
icantly higher compared to the ones estimated from the
2012/13 and 2013/14 seasons. The range of the probability
of going to ICU given infection, pICU , is always between
0.004 and 0.04%. Its median is higher in season 2014/15, in
agreement with the higher severity that was detected dur-
ing this influenza season [23]. The multiplicative factor
κ introduced to allow for a school-closure effect is cen-
tred on 1 for season 2013/14 and centred around higher
values in the remaining seasons. A possible explanation
for this counter-intuitive phenomenon relies on the age
distribution of the sample population. Our data have a
different distribution compared to the English popula-
tion [23, 28], with patients over 65 being over represented
and children in school years being under represented.
The elderly individual perhaps are more likely to meet
other potential influenza spreaders (e.g. children) dur-
ing school closures, particularly over Christmas holiday.
It makes sense, therefore, to observe an inverse relation-
ship between school closure and the transmission rate, in
contrast to results that might be expected from a more
representative sample of the population [10]. However,
this piecewise increment in transmission rate may incor-
porate other time-varying phenomena that affect the force
of infection. The Christmas holiday often coincides with
the beginning of a colder and more humid period and
changes in vapour pressure, that might imply an increas-
ing spread of influenza [33]. Lastly the posterior median
of the effective reproduction number Rn is equal to 1.152,
1.235, 1.089 in seasons 2012/13, 2013/14 and 2014/15
respectively.
Although the CrIs of the parameter κ included 1, the

posterior probability of it being larger than 1 (Pr(κ > 1))
is substantial for two seasons. The introduction of this
parameter allows the flexibility needed to represent the
specific features of each season. This can be observed
in the posterior predictive distribution of the weekly
ICU admissions reported in Fig. 4. Specifically in season

http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/
http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/
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Fig. 3 Retrospective analysis, uninformative scenario. Prior (red) and posterior (blue) distributions of: the initial susceptibility (π ); the over-dispersion
parameter (η); the probability of ICU admission given infection (pICU); the scaling parameter (κ); and the basic and effective reproduction number
(R0 and Rn). The results are derived from season 2012/13 (left column), season 2013/14 (centre) and season 2014/15 (right column)

2012/13 we manage to reproduce the plateau that takes
place from the end of the Christmas vacations to the
February half term. Regarding instead the double peaking
season of 2014/15, the 95% Credible bounds are not
narrow, but the timing of the peak of the distribution is

predicted substantially better than in the case of constant
infection rate (results not shown). The high variability of
the data considered, combined with the constraint of a
deterministic model, cause an overall poor fitting of the
model to the data of this season. This model does not
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Table 3 Posterior medians and 95% CrIs from the retrospective analysis of the ICU admissions with uninformative priors

Season 2012/13 Season 2013/14 Season 2014/15

Parameter Posterior Me (CrI) Posterior Me (CrI) Posterior Me (CrI)

Susceptibility π 0.546 (0.297 - 0.969) 0.589 (0.32 - 0.977) 0.531 (0.28 - 0.968)

Initial number of infectious Itot 4106 (1441 - 11510) 1357 (484 - 3312) 9590 (3053 - 28493)

Transmission rate β 0.611 (0.344 - 1.126) 0.608 (0.367 - 1.118) 0.596 (0.324 - 1.119)

Over-dispersion η 3.204 (1.888 - 6.101) 1.25 (1.011 - 2.096) 17.925 (10.412 - 35.812)

P of ICU given infection pICU(·104) 0.841 (0.458 - 1.614) 0.713 (0.419 - 1.338) 1.749 (0.848- 3.745)

Scaling factor for school closure κ 1.185 (0.971 - 1.434) 0.965 (0.841 - 1.1) 1.313 (0.866 - 1.824)

Effective reproduction number Rn 1.152 (1.093 - 1.211) 1.235 (1.196 - 1.275) 1.089 (0.997 - 1.195)

allow precise inference both of the parameters and of the
predictions.
The same analysis was performed in the second sce-

nario, i.e. allowing informative priors on the susceptibility
π and on pICU as defined in Table 2. The introduction of
these prior distributions compensates for the lack of infor-
mation, allowing the identification of π and improving the
precision of the posterior distribution of pICU . This affects
also other parameters such as β and R0. However, their
posterior distributions are driven by the prior distribu-
tions alone, and they do not learn from the data. In terms
of fit there was no improvement. Results are reported in
the Additional file 1.

Prediction
The prospective analysis of the data in the uninformative
scenario resulted in very wide predictions of the future
dynamics, therefore we assumed the informative priors
reported in Table 2. The performance of the model at
different times is plotted in Fig. 5 for each season.
Season 2013/14, despite displaying the most regular

data, is the most difficult to predict: the well-defined
initial growth biases the predictions towards a major

outbreak. This leads to the median and the credible
intervals of the posterior predictive distribution over-
estimating the data until mid-march (week 13 from the
beginning of the year). For the other two seasons, the
median predicted weekly ICU admissions is always very
close to the data points, but the credible intervals narrow
to reasonable bounds only towards the end of February
(week 8 from the beginning of the year).
Prediction is challenging, as demonstrated by the preci-

sion of the predictions. For example, the 95% CrI of the
predicted number of ICU admissions 3 weeks in advance,
when the epidemic is still taking off (i.e. at the third week
of January) is as wide as 138 for season 2012/2013 (from
2 to 140 ICU admissions), 52 for season 2013/2014 (from
6 to 58 ICU admissions) and 473 for season 2014/2015
(from 11 to 484 ICU admissions). Due to the different
sizes of the epidemics, the coefficient of variation (i.e. the
ratio of the posterior standard deviation to the posterior
mean) can be used to compare them: it is equal to 0.751 for
season 2012/13, 0.491 for season 2013/14, and 0.742 for
season 2014/15, highlighting that predictions prediction
precision increases when the epidemic is smaller and less
over-dispersed.

Fig. 4 Retrospective analysis, uninformative scenario. Median (blue), 95% CrI (light green) and quartile (dark green) of the posterior predictive
distributions and observed values (red) for the weekly ICU/HDU admissions across seasons. The vertical dashed lines represent the breakpoints for
the piecewise transmissibility β∗(t) (i.e. start and end of each school holiday)
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Fig. 5 Prospective analysis, informative scenario. The black line displays the analysis time; the blue line and green shaded area represent median,
quartile (dark green) and 95% CrIs (light green) of the posterior predictive distribution for the training dataset weeks. The pink area displays posterior
quartiles (deep pink) and 95% CrIs (light pink) for the predicted future observations, and the purple line displays the median; the red dots are the
training data and the yellow dots are the observations we have predicted

In spite of the simplicity of our model, the flexibility
introduced by the parameter κ allows for the correction
“on the fly” of the prediction, adapting to new peaks
(e.g. season 2014/15) or periods of constant influenza
circulation (e.g. season 2012/13).
Nonetheless, similarly to most epidemic models

attempting predictions [13, 34], results are not useful (i.e.
precise enough to determine a health policy response)
until after the epidemic has peaked.

Further results
We simulated the weekly count of Hospital admissions
in the case of a pandemic and we extended our model
enabling the inference of the parameters from these
data. Despite the increased number of observations, the
model performed very similarly to the case of non-
pandemic ICU-counts data. We diagnosed identifiability
problems in the uniform prior scenario and predictions
were good only whenmore informative prior distributions
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(on the susceptibility and probability of hospitalization)
were included. Results from this analysis are reported in
Section 5 of the Additional file 1.
Other analyses performed include: prospective analysis

for the uninformative scenario and retrospective analysis
within the informative scenario. Results of these analyses
are reported in Section 4 of the Additional file 1.

Discussion
In this paper we proposed a model to estimate and pre-
dict influenza outbreaks from routinely collected data on
admissions to ICU/HDU.
We investigated the performance of the proposedmodel

both on simulated and on real data. By fitting the model
to simulated numbers of weekly ICU admissions, we dis-
covered that, even with very vague prior information, we
could obtain estimates of some of the main parameters,
including the initial infection rate, the probability of going
to ICU given infection, the effective reproduction num-
ber Rn and the scaling factor for school holidays κ . When
we injected information on the distribution of the average
immunity (1 − π ) and on pICU , estimates of the remain-
ing parameters could be obtained. We were also able to
forecast the evolution of the outbreak by analysing the
first months of the epidemic using data up to the peak of
influenza activity.
The model was applied to real data on the weekly num-

ber of ICU admissions from seasons 2012/13, 2013/14
and 2014/15, confirming the performance obtained on
the simulated data. The estimated values of the effective
reproduction number Rn were similar to those estimated
during the past decade of seasonal influenza [8]. A scaling
parameter allowed the transmission rate to vary between
school and holiday/half-term periods, which resulted in
a good fit of the model to the data for most of the sea-
sons considered. A more complete investigation of the
temporal variation of the transmission rate might improve
the flexibility of our model, and therefore the fit to more
anomalous epidemics.
Recently, a similar analysis was performed on the

Finnish influenza pandemic of 2009 [16] using a more
elaborate model, analysing confirmed data on both hos-
pitalizations and GP consultation. Their inclusion of GP
data enhances the performance of the inference. Never-
theless, these data are harder to collect in a larger popu-
lation (England is almost 10 times more populated than
Finland) and out of pandemic emergencies. By contrast,
the inference performed through our model is driven by
few data, though readily available, even in real time, in sea-
sonal settings. A further advance of the model by [16] is
that the transmission parameter is time varying according
to a Gaussian Process: this allows an accurate descrip-
tion of the past dynamics but makes prediction infeasi-
ble, since this temporal variation cannot be forecast. By

contrast, our simple piecewise constant model is able
to well forecast the future trend and it includes enough
flexibility to describe appropriately the present and the
past data.
Our work has also some limitations: firstly, our model is

non-age-specific. The assumption of homogeneous mix-
ing across regions and age groups is very strong but this
was dictated by the very small sample sizes which did
not allow sub-grouping. Secondly, the quality of some
estimates and predictions strongly relies on prior infor-
mation on the proportion of non-immune people. As this
information is needed to overcome the lack of identifi-
ability in the parameters, we used sero-prevalence data
following the 2010/11 epidemic. This is not likely to be
correct for all the three seasons analysed, as the pre-
dominant strain circulating was different across seasons.
Likewise, the model that describes the time elapsing
between infection and ICU admission, is assumed to be
fixed and mostly known, but this assumption is not likely
to be valid. The other element that defines the obser-
vational process, i.e. the probability of ICU admission
given infection, is also sensitive to the choice of prior
distribution.

Conclusion
The work presented here is a proof of concept of the
potential for estimation and prediction of influenza trans-
mission from USISS data. At the same time, the results
highlight the need of collecting external data to formulate
an appropriate prior distribution on the initial immu-
nity of the population, particularly in the event of a
pandemic.
The availability of this information, together with the

tool we have provided here, allows to retrospectively infer
the epidemic parameters from routinely collected data on
severe cases during seasonal outbreaks and to predict the
temporal dynamics of new epidemics.

Additional file

Additional file 1: Appendix to the main text, including further
explanation of the models and algorithms used, description of the
methodological challenges and supplementary results. (PDF 8040 kb)
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