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Abstract

Optimal control methodologies for the optimisation of

maintenance scheduling and production in processes using

decaying catalysts

In this thesis, optimal control methodologies are developed for solving problems involv-
ing the optimisation of maintenance scheduling and production in processes using decaying
catalysts. Previously, such problems were solved using a category of methods which involve
making decisions of discrete as well as continuous nature, called mixed-integer optimisation
techniques. However, these techniques are combinatorial in nature and can solve differential
equations only by approximations as collections of steady state equality constraints, and such
features can cause these techniques difficulties in obtaining optimal and accurate solutions
for these problems. The goal behind developing optimal control methodologies is to effec-
tively solve these problems while overcoming the drawbacks that mixed-integer optimisation
techniques face or would face in solving these problems.

First, an optimal control methodology is developed to optimise maintenance scheduling
and production in a process containing a reactor using decaying catalysts. This methodology
involves using a multistage mixed-integer optimal control problem (MSMIOCP) formula-
tion and obtaining solutions as a standard nonlinear optimisation problem, without using
mixed-integer optimisation techniques. Two different solution implementations are required,
each which has its own relative advantages. The methodology using the second procedure
is particularly successful in effectively obtaining solutions within the stipulated tolerances.
Further, the methodology possesses features of robustness because it enables a relatively
small problem size, reliability because it solves differential equations using state-of-the-art
integrators, and efficiency because it is not combinatorial in nature. These features indicate
the methodology’s success in overcoming the drawbacks of using mixed-integer optimisation
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techniques to solve this problem.

Next, the abovementioned methodology is extended to form an optimal control method-
ology to optimise maintenance scheduling and production in a process containing parallel
lines of reactors using decaying catalysts. This methodology, when applied to a case study of
such a process, is also able to effectively obtain solutions within the stipulated tolerances.
Further, the solutions obtained, once again, possess features of robustness, reliability and effi-
ciency, which indicate that the methodology can overcome the drawbacks that mixed-integer
optimisation techniques would face, if used to solve such problems.

And lastly, an optimal control methodology is developed for considering uncertainties in
kinetic parameters in the optimisation of maintenance scheduling and production in a process
containing a reactor using decaying catalysts. The methodology involves using a multiple sce-
nario approach to consider parametric uncertainties and formulating a stochastic MSMIOCP,
which is solved as a standard nonlinear optimisation problem as per the previously developed
procedure. The results obtained provide insights into the effects of parametric uncertainties
and the number of scenarios generated on the optimal operations, and indicate that the
methodology is capable of solving this problem. Further, the robust, reliable and efficient
nature of the results obtained suggest that the methodology can overcome the disadvantages
that mixed-integer methods would introduce in the conventional methodologies, if such
methodologies are used to solve such problems.

Saidarshan Adloor
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Chapter 1

Introduction

A catalyst is a substance that increases the rate of a chemical reaction without itself being
consumed in the reaction. This happens by virtue of the catalyst providing an alternative
pathway for the reaction to occur, which involves a different transition state that requires a
lower activation energy. The catalyst, however, does not alter the change in total free energy
between the reactants and products (Figure 1.1).

E
(with catalyst)

E
(no catalyst)

∆G

X, Y

Z

Energy

Reaction coordinate

Fig. 1.1 Schematics of the reaction pathway for the reaction X +Y → Z, with and without a
catalyst. As can be seen, the activation energy, E, for the pathway using a catalyst is lower
compared to that without the catalyst. However, the change in total free energy, ∆G, between
the reactants and products is not altered if a catalyst is used.
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As such, catalysis is used extensively across a wide range of industries. For example, in
the bulk chemical industry, an iron catalyst is used in the Haber process to produce ammonia.
Examples of catalysis in the energy processing sector include the use of zeolites in catalytic
cracking, platinum in catalytic reforming and nickel in steam reforming. An example in food
processing is the use of a nickel catalyst for the hydrogenation of fats to produce margarine.

The above examples constitute a very small subset of the true scale of catalysis in today’s
world. It is estimated that catalysts are involved at some stage in the process of manufacture
of about 90% of all commercially produced chemical products (R&D Magazine, 2005). In
2019, the global demand of catalysts was estimated to be around US$ 33.9 billion and it is
expected to grow at an annual rate of 4.4% from 2020 to 2027 (Grand View Research, 2020).

However, the ability of a catalyst to increase the rate of a reaction tends to decrease over
time. This is expressed by saying the catalyst undergoes "deactivation" or "decay" with
time. Time scales for catalyst deactivation vary considerably, from the order of seconds in
some cases to the order to years in others. But the fact remains that catalyst deactivation is
inevitable (Bartholomew, 2001).

Given the indispensable nature of catalysts in today’s world, catalyst deactivation repre-
sents major problems. In an industrial process using a decaying catalyst, the space-time yield
of the desired product decreases with the time-on-stream, thereby causing a lower production
rate. Thus, if there is a continued demand for the product, the falling production rate could
lead to an inability to meet this demand and hence, a loss in revenue.

In order to restore process performance and improve on low product yields, a maintenance
action is required which involves shutting down the reactor using the decayed catalyst and
replacing the decayed catalyst with a fresh catalyst that has full activity. Such a maintenance
action is called a catalyst replacement or a catalyst changeover operation. While this main-
tenance action does improve product yield, there are negative impacts associated with this
operation as well, such as a loss of production time because of the reactor being shut down
and the energy and labour costs to replace the catalyst.

Thus, catalyst deactivation can cause significant negative economic effects to industrial
processes using catalysts. While catalyst deactivation may be unavoidable, the industries can
seek to minimise the associated negative effects. For this, however, a complex set of issues
have to be addressed.
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While frequently replacing catalyst loads can result in a high production rate, it also leads
to large maintenance costs and loss in production occurring from the process shut-down
for catalyst changeovers. On the other hand, a low frequency of catalyst replacements,
while involving small maintenance costs and long production times, can result in a low
production rate. Thus, there is a trade-off to be balanced between attaining high production
rates, and having low maintenance costs and effective production times. In order to balance
this trade-off optimally, a maintenance schedule is needed that specifies the optimum number
of catalyst loads to use and the optimal time for each catalyst replacement.

Further, during the times when the catalyst is in operation, there is a question regarding
how the operational settings such as the flow rate to and temperature of the reactor are to
be managed in order to produce maximum product yield under the conditions created by
catalyst deactivation. In addition, if there is a time-varying demand for the product, the
product inventory levels and sales have to be managed efficiently to meet this demand. The
inventory levels should be such that an adequate quantity of sales can occur to effectively
meet the product demand, especially during times of catalyst replacement when there is no
production occurring, while at the same time excessive storage costs are avoided. In essence,
an optimal production plan is needed that specifies the operating conditions of the reactor,
and the product inventory levels and sales to meet demand, and this should be obtained in
tandem with the optimal maintenance schedule.

Thus, in order to minimise the negative effects of catalyst deactivation, an optimal mainte-
nance schedule for catalyst replacements and an optimal production plan have to be obtained
in an integrated manner. However, this requires solving a highly challenging modelling and
optimisation problem. As such, only a limited set of publications have attempted to solve
this problem and these works have obtained solutions using methodologies belonging to a
category called mixed-integer optimisation techniques. However, mixed-integer optimisation
techniques suffer from major drawbacks which make these techniques susceptible to face
convergence difficulties and obtain inaccurate solutions.

A methodology is needed that can overcome the disadvantages of the mixed-integer
methods by producing solutions to this problem that are robust, reliable and efficient in
comparison to those techniques. In this thesis, a novel methodology is proposed which
solves this problem as an optimal control problem and exhibits qualities suggestive of the
aforementioned desired characteristics. This thesis also includes extensions of this optimal
control methodology to address other related aspects of this problem, which have not been
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examined by existing literature.

This chapter forms the introduction of the thesis. The components of this chapter are
as follows. Section 1.1 gives a brief overview of the most common mechanisms of catalyst
deactivation. Section 1.2 provides details of a quantitative description of catalyst deactivation,
that is relevant to this thesis. In Section 1.3, a literary review is presented of the publications
concerning optimisation under catalyst deactivation. In Section 1.4 the disadvantages of
using mixed-integer optimisation techniques to solve the problems under consideration
are highlighted. This in turn leads to the objectives of the thesis, which are presented in
Section 1.5. The chapter concludes with a brief overview of the thesis in Section 1.6.

1.1 Mechanisms of catalyst deactivation

The part of the catalyst, which may be an atom or a surface, at which one or all steps of
the involved reaction occurs is called the "active" site of the catalyst. Catalyst deactivation
happens when these active sites lose functionality to enable the reaction or are prevented
from coming in contact with the reactants. This can happen by a variety of mechanisms. The
most common mechanisms of catalyst deactivation include coking, poisoning and sintering
and these are briefly outlined next.

1.1.1 Coking or Fouling

Coking usually occurs in catalytic processes involving hydrocarbons, such as catalytic crack-
ing and catalytic reforming, when side reactions occur that form carbonaceous residues
which physically deposit on the catalyst surface. For example, by accumulating within the
pores of the catalyst, the residues effectively block the pores and thereby prevent the transport
of reactants and products within the pores (Figure 1.2). This leads to the deactivation of
the catalyst in that the number of active sites of the catalyst available for a reaction is lowered.

The chemical nature of the carbonaceous deposits depend on the mode of formation,
conditions of pressure and temperature, the catalyst age and the nature of the feed and
products. In general, the deposition can be distinguished as carbon and coke. Carbon is
considered to be the product of disproportionation of carbon monoxide (2CO → C + CO2)
while coke is formed by the cracking or condensation of hydrocarbons (Forzatti and Lietti,
1999).
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Fig. 1.2 Schematic of the top views and side views of the catalyst surface: (a) Before coking
(b) After coking (Fogler et al., 1999).

Apart from coking, masking is another type of fouling wherein substances physically
deposit on the outer surface of a catalyst, thereby preventing its active sites from coming in
contact with reactants. An example of where masking occurs is in hydrotreating processes
where metals in the feedstock, such as Nickel and Vanadium, deposit on the catalyst external
surface. Another example is the deposition of Silicon compounds in automobile exhaust
converters (Forzatti and Lietti, 1999).

1.1.2 Poisoning

The poisoning method of catalyst deactivation occurs when some molecules become strongly
chemisorbed on the active sites of the catalyst and so, reduce the number of active sites
available for the reaction to take place. In addition, the distance the reactants have to diffuse
through to undergo a reaction increases (Figure 1.3).

The poisoning molecule may be an impurity in the feed stream or even a reactant or
product of the reaction. Some examples of poisons on industrial catalysts are given in Table
1.1. These poisons have unoccupied orbitals, unshared electrons or multiple bonds, which
serve as the driving force for bond formation with the active sites (Forzatti and Lietti, 1999).
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Fig. 1.3 Schematic of poisoning of a catalyst. The poisoning molecule P prevents either of
the reactants, X or Y, from adsorbing onto the particular active site. X and Y are prevented
in coming to close proximity of each other and so do not undergo a reaction (Fogler et al.,
1999).

Table 1.1 A table of poisons of industrial catalysts (Forzatti and Lietti, 1999).

Process Catalyst Poisons

Catalytic cracking Zeolites, SiO2 - Al2O3 Organic bases, NH3, Sodium

Ammonia synthesis (Haber process) Iron (Fe) CO, CO2, H2O

Catalytic converters in automobiles Pt, Pd Pb, P, Zn

Steam reforming Ni / Al2O3 H2S, HCl, As

Oxidation V2O5 As

1.1.3 Sintering

Sintering is the process of compaction to form a solid mass of material by using heat or
pressure, without melting the material. As such, for chemical reactions involving solid
catalysts at high temperatures, sintering can lead to a loss of active surface area of the catalyst
and hence, a loss of catalyst activity. For example, sintering can cause a narrowing of the
pores of a catalyst pellet (Figure 1.4), due to which the pores are no longer available for
the reaction to occur. Another example of deactivation by sintering is the loss of surface
area occurring due to the atomic migration and agglomeration of small metal particles on
the surface of a support into a larger site where the interior atoms are inaccessible to the
reactants (Figure 1.5) (Fogler et al., 1999).

Sintering tends to occur among metal catalysts involved in high temperature gas phase
reactions, such as the Nickel catalyst in steam reforming and the Platinum catalyst in catalytic
converters, to name a few. The bulk mobility of the metal particles become significant and
they begin to coalesce as the temperature approaches its Tamman Temperature, which is
taken to be half the metal’s melting point on the absolute temperature scale (Satterfield,
1991). As such, sintering will be negligible at temperatures below 40% of the melting point
of the solid (Hughes, 1984).
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Fig. 1.4 Pore closure due to sintering. Schematic of the top views and side views of the
catalyst pellet (a) Before sintering (b) After sintering (Fogler et al., 1999).

Fig. 1.5 Atomic agglomeration due to sintering. Schematic of the top views and side views
(a) Before sintering (b) After sintering (Fogler et al., 1999).
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While coking, poisoning and sintering are the most common mechanisms of catalyst
deactivation, there are other modes by which this can occur. For instance, at high tempera-
tures, a transformation of the solid state of the catalyst can happen, in which one crystalline
phase is converted to another that has lower activity or lesser active surface area. Other
mechanisms of deactivation include the loss of elements of the catalysts by attrition, erosion
and volatilisation (Forzatti and Lietti, 1999).

The purpose of the preceding discussion was to give a very brief overview of the most
common mechanisms of catalyst deactivation. A more comprehensive review can be found
in a number of works such as those by Bartholomew (2001), Argyle and Bartholomew (2015)
and Crabtree (2015), to name a few. In the next section, it is mentioned how the phenomenon
of catalyst deactivation can be quantitatively described.

1.2 A quantitative description of catalyst deactivation

As mentioned previously, catalyst deactivation is inevitable and industrial processes face
adverse economic effects when using decaying catalysts. A quantitative description or a
measure of catalyst decay would be useful for these processes to take measures to optimise
their operations and thereby, minimise the negative effects of catalyst deactivation. This
quantitative description is given by the activity, a, of the catalyst, which is defined by the
following equation (Forzatti and Lietti, 1999):

a =
r
r0

(1.1)

where r is the rate of the reaction after a measured time on stream while r0 is the initial rate
of the reaction, on a fresh catalyst yet to undergo deactivation. As such, a is a normalised
variable (0 ≤ a ≤ 1). The activity is a function of the catalyst history.

The rate of the reaction, in general, depends on the actual reaction conditions (such as
reactant concentration (Cnc), temperature (Te) and pressure (Pr), to name a few) as well as
the catalyst activity. That is:

r = r (Cnc, Te, Pr, ..., a) (1.2)

However, Szépe and Levenspiel (1971) postulated that the rate of reaction could be
separated into two terms: a reaction kinetics dependency and an activation dependency. This
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is termed separability. When separability holds, the reaction rate equations, for the product
formation reactions as well as the catalyst deactivation, take the following form:

r = r (Cnc, Te, Pr, ...) r1(a) (1.3)

Usually, the separable factor, r1(a), is assumed to be equivalent to a. Physically, separability
means that the configuration of active sites of the catalyst is not influenced by the other
factors that can influence the reaction rate (e.g. concentration, temperature, pressure). For
example, if the temperature is increased and the number of active sites of the catalyst does
not change, this enables separability in that the terms involving temperature and activity can
be written separately in mathematical equation for the reaction rate. A similar explanation
applies for the separability of the other variables from the activity.

As such, the concept of separable kinetics has provided a satisfactory description to the
study of deactivation by coking (Froment, 1980; Weekman Jr., 1968), and sintering (Forzatti
and Lietti, 1999; Fuentes and Gamas, 1991). This is probably because the catalyst decay by
these mechanisms occurs purely due to the physical coverage or loss of active sites. However,
a number of other studies (Bakshi and Gavalas, 1975; Barbier et al., 1980; Onal and Butt,
1981; Weng et al., 1975) have reported difficulties with the separability of kinetics when
poisoning is the mechanism of catalyst decay. This can be attributed to the chemisorption
rather than purely physical coverage of poisons on the active sites. But separable kinetics
can apply under certain conditions when poisoning is involved, and details regarding these
conditions can be found in works by Butt et al. (1978), Forzatti et al. (1986) and Lynch and
Emig (1989). In this thesis, however, only separable kinetics will be considered.

In the next section a review is carried out of the existing literature involving optimisation
of processes using decaying catalysts. The shortcomings of those works considered "state-of-
the-art" are highlighted, and these indicate the directions of research to be undertaken in this
topic, which in turn lead to the objectives of this thesis.

1.3 Optimisation under catalyst deactivation: a literary re-
view

While optimisation under catalyst deactivation has been attempted in the past, the literature
pertaining to optimisation on an industrial scale, that identifies the optimal maintenance
schedule and production plan in order to meet time-varying product demand, is limited.
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Study has mainly focused on the optimal design or operation of a reactor that contains a
catalyst undergoing deactivation in order to maximise conversion of the reactant. These
optimum operating conditions were used until a time came when the catalyst activity fell to
very low levels and had to be discarded or replaced.

Szépe and Levenspiel (1968) were the first to formulate an optimal operating policy for
reactors subject to catalyst deactivation, by considering various aspects of the kinetics of
the main reaction and the deactivation. They considered a batch reactor in which a single,
irreversible reaction occurred under the influence of a decaying catalyst. The main reaction
as well as the catalyst deactivation were considered to exhibit separable reaction kinetics,
that is, their kinetic rate expressions were of the form of equation (1.3) wherein the catalyst
activity was separable from the other factors influencing the reaction. In addition, the rate of
catalyst deactivation was considered to be independent of composition. The following are
notable results from their work:

(i) They demonstrated mathematically that if the deactivation kinetics is more sensitive
to temperature than the main reaction, then it is optimal to continuously increase the
temperature of operation so as to keep the product of the reaction rate constant and
catalyst activity (termed effective reaction rate constant) unchanged throughout the
reaction cycle.

(ii) On the other hand, if the deactivation kinetics is less sensitive to temperature than the
main reaction, the optimal temperature policy is to operate at the maximum temperature
limit.

(iii) Further, they applied the above conditions to flow reactors and established a policy
of maintaining constant exit conversion, that is, to maintain the concentration of each
reacting component exiting the reactor at a constant magnitude.

However, their analysis has been applied to determine the optimal operating policy only
for a fixed reaction cycle time and a fixed final catalyst activity. They suggest to identify
the optimal time to regenerate or replace the catalyst by iteratively solving for the optimal
operating policy using different values of the reaction cycle time and the final catalyst activity.

Further, Crowe (1970) considered a single tubular reactor maintained at uniform temper-
ature throughout at any time, and concluded that the optimal operational policy for such a
reactor using a decaying catalyst was to end the operation at the maximum temperature limit
while maintaining constant exit conversion at all times. This work was extended by Crowe
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and Lee (1971) to study a sequence of tubular reactors, each which used a decaying catalyst
and was maintained at a uniform temperature at any time, and in this case as well, the optimal
operational policy was predicted as maintaining constant exit conversions from each reactor.

Lee and Crowe (1970) further investigated concentration dependent deactivation for batch
reactors and concluded that a constant effective rate coefficient was no longer an optimal
policy. Crowe (1976), however, reported that for continuous stirred and plug flow reactors,
even when concentration dependent deactivation is involved, if the time scale of deactivation
is much larger than the time scales of the main reaction and the flow rate, constant exit
conversion remains the optimal policy.

Assuming that maintaining constant exit conversion is the optimal operating policy for
reactors using decaying catalysts, other studies have concentrated on obtaining a relationship
between the time-on-stream (time of uninterrupted feed of reactants to the reactor) and tem-
perature of operation. Krishnaswamy and Kittrell (1979) developed a simple mathematical
model adopting power function kinetics that predicts the temperature-time relationship in
order to maintain constant exit conversion of the reactant. Ho (1984) further exploited the
analytical properties of the constant conversion - rising temperature policy to predict optimal
operating conditions and acquire further information on the deactivation kinetics. Pacheco
and Petersen (1986) derived a temperature-time relationship for a wide range of fouling data
by formulating a power law model in which the order of deactivation depends on the activity.
Sapre (1997) proposed another technique wherein the kinetic parameters are obtained by
varying the space velocity, at constant temperature, to maintain constant exit conversion
and used the information obtained to determine the time-temperature policy for maintaining
constant exit concentration at a fixed space velocity. The objective behind all such studies
that identified the temperature-time relationship for the optimal operating policy was to
estimate the cycle length until the temperature of operation reached its upper limit or until
the catalyst activity reached a minimum allowable value.

All of the aforementioned literature have focused on catalyst deactivation study at the
reactor or pilot plant level, to identify the optimal operating conditions until the ‘time’ came
for the catalyst to be replaced. This ‘time’ was usually when the temperature of operation
reached its maximum allowable limit or the catalyst activity fell to its minimum permissible
value. As such, there was no "maintenance schedule for catalyst replacements" required to
be identified, as the time for catalyst replacements was already known.
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On an industrial scale, however, such strategies may not constitute the optimal policy as
other aspects have to be taken into consideration such as the seasonal demand figures and the
storage costs. For instance, using a catalyst till its activity reaches the minimum permissible
value can result in a low production rate and an inability to meet demand and hence, a loss in
revenue. Or if a fresh catalyst begins to be used during a low demand season, the production
rate may be far higher than that required to fulfil the demand, which might lead to large
amount of unused product in the inventory and thus, excessive inventory costs.

The question then arises that, for a specified time horizon of the industrial process, how
many catalyst replacements should occur and when should each catalyst replacement happen,
given that replacing a catalyst, although it improves the production rate, it involves costs
and a loss of production time. Further, there is the question as to how the process operating
conditions, inventory levels and sales to meet demand can be optimally planned in tandem
with these catalyst replacements in order to maximise the profits of the industrial process.

This leads back to the discussion at the beginning of the chapter. As mentioned in that
discussion, in order to optimise the performance of the industrial process, and thereby max-
imise its profits, an optimal maintenance schedule for catalyst replacements and an optimal
production plan have to be obtained in an integrated manner. The maintenance schedule
for catalyst replacements should specify the optimum number of catalyst loads to use and
the optimal time for each catalyst replacement, such that the trade-off between attaining
high production rates, and having low maintenance costs and effective production times
is optimally balanced. And the production plan should determine the optimal operating
conditions of the reactor, as well as the optimal product inventory levels and sales, such that
product demand is met effectively, while excessive inventory costs are also avoided.

Previously, a very limited set of publications have attempted to solve the problem of the
integrated optimisation of the maintenance schedule for catalyst replacements and production
planning in processes using decaying catalysts. These publications have obtained solutions of
these problems by using formulations belonging to a category called mixed-integer program-
ming problem formulations and solution methodologies for solving such formulations that
are collectively called mixed-integer optimisation techniques. In the following subsection,
brief introductions to mixed-integer programming problems and mixed-integer optimisation
techniques are given, and the publications that have used these formulations and techniques
to solve problems involving optimisation of maintenance scheduling and production in
processes using decaying catalysts are discussed.
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1.3.1 Optimisation under catalyst deactivation using mixed-integer ap-
proaches

Real world problems often involve decision variables that may be integer and/or continuous in
nature. The integer decision variables can take only integer values which essentially represent
a set of discrete choices. An example of a problem involving integer decision variables is
deciding the number of heat exchangers to use in a set up, out of a given number available.
On the other hand, a continuous decision variable can take any value within a specified range.
An example of a problem involving a continuous decision variable is deciding the optimum
temperature of a reactor, given the operating temperature limits, in order to maximise product
yield.

When an optimisation problem involves integer as well as continuous decision variables,
it is called a mixed-integer programming problem. The general form of a mixed-integer
programming problem is given in equations (1.4a) – (1.4e). Lm represents the objective
function, which is to be minimised by the selection of the integer decisions, um, and continu-
ous decisions, vm, when subject to the equality constraints, gm, and inequality constraints,
cm. U represents the discrete set of permissible values for the integer decisions, um, and V
represents the domain of the continuous decisions, vm.

min
um,vm

Lm (um,vm) (1.4a)

subject to
gm (um,vm) = 0 (1.4b)

cm (um,vm)≤ 0 (1.4c)

um ∈ U (1.4d)

vm ∈ V (1.4e)

If in equation (1.4), the objective function and the constraints are linear functions, then it is
called a mixed-integer linear programming (MILP) problem. However, if in equation (1.4),
the objective function and/or any of the constraints are nonlinear functions, then it is called a
mixed-integer nonlinear programming (MINLP) problem.

The methodologies for solving mixed-integer programming problems are called mixed-
integer optimisation techniques. Some of the common methodologies for solving MILP
problems include the Branch & Bound method and Cutting Plane algorithms (Gomory, 2010).
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The popular methodologies for solving MINLP problems are the Branch & Bound method,
the Outer Approximation (OA) algorithm (Duran and Grossmann, 1986; Viswanathan and
Grossmann, 1990) and the Generalised Benders Decomposition (GBD) method (Geoffrion,
1972). The major original results and mathematical developments in mixed-integer optimisa-
tion theory, along with a number of important application areas in chemical engineering can
be found in Floudas (1995).

Now, some comments are made regarding the problem of the optimisation of maintenance
scheduling and production in processes using decaying catalysts. In identifying the optimal
maintenance schedule for catalyst replacements, decisions have to be made, at each time
stage of the process, on whether to undertake a catalyst replacement operation or not. Thus,
these decisions to schedule catalyst changeovers are of binary nature. That is, whether a
catalyst replacement operation should occur or not at a given time can be indicated by values
of 0 or 1, respectively, for the catalyst changeover decision variables (the reverse notation
can also be used) and hence, these are integer decision variables. On the other hand, in
determining the optimal production plan, the decisions to be made are those regarding the
values of the process operating conditions and the product sales to meet demand, and these
decisions are of continuous nature. Thus, this problem involves integer as well as continuous
decision variables. Further, these decisions, especially those in the production planning part
of the problem (for example: the temperature of the reactor), may appear nonlinearly in the
underlying model equations. Determining the set of optimal integer and continuous decisions,
in what is potentially a complex and highly nonlinear large scale problem, is challenging
from the modelling as well as the optimisation stand points.

A search through literature identified only two publications that have attempted to solve
problems of this type and these publications have used MINLP methods for the optimisation.
The two publications, in fact, worked on a similar problem that was based on data obtained
from a real-world industrial process, but used different optimisation techniques, which were
based on the popular MINLP methodologies such as the OA and GBD algorithms. An
overview of these publications follows next.

Houze et al. (2003) attempted to optimise the scheduling of catalyst replacements and pro-
duction in an industrial plant in order to fulfil time-varying product demand. They formulated
a disjunctive multiperiod model of the process, which is essentially a model that constrains a
solution space with multiple sets of inequalities related by an OR statement. This disjunctive
multiperiod model was then converted into an MINLP model using the big-M reformulation.
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In the big-M reformulation, an arbitrarily large M is defined and using this M, each inequality
of the model is reformulated such that if it is not in the set of inequalities being used, it is
null, which in turn is accomplished by subtracting M from the left side of any greater than or
equal to inequalities or by adding M to the right side of any less than or equal to inequalities.
Their model was implemented on the GAMS software (GAMS Development Corporation,
1998), and the optimisation was performed using the software’s DICOPT tool (Brooke et al.,
1998), which uses the OA algorithm. They considered two time horizons of 2-years and
4-years for the industrial process, and for each of these time horizons, their model predicted
how many catalyst loads to use, when to use them, the plant’s monthly operating conditions
of flow rate and temperature and the weekly levels of production and inventory, in order to
maximise profits. However, they admit that, due to the non-convex nature of the problem and
the DICOPT solver used, the solutions obtained were suboptimal. Further, the use of big-M
reformulations made it difficult to obtain solutions for longer time-horizons.

Bizet et al. (2005) modified the model formulated by Houze et al. (2003), by introducing
more extensive disjunctive constraints that use convex hull reformulations instead of big-M
reformulations wherever possible. The convex hull reformulation involves introducing in-
equalities in order to form a convex hull of the solution space, which is the smallest set of
points that include the full solution space and is convex. Bizet et al. (2005) further deviate
from the work of Houze et al. (2003) by using two different approaches for the optimisation:
a Partitioning search strategy and the GBD algorithm. The Partitioning search strategy oper-
ates by dividing the full time horizon into 1 year intervals and MINLP sub-problems were
solved with DICOPT on GAMS within selected intervals. And for the GBD algorithm, which
involves iteratively solving an MILP master problem and a nonlinear programming (NLP)
sub-problem, the MILPs and NLPS were solved using the CPLEX code and the CONOPT3
solver, respectively, on GAMS (Brooke et al., 1998). They claim that the modifications
and the new approaches enabled obtaining solutions for longer time horizons of 74-months
and 9-years. They also sought to attain a global optimum using both approaches: for the
Partitioning search strategy, by investigating all possible intervals, and for the GBD algorithm,
by testing all possible binary combinations to initialise the first NLP. The same global opti-
mum was obtained using the two approaches and further, this solution was superior to those
obtained by just using DICOPT over the whole problem, as was done in Houze et al. (2003).
But they admit that there is no rigorous proof that the solution obtained was a global optimum.

While the works of both, Houze et al. (2003) and Bizet et al. (2005), are novel with
regard to the problem considered and solution methodology, neither work reveals the kinetic
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model or any of the parameters used in their work, due to confidentiality agreements with the
industry from which the data was obtained. Thus, any possibility of reproducibility of their
results is obviated.

In addition, although the MINLP methods used by these works are among the most popu-
lar ones, there are considerable drawbacks involved in the use of mixed-integer optimisation
techniques. These drawbacks are discussed in a detailed manner in the next section.

1.4 Disadvantages of mixed-integer optimisation techniques

First, MINLP techniques are not tailored to handle differential equations. And in processes
using decaying catalysts, differential equations are commonly involved to describe, for exam-
ple, the rate of catalyst decay or the rate of product formation. When MINLP techniques are
used in such problems, these techniques circumvent differential equations by approximating
each differential equation as a collection of steady state equations over the whole time
horizon of the process. And the collection of steady state equations are imposed as equality
constraints in the optimisation phase. Following such practices will cause the problem to
end up containing a very large number of variables and nonlinear constraints, especially
when a large number of differential equations are involved or long time horizons are consid-
ered. This could lead to the optimiser facing difficulties in converging to the optimal solutions.

Secondly, the steady state assumption, under which the differential equations are approxi-
mated, prevents an accurate description of the process dynamics within those time periods
in which the differential equations are approximated as such. Thus, even if solutions are
obtained, this assumption implies that the solutions may not be accurate. If greater accuracy
is desired, a much larger collection of steady state equations is needed to approximate each
differential equation, and this in turn would mean a larger number of variables and constraints
in the optimisation phase, which would further accentuate convergence difficulties. Thus,
there is a difficult compromise to be made between attaining higher accuracy and easier
convergence.

The schematic in Figure 1.6 gives a visualisation of how a more accurate approximation
can cause the problem to have a greater number of constraints to be fulfilled. When MINLP
techniques are used, the original differential equation, f , shown in (a) is approximated
by a collection of steady state equations. Examples of such approximations are shown as
schematics in (b) and (c), which are labelled as Approximation 1 and Approximation 2,
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Fig. 1.6 A schematic describing how a differential equation is approximated as a collection
steady state equations when MINLP methods are used. Approximation 1 in (b) is less
accurate than Approximation 2 in (c), but convergence to an optimal solution would be easier
in the former case compared to the latter case.

respectively. As mentioned previously, the collection of steady state equations are imposed
as equality constraints in the optimisation phase. As can be seen, a larger collection of steady
state equations are used to approximate f in Approximation 2 compared to Approximation
1. This implies that Approximation 2 is a more accurate approximation of f compared to
Approximation 1. On the other hand, this also implies that there are a larger number of
variables and constraints present in the optimisation phase when Approximation 2 is used
in comparison to Approximation 1, and this means that convergence to an optimal solution
would be easier in latter case compared to the former case.

It is now discussed how these two drawbacks of MINLP techniques apply in the works
of Houze et al. (2003) and Bizet et al. (2005). It is noted that in these works, the model
differential equations (which were not revealed due to proprietary reasons) in any week,
were approximated as steady state algebraic equations that applied for the duration of the
week. And the differential equations over the whole time horizon were represented by a
collection of these weekly steady state equations, all of which were imposed as equality
constraints in the problem. Under this practice, the number of constraints in the work of
Houze et al. (2003) were of the order of thousands and that in the work of Bizet et al. (2005)
were of the order of tens of thousands, and both these works contained thousands of variables.

While these works did not report any convergence difficulties, it is highlighted that be-
cause the differential equations were approximated as steady state equations over the duration
of a week, it is not possible to obtain a dynamic description of the process over the duration
of that week and this can be considered as a considerable loss of accuracy. For example, in
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these works, the differential equation for the production rate is approximated as a steady state
equation over the week, and hence, a constant, steady state value of the production rate is
used in place of a dynamic description over the duration of that week. This means that the
value of the production rate for the week cannot be considered accurate. This also throws a
big question on the accuracy of the final solution obtained by these works. Neither of these
works have evaluated or even mentioned the loss of accuracy arising from this steady state
approximation of the differential equations.

If, however, the differential equations were approximated on a daily rather than weekly
basis, the accuracy of the solutions obtained would be considerably higher. But this in turn
means that the number of variables and constraints would have increased seven-fold, which
would have significantly increased the difficulty of converging to a solution. This discus-
sion illustrates the above-mentioned two drawbacks that the use of MINLP techniques entails.

A further criticism of the works of Houze et al. (2003) and Bizet et al. (2005) is that these
works do not reveal any of the underlying model equations or the parameters used, citing
confidentiality reasons. Therefore, it was not possible to reproduce the results of these works
or even attempt a finer approximation of the underlying equations to check if the accuracy of
the results was improved or if any convergence difficulties were experienced.

There is also a third drawback in that the MINLP techniques are combinatorial in nature,
which means that the computational effort to solve the problem increases exponentially with
an increase in the number of the integer decision variables involved. For instance, the works
of Houze et al. (2003) and Bizet et al. (2005) considered a maximum of 4 and 3 catalyst
loads to be used, respectively. Since MINLP techniques such as OA and GBD, iteratively
consider different combinations of binary variables in identifying solutions, the number
of such combinations would increase exponentially, as would the computational effort to
solve this problem, if the number of catalyst loads involved was increased. As another
example, to identify the global optimum, as done in the work of Bizet et al. (2005), the
number of possible intervals to examine in the Partitioning search strategy or the number of
binary combinations to test in the GBD algorithm, would also increase exponentially with an
increase in the number of catalyst loads involved. Thus, MINLP techniques would require
enormous computational power in obtaining solutions if the number of such integer decision
variables in the problem became large. This adds to a drawback that the problem size also
increases as a larger number of discrete decision variables are involved, due to which the
problem may become intractable. Therefore, in such cases, convergence to a solution may be
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difficult and even if solutions can be obtained, an enormous computational power would be
required for this purpose.

The discussion till now has centred on the major drawbacks faced by MINLP methods
with regard to the problem considered in the works of Houze et al. (2003) and Bizet et al.
(2005). However, in comparison to the problem considered by these works, there are more
realistic and complex problems in this area, which have not been considered in present
literature. An overview of such problems follows next. While MINLP techniques form part
of the established methodologies to solve problems of these kinds as well, it is highlighted
how the discussed drawbacks would make these methods unsuitable to solve these problems.

The works by Houze et al. (2003) and Bizet et al. (2005) considered optimisation of
maintenance scheduling and production in a process containing only a single reactor using
decaying catalysts. However, it is common for an industrial process to have parallel lines
of reactors operating simultaneously, which would improve flexibility of the process by
allowing one reactor to be shut down for catalyst replacement while the remaining reactors
continue to produce product to meet demand. A literature survey did not find any publications
that have considered such a problem. While there has been work examining optimisation of
maintenance scheduling of parallel processing lines experiencing decaying performances
in other engineering applications, only a very limited set of papers address all aspects of
the additional problem of production planning, such that all of the operating conditions,
inventory management and sales to meet time-varying demand, are optimised. Further, even
these limited set of papers admit to shortcomings, which can be traced to the mixed-integer
techniques used for the optimisation. Thus, there are no encouraging signs that using MINLP
techniques would produce satisfactory solutions if used for the optimisation of maintenance
scheduling and production in parallel lines of reactors using decaying catalysts. Since the
problem involving parallel reactor lines will be more complex than that involving a single
reactor, due to the presence of a greater number of decision variables, constraints and dif-
ferential equations in comparison to the latter case, the mentioned drawbacks of MINLP
techniques will be aggravated if those techniques are used to obtain solutions for this problem
and hence, the results obtained cannot be expected to be of good quality.

Further, the works by Houze et al. (2003) and Bizet et al. (2005) assumed that all ki-
netic parameters involved in the underlying model of the problem were known exactly. In
reality, these kinetic parameters are rarely known exactly and there is generally an uncer-
tainty regarding their values. This uncertainty or variation in parameter values can have a
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significant impact on the optimal operations of the process. A limited set of papers exist,
that use online methods to include variation in kinetic parameter values in the optimisation
of problems of this type. However, these online methods cannot identify the individual
effect of uncertainty in each kinetic parameter or the effect of such uncertainties before the
process begins, and no publication has established a technique that would enable determining
these aspects. The conventional methods of determining these aspects involve using one of
the popular preventive methods of handling uncertainty, such as stochastic programming,
fuzzy programming, robust optimisation or parametric programming, in combination with
a mixed-integer optimisation technique. However, the use of such conventional methods
on a problem would require solving a problem of similar or a larger size, in comparison to
when there are no uncertainty considerations, using mixed-integer optimisation techniques.
Therefore, the use of conventional methods to solve this large scale problem would mean
the drawbacks of the mixed-integer techniques are once again manifested or even further
aggravated, and so, these methods are not expected to produce good quality results.

The preceding discussion indicates that methodologies based on mixed-integer techniques
are not suitable for solving problems involving maintenance scheduling and production in
large scale industrial processes using decaying catalysts. Hence, an alternative methodology
to solve problems in this area is needed, which can overcome the disadvantages of mixed-
integer techniques and obtain high quality solutions. A methodology is also needed that
can effectively solve such problems when parametric uncertainties are involved, while
overcoming the drawbacks brought about by the use of mixed-integer techniques in the
established methodologies for optimisation under uncertainty. The contributions of this thesis
lie in developing such methodologies, which draw from concepts in optimal control theory.
The objectives of the thesis are stated in the next section.

1.5 Research objectives

The objectives of this thesis are enumerated as follows:

1. To develop a methodology that can effectively optimise the maintenance scheduling
and production in a process containing a reactor using decaying catalysts, and which
can overcome the drawbacks faced by mixed-integer optimisation techniques in solving
this problem

2. To develop a methodology that can effectively optimise maintenance scheduling and
production in a process containing parallel lines of reactors using decaying catalysts,
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and which can overcome the drawbacks that mixed-integer methods would face in
solving problems of this kind

3. To develop a methodology that can consider uncertainties in kinetic parameters while
effectively optimising the maintenance scheduling and production in a process contain-
ing a reactor using decaying catalysts, and which can overcome the disadvantages that
the use of mixed-integer methods would introduce in the conventional methodologies,
if such methodologies are used to solve problems of this kind

As will be seen, the methodologies developed to fulfil these objectives use concepts from
optimal control theory, which enable a negation of the use of mixed-integer techniques and
hence, a solution of the involved problem as a standard nonlinear optimisation problem. The
optimal control methodology developed to fulfil the first objective will in fact form the base
to develop the optimal control methodologies to fulfil the second and third objectives. Before
proceeding, the essential components of the thesis are highlighted in a brief overview of the
thesis in the next section.

1.6 Overview of thesis

The current chapter (Chapter 1) forms the introduction to the thesis. The problem of
maintenance scheduling and production of industrial processes using decaying catalysts is
introduced, alongside an overview of the underlying concepts and a review of the publi-
cations in this area. The drawbacks of existing methodologies to solve this problem are
highlighted, and these indicate the problems to be addressed in this area, which in turn lead
to the objectives of the thesis.

In Chapter 2, the focus is on fulfilling the first objective of the thesis. An optimal control
methodology is developed to optimise maintenance scheduling and production in a process
containing a reactor using decaying catalysts. This methodology involves formulating this
problem as a multistage mixed-integer optimal control problem with the intention of using a
solution procedure to solve it as a standard nonlinear optimisation problem, without mixed-
integer techniques. Four case studies of the industrial process are examined which differ on
the basis of the kinetics of the underlying reactions. Two solution procedures are required
to be used, each which has its own relative advantages. The methodology using the second
solution procedure is particularly successful in obtaining high quality solutions to this prob-
lem. Further, these solutions possess features of robustness, reliability and efficiency, which
indicate the methodology’s success in overcoming the drawbacks of the use of mixed-integer
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optimisation techniques in solving this problem.

In Chapter 3, the aim is to fulfil the second objective of the thesis. The successful optimal
control methodology developed in Chapter 2 is extended to optimise maintenance scheduling
and production in a process containing parallel lines of reactors using decaying catalysts. The
methodology when applied to a case study of this process results in high quality solutions.
Further, the solutions obtained, once again, possess features of robustness, reliability and effi-
ciency, which indicate that the methodology can overcome the drawbacks that mixed-integer
optimisation techniques would face in solving problems of this kind.

In Chapter 4, the third objective of the thesis is targeted to be fulfilled. An optimal control
methodology is developed to consider uncertainties in kinetic parameters in the optimisa-
tion of the maintenance scheduling and production in a process containing a reactor using
decaying catalysts. This methodology is an extension of the forms of the methodologies
used in Chapters 2 and 3. The methodology involves using a multiple scenario approach
to consider parametric uncertainties and formulating the problem as a stochastic multistage
mixed-integer optimal control problem, which is solved as a standard nonlinear optimisation
problem using a procedure similar to that used in the preceding chapters. Different case
studies are examined to identify the effects on the optimal operations of uncertainty in each
individual parameter, of simultaneous uncertainty in all parameters and of the number of
scenarios generated. The results obtained provide insights into these aspects and indicate that
the methodology is capable of solving this problem. Further, the robust, reliable and efficient
nature of the results obtained suggest that the methodology can overcome the disadvantages
that mixed-integer methods would introduce in the conventional methodologies, if such
methodologies are used to solve problems of this kind.

Chapter 5 presents the overall conclusions of the thesis and proposes future research direc-
tions.

Figure 1.7 shows a conceptual map that indicates the developmental results in each chap-
ter and how the different chapters are connected. In this figure, a rectangular box and the text
within represents a chapter. The ellipses and the text within, that are connected to a rectangle
via arrows, are the developmental results from the chapter represented by that rectangle.
It is seen that the ellipses themselves can be connected. It is noted that a black dot (•) at
the intersection between two lines indicates a connection between the rectangles/ellipses
from which the lines originate and the absence of the black dot at an intersection indicates
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that there is no such connection. The rectangles themselves are connected through arrows
involving descriptive text, which indicate the connections between chapters.
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Fig. 1.7 A conceptual map that shows the developmental results in each chapter and the
connections between chapters





Chapter 2

Optimisation of a single reactor process

In this chapter, an optimal control methodology is developed to optimise maintenance
scheduling and production in a process containing a single reactor using decaying catalysts.
This methodology involves formulating this problem as a multistage mixed-integer optimal
control problem with the aim of solving it as a standard nonlinear optimisation problem,
without using mixed-integer techniques. Four case studies are considered for the process,
which differ depending on the kinetics of the product formation reaction or the catalyst
deactivation, in the process model. As will be seen, the complex nature of the problem caused
complications in obtaining solutions using the currently available solvers and two different
solution implementation procedures are required to be used, each which had its own relative
advantages. The methodology using the second implementation procedure is particularly
successful in producing high quality solutions to this problem and indicates advantages of
robustness, reliability and efficiency over mixed-integer techniques.

The structure of this chapter is as follows. In Section 2.1, an optimal control formulation
of the problem is developed. In Section 2.2, the optimal control formulation is applied
to case studies of an industrial process. Section 2.3 provides details of the first solution
procedure attempted, Implementation I, and the results obtained using this implementation
are discussed. Section 2.4 details the second solution procedure attempted, Implementation II,
and discusses the results obtained using this implementation. Section 2.5 contains a summary
of the chapter, a discussion comparing the results obtained with those of existing publications
that considered a similar problem, and the conclusions of the chapter.
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2.1 The optimal control problem formulation

Optimal control theory deals with identifying a control for a dynamic system over a period
of time such that a specified objective function is optimised at the end of this time period.
The applications of optimal control theory are vast, ranging from rocket science to building
energy management and even economics.

An optimal control problem (OCP) is characterised by a set of control variables, state
variables, differential-algebraic equations (DAEs), constraints, and a performance index
(or an objective function). The controls are the decision variables in this problem, applied
externally to the dynamic system in order to optimise its performance. The state variables
are inherent to the system, in the sense that they represent the "state" of the system, and
their values are determined from the DAEs and the values of the controls, at any time. Both,
the control and state variables are usually required to fulfil some constraints. The controls,
when chosen optimally, decide the optimal state variables, and these together optimise the
performance index of the system.

The basic formulation of an OCP is shown in equations (2.1a) – (2.1h). The performance
index consists of a point index φ and a continuous index L. This performance index is
minimised, over a given duration beginning at time t0 and ending at time tF , by the selection
of controls, w, and the resulting differential state variables, x and algebraic state variables, z,
when subject to differential equations, f , algebraic equations, g, and constraints, c. Equa-
tions (2.1b) – (2.1c) describe an ordinary differential equation (ODE) system, given initial
condition x0. The controls w can include binary controls, u, as well as continuous controls, v,
that belong to a real permissible set V .

min
w(t)

W = φ (x(tF)) +

tF∫
t0

L(x(t), z(t), w(t), t)dt (2.1a)

subject to
.
x(t) = f (x(t), z(t), w(t), t)

∀t ∈ [t0, tF ]
(2.1b)

x(t0) = x0 (2.1c)

0 = g(x(t), z(t), w(t), t)

∀t ∈ [t0, tF ]
(2.1d)
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c(x(t), z(t), w(t), t)≤ 0

∀t ∈ [t0, tF ]
(2.1e)

w(t) =
[
[u(t)]T , [v(t)]T

]T

∀t ∈ [t0, tF ]
(2.1f)

u(t) ∈ {0,1}
∀t ∈ [t0, tF ]

(2.1g)

v(t) ∈ V

∀t ∈ [t0, tF ]
(2.1h)

Now, the problem under consideration, that of optimising maintenance scheduling and
production in a process using decaying catalyst, is developed as an optimal control problem.
The dynamic system in this problem is the industrial process and the duration over which it
is to be optimised is the time horizon of the process. And as mentioned in the introductory
chapter, the decisions (controls) here include those of when to schedule a maintenance action
to replace the catalyst in the reactor, which are binary in nature, as well as those that decide
the operating conditions for the reactor and the sales, which are continuous variables. The
state variables in the problem represent the "state" of the process and are determined from the
appropriate DAEs that constitute the process model and the values of the controls at any time.
The constraints in the problem include the operating limits of the process and the binary
restrictions on those controls used to decide when to replace catalysts. And the objective
function of the problem is to attain maximum profit or minimum cost for the process at the
end of the time horizon.

For this problem, a ‘stage’ is regarded as a part of the time horizon of the process within
which the decisions (binary as well as continuous) have to be made. Solving this problem
involves making decisions at different stages within the time horizon of the industrial process.
Therefore, a multistage version of equation (2.1) is used for the optimal control formulation
of this problem, which is developed as follows. The whole time horizon of the process is
discretised into stages (each, within which the decisions have to be made), which can be
of arbitrary length. A control parametrisation approach is adopted wherein the decision
variables are discretised over the whole time horizon and are taken to be piecewise constant
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across the times corresponding to each stage. That is, if the total number of stages is NP, the
collective vectors of the controls, u and v, take up the following form:

u =
[
u(1), u(2), . . . , u(NP)

]T
(2.2a)

v =
[
v(1), v(2), . . . , v(NP)

]T
(2.2b)

The control profiles are allowed to be discontinuous at the junctions, tp, between any two
consecutive stages, p and p+1. Further, these stage switching times, tp, are considered to be
fixed.

In this multistage formulation, decisions of binary nature have to be made in each stage of
the time horizon, that indicate whether a catalyst should be in operation or if a maintenance
action should occur to replace it. For example, a value of 1 can be used to indicate that the
catalyst is in operation and a value of 0 can be used to indicate that a maintenance action or a
catalyst replacement operation occurs. Henceforth in this thesis, this decision will be called a
"catalyst changeover control". Due to their binary nature, the catalyst changeover controls
correspond to the controls, u. Further, the operating conditions of the reactor and the amount
of product sales should also be decided at each stage. These are decisions of continuous form
and so, correspond to the controls, v. Due to the presence of integer and continuous controls,
this is a mixed-integer formulation.

The state variables, however, are retained in their continuous form, without discretisation,
and are determined in each stage from the set of DAEs. The DAEs are solved to a high
accuracy in the right sequential order using state-of-the-art integrators and hence, this
solution methodology is called a "feasible path approach" (Vassiliadis, 1993; Vassiliadis
et al., 1994a,b). The solutions of the DAEs in each stage, across the whole time horizon,
are facilitated by junction conditions between any two consecutive periods, p and p+1, the
general form of which is given by equation (2.3) (Vassiliadis, 1993):

J
(

ẋ(p+1) (t+p ) , x(p+1) (t+p ) , z(p+1) (t+p ) , u(p+1) (t+p ) , v(p+1) (t+p ) ,
ẋ(p) (t−p ) , x(p) (t−p ) , z(p) (t−p ) u(p) (t−p ) , v(p) (t−p ) , tp

)
= 0

p = 1, 2, . . .NP−1 (2.3)
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Given that the optimal control formulation of this problem involves multiple stages and
contains integer as well as continuous controls, it can be termed a multistage mixed-integer
optimal control problem (MSMIOCP) formulation. The basic form of the MSMIOCP over
time periods, p = 1, 2, . . .NP, t ∈

[
tp−1, tp

]
, with tNP = tF is shown in equations (2.4a) –

(2.4h). The terminology used in equation (2.4) is similar to the basic OCP formulation in
equation (2.1), with the superscript (p) indicating that they apply to stage p. The additional
terms here are the junction conditions, h, analogous to equation (2.3), that provide the
initial conditions for the solution of the ODEs in stage p. An illustration of the MSMIOCP
formulation is shown in Figure 2.1.

min
u,v

W =
NP

∑
p=1

{
φ
(p)
(

x(p)(tp), z(p)(tp), u(p), v(p), tp

)
(2.4a)

+
∫ tp

tp−1

L(p)
(

x(p)(t), z(p)(t), u(p), v(p), t
)

dt
}

subject to
ẋ(p)(t) = f (p)(x(p)(t), z(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.4b)

x(1)(t0) = h(1)
(

u(1), v(1)
)

(2.4c)

x(p)(tp−1) = h(p)
(

x(p−1)(tp−1), z(p−1)(tp−1), u(p), v(p)
)

p = 2, 3, . . . , NP
(2.4d)

0 = g(p)(x(p)(t), z(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.4e)

c(p)
(

x(p)(t), z(p)(t), u(p), v(p), t
)
≤ 0

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.4f)

u(p) ∈ {0,1}
p = 1, 2, . . . , NP

(2.4g)
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v(p) ∈ V

p = 1, 2, . . . , NP
(2.4h)

Due to the presence of integer as well as continuous controls, it might seem intuitive
that mixed-integer optimisation methods need to be used to solve problems of this type of
formulation. However, as mentioned in Section 1.4, there are many disadvantages to using
mixed-integer optimisation techniques. Therefore, a methodology is presented that attempts
to solve problems of this type of formulation without the use of mixed-integer techniques
and overcome the drawbacks associated with the use of those methods.

This methodology is based on the property that controls that appear linearly in an optimal
control problem tend to take values at either of their bounds in the optimal solution, lending
what is called a "bang-bang" behaviour to these controls (Bryson and Ho, 1975). This
methodology is applied to the problem under consideration by formulating the equations
such that the catalyst changeover controls, corresponding to the controls, u, appear linearly.
By virtue of the bang-bang property arising from this linear occurrence, these controls can be
expected to automatically take values of only 0 or 1 in the optimal solution, without the use
of mixed-integer optimisation techniques. Such a methodology has previously been used by
Al Ismaili et al. (2018) to optimise maintenance scheduling of heat exchanger networks, and
the results indicated robust, reliable and efficient solutions in comparison to those obtained
using mixed-integer techniques on the same problem.

In the following sections, a theoretical analysis is done using the basic MSMIOCP
formulation in equation (2.4). In this theoretical analysis, the Pontryagin Minimum Principle
(Pontryagin et al., 1962) is applied to indicate how the linearity of the binary controls in
problem formulations of this kind can potentially result in a bang-bang behaviour for these
controls. It is also discussed as to what advantages this methodology has the potential to
offer over mixed-integer techniques.

2.1.1 A theoretical analysis leading to the bang-bang property

In this section, it is demonstrated how linearity of a control in an MSMIOCP of the form
of equation (2.4) can potentially result in a bang-bang behaviour for these controls. Equa-
tion (2.4) is reformulated so that, in each stage p = 1,2, . . . ,NP, all of its elements are linear
with respect to the binary control, u(p). This reformulated equation is given by equation (2.5)
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x(1)(t0)
h(1)

h(2)

h(p)

h(p+1)

h(NP )

x(1)(t1)

x(2)(t1)

x(p�1)(tp�1)

x(p)(tp�1)

x(p)(tp)

x(p+1)(tp)

x(NP�1)(tNP�1)

x(NP )(tNP�1)

x(NP )(tNP )

t0

t1

tp�1

tp

tNP�1

tNP

u(1), v(1)

u(p), v(p)

u(NP ), v(NP )

ẋ(1) = f (1)

ẋ(p) = f (p)

ẋ(NP ) = f (NP )

c(1)  0

c(p)  0

c(NP )  0

Stage 1

Stage p

Stage NP

Initial horizon time

Final horizon time

g(1) = 0

g(p) = 0

g(NP ) = 0

Fig. 2.1 An illustration of the MSMIOCP formulation.
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and the terminology of its elements are as follows.

In equation (2.5a), for each stage p = 1,2, . . . ,NP, the point performance index is repre-
sented as functions of φ

(p)
1 and φ

(p)
2 , where φ

(p)
1 is the coefficient of the linear control, u(p),

and both terms are themselves independent of controls, u. L(p)
1 and L(p)

2 , f (p)
1 and f (p)

2 , h(p)
1

and h(p)
2 , g(p)

1 and g(p)
2 , and c(p)

1 and c(p)
2 are the analogous terms for the continuous perfor-

mance index in equation (2.5a), the differential equations in equation (2.5b), the junction
conditions in equations (2.5c) – (2.5d), the algebraic equations in equation (2.5e) and the
constraints in equation (2.5f), respectively.

min
u,v

W =
NP

∑
p=1

{[
φ
(p)
1

(
x(p)(tp), z(p)(tp), v(p), tp

)]T
u(p)+φ

(p)
2

(
x(p)(tp), z(p)(tp), v(p), tp

)
+
∫ tp

tp−1

[[
L(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]T
u(p)+L(p)

2

(
x(p)(t), z(p)(t), v(p), t

)]
dt
}

(2.5a)

subject to

ẋ(p)(t) =
[

f (p)
1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+ f (p)

2

(
x(p)(t), z(p)(t), v(p), t

)
tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.5b)

x(1)(t0) =
[
h(1)1

(
v(1)
)]

u(1)+h(1)2

(
v(1)
)

(2.5c)

x(p)(tp−1) =
[
h(p)

1

(
x(p−1)(tp−1), z(p−1)(tp−1), v(p)

)]
u(p)

+h(p)
2

(
x(p−1)(tp−1), z(p−1)(tp−1), v(p)

)
p = 2, 3, . . . , NP

(2.5d)

0 =
[
g(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+g(p)

2

(
x(p)(t), z(p)(t), v(p), t

)
tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.5e)
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[
c(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+ c(p)

2

(
x(p)(t), z(p)(t), v(p), t

)
≤ 0

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.5f)

u(p) ∈ {0,1}
p = 1, 2, . . . , NP

(2.5g)

v(p) ∈ V

p = 1, 2, . . . , NP
(2.5h)

Now, a theoretical analysis is done in order to identify the necessary conditions for
optimality, also termed the Euler-Lagrange equations. This theoretical analysis is similar
to that done in Al Ismaili et al. (2018), with the difference being that here the controls are
distinguished as occurring linearly or nonlinearly, whereas that work considered only linear
controls.

The performance index in equation (2.5a) is modified so that Euler-Lagrange multipliers
are introduced as shown in equation (2.6):

W =
NP

∑
p=2

{ [
φ
(p)
1

(
x(p)(tp), z(p)(tp), v(p), tp

)]T
u(p)+φ

(p)
2

(
x(p)(tp), z(p)(tp), v(p), tp

)
+
[
β
(p)
]T [

h(p)
1

(
x(p−1)(tp−1), z(p−1)(tp−1), v(p)

)
u(p)

+ h(p)
2

(
x(p−1)(tp−1),z(p−1)(tp−1), v(p)

)
− x(p)(tp−1)

]
+
∫ tp

tp−1

[[
L(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]T
u(p)+L(p)

2

(
x(p)(t), z(p)(t), v(p), t

)]
dt

+
∫ tp

tp−1

[
Λ
(p)(t)

]T [
f (p)
1

(
x(p)(t), z(p)(t), v(p), t

)
u(p)

+ f (p)
2

(
x(p)(t), z(p)(t), v(p), t

)
− ẋ(p)(t)

]
dt

+
∫ tp

tp−1

[
λ
(p)(t)

]T [
g(p)

1

(
x(p)(t), z(p)(t), v(p), t

)
u(p)+g(p)

2

(
x(p)(t), z(p)(t), v(p), t

)]
dt
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+
∫ tp

tp−1

[
µ
(p)(t)

]T [
c(p)

1

(
x(p)(t), z(p)(t), v(p), t

)
u(p)+ c(p)

2

(
x(p)(t), z(p)(t), v(p), t

)]
dt
}

+
[
φ
(1)
1

(
x(1)(t1), z(1)(t1), v(1), t1

)]T
u(1)+φ

(1)
2

(
x(1)(t1), z(1)(t1), v(1), t1

)
+
[
β
(1)
]T [

h(1)1

(
v(1)
)

u(1)+h(1)2

(
v(1)
)
− x(1)(t0)

]
+
∫ t1

t0

[[
L(1)

1

(
x(1)(t), z(1)(t), v(1), t

)]T
u(1)+L(1)

2

(
x(1)(t), z(1)(t), v(1), t

)]
dt

+
∫ t1

t0

[
Λ
(1)(t)

]T [
f (1)1

(
x(1)(t), z(1)(t), v(1), t

)
u(1)

+ f (1)2

(
x(1)(t), z(1)(t), v(1), t

)
− ẋ(1)(t)

]
dt

+
∫ t1

t0

[
λ
(1)(t)

]T [
g(1)1

(
x(1)(t), z(1)(t), v(1), t

)
u(1)+g(1)2

(
x(1)(t), z(1)(t), v(1), t

)]
dt

+
∫ t1

t0

[
µ
(1)(t)

]T [
c(1)1

(
x(1)(t), z(1)(t), v(1), t

)
u(1)+ c(1)2

(
x(1)(t), z(1)(t), v(1), t

)]
dt

(2.6)

where Λ(p), λ (p), µ(p) and β (p) are the Euler-Lagrange multipliers for stage p = 1, 2, . . .NP.
It is noted that for the Euler-Lagrange multiplier, µ(p), corresponding to the constraints in
each stage, the following requirement holds:

µ
(p)

= 0 if c(p)
1 u(p)+ c(p)

2 ≤ 0

≥ 0 if c(p)
1 u(p)+ c(p)

2 = 0

p = 1, 2, . . . , NP

(2.7)

Next, the calculus of variations is applied. Variations on the parameter set of stage p′ of
the form δu(p′) and δv(p′) are considered, which result in variations in the state values at all
times, as shown in equation (2.8). For the sake of convenience, the arguments within the
parentheses for each term are neglected. Clearly, the state vector of stage p, where p < p′,
will not be influenced and so δx(p) (t) = 0 and δ z(p) (t) = 0 for those stages.

δW =
NP

∑
p=2

{ [[
u(p)
]T ∂φ

(p)
1

∂x(p)(tp)
+

∂φ
(p)
2

∂x(p)(tp)

]
δx(p)(tp)
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+

[[
u(p)
]T ∂φ

(p)
1

∂ z(p)(tp)
+

∂φ
(p)
2

∂ z(p)(tp)

]
δ z(p)(tp)

+

[[
u(p)
]T ∂φ

(p)
1

∂v(p)
+

∂φ
(p)
2

∂v(p)

]
δv(p)+

[
φ
(p)
1

]T
δu(p)

+
[
β
(p)
]T
[(

∂h(p)
1

∂x(p−1)(tp−1)
u(p)+

∂h(p)
2

∂x(p−1)(tp−1)

)
δx(p−1)(tp−1)

+

(
∂h(p)

1

∂ z(p−1)(tp−1)
u(p)+

∂h(p)
2

∂ z(p−1)(tp−1)

)
δ z(p−1)(tp−1)

+

(
∂h(p)

1

∂v(p)
u(p)+

∂h(p)
2

∂v(p)

)
δv(p)+h(p)

1 δu(p)−δx(p)(tp−1)

]

+
∫ tp

tp−1

[([
u(p)
]T ∂L(p)

1

∂x(p)
(t)+

∂L(p)
2

∂x(p)
(t)

)
δx(p)(t)

+

([
u(p)
]T ∂L(p)

1

∂ z(p)
(t)+

∂L(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

([
u(p)
]T ∂L(p)

1

∂v(p)
(t)+

∂L(p)
2

∂v(p)
(t)

)
δv(p)+

[
L(p)

1

]T
δu(p)

]
dt

+
∫ tp

tp−1

[
Λ
(p)(t)

]T
[(

∂ f (p)
1

∂x(p)
(t)u(p)+

∂ f (p)
2

∂x(p)
(t)

)
δx(p)(t)

+

(
∂ f (p)

1

∂ z(p)
(t)u(p)+

∂ f (p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂ f (p)

1

∂v(p)
(t)u(p)+

∂ f (p)
2

∂v(p)
(t)

)
δv(p)+ f (p)

1 δu(p)−δ ẋ(p)(t)

]
dt

+
∫ tp

tp−1

[
λ
(p)(t)

]T
[(

∂g(p)
1

∂x(p)
(t)u(p)+

∂g(p)
2

∂x(p)
(t)

)
δx(p)(t)

+

(
∂g(p)

1

∂ z(p)
(t)u(p)+

∂g(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂g(p)

1

∂v(p)
(t)u(p)+

∂g(p)
2

∂v(p)
(t)

)
δv(p)(t)+g(p)

1 δu(p)

]
dt

+
∫ tp

tp−1

[
µ
(p)(t)

]T
[(

∂c(p)
1

∂x(p)
(t)u(p)+

∂c(p)
2

∂x(p)
(t)

)
δx(p)(t)



36 Optimisation of a single reactor process

+

(
∂c(p)

1

∂ z(p)
(t)u(p)+

∂c(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂c(p)

1

∂v(p)
(t)u(p)+

∂c(p)
2

∂v(p)
(t)

)
δv(p)+ c(p)

1 δu(p)

]
dt
}

+

[([
u(1)
]T ∂φ

(1)
1

∂x(1)(t1)
+

∂φ
(1)
2

∂x(1)(t1)

)
δx(1)(t1)

+

([
u(1)
]T ∂φ

(1)
1

∂ z(1)(t1)
+

∂φ
(1)
2

∂ z(1)(t1)

)
δ z(1)(t1)

+

([
u(1)
]T ∂φ

(1)
1

∂v(1)
+

∂φ
(1)
2

∂v(1)

)
δv(1)+

[
φ
(1)
1

]T
δu(1)

]

+
[
β
(1)
]T
[(

∂h(1)1

∂v(1)
u(1)+

∂h(1)2

∂v(1)

)
δv(1)+h(1)1 δu(1)−δx(1)(t0)

]

+
∫ t1

t0

[([
u(1)
]T ∂L(1)

1

∂x(1)
(t)+

∂L(1)
2

∂x(1)
(t)

)
δx(1)(t)

+

([
u(1)
]T ∂L(1)

1

∂ z(1)
(t)+

∂L(1)
2

∂ z(1)
(t)

)
δ z(1)(t)

+

([
u(1)
]T ∂L(1)

1

∂v(1)
(t)+

∂L(1)
2

∂v(1)
(t)

)
δv(1)+

[
L(1)

1

]T
δu(1)

]
dt

+
∫ t1

t0

[
Λ
(1)(t)

]T
[(

∂ f (1)1

∂x(1)
(t)u(1)+

∂ f (1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂ f (1)1

∂ z(1)
(t)u(1)+

∂ f (1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂ f (1)1

∂v(1)
(t)u(1)+

∂ f (1)2

∂v(1)
(t)

)
δv(1)+ f (1)1 δu(1)−δ ẋ(1)(t)

]
dt

+
∫ t1

t0

[
λ
(1)(t)

]T
[(

∂g(1)1

∂x(1)
(t)u(1)+

∂g(1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂g(1)1

∂ z(1)
(t)u(1)+

∂g(1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂g(1)1

∂v(1)
(t)u(1)+

∂g(1)2

∂v(1)
(t)

)
δv(1)+g(1)1 δu(1)

]
dt
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+
∫ t1

t0

[
µ
(1)(t)

]T
[(

∂c(1)1

∂x(1)
(t)u(1)+

∂c(1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂c(1)1

∂ z(1)
(t)u(1)+

∂c(1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂c(1)1

∂v(1)
(t)u(1)+

∂c(1)2

∂v(1)
(t)

)
δv(1)+ c(1)1 δu(1)

]
dt (2.8)

Integration by parts for the term involving δ ẋ(p)(t) is used to obtain equation (2.9), wherein
the term Λ̇(p)(t) is the time differential of Λ(p)(t).

δW =
NP

∑
p=2

{ [[
u(p)
]T ∂φ

(p)
1

∂x(p)(tp)
+

∂φ
(p)
2

∂x(p)(tp)

]
δx(p)(tp)

+

[[
u(p)
]T ∂φ

(p)
1

∂ z(p)(tp)
+

∂φ
(p)
2

∂ z(p)(tp)

]
δ z(p)(tp)

+

[[
u(p)
]T ∂φ

(p)
1

∂v(p)
+

∂φ
(p)
2

∂v(p)

]
δv(p)+

[
φ
(p)
1

]T
δu(p)

+
[
β
(p)
]T
[(

∂h(p)
1

∂x(p−1)(tp−1)
u(p)+

∂h(p)
2

∂x(p−1)(tp−1)

)
δx(p−1)(tp−1)

+

(
∂h(p)

1

∂ z(p−1)(tp−1)
u(p)+

∂h(p)
2

∂ z(p−1)(tp−1)

)
δ z(p−1)(tp−1)

+

(
∂h(p)

1

∂v(p)
u(p)+

∂h(p)
2

∂v(p)

)
δv(p)+h(p)

1 δu(p)−δx(p)(tp−1)

]

+
∫ tp

tp−1

[([
u(p)
]T ∂L(p)

1

∂x(p)
(t)+

∂L(p)
2

∂x(p)
(t)

)
δx(p)(t)

+

([
u(p)
]T ∂L(p)

1

∂ z(p)
(t)+

∂L(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

([
u(p)
]T ∂L(p)

1

∂v(p)
(t)+

∂L(p)
2

∂v(p)
(t)

)
δv(p)+

[
L(p)

1

]T
δu(p)

]
dt

+
∫ tp

tp−1

[
Λ
(p)(t)

]T
[(

∂ f (p)
1

∂x(p)
(t)u(p)+

∂ f (p)
2

∂x(p)
(t)

)
δx(p)(t)



38 Optimisation of a single reactor process

+

(
∂ f (p)

1

∂ z(p)
(t)u(p)+

∂ f (p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂ f (p)

1

∂v(p)
(t)u(p)+

∂ f (p)
2

∂v(p)
(t)

)
δv(p)+ f (p)

1 δu(p)

]
dt

+
∫ tp

tp−1

[[
Λ̇
(p) (t)

]T
δx(p)(t)

]
dt

+
[
Λ
(p)(tp−1)

]T
δx(p)(tp−1)−

[
Λ
(p)(tp)

]T
δx(p)(tp)

+
∫ tp

tp−1

[
λ
(p)(t)

]T
[(

∂g(p)
1

∂x(p)
(t)u(p)+

∂g(p)
2

∂x(p)
(t)

)
δx(p)(t)

+

(
∂g(p)

1

∂ z(p)
(t)u(p)+

∂g(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂g(p)

1

∂v(p)
(t)u(p)+

∂g(p)
2

∂v(p)
(t)

)
δv(p)(t)+g(p)

1 δu(p)

]
dt

+
∫ tp

tp−1

[
µ
(p)(t)

]T
[(

∂c(p)
1

∂x(p)
(t)u(p)+

∂c(p)
2

∂x(p)
(t)

)
δx(p)(t)

+

(
∂c(p)

1

∂ z(p)
(t)u(p)+

∂c(p)
2

∂ z(p)
(t)

)
δ z(p)(t)

+

(
∂c(p)

1

∂v(p)
(t)u(p)+

∂c(p)
2

∂v(p)
(t)

)
δv(p)+ c(p)

1 δu(p)

]
dt
}

+

[([
u(1)
]T ∂φ

(1)
1

∂x(1)(t1)
+

∂φ
(1)
2

∂x(1)(t1)

)
δx(1)(t1)

+

([
u(1)
]T ∂φ

(1)
1

∂ z(1)(t1)
+

∂φ
(1)
2

∂ z(1)(t1)

)
δ z(1)(t1)

+

([
u(1)
]T ∂φ

(1)
1

∂v(1)
+

∂φ
(1)
2

∂v(1)

)
δv(1)+

[
φ
(1)
1

]T
δu(1)

]

+
[
β
(1)
]T
[(

∂h(1)1

∂v(1)
u(1)+

∂h(1)2

∂v(1)

)
δv(1)+h(1)1 δu(1)−δx(1)(t0)

]

+
∫ t1

t0

[([
u(1)
]T ∂L(1)

1

∂x(1)
(t)+

∂L(1)
2

∂x(1)
(t)

)
δx(1)(t)

+

([
u(1)
]T ∂L(1)

1

∂ z(1)
(t)+

∂L(1)
2

∂ z(1)
(t)

)
δ z(1)(t)
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+

([
u(1)
]T ∂L(1)

1

∂v(1)
(t)+

∂L(1)
2

∂v(1)
(t)

)
δv(1)+

[
L(1)

1

]T
δu(1)

]
dt

+
∫ t1

t0

[
Λ
(1)(t)

]T
[(

∂ f (1)1

∂x(1)
(t)u(1)+

∂ f (1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂ f (1)1

∂ z(1)
(t)u(1)+

∂ f (1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂ f (1)1

∂v(1)
(t)u(1)+

∂ f (1)2

∂v(1)
(t)

)
δv(1)+ f (1)1 δu(1)

]
dt

+
∫ t1

t0

[[
Λ̇
(1) (t)

]T
δx(1)(t)

]
dt

+
[
Λ
(1)(t0)

]T
δx(1)(t0)−

[
Λ
(1)(t1)

]T
δx(1)(t1)

+
∫ t1

t0

[
λ
(1)(t)

]T
[(

∂g(1)1

∂x(1)
(t)u(1)+

∂g(1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂g(1)1

∂ z(1)
(t)u(1)+

∂g(1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂g(1)1

∂v(1)
(t)u(1)+

∂g(1)2

∂v(1)
(t)

)
δv(1)+g(1)1 δu(1)

]
dt

+
∫ t1

t0

[
µ
(1)(t)

]T
[(

∂c(1)1

∂x(1)
(t)u(1)+

∂c(1)2

∂x(1)
(t)

)
δx(1)(t)

+

(
∂c(1)1

∂ z(1)
(t)u(1)+

∂c(1)2

∂ z(1)
(t)

)
δ z(1)(t)

+

(
∂c(1)1

∂v(1)
(t)u(1)+

∂c(1)2

∂v(1)
(t)

)
δv(1)+ c(1)1 δu(1)

]
dt (2.9)

For a stationary point, infinitesimal variations in the right hand side should yield no change
to the performance index, i.e. δW = 0, and hence related terms must be chosen so that they
always guarantee this. This leads to the following set of Euler-Lagrange equations and the
Pontryagin Minimum Principle (Pontryagin et al., 1962).

The δx(p) (t), δx(p) (tp) and δx(p) (tp−1
)

terms are cancelled through the condition that
the following differential equations and point conditions given by equations (2.10), (2.11)
and (2.12)), respectively, hold:
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Λ̇
(p) (t) =−

[[
u(p)
]T ∂L(p)

1

∂x(p)
(t)+

∂L(p)
2

∂x(p)
(t)

]T

−
[

∂ f (p)
1

∂x(p)
(t)u(p)+

∂ f (p)
2

∂x(p)
(t)

]T [
Λ
(p)(t)

]

−
[

∂g(p)
1

∂x(p)
(t)u(1)+

∂g(p)
2

∂x(p)
(t)

]T [
λ
(p)(t)

]
−
[

∂c(p)
1

∂x(p)
(t)u(1)+

∂c(p)
2

∂x(p)
(t)

]T [
µ
(p)(t)

]
tp−1 ≤ t ≤ tp

p = 1, 2, . . . ,NP
(2.10)

Λ
(p)(tp) =

[[
u(p)
]T ∂φ

(p)
1

∂x(p)(tp)
+

∂φ
(p)
2

∂x(p)(tp)

]T

+

[
∂h(p+1)

1

∂x(p)(tp)
u(p+1)+

∂h(p+1)
2

∂x(p)(tp)

]T

β
(p+1)

p = 1, 2, . . . ,NP−1 (2.11a)

Λ
(p)(tp) =

[[
u(p)
]T ∂φ

(p)
1

∂x(p)(tp)
+

∂φ
(p)
2

∂x(p)(tp)

]T

p = NP

(2.11b)

β
(p) = Λ

(p)(tp−1)

p = 1, 2, . . . , NP
(2.12)

Algebraic equations and point condition equations (2.13) and (2.14) must hold in order
to cancel the δ z(p) and δ z(p) (tp) terms, respectively.

[[
u(p)
]T ∂L(p)

1

∂ z(p)
(t)+

∂L(p)
2

∂ z(p)
(t)

]T

+

[
∂ f (p)

1

∂ z(p)
(t)u(p)+

∂ f (p)
2

∂ z(p)
(t)

]T [
Λ
(p)(t)

]

+

[
∂g(p)

1

∂ z(p)
(t)u(p)+

∂g(p)
2

∂ z(p)
(t)

]T [
λ
(p)(t)

]
+

[
∂c(p)

1

∂ z(p)
(t)u(p)+

∂c(p)
2

∂ z(p)
(t)

]T [
µ
(p)(t)

]
= 0

tp−1 ≤ t ≤ tp

p = 1, 2, . . . ,NP
(2.13)
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[[
u(p)
]T ∂φ

(p)
1

∂ z(p)(tp)
+

∂φ
(p)
2

∂ z(p)(tp)

]T

+

[
∂h(p+1)

1

∂ z(p)(tp)
u(p+1)+

∂h(p+1)
2

∂ z(p)(tp)

]T

β
(p+1) = 0

p = 1, 2, . . . ,NP−1 (2.14a)

[[
u(p)
]T ∂φ

(p)
1

∂ z(p)(tp)
+

∂φ
(p)
2

∂ z(p)(tp)

]T

= 0

p = NP

(2.14b)

As per the Pontryagin Minimum Principle, the decision variables of the problem should
be chosen to minimise the Hamiltonian. The Hamiltonian gradient conditions, taken from
the coefficients of δv(p) and δu(p), are given by equations (2.15) to (2.16).

∇v(p)H(p) =

[[
u(p)
]T ∂φ

(p)
1

∂v(p)
+

∂φ
(p)
2

∂v(p)

]T

+

[
∂h(p)

1

∂v(p)
u(p)+

∂h(p)
2

∂v(p)

]T

β
(p)

+
∫ tp

tp−1

[[[
u(p)
]T ∂L(p)

1 (t)
∂v(p)

+
∂L(p)

2 (t)
∂v(p)

]T

+

[
∂ f (p)

1 (t)
∂v(p)

u(p)+
∂ f (p)

2 (t)
∂v(p)

]T

Λ
(p)(t)+

[
∂g(p)

1 (t)
∂v(p)

u(p)+
∂g(p)

2 (t)
∂v(p)

]T

λ
(p)(t)

+

[
∂c(p)

1 (t)
∂v(p)

u(p)+
∂c(p)

2 (t)
∂v(p)

]T

µ
(p)(t)

]
dt

= 0

tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP
(2.15)

∇u(p)H(p) = φ
(p)
1 +

[
h(p)

1

]T
β
(p)

+
∫ tp

tp−1

[
L(p)

1 +
[

f (p)
1

]T
Λ
(p)(t)+

[
g(p)

1

]T
λ
(p)(t)+

[
c(p)

1

]T
µ
(p)(t)

]
dt

= 0
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tp−1 ≤ t ≤ tp

p = 1, 2, . . . , NP
(2.16)

As can be seen in equation (2.16), despite the interaction between the linear and nonlinear
controls within the problem, the Hamiltonian gradient, in stage p, with respect to the linear
control, u(p), in that stage, is independent of that control. This expression can be termed a
"switching function" in the sense that it can cause the values of the controls in the set, u, to
switch between stages, in order to minimise the Hamiltonian in each stage. This is elaborated
as follows:

1. If, in a stage, p, the switching function is positive, the Hamiltonian is minimised when
the control u(p) is at its lower bound, 0. On the other hand, if the switching function
is negative in a stage, p, the Hamiltonian is minimised when the control u(p) is at its
upper bound, 1. Thus, in a stage, p, the Hamiltonian is minimised when the linear
control, u(p), takes values at either of its bounds, 0 or 1, depending on the sign of the
switching function involved. This phenomenon of an optimal control action for a linear
control occurring at either bound of its feasible region is called a "bang-bang" control
behaviour (Bryson and Ho, 1975).

2. If, in a stage, p, the switching function becomes zero, the Hamiltonian gradient in that
stage becomes insensitive to variations in the linear control, u(p), in that stage. In such
cases, a bang-bang behaviour may not be observed for the linear control and the stage
is called a singular arc.

Thus, when the controls, u, appear linearly in an MSMIOCP of the form of equation (2.4),
these controls can be expected to exhibit a bang-bang behaviour with potential singular arcs.

However, as can be seen in equation (2.15), the Hamiltonian gradient, in stage p, with
respect to the control v(p) in that stage, which appears nonlinearly in the problem, is not
independent of that control. Hence, the controls, v, are not expected to exhibit a bang-bang
behaviour.

From the above theoretical analysis, it is seen that in an MSMIOCP of the form of
equation (2.4), when the binary controls, u, appear linearly, these controls can be expected to
exhibit bang-bang behaviour and therefore can be expected to take values at either of their
bounds in the optimal solution, apart from in those stages where singular arcs can occur.
Thus, even if the controls, u, were considered continuous variables in the range [0,1], rather
than just discrete variables in the set {0,1}, due to the bang-bang behaviour, these controls



2.1 The optimal control problem formulation 43

can still be expected to take values of only 0 or 1 (that is, at their bounds) in the optimal
solution. This has a major advantage in that, by considering these controls as continuous
rather than discrete variables, the problem can be solved as a standard nonlinear optimisation
problem, using the feasible path approach, without using mixed-integer optimisation methods,
and yet optimum values of only binary nature (0 or 1) can be expected to be obtained for
these controls.

Therefore, the integer restrictions on the controls, u, in equation (2.5g) can be relaxed
and instead, these controls can be considered as continuous variables in the range [0,1]. A
modified form of equation (2.5), that assumes such a relaxation is shown in equation (2.17).
As can be seen, the binary restrictions on the controls, u, in equation (2.5g), have been
replaced by the condition stating that these controls are continuous variables in the range
[0,1], in equation (2.17g). Problems of the form of equation (2.17) will be referred to as an
"MSMIOCP with linear and relaxed binary controls" in this thesis. These are essentially
standard nonlinear optimisation problems, as no discrete controls are involved and only
an optimal set of continuous controls have to be identified, while using the feasible path
approach to solve the differential equations.

min
u,v

W =
NP

∑
p=1

{[
φ
(p)
1

(
x(p)(tp), z(p)(tp), v(p), tp

)]T
u(p)+φ

(p)
2

(
x(p)(tp), z(p)(tp), v(p), tp

)
+
∫ tp

tp−1

[[
L(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]T
u(p)+L(p)

2

(
x(p)(t), z(p)(t), v(p), t

)]
dt
}

(2.17a)

subject to

ẋ(p)(t) =
[

f (p)
1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+ f (p)

2

(
x(p)(t), z(p)(t), v(p), t

)
tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.17b)

x(1)(t0) =
[
h(1)1

(
v(1)
)]

u(1)+h(1)2

(
v(1)
)

(2.17c)



44 Optimisation of a single reactor process

x(p)(tp−1) =
[
h(p)

1

(
x(p−1)(tp−1), z(p−1)(tp−1), v(p)

)]
u(p)

+h(p)
2

(
x(p−1)(tp−1), z(p−1)(tp−1), v(p)

)
p = 2, 3, . . . , NP

(2.17d)

0 =
[
g(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+g(p)

2

(
x(p)(t), z(p)(t), v(p), t

)
tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.17e)

[
c(p)

1

(
x(p)(t), z(p)(t), v(p), t

)]
u(p)+ c(p)

2

(
x(p)(t), z(p)(t), v(p), t

)
≤ 0

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.17f)

u(p) ∈ [0,1]

p = 1, 2, . . . , NP
(2.17g)

v(p) ∈ V

p = 1, 2, . . . , NP
(2.17h)

The optimal solutions for the problem given by equation (2.17) can be expected to exhibit a
bang-bang behaviour for the controls, u, with potential singular arcs.

Bang-bang optimal control has previously been utilised in other applications. A brief
overview of the publications in this area follows next.

Pure bang-bang optimal control problems (without singular arcs) have been demonstrated
in minimum time problems for linear systems by Bellman et al. (1956) and for bilinear
systems by Mohler (1973). Blakemore and Aris (1962) have shown that the control of
the rate of cooling in a batch reactor, to obtain a given conversion in least time, exhibits
bang-bang behaviour. Belghith et al. (1986) have demonstrated bang-bang behaviour for
a component of control in building energy management. The optimal drug administration
in cancer chemotheraphy has shown to result in bang-bang behaviour by Ledzewicz and
Schättler (2002), wherein it is recommended to alternate periods of administering drugs at
full dosage with complete rest periods without chemotherapy in between.
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Zandvliet et al. (2007), however, have shown that for nonlinear optimisation problems,
the bang-bang principle does not always hold. They have shown that when controls come
linearly in relation to the continuous state variables, if the only constraints on the controls are
upper and lower bounds, then bang-bang solutions can occur in combination with singular
arcs. They have demonstrated this for reservoir flooding problems wherein the controls
decide the operation of the valves of producer and injector wells. Thus, the predictions of
the theoretical analysis carried out here is consistent with the results of Zandvliet et al. (2007).

Sager (2009) has presented a methodology to handle nonlinear dynamic systems involv-
ing discrete and continuous controls. Techniques are presented to reformulate the problem
to avoid nonlinearities and enforce discrete controls via auxiliary binary controls that occur
linearly in the system dynamics and exhibit a bang-bang behaviour. Heuristics, e.g. rounding
or sum up rounding strategies or algorithms such as Branch & Bound are used to ensure
integer solutions when singular arcs appear. This methodology has been used in the energy
optimal operation mode of subway trains (Sager et al., 2009), the gear choices in time
optimal car driving (Kirches et al., 2010) and the control of the tail deflection angle for the
time optimal control of an F-8 aircraft (Sager, 2005), to name a few applications. In this
thesis, there is no need for any such reformulation because the discrete controls already occur
linearly in the system equations. It is worth mentioning, however, that the theoretical analysis’
predictions of bang-bang behaviour for the linear controls, even when in combination with
other continuous controls, are consistent with those of Sager (2009).

In this chapter, it is proposed to solve the problem of optimising maintenance scheduling
and production in a process containing a single reactor using decaying catalysts, as an
MSMIOCP with linear and relaxed binary controls, using the feasible path approach. This
methodology can potentially offer a number of advantages over using mixed-integer methods
to solve problems of this kind. These potential advantages are detailed next.

2.1.2 Potential advantages over mixed-integer methods

In Section 1.4, the drawbacks of using mixed-integer optimisation methods were presented
as three major points. In this section, it is discussed how the use of the proposed solution
methodology can potentially overcome those drawbacks and thereby be advantageous over
the use of mixed-integer techniques in attempting to solve the problem under consideration
here.
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1. When mixed-integer methods are used, all differential equations present in the problem
are approximated as a collection of steady state equations, which are then imposed
as equality constraints in the optimisation phase. Following such practices can cause
the problem to contain a very large number of potentially highly nonlinear constraint
equations. In such cases, the optimiser could face difficulties in converging to a so-
lution, which is further accentuated when a large number of differential equations
are involved, longer time horizons are considered or higher accuracy is required. In
addition, if a larger number catalyst loads are available to be used, the problem size
becomes larger and this can lead to further difficulties in converging to a solution.

However, in the methodology proposed here, the differential equations will be solved
using the feasible path approach, without being considered as constraints in the optimi-
sation step.
Further, in this methodology, the binary controls to schedule catalyst changeover are
going to be considered as continuous controls that appear linearly in the problem
equations and therefore, are expected to exhibit a bang-bang behaviour. By virtue of
this bang-bang behaviour, the 0 or 1 values for these controls will be obtained by just
solving this problem as a standard nonlinear optimisation problem, without the use
of mixed-integer optimisation methods. Hence, even if an infinite number of catalyst
loads are available, the problem size will not increase as the bang-bang behaviour will
decide how many catalyst loads to use and when to schedule catalyst changeovers.

Thus, the resulting problem is expected to be of a much smaller size compared to
when mixed-integer techniques are used and optimal solutions can be be obtained
from random starting points, even when a large number of differential equations are
involved, long time horizons are considered and a large number of catalyst loads are
available.

Hence, the proposed methodology is potentially more robust in converging to optimal
solutions, in comparison to mixed-integer techniques.

2. As mentioned in the previous point, the mixed-integer techniques approximate the
differential equations as a collection of steady state equations. This negates an accurate
description of the dynamics of the problem within the time period in which those
differential equations are approximated as such.
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However, in the proposed methodology, a feasible path approach will be used, wherein
state-of-the-art integrators are employed to solve the DAEs present in the problem.
These integrators can usually solve even complicated DAEs to a very high accuracy.

Therefore, the solutions obtained using the proposed methodology are expected to
be of greater accuracy and hence, potentially more reliable than those obtained using
mixed-integer methodologies.

3. Mixed-integer techniques are combinatorial in nature, meaning that the computational
effort to solve a problem using these methods increases exponentially with the number
of integer decision variables involved in the problem. If mixed-integer techniques are
used in the problem under consideration here, when a large number of catalyst loads
are present, the computational effort involved in optimising the scheduling of catalyst
changeovers will become huge and so, an enormous amount of computational power
will be needed to solve the problem.

However, as mentioned previously, in the proposed methodology, by virtue of a bang-
bang behaviour for the catalyst changeover controls, the 0 or 1 values for these controls
will be obtained by just solving this problem as a standard nonlinear optimisation prob-
lem, without the use of mixed-integer optimisation methods. Hence, no computational
effort will have to be spent in deciding when to schedule catalyst changeovers or how
many catalyst loads to use, as the bang-bang behaviour will take care of this. And this
will be the case regardless of the number of catalyst loads involved, thereby making
it possible for the methodology to obtain optimal maintenance schedules for catalyst
replacements even if an infinite number of catalyst loads are available to be used.

This feature of the proposed methodology makes it potentially more efficient in com-
parison to mixed-integer methods.

Thus, the proposed methodology of solving this problem as an MSMIOCP with linear and
relaxed binary controls, using the feasible path approach, has great potential for providing
robust, reliable and efficient solutions in comparison to mixed-integer techniques. A further
potential advantage is that the feasible path approach can enable avoiding having to make
the difficult compromise between accuracy and ease of convergence, which is faced by
mixed-integer methods.
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However, the use of the feasible path approach by this methodology implies that a large
amount of computational effort is spent in solving the DAEs to a high accuracy at each
iteration of the optimisation, even at those iterations away from the optimal solution. This
could mean that the computational time to obtain solutions using this methodology could be
quite high, far higher than the times required by mixed-integer methods to obtain solutions.
While long computation times can be perceived as a drawback of this methodology, this
drawback is outweighed by the robust, reliable and efficient solutions the methodology can
potentially provide in comparison to the mixed-integer techniques. In addition, with the
advent of high performance computing and parallel computing facilities in today’s world,
each DAE can be simulated entirely on a separate computer and further, any required gradient
evaluations can also be parallelised within the computer on which each simulation occurs.
The use of such facilities can significantly reduce computational time to obtain solutions
when using this methodology.

Another limitation is that, since the problem is non-convex, only local solutions can be
obtained by this methodology. However, even the use of mixed-integer techniques face this
shortcoming. If the global optimum is to be identified while using the proposed methodology,
several runs using different start points have to be performed. The high performance and
parallel computing facilities would make such a task feasible as well.

This section describes the features of the optimal control methodology proposed to solve
the problem of optimising maintenance scheduling and production in a process containing a
single reactor using decaying catalysts. The advantages that this methodology can potentially
offer over mixed-integer techniques to solve this problem have also been discussed. In the
next section, different case studies of an industrial process are developed as per the pro-
posed optimal control formulation. The sections following this describe the implementation
procedures to solve these case studies and discuss the results obtained.

2.2 Case studies: Problem formulation

In this section, the problem of optimising maintenance scheduling and production in an
industrial process containing a single reactor using decaying catalysts, is formulated as
an MSMIOCP with linear and relaxed binary controls of the form of equation (2.17). A
schematic of this industrial process is shown in Figure 2.2. Different case studies of the
industrial process are considered, which differ either in the kinetics of the product formation
reaction or the catalyst deactivation. The essential elements of the formulation are presented
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Fig. 2.2 A schematic of the process containing a single reactor using decaying catalysts.

in this section, and the solution implementation procedures and results obtained for each case
study are discussed in the sections following this.

In the industrial problem addressed, the following assumptions apply:

1. The industrial process operates over a fixed time horizon, in the order of years. Each
year is constituted by 12 months and there are a total of NM months, wherein each
month is constituted by 4 weeks.

2. The industrial process functions according to a certain process model and is subject to
operating constraints.

3. The reactor containing the deactivating catalyst is a Continuous Stirred Tank Reactor
(CSTR) that is of known and fixed volume.

4. The catalyst performance decays with time and has to be replaced before it crosses a cer-
tain maximum age. Various forms of catalyst deactivation kinetics will be investigated
in the different case studies.

5. The catalyst deactivation rate constant is taken to be independent of the temperature of
operation.

6. There is a maximum number of catalyst loads that can be used over the given time
horizon.

7. All available catalysts exhibit identical functioning and performance.

8. The time required to shut down the process, replace the catalyst and restart the process
is taken to be one month, during which time no production occurs.

9. The main reaction is assumed to be of the form:

R → Q (2.18)
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where R is the reactant and Q is the desired product. The different case studies will
examine first and second order kinetics with respect to the reactant’s concentration.
Further, in each case study, the reaction rate will be considered separable from the
catalyst activity.

10. The reaction rate constant exhibits an Arrhenius form of temperature dependence.

11. The feed inlet concentration is taken to be known and constant.

12. The flow rate of raw material to the reactor has to be specified on a weekly basis.

13. The flow rate of raw material to the reactor has an upper limit during catalyst operation
and is stopped when the catalyst is being replaced.

14. The temperature of the reactor has to be specified on a weekly basis.

15. The temperature of the reactor can be operated only within fixed bounds during catalyst
operation and is set to its lower bound during catalyst replacement.

16. The reactor is operated isothermally. No energy balances are considered.

17. During catalyst operation, the product produced is stored continuously as inventory.

18. The product is sold on a weekly basis.

19. The seasonal demand figures for the product are given.

20. The sales for each week is less than or equal to the customer demand for the product
in that week.

21. There is a penalty corresponding to the unmet demand in each period.

22. The costs involved in the process are known and are subject to a known value of annual
inflation. These include the sales price of the product, the cost of inventory, the cost of
feed of raw material, the cost of catalyst changeover and the penalty for unmet demand.
There are, however, no costs related to heating and cooling procedures.

23. There is no uncertainty regarding the values of any of the parameters involved 1.

Given the above assumptions, the optimisation model must determine the following
values, which constitute the controls of the MSMIOCP:

1The consideration of uncertainty is presented in Chapter 4
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(i) The catalyst changeover decision variable, y(i), for each month, i, which determines
whether a catalyst is in operation (y(i) = 1) or being replaced (y(i) = 0) during that
month.

(ii) The feed flow rate to the reactor, f f r(i, j), during each week, j, of each month, i.

(iii) The temperature of operation of the reactor, T (i, j), during each week, j, of each
month, i.

(iv) The amount of product sold, sales(i, j), at the end of each week, j, of each month, i.

In the above list, j ∈ {1,2,3,4} and i ∈ {1,2, ...,NM}. The catalyst changeover decisions
correspond to the binary controls, u, in equation (2.17g) while the other decision variables
correspond to continuous controls, v, in equation (2.17h).

The state variables that characterise the MSMIOCP formulation of this industrial process
include the following:

(i) The catalyst age, cat−age

(ii) The catalyst activity, cat−act

(iii) The concentration of the reactant at the exit of the reactor, cR

(iv) The inventory level, inl

(v) The cumulative inventory costs, cum−inc.

These state variables are determined by the decision variables’ values at any time using
a set of ordinary differential equations (ODEs) which constitute the process model. In the
following, process models to describe different case studies of the industrial process are
formulated. These ODEs apply for week j ∈ {1,2,3,4} of month i ∈ {1,2, ...,NM} of the
process and are of the form of equation (2.17b). Unless specified, a particular model equation
applies to all case studies:

1. The catalyst age varies linearly with time when the catalyst is in operation (y(i) = 1)
but does not increase at times of catalyst replacement (y(i) = 0). Hence, the differential
equation describing the catalyst age at all times, that takes into account both scenarios,
is given by:

d(cat−age)
dt

= y(i) (2.19)
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2. The catalyst activity decays according to a deactivation rate law during times of catalyst
operation (y(i) = 1) but experiences no change during times of catalyst replacement
(y(i) = 0), when there is no production occurring. Thus, the differential equation for
the catalyst activity, that takes into account both scenarios, takes the form:

d(cat−act)
dt

= y(i)× rD (2.20)

where rD is the rate of catalyst deactivation. Different models of catalyst deactivation
kinetics are considered as separate case studies:

Case Study A: Composition independent catalyst deactivation

rD = −Kd × cat−act (2.21)

Case Study B: Reactant concentration dependent catalyst deactivation

rD = −Kd × cat−act × cR (2.22)

Case Studies C and D: Product concentration dependent catalyst deactivation

rD = −Kd × cat−act × (CR0− cR) (2.23)

where Kd is the deactivation rate constant and CR0 is the reactant entry concentration.

3. The reactor is assumed to be completely stirred and so the reactant exit concentration
(cR) is obtained from the generic mass balance equation of a CSTR during times of
catalyst operation (y(i) = 1). However, during catalyst replacement (y(i) = 0), no
reaction occurs and the reactor is assumed to be filled with fresh, unreacted reactant at
the entry concentration (CR0), to be used by the new catalyst after replacement. The
differential equation that accounts for both scenarios is given by:

d(V × cR)
dt

= [ f f r(i, j)× (CR0− cR)]− [y(i)× (V × rR)] (2.24)

where V is the volume of the reactor and rR is the rate of reaction (2.18). The case
studies consider different forms of rR:
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Case Studies A, B and C: First order kinetics for reaction (2.18)

rR = Kr× cat−act × cR (2.25)

Case Study D: Second order kinetics for reaction (2.18)

rR = Kr× cat−act × cR2 (2.26)

where Kr is the rate constant. For all case studies, Kr is assumed to exhibit an
Arrhenius form of temperature dependence, of the form:

Kr = Ar× exp
(
− Ea

Rg ×T (i, j)

)
(2.27)

where Ar is the pre-exponential factor, Ea is the activation energy for the reaction and
Rg is the universal gas constant.

4. It is assumed that whatever product is produced is stored as inventory before being
sold at the end of the week. During catalyst operation (y(i) = 1), the increase in
inventory level at any time depends on the rate of production (=V × rR) of the product
chemical, but during catalyst replacement (y(i) = 0), there is no increase in inventory
level. Hence, the differential equation that provides a description of the inventory level
(inl) for both scenarios is given by:

d(inl)
dt

= y(i)× (V × rR) (2.28)

where the expression for rR depends on the case study.

5. Finally, the increase in the cumulative inventory cost (cum−inc) at any time depends
on the inventory level at that time and the Inventory Cost Factor (ic f ) (adjusted for
inflation), which stipulates the cost per unit product per unit time:

d(cum−inc)
dt

= inl × ic f (2.29)

The ic f at any time is given by the following equation:

ic f = base−ic f × (1+ in f lation)⌊i/12⌋ (2.30)
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where base−ic f is the inventory cost factor before inflation, in f lation is the annual
inflation rate and ⌊·⌋ is the greatest integer function.

For each case study, the process model is solved repeatedly over a weekly time span,
which corresponds to one stage of the MSMIOCP. In order to solve these ODEs, for each
stage, suitable initial conditions have to be provided. The initial conditions for week 1 of
month 1 are assumed to be known and are of the form of equation (2.17c). The initial
conditions for the other stages are obtained using junction conditions between two successive
stages of the process, of the form of equation (2.17d).

The initial conditions corresponding to week 1 of month 1, represented as init−var(1,1)
for variable var, are as follows:

1. The initial catalyst age is that of a fresh catalyst, which is zero:

init−cat−age(1,1) = 0 (2.31)

2. The initial catalyst activity is that of a fresh catalyst (start−cat−act):

init−cat−act (1,1) = start−cat−act (2.32)

3. At the start of the process, the reactor is filled with the reactant R at its entry concentra-
tion CR0. Hence, the initial exit concentration is given by:

init−cR(1,1) = CR0 (2.33)

4. There is no inventory at the beginning of the process, and so:

init−inl (1,1) = 0 (2.34)

5. There is no inventory at the start of the process and so the initial cumulative inventory
cost is given by:

init−cum−inc(1,1) = 0 (2.35)

The junction conditions are described next. For each state variable, the junction condition
is used to provide the initial condition to solve the respective differential equation in the weeks
other than week 1 of month 1 of the time horizon, by providing a relationship between the
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state variable value at the beginning of that week and the end of the previous week. As such,
these junction conditions differ depending on whether the catalyst is in operation (y(i) = 1)
or is being replaced (y(i) = 0) during that month. In the following text, the expressions
init−var (i, j) and end−var (i, j) indicate the initial and end conditions, respectively for the
variable var, for week j of month i:

1. During months of catalyst operation (y(i) = 1), the initial catalyst age for a week
corresponds to the catalyst age at the end of the previous week. But during months of
catalyst replacement (y(i) = 0), the catalyst age has to be set to zero, the age of a new
catalyst. The junction conditions that describe both scenarios is given by:

init−cat−age(i, j+1) = end−cat−age(i, j)
j = 1,2,3 i = 1,2, . . . ,NM

(2.36a)

init−cat−age(i, 1) = y(i)× end−cat−age(i−1, 4)
i = 2,3, . . . ,NM

(2.36b)

2. During months of catalyst operation (y(i) = 1), the initial catalyst activity for the week
corresponds to the catalyst activity at the end of the previous week. However, during
months of catalyst replacement (y(i) = 0), the catalyst activity has to be reset to the
activity corresponding to that of a fresh catalyst, which remains the same throughout
the duration of month i. The junction conditions that describe both scenarios are given
by:

init−cat−act (i, j+1) = end−cat−act(i, j)
j = 1,2,3 i = 1,2, . . . ,NM

(2.37a)

init−cat−act (i, 1) = [y(i)× end−cat−act(i−1, 4)]+ [(1− y(i))× start−cat−act]
i = 2,3, . . . ,NM

(2.37b)

3. During months of catalyst operation (y(i) = 1), the exit concentration at the beginning
of a week corresponds to the exit concentration at the end of the previous week. And
during months of catalyst replacement (y(i) = 0), an artificial condition is imposed
wherein the reactor is filled with reactant at entry concentration CR0, ready to be used
by the fresh catalyst at the beginning of the next month. So, the junction conditions
take the form:

init−cR(i, j+1) = end−cR(i, j)
j = 1,2,3 i = 1,2, . . . ,NM

(2.38a)
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init−cR(i, 1) = [y(i)× end−cR(i−1, 4)]+ [(1− y(i))×CR0]
i = 2,3, . . . ,NM

(2.38b)

4. At the end of a week, an amount, sales(i, j) of the stored product is sold. Thus, the
initial inventory level for the week corresponds to the inventory present after the sales
at the end of the previous week. The following junction conditions apply during
months of catalyst operation as well as catalyst replacement, as the sales do not cease
at any time:

init−inl (i, j+1) = end−inl(i, j)− sales(i, j)
j = 1,2,3 i = 1,2, . . . ,NM

(2.39a)

init−inl (i, 1) = end−inl(i−1, 4)− sales(i−1, 4)
i = 2,3, . . . ,NM

(2.39b)

5. The inventory cost accumulated until the beginning of a week is equal to the value of
the inventory cost accumulated until the end of the previous week and the following
junction conditions apply regardless of whether the catalyst is being used or replaced:

init−cum−inc(i, j+1) = end−cum−inc(i, j)
j = 1,2,3 i = 1,2, . . . ,NM

(2.40a)

init−cum−inc(i, 1) = end−cum−inc(i−1, 4)
i = 2,3, . . . ,NM

(2.40b)

The initial conditions (2.31) – (2.35) and junction conditions (2.37) – (2.40) enable a
solution for the ODEs for all stages, and thereby obtain the values of the state variables for
the entire time horizon.

The obtained state variables, along with the control variables, are required to fulfil some
constraints, which represent the operational limits of the process and restrictions on the values
of the controls to be chosen. The constraints, of the form of equation (2.17f), that apply in this
formulation of the industrial process, for week j ∈ {1,2,3,4} of month i ∈ {1,2, ...,NM},
are as follows:

1. In the context of the formulation as an MSMIOCP with linear and relaxed binary
controls, the catalyst changeover decision variables y(i), for a month i, are considered
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continuous variables that vary between 0 and 1 (but are expected to take only 0 or 1
values due to the bang-bang nature of the formulation), and so the following bounds
are imposed:

0 ≤ y(i) ≤ 1 (2.41)

2. The flow rate of raw material to the reactor has an upper limit (FU) at which it can
operate. Hence, the following bounds are set on the feed flow rate for each week:

0 ≤ f f r(i, j) ≤ FU (2.42)

3. The sales in each week are assumed to be less than or equal to the demand for the
product in that week (demand(i, j)). Hence, the following bounds on the sales at the
end of each week are imposed:

0 ≤ sales(i, j) ≤ demand(i, j) (2.43)

4. The temperature of the reactor operates between known, fixed lower and upper bounds,
T L and TU , respectively. Hence, the following bounds are set on the weekly tempera-
ture of operation of the reactor:

T L ≤ T (i, j) ≤ TU (2.44)

5. During times of catalyst replacement, the process is shut down and so the flow of raw
material to the reactor stops. The following constraint ensures that the weekly feed
flow rate remains below the upper bound during times of catalyst operation (y(i) = 1)
and drops to zero when there is catalyst replacement (y(i) = 0).

f f r(i, j)− [FU × y(i)] ≤ 0 (2.45)

6. When the process is shut down for catalyst replacement, the temperature of the reactor
is required to drop to its lower bound. This condition is imposed using the following
constraint which ensures that the temperature for the week remains between its bounds
during times of catalyst operation (y(i) = 1) and drops to the lower bound when there
is catalyst replacement (y(i) = 0):

T L ≤ T (i, j) ≤ [(TU −T L)× y(i)]+T L (2.46)
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7. There is only a certain number of catalysts available to be used by the process. The
limit on the maximum number of catalyst changeovers (n) allowed is imposed using
the following constraint:

NM

∑
i=1

y(i)≥ NM−n (2.47)

8. In order to ensure that more product than available is not sold, the inventory level at
the end of each week should be greater than the sales for the week. This is imposed
using the following constraint:

end−inl(i, j)− sales(i, j) ≥ 0 (2.48)

9. The catalyst undergoes deactivation over time and has to be replaced before it crosses
a certain maximum age (max−cat−age). As the the decision on whether to replace a
catalyst or not is made on a monthly basis, it is sufficient to ensure that the catalyst age
does not cross this limit at the end of each month i:

end−cat−age(i, 4) ≤ max−cat−age (2.49)

It is noted that a limit on the maximum duration of catalyst use can be imposed by
using a catalyst activity based constraint in place of a catalyst age based constraint.
In that case, the constraint would be of the form, end−cat−act (i, 4)≥ min−cat−act,
where min−cat−act is the minimum allowable catalyst activity.

The aim is to maximise the profits or minimise the costs of the process under the
influence of these ODEs, initial conditions, junction conditions and constraints. The net
costs of the process are represented by the objective function of this problem, of the form of
equation (2.17a), and comprises the following elements:

1. The Gross Revenue from Sales (GRS)
This term represents the revenue for the process from the net sales of the product
chemical over the whole time horizon:

GRS =
NM

∑
i=1

4

∑
j=1

psp(i, j)× sales(i, j) (2.50)

where psp(i, j) is the sales price per unit product for week j of month i, adjusted for
inflation at that time:
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psp(i, j) = base−psp× (1+ in f lation)⌊i/12⌋ (2.51)

where base−psp is the unit product sales price before inflation.

2. The Total Inventory Costs (T IC)

This term represents the net storage costs for the product over the whole time horizon
and is obtained from the solution of the ODEs for the state variable cum−inc at the end
of the final week of the process:

T IC = end−cum−inc(NM, 4) (2.52)

3. The Total Costs of Catalyst Changeovers (TCCC)

The total expenditure for the catalyst changeover operations is:

TCCC =
NM

∑
i=1

crc(i)× (1− y(i)) (2.53)

where crc(i) is the cost of the catalyst replacement operation for month i, adjusted for
inflation at that time:

crc(i) = base−crc× (1+ in f lation)⌊i/12⌋ (2.54)

where base−crc is the cost of a catalyst changeover operation before inflation. It is
highlighted that the terms within the summation remain non-zero only during the times
of catalyst replacement (y(i) = 0) and only these terms contribute to the total costs.

4. The Net Penalty for Unmet Demand (NPUD)

The unmet demand in each week (unmet−demand (i, j)) is the quantity of product by
which the sales falls short of the demand in that week:

unmet−demand (i, j) = demand (i, j)− sales(i, j)
j = 1,2,3,4 i = 1,2, . . . ,NM

(2.55)

There is a penalty associated with this unmet demand and the net penalty costs over
the entire time horizon is given by:

NPUD =
NM

∑
i=1

4

∑
j=1

pen(i, j)×unmet−demand(i, j) (2.56)
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where pen(i, j) is the penalty cost of unmet demand per unit product for week j of
month i, adjusted for inflation at that time:

pen(i, j) = base−pen× (1+ in f lation)⌊i/12⌋ (2.57)

where base−pen is the penalty cost of unmet demand per unit product before inflation.

5. The Total Flow Costs (T FC)

This term represents the net expenditure on the feed of raw material to the reactor and
is given by:

T FC =
NM

∑
i=1

4

∑
j=1

co f (i, j)× f f r (i, j) (2.58)

where co f (i, j) is the cost of raw material per unit volume per week for week j of
month i, adjusted for inflation at that time:

co f (i, j) = base−co f × (1+ in f lation)⌊i/12⌋ (2.59)

where base−co f is the cost of raw material per unit volume per week before inflation.

If the Net Costs are represented by NC, the objective function for this optimisation problem
takes the form:

min NC = −GRS+ T IC+ TCCC+ NPUD+ T FC (2.60)

The essential elements of the problem formulation have now been described in detail.
The aim is to make the appropriate decisions in order to minimise the net costs (or maximise
the net profit) of the industrial process, when subject to the process model, initial and junc-
tion conditions and the constraints. It is highlighted that the catalyst changeover decision
variables (y) occur linearly in all elements of the problem formulation. Thus, these variables
are expected to exhibit a bang-bang behaviour in the optimal solution and the constraint,
y(i) ∈ [0,1] is equivalent to y(i) = {0,1}.

The elements of the problem set up here are similar to that in Houze et al. (2003) and
Bizet et al. (2005). However, those publications did not reveal any parameters used in their
studies, citing confidentiality reasons. So, in this article, case studies were created using
a set of constructed parameter values, which have been mentioned in Table 2.1. The time
horizon chosen here is 3 years, which is more realistic in present day industries compared to
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the much longer durations studied in Bizet et al. (2005).

The problem size details for the chosen time horizon, applicable for all case studies, are
shown in Table 2.2. It is important to note that the number of variables and constraints in
this formulation are much smaller than if MINLP approaches were used, in which case there
would have been thousands of decision variables and tens of thousands of constraints present.

Table 2.1 List of parameters.

Parameter Symbol Value

Ar 885 (1/day)

base−co f $ 210 /week

base−crc $ 107

base−ic f $ 0.01 /(kmol day)

base−pen $ 1250 /kmol

base−psp $ 1000 /kmol

CR0 1 kmol/m3

demand

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Ea 30,000 J/gmol

FU 9600 m3/day

in f lation 5%

Kd

Case Study A: 0.0024 (1/day)

Case Study B: 0.0024 (1/(day . kmol/m3))

Case Studies C, D: 0.024 (1/(day . kmol/m3))

max−cat−age 504 days (= 1.5 years)

n 5

NM 36 months (= 3 years)
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Table 2.1 List of parameters.

Parameter Symbol Value

Rg 8.314 J/(gmol.K)

start−cat−act 1.0

T L 400 K

TU 1000 K

V 50 m3

Table 2.2 Problem size specifications, applicable for each case study.

Property Size

Ordinary differential equations 720

Decision variables

Catalyst changeover actions (y) 36

Feed flow rate ( f f r) 144

Sales (sales) 144

Temperature (T ) 144

Total 468

Constraints

Constraints (2.41) 72

Constraints (2.42) 288

Constraints (2.43) 288

Constraints (2.44) 288

Constraints (2.45) 144

Constraints (2.46) 288

Constraint (2.47) 1

Constraints (2.48) 144

Constraints (2.49) 36

Total 1549

In the next sections, the problem solution implementation details will be discussed and the
results obtained will be presented. As will be seen, the complex nature of the problem caused
complications in obtaining solutions using the solvers currently available. Different solution
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implementations were attempted on different solvers: Implementation I was performed on
MATLAB and Implementation II was carried out in Python, each of which had their own
relative advantages.

2.3 Implementation I: Details, results and discussions

2.3.1 Implementation I details

Implementation I was performed on MATLAB® R2018a with its Optimisation ToolboxTM

(MATLAB and Optimisation Toolbox, 2018), as a code that solves a standard multistage
optimal control problem using the feasible path approach, by linking an ODE solver with the
optimiser f mincon. Two types of ODE solvers were tried: the ode15s solver available on
MATLAB® R2018a (Shampine and Reichelt, 1997) and the IDAS solver of sundialsTB, a
MATLAB interface to the open-source set of differential-algebraic equation solvers, SUNDI-
ALS (Serban, 2009). In both cases, the solver was designated to have an absolute tolerance of
10−6 and a relative tolerance of 10−4. The Jacobian was provided to the solvers to improve
its reliability and efficiency. It was found that IDAS of sundialsTB was faster in computation
compared to ode15s and so was preferred for this implementation.

The optimisation on f mincon was performed using the Sequential Quadratic Program-
ming (SQP) algorithm (Nocedal and Wright, 2006) with the following convergence criteria:
constraint tolerance of 10−3, step tolerance of 10−3 and optimality tolerance of 10−4. A
forward finite difference scheme was used for the estimation of gradients. Given the wide
variation in the magnitude of the different decision variables (e.g. y ∈ [0,1], but sales ∼ 103),
the starting points to the optimiser were scaled down using the respective upper bounds
of each decision variable to avoid scaling problems in the optimisation. Further, in order
to accelerate convergence, constraint (2.48) was scaled down by a factor of 103 and the
objective function value was scaled down by a factor of 106.

In order to demonstrate the robustness of the developed methodology, it was desired to
obtain a solution from a set of random values for the initial guesses of the decision variables
to the optimiser. However, it was important to ensure that the set of random starting points
were a set of ’feasible’ points. Using highly infeasible starting points in this problem of
complex nature could cause great difficulties to the optimiser in converging to a solution.
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Start
Obtain random values
for decision variables.
Label these values as
S0.

Obtain feasible points
by running model
with objective func-
tion set to 0 and S0 as
starting values. Label
feasible points as S1.

Run optimisation
model with S1 as
starting values. Label
solution as S2.
S2 is the desired
solution.

Phase 1 Phase 2

End

Fig. 2.3 An algorithmic flowchart for the procedure of Implementation I.

So in the initial part of Implementation I called Phase 1, a set of feasible start points for
the decision variables was obtained by first generating a set of random points using the rand
function in MATLAB® and running the optimisation model with the objective function set to
zero. These feasible points were then used as the starting values for the actual optimisation
problem in Phase 2 of the implementation. An algorithmic flowchart for the procedure of
Implementation I is shown in Figure 2.3.

The implementation was performed on a 3.2 GHz Intel Core i5, 16 GB RAM, Windows
machine running on Microsoft Windows 7 Enterprise. Since the problem is non-convex,
multiple runs were performed with different starting points. Test runs were performed using
the Parallel Computing ToolboxTM on MATLAB® to compare the computational times
between parallelising the gradient evaluations versus parallelisation of a loop of multiple
start points using a par f or loop, and the latter was found to be faster. So, using the par f or
loop for parallelisation, 50 runs were attempted for each case study.
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Table 2.3 Implementation I performance details.

Case Study

Number of runs Number of runs Number of runs

converging converging crashing due to

successfully prematurely integration problems

(out of 50 runs) (out of 50 runs) (out of 50 runs)

Case Study A 13 28 9

Case Study B 22 23 5

2.3.2 Implementation I: General performance discussion

It was found that Implementation I had limited success when applied to Case Studies A and
B whereas for Case Studies C and D, the technique failed completely.

With regard to Case Studies A and B, while some runs exhibited a very good bang-bang
behaviour for the catalyst changeover controls, in many other simulations, the runs either
converged prematurely to poor solutions or crashed due to the integrator failing (Table 2.3). In
addition, even in the set of successful runs, the f mincon optimiser experienced considerable
"numerical noise" in identifying the optimal values of the feed flow rates in that there were
significant distortions in the obtained profiles of these controls. It is unclear as to why such
disturbances were observed only for these controls, but the presence of this numerical noise
suggests inadequacies of the f mincon optimiser.

Statistics regarding the solutions obtained and the computational effort involved, for the
successful runs of Case Studies A and B are given in Tables 2.4 and 2.5, respectively. In
Table 2.4, in the sub-column titled, ‘Max’, under the column titled, ‘Profit (Million $)’, the
two rows indicate the maximum among the 13 profits obtained from the 13 successful runs
of Case Study A and the maximum among the 22 profits obtained from the 22 successful
runs of Case Study B. In the sub-columns titled, ‘Min’ and ‘Mean’, the two rows indicate
the minimum and mean profits among the aforementioned values for the two case studies.
Analogous explanations hold for the values presented in the two rows under the sub-columns
titled, ‘Max’, ‘Min’, ‘Mean’ and ‘Mode’ within the columns titled, ‘Number of catalyst
replacements’ and ‘Catalyst age (days)’ in Table 2.4 and under the columns titled ‘Phase 1’
and ‘Phase 2’ within the columns titled ‘Number of SQP iterations’ and ‘CPU time (seconds)’
in Table 2.5.
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Further insights regarding the distribution of the solutions presented in Table 2.4 are
provided in Figures 2.4 – 2.6. Following are comments regarding these figures:

• Figure 2.4 shows the distributions of the profits obtained from the successful runs of
Case Studies A and B, when using Implementation I. In the histogram presented in
subplot (a) of this figure, the height of each bin represents the number of runs out of the
13 successful runs of Case Study A that result in profit values within the range specified
by the horizontal edges of that bin. A similar explanation holds for the histogram
relating to Case Study B in subplot (b) of the figure.

• Figure 2.5 shows the distribution of the number of catalyst replacements obtained in
the successful runs of Case Studies A and B, when using Implementation I. In the
histogram presented in subplot (a) of this figure, the height of each bin represents the
number of runs out of the 13 successful runs of Case Study A that involved the number
of catalyst replacements given by the midpoint of the horizontal width of the bin. A
similar explanation holds for the histogram relating to Case Study B in subplot (b) of
the figure. It is noted that the maximum allowable number of catalyst replacements, as
per the invented set of parameters used, is 5.

• Figure 2.6 shows the distribution of the ages of all catalyst used from all the successful
runs of Case Studies A and B, when using Implementation I. In the histogram presented
in subplot (a) of this figure, the height of each bin represents the number of catalysts,
out of all the catalysts used from all the 13 successful runs of Case Study A, that were
used up to the age given by the midpoint of the horizontal width of the bin. A similar
explanation holds for the histogram relating to Case Study B in subplot (b) of the
figure. It is noted that since catalysts can be replaced only at the end of a month, all
catalyst ages are multiples of 28 and the maximum allowable age of each catalyst, as
per the invented set of parameters used, is 504 days.

A presentation of the distribution of the number of SQP iterations and CPU times in Table 2.5,
however, has not been done because these are dependent on the computer used to obtain
solutions, and hence, cannot be generalised.

With regard to Case Studies C and D, however, every single run crashed showing an error
with the integration. These unexpected integration problems were experienced by both sets
of ODE solvers which were tried. These problems suggest inadequacies of the available
MATLAB ODE integrator suites in integrating the more nonlinear differential equations,
such as those of Case Studies C and D.
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Fig. 2.4 The distribution of the profits obtained using Implementation I for (a) the 13
successful runs of Case Study A and (b) the 22 successful runs of Case Study B

Fig. 2.5 The distribution of the number of catalyst replacements obtained using Implementa-
tion I for (a) the 13 successful runs of Case Study A and (b) the 22 successful runs of Case
Study B
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Fig. 2.6 The distribution of the catalyst ages obtained using Implementation I for (a) the 13
successful runs of Case Study A and (b) the 22 successful runs of Case Study B

It was seen if using other optimisation algorithms available to f mincon, such as ‘inte-
rior point’ and ‘active-set’ methods, enabled the integrator to overcome such problems or
prevented a premature convergence. However, runs with the interior point method led to
poor, non bang-bang answers for the catalyst changeover controls. The active-set method
also faced premature convergence and integration problems, and produced solutions similar
to those produced by the SQP method, although at a slower computational time compared to
the latter. So the SQP algorithm was the most effective amongst those available to f mincon
and was used as the preferred algorithm for Implementation I.

Overall, the performance of Implementation I was unsatisfactory in providing solutions
to all case studies. Despite this, there is a very good reason for reporting this solution
procedure in this thesis: it is observed that a bang-bang behaviour is exhibited by the catalyst
changeover controls, even when those linear controls occur in combination with other process
control variables that occur nonlinearly in the system equations. This is consistent with the
predictions of the theoretical analysis done in Section 2.1.1. In the ensuing text, the optimal
control and state variables of the most profitable run from the set of 50 different, random
starting points for each of Case Studies A and B are reported, along with relevant economic
statistics. In the section following this, an alternative solution procedure, Implementation II,
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is presented, which is superior to Implementation I in terms of producing high quality
solutions for all case studies, but does not demonstrate the bang-bang property of the catalyst
changeover controls.

2.3.3 Case Study A: Results and discussions

Figures 2.7 – 2.10 and Table 2.6 report the features of the best local optimum among the 13
successful runs for Case Study A, in which the main reaction is of first order kinetics with
respect to the reactant (equation (2.25)) and the catalyst deactivation kinetics is independent
of the species’ concentrations (equation (2.21)).

Figure 2.7 illustrates the variation of the monthly catalyst changeover controls over the
whole time horizon. It can be seen that these controls take values of either 0 or 1, thus
exhibiting a bang-bang behaviour, consistent with the prediction for linear controls from
the analysis in Section 2.1.1. The graph indicates that the optimal policy for the industrial
process is to use 4 of the 6 available catalysts over the 3-year horizon, with the 3 replacements
(y = 0) occurring on the 8th, 17th and 24th months. The first replacement occurs during the
quarter of lowest demand in order to minimise losses. The other replacements occur only
when a sufficient inventory level (Figure 2.10) is present to meet the demand during process
shut-down.

Figure 2.8 plots the weekly flow rates to the reactor ( f f r) and temperatures of opera-
tion (T ), made dimensionless by their respective upper bounds and the exit concentration of
the reactant from the reactor (cR), over the whole time horizon of the process. Some notable
points regarding these trends:

• The model’s optimal policy during catalyst operation is to maintain a constant exit
conversion by reducing the flow rate to compensate for the catalyst deactivation and
operate temperature at its upper bound. This is consistent with the work of Szépe and
Levenspiel (1968) for continuous reactors, which predicted similar policies when the
main reaction is more sensitive to temperature than the catalyst deactivation and the
latter is independent of the species’ concentration.

• During the operation of the last catalyst, the sharp drop in the flow rate causes a
corresponding effect in the exit concentration and this occurs to bring the production
rate to a value that exactly fulfils the demand for the remainder of the time horizon.
This ensures efficient operation, as excessive raw material is prevented from being
used, thereby minimising the costs and maximising the profits of the process.
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Fig. 2.7 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study A, obtained using Implementation I.

Fig. 2.8 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study A, obtained using Implementation I.
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• During times the catalyst is being replaced in the reactor, the feed flow rate is set to
zero, the temperature of operation is set to its lower bound (T L) and the reactant exit
concentration is set to its entry value (CR0), as per constraints (2.45) and (2.46) and
junction conditions (2.38), respectively.

• It is highlighted that the flow rate does not exhibit a bang-bang behaviour as these
controls appear nonlinearly in the system equations, consistent with the prediction
from Section 2.1.1. It is interesting to note that the temperature controls only take
values at their upper or lower bounds, and this follows from the nature of the problem
and the constraints imposed, without a correlation to their nonlinear occurrence in the
system equations.

The numerical noise experienced by f mincon in identifying the optimal f f r values are
evident in this figure, especially during the the operation of the last three catalysts: the
decrease of the feed flow rate is not continuous and considerable disturbances are present.

A comparison of the optimal quantity of product sales with the corresponding product
demand and unmet demand for each week over the whole time horizon, is shown in Figure 2.9.
While a considerable amount of unmet demand exists during the first year of the process, it
is nil for the remainder years. The explanation for this is as follows:

• At the beginning of the time horizon, there is no prior inventory of the product present.
What is produced by the process is what is used to meet the product demand. And it so
happens that the production capacity of the process is unable to fully meet the high
demand at the beginning of the time horizon. While there is relatively less product
demand towards the end of the first year, there is still a substantial amount of unmet
demand at that time, even though there is considerable product inventory present. This
occurs because the model prefers to hoard the product in order to enable greater sales
thereby nil unmet demand during the second and third years.

• Why there is no unmet demand during the second and third years can be attributed to
the annual inflation, which causes an increase in all prices involved every year. Due
to inflation, the product sales price and penalty for unmet demand are higher in the
second and third years compared to the first year. Therefore, if a larger amount of sales
and thereby, nil unmet demand, occurs during the second and third years, a greater
amount of profit can be obtained.

It is also highlighted that the sales continue throughout the time horizon, even at times of
process shut down for catalyst replacement.
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(a)

(b)

Fig. 2.9 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study A, obtained using Implementation I.

Fig. 2.10 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study A, obtained using
Implementation I.
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The variation of the catalyst activity, catalyst age, inventory level and cumulative inventory
costs over the time horizon are shown in Figure 2.10. An explanation for these trends are as
follows:

• The catalyst age increases linearly with time when the catalyst is in operation. But
during catalyst replacement, the age remains at zero as the catalyst is unused during
this time. These trends follow directly from differential equation (2.19) and junction
condition (2.36).

• An exponential decrease in the activity is seen during times of catalyst operation, due
to the deactivation kinetics being first order. During catalyst replacement, the catalyst
activity remains constant at the value of the activity of a fresh catalyst, as there is
no reaction occurring. These trends follow directly from differential equation (2.20),
deactivation rate expression (2.21) and junction condition (2.37).

• Some notable points regarding the plot of the inventory level:

– When the catalyst is in operation, an oscillating behaviour for the inventory
level arises from the build up of storage from production during the week and
a reduction due to sales at the end of the week. However, in the months corre-
sponding to catalyst replacement, as there is no production, the inventory level
remains constant over the course of a week, at the end of which it drops by a
value equivalent to the sales of the product for the week. These trends follow
directly from differential equation (2.28) and junction condition (2.39).

– In the beginning of the process, the inventory level barely increases as most of the
stored product is sold to meet the high demand at that time. However, towards the
end of the first year, the inventory level shows a significant increase, despite there
being a considerable amount of unmet demand at that time. This happens in order
to enable greater amount of sales and thereby eliminate the unmet demand during
the later years when the product sales price and the penalty for unmet demand
has increased due to inflation, thus enlarging the profit obtained. Thereafter,
the optimal decisions enable the right amount of inventory to be maintained to
exactly meet the demand.

Thus, this optimal management of the inventory level ensures increased profits as well
as sufficient product to meet the demand, while also preventing wastage of product
and high inventory costs.



2.3 Implementation I: Details, results and discussions 75

• The profile of the cumulative inventory cost follows from differential equation (2.29)
and junction condition (2.40). The slope of the curve is higher when the inventory
level is higher and the curve seems to stagnate when the inventory is relatively low.

The magnitudes of the various economic aspects that form the elements of the objective
function are given in Table 2.6. The table indicates that the cost of flow and raw material
constitutes more than half of the total expenses with the net penalty for unmet demand also
forming a significant proportion. The cost of catalyst changeovers contributes relatively less
while the inventory costs form the lowest percentage of the total expenditure. It is also seen
that the costs of operation take away about 43.6% of the revenue generated by the product
sales.

Table 2.6 Details of the economic aspects of the best solution of Case Study A, obtained
using Implementation I.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 776.422

Costs

Total Inventory Costs T IC 0.299

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 117.089

Total Flow Costs T FC 189.955

Profit −NC 438.08
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Fig. 2.11 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study B, obtained using Implementation I.

2.3.4 Case Study B: Results and discussions

Figures 2.11 – 2.14 and Table 2.7 report the features of the best local optimum among the 22
successful runs for Case Study B, in which the main reaction is of first order kinetics with
respect to the reactant (equation (2.25)) and the catalyst deactivation kinetics is proportional
to the reactant concentration (equation (2.22)).

Figure 2.11 shows the variation of the monthly catalyst changeover controls over the
time horizon. Once again, a bang-bang behaviour is exhibited, consistent with the analysis in
Section 2.1.1. The recommendation is to use 4 of the 6 available catalysts over the 3-year
horizon, with the 3 replacements (y = 0) occurring on the 9th, 16th and 23rd months. Once
again, the first replacement occurs at a time to minimise losses and the other changeovers
occur only when there is sufficient inventory to meet the demand.

Figure 2.12 is the analogue of Figure 2.8 in Case Study A. Once again, the numerical
noise experienced by the optimiser in identifying the optimal values of f f r are evident here:
there are considerable distortions in the profiles of this control. However, the trends of f f r
and cR during catalyst operation are different from in Case Study A: the decrease in f f r is
such that its rate of decrease is slower than the rate of catalyst deactivation and this causes
cR to show a roughly linear increase in magnitude.
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Fig. 2.12 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study B, obtained using Implementation I.

In Section 1.3, a work by Crowe (1976) was mentioned, which predicted that even when
the rate of catalyst deactivation is dependent on the reacting species’ concentration, the
optimal policy at the reactor level is to maintain a constant exit conversion, provided the time
scale for the deactivation is much larger than the time scales of the main reaction and the flow
rate. The choice of parameters for this case study are such that the time scale for the catalyst
deactivation (Kd = 0.0024 (1/day)) is certainly much larger than that of the main reaction
(about 24 (1/day) for temperatures used during catalyst operation) or the flow rate (thousands
of cubic metres a day) and yet cR does not remain at a constant value during times of catalyst
operation. Thus, the behaviour of cR observed here is not consistent with the predictions of
the work of Crowe (1976).

An explanation for the profile of cR in Figure 2.12 is offered using the following points:

• A larger magnitude of cR implies a faster deactivation of the catalyst, following from
equation (2.22), and this is unfavourable for the process.

• A larger magnitude of cR means a larger reaction rate, following from equation (2.25),
and this is favourable for the process.

Thus, there is a trade-off to be balanced in maintaining a particular magnitude of cR. The
flow rate is chosen such that at the beginning of operation of a new catalyst, a relatively low
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value of cR occurs, which although lowers the reaction rate, it prevents the fresh catalyst from
deactivating too fast. However, as the catalyst deactivates, the focus shifts to maintaining a
higher reaction rate and this is done by the appropriate reduction of f f r to raise cR. This
linearly increasing trend enables to optimally balance the positive and negative effects of
maintaining a particular magnitude of cR.

Figures 2.13, 2.14 and Table 2.7 are the analogues in Case Study B of Figures 2.9, 2.10
and Table 2.6, respectively, in Case Study A. In Figure 2.13, the reasons for the distribution
of the sales such that the unmet demand is present in a considerable magnitude throughout
the first year but is nil in the second and third years, can be explained using logic similar to
that used for the explanation of the trends of the analogous variables in Figure 2.9 in Case
Study A. In Figure 2.14, the profile for the catalyst activity during catalyst operation follows
from deactivation expression (2.22). The trends of the other variables in Figure 2.14, namely
the catalyst age, the inventory level and the cumulative inventory cost, can be explained using
reasons similar to that used for the explanation of the profiles of the analogous variables in
Figure 2.10 in Case Study A. Table 2.7 shows that the costs of operation take away about
39.5% of the revenue generated by the product sales.

(a)

(b)

Fig. 2.13 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study B, obtained using Implementation I.



2.3 Implementation I: Details, results and discussions 79

Fig. 2.14 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study B, obtained using
Implementation I.

Table 2.7 Details of the economic aspects of the best solution of Case Study B, obtained
using Implementation I.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 785.245

Costs

Total Inventory Costs T IC 0.290

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 106.061

Total Flow Costs T FC 172.67

Profit −NC 475.225
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2.4 Implementation II: Details, results and discussions

Given the inadequacies of Implementation I, it was decided to attempt an alternate imple-
mentation in PythonTM 3.7.1 under PyCharm 2018.2.4 (Community Edition). This section
discusses the details and performances of a preliminary implementation called Implemen-
tation IIA, before doing the same for Implementation II, a modification of the former.
Subsequently, the results of all case studies obtained using Implementation II are presented.

2.4.1 Implementation IIA details

Implementation IIA was carried out as a Python code that solved a standard multistage
optimal control problem using the feasible path approach, of the form similar to that in
Implementation I. The code was written using CasADi, an open source software that enables
a symbolic framework for numerical optimisation (Andersson, 2013). The elements of the
problem, as given in Section 2.2, were defined as symbolic expressions using CasADi v3.4.5.
The automatic differentiation (AD) feature of CasADi enabled constructions of symbolic
expressions of the derivatives of all predefined functions, thereby maintaining differentiability
to an arbitrary order. This allowed for an efficient calculation of gradients, that did not suffer
from round-off and truncation errors, unlike gradient calculation using finite differences.

CasADi contains plug-ins to the open source SUNDIALS suite (Hindmarsh et al., 2005)
and IPOPT by COIN-OR (Wächter and Biegler, 2006), which were used for the integration
of ODEs and optimisation, respectively. The IDAS solver of SUNDIALS was used for the
integration of the ODEs with the following termination criteria: an absolute tolerance of
10−6 and a relative tolerance of 10−6. For the optimisation by IPOPT, Table 2.8 presents
the termination and ‘acceptable’ termination criteria, wherein the ’acceptable’ number of
iterations concerning the latter was set at 15. The logic behind the use of acceptable termina-
tion criteria is as follows: if the algorithm encounters 15 iterations in a row that fulfil the
acceptable termination criteria, it will terminate before the termination criteria is met. This
would be useful in cases where the algorithm might not be able to attain the termination
criteria.

The above implementation procedure was run on the same hardware and operating system
used for Implementation I. A set of random starting guesses for the decision variables were
provided using the rand method of the random class within the numpy module.
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Table 2.8 Criteria for termination of optimisation by IPOPT

Property Termination tolerance Acceptable termination tolerance

Optimality error 10−4 10−4

Dual infeasibility 1 106

Constraint violation 10−4 10−2

Complementarity 10−4 10−2

2.4.2 Implementation IIA: General performance discussion

For multiple test runs, it was found that the catalyst changeover actions did not exhibit a
bang-bang behaviour when this implementation methodology was used. Other adjustments
such as tighter optimality tolerances, scaling of the objective functions and constraints or
providing feasible starting guesses to the decision variables made little difference and there
remained non-integral catalyst changeover control values in the final solution. The reason
for the lack of bang-bang behaviour for the catalyst changeover controls, while not clear, is
probably due to a shortcoming of the IPOPT tool.

CasADi plug-ins to other optimisation algorithms such as ‘sqpmethod’, ‘stabilizedsqp’,
‘knitro’ and ‘snopt’ were attempted to check if a bang-bang behaviour for the catalyst
changeover controls could be obtained. However, these other algorithms did not produce
good results.

Thus, the analysis done in Section 2.1.1 is not applicable here and further modifications
were needed to Implementation IIA in order to attain the desired results and this led to
Implementation II.

2.4.3 Implementation II details

Implementation II is composed of executing Implementation IIA with a penalty term homo-
topy, a technique similar to that suggested by Sager (2005, 2009).

Since the basic MSMIOCP formulation, given by equation (2.4), was used as basis for
formulating the problem under consideration here, that equation will be used to explain
the principle of this implementation. First, the binary restrictions for the controls, u, in
equation (2.4g) are relaxed and instead, these controls are considered as continuous variables
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in the range [0,1]. A modified form of equation (2.4), that assumes such a relaxation is shown
in equation (2.61). As can be seen, the binary restrictions on the controls, u, in equation (2.4g),
have been replaced by the condition stating that these controls are continuous variables in the
range [0,1], in equation (2.61g). Problems of the form of equation (2.61) will be referred to
as an "MSMIOCP with relaxed binary controls" in this thesis.

min
u,v

W =
NP

∑
p=1

{
φ
(p)
(

x(p)(tp), z(p)(tp), u(p), v(p), tp

)
(2.61a)

+
∫ tp

tp−1

L(p)
(

x(p)(t), z(p)(t), u(p), v(p), t
)

dt
}

subject to
ẋ(p)(t) = f (p)(x(p)(t), z(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.61b)

x(1)(t0) = h(1)
(

u(1), v(1)
)

(2.61c)

x(p)(tp−1) = h(p)
(

x(p−1)(tp−1), z(p−1)(tp−1), u(p), v(p)
)

p = 2, 3, . . . , NP
(2.61d)

0 = g(p)(x(p)(t), z(p)(t), u(p), v(p), t)

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.61e)

c(p)
(

x(p)(t), z(p)(t), u(p), v(p), t
)
≤ 0

tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

(2.61f)

u(p) ∈ [0,1]

p = 1, 2, . . . , NP
(2.61g)

v(p) ∈ V

p = 1, 2, . . . , NP
(2.61h)
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Problems of the form of equation (2.61) are essentially standard multistage optimal control
problems and hence, standard nonlinear optimisation problems, as no discrete controls are
involved and only an optimal set of continuous controls have to be identified, while using
the feasible path approach to solve the differential equations. However, in order to obtain
solutions equivalent to that of the original problem of the form of equation (2.4), wherein
the controls, u(p), for each stage p = 1,2, . . .NP, take values of only 0 or 1, a penalty term
homotopy technique, similar to that suggested by Sager (2005, 2009), is used. In this
technique, a monotonically increasing penalty term is added to the objective function in
equation (2.61a) and a series of standard multistage optimal control problems of the following
generic form are solved:

Fk : min

{
W +Mk

NP

∑
p=1

u(p)
[
1−u(p)

]}
(2.62)

subject to equations (2.61b) – (2.61h), for

k = 1,2,3 . . .

M1 = 0

Every iteration, k, is referred to as ‘major iteration’. The problem, F1, in the first major
iteration (k = 1) of the series, is designated a weight of M1 = 0 and this problem is equivalent
to the problem given by equation (2.61). If solving problem F1 does not produce binary
values for controls u, the second major iteration occurs in which a weight M2 > 0 is chosen
and problem F2 is solved using the solution of F1 as initial guesses. This procedure is repeated
in an iterative manner, by choosing a weight Mk+1 > Mk and solving problem Fk+1 with the
solution of Fk as initial guesses, until iteration K (K ≥ 1) such that all controls in u, in the
solution of problem FK , are forced by weight MK to take values of either 0 or 1. This solution
procedure is presented as an algorithmic flowchart in Figure 2.15.

The progression for the increase of weights, Mk, is chosen arbitrarily, by trial and error,
and is dependent on the parameters of the problem. It should be remembered that if the
weight is increased too slowly, the computational time becomes large, while if it is increased
too fast, the optimiser can fail to recognise a solution and continue iterations indefinitely.

Since Implementation IIA did not obtain integer values for the catalyst changeover con-
trols, the above solution procedure involving the penalty term homotopy technique is applied
to that implementation and this forms Implementation II. In applying Implementation II to
the problem under consideration here, it is highlighted that the elements of the problem in
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Start

With S0 as initial guess and M1 = 0, solve
problem F1 as a standard nonlinear

optimisation problem using the feasible path
approach. Label solution as S1.

For k = 2, 3, . . .:
Choose weight Mk > Mk−1

Solve problem Fk, as a standard nonlinear
optimisation problem using the feasible path
approach, with Sk−1 as the initial guesses.

Label solution as Sk

k ← k + 1

No

Yes

Sk is the desired solution

End

In Sk, are all controls,
u(p) binary in nature?

That is, are:
u(p) ∈ {0, 1},

for p = 1, 2, . . . NP?

Choose a set, S0, of random values for
controls u(p) ∈ [0, 1] and v(p) ∈ V, for

p = 1, 2, . . . , NP

In S1, are all controls,
u(p) binary in nature?

That is, are:
u(p) ∈ {0, 1},

for p = 1, 2, . . . NP?

No

Yes

S1 is the desired solution

Fig. 2.15 An algorithmic flowchart for the principle of Implementation II.



2.4 Implementation II: Details, results and discussions 85

Section 2.2 were formulated as an MSMIOCP with linear and relaxed binary controls, as
per equation (2.17), which is also a form of the MSMIOCP with relaxed binary controls
given by equation (2.61). What was done in Implementation IIA was essentially solving the
first major iteration (k = 1) of the series of optimisation problems to be solved (wherein the
weight M1 = 0) in Implementation II. The code for this implementation, is essentially an
extension of the code written on CasADi in Python in Implementation IIA, in order to solve
the following series of standard multistage optimal control problems:

Gk : min

{
NC+Mk

NM

∑
i=1

y(i) [1− y(i)]

}
(2.63)

subject to the appropriate differential equations for each case study, the initial conditions, the
junction conditions and constraints presented in Section 2.2, for

k = 1,2,3 . . .

M1 = 0

In accordance with this procedure, if in the solution of problem Gk, the condition, y(i)∈{0,1}
for i = 1,2, . . .NM, does not apply, then problem Gk+1 is solved using the solution of Gk

as initial guesses, with weight Mk+1 > Mk. For the choice of parameters used in these case
studies, the weight term is increased as per the arithmetic progression in equation (2.64),
which was chosen by trial and error:

Mk+1 = (2×Mk)+
(
5×107)

M1 = 0

k = 1,2,3 . . .

(2.64)

As in Implementation IIA, IDAS of SUNDIALS was used for the integration and IPOPT was
used for the optimisation in each problem (major iteration) of the series. And the termination
criteria for the integration and optimisation in each problem of the series were also set similar
to that in Implementation IIA.

The implementation was performed on the same hardware as for Implementations I
and IIA. Once again, multiple runs were performed with different starting points due to the
non-convex nature of the problem. Test runs using the multiprocessing module in Python,
to parallelise a loop of multiple start points, executed slower than when the runs were done
serially. So for each case study, 50 runs were executed in a serial manner.
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2.4.4 Implementation II: General performance discussion

It was found that Implementation II produced high quality solutions for all case studies. Not
in a single run for any case study, regardless of the degree of nonlinearity of the process
model, was any integration or convergence problem encountered. Unlike Implementation I,
there was no need for supplying feasible starting guesses or scaling of the controls, objective
functions or constraints in order to accelerate convergence to a solution. In addition, the so-
lutions obtained did not experience any ‘numerical noise’ as was the case in Implementation I.

Statistics regarding the solutions, regarding the profits, the number of catalyst replace-
ments and the catalyst ages, obtained from the 50 runs for all case studies using Implementa-
tion II are given in Table 2.9. Under the column titled, "Profit (Million $)", the values under
the sub-columns titled ‘Max’, ‘Min’, ‘Mean’ for the row labelled, ’Case Study A’ indicate
the maximum, minimum and mean profit values, respectively, among the 50 runs of Case
Study A. Similar explanations hold for those values under this column for the rows labelled
’Case Study B’, ’Case Study C’ and ’Case Study D’. Analogous explanations hold for the
sub-columns titled, ‘Max’, ‘Min’, ‘Mean’ and ‘Mode’ within the columns of "Number of
catalyst replacements" and "Catalyst age (days)", for the rows pertaining to each case study.
Some notable points regarding this table are as follows:

• The range of optimal profit values obtained for Case Studies A and B are comparable
to those obtained from the limited set of successful runs for the same case studies
using Implementation I, which can be considered optimal solutions as the bang-
bang behaviour was exhibited for the catalyst changeover controls in those solutions.
But such comparisons are not possible for the runs of Case Studies C and D as
Implementation I failed to produce solutions for those case studies. However, the
good correlation between the optimal profits obtained using Implementation I and
Implementation II for Case Studies A and B, suggests that Implementation II is indeed
capable of attaining the optimal solution and that the results obtained for Case Studies C
and D using Implementation II are indeed optimal.

• Another notable point to be highlighted from the data presented in this table is that
in no run for any case study, are all 5 available catalyst replacements used, with the
maximum number being either 3 or 4 and the mode number being either 2 or 3.

Further insights regarding the distribution of the solutions presented in Table 2.9 are
provided in Figures 2.16 – 2.18. Following are comments regarding these figures:

• Figure 2.16 shows the distributions of the profits obtained from all runs of all case
studies, when using Implementation II. In the histogram presented in subplot (a) of this
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figure, the height of each bin represents the number of runs out of the 50 runs of Case
Study A that result in profit values within the range specified by the horizontal edges
of that bin. Similar explanations hold for the histograms relating to Case Studies B, C
and D in subplots (b), (c) and (d), respectively, of the figure.

• Figure 2.17 shows the distribution of the number of catalyst replacements obtained from
all runs of all case studies, when using Implementation II. In the histogram presented
in subplot (a) of this figure, the height of each bin represents the number of runs out of
the 50 runs of Case Study A that involved the number of catalyst replacements given
by the midpoint of the horizontal width of the bin. Similar explanations hold for the
histograms relating to Case Studies B, C and D in subplots (b), (c) and (d), respectively,
of the figure. It is noted that the maximum allowable number of catalyst replacements,
as per the invented set of parameters used, is 5.

• Figure 2.18 shows the distribution of the ages of all catalyst used in all runs of all case
studies, when using Implementation II. In the histogram presented in subplot (a) of
this figure, the height of each bin represents the number of catalysts, out of all the
catalysts used in all the 50 runs of Case Study A, that were used up to the age given
by the midpoint of the horizontal width of the bin. Similar explanations hold for the
histograms relating to Case Studies B, C and D in subplots (b), (c) and (d), respectively,
of the figure. It is noted that since catalysts can be replaced only at the end of a month,
all catalyst ages are multiples of 28 and the maximum allowable age of each catalyst,
as per the invented set of parameters used, is 504 days.

Statistics regarding the computational effort involved are given in Tables 2.10 and 2.11. In
Table 2.10, under the column titled, "CPU time (seconds)", the values under the sub-columns
titled ‘Max’, ‘Min’ and ‘Mean’ for the row labelled, ‘Case Study A’ indicate the maximum,
minimum and mean solution times, respectively, among the 50 runs of Case Study A. Similar
explanations hold for those values under this column for the rows labelled ‘Case Study B’,
‘Case Study C’ and ‘Case Study D’. Analogous explanations hold for the sub-columns titled,
‘Max’, ‘Min’ and ‘Mode’ within the column of "Number of major iterations" for the rows
pertaining to each case study. Table 2.11 provides details regarding the number of runs out
of 50 that progressed up to a certain major iteration and the maximum, minimum and mean
of the number of IPOPT iterations within each major iteration, for each case study. Some
notable comments regarding these tables are as follows:

• From Table 2.10, it is seen that a minimum of 2 major iterations and a mode of 3
or 4 major iterations was needed to obtain integer values for the catalyst changeover
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Fig. 2.16 The distribution of the profits obtained over all runs using Implementation II for
(a) Case Study A (b) Case Study B (c) Case Study C (d) Case Study D
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Fig. 2.17 The distribution of the number of catalyst replacements obtained over all runs using
Implementation II for (a) Case Study A (b) Case Study B (c) Case Study C (d) Case Study D
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Fig. 2.18 The distribution of the ages of all catalysts used over all runs when using Imple-
mentation II for (a) Case Study A (b) Case Study B (c) Case Study C (d) Case Study D
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Table 2.12 Comparison of solution times of Implementation I and II

Case Study

Phase 2 of Implementation I Implementation II

CPU time (seconds) CPU time (seconds)

Max Min Mean Max Min Mean

Case Study A 20383 6738 12009 27438 9826 17440

Case Study B 34855 6134 13394 48808 9498 18848

controls. This underlines the inability of this implementation to obtain the bang-bang
behaviour for the catalyst changeover controls.

• With regard to the solution times for Case Studies A and B at least, the minimum,
maximum and mean solution times for Implementation II are longer, about 1.35 – 1.5
times their counterparts among the successful runs in Phase 2 of Implementation I.
To facilitate such a comparison, these details have been provided in Table 2.12. It
should be remembered that this comparison holds only for the specific computer used
to obtain these solutions and the comparison may well be different if a different type
of computer is used.

• A presentation of the distribution of the solution details presented in Tables 2.10 and 2.11
has not been done because these are dependent on the computer used to obtain solutions,
and hence, cannot be generalised.

Overall, Implementation II was more robust, compared to Implementation I, in producing
high quality solutions. Next, the results obtained using this implementation, of the best
solution from the set of 50 runs, for each of the case studies, are discussed.
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Fig. 2.19 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study A, obtained using Implementation II.

2.4.5 Case Study A: Results and discussions

Figures 2.19–2.22 and Table 2.13 report the features of the best local optimum among the 50
runs for Case Study A using Implementation II. These are the analogues of Figures 2.7 – 2.10
and Table 2.6, respectively, obtained using Implementation I in Section 2.3.3.

Figure 2.19 shows the variation of the monthly catalyst changeover controls over the
time horizon, across different major iterations. It is seen that the solution of the first major
iteration is not of bang-bang form, while in the second iteration, integer values are obtained
for these controls. The recommendation is to use 5 of the 6 available catalysts over the 3-year
horizon, with the 4 replacements (y = 0) occurring on the 7th, 13th, 20th and 26th months.
Similar to Figure 2.7, the first replacement occurs at a time to minimise losses and the other
replacements occur only when there is sufficient inventory to meet the demand. The other
results presented are those obtained as solutions of the second major iteration.

The explanations for the trends of the variables in Figures 2.20 – 2.22 are similar to those
of their analogues in Section 2.3.3. Once again, the optimal policies suggested at the reactor
level by Szépe and Levenspiel (1968) for continuous reactors are followed here for cR and T .
Table 2.13 shows that the profit here is comparable to that in Table 2.6.
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Fig. 2.20 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study A, obtained using Implementation II.

(a)

(b)

Fig. 2.21 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study A, obtained using Implementation II.
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Fig. 2.22 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study A, obtained using
Implementation II.

Table 2.13 Details of the economic aspects of the best solution of Case Study A, obtained
using Implementation II.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 783.722

Costs

Total Inventory Costs T IC 0.276

Total Costs of Catalyst Changeovers TCCC 42.025

Net Penalty for Unmet Demand NPUD 107.96

Total Flow Costs T FC 183.515

Profit −NC 449.946
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Fig. 2.23 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study B, obtained using Implementation II.

2.4.6 Case Study B: Results and discussions

Figures 2.23 - 2.26 and Table 2.14 report the features of the best local optimum among the
50 runs for Case Study B using Implementation II. These are the analogues of Figures 2.11 –
2.14 and Table 2.7, respectively, obtained using Implementation I in Section 2.3.4.

In this case, three major iterations are needed to force the catalyst changeover controls to
take integer values (Figure 2.23) and the other results presented in this section correspond to
the solution of the third major iteration. The explanations of the trends for all variables, and
the final profit and costs values are very similar to those in Section 2.3.4.
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Fig. 2.24 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study B, obtained using Implementation II.

(a)

(b)

Fig. 2.25 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study B, obtained using Implementation II.
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Fig. 2.26 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study B, obtained using
Implementation II.

Table 2.14 Details of the economic aspects of the best solution of Case Study B, obtained
using Implementation II.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 785.902

Costs

Total Inventory Costs T IC 0.282

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 105.235

Total Flow Costs T FC 169.251

Profit −NC 480.135
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Fig. 2.27 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study C, obtained using Implementation II.

2.4.7 Case Study C: Results and discussions

Figures 2.27 – 2.30 and Table 2.15 report the features of the best local optimum among the
50 runs for Case Study C using Implementation II. Here the main reaction is of first order
kinetics with respect to the reactant (equation (2.25)) and the catalyst deactivation kinetics is
dependent on the product concentration (equation (2.23)). Implementation I failed to obtain
results for this case study, due to problems in integrating the highly nonlinear system of ODEs.

Figure 2.27 shows the variation of the monthly catalyst changeover controls over the time
horizon, across different major iterations. In this case, three major iterations are needed to
force the catalyst changeover controls to take integer values. 4 of the 6 available catalysts are
used, with the changeovers occurring on the 9th, 17th and 24th months, which are times when
a sufficient inventory level is present to meet the demand. All other results presented here are
those obtained at the end of the third major iteration.

Figure 2.28 shows that the profiles of f f r and cR during times of catalyst operation
are different from other case studies. Once again, although the time scale for the catalyst
deactivation (Kd = 0.024 (1/day)) is much larger than that of the main reaction (about
24 (1/day) for temperatures used during catalyst operation) or the flow rate (thousands
of cubic metres a day), cR does not remain at a constant value during catalyst operation.
Therefore, the trend for cR here is not consistent with the work of Crowe (1976) at the reactor
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level, which predicted constant exit conversion as the optimal policy under similar conditions.
The scenarios are:

• The f f r is constant at its maximum value during when the deactivation of the catalyst
causes cR to increase with time.

• The f f r decreases at a rate that causes cR to decrease.

The flow costs are high in the former scenario while they are considerably lower in the
latter. However, a higher value of cR in the former scenario is favourable economically as
this leads to a slower rate of catalyst deactivation and a larger reaction rate, following from
equations (2.23) and (2.25), respectively, while the reverse is true in the latter scenario.

Thus, it can be said that there is an interplay between the elements of the process
economics, which affect the variation of f f r and cR during catalyst operation. The following
interpretations are offered:

• The flow rate remains constant at its upper bound during the time the catalyst activity
is relatively high. This is because the revenue from higher production and lesser unmet
demand outweigh the flow costs for this time. Eventually, the catalyst activity falls low
enough and causes this balance to shift. At this point, the f f r begins to decrease.

• When f f r begins to decrease, cR begins to decrease from its maximum value. Overall,
a large production rate is preferred but at the same time, f f r has to be reduced in order
to lower the flow costs. This compromise is attained by decreasing f f r at a rate that
minimises the rate of change of cR away from its maximum value and thereby keeps
the production rate as large as possible.

• During the operation of the final catalyst, the f f r experiences a sharp drop and exhibits
a rate of decrease to result in a production rate that exactly fulfils the demand for the
remainder of the time horizon.

Figures 2.29 - 2.30 and Table 2.15 are the analogues of Case Study C to Figures 2.21 -
2.22 and Table 2.13 in Case Study A. The profile for the catalyst activity during catalyst
operation in Figure 2.30 follows from equation (2.23). The explanations for the trends of
all variables in Figures 2.29 and 2.30 are similar to those of their Case Study A analogues.
Table 2.15 reveals that the costs of operation take away about 45.9% of the revenue generated
by the product sales, with the flow costs take up a larger proportion of the total expenses here
compared to previous case studies.
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Fig. 2.28 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study C, obtained using Implementation II.

(a)

(b)

Fig. 2.29 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study C, obtained using Implementation II.
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Fig. 2.30 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study C, obtained using
Implementation II.

Table 2.15 Details of the economic aspects of the best solution of Case Study C, obtained
using Implementation II.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 795.192

Costs

Total Inventory Costs T IC 0.241

Total Costs of Catalyst Changeovers TCCC 30.999

Net Penalty for Unmet Demand NPUD 93.623

Total Flow Costs T FC 239.836

Profit −NC 430.493
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Fig. 2.31 The variation of the catalyst changeover controls over the time horizon in the best
solution of Case Study D, obtained using Implementation II.

2.4.8 Case Study D: Results and discussions

Figures 2.31 - 2.34 and Table 2.16 report the features of the best local optimum among the
50 runs for Case Study D using Implementation II. Here the main reaction is of second order
kinetics with respect to the reactant (equation (2.26)) and the catalyst deactivation kinetics
is dependent on the product concentration (equation (2.23)). Such solutions could not be
obtained by Implementation I, once again, due to problems in integrating the highly nonlinear
system of ODEs.

As seen in Figure 2.31, this solution required two major iterations to force the catalyst
changeover controls to take integer values. The suggestion is to use 4 of the 6 available
catalysts, with the replacements occurring on the 8th, 17th and 25th months. Similar to the
previous case studies, the timing of these replacements is such that losses are minimised or
sufficient inventory is present to meet demand. All other results discussed here are from the
solutions of the second major iteration.

The profiles of f f r and cR in Figure 2.32 are similar to those in Figure 2.28. Only here,
the f f r remains at its maximum value for a longer duration than in Case Study C because a
higher value of cR is needed to compensate for the lower reaction rate.
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Fig. 2.32 The variation of the feed flow rate, temperature and reactant exit concentration over
the time horizon in the best solution of Case Study D, obtained using Implementation II.

(a)

(b)

Fig. 2.33 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the time horizon in the best solution of Case Study D, obtained using Implementation II.
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Fig. 2.34 The variation of the catalyst activity, catalyst age, inventory level and cumulative
inventory cost over the time horizon in the best solution of Case Study D, obtained using
Implementation II.

Table 2.16 Details of the economic aspects of the best solution of Case Study D, obtained
using Implementation II.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRS 752.937

Costs

Total Inventory Costs T IC 0.343

Total Costs of Catalyst Changeovers TCCC 31.525

Net Penalty for Unmet Demand NPUD 146.441

Total Flow Costs T FC 249.539

Profit −NC 325.089
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The explanations for the trends of the variables in all other figures are similar to those of
their Case Study C analogues. Table 2.16 reveals that the costs of operation take away about
56.8% of the revenue generated by the product sales.

2.4.9 General comments

In this section, some general comments are offered regarding the results obtained by Imple-
mentation II for all case studies.

The results presented include the trends of the decision variables, and the state variables
that follow accordingly, over the time horizon of only the best solution, or the local optima
that resulted in maximum profit, of each case study. While it is possible to present a
distribution of each decision variable over the 50 runs for each case study in a manner similar
to that done for the profit, for example, in Figures 2.4 and 2.16, these are not informative
enough to justify the volume of the thesis that would be consumed by such a presentation,
given that there are hundreds of decision variables involved. However, there are some notable
points to be stated regarding decision variables obtained in all the other local optima of each
case study:

• Within a particular case study, the local optima differed considerably in the obtained
values of the catalyst changeover decision variables that decided the number and
timing of catalyst replacements. This was the major factor leading to differences in
profits between the different local optima obtained as the different catalyst replacement
schedules impacted the decision variables of feed flow rate and sales.

• Within a particular case study, the decision variables of the feed flow rate differed
between different local optima in the values obtained during the operation of the final
catalyst. In each case study, in the best solution presented, there was a sharp drop
observed in the feed flow rate near the end of the time horizon which occurred in order
to bring the exit concentration, and hence the production rate, to a value that exactly
fulfilled demand for the remainder of the time horizon and thereby maximise the profits
of the process by preventing the use of excess raw material. In the other local optima of
each case study, while the trend of the feed flow rate was similar to in the best solution
and the demand near the end of the time horizon was fulfilled, the sharp drop in the
feed flow rate was either not present or was of a smaller magnitude in comparison to
that observed in the best solution. This led to the total flow costs in the other local
optima being higher compared to that in the best solution and this could be attributed
to the catalyst replacement schedules in the other local optima being less efficient than
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in the best solution. However, it is highlighted that for all optima obtained within each
case study, during the times of operation of all catalysts except the final one, the feed
flow rates were similar in terms of magnitudes as well as trends, which led to similar
magnitudes and trends of the exit concentration during these times as well.

• For all optima in all case studies, the temperature was set to its upper bound during
times of catalyst operation. This followed from the fact that in all case studies, the
catalyst deactivation rate constant was independent of temperature and the maximum
rate of the product formation reaction could be obtained by operating at the maximum
allowable temperature.

• Within each case study, the decision variables of the sales differed between the obtained
optima in terms of the distribution and quantity occurring in the first year of the time
horizon. In comparison to the best solution, the distribution of sales in the first year in
the other local optima was such that the quantity of sales was either similar or lower in
comparison to the former. This led to the gross revenue from the sales in the first year
in the other local optima to be less than or at most similar to that in the best solution
and this could be attributed to the catalyst replacement schedules in the other local
optima being less efficient than in the best solution. It is highlighted that in all optima
obtained in all case studies, the sales completely fulfilled the product demand in the
second and third years of the time horizon and this could be attributed to the inflation
causing the product sales price and penalty for unmet demand to be higher in those
years compared to the first.

The different case studies examined differ on the basis of the kinetics of either the
catalyst deactivation or the product formation reaction. A comparison of the solutions of
Case Studies C and D, which involved similar expressions of the rate of catalyst deactivation
but different expressions for the rate of the product formation reaction, indicated that the
profiles of the decision and state variables of these case studies over the time horizon were
quite similar. However, a comparison of the solutions of Case Studies A, B and C, which
involved similar expressions for the rate of the product formation reaction but different
expressions of the rate of catalyst deactivation, indicated similarities in the profiles of some
of the variables over the time horizon, but considerable differences among other variables of
these case studies. The following comments can be made regarding the effect of the different
deactivation rate expressions on the different variables involved:

• Depending on the expression of the rate of deactivation, the profile of the decision
variable of the feed flow rate over the time horizon differed considerably during times
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of catalyst operation. This led to the profile of the state variable of the reactant
exit concentration during those times also varying considerably depending on the
expression of the rate of deactivation used. Clearly, the profile of the state variable
of the catalyst activity over the time horizon during catalyst operation also varied
depending on the deactivation rate expression considered.

• Regarding the values obtained by the catalyst changeover controls, for all the different
expressions of the rate of deactivation examined, the number of catalyst replacements
varied between 2 and 4. No patterns could be observed in the timing of catalyst
replacements with regard to the deactivation rate expression used.

• The explanations for the profiles over the time horizon of the decision variables of the
temperature and the sales, and the state variables of the catalyst age, the inventory level
and the cumulative inventory cost did not vary when different expressions of the rate
of deactivation were used.

In terms of the economics of the best solutions of all case studies, it is observed that
the total flow costs always form the largest contribution, followed by the penalty for the
unmet demand. This merely follows from the values of parameters used which, as mentioned
previously, were invented, as the previous publications in this area did not reveal any such
data citing confidentiality reasons. It may well be that for a different set of parameter values,
the order of decreasing contribution of the various costs is different. As such, no other
comments can be made regarding the magnitudes of the economic components or the order
of contribution of the various costs involved.

2.5 Summary, further discussions and conclusions

In this chapter, a novel, optimal control methodology has been developed to optimise main-
tenance scheduling and production in a process containing a single reactor using decaying
catalysts. This methodology is based on a formulation of this problem as a multistage mixed
integer optimal control problem (MSMIOCP). The integer controls in this formulation are the
binary decisions to decide when to schedule catalyst changeovers, the continuous controls
include the operating conditions of the reactor and the quantity of product sales, and the state
variables characterise the state of the process. The DAEs of the formulation represent the
process model, the constraints represent the operating limits of the process and the binary
restrictions on the catalyst changeover controls, and the objective function represent the net
costs of the process.
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The elements of the process considered in this chapter are of similar structure to the pro-
cess studied in the works of Houze et al. (2003) and Bizet et al. (2005). However, since those
works did not reveal the process model or any of the parameters used, citing confidentiality
reasons, in this chapter, the process model was constructed and an invented set of parameters
were used. Four case studies were examined for the process, which differed depending on the
kinetics of the product formation reaction or the catalyst deactivation, in the process model.

The solution methodology attempted was to formulate this process as an MSMIOCP in
which the binary controls that scheduled catalyst changeovers appeared linearly in the model
equations. A theoretical analysis suggested that, by virtue of the linear occurrence of these
binary controls, these controls could be expected to exhibit a bang-bang behaviour in the
optimal solution. Hence, these controls were considered continuous rather than discrete in
the MSMIOCP formulation of the process, and this problem was attempted be solved as a
standard nonlinear optimisation problem, without using mixed-integer optimisation methods.
Due to the non-convex nature of the problem, 50 optimisation runs, each which used different
initial guesses, were attempted for each case study.

However, the solution implementation faced complications due to the complex nature of
the problem and required using two different implementation methodologies, Implementa-
tion I and Implementation II, each of which had their own relative advantages:

1. Implementation I was favourable from a theoretical point of view, as its solutions
exhibited the bang-bang property for the catalyst changeover controls, consistent
with predictions of the theoretical analysis, and so, the solutions produced by this
implementation can be considered to be optimal. However, this implementation’s
performance was sensitive to the initial guesses used and even for the relatively less
nonlinear process models of Case Studies A and B, only a limited set of successful
runs could be obtained, and the vast majority of runs either converged prematurely
or crashed due to problems in integration. For the more nonlinear process models of
Case Studies C and D, every single run crashed due to problems in the integration.
The integration problems could probably be attributed to inadequacies of the available
MATLAB ODE integrator suites.

2. Implementation II did not exhibit the bang-bang property for the catalyst changeover
controls and required using a penalty term homotopy technique in order to force these
controls to take values of 0 or 1. But this implementation was robust in providing high
quality solutions for all case studies, regardless of the initial guesses used. The lack of
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bang-bang behaviour is probably due to a shortcoming of the IPOPT tool. The range
of profit values obtained for Case Studies A and B using Implementation II compared
well with those of the successful runs of Implementation I, thereby suggesting that
these solutions obtained by Implementation II were indeed optimal. Further, this also
suggests that the solutions obtained by Implementation II for Case Studies C and D
were optimal as well.

Overall, Implementation II was more robust in comparison to Implementation I in the sense
that unlike the latter, the former was not sensitive to the initial guesses used, in obtaining
solutions within the stipulated tolerances. This suggests that the optimal control methodology
to be used to solve problems of this kind is to use an MSMIOCP formulation of the problem
combined with a solution procedure of the principle of Implementation II.

For the best solution among the successful runs for Implementation I for each of Case
Studies A and B, and for the best solution among the 50 runs carried out using Implementa-
tion II for each case study, the variation of all control and state variables were plotted over
the time horizon and the economics of the process was presented in a table. Explanations
were provided for the trends of all variables, which were mainly focused on increasing profit
while efficiently managing all costs in order to balance the trade-offs involved.

A notable result was in Case Study A wherein the policies for the reactant exit concen-
tration and the temperature of operation correlated well with that of published literature
(Szépe and Levenspiel, 1968) at the reactor level. However, the policy for the reactant exit
concentration in the obtained solutions of the other case studies was not consistent with the
related work (Crowe, 1976) at the reactor level, indicating that that policy may not hold when
inventory, sales and demand considerations come into play.

The elements of the industrial process considered in this chapter are similar to that con-
sidered in the works of Houze et al. (2003) and Bizet et al. (2005) and the aim of developing
this optimal control methodology was to improve on the quality of solutions obtained for that
process in those works, which used mixed-integer optimisation methods. An ideal evaluation
of the quality of this methodology would have been by applying this methodology to the
problem considered in those works and comparing the solutions obtained with the solutions
of those works. However, this was not possible, as those works did not reveal the model or
any parameters used, citing confidentiality reasons and therefore, in this chapter, the process
model was constructed and an invented set of parameters were used. But a comparison
between the methodology developed in this chapter and the mixed-integer methods used in
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those works can be drawn using a number of other properties, and these are described next.

Details of the size of the two problems in the work by Houze et al. (2003), which consid-
ered time horizons of 24 months and 48 months, while using a total of 4 catalyst loads for
each of these time horizons, are shown in Table 2.17. Details of the size of the two problems
in the work by Bizet et al. (2005), which considered 2 catalyst loads to be used over a time
horizons of 74 months and 3 catalyst loads to be used over a time horizon of 108 months, are
shown in Table 2.18. Table 2.19 shows how the problem sizes for these time horizons would
come out to be if the proposed methodology was applied for the problem formulations.

As can be seen from Table 2.19, for a given time horizon, the number of discrete variables,
continuous variables and constraints involved, when the proposed methodology is applied,
are considerably smaller in comparison to the corresponding time horizon in Table 2.17
or Table 2.18. This is because, while mixed-integer methodologies approximate differen-
tial equations as a collection of steady state equations, which creates additional variables
and constraints in the optimisation phase, in the proposed methodology, these differential
equations are solved by the feasible path approach, which prevents that from happening.
And since, in the proposed methodology, catalyst replacements occur inherently during the
optimisation, without requiring mixed-integer methods, the problem sizes in Table 2.19 for
each time horizon apply regardless of the number of catalyst loads available to be used.

Thus, the features of the proposed methodology are such that, for a give time horizon, the
size of the problem formulated using the proposed methodology is much smaller compared
to when mixed-integer formulations are used. The proposed methodology’s characteristic of
enabling smaller problem sizes implies that convergence to optimal solutions is facilitated
when using this methodology and this characteristic provides the methodology with the
advantage of robustness over mixed-integer methodologies.

Table 2.17 Details of the size of the problems considered in the work of Houze et al. (2003).

Number of Number of Number of Number of Number of

months catalyst loads discrete variables continuous variables constraints

24 4 299 1503 3960

48 4 587 2943 8576
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Table 2.18 Details of the size of the problems considered in the work of Bizet et al. (2005).

Number of Number of Number of Number of Number of

months catalyst loads discrete variables continuous variables constraints

74 2 334 3717 12596

108 3 816 8013 33230

Table 2.19 Details of the size of the problems obtained when using the proposed optimal
control methodology for the time horizons considered in the works of Houze et al. (2003)
and Bizet et al. (2005).

Property size
Number of months

24 48 74 108

Number of ODEs (for all state variables) 480 960 1480 2160

Number of discrete variables 24 48 74 108

Number of continuous variables 288 576 888 1296

Number of constraints 1033 2065 3183 4645

In addition, the following points of comparison can be drawn between the methodology
presented in this chapter and the works of Houze et al. (2003) and Bizet et al. (2005):

1. The number of catalyst loads considered in the work of Houze et al. (2003) was 4 and
that in the work of Bizet et al. (2005) was either 2 or 3. If that number was increased,
the number of combinations involved in their solution methodology would increase
exponentially and so, obtaining good solutions would be difficult and require a very
large amount of computational effort. On the other hand, in the proposed methodology,
catalyst replacements are scheduled inherently during the optimisation, without mixed-
integer methods. Therefore, as demonstrated in this chapter, good solutions can be
obtained in a reasonable amount of time even if the number of available catalyst loads
is 6, and this would be the case even if an infinite number of catalyst loads are available
to be used. This highlights the efficiency of the methodology over the mixed-integer
optimisation methods.

2. In the works of Houze et al. (2003) and Bizet et al. (2005), the flow rate, temperature
and sales are decisions to be taken on a monthly basis, whereas here, those controls
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are optimised on a weekly basis. The smaller problem size enabled by the proposed
methodology facilitates producing solutions which are more informative compared
to those works. If in those works, these decisions were taken on a weekly rather
than monthly basis, the problem sizes, as shown in Tables 2.17 and 2.18, would have
increased almost 4-fold, and the mixed-integer methodologies used by those works
would have faced great difficulties in obtaining solutions.

3. The use of the feasible path approach in this methodology, wherein state-of-the-art
integrators solve the differential equations, enables an accurate description of the
dynamics of the process and hence, accurate solutions. However, in the works of
Houze et al. (2003) and Bizet et al. (2005), the differential equations present are
approximated as a collection of weekly steady state equations, which means the results
obtained in those works cannot be considered accurate. Thus, the solutions obtained by
the proposed methodology are more accurate and hence, more reliable in comparison
to the results obtained in those works.

4. The solution times in the works of Houze et al. (2003) and Bizet et al. (2005) are in the
order of seconds. However, the solution times for the methodology proposed here are
in the order of hours. This is due to the large computational effort spent in solving the
differential equations to a high accuracy at each iteration of the optimisation. However,
this additional computational effort is outweighed by the robust, reliable and efficient
solutions obtained. Though not done here, the solution times can be greatly reduced,
by the use of high performance and parallel computing facilities.

The preceding discussion indicates the high quality of solutions obtained by the proposed
methodology to solve the problem of optimising maintenance scheduling and production in
a process containing a single reactor using decaying catalysts, in comparison to previous
publications that used mixed-integer optimisation techniques to solve this problem. It is
intended to conclude this chapter by highlighting how the proposed methodology overcomes
the drawbacks of, and is therefore advantageous over, mixed-integer optimisation techniques.

While Section 2.1.2 mentions the advantages the proposed methodology could poten-
tially offer over mixed-integer techniques, this section cites the bang-bang behaviour of
the catalyst scheduling controls as the cause for the efficiency of the methodology, without
knowledge of the complications that the solution procedures would face. As was seen, the
solution procedure of Implementation I, while demonstrating the bang-bang behaviour, did
not perform satisfactorily and it was the solution procedure of Implementation II, which did
not exhibit the bang-bang behaviour, that produced high quality solutions and is suggested to
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solve problems of this kind.

Therefore, a modified form of Section 2.1.2 that reflects the features of Implementation II
is presented in the next section, which form the conclusions of this chapter. This section will
also serve as a reference for the future chapters of the thesis.

2.5.1 Advantages over mixed-integer methods

The advantages offered by the proposed methodology, of using an MSMIOCP formula-
tion in combination with the solution procedure of Implementation II, over mixed-integer
optimisation techniques are highlighted using the following points:

1. When mixed-integer methods are used, all differential equations present in the problem
are approximated as a collection of steady state equations, which are then imposed
as equality constraints in the optimisation phase. Following such practices causes the
problem to contain a very large number of variables and a large number of potentially
highly nonlinear constraint equations. In such cases, the optimiser could face diffi-
culties in converging to a solution, which is further accentuated when a large number
of differential equations are involved, longer time horizons are considered or higher
accuracy is required. In addition, if a larger number catalyst loads are available to
be used, the problem size becomes larger and this can lead to further difficulties in
converging to a solution.

However, in the methodology proposed here, the differential equations are solved using
the feasible path approach, without being considered as constraints in the optimisation
step.
Further, in the proposed solution procedure, the binary controls to schedule catalyst
changeover are considered as continuous controls which are forced to take values of
0 or 1 by means of a penalty term homotopy technique. By virtue of this technique,
the 0 or 1 values for these controls are obtained inherently during the solution of this
problem as a standard nonlinear optimisation problem, without the use of mixed-integer
optimisation methods. Hence, even if an infinite number of catalyst loads are available,
the problem size will not increase as the decisions on how many catalyst loads to use
and when to schedule catalyst changeovers are taken inherently during the optimisation.

Thus, when using the proposed methodology, the problem involved is of a much smaller
size compared to when mixed-integer techniques are used and optimal solutions can be
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obtained from random starting points, even when a large number of differential equa-
tions are involved, long time horizons are considered and a large number of catalyst
loads are available.

Hence, the proposed methodology is more robust in converging to optimal solutions,
in comparison to mixed-integer techniques.

2. As mentioned in the previous point, the mixed-integer techniques approximate the
differential equations as a collection of steady state equations. This negates an accurate
description of the dynamics of the problem within the time period in which those
differential equations are approximated as such.

However, in the proposed methodology, a feasible path approach is used, wherein
state-of-the-art integrators are employed to solve the DAEs present in the problem.
These integrators solve even complicated DAEs to a very high accuracy.

Therefore, the solutions obtained using the proposed methodology are of greater accu-
racy and hence, more reliable than those obtained using mixed-integer methodologies.

By enabling the advantages of robustness and reliability, the feasible path approach also
enables the methodology to avoid making the difficult compromise between accuracy
and ease of convergence, which is faced by mixed-integer techniques.

3. Mixed-integer techniques are combinatorial in nature, meaning that the computational
effort to solve a problem using these methods increases exponentially with the number
of integer decision variables involved in the problem. If mixed-integer techniques are
used in the problem under consideration here, when a large number of catalyst loads
are present, the computational effort involved in optimising the scheduling of catalyst
changeovers will become huge and so, an enormous amount of computational power
will be needed to solve the problem.

However, as mentioned previously, in the proposed solution procedure, by means of the
penalty term homotopy technique, the 0 or 1 values for the catalyst changeover controls,
assumed continuous, are obtained inherently during the solution of this problem as a
standard nonlinear optimisation problem, without the use of mixed-integer optimisation
methods.
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Hence, no computational effort is spent in deciding when to schedule catalyst changeovers
or how many catalyst loads to use as the penalty term homotopy technique takes care
of this. And this will be the case regardless of the number of catalyst loads involved,
thereby making it possible for the methodology to obtain optimal maintenance sched-
ules for catalyst replacements even if an infinite number of catalyst loads are available
to be used.

This feature of the proposed methodology makes it more efficient in comparison to
mixed-integer methods.

Thus, in this chapter, in line with the first objective of the thesis, a methodology has
been developed that can effectively optimise the maintenance scheduling and production
in a process containing a reactor using decaying catalysts, and which can overcome the
drawbacks faced by mixed-integer optimisation techniques in solving this problem. In the
next chapter, the optimal control methodology developed in this chapter is extended to
optimise maintenance scheduling and production in parallel lines of reactors using decaying
catalysts.





Chapter 3

Optimisation of a process containing
parallel lines of reactors

In this chapter, an optimal control methodology is developed for optimising maintenance
scheduling and production in a process containing parallel lines of reactors using decaying
catalysts. This methodology is an extension of the methodology developed in the previous
chapter, which was used to optimise similar aspects in a process containing a single reactor
using decaying catalysts. Following from the previous chapter, this methodology involves a
multistage mixed-integer optimal control problem (MSMIOCP) formulation in combination
with a solution procedure of the principle of Implementation II to solve this problem. The
methodology is applied to the case study of an industrial process that operates a single feed
over a set of 4 reactors which operate in parallel and produce the same product. The solution
procedure is successful in producing high quality solutions for this case study. Further, the
results obtained indicate that the methodology can provide potential advantages of robustness,
reliability and efficiency over mixed-integer optimisation methods in solving problems of
this kind.

The structure of this chapter is as follows. Section 3.1 contains an introduction to the
problem and a literature review of the publications that have examined topics similar to this
problem. In Section 3.2, the proposed optimal control methodology is applied to the case
study of an industrial process, beginning with an optimal control formulation of the problem,
which is followed by details of the implementation of the solution procedure and a discussion
of the results obtained. Section 3.3 contains a summary and the conclusions of the chapter.
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3.1 Introduction and literature review

In the previous chapter, the process examined involved only a single reactor using decaying
catalysts. However, given that the maintenance operation to replace the catalyst involves
shutting down the reactor and hence, a loss of production time, it is common for industries to
use parallel lines of reactors. A parallel set up can avoid a complete stop of production and
greatly improve the flexibility of the process, by allowing one reactor to be shut down for
catalyst replacement, while the remaining reactors continue to produce product to meet the
demand.

However, in order to minimise the negative effects of catalyst deactivation and ensure
efficient operation of such a set up, an optimal operational plan for the process is needed,
which is similar to what was required to optimise the performance of the process containing
a single reactor using decaying catalysts. That is, the optimal operational plan should specify
an optimal maintenance schedule for catalyst replacements in each reactor and an optimal
production plan for the whole process in an integrated manner.

The optimal maintenance schedule for catalyst replacements should specify the optimum
number of catalyst loads to use and the optimal time for catalyst replacements in each reactor
of the parallel set up, such that, the trade-off between attaining a high production rate, and
having low maintenance costs and effective production times for each reactor is optimally
balanced in view of the whole process. The maintenance schedule may also be required to
fulfil a constraint that no two reactors undergo catalyst replacement at the same time due to
production requirements or the maintenance labour and equipment availability.

The optimal production plan should specify the optimal operating conditions of each
reactor as well as the optimal management of product inventory and sales to meet seasonal
demand. The operating conditions to be specified include the flow rate to and temperature of
operation of each reactor during the times the catalyst is in operation, such that the product
yield is maximised under the conditions created by the catalyst deactivation. These operating
conditions should also be tailored to produce an adequate inventory of product such that the
sales can occur to effectively meet varying demand across the time horizon, while excessively
high storage costs are also avoided.

Identifying such an optimal maintenance schedule and an optimal production plan in
an integrated manner requires solving a highly challenging modelling and optimisation
problem containing a very large number of variables and constraints. This problem is of
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significantly higher complexity compared to the problem of optimising such aspects in a
process containing a single reactor, which was considered in the previous chapter.

A thorough literature survey did not result in finding any work that has explicitly claimed
to optimise maintenance scheduling, operating conditions, inventory management and sales
to meet time-varying demand in a process involving parallel lines of reactors using decaying
catalysts. Most existing literature investigate the optimisation of maintenance scheduling and
a subset of the other mentioned decisions in different industrial applications that use parallel
processing lines and experience decaying performances. Further, these contributions are not
related to reactions systems. And it is mixed-integer methods that have mainly been used for
the optimisation.

For example, Castro et al. (2014) have presented a maintenance scheduling model for
a gas engine plant with parallel units that aims to maximise revenue from electricity sales
while considering seasonal variation in electricity pricing. While no decay models were
explicitly involved, the maintenance operations were of a preventive nature, in order to avoid
premature aging and failure of the gas engine units which could lead to unplanned and costly
power outages.

In the bio-pharmaceutical industry, Liu et al. (2014) have optimised the scheduling of
product manufacture on parallel suites, as well as inventory management and sales to meet
varying demand, while considering decaying performance of the chromatography resin in the
downstream purification process. The decaying performance of the chromatography resin
was obtained from a known table that provided information on the resin yields for the number
of batches manufactured and time slots operated.

But the two works mentioned above did not consider the optimisation of operating condi-
tions, and so the underlying equations were mostly free from the occurrence of nonlinearities.
Thus, less computationally intensive MILP models could be used for the solution of these
problems.

For a parallel network of compressors experiencing decaying performance due to foul-
ing and degradation by fluid particles, Kopanos et al. (2015) and Xenos et al. (2016) have
optimised the maintenance scheduling, the operating mass flow rate and product inventory
management to meet varying demand. The decaying performances of the compressors in
Kopanos et al. (2015) were modelled using the power consumption in the compressors, which
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were expressed by regression functions that were derived using technical and historical data.
In Xenos et al. (2016), the decaying performance of each compressor was modelled using
a linear function between the extra power consumption due to degradation and cumulative
operation time. But the authors of these works admit to seeking to avoid hard MINLP
formulations by linearising the underlying equations to form MILP models and concede that
such linear approximations can cause errors in the results.

Heluane et al. (2007, 2004) have developed MINLP formulations to optimise the mainte-
nance scheduling and operating mass flow rate conditions of evaporator systems involving
parallel lines that decay in performance due to heat transfer induced fouling. For each evapo-
rator, the decaying performance was modelled using an experimentally obtained expression
for the decrease of the heat transfer coefficient with time, which was a function of temperature
and concentration. However, these works focused on obtaining cyclic schedules and did not
consider the problem of inventory management or sales to meet seasonal demand.

In ethylene plants, a cracking furnace is used to break long-chain hydrocarbons into
valuable products and these plants have multiple such furnaces operating in parallel. Coke
depositions on the walls reduce the efficiency of the furnaces and shut downs for decoking
operations are necessary to restore performance. Because of the importance of ethylene
in the petrochemical industry and the nonlinearity of the equations involved, a number of
strategies involving MINLP formulations have been proposed for optimising the decoking
maintenance scheduling in tandem with the operating conditions.

To optimise the scheduling of decoking and operating flow rates in parallel cracking
furnaces of an ethylene plant, Jain and Grossmann (1998) proposed an MINLP model and
used a Branch & Bound method for its solution. The decaying performance was modelled by
assuming that the yield of ethylene decreased exponentially with time. The MINLP model of
Jain and Grossmann (1998) was improved by the MINLP framework devised by Liu et al.
(2010) which removed the assumption of identical feed processing times and also ensured
that decoking of any two furnaces did not occur simultaneously. Zhao et al. (2010) extended
the problem to consider secondary cracking of recycled ethane in a separate furnace and
obtained solutions using a framework similar to Liu et al. (2010). But in all these works, the
operating profiles of flow rate and temperature were constant over a feed run length.

In order to provide a dynamic description of the optimal operation profiles of flow rate and
temperature in each furnace, Jin et al. (2015) presented a mixed-integer dynamic optimisation
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(MIDO) formulation. In this formulation, the state variables involved, including the coke
deposition thickness that quantified the decay in furnace efficiency, were predicted using
a surrogate model, which in turn was formulated by applying an artificial neural network
to data obtained from a furnace simulator. The MIDO formulation was then discretised
and converted into a large scale MINLP to be solved using standard solvers. They claim to
significantly improve economic performance compared to traditional methods that keep the
operating variables constant over a run length. But a major limitation of this work is that
simultaneous decoking of furnaces was allowed.

Given the difficulties faced by the traditional gradient based optimisation methods in
handling the highly nonlinear constraints of MINLP models, Yu et al. (2017) have proposed
an alternative methodology. They have used a population-based Diversity Learning Teaching
Learning Based Optimisation (DLTLBO) algorithm on a problem set up similar to that
of Jin et al. (2015) and have produced better solutions compared to the latter, without the
assumption of simultaneous decoking. However, as a metaheuristic approach, a theoretical
convergence to optimality is not guaranteed.

Lin and Du (2018) have proposed another methodology, which combines deterministic
and population based optimisation methods. A MIDO formulation is discretised into an
MINLP and a two-level nested optimisation problem is solved. A Genetic Algorithm is used
for the outer level MILP problem that solves for the scheduling of parallel cracking furnaces
and a Sequential Quadratic Programming algorithm solves the inner level NLP problem,
which optimises the operating conditions. The formulation here also modelled the coke thick-
ness deposition that quantified the decay in furnace efficiency, alongside other state variables,
using a surrogate model that was formulated by applying an artificial neural network to data
obtained from a furnace simulator. The methodology enabled a drastic reduction in problem
size and produced better profits in smaller computational times compared to standard MINLP
methods. But the authors themselves admit that treating the integer and continuous variables
separately may be inadequate if these variables are highly interdependent.

Different from the above works which obtained cyclic schedules, Lim et al. (2006) de-
veloped an MINLP formulation for a fixed time horizon. The work aimed to optimise the
decoking schedule for a set of parallel furnaces while ensuring non-simultaneous decoking
and also deciding the distribution of the inlet naphtha feed flow among them for a naphta
cracking furnace system. The model for the decay in furnace efficiency in this work as well
was a part of a surrogate model that was formulated by applying an artificial neural network
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to data obtained from a furnace simulator. To handle the computationally intractable problem
size, three solution strategies were proposed to improve solution quality and computational
time. The best of these strategies involved solving the decoking scheduling as a master
MILP problem and the flow rate optimisation as a subproblem. But as mentioned previously,
treating the integer and continuous variable separately may be inadequate.

Further, all of the aforementioned papers assume a constant demand over an infinite
time horizon and do not consider the problem of inventory management or sales to meet
time-varying demand. Only a limited number of publications consider this additional problem
and these are discussed next.

Schulz et al. (2006a,b) developed a multistage MINLP model for scheduling shutdowns
of 8 parallel furnaces in an ethylene plant, while also determining the operational profiles
and inventory management to satisfy time-varying product demand. However, this work
did not reveal the underlying model equations and had restrictive assumptions such as iden-
tical cycle times for all furnaces and a linear coking rate to represent the decay in performance.

Other works have focused on developing new strategies to overcome the drawbacks of
large computational times and intractable sizes of large scale MINLP problems. For example,
Su et al. (2015) presented strategies such as multi-generational cuts, hybrid methods and
partial surrogate cuts which, when used with MINLP methodologies such as the Gener-
alised Benders Decomposition and Outer Approximation can enhance convergence in large
MINLPs. Su et al. (2016) demonstrated that one such algorithm produced faster convergence
in a problem of optimising operation and cleanup scheduling of parallel furnaces while also
managing inventory to meet demand requirements in an ethylene cracking process with
feedstocks and energy constraints. However, the model involved simplistic assumptions such
as constant operating flow rates and a linear coking rate to represent the decay in performance.
More complex models that could cause greater intractability of the MINLPs have not been
investigated.

Finally, for a large scale MINLP of decoking scheduling and operational optimisation
in an ethylene plant to meet known product demand, wherein the decay is modelled as an
exponential decrease in the yield of ethylene over time, Wang et al. (2016) have proposed a
Lagrangian decomposition method. In this method, the problem is decomposed into planning
and scheduling problems and Lagrange multipliers are used to communicate information
between the two. While the algorithm has produced better objective function values in
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smaller CPU times in comparison to standard MINLP solvers, the authors admit that due to
the complexity of the formulation, they face difficulties in converging to optimality. Further,
this method can mainly be applied only in cases where the underlying model exhibits a block
angular structure.

The preceding literature review indicates that few papers address the entirety of the prob-
lem of optimising the maintenance scheduling of parallel processing lines that experience
decaying performance in combination with operational planning, inventory management and
sales to meet time-varying demand. These articles report difficulties in attaining optimality,
even after applying significant approximation and decomposition techniques, thereby indicat-
ing the complexity of the problem. Even the other publications that address only a subset of
these decisions exhibit such shortcomings.

These difficulties can be traced to the mixed-integer formulations of these problems.
The drawbacks of mixed-integer optimisation techniques, mentioned in Section 1.4, form
the roots of these difficulties. As mentioned in that section, the mixed-integer methods are
combinatorial in nature and these methods approximate the differential equations present
in the problem as a collection of steady state equations, which are imposed as additional
constraints in the problem.

It is these features of mixed-integer methods which cause some of the aforementioned
works that attempt to solve large scale problems using these methods to report intractable
problem sizes and difficulties in converging to optimal solutions. In order to avoid solving
hard MINLP problems, some of the other aforementioned works admit to approximating
nonlinear terms present in the problem as linear terms. The approximations induced by the
use of mixed-integer methods, such as linearisation of nonlinear terms and representation
of differential equations as a collection of steady state equations, imply that the solutions
obtained by these methods cannot be considered accurate. More complex models or an
increase in the scale of the problem can further accentuate these difficulties.

The preceding discussion indicates that there are no encouraging signs that the use of
mixed-integer optimisation methods to solve the problem of maintenance scheduling and pro-
duction in a process containing parallel lines of reactors using decaying catalysts will produce
satisfactory results. Therefore, another methodology is needed that can effectively solve this
problem and can overcome the drawbacks that the use of mixed-integer optimisation methods
would face. In the previous chapter, an optimal control methodology was developed for opti-
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mising maintenance scheduling and production in a process containing a single reactors using
decaying catalysts and this methodology was successful in obtaining robust, reliable and
efficient solutions and overcoming the drawbacks faced by using mixed-integer techniques to
solve that problem. That optimal control methodology will be extended in this chapter to opti-
mise similar aspects in a process containing parallel lines of reactors using decaying catalysts.

This optimal control methodology involves a multistage mixed-integer optimal control
problem (MSMIOCP) formulation in combination with a solution procedure of the principle
of Implementation II, which was detailed in Section 2.4.3 of the previous chapter. As per
this methodology, the problem under consideration is first formulated as an MSMIOCP
with relaxed binary controls, of the form of equation (2.61), which is essentially a standard
nonlinear optimisation problem. The elements of this MSMIOCP represent the various
elements of the process in an analogous manner to that in Chapter 1. Next, a series of
such standard nonlinear optimisation problems are solved as per a penalty term homotopy
technique wherein a monotonically increasing penalty term is added to the objective function
to force the the binary controls, considered continuous in this formulation, to attain values of
0 or 1.

In the next section, this optimal control methodology is applied to the case study of an in-
dustrial process. The problem formulation is presented first, followed by the implementation
details and a discussion of the results obtained.

3.2 Case study: Problem formulation, implementation, re-
sults and discussion

In this section, the optimal control methodology is applied in a case study to optimise main-
tenance scheduling and production in an industrial process wherein a single feed is split over
a set of parallel reactors using decaying catalysts to produce a single product. As mentioned
in Section 3.1, currently no publication explicitly addresses such a problem. Hence, there
was no process in any publication that could be used as a base to develop this formulation.
Instead, the process examined in the previous chapter, for a single reactor, is modified to
consider 4 parallel reactors.

A schematic of the process is shown in Figure 3.1. Here, a maintenance schedule is
required that specifies, for the set of 4 parallel reactors, how many catalyst loads to use in each
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reactor as well as when the maintenance action to replace each of the used catalyst should
occur in each reactor. Further, the maintenance schedule should ensure that no two reactors
undergo catalyst replacement at the same time. The decisions to be made in this regard
include whether to replace a catalyst or not, in each reactor, at regular intervals throughout the
time horizon of the process. In addition, a production plan is needed which involves decisions
that specify the flow rate to and temperature of operation of each of the 4 reactors, as well as
decisions on the quantity of product sales to meet time-varying demand, at regular intervals
over the process time horizon. This production plan should be managed in tandem with the
maintenance schedule and while taking catalyst deactivation in each reactor into account. An
integrated optimisation of the maintenance scheduling and production operations in the set
of parallel reactors will enable attaining the objective of maximum profits for this process.

First, as per the methodology, the case study of this process is formulated as an MSMIOCP
with relaxed binary controls, of the form of equation (2.61). In the case study considered
in this chapter, the kinetics for the product formation reaction and the catalyst deactivation
are similar to that of Case Study A in the previous chapter. The elements of the formulation
here are developed as per principles largely similar to that of the single reactor process
considered in the preceding chapter, but also contain some additional features compared to
the formulation in the latter. The terminology used in this formulation is also similar to that
in the previous chapter, with the exception that a subscript, pr, is added to each symbol used,
in order to highlight the application to a "parallel reactor" set up, as well as to differentiate
each term from the analogous term in that chapter. The sections following that of the problem
formulation, present the implementation details and a discussion of the results obtained.

3.2.1 Problem formulation

In the problem addressed, the following assumptions apply:

1. The industrial process operates over a fixed time horizon, in the order of years. Each
year is constituted by 12 months and there are a total of NMpr months, wherein each
month is constituted by 4 weeks.

2. The industrial process functions according to a certain process model and is subject to
operating constraints.

3. The process has 4 Continuous Stirred Tank Reactors (CSTRs) of equal volumes, that
operate in parallel.

4. There is a single feed to the process which is to be divided among the 4 reactors.
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Fig. 3.1 A schematic of the process.
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5. Each reactor processes the inlet feed using a catalyst to manufacture the same type of
product.

6. In all reactors, the catalyst performance decays with time and has to be replaced before
it crosses a certain maximum age.

7. The catalyst deactivation kinetics is first order with respect to the catalyst activity and
is independent of the concentration of the reacting species. That is, the general form of
the deactivation rate equation is given by equation (2.21) of the previous chapter:

rD = −Kd × cat−act

8. The rate constant in the deactivation kinetics is taken to be independent of the tempera-
ture of operation.

9. All reactors use similar types of catalysts, that are identical in functioning and per-
formance. That is, all used catalysts have an identical value of the deactivation rate
constant.

10. For each reactor, there is a maximum number of catalyst loads that can be used over
the given time horizon. This number is the same for all reactors.

11. For each reactor, the time required for the maintenance action of shutting down the
reactor, replacing the catalyst and restarting operation, is taken to be one month, during
which time no production occurs.

12. The availability of labour and equipment in the process is such that in any one month,
only one reactor can undergo catalyst replacement.

13. The main reaction is assumed to be of the same form as in the previous chapter, as
given by equation (2.18):

R → Q

The reaction rate is considered separable from the catalyst activity and is first order
with respect to the concentration of the reactant, R. That is, the general form of the
reaction rate equation is given by equation (2.25) of the previous chapter:

rR = Kr× cat−act × cR
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14. The reaction rate constant is taken to exhibit an Arrhenius form of temperature depen-
dence, of general form given by equation (2.27) of the previous chapter:

Kr = Ar× exp
(
− Ea

Rg ×T (i, j)

)

15. The type of expressions to describe the kinetics of the catalyst deactivation and product
formation reaction are the same in all reactors.

16. The flow rate of feed to the process has an upper limit. That is, the sum of feed flow
rates to all reactors cannot exceed this limit.

17. The feed flow rate to each reactor has to be specified on a weekly basis.

18. For each reactor, the flow of feed is stopped during the maintenance action of catalyst
replacement.

19. The concentration of reactant in the feed to the process is known and constant.

20. The temperature of operation of each reactor has to be specified on a weekly basis.

21. The temperature of each reactor can be operated only within fixed bounds during
catalyst operation and is set to its lower bound during catalyst replacement.

22. Each reactor is operated isothermally. No energy balances are considered for any of
the reactors.

23. The product produced by all reactors is stored continuously as inventory.

24. The weekly product demand is known for the whole time horizon.

25. The amount of product sales from the inventory present has to be specified on a weekly
basis.

26. The product sales for each week is less than or equal to the demand in that week.

27. There is a penalty corresponding to the unmet demand in each week.

28. The costs involved in the process are known and are subject to a known value of annual
inflation. These include the sales price of the product, the cost of inventory, the cost
of feed and raw material, the cost of catalyst changeover and the penalty for unmet
demand. There are, however, no costs related to heating and cooling procedures.
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29. There is no uncertainty regarding the values of any of the parameters involved.

Given the above assumptions, the optimisation model must determine the following sets
of values, which constitute the controls of the MSMIOCP:

(i) The catalyst changeover decision variables, for each month i, for reactors 1, 2, 3 and 4,
represented by symbols y1pr(i), y2pr(i), y3pr(i) and y4pr(i), respectively. For reactor
1, y1pr(i) = 1 indicates that a catalyst is in operation and y1pr(i) = 0 indicates that
the catalyst is being replaced, during month i. An analogous description applies for
variables y2pr(i), y3pr(i) and y4pr(i) in reactors 2, 3 and 4, respectively

(ii) The feed flow rate to reactors 1, 2, 3 and 4, during each week, j, of each month,
i, represented by symbols f f r1pr(i, j), f f r2pr(i, j), f f r3pr(i, j) and f f r4pr(i, j), re-
spectively

(iii) The amount of product sold, at the end of each week, j, of each month, i, represented
by salespr(i, j)

(iv) The temperature of operation of reactors 1, 2, 3 and 4, during each week, j, of
each month, i, represented by symbols T 1pr(i, j), T 2pr(i, j), T 3pr(i, j) and T 4pr(i, j),
respectively

In the above list, j ∈ {1,2,3,4} and i ∈ {1,2, ...,NMpr}. The catalyst changeover decisions
correspond to the binary controls, u, in equation (2.61g) while the other decision variables
correspond to continuous controls, v, in equation (2.61h).

The state variables that characterise the MSMIOCP formulation of this industrial process
include the following sets of variables:

(i) The ages of the catalysts in reactors 1, 2, 3 and 4, represented by symbols cat−age1pr,
cat−age2pr, cat−age3pr and cat−age4pr, respectively

(ii) The activities of the catalysts in reactors 1, 2, 3 and 4, represented by symbols
cat−act1pr, cat−act2pr, cat−act3pr and cat−act4pr, respectively

(iii) The concentration of the reactant at the exit of the reactors 1, 2, 3 and 4, represented
by symbols cR1pr, cR2pr, cR3pr and cR4pr, respectively

(iv) The product inventory level, inlpr

(v) The cumulative inventory costs, cum−incpr
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These state variables are determined by the decision variables’ values at any time using
a set of ODEs and under the influence of constraints. Next, ODEs of the form of equa-
tion (2.61b), that apply for week j ∈ {1,2,3,4} of month i ∈ {1,2, ...,NMpr} of the process
are formulated.

1. In all reactors, the catalyst age varies linearly with time when the catalyst is in opera-
tion (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1) but does not increase at times of catalyst
replacement (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0). Hence, the differential equations
describing the catalyst age in reactors 1, 2, 3 and 4, accounting for both scenarios, are
given by equations, (3.1a), (3.1b), (3.1c) and (3.1d), respectively:

d(cat−age1pr)

dt
= y1pr(i) (3.1a)

d(cat−age2pr)

dt
= y2pr(i) (3.1b)

d(cat−age3pr)

dt
= y3pr(i) (3.1c)

d(cat−age4pr)

dt
= y4pr(i) (3.1d)

2. In all reactors, the catalyst activity decays on a first order basis during times of catalyst
operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1) but experiences no change during
times of catalyst replacement (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0), as there is no
production occurring. Thus, the differential equations for the catalyst activity in
reactors 1, 2, 3 and 4, accounting for both scenarios, are given by equations, (3.2a),
(3.2b), (3.2c) and (3.2d), respectively:

d(cat−act1pr)

dt
= y1pr(i)× [−Kdpr × cat−act1pr] (3.2a)

d(cat−act2pr)

dt
= y2pr(i)× [−Kdpr × cat−act2pr] (3.2b)

d(cat−act3pr)

dt
= y3pr(i)× [−Kdpr × cat−act3pr] (3.2c)

d(cat−act4pr)

dt
= y4pr(i)× [−Kdpr × cat−act4pr] (3.2d)

where Kdpr is the catalyst deactivation rate constant.

3. Since all reactors are assumed to be completely stirred, the concentration of reactant
exiting each reactor (cR1pr, cR2pr, cR3pr, cR4pr) is obtained from the generic mass
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balance equation of a CSTR during times of catalyst operation (y1pr(i), y2pr(i), y3pr(i),
y4pr(i) = 1). However, during times of catalyst replacement (y1pr(i), y2pr(i), y3pr(i),
y4pr(i) = 0), no reaction occurs and an artificial condition is imposed wherein the
reactor is assumed to be filled with fresh, unreacted reactant at the entry concentration
(CR0pr), to be used by the new catalyst after replacement. The differential equations
that account for both scenarios, for reactors 1, 2, 3 and 4 are given by equations, (3.3a),
(3.3b), (3.3c) and (3.3d), respectively:

d(Vpr × cR1pr)

dt
= f f r1pr(i, j)× (CR0pr − cR1pr)

− y1pr(i)× [Vpr ×Kr1pr × cat−act1pr × cR1pr]

(3.3a)

d(Vpr × cR2pr)

dt
= f f r2pr(i, j)× (CR0pr − cR2pr)

− y2pr(i)× [Vpr ×Kr2pr × cat−act2pr × cR2pr]

(3.3b)

d(Vpr × cR3pr)

dt
= f f r3pr(i, j)× (CR0pr − cR3pr)

− y3pr(i)× [Vpr ×Kr3pr × cat−act3pr × cR3pr]

(3.3c)

d(Vpr × cR4pr)

dt
= f f r4pr(i, j)× (CR0pr − cR4pr)

− y4pr(i)× [Vpr ×Kr4pr × cat−act4pr × cR4pr]

(3.3d)

Here Vpr is the volume, considered equal for all reactors. Kr1pr, Kr2pr, Kr3pr and
Kr4pr are the rate constants for the reactions occurring in reactors 1, 2, 3 and 4,
respectively, and they exhibit an Arrhenius form of dependence on the temperature of
operation of the respective reactors, of the following form:

Kr1pr = Arpr × exp
(
− Eapr

Rg ×T 1pr (i, j)

)
(3.4a)

Kr2pr = Arpr × exp
(
− Eapr

Rg ×T 2pr (i, j)

)
(3.4b)

Kr3pr = Arpr × exp
(
− Eapr

Rg ×T 3pr (i, j)

)
(3.4c)

Kr4pr = Arpr × exp
(
− Eapr

Rg ×T 4pr (i, j)

)
(3.4d)

Here Arpr and Eapr are the pre-exponential factor and the activation energy, respec-
tively, of reaction of the main reaction and Rg is the universal gas constant.
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4. It is assumed that product produced by all reactors is stored as inventory before being
sold at the end of the week. During times of catalyst operation (y1pr(i), y2pr(i), y3pr(i),
y4pr(i) = 1) in a reactor, the inventory level increases equivalent to the production rate
(volume times reaction rate) of that reactor. But when catalyst replacement occurs
(y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0) in a reactor, the reactor does not contribute to
an increase in inventory level as there is no production occurring. So, the differential
equation describing the inventory level (inlpr), that takes into account production from
all reactors, while considering scenarios of catalyst operation as well as replacement,
is given by:

d(inlpr)

dt
= y1pr(i)× [Vpr ×Kr1pr × cat−act1pr × cR1pr]

+y2pr(i)× [Vpr ×Kr2pr × cat−act2pr × cR2pr]

+y3pr(i)× [Vpr ×Kr3pr × cat−act3pr × cR3pr]

+y4pr(i)× [Vpr ×Kr4pr × cat−act4pr × cR4pr]

(3.5)

5. Lastly, the increase in the cumulative inventory cost (cum−incpr) at any time depends
on the inventory level at that time and the Inventory Cost Factor (ic fpr) (adjusted for
inflation), which stipulates the cost per unit product per unit time:

d(cum−incpr)

dt
= inlpr × ic fpr (3.6)

The ic fpr at any time is given by the following equation:

ic fpr = base−ic fpr × (1+ in f lationpr)
⌊i/12⌋ (3.7)

where base−ic fpr is the inventory cost factor before inflation, in f lationpr is the annual
inflation rate and ⌊·⌋ is the greatest integer function.

The set of ODEs are solved repeatedly over a weekly time span, which corresponds to
one stage of the MSMIOCP. In order to solve these ODEs, for each stage, suitable initial
conditions have to be provided. The initial conditions for week 1 of month 1 are assumed to
be known and are of the form of equation (2.61c). The initial conditions for the other stages
are obtained using junction conditions between two successive stages of the process, of the
form of equation (2.61d).

The initial conditions corresponding to week 1 of month 1, represented as init−var(1,1)
for variable var, are as follows:
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1. In all reactors, a new catalyst is used at the beginning of the process and so the initial
catalyst age in all reactors is set to zero:

init−cat−age1pr (1,1) = 0 (3.8a)

init−cat−age2pr (1,1) = 0 (3.8b)

init−cat−age3pr (1,1) = 0 (3.8c)

init−cat−age4pr (1,1) = 0 (3.8d)

2. Since, in all reactors, a new catalyst is used at the beginning of the process, the
initial catalyst activity for the catalysts in all reactors is set to that of a fresh catalyst
(start−cat−actpr):

init−cat−act1pr (1,1) = start−cat−actpr (3.9a)

init−cat−act2pr (1,1) = start−cat−actpr (3.9b)

init−cat−act3pr (1,1) = start−cat−actpr (3.9c)

init−cat−act4pr (1,1) = start−cat−actpr (3.9d)

3. At the start of the process, all reactors are filled with the reactant, R, at its entry
concentration CR0pr. Hence, the initial exit concentration in all reactors is given by:

init−cR1pr (1,1) =CR0pr (3.10a)

init−cR2pr (1,1) =CR0pr (3.10b)

init−cR3pr (1,1) =CR0pr (3.10c)

init−cR4pr (1,1) =CR0pr (3.10d)

4. There is no inventory at the beginning of the process, and so:

init−inlpr (1,1) = 0 (3.11)

5. There is no inventory at the start of the process and so the initial cumulative inventory
cost is nil at that time:

init−cum−incpr (1,1) = 0 (3.12)
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The junction conditions are described next. For all reactors, the junction conditions differ
depending on whether the catalyst is in operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1) or
is being replaced (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0) during that month. In the following
text, the expressions init−var (i, j) and end−var (i, j) indicate the initial and end conditions,
respectively for the variable var, for week j of month i:

1. During months of catalyst operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1), in all
reactors, the initial catalyst age for a week corresponds to the catalyst age at the end
of the previous week. But during months of catalyst replacement (y1pr(i), y2pr(i),
y3pr(i), y4pr(i) = 0), the catalyst age has to be set to zero, the age of a new catalyst.
The junction conditions that describe both scenarios for all reactors, are as follows.

init−cat−age1pr (i, j+1) = end−cat−age1pr(i, j) (3.13a)

init−cat−age2pr (i, j+1) = end−cat−age2pr(i, j) (3.13b)

init−cat−age3pr (i, j+1) = end−cat−age3pr(i, j) (3.13c)

init−cat−age4pr (i, j+1) = end−cat−age4pr(i, j) (3.13d)

j = 1,2,3 i = 1,2, . . . ,NMpr

init−cat−age1pr (i, 1) = y1pr(i)× end−cat−age1pr(i−1, 4) (3.13e)

init−cat−age2pr (i, 1) = y2pr(i)× end−cat−age2pr(i−1, 4) (3.13f)

init−cat−age3pr (i, 1) = y3pr(i)× end−cat−age3pr(i−1, 4) (3.13g)

init−cat−age4pr (i, 1) = y4pr(i)× end−cat−age4pr(i−1, 4) (3.13h)

i = 2,3, . . . ,NMpr

2. During months of catalyst operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1), in all
reactors, the initial catalyst activity for the week corresponds to the catalyst activity at
the end of the previous week. However, during months of catalyst replacement (y1pr(i),
y2pr(i), y3pr(i), y4pr(i) = 0), in all reactors, the catalyst activity has to be reset to the
activity corresponding to that of a fresh catalyst, which remains the same throughout
the duration of month i. The junction conditions that describe both scenarios for all
reactors is given as follows.

init−cat−act1pr (i, j+1) = end−cat−act1pr(i, j) (3.14a)
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init−cat−act2pr (i, j+1) = end−cat−act2pr(i, j) (3.14b)

init−cat−act3pr (i, j+1) = end−cat−act3pr(i, j) (3.14c)

init−cat−act4pr (i, j+1) = end−cat−act4pr(i, j) (3.14d)

j = 1,2,3 i = 1,2, . . . ,NMpr

init−cat−act1pr (i, 1) = [y1pr(i)× end−cat−act1pr(i−1, 4)]

+ [(1− y1pr(i))× start−cat−actpr]
(3.14e)

init−cat−act2pr (i, 1) = [y2pr(i)× end−cat−act2pr(i−1, 4)]

+ [(1− y2pr(i))× start−cat−actpr]
(3.14f)

init−cat−act3pr (i, 1) = [y3pr(i)× end−cat−act3pr(i−1, 4)]

+ [(1− y3pr(i))× start−cat−actpr]
(3.14g)

init−cat−act4pr (i, 1) = [y4pr(i)× end−cat−act4pr(i−1, 4)]

+ [(1− y4pr(i))× start−cat−actpr]
(3.14h)

i = 2,3, . . . ,NMpr

3. During months of catalyst operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1), in all
reactors, the exit concentration for the beginning of a week corresponds to the exit
concentration at the end of the previous week. And when the catalyst is being replaced
(y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0) in a reactor, an artificial condition is imposed
wherein the reactor is filled with reactant at entry concentration CR0pr, ready to be
used by the fresh catalyst at the beginning of the next month. The junction conditions
that describe both scenarios for all reactors is given as follows.

init−cR1pr (i, j+1) = end−cR1pr(i, j) (3.15a)

init−cR2pr (i, j+1) = end−cR2pr(i, j) (3.15b)

init−cR3pr (i, j+1) = end−cR3pr(i, j) (3.15c)

init−cR4pr (i, j+1) = end−cR4pr(i, j) (3.15d)

j = 1,2,3 i = 1,2, . . . ,NMpr

init−cR1pr(i, 1)= [y1pr(i)× end−cR1pr(i−1, 4)]+[(1− y1pr(i))×CR0pr] (3.15e)

init−cR2pr(i, 1) = [y2pr(i)× end−cR2pr(i−1, 4)]+[(1− y2pr(i))×CR0pr] (3.15f)
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init−cR3pr(i, 1) = [y3pr(i)× end−cR3pr(i−1, 4)]+ [(1− y3pr(i))×CR0pr]

(3.15g)
init−cR4pr(i, 1) = [y4pr(i)× end−cR4pr(i−1, 4)]+ [(1− y4pr(i))×CR0pr]

(3.15h)
i = 2,3, . . . ,NMpr

4. At the end of a week, an amount, salespr(i, j) of the stored product is sold. Thus,
the initial inventory level for the week corresponds to the inventory present after the
sales at the end of the previous week. The following junction conditions apply during
months of catalyst operation as well as catalyst replacement, as the sales do not cease
at any time:

init−inlpr (i, j+1) = end−inlpr(i, j)− salespr(i, j)
j = 1,2,3 i = 1,2, . . . ,NMpr

(3.16a)

init−inlpr (i, 1) = end−inlpr(i−1, 4)− salespr (i−1, 4)
i = 2,3, . . . ,NMpr

(3.16b)

5. The inventory cost accumulated until the beginning of a week is equal to the value of
the inventory cost accumulated until the end of the previous week. So the following
junction conditions apply regardless of whether the catalyst is being used or replaced:

init−cum−incpr (i, j+1) = end−cum−incpr(i, j)
j = 1,2,3 i = 1,2, . . . ,NMpr

(3.17a)

init−cum−incpr (i, 1) = end−cum−incpr(i−1, 4)
i = 2,3, . . . ,NMpr

(3.17b)

The initial conditions (3.8) – (3.12) and junction conditions (3.13) – (3.17) enable a
solution for the ODEs for all stages and thereby obtain the values of the state variables.
These obtained state variables, along with the control variables, are required to fulfil some
constraints, which include the operational limits of the process and restrictions on the values
of the controls to be chosen.

The constraints, of the form of equation (2.61f), that apply to this industrial process for
week j ∈ {1,2,3,4} of month i ∈ {1,2, ...,NMpr} are as follows:

1. In the context of the formulation as an MSMIOCP with relaxed binary controls,
the catalyst changeover decision variables for all reactors (y1pr(i), y2pr(i), y3pr(i),
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y4pr(i)), for a month i, are considered continuous variables that vary between 0 and 1,
and so the following bounds are imposed:

0 ≤ y1pr(i) ≤ 1 (3.18a)

0 ≤ y2pr(i) ≤ 1 (3.18b)

0 ≤ y3pr(i) ≤ 1 (3.18c)

0 ≤ y4pr(i) ≤ 1 (3.18d)

2. The net flow rate of feed to the process has an upper limit (FUpr). That is, the sum
of the flow rates of feeds to all reactors has to remain within this limit and so, the
following bounds are imposed, for each week:

0 ≤ f f r1pr(i, j)+ f f r2pr(i, j)+ f f r3pr(i, j)+ f f r4pr(i, j) ≤ FUpr (3.19)

3. The sales in each week are assumed to be less than or equal to the demand for the
product in that week (demandpr(i, j)). Hence, the following bounds on the sales at the
end of each week are imposed:

0 ≤ salespr(i, j) ≤ demandpr(i, j) (3.20)

4. The temperature of each reactor operates between known, fixed lower and upper
bounds, given by T Lpr and TUpr, respectively. Hence, the following bounds are set on
the weekly temperature of operation of each reactor:

T Lpr ≤ T 1pr(i, j) ≤ TUpr (3.21a)

T Lpr ≤ T 2pr(i, j) ≤ TUpr (3.21b)

T Lpr ≤ T 3pr(i, j) ≤ TUpr (3.21c)

T Lpr ≤ T 4pr(i, j) ≤ TUpr (3.21d)

5. When a catalyst is being replaced in a reactor (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0),
the flow of raw material to that reactor stops. The following constraints ensure that
the weekly feed flow rate to each reactor remains below the upper bound during times
of catalyst operation (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1) and drops to zero when
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catalyst replacement occurs (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0):

f f r1pr(i, j)− [FUpr × y1pr(i)] ≤ 0 (3.22a)

f f r2pr(i, j)− [FUpr × y2pr(i)] ≤ 0 (3.22b)

f f r3pr(i, j)− [FUpr × y3pr(i)] ≤ 0 (3.22c)

f f r4pr(i, j)− [FUpr × y4pr(i)] ≤ 0 (3.22d)

6. When a catalyst is being replaced in a reactor (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0),
the temperature of the reactor is required to drop to its lower bound. This condition
is imposed using the following constraints which ensure that the temperature of each
reactor, for each week, remains between its bounds during times of catalyst operation
(y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 1) but drops to the lower bound when catalyst
replacement occurs (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0):

T Lpr ≤ T 1pr(i, j) ≤ [(TUpr −T Lpr)× y1pr(i)]+T Lpr (3.23a)

T Lpr ≤ T 2pr(i, j) ≤ [(TUpr −T Lpr)× y2pr(i)]+T Lpr (3.23b)

T Lpr ≤ T 3pr(i, j) ≤ [(TUpr −T Lpr)× y3pr(i)]+T Lpr (3.23c)

T Lpr ≤ T 4pr(i, j) ≤ [(TUpr −T Lpr)× y4pr(i)]+T Lpr (3.23d)

7. For each reactor, there is a maximum number of catalyst replacements that can occur.
In this case study, it is assumed that this maximum number is the same for all reactors
and this number is designated as npr. The limit on the maximum number of catalyst
changeovers allowed for each reactor is imposed using the following set of constraints:

NMpr

∑
i=1

y1pr(i)≥ NMpr −npr (3.24a)

NMpr

∑
i=1

y2pr(i)≥ NMpr −npr (3.24b)

NMpr

∑
i=1

y3pr(i)≥ NMpr −npr (3.24c)

NMpr

∑
i=1

y4pr(i)≥ NMpr −npr (3.24d)
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8. The availability of equipment and labour in the process is such that only one reactor
can undergo catalyst replacement (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0) during any
month. Mathematically, this means that among the catalyst changeover controls for all
reactors (y1pr(i), y2pr(i), y3pr(i), y4pr(i)), at most one control can take a value of 0
(or at least three controls should have values of 1) during any month, i. This condition
of non-simultaneous catalyst replacement is enforced using the following constraint:

y1pr(i)+ y2pr(i)+ y3pr(i)+ y4pr(i) ≥ 3 (3.25)

9. In order to ensure that more product than available is not sold, the inventory level at
the end of each week should be greater than the sales for the week. This is imposed
using the following constraint:

end−inlpr(i, j)− salespr(i, j) ≥ 0 (3.26)

10. The catalysts in all reactors undergo deactivation over time and have to be replaced
before crossing a certain maximum age. Since all reactors use catalysts that are
identical in functioning and performance, a common for all maximum catalyst age,
designated as max−cat−agepr, is used. As the decision on whether to replace a catalyst
or not is made on a monthly basis, it is sufficient to ensure that the catalyst age in each
reactor does not cross this limit at the end of each month, i:

end−cat−age1pr (i, 4) ≤ max−cat−agepr (3.27a)

end−cat−age2pr (i, 4) ≤ max−cat−agepr (3.27b)

end−cat−age3pr (i, 4) ≤ max−cat−agepr (3.27c)

end−cat−age4pr (i, 4) ≤ max−cat−agepr (3.27d)

The aim is to maximise the profits or minimise the costs of the process under the influence
of these ODEs, initial conditions, junction conditions and constraints. The net costs of the
process are represented by the objective function, of the form of equation (2.61a), and
comprises of the following elements:

1. The Gross Revenue from Sales (GRSpr)

This term represents the revenue for the process from the net sales of the product
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chemical over the whole time horizon:

GRSpr =
NMpr

∑
i=1

4

∑
j=1

psppr(i, j)× salespr(i, j) (3.28)

where psppr(i, j) is the sales price per unit product for week j of month i, adjusted for
inflation at that time:

psppr(i, j) = base−psppr × (1+ in f lationpr)
⌊i/12⌋

where base−psppr is the unit product sales price before inflation.

2. The Total Inventory Costs (T ICpr)

This term represents the net storage costs for the product over the whole time horizon
and is obtained from the solution of the ODEs for the state variable cum−incpr at the
end of the final week of the process:

T ICpr = end−cum−incpr(NMpr, 4) (3.29)

3. The Total Costs of Catalyst Changeovers (TCCCpr)

The total expenditure for the catalyst changeover operations is given by the sum of
the catalyst changeover costs for all 4 reactors. Since these costs are incurred only
during months of catalyst replacement(y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0), TCCCpr

is obtained in the following manner:

TCCCpr =
NMpr

∑
i=1

crcpr(i)× [1− y1pr(i)]+
NMpr

∑
i=1

crcpr(i)× [1− y2pr(i)]

+
NMpr

∑
i=1

crcpr(i)× [1− y3pr(i)]+
NMpr

∑
i=1

crcpr(i)× [1− y4pr(i)]

(3.30)

It is highlighted that the terms within the summations remain non-zero only during
the times of catalyst replacement (y1pr(i), y2pr(i), y3pr(i), y4pr(i) = 0) and only these
terms contribute to the total costs. Here crcpr(i) is the cost of the catalyst replacement
operation, considered the same for all reactors, for month i, adjusted for inflation at
that time:

crcpr(i) = base−crcpr × (1+ in f lationpr)
⌊i/12⌋

where base−crcpr is the cost of a catalyst changeover operation before inflation.
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4. The Net Penalty for Unmet Demand (NPUDpr)

The unmet demand in each week (unmet−demandpr (i, j)) is the quantity of product
by which the sales falls short of the demand in that week:

unmet−demandpr (i, j) = demandpr (i, j)− salespr (i, j)
j = 1,2,3,4 i = 1,2, . . . ,NMpr

(3.31)

There is a penalty associated with this unmet demand and the net penalty costs over
the entire time horizon is given by:

NPUDpr =
NMpr

∑
i=1

4

∑
j=1

penpr(i, j)×unmet−demandpr(i, j) (3.32)

where penpr(i, j) is the penalty cost of unmet demand per unit product for week j of
month i, adjusted for inflation at that time:

penpr(i, j) = base−penpr × (1+ in f lationpr)
⌊i/12⌋

where base−penpr is the penalty cost of unmet demand per unit product before infla-
tion.

5. The Total Flow Costs (T FCpr)

This term represents the net expenditure on the feed of raw material to all reactors in
the process and is given by:

T FCpr =
NMpr

∑
i=1

4

∑
j=1

co fpr(i, j)×[ f f r1pr(i, j)+ f f r2pr(i, j)+ f f r3pr(i, j)+ f f r4pr(i, j)]

(3.33)
where co fpr(i, j) is the cost of raw material per unit volume per week for week j of
month i, adjusted for inflation at that time:

co fpr(i, j) = base−co fpr × (1+ in f lationpr)
⌊i/12⌋

where base−co fpr is the cost of raw material per unit volume per week before inflation.

If the Net Costs are represented by NCpr, the objective function for this optimisation problem
takes the form:

min NCpr = −GRSpr + T ICpr + TCCCpr + NPUDpr + T FCpr (3.34)
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The essential elements of the problem formulation have now been described in detail.
The aim is to make the appropriate decisions in order to minimise the net costs (or maximise
the profit) of the industrial process, when subject to the ODEs, initial and junction conditions
and the constraints.

As in the previous chapter, the set of parameters used for this problem are constructed
and their values are given in Table 3.1. These parameters are mostly similar to those used in
the previous chapter, except here the volumes of the 4 reactors used add up to the volume
of the single reactor in that chapter and the base cost of catalyst replacement (base−crcpr)
is adjusted accordingly to be quarter of the cost (base−crc) in that chapter. A 3-year time
horizon is considered here as well and the details of the problem size under this formulation
for this horizon length are given in Table 3.2. In the next section, the implementation details
of the solution procedure are discussed.
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Table 3.1 List of parameters.

Parameter Symbol Value

Arpr 885 (1/day)

base−co fpr $ 210 /week

base−crcpr $ 25×105

base−ic fpr $ 0.01 /(kmol day)

base−penpr $ 1250 /kmol

base−psppr $ 1000 /kmol

CR0pr 1 kmol/m3

demandpr

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Eapr 30,000 J/gmol

FUpr 9600 m3/day

in f lationpr 5%

Kdpr 0.0024 (1/day)

max−cat−agepr 504 days (= 1.5 years)

npr 5

NMpr 36 months (= 3 years)

Rg 8.314 J/(gmol.K)

start−cat−actpr 1.0

T Lpr 400 K

TUpr 1000 K

Vpr 12.5 m3
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Table 3.2 Problem size specifications.

Property Size

Ordinary Differential Equations 2016

Decision variables

Catalyst changeover actions (y1pr, y2pr, y3pr, y4pr) 144

Feed flow rates ( f f r1pr, f f r2pr, f f r3pr, f f r4pr) 576

Sales (salespr) 144

Temperatures (T 1pr, T 2pr, T 3pr, T 4pr) 576

Total 1440

Constraints

Constraints (3.18) 288

Constraints (3.19) 288

Constraints (3.20) 288

Constraints (3.21) 1152

Constraints (3.22) 576

Constraints (3.23) 1152

Constraints (3.24) 4

Constraints (3.25) 36

Constraints (3.26) 144

Constraints (3.27) 144

Total 4072

3.2.2 Implementation details

In the previous section, the industrial process was developed as an MSMIOCP with relaxed
binary controls, which is a standard multistage optimal control problem and hence, a standard
nonlinear optimisation problem. As per the proposed optimal control methodology to
optimise this industrial process, the formulation developed in the previous section is solved
using a solution procedure of the principle of Implementation II, which was detailed in
Section 2.4.3. This involves applying a penalty term homotopy technique, of the form of
equation (2.62), to the developed problem formulation and solving the following series of
standard multistage optimal control problems:
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Gpk : min

{
NCpr +Mpk

[
NMpr

∑
i=1

y1pr(i) [1− y1pr(i)]+
NMpr

∑
i=1

y2pr(i) [1− y2pr(i)]

+
NMpr

∑
i=1

y3pr(i) [1− y3pr(i)]+
NMpr

∑
i=1

y4pr(i) [1− y4pr(i)]

]} (3.35)

subject to the differential equations, the initial conditions, the junction conditions and
constraints of the developed formulation, which were presented in Section 3.2.1, for

k = 1,2,3 . . .

Mp1 = 0

In accordance with the proposed solution procedure, if in the solution of problem Gpk,
the condition, y1pr(i),y2pr(i),y3pr(i),y4pr(i) ∈ {0,1} for i = 1,2, . . .NMpr, does not apply,
then problem Gpk+1 is solved using the solution of Gpk as initial guesses, with weight
Mpk+1 > Mpk. The weight term, Mpk, is increased as per the arithmetic progression given
by equation (3.36). This progression is similar to the progression of increase of weights in
equation (2.64) for the single reactor problem in the previous chapter, and is chosen as such
because it produced satisfactory results in this problem as well.

Mpk+1 = (2×Mpk)+
(
5×107)

Mp1 = 0

k = 1,2,3 . . .

(3.36)

As in Section 2.4.3, the implementation was performed using PythonTM 3.7.1 in PyCharm
2019.3.3 (Community Edition). Once again, CasADi v3.4.5 was used to define as symbolic
expressions, the elements of the series of problems given by equation (3.35).

CasADi plug-ins to the IDAS solver of the open source SUNDIALS suite and IPOPT by
COIN-OR were once again used for the integration of ODEs and optimisation, respectively,
with similar termination criteria to that used in Section 2.4.3. That is, the integration by IDAS
had the following termination criteria: an absolute tolerance of 10−6 and a relative tolerance
of 10−6. For the optimisation by IPOPT, Table 3.3 presents the termination and ‘acceptable’
termination criteria, wherein the ’acceptable’ number of iterations concerning the latter was
set at 15, as was done in Chapter 2.
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Table 3.3 Criteria for termination of optimisation by IPOPT

Property Termination tolerance Acceptable termination tolerance

Optimality error 10−4 10−4

Dual infeasibility 1 106

Constraint violation 10−4 10−2

Complementarity 10−4 10−2

The implementation was once again performed on a 3.2 GHz Intel Core i5, 16 GB RAM,
Windows machine running on Microsoft Windows 10 Enterprise. Since the problem is non-
convex in this case as well, 50 runs were performed in a serial manner with different random
initial guesses for the decision variables, as was done in the previous chapter. In this case,
though, the random initial guesses were generated using Latin Hypercube Sampling (McKay
et al., 1979), obtained in Python using the lhs method of the pyDOE module (version 0.3.8).

In the next section, the results obtained are discussed. Statistics describing the essential
solution features for the 50 runs are provided in the form of tables, and figures of the trends
of the decision and state variables over the time horizon for the most profitable run are
examined.

3.2.3 Results and discussions

As in the previous chapter, this methodology produced high quality solutions. Regardless
of the initial guesses used, each of the 50 runs successfully converged to a local optimum
within the specified optimality tolerance, thereby indicating the robustness of the procedure.
The nonlinear differential equations were solved to a high accuracy using state-of-the-art
integrators, without any approximation techniques, thus underscoring the reliability of the
obtained solutions. The penalty term homotopy technique was successful, not only in obtain-
ing binary values for the catalyst changeover controls in all reactors but also in enforcing
the condition of non-simultaneous catalyst replacement, without the use of mixed-integer
programming methods, and this underlines the efficiency of the methodology.

Statistics regarding the ranges of the profits, computation times and number of major
iterations involved in the set of 50 runs are shown in Table 3.4. For the row labelled, "Profit
(Million $)", the columns titled ‘Maximum’, ‘Minimum’ and ‘Mean/Mode’ represent the
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maximum, minimum and mean profits among the set of 50 runs. Analogous explanations
hold with regard to the maximum, minimum and mean solution times for those columns,
for the row labelled, "CPU time (seconds)". From the row labelled, "Number of Major
Iterations", it is seen that a minimum of 2 and a maximum of 4 major iterations are needed
to obtain binary values for the catalyst changeover controls, with the mode being 3. The
statistics regarding the number of IPOPT iterations within each major iteration are given in
Table 3.5.

Further insights into the distribution of the profits over the 50 runs is shown in Figure 3.2.
In the histogram in this figure, the height of each bin represents the number of runs out of
50 that result in profit values within the range specified by the horizontal edges of that bin.
Given that the other properties discussed in Tables 3.4 and 3.5, namely the CPU time, the
number of major iterations and the number of IPOPT iterations within each major iteration,
are dependent on the computer used to obtains solutions, similar distributions for these
properties have not been presented as these cannot be generalised.

Table 3.4 Solution statistics over the 50 multi-start runs.

Property Maximum Minimum Mean/Mode

Profit (Million $) 435.595 378.817 411.855

CPU time (seconds) 330269 174663 238882

Number of Major Iterations 4 2 3

Table 3.5 Statistics for each major iteration. The column titled ‘Runs’ indicates the number
of runs out of 50 that progressed until that major iteration. The columns titled ‘Max’, ‘Min’
and ‘Mean’ indicate the maximum, minimum and mean number of IPOPT iterations within
that major iteration, respectively.

Major iteration Runs Max Min Mean

Major iteration 1 50 400 206 331

Major iteration 2 50 200 79 121

Major iteration 3 44 200 52 76

Major iteration 4 2 63 58 60.5
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Fig. 3.2 The distribution of the profits obtained over all runs

Table 3.6 A comparison of the problem size and solution times between the single and parallel
reactor studies

Property Single reactor study Parallel reactor study

Number of differential equations 720 2016

Number of decision variables 468 1440

Number of constraints 1549 4072

Maximum CPU time among 50 runs (seconds) 27438 330269

Minimum CPU time among 50 runs (seconds) 9826 174663

Mean CPU time among 50 runs (seconds) 17440 238882



3.2 Case study: Problem formulation, implementation, results and discussion 151

As mentioned previously, the kinetics of the product formation reaction and catalyst
deactivation in this case study are similar to that of Case Study A in the single reactor study
of the previous chapter. Table 3.6 shows a comparison between the size of the optimal
control problem formulations for the single reactor and parallel reactor studies, as well as a
comparison between the CPU times for obtaining solutions using Implementation II for Case
Study A of the single reactor study and for the parallel reactor study. As can be seen from the
table, the number of differential equations, decision variables and constraints for the parallel
reactor study are about 2.6–3.1 times those in the single reactor study. With regard to the
solution times for the 50 runs for Case Study A of the single reactor study and the parallel
reactor study, each which used a different set of initial guesses for the decision variables, the
maximum, minimum and mean solution times for the latter study are about 12-18 times that
in the former study. This provides insights into how the computation time scales with the
number of variables, when using a solution procedure of the principle of Implementation II,
for the type of computer used to obtain solutions. This correlation might well vary when a
different type of computer is used.

Table 3.7 presents statistics regarding the catalyst ages and the number of catalyst
replacements. It is noted that among all runs, for all reactors, only a maximum of 4 catalyst
replacements and not all of the available 5 are used, with the mode being 3. It is also seen
that the mean catalyst age for all reactors is about half the maximum age of 504 days and in
no run, for any reactor, is a catalyst recommended to be used up to that maximum age.

Table 3.7 Statistics regarding the catalyst replacements in each reactor.

Reactor
Number of catalyst replacements Catalyst age (Days)

Max Min Mode Max Min Mean

Reactor 1 4 2 3 476 112 243.2

Reactor 2 4 2 3 476 112 252

Reactor 3 4 2 3 476 112 246

Reactor 4 4 2 3 476 112 234.9
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Fig. 3.3 The distribution of the number of catalyst replacements over all runs for (a) Reactor 1
(b) Reactor 2 (c) Reactor 3 (d) Reactor 4
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Fig. 3.4 The distribution of the ages of the catalyst used over all runs for (a) Reactor 1 (b)
Reactor 2 (c) Reactor 3 (d) Reactor 4
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As the statistics in Table 3.7 regarding the number of catalyst replacements and catalyst
ages in all reactors are very similar, further insights into the distributions of these properties
have been provided in Figures 3.3 and 3.4. Some comments regarding these figures:

• Figure 3.3 shows the distribution of the number of catalyst replacements obtained
from all runs for all reactors. The histogram presented in subplot (a) of this figure
pertains to Reactor 1 wherein the height of each bin represents the number of runs out
of 50 that involved the number of catalyst replacements given by the midpoint of the
horizontal width of the bin. Similar explanations hold for the histograms relating to
Reactors 2, 3 and 4 in subplots (b), (c) and (d), respectively, of the figure. It is noted
that the maximum allowable number of catalyst replacements for each reactor, as per
the invented set of parameters used, is 5.

• Figure 3.4 shows the distribution of the ages of all catalyst used in all runs for all
reactors. The histogram presented in subplot (a) of this figure pertains to Reactor 1
wherein the height of each bin represents the number of catalysts, out of all the
catalysts used in all the 50 runs, that were used up to the age given by the midpoint of
the horizontal width of the bin. Similar explanations hold for the histograms relating
to Reactors 2, 3 and 4 in subplots (b), (c) and (d), respectively, of the figure. It is noted
that since catalysts can be replaced only at the end of a month, all catalyst ages are
multiples of 28 and the maximum allowable age of each catalyst, as per the invented
set of parameters used, is 504 days.

The trends of the decision and state variables over the time horizon for the most profitable
solution among the set of 50 runs are given in Figures 3.5 – 3.13. It was found that the trends
over the time horizon, of the variables corresponding to each reactor in this parallel set up
came out to be very similar to those of the single reactor in the results presented for Case
Study A in Section 2.3.3 and Section 2.4.5 of the previous chapter, wherein the kinetics of
the main reaction and catalyst deactivation were of a similar form to what is considered
here. Therefore, the explanations for the trends of these variables are also similar to the
explanations presented for the trends of the corresponding variables in those sections. A
discussion of the obtained trends follows next.

Figure 3.5 illustrates the variation of the monthly catalyst changeover controls over the
whole time horizon for all 4 reactors (y1pr, y2pr, y3pr, y4pr). In this case, two major iterations
are needed to force the catalyst changeover controls for all reactors to take integer values.
From the graph, it is seen that the model indicates that it is optimal for the process to replace
the catalyst three times in Reactors 1, 2 and 3 and four times in Reactor 4, during those



3.2 Case study: Problem formulation, implementation, results and discussion 155

months corresponding to when their respective catalyst changeover controls become 0. It is
highlighted that the months when catalyst replacements occur for the four reactors do not
overlap, thereby fulfilling constraint (3.25) for non-simultaneous catalyst replacement. The
other graphs presented are those obtained as solutions of the second major iteration.

The profiles of the feed flow rates to each reactor ( f f r1pr, f f r2pr, f f r3pr, f f r4pr) and
the total feed flow rate to the process ( f f r1pr + f f r2pr + f f r3pr + f f r4pr) over the whole
time horizon, are shown in Figures 3.6 and 3.7, respectively. The trends of the feed flow rates
to all reactors in Figure 3.6 are related to the corresponding profiles of the temperature of
operation (T 1pr, T 2pr, T 3pr, T 4pr), shown in Figure 3.9, and the reactant exit concentrations
from the reactors (cR1pr, cR2pr, cR3pr, cR4pr), shown in Figure 3.12. The explanations of
the trends of all these variables are as follows:

• In all reactors, during times of catalyst operation, the feed flow rate is decreased at
a rate matching that of the reactor’s catalyst deactivation and the temperature of the
reactor is maintained at its upper bound. Such an operation causes the reactant exit
concentration to maintain a constant value. This operational policy is consistent with
the work of Szépe and Levenspiel (1968) for continuous reactors at the reactor level,
which predicted similar operational strategies when the main reaction is more sensitive
to temperature than the catalyst deactivation and the latter is independent of the species’
concentration, as is the consideration in this case study.

• During times of catalyst replacement in all reactors, the feed flow rate is set to zero,
the temperature of operation is set to its lower bound (T Lpr) and the reactant exit
concentration is set to its entry value (CR0pr), as per constraints (3.22) and (3.23) and
junction conditions (3.15), respectively.

• In all reactors, during the operation of the last catalyst, a sharp drop in the flow rate
occurs that causes a corresponding effect in the exit concentration. This occurs to bring
the production rate to a value that exactly fulfils the demand for the remainder of the
time horizon and thereby minimise the costs of flow and raw material.

In Figure 3.7, the profile of the net feed flow rate to the process over the time horizon,
does not follow a regular trend, due to the variations in the feed flow rates to each reactor,
that operate independently of each other. It is noted from the graph that the net flow rate does
not reach its upper bound (FUpr) at any point throughout the time horizon, indicating that
the optimal policy does not require the maximum feed to the process.



156 Optimisation of a process containing parallel lines of reactors

Fig. 3.5 The variation of the catalyst changeover controls over the time horizon in (a)
Reactor 1 (b) Reactor 2 (c) Reactor 3 (d) Reactor 4, in the best solution.
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Figure 3.8 shows a comparison of the optimal quantity of product sales (salespr) with the
corresponding product demand (demandpr) and unmet demand (unmet−demandpr) over the
whole time horizon and it is seen that the trends are similar to that in the analogous graph of
the corresponding single reactor case study. There is a considerable amount of unmet demand
during the first year of the process, but it is nil for the remainder years. Within the first year,
the unmet demand at the beginning occurs because there is no prior product inventory present
and the production capacity of the process is unable to meet the high demand at that time.
Towards the end of the first year, there is considerable unmet demand in order to enable a
hoarding of product which in turn enables a greater amount of sales and nil unmet demand
in the second and third years. This can be attributed to the increase in the sales price and
the penalty for unmet demand due to annual inflation, which implies that a greater amount
of sales and no unmet demand in the later years can enable attaining a larger profit. It is
highlighted that the use of parallel reactor lines and the condition that only one reactor can
undergo catalyst replacement at any time, enables the sales to occur continuously throughout
the time horizon.

The variations of the catalyst ages over the time horizon in the 4 reactors (cat−age1pr,
cat−age2pr, cat−age3pr and cat−age4pr) are shown in Figure 3.10. The trends of a linear
increase with time during catalyst operation and a constant value of 0 during catalyst re-
placement follow directly from differential equations (3.1) and junction conditions (3.13).
An analogous graph for the catalyst activities in the 4 reactors (cat−act1pr, cat−act2pr,
cat−act3pr and cat−act4pr) is shown in Figure 3.11. In this figure, the trends of an exponen-
tial decrease during catalyst operation and a constant value at the starting catalyst activity
during catalyst replacement follow directly from differential equations (3.2) and junction
conditions (3.14).
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Fig. 3.6 The variation of the feed flow rate over the time horizon in (a) Reactor 1 (b) Reactor 2
(c) Reactor 3 (d) Reactor 4, in the best solution.
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Fig. 3.7 The variation of the net feed flow rate to the process over the time horizon in the
best solution.

(a)

(b)

Fig. 3.8 The variation of (a) sales and (b) unmet demand, in comparison to the demand over
the whole time horizon, in the best solution.



160 Optimisation of a process containing parallel lines of reactors

Fig. 3.9 The variation of the temperature of operation over the time horizon in (a) Reactor 1
(b) Reactor 2 (c) Reactor 3 (d) Reactor 4, in the best solution.
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Fig. 3.10 The variation of the catalyst age over the time horizon in (a) Reactor 1 (b) Reactor 2
(c) Reactor 3 (d) Reactor 4, in the best solution.



162 Optimisation of a process containing parallel lines of reactors

Fig. 3.11 The variation of the catalyst activity over the time horizon in (a) Reactor 1 (b)
Reactor 2 (c) Reactor 3 (d) Reactor 4, in the best solution.
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Fig. 3.12 The variation of the reactant exit concentration over the time horizon in (a) Reactor 1
(b) Reactor 2 (c) Reactor 3 (d) Reactor 4, in the best solution.
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Fig. 3.13 The variation of the product inventory level and cumulative inventory costs over
the time horizon, in the best solution.

Table 3.8 Details of the economic aspects of the best solution.

Economic aspect Symbol Value ($ Millions)

Gross Revenue from Sales GRSpr 774.672

Costs

Total Inventory Costs T ICpr 0.305

Total Costs of Catalyst Changeovers TCCCpr 33.762

Net Penalty for Unmet Demand NPUDpr 119.273

Total Flow Costs T FCpr 185.737

Profit −NCpr 435.595



3.2 Case study: Problem formulation, implementation, results and discussion 165

The variation of the inventory level (inlpr) and cumulative inventory costs (cum−incpr)
over the time horizon are shown in Figure 3.13. The oscillating behaviour of the inventory
level follows from the interplay between the increase in inventory due to production from all
reactors (differential equation (3.5)) and the decrease in inventory due to the sales (junction
condition (3.16)). It is highlighted that towards the end of the first year, the inventory level
shows a significant increase, despite there being a considerable amount of unmet demand at
that time. This happens in order to enable greater amount of sales and thereby eliminate the
unmet demand during the later years when the product sales price and the penalty for unmet
demand have increased due to inflation, thus enlarging the profit obtained. The trend for
the cumulative inventory costs follows directly from differential equation (3.6) and junction
condition (3.17).

The magnitudes of the various economic aspects that form the elements of the objective
function are given in Table 3.8. The table indicates that the cost of flow and raw material,
and the net penalty for unmet demand form the biggest proportions of the costs. The cost
of catalyst changeovers contributes relatively less while the inventory costs form a very low
percentage of the total expenditure. The costs of operation take away about 43.77% of the
revenue generated by the product sales. It is highlighted that no comment can be made
regarding the magnitudes of the economic components or the order of contribution of the
various costs involved, apart from that these follow from the values of the set of invented
parameters used. This is similar to what was mentioned in Section 2.4.9 of the previous
chapter regarding the economics of the various case studied examined in the single reactor
problem.

The graphs presented above showcase the trends of the decision variables and of the state
variables that follow accordingly, of only the best solution or the local optima that obtained
the best profit. While it is possible to present a distribution of each decision variable over the
50 runs in a manner similar to that done for the profit, for example, in Figure 3.2, these are
not informative enough to justify the volume of the thesis that would be consumed by such a
presentation, given that there are hundreds of decision variables involved. However, further
comments can be made regarding the decision variables obtained in the other local optima.
These comments are similar to those mentioned in Section 2.4.9 of the previous chapter and
are stated as follows:

• The local optima differed in the obtained values of the catalyst changeover decision
variables of at least one reactor. The different catalyst replacement schedules, which
decided the number and timing of catalyst replacements for each reactor, impacted the



166 Optimisation of a process containing parallel lines of reactors

decision variables of feed flow rate of each reactor and sales of the process, and as
such, was the major factor leading to differences in profits between the different local
optima obtained.

• Between different local optima, the decision variables of the feed flow rate of at least
one reactor differed in the values obtained during the operation of the final catalyst in
the respective reactor. In the other local optima, towards the end of the time horizon,
while the trend of the feed flow rate in each reactor was similar to those in the best
solution and the demand was fulfilled, the sharp drop in the feed flow rate for each
reactor was either not present or was of a smaller magnitude in comparison to those
observed in the best solution. This led to the total flow costs in the other local optima
being higher compared to that in the best solution and this could be attributed to the
combined catalyst replacement schedules for all reactors in the other local optima
being less efficient than in the best solution. However, it is highlighted that for all
optima obtained, in each reactor, during the times of operation of all catalysts except
the final one, the feed flow rates were similar in terms of magnitudes as well as trends,
which led to constant values of the exit concentration of similar magnitudes during
these times as well.

• For all optima, in all reactors, the temperature was set to its upper bound during
times of catalyst operation. This followed from the fact that in all reactors, the
catalyst deactivation rate constant was independent of temperature and the maximum
rate of product formation could be obtained by operating at the maximum allowable
temperature.

• In comparison to the best solution, the distribution of the sales in the first year differed
from that in the other local optima in that the quantity of sales was either similar or
lower in comparison to the former. This led to the gross revenue from the sales in that
first year in the other local optima to be less than or at most similar to that in the best
solution and this could be attributed to the combined catalyst replacement schedules
for all reactors in the other local optima being less efficient than in the best solution.
However, in all optima obtained, the sales completely fulfilled the product demand
in the second and third years and this could be attributed to the inflation causing the
product sales price and penalty for unmet demand to be higher in those years compared
to the first.
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3.3 Summary and conclusions

In this chapter, an optimal control methodology has been developed for optimising main-
tenance scheduling and production in a process containing parallel lines of reactors using
decaying catalysts. This methodology is an extension of the optimal control methodology
developed in the previous chapter for optimising similar aspects in a process containing a
single reactor using decaying catalysts.

This methodology involves using an MSMIOCP formulation of the problem in combina-
tion with a solution procedure of the principle of Implementation II, which was developed
in the previous chapter. The elements of this MSMIOCP formulation represent the various
elements of the process in an analogous manner to that in the previous chapter. As per this
methodology, the binary restrictions on the catalyst changeover controls in the MSMIOCP
formulation of the problem are relaxed and a penalty term homotopy technique is applied
wherein a series of standard multistage optimal control problems are solved using a feasible
path approach, with a monotonically increasing penalty term added to the objective function
to enforce binary values for those controls. The highlights of this methodology are that the
penalty term homotopy technique obviates the need for mixed-integer optimisation methods
to schedule catalyst changeovers and the feasible path approach guarantees accuracy, and
both these features enable a smaller problem size which facilitates an easier convergence to
solutions.

No previous publication has explicitly addressed such a problem and so there was no
process that could be used as a base to apply this methodology to. Therefore, a case study
of the process containing a single reactor, examined in the previous chapter, was modified
into a case study of a process in which a single feed is split over 4 parallel reactors, and the
proposed optimal control methodology was applied to optimise maintenance scheduling and
production in such a set up.

Due to the non-convex nature of the problem, the optimisation was performed using 50
different initial guesses and each of these runs successfully converged to a local optimum
without any difficulties. For the best solution among these runs, the profiles of the decision
and state variables over the time horizon and the economics of the industrial process were
presented. A notable result was that the optimal operating policies for the temperature of
each reactor and the reactant exit concentration from each reactor correlated well with that
of published literature (Szépe and Levenspiel, 1968) at the reactor level, and this is similar
to the observation in the related case study in the single reactor problem considered in the
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previous chapter.

In conclusion, the use of the proposed optimal control methodology to optimise mainte-
nance scheduling and production in parallel lines of reactors using decaying catalysts has
resulted in high quality solutions. The nature of the methodology and the solutions obtained
indicate a number of potential advantages of the use of this methodology over mixed-integer
methods to optimise problems of this kind. These potential advantages are similar to the
points presented in Section 2.5.1, in the conclusions of the previous chapter. However, for
the sake of completeness of this chapter, the potential advantages of the use of this optimal
control methodology over mixed-integer methods to solve this problem are elaborated briefly:

1. It is robust because the smaller problem size enabled facilitates convergence to optimal
solutions from any random initial guess.

2. It is reliable because solutions can be obtained to a high degree of accuracy using
state-of-the-art integrators, without the use of any approximation techniques. Thus, by
using this approach, the dynamics of the parallel system of reactors can be described
very accurately.

3. It is efficient because a maintenance schedule for catalyst replacements in the parallel
reactor set up, that fulfils the condition of non-simultaneous catalyst replacements,
can be obtained inherently during the optimisation, without using any additional
computational effort in deciding when to schedule catalyst changeovers.

Thus, in this chapter, in line with the second objective of the thesis, a methodology
has been developed that can effectively optimise maintenance scheduling and production
in a process containing parallel lines of reactors using decaying catalysts, and which can
overcome the drawbacks that mixed-integer methods would face in solving problems of this
kind. In the next chapter, the principle of the optimal control methodology used in this and
the preceding chapter is applied as part of a methodology to optimise similar operations
while considering uncertainties in the kinetic parameters of the underlying process model.



Chapter 4

Process optimisation under uncertainties
in kinetic parameters

In this chapter, an optimal control methodology is developed for considering uncertainties in
kinetic parameters in the optimisation of maintenance scheduling and production in a process
containing a reactor using decaying catalysts. This methodology is an extension of the forms
of methodologies used in the previous chapters to solve problems which did not consider para-
metric uncertainty. Using a multiple scenario approach to consider parametric uncertainty, an
initial multistage mixed-integer optimal control formulation of the problem is converted into
its stochastic counterpart, which is then solved as a standard nonlinear optimisation problem
as per a procedure of the principle of Implementation II, which was developed in Chapter 2.
Different case studies are examined in order to identify the effects on the optimal operations
of uncertainty in each individual parameter, of simultaneous uncertainty in all parameters
and of the number of scenarios generated. The results obtained provide insights into such
aspects and indicate that the methodology is capable of solving this problem. Further, the
results obtained possess features of robustness, reliability and efficiency which suggest that
the methodology can overcome the drawbacks that mixed-integer methods would introduce
in the conventional methodologies, if such methodologies are used to solve problems of this
kind.

The structure of this chapter is as follows. Section 4.1 provides an introduction to the
problem and a review of the publications related to this topic. Section 4.2 details the solution
procedure proposed to solve this problem. In Section 4.3, case studies of this problem are
formulated as per the proposed solution procedure. Section 4.4 presents the implementation
details and Section 4.5 discusses the results obtained. Section 4.6 contains a summary and
conclusions of the chapter, and further discussions involving the proposed methodology.
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4.1 Introduction and literature review

In the preceding chapters, the problems examined did not consider any uncertainty in the
values of the kinetic parameters present in the underlying process models. That is, the kinetic
parameters, such as the deactivation rate constant in the rate equation for catalyst decay,
and the Arrhenius pre-exponential factor and the activation energy in the rate equation for
the product formation reaction, were assumed to be known and fixed in value. However,
as these parameters are experimentally obtained, their values are susceptible to a degree of
uncertainty because of inevitable inaccuracies arising from measurement errors, estimation
errors, interpolation and extrapolation errors etc.

With regard to the problems involving optimisation of maintenance scheduling and
production in industrial processes using decaying catalysts, such uncertainties in kinetic
parameters can have a considerable impact. Since the outputs of the kinetic models form
the basis for making optimal decisions, there can be many implications to not considering
uncertainties in kinetic parameters. For instance, uncertainty in the rate of product formation
or catalyst decay can result in variable and unpredictable processing times and production
yields. This can create difficulties in identifying the optimal maintenance schedules, operat-
ing conditions, and the appropriate production amounts and inventory levels to effectively
meet time-varying product demand. In some cases, an uncertainty in the rate of catalyst
decay could affect the durability of the reactor and threaten the safe operation of the process,
because of the lack of accuracy in the rate of decay causing possibilities of the catalyst being
used beyond its recommended lifespan. Hence, it is critical to take uncertainty in kinetic
parameters into account while optimising process operations.

A literature survey revealed a very limited set of studies that considered problems related
to that involving a consideration of uncertainty in kinetic parameters while optimising main-
tenance scheduling and production planning in processes using decaying catalysts. Only two
such studies have been found and these have been based on online or data-driven methods of
optimisation. However, it is highlighted that even in these studies, the product demand to
be met was constant and not seasonal, and therefore these studies cannot be considered as
addressing the complete problem of interest here.

One of these is a work by Lim et al. (2009), which proposed a proactive scheduling
strategy to handle uncertainties in coke thickness and growth rates in the scheduling of
decoking operations in a naptha cracking furnace system. As per this strategy, when the
gap between model predictions and the actual measurements becomes larger than a certain
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threshold value, the model is updated using the measurements and this updated model is used
to obtain a new schedule. This technique has shown advantages in terms of productivity and
risk management, in comparison to reactive scheduling and heuristic decoking strategies.

The other one is a work by Jahandideh et al. (2019), which considered production plan-
ning and scheduling of decaying catalysts in a process, while including uncertainty in the
rate of catalyst decay, by formulating this problem as a semi-Markov decision process. They
use a a two-level heuristic to make the problem tractable and report attaining low percentage
gaps with the lower bounds on the optimal costs.

The online methods, used in the aforementioned literature, involve making decisions
to handle the effect of uncertainties on the basis of data continuously obtained from the
process. However, as the data obtained encompasses the variations in all parameters present,
the impact of uncertainty in a particular parameter cannot be quantified. That is, the use of
these methods does not enable a sensitivity analysis regarding the effect of each uncertain
parameter to be performed. In addition, for large scale complex processes operating over
long time horizons, it would be desirable to understand the effect of uncertainties before the
process begins execution. Obtaining prior predictions of the optimal maintenance schedules
and operating conditions, as well as forecasts of expected profits, while considering uncer-
tainties can greatly improve investment and operating decisions. To fulfil such purposes,
preventive methods for handling uncertainties need to be used.

The popular preventive methods of handling uncertainty in problems involving scheduling
optimisation include stochastic programming, fuzzy programming, robust optimisation and
parametric programming (Li and Ierapetritou, 2008a). The use of one of these techniques in
combination with a mixed-integer formulation represent the conventional methodology of
solving scheduling problems involving parametric uncertainties. There have been several
publications that have used one of these conventional methodologies in order to optimise
scheduling of varied processes while considering uncertainties in parameters such as process-
ing times, demand and prices, to name a few.

A few examples of works using stochastic programming to handle uncertainty in opti-
misation problems involving scheduling include those by Balasubramanian and Grossmann
(2002) for flowshop plants involving uncertain processing times, by Bonfill et al. (2005) for
batch processes with uncertain operation times, by Restrepo et al. (2017) for multi-activity
tours under demand uncertainty, and by Palacín et al. (2018) for evaporator networks while
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considering uncertainty in the outdoor weather and production plan.

Some examples of works using fuzzy programming to handle uncertainty in scheduling
optimisation problems are those by Balasubramanian and Grossmann (2003) for flowshop
plants and new product development processes with uncertain processing times, by Wang
(2004) for product development projects with uncertain temporal parameters, by Felizari and
Lüders (2006) in oil refineries facing uncertain time delays, and by Kilic (2007) for parallel
machines with uncertain processing times and flexible due dates.

Some works using robust optimisation to consider uncertainty in scheduling optimisation
include those by Li and Ierapetritou (2008c) for processes facing uncertainty in processing
times, demand and prices, by Yan and Tang (2009) for problems involving inter-city buses
under variable market share and uncertain market demand, by Li et al. (2012) for crude
oil operations under demand uncertainty, and by Ye et al. (2014) for continuous casting
processes in steel-making involving demand uncertainty.

Examples of publications using parametric programming to consider uncertainty in
scheduling optimisation problems are those by Ryu et al. (2007) for multiproduct batch
scheduling under uncertainty in processing time and equipment availability, by Li and Ier-
apetritou (2007) for processes facing uncertainties processing times, demand and prices, by
Li and Ierapetritou (2008b) for processes facing uncertain disruptions of rush orders and
machine breakdowns, and by Umeozor and Trifkovic (2016) for operation of microgrids
containing uncertainty in power outputs, among others.

However, there has been no work that has used one of the conventional methodologies
to consider parametric uncertainty in the optimisation of maintenance scheduling and pro-
duction in processes using decaying catalysts. Further, none of the existing publications
have explicitly considered uncertainties in the values of the kinetic parameters of the under-
lying process model. In reality, due to the involvement of mixed-integer techniques, these
conventional methodologies would face difficulties in obtaining good quality solutions to
the complex large-scale problem under consideration here: that of optimising maintenance
scheduling and production planning in a process using decaying catalysts while incorporating
uncertainty in kinetic parameters.

As mentioned in Section 1.4 of Chapter 1, mixed-integer optimisation techniques are
combinatorial in nature and these methods approximate the differential equations present
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in the problem as a collection of steady state equations, which are imposed as additional
constraints in the problem. In that section, these features were highlighted as the drawbacks
involved in the use of mixed-integer techniques, in that such features could cause these
techniques to face difficulties in convergence to optimal and accurate solutions when used
in large scale problems. It was also detailed in that section how the drawbacks of these
techniques apply in a problem related to the one under consideration in this chapter, which
was deterministic in that there were no uncertainty considerations present.

If, as in this chapter, uncertainty considerations are present, and one of the aforementioned
conventional methodologies are used, a problem of similar or larger size in comparison to the
deterministic problem will have to be solved using mixed-integer optimisation techniques.
Therefore, the drawbacks of these techniques will once again be manifested or possibly even
be further aggravated. This is elaborated upon next.

In stochastic programming, an overview of which is given by Birge and Louveaux (2011),
the uncertain parameters are considered as stochastic variables, which can take a known set
of values. The instance of occurrence of each value is called a scenario and the probability of
occurrence of each scenario is assumed known. However, as mentioned in the work of Li and
Ierapetritou (2008c), in the techniques of this category, the number of scenarios increases
exponentially with the number of uncertain parameters. And as the number of scenarios
increases, the number of decision variables, differential equations and constraints increase
proportionately. Therefore, if stochastic programming techniques are applied to the large
scale problem under consideration here and solved using mixed-integer optimisation methods,
even for a small number of uncertain parameters involving a small number of scenarios, the
number of variables and constraints involved would be enormous. Hence, the final problem
size would be intractable and so, obtaining good quality solutions will be difficult.

In fuzzy programming, an uncertain parameter is considered as a fuzzy number, which is
essentially an interval of values. The membership function of a fuzzy number describes the
degree of membership of any numerical value to the interval. This membership function takes
values within the range, [0,1], with a larger value of the membership function indicating
a greater degree of membership to the fuzzy number (Zadeh, 1965). If uncertainty in a
parameter is to be appreciably taken into account in an optimisation problem, it is essential
to use numerical values of this parameter corresponding to a large number of values of the
membership function, across the range of [0,1]. And when a larger number of membership
function values, and so, a larger number of values of the uncertain parameter are considered,
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the number of variables and constraints involving that parameter in the problem increase
proportionately. For large scale problems, this could lead to intractable problem sizes.

As such, in scheduling optimisation problems using fuzzy programming to consider
parametric uncertainty, the mixed-integer optimisation techniques, due to the underlying
drawbacks, are able to solve only relatively small scale problems but are unable to solve
large scale problems due to the intractable problem sizes encountered (Balasubramanian
and Grossmann, 2003). For such large scale problems, a number of publications, examples
of which include some of the previously mentioned papers of scheduling optimisation un-
der uncertainty using fuzzy programming, resort to using meta-heuristic techniques over
mixed-integer optimisation methods. However the use of meta-heuristic techniques faces the
drawback of not being able to provide a theoretical guarantee of convergence to optimality.
Therefore, for the large scale problem under consideration here, if such methodologies are
followed, similar difficulties will be encountered. That is, using a mixed-integer optimisation
technique with a fuzzy programming method to consider parametric uncertainty, would likely
be unable to obtain solutions as the problem size would become intractable. Alternatively, if
a meta-heuristic technique is used in place of the mixed-integer optimisation method, the
optimality of the obtained solutions cannot be guaranteed.

In robust optimisation, the objective is to obtain a solution that is feasible for any realisa-
tion of uncertainty in a given set. The techniques of this category function by constructing a
robust counterpart of the deterministic problem, the solution of which enables attaining the
aforementioned objective (Gorissen et al., 2015). An attractive feature of this category of
techniques is that the robust counterpart problem formulated is comparable in size to that of
the deterministic problem. However, if for the problem under consideration here, a robust
counterpart is formulated and mixed-integer optimisation methods are used for solution, the
drawbacks of these methods will be encountered once again. That is, since mixed-integer
methods can face difficulties in converging to optimal and accurate solutions even for the
deterministic version of the problem under consideration here, similar difficulties will be
experienced if these methods are used to solve the corresponding robust counterpart problem.

Parametric programming methods seek to obtain mappings between uncertain parameters
and optimal solution alternatives, and thereby provide an analytical tool for the identification
of solutions under uncertainty. For problems involving integer and continuous variables, this
is done by solving a series of parametric and mixed-integer programming problems (Dua and
Pistikopoulos, 2000; Faísca et al., 2009; Wittmann-Hohlbein and Pistikopoulos, 2012), the
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latter which are larger in size compared to the deterministic problem. However, if such proce-
dures are applied to the problem under consideration here, with mixed-integer optimisation
techniques being used to obtain solutions, once again, the drawbacks of these techniques will
come into play. That is, since these techniques can cause difficulties in converging to optimal
and accurate solutions even for the deterministic version of the problem under consideration
here, using these techniques for the solution in the series of problems will also face similar
drawbacks.

From the preceding discussion, it is concluded that conventional methods would not be
well suited to solve the complex large scale problem being considered here: that of optimising
maintenance scheduling and production planning in a process using decaying catalysts while
incorporating uncertainty in kinetic parameters. A methodology is needed that can effectively
solve this problem. In this chapter, such a methodology is developed using optimal control
theory. This optimal control methodology is in fact an extension of the forms of optimal
control methodologies used to solve deterministic problems in Chapters 2 and 3.

As in Chapters 2 and 3, in this optimal control methodology, the basic MSMIOCP of
the form of equation (2.4) is to be used for the initial formulation of the problem under
consideration in this chapter. The elements of this MSMIOCP are to represent the various
elements of the process in an analogous manner to that in those chapters. That is, the set of
binary controls in this formulation is to indicate when to schedule catalyst changeovers, the
set of continuous controls is to decide the reactor operating conditions and the sales of the
process, the DAEs are to represent the process model, the constraints are to represent the
operating limits of the process and the binary restrictions on the catalyst changeover controls,
and the objective function is to represent the net costs of the process. However, unlike in those
chapters, the DAEs in this MSMIOCP formulation contain uncertain parameters, with the
uncertain parameters being the kinetic parameters, the values of which are regarded uncertain.

In the next section, the solution procedure to be used in this optimal control methodology
is presented. As the basic MSMIOCP formulation of the form of equation (2.4) is to be used
for the initial formulation of the problem under consideration here, the solution procedure is
demonstrated using this formulation. It is also highlighted what advantages the methodology
using this formulation in combination with this solution procedure would potentially offer
over conventional methods of solving problems of this kind. In the sections following this,
this optimal control methodology is applied to solve case studies of an industrial process and
the results obtained are discussed.
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4.2 Problem solution procedure

The solution procedure to be used in this optimal control methodology seeks to solve an
MSMIOCP of the form of equation (2.4) which contains uncertainties in the parameters
present in the DAEs, as a standard nonlinear optimisation problem using a feasible path
approach, while ensuring that the model-inherent parametric uncertainties are accounted
for. In Chapter 2, the solution procedure of Implementation II, detailed in Section 2.4.3,
was used to solve a deterministic MSMIOCP of the form of equation (2.4) as a standard
nonlinear optimisation problem using the feasible path approach. The solution procedure
presented in this section is a modified form of the procedure presented in Section 2.4.3, with
the modification involved being the inclusion of an additional step in order to incorporate
model-inherent parametric uncertainties.

First, as done in Section 2.4.3, the binary restriction on the integer controls in the ba-
sic MSMIOCP formulation of the form of equation (2.4) is relaxed in order to form an
MSMIOCP with relaxed binary controls of the form of equation (2.61).

Next, in order to consider parametric uncertainty, a multiple scenario approach is used.
That is, multiple scenarios are generated, where in each scenario, each uncertain parameter
takes a particular value within a pre-specified range. These scenarios can be generated
through any random sampling method.

As mentioned previously, the uncertainties in this problem occur in the parameters present
in the DAEs of the MSMIOCP formulation. Thus, for each scenario generated, a new DAE
system, comprised of the DAEs, initial and junction conditions, is formed, the parameter
values of which correspond to the scenario generated. And the state variables in each scenario
can be determined by the solution of the DAE system corresponding to that scenario. The
uncertainty in the problem is represented by the different scenarios: by all the different
parameters and state variables values attainable. The aim is to perform the optimisation while
ensuring that the uncertainty represented by the different scenarios are accounted for.

A feature of the solution procedure of any optimal control problem is that the integration
phase is independent of the optimisation phase. That is, any DAE system present has to
be integrated completely to obtain values of the state variables, which in turn are used to
formulate the objective function and constraints based on which the optimisation can occur.
This feature will be exploited here to perform the optimisation under uncertainty.
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A new MSMIOCP is formulated wherein the DAE systems corresponding to all scenarios
are stacked together. However, while the state variables obtained from the DAE system for
each scenario lead to a unique set of constraints and objective function corresponding to that
scenario, only the averages of these over all scenarios are used in this MSMIOCP. That is, the
decision (or control) variables have to be chosen to optimise only the average of the objective
functions over all scenarios while fulfilling only the average of each set of constraints over
all scenarios. By considering the averages of the objective function and constraints over all
scenarios, this new MSMIOCP ensures that the uncertainty represented by all the different
scenarios are accounted for. This new MSMIOCP is given by equation (4.1) and can be
considered a stochastic version of the formulation presented in equation (2.61). In fact, a
formulation of the form of equation (4.1) will be referred to as a "stochastic MSMIOCP with
relaxed binary controls" in this thesis.

In equation (4.1), Wst is the performance index of the stochastic MSMIOCP with relaxed
binary controls and SN is the number of scenarios considered. A separate term C(p) is
introduced to represent the average of the set of constraints over all scenarios in stage
p, as shown in equation (4.1f). The remainder of the terminology used are similar to the
MSMIOCP formulation in equation (2.61) with the only difference being that where subscript
s occurs, it represents the variable in scenario s.

min
u,v
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∑
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[
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tp−1 ≤ t ≤ tp

p = 1,2, . . . ,NP

u(p) ∈ [0,1]

p = 1, 2, . . . , NP
(4.1g)

v(p) ∈ V

p = 1, 2, . . . , NP
(4.1h)

In this stochastic MSMIOCP formulation, it is seen how the feature of the integration
and optimisation phases being independent of each other is used to advantage: the use of
multiple scenarios leads to the size of the DAE system in the integration phase to increase
proportionately compared to a single scenario case, but the number of control variables and
constraints involved in the optimisation is the same as in a single scenario case. Hence, only
a single optimisation problem has to be solved, which has the same number of decision
variables and constraints compared to the deterministic problem, but with a larger DAE
system compared to the latter.

A schematic describing the underlying principle of this formulation is shown in Figure 4.1.
A similar principle has been used for optimisation under uncertainty in works by Al Ismaili
et al. (2019) for scheduling of heat exchanger network cleaning operations and by Kanavalau
et al. (2019) in model predictive control for batch process intensification.
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Fig. 4.1 The schematic of the principle of a stochastic optimal control formulation.

Problems of the form of equation (4.1) are essentially standard multistage optimal control
problems and hence, standard nonlinear optimisation problems, as no discrete controls are
involved and only an optimal set of continuous controls have to be identified, while using
the feasible path approach to solve the differential equations. However, in order to obtain
solutions equivalent to that of the original problem of the form of equation (2.4), wherein
the controls, u(p), for each stage p = 1,2, . . .NP, take values of only 0 or 1, a penalty term
homotopy technique, similar to that done in Section 2.4.3, is used. That is, a monotonically
increasing penalty term is added to the objective function in equation (4.1a) and a series of
standard nonlinear optimisation problems of the following generic form are solved:

Fsk : min

{
Wst +Msk

NP

∑
p=1

u(p)
[
1−u(p)

]}
(4.2)

subject to equations (4.1b) – (4.1h), for

k = 1,2,3 . . .

Ms1 = 0

As in Section 2.4.3, the problem, Fs1, in the first major iteration (k = 1) of the series, is
designated a weight Ms1 = 0. An iterative procedure is followed wherein problem Fsk+1 is
solved using the solution of problem Fsk as initial guesses and with weight Msk+1 > Msk.
This iterative procedure is continued until iteration K (K ≥ 1) such that all controls in u, in
the solution of problem FsK , are forced by weight MsK to take values of either 0 or 1. Once
again, the progression for the increase of weights, Msk, have to be chosen by trial and error,
while ensuring that the weight is not increased too slowly or too fast, in order to avoid large
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computational times or an indefinite continuation of iterations, respectively.

Thus, the proposed solution procedure is a modified form of the solution procedure of
Implementation II in Section 2.4.3. While the the penalty term homotopy technique in Imple-
mentation II was used to solve a deterministic MSMIOCP formulation, here, a similar penalty
term homotopy technique is applied to solve a stochastic MSMIOCP formulation. Therefore,
this optimal control methodology proposed to solve MSMIOCP formulations involving
model-inherent parametric uncertainties will be referred to as a "stochastic MSMIOCP for-
mulation in combination with a solution procedure of the principle of Implementation II". As
will be seen, the implementation details of the proposed solution procedure are also similar to
those used for Implementation II, which was shown to produce optimal solutions in Chapter 2.
Therefore, the results obtained using such a solution procedure and implementation in this
optimal control methodology can be expected to be optimal as well. The advantages that this
optimal control methodology can potentially offer over the conventional methods of solving
the type of problem under consideration in this chapter follow next.

4.2.1 Potential advantages over conventional methodologies

The preceding text presented the details of the optimal control methodology proposed to
consider uncertainties in the kinetic parameters involved while optimising maintenance
scheduling and production in a process containing a reactor using decaying catalysts. As
mentioned in Section 4.1, the conventional methods of solving problems of this kind involve
using one of the popular preventive methods of handling uncertainty in combination with
mixed-integer optimisation methods. The proposed optimal control methodology’s features,
of using a stochastic MSMIOCP formulation and a solution procedure as a standard nonlinear
optimisation problem using the feasible path approach, can provide potential advantages
over the conventional methodologies of solving this problem by potentially overcoming
the drawbacks introduced by the use of mixed-integer optimisation techniques in those
methodologies. These potential advantages are similar to those mentioned in Section 2.5.1
in the conclusions of Chapter 2. However, these potential advantages are stated here, in
the context of the mixed-integer techniques being used in combination with the popular
preventive methods of handling uncertainty:

1. The practice in mixed-integer techniques of approximating differential equations as a
collection of steady state equations, can cause the problem to end up containing a very
large number of variables and constraints. This can lead to difficulties in convergence
to optimal solutions, even for a deterministic problem. In addition, if a large number
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catalyst loads are available to be used, the problem size becomes large and this can
lead to further difficulties in convergence. Hence, when uncertainties are involved, and
if conventional methodologies are used for solution, these difficulties can be further
aggravated, especially if stochastic or fuzzy programming approaches are used.

However, in this formulation, by virtue of a feasible path approach being used in
combination with a multiple scenario approach to consider uncertainties, although
a large DAE system will be obtained, the number control actions to be applied and
the number of constraints to be fulfilled will be the same as in a single scenario or a
deterministic problem case. In addition, the use of the feasible path approach ensures
that the differential equations are solved by an integrator without creating additional
variables or constraints to be considered in the optimisation phase.
Further, by virtue of the penalty term homotopy technique, the 0 or 1 values for the
controls to schedule catalyst changeover will be obtained inherently when solving this
problem as a standard nonlinear optimisation problem, without the use of mixed-integer
optimisation methods. Hence, even if an infinite number of catalyst loads are available,
the problem size will not increase as the decisions on how many catalyst loads to
use and when to schedule catalyst changeovers will be taken inherently during the
optimisation.

Therefore, due to these features of the methodology, the number of variables and
constraints will be considerably smaller than when existing preventive methods of
handling uncertainty are applied to mixed-integer formulations, and obtaining solutions
will be well within the scope of existing solvers, regardless of the initial guesses used
or the number of scenarios considered. Hence, the methodology is expected to be more
robust in obtaining solutions in comparison to the conventional methodologies.

2. In the feasible path approach, state-of-the-art integrators are used to solve nonlinear
DAEs to a high accuracy. On the other hand, the mixed-integer formulations, when
used with any of the existing preventive methods of handling uncertainty, approximate
such DAEs as a collection of steady state equations which are solved as equality
constraints in the optimisation, and this is likely to cause errors in the solution. Thus,
the solutions obtained by this formulation are expected to be more reliable than those
obtained by the conventional methodologies.
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As was mentioned in Chapter 2, by enabling potential advantages of robustness and
reliability, the use of the feasible path approach also provides a further potential
advantage of avoiding making the difficult compromise between accuracy and ease of
convergence, which would be faced when using the mixed-integer techniques in the
conventional methodologies.

3. As mentioned previously, by virtue of the penalty term homotopy technique, regardless
of the number of catalyst loads involved, the 0 or 1 values for the controls correspond-
ing to the catalyst changeover actions in the problem under consideration here, will be
decided inherently during the optimisation, without using mixed-integer techniques.

Hence, no additional computational effort will be spent in deciding when to schedule
catalyst changeovers, thereby underlining the potential efficiency of this methodology.
In the event of a large number of catalyst loads being involved, this feature will enable
saving the substantial amount of computational effort which would be required in the
huge number of combinations to be considered when mixed-integer formulations are
used with the any of the existing preventive methods of handling uncertainty.

However, in this formulation, since the number of DAEs scales with the number of
scenarios involved, if a large number of scenarios are considered, as would be needed to
sufficiently take uncertainty into account, the number of DAEs in the formulation would
become very large. The use of the feasible path approach implies considerable computational
effort will be spent in solving each such equation to a high accuracy in each iteration of the
optimisation, even in those iterations away from the optimal solution. Hence, the computa-
tional time is expected to be large when using this methodology, considerably larger than the
methodologies used to solve the deterministic problems in Chapters 2 and 3.

While this can be perceived as a drawback of this methodology, it is highlighted that
the scalability of the formulation can be exploited to reduce computation time. Using high
performance computing facilities, each DAE set can be simulated entirely on a separate
computer. Further, using parallel computing facilities, any required gradient evaluations can
be parallelised within the computer on which each simulation occurs.

Another issue is that, since the problem is non-convex, only local optima can be obtained
by this methodology. Thus, several runs using different start points have to be performed to
identify the global optimum. The high performance and parallel computing facilities would
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make such a task feasible as well.

The preceding discussion suggests that the proposed methodology has the potential to
effectively solve the problem of optimisation of maintenance scheduling and production in
an industrial process using decaying catalysts while considering uncertainties in the kinetic
parameters of the underlying process model, and can potentially overcome the major draw-
backs that would be introduced by mixed-integer optimisation methods in the conventional
methodologies if these methodologies are used to solve this problem.

In essence, the optimal control methodology, termed stochastic MSMIOCP formulation in
combination with a solution procedure of the principle of Implementation II, that is proposed
to solve this problem can be summarised as follows. First, the industrial process under
consideration is formulated as a basic MSMIOCP of the form of equation (2.4) which is then
converted into an MSMIOCP with relaxed binary controls of the form of equation (2.61).
Using a multiple scenario approach to consider uncertainties in the kinetic parameters, this
formulation as an MSMIOCP with relaxed binary controls is converted to a stochastic
MSMIOCP with relaxed binary controls of the form of equation (4.1), to which a penalty
term homotopy technique, as per an implementation similar to in Section 2.4.3, is applied
to attain binary values for the catalyst changeover controls. In the next set of sections, the
proposed methodology is applied to solve different case studies of such a problem.

4.3 Case studies: Problem formulation

The industrial process under consideration in this chapter is similar to the single reactor
process considered in Chapter 2. The form of kinetics for the catalyst deactivation and the
product formation reaction in this process correspond to that of Case Study A in Chapter 2,
with the only difference here being that there is uncertainty regarding the values of the
kinetic parameters present in the rate equations for these reactions. Different case studies
are examined in this chapter, in order to analyse the effects on the optimal operation of each
uncertain parameter individually as well as an analysis that considers the effect of uncertainty
in all parameters simultaneously alongside the effect of the number of scenarios generated.

This section focuses on the problem formulation for these case studies. As per the
proposed methodology, first, the industrial process is formulated as an MSMIOCP of the
form of equation (2.4) which is then converted into an MSMIOCP with relaxed binary
controls of the form of equation (2.61). As something similar was done for the industrial
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process considered in Chapter 2, and since the process considered in this chapter is similar to
the process considered in Chapter 2, the formulation as an MSMIOCP with relaxed binary
controls for Case Study A in Section 2.2 of Chapter 2 will be used for the construction of the
similar formulation here. The terminology to used for this formulation is also similar to the
the terminology used in that section, with the exception that a subscript, un, is added to each
symbol to indicate that this is a formulation belonging to the "uncertainty" study.

The assumptions involved in constructing this formulation are similar to those mentioned
in Section 2.2, with the exception that there is uncertainty here regarding the values of
the kinetic parameters involved. Rather than be regarded as fixed constants, each of the
kinetic parameters of the catalyst deactivation rate constant, Kdun, and the pre-exponential
factor, Arun, and the activation energy, Eaun, for the main reaction is considered as tak-
ing values over a certain range. However, the mean of the range of values for each of
these uncertain parameters is assumed to be known, and the known mean values for the
parameters of Kdun, Arun and Eaun are designated symbols Kdun, Arun and Eaun, respectively.

As in Section 2.2, the controls of this formulation include the catalyst changeover deci-
sion variables, yun(i), for each month, i ∈ {1,2, ...,NMun} and the feed flow rate, f f run(i, j),
the temperature, Tun(i, j), and the sales, salesun(i, j), for each week j ∈ {1,2,3,4} of each
month i ∈ {1,2, ...,NMun} of the process time horizon.

However, unlike in Section 2.2, the state variables in the formulation here do not include
the catalyst age and the only state variables considered are the catalyst activity, cat−actun,
the reactant exit concentration, cRun, the inventory level, inlun, and the cumulatve inventory
cost, cum−incun. As the differential equation (2.19) for the catalyst age in Section 2.2 does
not directly or indirectly involve any parameters considered uncertain in this chapter, that
state variable is omitted in this study. Therefore, there will be no differential equation, initial
and junction conditions pertaining to the catalyst age in the formulation here. However, the
differential equations, initial and junction conditions for the other state variables here are
formulated similar to those of the corresponding variables in Section 2.2.

The ODEs for the state variables in this formulation, for each week j ∈ {1,2,3,4} of
each month i ∈ {1,2, ...,NMun} of the process time horizon, are given by equations (4.3) –
(4.7) and these are formulated according to a similar logic used to develop equations (2.20),
(2.24), (2.28), (2.29) and (2.30), respectively. The kinetic rate equations for the catalyst
deactivation and the product formation reaction corresponding to Case Study A, of the form
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of equations (2.21) and (2.25), respectively, have been directly inserted into the ODEs, as has
an Arrhenius expression, of the form of equation (2.27), for the rate constant of the product
formation reaction.

d(cat−actun)

dt
= yun(i)× [−Kdun × cat−actun] (4.3)

d(Vun × cRun)

dt
= f f run(i, j)× (CR0un − cRun)

−yun(i)×
[
Vun ×Arun × exp

(
− Eaun

Rg ×Tun (i, j)

)
× cat−actun × cRun

] (4.4)

d(inlun)

dt
= yun(i)×

[
Vun ×Arun × exp

(
− Eaun

Rg ×Tun (i, j)

)
× cat−actun × cRun

]
(4.5)

d(cum−incun)

dt
= inlun × ic fun (4.6)

ic fun = base−ic fun × (1+ in f lationun)
⌊i/12⌋ (4.7)

The initial conditions for the solutions of the ODEs for these state variables, in week 1
of month 1 of the time horizon, are given by equations (4.8) – (4.11), and these have been
derived as per reasonings similar to the derivation of the initial conditions (2.32) – (2.35),
respectively in Section 2.2.

init−cat−actun (1,1) = start−cat−actun (4.8)

init−cRun (1,1) =CR0un (4.9)

init−inlun (1,1) = 0 (4.10)

init−cum−incun (1,1) = 0 (4.11)

The junction conditions that link the state variables between any two consecutive weeks
are given by equations (4.12) – (4.15) and these have been formulated along the lines of
junction conditions (2.37) – (2.40), respectively in Section 2.2.

init−cat−actun (i, j+1) = end−cat−actun(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.12a)
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init−cat−actun (i, 1) = [yun(i)× end−cat−actun(i−1, 4)]+ [(1− yun(i))× start−cat−actun]

i = 2,3, . . . ,NMun
(4.12b)

init−cRun (i, j+1) = end−cRun(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.13a)

init−cRun(i, 1) = [yun(i)× end−cRun(i−1, 4)]+ [(1− yun(i))×CR0un]

i = 2,3, . . . ,NMun
(4.13b)

init−inlun (i, j+1) = end−inlun(i, j)− salesun(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.14a)

init−inlun (i, 1) = end−inlun(i−1, 4)− salesun (i−1, 4)
i = 2,3, . . . ,NMun

(4.14b)

init−cum−incun (i, j+1) = end−cum−incun(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.15a)

init−cum−incun (i, 1) = end−cum−incun(i−1, 4)
i = 2,3, . . . ,NMun

(4.15b)

The constraints that apply in this formulation, for each week j ∈ {1,2,3,4} of each
month i ∈ {1,2, ...,NMun} of the process time horizon, are given in equations (4.16) – (4.24).
Constraints (4.16) – (4.23) have been formulated as per reasonings similar to formulation
of the constraints (2.41) – (2.48), respectively in Section 2.2. However, constraint (4.24)
has been exclusively derived for this formulation and the explanation for its derivation is
as follows. In order to prevent the productivity of the process from becoming too low, any
of the decaying catalysts in this process is not recommended to be used beyond when its
age crosses a certain maximum value or when its activity falls below a certain minimum
value. In Section 2.2, as a decision was required to be made on whether to replace a
catalyst or not on a monthly basis, constraint (2.49) was used to enforce that any catalyst’s
age does not cross a stipulated maximum value (max−cat−age) at the end of each month.
However, the catalyst age is not considered as a state variable in the formulation here. As
this formulation also requires making decisions on a monthly basis as to whether to replace a
catalyst or not, constraint (4.24), which enforces that the catalyst activity does not fall below
a specified minimum value (min−cat−actun) at the end of each month, i, is used in place of
constraint (2.49) in the formulation here.
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0 ≤ yun(i) ≤ 1 (4.16)

0 ≤ f f run(i, j) ≤ FUun (4.17)

0 ≤ salesun(i, j) ≤ demandun(i, j) (4.18)

T Lun ≤ Tun(i, j) ≤ TUun (4.19)

f f run(i, j)− [FUun × yun(i)] ≤ 0 (4.20)

T Lun ≤ Tun(i, j) ≤ [(TUun −T Lun)× yun(i)]+T Lun (4.21)

NMun

∑
i=1

yun(i)≥ NMun −nun (4.22)

end−inlun(i, j)− salesun(i, j) ≥ 0 (4.23)

end−cat−actun (i, 4) ≥ min−cat−actun (4.24)

And finally the elements of the objective function and the objective function itself in
this formulation are given in equations (4.25) – (4.35), wherein j ∈ {1,2,3,4} and i ∈
{1,2, ...,NMun}, and these have been derived as per a logic similar to the derivation of
equations (2.50) – (2.60) in Section 2.2.

GRSun =
NMun

∑
i=1

4

∑
j=1

pspun(i, j)× salesun(i, j) (4.25)

pspun(i, j) = base−pspun × (1+ in f lationun)
⌊i/12⌋ (4.26)

T ICun = end−cum−incun(NMun, 4) (4.27)

TCCCun =
NMun

∑
i=1

crcun(i)× (1− yun (i)) (4.28)

crcun(i) = base−crcun × (1+ in f lationun)
⌊i/12⌋ (4.29)

unmet−demandun (i, j) = demandun (i, j)− salesun (i, j) (4.30)

NPUDun =
NMun

∑
i=1

4

∑
j=1

penun(i, j)×unmet−demandun(i, j) (4.31)

penun(i, j) = base−penun × (1+ in f lationun)
⌊i/12⌋ (4.32)
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T FCun =
NMun

∑
i=1

4

∑
j=1

co fun(i, j)× f f run (i, j) (4.33)

co fun(i, j) = base−co fun × (1+ in f lationun)
⌊i/12⌋ (4.34)

min NCun = −GRSun + T ICun + TCCCun + NPUDun + T FCun (4.35)

This concludes the formulation of the industrial process as an MSMIOCP with relaxed
binary controls. This formulation applies to all of the following case studies of the industrial
process that will be examined in this chapter:

Case Study E: Effect of uncertainty in the catalyst deactivation rate constant, Kdun on
the optimal maintenance schedule and production operations

Case Study F: Effect of uncertainty in the pre-exponential factor, Arun, of the product
formation reaction, on the optimal maintenance schedule and production operations

Case Study G: Effect of uncertainty in the activation energy, Eaun, of the product
formation reaction, on the optimal maintenance schedule and production operations

Case Study H: Parametric uncertainty study that considers the effect of simultaneous
uncertainty in all kinetic parameters and the number of scenarios generated on the
optimal maintenance schedule and production operations

The formulation as an MSMIOCP with relaxed binary controls, that applied for all of the
above case studies, presented in the preceding text, represented the first step of the use of
the proposed optimal control methodology to solve each of these case studies. As per the
next step of this methodology, using this preceding formulation, a formulation as a stochas-
tic MSMIOCP with relaxed binary controls, of the form of equation (4.1), is developed
for each of these case studies. In the following text, such a formulation is developed for
Case Study H, wherein all kinetic parameters are considered uncertain. Similar formulations
for Case Studies E, F and G are derived from minor modifications of this formulation, and
these modifications will be detailed later.

As mentioned in Section 4.2, this formulation incorporates parametric uncertainty by
generating multiple scenarios, with each uncertain parameter taking a particular value within
a pre-specified range about its mean value in each scenario. Here, the total number of
scenarios generated is given by NS. The kinetic parameters of the catalyst deactivation
rate constant, the pre-exponential factor and the activation energy of the product formation
reaction generated in scenario s ∈ {1,2, . . . ,NS}, of this stochastic MSMIOCP formulation
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are represented by K̃ds
un, Ãrs

un and Ẽas
un, respectively and these are the counterparts of Kdun,

Arun and Eaun, respectively, in the formulation as an MSMIOCP with relaxed binary controls.

Following from Section 4.2, the decision variables in this stochastic formulation remain
the same as in the formulation as an MSMIOCP with relaxed binary controls and so the same
terminology as in the latter formulation, applies here for the decision variables. The catalyst
changeover decision variables, yun(i), for each month i ∈ {1,2, . . . ,NMun}, corresponds to
the binary control u in equation (4.1g). The decisions of the amount of reactor feed flow
rate, f f run(i, j), temperature of operation, Tun(i, j) and quantity of sales, salesun(i, j) for
each week, j ∈ {1,2,3,4}, of each month i ∈ {1,2, . . . ,NMun}, correspond to the continuous
control v in equation (4.1h).

However, as per Section 4.2, the unique kinetic parameter values in each scenario lead to
a corresponding unique set of state variables and their deriving ODE systems, comprised of
ODEs, initial conditions and junction conditions. The state variables of catalyst activity, reac-
tant exit concentration, inventory level and cumulative inventory costs attained in scenario
s ∈ {1,2, . . . ,NS}, are represented by the symbols ˜cat−acts

un, c̃Rs
un, ĩnls

un and ˜cum−incs
un,

respectively, and these are the counterparts of cat−actun, cRun, inlun and cum−incun, respec-
tively, in the formulation as an MSMIOCP with relaxed binary controls. The ODE systems
comprising the ODEs, initial conditions and junctions conditions, for each of these state
variables, in each scenario s ∈ {1,2, . . . ,NS} are presented next. The explanations for their
formulation are similar to those of their MSMIOCP counterparts.

The ODEs for each state variable in each scenario s ∈ {1,2, . . . ,NS}, of the form of
equation (4.1b), are given by equations (4.36) – (4.39) and these are the counterparts of
ODEs (4.3), – (4.6), respectively, in the formulation as an MSMIOCP with relaxed binary
controls. These ODEs are to be solved repeated over a weekly time span, over each week
j ∈ {1,2,3,4}, of month i ∈ {1,2, ...,NMun} of the time horizon.

d
(

˜cat−acts
un

)
dt

= yun(i)×
[
−K̃ds

un × ˜cat−acts
un

]
(4.36)
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d
(

Vun × c̃Rs
un

)
dt

= f f run(i, j)×
(

CR0un − c̃Rs
un

)
−yun(i)×

[
Vun × Ãrs

un × exp

(
− Ẽas

un
Rg ×Tun (i, j)

)
× ˜cat−acts

un × c̃Rs
un

] (4.37)

d
(

ĩnls
un

)
dt

= yun(i)×
[

Vun × Ãrs
un × exp

(
− Ẽas

un
Rg ×Tun (i, j)

)
× ˜cat−acts

un × c̃Rs
un

]
(4.38)

d
(

˜cum−incs
un

)
dt

= ĩnls
un × ic fun (4.39)

where ic fun is given by equation (4.7).

The initial conditions for week 1 of month 1 of the time horizon, for each of the state
variables in each scenario s ∈ {1,2, . . . ,NS}, of the form of equation (4.1c), are given
by equations (4.40) – (4.43) and are the counterparts of initial conditions (4.8) – (4.11),
respectively, in the formulation as an MSMIOCP with relaxed binary controls:

init− ˜cat−acts
un (1,1) = start−cat−actun (4.40)

init−c̃Rs
un (1,1) = CR0un (4.41)

init−ĩnls
un (1,1) = 0 (4.42)

init− ˜cum−incs
un (1,1) = 0 (4.43)

The junction conditions that link the state variable values between any two consecutive
weeks in each scenario s ∈ {1,2, . . . ,NS}, of the form of equation (4.1d), are given by
equations (4.44) – (4.47) and these are the counterparts of the junction conditions (4.12) –
(4.15), respectively, in the formulation as an MSMIOCP with relaxed binary controls:

init− ˜cat−acts
un (i, j+1) = end− ˜cat−acts

un(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.44a)

init− ˜cat−acts
un (i, 1) =

[
yun(i)× end− ˜cat−acts

un(i−1, 4)
]

+[(1− yun(i))× start−cat−actun]
(4.44b)
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i = 2,3, . . . ,NMun

init−c̃Rs
un (i, j+1) = end−c̃Rs

un(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.45a)

init−c̃Rs
un(i, 1) =

[
yun(i)× end−c̃Rs

un(i−1, 4)
]
+[(1− yun(i))×CR0un]

i = 2,3, . . . ,NMun
(4.45b)

init−ĩnls
un (i, j+1) = end−ĩnls

un(i, j)− salesun(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.46a)

init−ĩnls
un (i, 1) = end−ĩnls

un(i−1, 4)− salesun (i−1, 4)
i = 2,3, . . . ,NMun

(4.46b)

init− ˜cum−incs
un (i, j+1) = end− ˜cum−incs

un(i, j)
j = 1,2,3 i = 1,2, . . . ,NMun

(4.47a)

init− ˜cum−incs
un (i, 1) = end− ˜cum−incs

un(i−1, 4)
i = 2,3, . . . ,NMun

(4.47b)

The constraints in this stochastic formulation, of the form of equation (4.1f), are formu-
lated on the basis that only the averages of the sets of constraints generated over all scenarios
are required to be fulfilled. Among the constraints in the formulation as an MSMIOCP
with relaxed binary controls, given by (4.16) – (4.24), only constraints (4.23) and (4.24) are
influenced by the generation of multiple scenarios. Hence, in this stochastic formulation,
constraints (4.16) – (4.22) apply as in the formulation as an MSMIOCP with relaxed binary
controls, while constraints (4.23) and (4.24) are modified into their stochastic counterparts,
given by equations (4.48) and (4.49), respectively:

1
NS

[
NS

∑
s=1

end−ĩnls
un(i, j)

]
− salesun(i, j)≥ 0 (4.48)

1
NS

[
NS

∑
s=1

end− ˜cat−acts
un (i, 4)

]
≥ min−cat−actun (4.49)

And finally, the objective function of this formulation, of the form of equation (4.1a),
is formulated. It is highlighted that among the components of the objective function in the
formulation as an MSMIOCP with relaxed binary controls (equations (4.25) – (4.34)), only
the net inventory cost, given by equation (4.27), is influenced by the generation of multiple
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scenarios and its counterpart in the stochastic formulation is given by equation (4.50):

T̃ ICs
un = end− ˜cum−incs

un(NM, 4)
s = 1,2, . . . ,NS

(4.50)

As per the proposed solution methodology, only the average of the net inventory costs
over all scenarios will be included in the objective function of the stochastic formulation. The
remaining components of this objective function are the same as those given by (4.25), (4.26)
and (4.28) – (4.34) in the formulation as an MSMIOCP with relaxed binary controls, as these
are not influenced by the generation of multiple scenarios. Thus, the objective function in
this stochastic formulation, which is the counterpart of (4.35), is given by equation (4.51):

min NCst =−GRSun +

[
1

NS

(
NS

∑
s=1

T̃ ICs
un

)]
+ TCCCun + NPUDun + T FCun (4.51)

where NCst is the net costs in this stochastic formulation.

This concludes the formulation of the stochastic MSMIOCP with relaxed binary controls
for Case Study H, wherein all kinetic parameters are considered uncertain. The formulation
as a stochastic MSMIOCP with relaxed binary controls to be used for Case Study E is largely
similar to that of Case Study H with the exception that because Kdun is the only uncertain
parameter involved, the pre-exponential factor and activation energy values in the formulation
are fixed to their mean values of Arun and Eaun, respectively, which are assumed to be known.
That is, the formulation as a stochastic MSMIOCP with relaxed binary controls for Case
Study E is a special case of that for Case Study H, wherein Ãrs

un = Arun,∀s ∈ {1,2, . . . ,NS}
and Ẽas

un = Eaun,∀s ∈ {1,2, . . . ,NS}.

Similarly, in Case study F where Arun is the only uncertain parameter, the formulation
as a stochastic MSMIOCP with relaxed binary controls is a special case of that for Case
Study H, wherein K̃ds

un = Kdun,∀s ∈ {1,2, . . . ,NS} and Ẽas
un = Eaun,∀s ∈ {1,2, . . . ,NS}.

And, in Case Study G where Eaun is the only uncertain parameter, the formulation as a
stochastic MSMIOCP with relaxed binary controls is a special case of that for Case Study H,
wherein K̃ds

un = Kdun,∀s ∈ {1,2, . . . ,NS} and Ãrs
un = Arun,∀s ∈ {1,2, . . . ,NS}.

The set of parameters that apply to all case studies is given in Table 4.1. These are mostly
similar to the parameters used in Chapter 2, wherein the deterministic version of this problem
was considered. The values used for the pre-exponential factor and the activation energy of
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the product formation reaction, and the catalyst deactivation rate constant corresponding to
Case Study A in the deterministic study in Chapter 2 are used as the mean values of those
parameters which are considered uncertain in this chapter. The minimum allowable catalyst
activity (min−cat−actun) is set to a value that is attained after a duration of 1.5 years (which
was the maximum catalyst age value used in Chapter 2) for the form of catalyst deactivation
kinetics considered in this chapter. Details of the implementation to obtain solutions for each
of these case studies are presented in the next section.

Table 4.1 List of parameters.

Parameter Symbol Value

Arun 885 (1/day)

base−co fun $ 210 /week

base−crcun $ 107

base−ic fun $ 0.01 /(kmol day)

base−penun $ 1250 /kmol

base−pspun $ 1000 /kmol

CR0un 1 kmol/m3

demandun

1st quarter of year: 8000 kmol/week

2nd quarter of year: 7200 kmol/week

3rd quarter of year: 3300 kmol/week

4th quarter of year: 4500 kmol/week

Eaun 30,000 J/gmol

FUun 9600 m3/day

in f lationun 5%

Kdun 0.0024 (1/day)

min−cat−actun 0.2983

nun 5

NMun 36 months (= 3 years)
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Table 4.1 List of parameters.

Parameter Symbol Value

Rg 8.314 J/(gmol.K)

start−cat−actun 1.0

T Lun 400 K

TUun 1000 K

Vun 50 m3

4.4 Implementation details

The impact of parametric uncertainty in all case studies is analysed by solving sub-problems
within each case study. That is, the results of all sub-problems of the case study together
represent the impact of the considered parametric uncertainty in that case study. Depending
on the case study, the sub-problems differed either in the range of values considered for the
uncertain parameter or the number of scenarios. The details of the sub-problems investigated
in each case study are as follows:

Case Study E: To analyse the effect of uncertainty in Kdun, three sub-problems are
examined, that consider values for this parameter in the ranges of 10%, 20% and
30% relative standard deviations (RSDs) around the mean, Kdun. In each of these
sub-problems, NS = 20 scenarios are sampled uniformly from the respective ranges.

Case Study F: To analyse the effect of uncertainty in Arun, three sub-problems are
examined, that consider values for this parameter in the ranges of 10%, 20% and 30%
RSDs around the mean, Arun. In each of these sub-problems, NS = 20 scenarios are
sampled uniformly from the respective ranges.

Case Study G: To analyse the effect of uncertainty in Eaun, three sub-problems are
examined, that consider values for this parameter in the ranges of 5%, 7.5% and 10%
RSDs around the mean, Eaun. As Eaun appears within an exponential function in
the model, smaller ranges are considered in the sub-problems here compared to the
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parameters in Case Studies E and F. For each of these sub-problems, NS = 20 scenarios
are sampled uniformly from the respective ranges.

Case Study H: In this parametric uncertainty study the effects of simultaneous uncer-
tainty in all kinetic parameters and the impact of the number of scenarios generated
are investigated. Five sub-problems are examined that consider NS values of 5, 10, 15,
20 and 25. For each of these sub-problems, the respective number of scenarios are
sampled uniformly from only one range of values for each uncertain parameter: 10%
RSD around the mean, Kdun, for Kdun, 10% RSD around the mean, Arun, for Arun and
5% RSD around the mean, Eaun, for Eaun.

In addition, a deterministic (single scenario) run is carried out using values of Kdun, Arun

and Eaun for Kdun, Arun and Eaun, respectively. This deterministic run is very similar to
what was done in Chapter 2 for Case Study A using Implementation II, with the exception
that as there is no state variable of catalyst age present, there is no ODE, initial or junction
condition involving that state variable and the limit on the maximum duration of catalyst use
is imposed using a constraint on the catalyst activity, of the form of equation (4.24), in place
of a constraint on the catalyst age, of the form of equation (2.49). It is intended to analyse the
effects of uncertainty in the kinetic parameters by comparing the results of the sub-problems
of all case studies with the solution of the deterministic run.

For the chosen time horizon of 3 years, Table 4.2 provides details of the number of
decisions variables and constraints, which as mentioned previously, remain the same size as
in the deterministic (single scenario) case, for all sub-problems of all case studies considered
here. It is only the size of the ODE system that varies between the deterministic run and the
case studies, and details regarding this, for the time horizon of 3 years, are given in Table 4.3.

For each sub-problem in each case study, the implementation was performed in PythonTM

3.7.1 under PyCharm 2019.3.3 (Community Edition). The multiple scenario values for each
uncertain parameter in each sub-problem were generated by constructing Sobol sequences
(Sobol, 1976), of the length of the number of scenarios, within the specified range for that
uncertain parameter. Using quasi-random low-discrepancy Sobol sequences provided the
advantage of ensuring that the range of uncertainty is covered evenly. The Sobol sequences
were generated using the i4_sobol_generate method in the sobol−seq module (version 0.1.2)
in Python. The notion that a uniform sampling of values from the specified ranges of un-
certainty would aid a more reliable consideration of uncertainty was the motivation behind
using Sobol sequences to generate samples, but it noted that any other uniform sampling
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Table 4.2 Size specifications for the decision variables and constraints, applicable for the
deterministic problem as well as all sub-problems of all case studies.

Property Size

Decision variables

Catalyst changeover actions (yun) 36

Feed flow rate ( f f run) 144

Sales (salesun) 144

Temperature (Tun) 144

Total 468

Constraints

Constraints (4.16) 72

Constraints (4.17) 288

Constraints (4.18) 288

Constraints (4.19) 288

Constraints (4.20) 144

Constraints (4.21) 288

Constraint (4.22) 1

Constraints (4.48) 36

Constraints (4.49) 144

Total 1549

method can also fulfil this purpose.

The stochastic MSMIOCP formulated in each sub-problem of each case study, was solved
as standard nonlinear optimisation problem using the feasible path approach, by applying the
penalty term homotopy technique, of the form of equation (4.2), and solving the following
series of standard multistage optimal control problems:

Gsk : min

{
NCst +Msk

NMun

∑
i=1

yun(i) [1− yun(i)]

}
(4.52)

subject to the ODEs, initial conditions, junction conditions and constraints of the respective
case study, which were presented in Section 4.3, for

k = 1,2,3 . . .

Ms1 = 0
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Table 4.3 Details of the size of the ODE systems present in the deterministic run and the
sub-problems of all case studies.

Case Study Sub-problem Number of ODEs

Deterministic run N/A 576

Case Study E All sub-problems 11520

Case Study F All sub-problems 8784

Case Study G All sub-problems 8784

Case Study H

5 scenario sub-problem 2880

10 scenario sub-problem 5760

15 scenario sub-problem 8640

20 scenario sub-problem 11520

25 scenario sub-problem 14400

In accordance with this procedure, if in the solution of problem Gsk, the condition, yun(i) ∈
{0,1} for i = 1,2, . . .NMun, does not apply, then problem Gsk+1 is solved using the solution
of Gsk as initial guesses, with weight Msk+1 > Msk. The weight term, Msk, is increased as
per the arithmetic progression given by equation (4.53). This progression is similar to the
progression of increase of weights in equation (2.64) in Chapter 2, and is chosen as such
because the parameters used here are similar to those used in Chapter 2.

Msk+1 = (2×Msk)+
(
5×107)

Ms1 = 0

k = 1,2,3 . . .

(4.53)

For the deterministic run, as well as for all sub-problems of all case studies, the initial
guesses for the decision variables were set to their respective upper bounds. The same initial
guesses were used for all these runs in order to facilitate a comparison between the results of
these runs.

The implementation of the solution procedure for each sub-problem was chosen similar to
that of Implementation II in Section 2.4.3, which produced optimal solutions. That is, CasADi
in Python was once again used to write the code, with the elements of the series of problems
given by equation (4.52), for each sub-problem of each case study, defined as symbolic
expressions, this time using CasADi v3.5.1. CasADi plug-ins to the IDAS solver of the open
source SUNDIALS suite and IPOPT by COIN-OR were once again used for the integration
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Table 4.4 Criteria for termination of optimisation by IPOPT

Property Termination tolerance Acceptable termination tolerance

Optimality error 10−4 10−4

Dual infeasibility 1 106

Constraint violation 10−4 10−2

Complementarity 10−4 10−2

of ODEs and optimisation, respectively, with similar termination criteria to those used in the
previous chapters. That is, the integration by IDAS had the following termination criteria:
an absolute tolerance of 10−6 and a relative tolerance of 10−6. For the optimisation by
IPOPT, Table 4.4 presents the termination and ‘acceptable’ termination criteria, wherein the
’acceptable’ number of iterations concerning the latter was set at 15, as was done in Chapter 2.

The implementations were performed on a 2.80 GHz Intel(R) Core(TM) i5-8400 CPU,
16 GB RAM, Windows machine running on Microsoft Windows 10 Enterprise. Next, the
results obtained for all case studies are discussed.

4.5 Results and discussions

It was found that the proposed methodology faced no difficulties in obtaining solutions for
any sub-problem in any of the case studies, regardless of the parameter considered uncertain,
the ranges of values examined or number of scenarios involved. In each sub-problem, the
ODEs were solved to the specified integration tolerances and the optimisation converged to
within the stipulated tolerances, thereby underlining the high quality of solutions obtained.

The major impacts of the uncertainties in kinetic parameters were seen in the values of
objective functions and the time and frequency of catalyst replacements. These properties
showed variations between the results of the different sub-problem within the same case
study as well as in comparison to the result of the deterministic (single scenario) run, all of
which were performed using the same initial guesses.

In the solution of each sub-problem, the trends of the variations of the decision and
state variables over the time horizon were found to be very similar to those obtained in the
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Table 4.5 Deterministic run solution details.

Property Value

Profit (Million $) 447.139

Number of catalyst replacements 4

Months of catalyst replacements 7, 14, 19, 26

Number of major iterations 2

Solution time (seconds) 9183

deterministic study involving Case Study A in Section 2.3.3 and Section 2.4.5 of Chapter 2.
Therefore, these are not discussed in detail here. However, in order to provide insights into
the kind of variations induced in the decision variables due to the consideration of uncertainty,
the trends of decision variables over the time horizon for the deterministic run and all sub-
problems of Case Study G are plotted and compared in Section 4.5.3 wherein the results of
that case study are examined. This is done only for Case Study G, that considered the effect
of uncertainty in Eaun, because, as will be seen, it was in this case study that the maximum
impact of uncertainty on the objective function was observed. Similar presentations for all
other case studies are not informative enough to justify the large volume of the thesis that
would be necessary to do so.

Details of the solution obtained from the deterministic run are given in Table 4.5. The
properties of the results of the sub-problems of the four case studies, analogous to the
properties of the solution of the deterministic run in Table 4.5, are given in Tables 4.6 – 4.9.
In the following text, the effects induced by the consideration of the different aspects of
uncertainty within a case study are analysed by making a comparison between the results
of the sub-problems in each case study, as well as comparing the results of these sub-
problems with the result of the deterministic run. Further insights are also drawn by making
a comparison between the results of different case studies.

4.5.1 Case Study E

Details regarding the solutions obtained from the sub-problems investigated in this case study
are given in Table 4.6, Figure 4.2 and Figure 4.3. As can be seen in Table 4.6, the inclusion
of uncertainty in Kdun introduces significant differences in comparison to the solution of the
deterministic run presented in Table 4.5.
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The expected (mean) profits in the sub-problems of 10%, 20% and 30% RSDs about
Kdun show a considerable decrease of about 29, 28 and 27 million dollars, respectively, from
the profit obtained in the deterministic run. Further, a comparison between the expected
profits of the sub-problems gives an indication of the sensitivity to this parameter. While the
expected profits increase with an expansion in the range of values considered, the increase
between sub-problems is relatively small, showing an increase in about 2 million dollars for
an expansion in range from 10% RSD to 30% RSD. This suggests that while consideration
of uncertainty in Kdun does have an impact on the profits of the process, the sensitivity of
profits to further change in values of Kdun is relatively less.

The low sensitivity to change in Kdun is also indicated in the small values of the RSDs of
the profits generated over all scenarios for all sub-problems. These RSD values increase as
the range of values considered in the sub-problems increases, which is natural. This is also
reflected in the increasing difference between the maximum and minimum profits generated
over all scenarios as the range of values considered in the sub-problems increases.

Insights into the distribution of the profits over the 20 scenarios for each of the 3 sub-
problems are provided in Figure 4.2. In the histograms presented in this figure, the height of
each bin represents the number of scenarios out of 20 that result in profit values within the
range specified by the horizontal edges of that bin.

It is highlighted that the RSDs of the profits generated over all scenarios are of small
magnitudes in all case studies. This can be attributed to the fact that it is only the inventory
costs that are impacted by the generation of multiple scenarios and as observed in the results
of Chapter 2, these costs form the smallest proportion of the total expenses. However,
different magnitudes are observed in different case studies, which suggests different levels of
sensitivity of the profits to the change in values of different parameters.

Figure 4.3 provides an insight into the correlation between the profit and the value of
Kdun over all scenarios, for each sub-problem. Within all sub-problems, the profits seem
to increase in a linear manner with the increase in value of Kdun. This does not mean a
generalisation that a higher value of Kdun always leads to higher profit. It only implies
that for a set of optimal decisions obtained in a particular sub-problem considering a set of
scenarios, the nature of equations in the process model is such that the scenario containing a
higher value of Kdun attains a larger profit.
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Fig. 4.2 The distribution of the profits over all 20 scenarios for the sub-problem of (a) 10%
RSD over Kdun (b) 20% RSD over Kdun (c) 30% RSD over Kdun

Fig. 4.3 The correlation between value of Kdun and profit over all scenarios for the three
sub-problems.
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The number of catalyst replacements and the months in which they occur are the same
for all sub-problems in this case study, indicating that these properties are not sensitive to
a change in the range of uncertainty for Kdun. But the number of catalyst replacements
occurring in all of these sub-problems is 3, which is one less than in the deterministic case.
However, the months in which these 3 catalyst replacements occur, are the same as the
months of 3 of the 4 catalyst replacements in the solution of the deterministic run. Thus, in
comparison to the deterministic run, the inclusion of uncertainty in Kdun causes a change in
the number of catalyst replacements, but does not cause a variation in the preferred months
of catalyst replacement.

The introduction of uncertainty in Kdun also causes the penalty term homotopy technique
to operate differently compared to in the deterministic study. Each of the sub-problems
require 4 major iterations, or 4 problems of the series given by equation (4.52) to be solved,
to ensure binary values for the catalyst changeover controls. This is different from the
deterministic study that required only 2 such major iterations.

The use of several different scenarios to consider parametric uncertainty causes the size
of the ODE system to be solved in each of these sub-problems to become several times larger
than that of the deterministic study (Table 4.3). This causes the solution time for each of
these sub-problems to be much larger than that of the deterministic study.

4.5.2 Case Study F

Details of the solutions obtained from the sub-problems investigated in Case Study F are
given in Table 4.7, Figure 4.4 and Figure 4.5. It is seen that the inclusion of uncertainty in
Arun also introduces differences in comparison to the solution of the deterministic run.

Compared to the profit obtained in the deterministic run, the expected profit for the sub-
problem of 10% RSD about Arun showed a relatively small difference of about 0.3 million
dollars, but larger differences of about 6 and 8 million dollars are seen for the sub-problems
of 20% and 30% RSD about Arun, respectively. This suggests that uncertainty in Arun can
result in expected profits significantly different from the deterministic profit only when larger
ranges of uncertainty are considered. Further, for a given range of uncertainty in Arun, the
difference of the expected profit from the deterministic profit is less than that seen for a simi-
lar range of uncertainty in Kdun in Case Study E. This indicates that uncertainty in Arun has
a smaller impact on the profits of the process in comparison to uncertainty in Kdun. Another
difference from Case Study E is that the expected profits decrease as the range of uncertainty
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in Arun increases, whereas an opposite trend was seen for uncertainty in Kdun in Case Study E.

On the other hand, the change in the value of expected profits as the range of uncertainty
in Arun is changed, is larger than that seen for a similar change of range in Kdun. This
suggests that the profits are more sensitive to a change in value of Arun compared to a change
in value of Kdun. This is also reflected in larger values of the RSDs of the profits generated
over all scenarios as well as the larger difference between maximum and minimum profits in
each range of uncertainty in this case study compared to the similar range in Case Study E.
As in Case Study E, a natural increase occurs in the RSDs of the profits generated over
all scenarios and the difference between maximum and minimum profits, as the range of
uncertainty is increased in this case study.

Figure 4.4 provides insights into the distribution of the profits over the 20 scenarios for
each of the 3 sub-problems. As in Figure 4.2, in the histograms presented in this figure, the
height of each bin represents the number of scenarios out of 20 that result in profit values
within the range specified by the horizontal edges of that bin.

An insight into the correlation between the profit and the value of Arun over all scenarios
for each sub-problem is provided in Figure 4.5. Within all sub-problems, the profits seem to
increase with an increase in Arun value, but unlike in Case Study E, this increase is not linear.
Once again, it is stressed that a higher Arun value in a scenario leading to a higher profit in
that scenario in each sub-problem, arises from the nature of the process model equations for
a fixed set of optimal decisions and is not a trend that can be generalised.

The number of catalyst replacements for all sub-problems in this case study is the same
and is equal to that in the deterministic run, thereby suggesting that this property is not
affected by the inclusion of uncertainty in Arun.

However, on observing the months in which these replacements occur, the timing of
the second catalyst replacement appears to vary, by occurring in the 13th month in the sub-
problems of 10% and 30% RSD about Arun and in the 12th month in the sub-problem of 20%
RSD about Arun, in comparison to the 14th month in the deterministic study. The months
of all other catalyst replacements (7, 19 and 26) in all sub-problems are the same as in the
deterministic run.
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Fig. 4.4 The distribution of the profits over all 20 scenarios for the sub-problem of (a) 10%
RSD over Arun (b) 20% RSD over Arun (c) 30% RSD over Arun

Fig. 4.5 The correlation between value of Arun and profit over all scenarios for the three
sub-problems.
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Thus, the observation is that even in the presence of uncertainty in Arun, majority of the
catalyst replacements occur at the same time as in the deterministic run, and in the minority
of situations when the timing is different, it is within one or two months of the time suggested
in the deterministic run. This suggests that while the timing of catalyst replacements is
impacted by the uncertainty in Arun, the effects are not drastic in the sense that the timing is
only less sensitive to the uncertainty. It is also worth noting that majority of the months of cat-
alyst replacements here overlap with the times suggested in the sub-problems of Case Study E.

As in the deterministic run, all sub-problems in this case study require two major iterations
of the penalty term homotopy technique for the catalyst changeover controls to attain binary
values. However, due to the large ODE system (Table 4.3), the solution times for all these
sub-problems are several times larger than that of the deterministic run.

4.5.3 Case Study G

Details of the solutions obtained from the sub-problems investigated in Case Study G are
given in Table 4.8, Figure 4.6 and Figure 4.7. The occurrence of the uncertain parameter,
Eaun, in an exponential term, causes the solutions of the sub-problems in this case study to
be significantly different from the deterministic study, even while considering smaller ranges
of uncertainty in comparison to the previous case studies.

As seen in Table 4.8, the expected profits for the sub-problems of 5%, 7.5% and 10%
RSD about Eaun were lower by approximately 21 million dollars, higher by approximately
18 million dollars and lower by approximately 4 million dollars respectively, in comparison
to the profit of the deterministic run. Thus, it can be concluded that uncertainty in Eaun has a
significant effect on the expected profit. However, the wide variation in profit values between
sub-problems and the lack of clearly increasing or decreasing trends in the expected profits
with increasing ranges of uncertainty makes it difficult to compare the effect on the expected
profit of uncertainty in Eaun with that of the other kinetic parameters in the previous case
studies.

Figure 4.6 provides insights into the distribution of the profits over the 20 scenarios for
each of the 3 sub-problems. As in Figures 4.2 and 4.4, in the histograms presented in this
figure, the height of each bin represents the number of scenarios out of 20 that result in profit
values within the range specified by the horizontal edges of that bin.
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Fig. 4.6 The distribution of the profits over all 20 scenarios for the sub-problem of (a) 5%
RSD over Eaun (b) 7.5% RSD over Eaun (c) 10% RSD over Eaun

As in the previous case studies, the RSDs of the profits generated over all scenarios as
well as the difference between maximum and minimum profits in a sub-problem increases as
the range of uncertainty for Eaun increases. However, the profit RSD values are comparable
to or even larger than those of the parameters in the previous case studies even though ranges
of uncertainty used for Eaun are smaller than those of the parameters in those case studies.
This suggests that the profit values are more sensitive to a change in value of Eaun compared
to a change in value of Arun or Kdun. This can be attributed to the occurrence of Eaun within
an exponential term in the process model against the linear occurrences of Arun and Kdun.

The correlation between the profit and the value of Eaun over all scenarios for each
sub-problem is given in Figure 4.7. Within all sub-problems, the profits seem to increase
with an increase in Eaun value in a linear manner. Once again, this is not a trend that can be
generalised due to reasons similar to those mentioned in the explanations of the analogous
figures (Figures 4.3 and 4.5) in the previous case studies.

The number of catalyst replacements in the sub-problem of 7.5% RSD about Eaun is 4,
which is the same as in the deterministic run. But this number drops to 3 in the sub-problems
of 5% and 10% RSD about Eaun. This suggests that this property is susceptible to change
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Fig. 4.7 The correlation between value of Eaun and profit over all scenarios for the three
sub-problems.

with varying ranges of uncertainty in Eaun.

While the number of catalyst replacements in the sub-problem of 7.5% RSD about Eaun

is the same as in the deterministic run, the second catalyst replacement in this sub-problem
occurs in the 13th month, in comparison to the 14th month in the deterministic run. The
months of the other 3 catalyst replacements (7, 19 and 26) in the sub-problem are the same
as in the deterministic run and in fact, these overlap with the months of the 3 catalyst replace-
ments in the sub-problems of 5% and 10% RSD about Eaun.

Thus, even in presence of uncertainty in Eaun, majority of the catalyst replacements
occur at the same time as in the deterministic run, and in the minority of situations when the
timing is different, it is within one month of the time suggested in the deterministic run. This
indicates that while the timing of catalyst replacements is impacted by the uncertainty in
Eaun, the sensitivity to uncertainty in Eaun is small. The reporting of similar observations
in other case studies suggests that the timing of catalyst replacement is less sensitive to the
presence of uncertainty in kinetic parameters.
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While the number of major iterations in the penalty term homotopy technique, to guaran-
tee binary values for the catalyst changeover controls, is 2 in the deterministic run and the
sub-problem of 7.5% RSD about Eaun, it is 4 in the sub-problems of 5% and 10% RSD about
Eaun. As in the previous case studies, due to the large ODE system (Table 4.3), the solu-
tion times for all these sub-problems are several times larger than that of the deterministic run.

As was mentioned at the beginning of Section 4.5, since uncertainty in Eaun causes the
maximum variation in the objective function, the trends over the time horizon of the decision
variables of the sub-problems of Case Study G are discussed in order to provide insights into
the kind of variations induced in the decision variables due to the consideration of uncertainty.
The months of catalyst replacements and hence, the values of catalyst changeover controls,
for all sub-problems have already been examined when discussing Table 4.8. Therefore,
only the profiles of f f run, Tun and salesun over the time horizon, for all sub-problems of
Case Study G alongside that of the deterministic run, are examined and these are shown in
Figures 4.8, 4.9 and 4.10, respectively.

As seen in Figure 4.8, during times of catalyst operation, the profile of f f run for each
sub-problem is very similar to that of the deterministic run: while in the deterministic run,
the flow rate is decreased at a rate that maintains a constant exit concentration, in the other
sub-problems the flow rate is decreased at a rate such that average of the exit concentrations
over all scenarios considered is constant. The trends of the flow rates can be explained using
reasoning similar to that offered for the explanation of the trend of the flow rate in Figure 2.8
in Section 2.3.3. It is noticed, however, that during times of catalyst operation, excluding
the time when the sharp drop in value occurs at the end of the time horizon, the magnitudes
of the flow rates become higher as the range of uncertainty for Eaun is increased. But an
opposite trend is observed during the time when the sharp drop in value occurs at the end of
the time horizon. It is noted though that, at all of these times, the difference in magnitudes
between the runs is quite small.

It can be seen in Figure 4.9 that the profiles of the temperatures over the time horizon for
the deterministic run and all sub-problems are similar in that the temperatures are maintained
at the upper bound during times of catalyst operation and drop to the lower bound during
times of catalyst replacement. Such trends can be explained using reasoning similar to that
provided for the explanation of the profile of the temperature in Figure 2.8 in Section 2.3.3.
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Fig. 4.8 A comparison between the profiles of the feed flow rates of the deterministic run and
all sub-problems of Case Study G

And from Figure 4.10, it is seen that the profiles of the sales over the time horizon for
the deterministic run and all sub-problems are largely similar in that in all these runs, there
is some unmet demand at the beginning of the process and there is considerable unmet
demand at the end of the first year, but the sales completely meet the demand during the
second and third years. Such observations can be explained using reasoning similar to that
given for the explanation of the profiles of the sales in Figure 2.9 in Section 2.3.3. However,
there are some minor differences between the sub-figures in that the amount of sales and
hence, the unmet demand, in the first year, differs between these runs. If a sub-figure has a
greater amount of sales and hence, lesser unmet demand during the first year, it is because
the run corresponding to that sub-figure has a more efficient catalyst replacement schedule
that enables a greater amount of product to be produced and thus, a greater amount of sales
to occur.

It is mentioned that in the sub-problems of the other case studies, namely Case Study E,
F and H, the trends of the feed flow rate, temperature and sales were also similar to that of
the deterministic run, with minor variations seen in the magnitudes of only the feed flow rate
and the sales.
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Fig. 4.9 The profile of the temperatures over the time horizon in the (a) Deterministic run
(b) Sub-problem of 5% RSD over Eaun (c) Sub-problem of 7.5% RSD over Eaun (d) Sub-
problem of 10% RSD over Eaun. This figure facilitates a comparison between the profiles of
the temperatures of the deterministic run and all sub-problems of Case Study G
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Fig. 4.10 The profile of the sales over the time horizon in the (a) Deterministic run (b) Sub-
problem of 5% RSD over Eaun (c) Sub-problem of 7.5% RSD over Eaun (d) Sub-problem of
10% RSD over Eaun. This figure facilitates a comparison between the profiles of the sales of
the deterministic run and all sub-problems of Case Study G
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4.5.4 Case Study H

Table 4.9 provides details of the solutions of the sub-problems investigated in Case Study H,
that considered the effect of simultaneous uncertainty in parameters Kdun, Arun and Eaun

while generating different number of scenarios. It is noted that the scenarios for each param-
eter in each sub-problem were generated independently of each other. That is, for example,
in the 10 scenario sub-problem, the 10 samples for each parameter were generated exclu-
sively for this sub-problem and not by adding 5 samples to the samples of the 5 scenario
sub-problem.

As is seen in Table 4.9, the expected profits show significant variations between sub-
problems that considered different the number of scenarios, as well as in comparison to the
profit in the deterministic run. The expected profits for the 5, 10, 15, 20 and 25 scenario
sub-problems show an increase of about 11 million dollars, a decrease of about 12 million
dollars, a decrease of about 24 million dollars, a decrease of about 22 million dollars and an
increase of about 12 million dollars, respectively, from the profit in the deterministic run.

The difference between the maximum and minimum profit over all scenarios in each sub-
problem shows a gradual increase as the number of scenarios considered in the sub-problem
increases. The RSDs of the profit values over all scenarios show slight variations between
sub-problems but are mostly around the value of about 0.1%.

Figure 4.11 provides insights into the distribution of the profits over the respective number
of scenarios for each sub-problem. In the histogram presented for each sub-problem in this
figure, the height of each bin represents the number of scenarios out of the total number of
scenarios involved in that sub-problem, that result in profit values within the range specified
by the horizontal edges of that bin. This presentation is merely to visualise the distribution of
the profits in these sub-problems and there are no comments that can be drawn regarding the
impact of the number of scenarios on these distributions.

The number of catalyst replacements also shows variations between sub-problems: while
4 replacements, the same as in the deterministic run, occur in the sub-problems of 10 and 25
scenarios, only 3 replacements occur in the sub-problems of 5, 15 and 20 scenarios.

While the number of catalyst replacements in the 10 and 25 scenario sub-problems are
the same as in the deterministic run, the second catalyst replacement in these sub-problems
occurs in the 13th month, in comparison to the 14th month in the deterministic run. The
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Fig. 4.11 The distribution of the profits over the respective number of scenarios runs for
(a) 5 scenario sub-problem (b) 10 scenario sub-problem (c) 15 scenario sub-problem (d) 20
scenario sub-problem (e) 25 scenario sub-problem

months of the other 3 catalyst replacements (7, 19 and 26) in these sub-problems are the
same as in the deterministic run and in fact, these overlap with the months of the 3 catalyst
replacements in the sub-problems of 5 and 15 scenarios. In the 20 scenario sub-problem,
while the timing of the first catalyst replacement (7th month) is consistent with that of the
deterministic run and all other sub-problems, the timings of the second (15th month) and
third (22nd month) replacements are different from those in the deterministic run and the
other sub-problems.



216 Process optimisation under uncertainties in kinetic parameters

However, apart from a few anomalous cases like in the 20 scenario sub-problem, the
observation is that the timings of the catalyst replacements in all sub-problems in this case
study are mostly the same as in the deterministic run, or within a month of the timing in the
deterministic run in the minority of situations. This suggests that the sensitivity of the timing
of catalyst replacements to the simultaneous inclusion of uncertainty in all kinetic parameters
as well as different number of scenarios is small, but not nil. This observation reinforces the
suggestions made in the previous sub-sections that the timing of catalyst replacements is less
sensitive to the presence of uncertainty in kinetic parameters.

The number of major iterations in the penalty term homotopy technique to ensure bi-
nary values for the catalyst changeover controls also varies between sub-problems. The
sub-problems of 10 and 25 scenarios require 2 such iterations, as in the deterministic run,
but the sub-problems of 5 and 15 scenarios require 4 such iterations and the 20 scenario
sub-problem requires 6 such iterations.

The solution time for all sub-problems is several times larger than in the deterministic
run, owing to their larger ODE systems compared to the latter (Table 4.3). However, the 5
scenario sub-problem has the smallest solution time among all sub-problems, followed by the
10 scenario sub-problem, and this follows from the size of their respective ODE systems. It
may seem counter-intuitive that the solution time for the 25 scenario sub-problem is smaller
than those of the 15 and 20 scenario sub-problems, despite the larger size of the ODE system
in the former. This is because a greater number of major iterations are needed for the 15 and
20 scenario sub-problems (4 and 6, respectively) compared to the 25 scenario sub-problem
(which required only 2 major iterations).

Thus, it is seen that the solutions of all sub-problems show variations from the determin-
istic run and this is an indication of the significant effects that the inclusion of uncertainty
in all kinetic parameters simultaneously can produce. But there are also variations between
the solutions of the sub-problems, each which considered a different number of scenarios,
although the same range of uncertainty was considered for each uncertain parameter in all
these sub-problems.

The number of major iterations and the solution times for the different sub-problems
can be expected to be different, due to the different sizes of the ODE systems involved in
each sub-problem. However, the variations in the RSDs of the profits over all scenarios,
the number of catalyst replacements, the months of catalyst replacements and especially
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the large differences in the expected profit values between sub-problems suggest that an
insufficient number of scenarios have been considered to solve this problem. That is, a much
larger number of scenarios have to be considered in order to identify the optimal schedule
of catalyst replacements and production plan under the given range of uncertainty for each
parameter.

4.5.5 General discussion of results

In this sub-section, a comparative discussion of the results obtained in all case studies is
carried out and some conclusions are drawn.

With regard to the expected profit of the process, a comparison of the results of the
sub-problems of Case Studies E and F indicated that uncertainty in Arun seems to have a
smaller impact compared to uncertainty in Kdun. Another notable trend is that the expected
profits decrease as the range of uncertainty for Arun increases, whereas an opposite trend was
seen for an increase in range of uncertainty for Kdun.

The results of the sub-problems of Case Study G indicate that uncertainty in Eaun has a
significant impact on the expected profit of the process. However, with increasing range of
uncertainty in Eaun, there is no pattern in the obtained values of the expected profit, in terms
of a variation from the deterministic profit or an increasing or decreasing trend. Hence, no
clear comparisons could be drawn between the impact on the expected profits of uncertainty
in Eaun and uncertainty in Kdun or Arun.

On the other hand, a comparison of the RSDs of the profits over all scenarios indicates
that the profits of the process are most sensitive to a change in value of Eaun, the next highest
sensitivity is to a change in value of Arun and the lowest sensitivity is to a change in value of
Kdun. The highest sensitivity to a change in Eaun could be attributed to the occurrence of
Eaun in an exponential term in the process model, against the linear occurrences of Arun and
Kdun.

However, in the results of the sub-problems of Case Study H, which considered different
number of scenarios, although the RSDs of the profits over all scenarios are all around the
value of about 0.1%, the expected profits vary widely between the sub-problems, even though
all considered the same range of uncertainty for each uncertain parameter. This indicates that
an insufficient number of scenarios were being considered to solve this problem.
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To obtain the actual solution of this problem, a much larger number of scenarios need to
be considered, such that a further increase beyond this number would cause negligible varia-
tions in the solutions. However, the computational power required to consider such a large
number of scenarios is currently unavailable and so, this has not been carried out in this thesis.

The conclusion from Case Study H, that a much larger number of scenarios is needed to
effectively solve this problem, throws a question on the inferences drawn from the solutions
of Case Studies E, F and G, as these case studies considered only 20 scenarios, which is
certainly not a large number. Therefore, the apparent observations such as the profits being
least sensitive to change in Kdun, or uncertainty in Arun having a smaller impact on expected
profit compared to uncertainty in Kdun, cannot be concluded to be true unless the same are
observed while considering the required larger number of scenarios.

However, with regard to the number and timing of catalyst replacements, the results
obtained suggest that parametric uncertainty has a small impact. In the results of the sub-
problems of all case studies, the optimal number of replacements is either 3 or 4, thus showing
small or no variation from the deterministic solution that has 4 replacements. Further, the
months of replacements are mostly similar or within one or two months of the times in the
deterministic solution, apart from in the 20 scenario sub-problem of Case Study H which can
be considered an anomalous result.

This observation suggests that, just by knowing the deterministic solution, the operator of
the process can obtain good estimates of the optimal number and timing of catalyst replace-
ments, in the presence of parametric uncertainty. However, the fact remains that variations,
though small, are seen in these properties between the results of the different number of
scenarios considered in Case Study H. The consideration of the required larger number of
scenarios can enable obtaining exact values, rather than estimates, of the optimal values of
these properties in the presence of parametric uncertainty.

In Table 4.10, the solution times of all sub-problems of all case studies, as well as that
of the deterministic run are summarised. It is noted that no patterns can be drawn regard-
ing these solution times, with respect to the size of the sub-problem, the range of values
for the uncertain parameter or the number of scenarios considered. However, Table 4.10
enables an appreciation of the impact of the consideration of uncertainty on the solution
times: the solution time of each sub-problem of each case study is several times larger
than that of the deterministic run due to the size of the ODE system in each of those being
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Table 4.10 A summary of the solution times of the sub-problems of all case studies

Case Study Sub-problem Solution time (seconds)

Deterministic run N/A 9183

Case Study E

10% RSD about Kdun 703187

20% RSD about Kdun 811814

30% RSD about Kdun 1049004

Case Study F

10% RSD about Arun 825814

20% RSD about Arun 754913

30% RSD about Arun 488749

Case Study G

5% RSD about Eaun 934872

7.5% RSD about Eaun 747505

10% RSD about Eaun 802522

Case Study H

5 scenario sub-problem 95150

10 scenario sub-problem 308784

15 scenario sub-problem 1060280

20 scenario sub-problem 1367039

25 scenario sub-problem 858033

significantly larger than that of the deterministic run. It is also noted that these solution times
are specific to the set of initial guesses and the type of computer used. That is, these solution
times may well be different if different initial guesses and a different type of computer is used.

And finally, it is highlighted that only one set of initial guesses was used for the optimisa-
tion in all sub-problems of all case studies. As the problem here is non-convex, the solution
obtained for each sub-problem is only a local optimum. In order to find the global optimum
in each of these problems, the best solution out of several optimisation runs, each carried out
using different initial guesses, needs to be identified. This would require a huge amount of
computational effort and hence, has not been carried out in this thesis.

Thus, the results of the different case studies obtained in this section can be said to provide
useful insights into the effects of parametric uncertainty in this problem while demonstrating
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the application of the proposed solution methodology. But these results cannot be concluded
as the actual solutions of these case studies. In order to fully identify the effect of each
uncertain parameter in Case Studies E, F and G, the sub-problems in these case studies need
to be solved while considering a large number of scenarios and by identifying the global
optimum from a set of solutions obtained from several different initial guesses. Similarly,
the global optimum of the parametric uncertainty problem in Case Study H can be identified
from a set of solutions obtained from several different initial guesses, while considering a
large number of scenarios for each uncertain parameter.

The advantage of the stochastic formulation in the proposed solution methodology is that
only the size of the ODE system increases as the number of scenarios considered increases and
the number of decision variables and constraints remain the same as in the deterministic case,
regardless of the number of scenarios involved. This property has prevented an explosion
in problem size and facilitated convergence to high quality solutions, within the stipulated
tolerances, for all case studies considered. Thus, the proposed solution methodology would
face no difficulties in obtaining the global optimum of the aforementioned case studies by
considering the required number of large scenarios and the several different initial guesses,
provided the required computational power is available. The use of high performance
computing and parallel computing facilities would make such a task feasible.

4.6 Summary, conclusions and further discussions

In this chapter, an optimal control methodology has been developed for considering uncer-
tainties in kinetic parameters in the optimisation of maintenance scheduling and production
in a process containing a reactor using decaying catalysts. This methodology is an extension
of the forms of optimal control methodologies used in the previous chapters to solve deter-
ministic problems.

As in the previous chapters, this methodology involves an initial problem formulation
as an MSMIOCP. The elements of the MSMIOCP represent elements of the process in an
analogous manner to that done in the previous chapters, with the exception that here there
is uncertainty regarding the values of the kinetic parameter present in the process model
represented by the DAEs of the MSMIOCP.

The integer restrictions on the binary controls in this MSMIOCP formulation are first
relaxed and then, using a multiple scenario approach to consider parametric uncertainty, a
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stochastic version of this MSMIOCP formulation with relaxed binary controls is developed.
A unique feature of this formulation as a stochastic MSMIOCP with relaxed binary controls
is that the size of the DAE system increases proportionately with the number of scenarios
considered compared to a deterministic/single scenario case, but the number of control
variables and constraints involved in the optimisation is the same as in the latter case. This
is by virtue of the property that a set of controls analogous to that in deterministic/single
scenario case is to be used in this formulation in order to optimise only the average of the
set of objective functions over all scenarios while fulfilling only the average of each set of
constraints over all scenarios.

This stochastic MSMIOCP with relaxed binary controls is solved as a standard nonlin-
ear optimisation problem in a manner similar to that done in the previous chapters. That
is, a penalty term homotopy technique is applied to this formulation wherein a series of
standard multistage optimal control problems are solved using a feasible path approach,
with a monotonically increasing penalty term added to the objective function to enforce
values of 0 or 1 for the binary controls, which were assumed continuous in this formulation.
As was mentioned in the previous chapters, this procedure possesses multiple favourable
characteristics: the penalty term homotopy technique obviates the need for mixed-integer
optimisation methods to schedule catalyst changeovers and the feasible path approach guar-
antees accuracy, and both these features enable a smaller problem size which facilitates an
easier convergence to solutions. As this procedure is similar to that of Implementation II in
Section 2.4.3 of Chapter 2, only here is is applied to a stochastic MSMIOCP formulation
with relaxed binary controls, this methodology is referred to as a "stochastic MSMIOCP
formulation in combination with a solution procedure of the principle of Implementation II".

This methodology was applied to an industrial process similar to a case study of the
industrial process considered in Chapter 2, with the exception that here there was uncertainty
regarding the values of the kinetic parameters of the catalyst deactivation rate constant, the
pre-exponential factor and the activation energy of the product formation reaction. Four
case studies were considered, three (Case Studies E, F and G) of which examined the effect
of uncertainty of each parameter individually and the fourth (Case Study H) which studied
the effect of all these parameters being uncertain simultaneously alongside the effect of the
number of scenarios generated.

The methodology faced no difficulties in obtaining solutions for any case study. The
obtained results were of high quality in the sense that all ODEs were solved to a high accuracy,
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to the specified integration tolerances, and the optimisation converged to within the stipulated
optimality tolerances. The trends of the decision and state variables over the time horizon for
all case studies were similar to that of the related case study in Chapter 2. The main effects
of uncertainties were seen in the values of the objective functions, and the frequency and
timings of catalyst replacements.

A comparison between the results of Case Studies E, F and G as well a comparison of
these results with that of a deterministic run performed using the same initial points was
done in order to gain insights into the relative effects of uncertainties in different parameters.
However, the results of Case Study H, which showed wide variations in solutions when
considering different numbers of scenarios, suggested that the number of scenarios being
considered (20 / 25) in all of the case studies examined was an insufficient number. In
addition, it was highlighted that the results of all case studies were obtained using only one
set of initial points and the true effects of uncertainties can only be identified only when
several different initial points are used.

To obtain the true solutions of all these case studies, several runs using different initial
points and while considering a large number of scenarios have to be performed. But the
computational power required for such a task was not available. However, in the proposed
methodology, as only the number of DAEs increase with the number of scenarios considered,
while the number of decision variables and constraints remain the same as in a deterministic
case, it is reasonable to expect that the methodology can obtain high quality solutions when a
large number of scenarios and several initial points are used as well, provided the computa-
tional power required for such a task is available.

In conclusion, in this chapter, a novel optimal control methodology has been developed
that is capable of effectively optimising maintenance scheduling and production in an
industrial process using decaying catalysts while considering uncertainties in the kinetic
parameters. This optimal control methodology’s features can provide potential advantages
over the conventional methodologies of solving problems of this kind, which use mixed-
integer optimisation techniques in combination with one of the popular preventive methods
of handling uncertainty, by potentially overcoming the drawbacks introduced by the mixed-
integer techniques in those methodologies. These potential advantages are stated as follows:

1. It is robust because the smaller problem size enabled facilitates convergence to op-
timal solutions, regardless of the number of scenarios considered for the uncertain
parameters.
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2. It is reliable because solutions can be obtained to a high degree of accuracy using
state-of-the-art integrators, without the use of any approximation techniques.

3. It is efficient because a maintenance schedule for catalyst replacements can be obtained
inherently during the optimisation, without using any additional computational effort
in deciding when to schedule catalyst changeovers.

Thus, in this chapter, in line with the third objective of the thesis, a methodology has
been developed that can effectively optimise the maintenance scheduling and production in
a process containing a reactor using decaying catalysts while considering uncertainties in
kinetic parameters, and which can overcome the disadvantages that the use of mixed-integer
methods would introduce in the conventional methodologies, if such methodologies are used
to solve problems of this kind.

Further discussion can be drawn regarding the methodology developed in this chapter.
In this methodology, the constraints were "softened" in that only the average of each set of
constraints over all scenarios was required to be satisfied. However, this may not be sufficient
in the handling of critical operational constraints. For example, for constraints involving
personnel and plant integrity and safety, using only a softened version of the constraints may
not be acceptable. In such cases, it may be necessary to use a "hard" form of the constraints
wherein the constraint arising in each scenario is required to be fulfilled.

In addition, it is highlighted that the use of a multi-scenario approach and the formulation
as a stochastic MSMIOCP is just one way of including parametric uncertainty in this problem
formulated as an MSMIOCP. Alternatively, parametric uncertainty can be considered in
the initial MSMIOCP formulation of the problem by applying one of the other previously
mentioned techniques of handling uncertainty on this formulation. For example, one of the
robust optimisation techniques can be applied and a robust counterpart formulation of the
MSMIOCP can be derived. Following techniques of parametric programming, an MSMIOCP
formulation can be developed to obtain mappings between parametric uncertainties and
optimal solution alternatives. By employing, as done throughout this thesis, a solution
procedure as a standard nonlinear optimisation problem using a feasible path approach,
such formulations can be solved effectively, especially in comparison to the conventional
methodologies of using mixed-integer optimisation methods in combination with such
techniques of handing uncertainty, in which case the drawbacks of the mixed-integer methods
could cause difficulties in obtaining solutions. These can be regarded as directions of future
research work.





Chapter 5

Conclusions and future work

As the title suggests, the focus of this chapter is on the conclusions of the thesis and
suggestions for future research work. First, an overview of the research problems and
objectives of the thesis is given in Section 5.1. This is done in order to facilitate the
presentation of the conclusions of the thesis in Section 5.2. The recommendations for future
research work are mentioned in Section 5.3.

5.1 Overview of research problems and objectives

The problems under consideration in this thesis involve the optimisation of large scale in-
dustrial processes using decaying catalysts. In order to optimise the performance of such
processes, it is necessary to obtain an optimal maintenance schedule for the replacements of
the decaying catalysts in tandem with an optimal production plan that specifies the best oper-
ating conditions of the process and the periodic sales to meet time-varying demand effectively.

Two publications, by Houze et al. (2003) and Bizet et al. (2005), exist that attempt to solve
such a problem using mixed-integer optimisation methodologies. The problems considered
in the two publications were similar in that the process contained only a single reactor using
decaying catalysts that processed a single feed stream to produce a single product, there were
no uncertainty considerations present and the scheduling of catalyst replacements had to be
optimised in tandem with the optimisation of reactor operating conditions and the periodic
product sales in order to meet time-varying demand. But the two publications differed
in that different time horizons of the process were considered and different mixed-integer
methodologies were utilised to obtain solutions.
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However, there are major drawbacks involved in the use of mixed-integer optimisation
techniques. When such techniques are used, differential equations present in the problem
have to be approximated as a collection of steady state equations, which in turn are imposed
as equality constraints in the problem. Not only does the steady state approximation reduce
the accuracy of the results obtained, the fact that these steady state equations are imposed as
equality constrains increases the number of variables and constraints present in the problem,
and this could lead to difficulties in convergence to optimal solutions when a large number of
differential equations are involved. In addition, if greater accuracy is desired, a finer steady
state approximation of the differential equations is needed which, however, further increases
the number of variables and constraints in the problem. Therefore, there is a difficult compro-
mise between accuracy and ease of convergence involved in the use of mixed-integer methods.

Another major drawback is that, since mixed-integer methods are combinatorial in nature,
the computational effort to solve a problem increases exponentially with the number of
integer decisions involved. This adds to the drawback that if a large number of integer
decisions are involved, the problem size also increases significantly. Therefore, in such cases,
convergence to a solution may be difficult and even if solutions can be obtained, an enormous
amount of computational power would be required.

While the two publications, by Houze et al. (2003) and Bizet et al. (2005), did not report
any difficulties in convergence to optimal solutions, both did not reveal the underlying model
or any of the parameters used, citing confidentiality reasons. Therefore, it was not possible
to reproduce the results of those publications or even check for the accuracy of the solutions
obtained. Further, these publications considered only a maximum of 3 or 4 catalyst loads to
be used. If a larger number of catalysts was involved, the size of the problem would have
increased greatly, and obtaining good quality solutions using methodologies similar to those
employed by those publications would have faced considerable difficulties.

Further, more realistic problems compared to that considered by Houze et al. (2003) and
Bizet et al. (2005) exist in this domain, which have not been considered by existing literature.
For instance, industries commonly have parallel lines of reactors operating simultaneously.
In order to maximise the profits of such a set up, it is necessary to optimise scheduling of
catalyst replacements and operating conditions in all reactors, in addition to the inventory
management and sales to meet seasonal demand, while also fulfilling a condition that no two
reactors undergo catalyst replacement at the same time. While traditionally such a problem
is solved using mixed-integer methodologies as well, it is highlighted that this problem is of
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larger size compared to the one considered by the works of Houze et al. (2003) and Bizet et al.
(2005). Therefore, if mixed-integer optimisation techniques are used to solve this problem as
well, the drawbacks of these techniques will be aggravated in comparison to the drawbacks
faced by such techniques in solving the problem considered in those publications, and so, it
would be difficult to obtain good quality solutions.

Further, the works of Houze et al. (2003) and Bizet et al. (2005) assumed that all kinetic
parameters involved were known exactly, which is an unrealistic assumption. It is important
to consider uncertainties in kinetic parameters in the optimisation of maintenance scheduling
and production in processes using decaying catalysts, as such uncertainties can have a signifi-
cant impact on the optimal process operations. The conventional methodologies of solving
such a problem involve using one of the popular preventive methods of handling uncertainty
in combination with a mixed-integer optimisation technique. However, this would involve
using mixed-integer techniques to solve a problem of similar or larger size in comparison to
when no uncertainty considerations are present, and so the drawbacks of these techniques
will once again be encountered or possibly even be further aggravated. Therefore, obtaining
good quality solutions for this problem using the conventional methodologies will be difficult.

The drawbacks involved in the use of mixed-integer optimisation techniques highlighted
the need for an alternative set of methodologies to solve problems involving maintenance
scheduling and production in processes using decaying catalysts, of the types mentioned
above. This led to the objectives of the thesis, which were enumerated as follows:

1. To develop a methodology that can effectively optimise the maintenance scheduling
and production in a process containing a reactor using decaying catalysts, and which
can overcome the drawbacks faced by mixed-integer optimisation techniques in solving
this problem

2. To develop a methodology that can effectively optimise maintenance scheduling and
production in a process containing parallel lines of reactors using decaying catalysts,
and which can overcome the drawbacks that mixed-integer methods would face in
solving problems of this kind

3. To develop a methodology that can consider uncertainties in kinetic parameters while
effectively optimising the maintenance scheduling and production in a process contain-
ing a reactor using decaying catalysts, and which can overcome the disadvantages that
the use of mixed-integer methods would introduce in the conventional methodologies,
if such methodologies are used to solve problems of this kind
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As was established, methodologies based on optimal control theory were developed to
fulfil these objectives. Next, the conclusions of thesis are stated.

5.2 Conclusions

Firstly, the first objective was aimed to be fulfilled. An optimal control methodology was
developed to solve the problem of interest: that of optimising maintenance scheduling and
production in a process containing a reactor using decaying catalysts. The structure of
the problem considered was similar to that in the works of Houze et al. (2003) and Bizet
et al. (2005). However, since those works did not reveal the underlying model or any of
the parameters used, citing confidentiality reasons, for the problem to be optimised by
this methodology, the process model was constructed and an invented set of parameters
were used. Four case studies of the problem were considered that differed based on either
the kinetics of the catalyst deactivation or the product formation reaction in the process model.

The problem was formulated as a multistage mixed-integer optimal control problem
(MSMIOCP) with the binary controls that decide the scheduling of catalyst changeovers
occurring linearly in the formulation. A theoretical analysis suggested that due to the linear
occurrence, these binary controls would exhibit a bang-bang behaviour in the optimal solu-
tion. Therefore, these binary controls were relaxed to be continuous controls in the range
[0,1], and for each of the four case studies, an MSMIOCP formulation with relaxed binary
controls was used. In what was termed as Implementation I, the MSMIOCP formulation
with relaxed binary controls in each of the four case studies was attempted to be solved as a
standard nonlinear optimisation problem using the feasible path approach. And for each of
the four case studies, in order to account for the non-convex nature of the problem, 50 runs
were performed, each which used a different set of initial guesses.

It was found that Implementation I could obtain solutions only for two of the four case
studies examined, which contained relatively less nonlinear process models. And even in
the results of these case studies, out of the 50 runs carried out, only a very limited set of
runs produced good quality solutions, with the vast majority of runs either converging prema-
turely or crashing due to problems in integration. And for the other two case studies which
contained process models of relatively high nonlinearity, solutions could not be obtained
because every one of the 50 runs crashed due to problems in integration. These integration
problems could probably be attributed to the inadequacies of the ODE integrator suite of
MATLAB, which was used for this implementation. However, despite these drawbacks,
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Implementation I was favourable from a theoretical point of view as in the limited set of
successful runs, the catalyst changeover controls exhibited a bang-bang behaviour, consistent
with the predictions of the theoretical analysis.

As an alternative to Implementation I, another implementation, termed Implementation II,
was attempted on the formulation as an MSMIOCP with relaxed binary controls, which,
however, did not exhibit the bang-bang behaviour for the catalyst changeover controls and
instead required a penalty term homotopy technique to enforce binary values for those
controls. The procedure of this technique was to solve a series of problems, of the form
of the MSMIOCP with relaxed binary controls, using the feasible path approach, with a
monotonically increasing weight term in the objective function to enforce values of 0 or
1 for the catalyst changeover controls. The lack of bang-bang behaviour for the catalyst
changeover controls, despite the linear occurrence of those controls in the formulation, was
probably due to a shortcoming of the IPOPT tool in the package of CasADi, which was used
in this implementation.

Implementation II produced high quality solutions for all case studies in that it faced no
difficulties in converging to optimal solutions, within the stipulated tolerances, for each of the
50 runs for each of the case studies, regardless of the set of initial guesses used and regardless
of the nonlinearity of the process model involved. It was found that, for the two case studies
for which solutions were possible to be obtained using Implementation I, the range of profit
values obtained in the successful runs of those case studies when using Implementation I was
comparable to the range of profit values obtained from the runs for the corresponding case
studies when using Implementation II. And since the solutions obtained by Implementation I
exhibited the optimal bang-bang behaviour for the catalyst changeover controls, consistent
with the theoretical analysis, the aforementioned finding indicated that the solutions obtained
by Implementation II were optimal as well. Therefore, the methodology proposed to be used
to solve the problem under consideration was an MSMIOCP formulation in combination
with the solution procedure of Implementation II.

In the optimal solutions obtained for all case studies, the profiles of the decision and
state variables over the time horizon provided an indication of how to operate the process
in order to maximise profits. In each case study, the notable results were the profiles of the
temperature of the reactor and the concentration of the reactant exiting the reactor, during the
times of catalyst operation.
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Among the four case studies considered, the kinetics of catalyst deactivation in one
case study was considered independent of reactant or product concentration while in the
other case studies, the deactivation kinetics was dependent on the concentration of either the
reactant or the product, and in all case studies, the rate constant of the catalyst deactivation
was considered independent of temperature. In the optimal solutions of the case study
involving composition independent deactivation kinetics, the policy for the temperature and
the reactant exit concentration was to operate at the upper bound and maintain a constant
value and respectively, and this was consistent with the work at the reactor level by Szépe
and Levenspiel (1968), which predicted such optimal policies when the conditions on the
catalyst deactivation kinetics were similar to that considered in this case study. However,
while a work at the reactor level by Crowe (1976) predicted that, when the time scale for
the catalyst deactivation is much larger than that of the main reaction and flow rate, the
optimal policy was to operate all variables to maintain a constant exit concentration even
when concentration dependent catalyst deactivation kinetics was involved, such trends were
not obtained under similar conditions in the optimal solutions of the other case studies.
This suggested that when concentration dependent deactivation kinetics is involved, policies
similar to that predicted by Crowe (1976) at the reactor level do not hold when inventory,
sales and demand considerations come into play.

Though the structure of the problem considered was similar to that considered in the
works of Houze et al. (2003) and Bizet et al. (2005), a comparison of the trends of the vari-
ables over the time horizon or the profits obtained with that of those works was not possible,
as those works did not reveal the underlying model or any of the parameters used, citing
confidentiality reasons. However, those works revealed the time horizons of the process con-
sidered, the number of catalyst loads involved and the problem sizes that resulted when the
respective mixed-integer methodologies were applied. The problem size for each of the time
horizons in those works was compared with the problems size obtained for the correspond-
ing time horizon when the MSMIOCP formulation of the proposed methodology was applied.

It was found that, for a given time horizon, the number of integer decisions, continuous
decisions and especially the constraints were considerably smaller when using the MSMIOCP
formulation of the proposed methodology in comparison that obtained by the mixed-integer
methodologies used by those works. This was despite the fact that in the MSMIOCP for-
mulation used, the continuous decisions such as the feed flow rate, the temperature and the
sales were taken on a weekly basis, whereas in those works, such decisions were taken on a
monthly basis. Further, the problem sizes in those works were obtained when considering
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only 2, 3 or 4 catalyst loads and due to the nature of the mixed-integer methodologies used,
the problem size would increase if the number of available catalyst loads increased. However,
in the proposed methodology, for a given time horizon, the problem size obtained using the
MSMIOCP formulation applied regardless of the number of catalyst loads available to be
used. In comparison to those works which use mixed-integer methodologies, the proposed
methodology enables a smaller problem size due to the features of the feasible path approach,
which solves differential equations without creating additional constraints, and the penalty
term homotopy technique which enables scheduling of catalyst changeovers inherently during
the optimisation without mixed-integer programming methods. The property of enabling
a significantly smaller problem size in comparison to mixed-integer techniques provides
the proposed methodology the advantage over those techniques of being more robust in
convergence to optimal solutions in large scale problems.

Further, in the works of Houze et al. (2003) and Bizet et al. (2005), the differential equa-
tions present were approximated as a collection of weekly steady state equations, because
of which the solutions obtained cannot be considered accurate. However, in the proposed
methodology, all differential equations were solved to a high accuracy by the state-of-the-art
integrators employed in the feasible path approach. This indicated the advantage of the
proposed methodology over mixed-integer techniques that the solutions obtained by the
methodology were more reliable than those obtained by such techniques in those works.

In addition, the works of Houze et al. (2003) and Bizet et al. (2005) considered only
a maximum of 4 and 3 catalyst loads respectively, and these works would face a large
increase in problem size and computation times if a larger number of catalyst loads was
considered. However, in the proposed methodology, by virtue of the penalty term homotopy
technique, the number and timings of catalyst replacements were decided inherently during
the optimisation, without mixed-integer methods. Therefore, the proposed methodology was
able to obtain optimal schedules for catalyst replacements in reasonable solution times even
though there were six catalyst loads available to be used and this would be the case even if
an infinite number of catalyst loads was available to be used. This indicated the efficiency of
the proposed methodology over mixed-integer optimisation techniques.

Thus, the optimal control methodology developed was able to effectively solve the prob-
lem of optimising maintenance scheduling and production in a process containing a reactor
using decaying catalysts, and by providing advantages of robustness, reliability and efficiency
over the mixed-integer optimisation techniques, the methodology was able to overcome the
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drawbacks faced by those techniques in solving this problem. Hence, the first objective of
the thesis was fulfilled.

Next, the second objective of the thesis was attempted to be fulfilled. Given the success
of the optimal control methodology of using an MSMIOCP formulation in combination
with a solution procedure of Implementation II in fulfilling the first objective, an optimal
control methodology was developed using similar principles to solve the problem of interest:
that of optimising maintenance scheduling and production in a process containing parallel
lines of reactors using decaying catalysts. As no publication had worked on such a problem
previously, the process considered while fulfilling the first objective was modified into a
process containing a single feed split over 4 reactors using decaying catalysts, all of which
produced the same product, and the optimal control methodology was applied to optimise
maintenance scheduling and production in such a set up. In all reactors, the catalyst deacti-
vation rate constant was independent of temperature and the catalyst deactivation kinetics
were independent of reactant or product composition. Once again, due to the non-convex na-
ture of the problem, 50 runs were performed, each which used a different set of initial guesses.

It was found that the methodology produced high quality solutions in that it faced no
difficulty in obtaining solutions, while solving to within the stipulated optimality and inte-
gration tolerances, for each of the 50 runs. And among the profiles of the optimal decision
and state variables over the time horizon, the notable profiles were that of the temperature
of and the reactant exit concentration from each reactor, which were at their upper bounds
and at a constant value, respectively, during the times when the catalyst was in operation
in the reactor. This was once again, consistent with the work at the reactor level by Szépe
and Levenspiel (1968) which predicted such policies for such variables when conditions on
deactivation kinetics similar to that considered in this problem were involved.

The fact that the methodology faced no difficulties in converging to optimal solutions,
in all of the 50 runs, regardless of the initial guesses used, indicated the robustness of the
methodology. By means of the feasible path approach, all differential equations were solved
to a high accuracy by state-of-the-art integrators and this suggested the reliability of the
obtained solutions. By virtue of the penalty term homotopy technique, the optimal schedules
for catalyst replacements for all reactors, which also fulfilled the condition that no two
reactors undergo catalyst replacement at the same time, were obtained inherently during
the optimisation, without mixed-integer methods, and this indicated the efficiency of the
methodology. Thus, the methodology was able to solve this problem effectively while also
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offering potential advantages of robustness, reliability and efficiency over mixed-integer
optimisation techniques if such techniques were to be used to solve the problem. Hence, the
second objective of the thesis was fulfilled.

And finally, the third objective was attempted to be fulfilled. Using a modified version
of the forms of the methodologies used to fulfil the first two objectives, an optimal control
methodology was developed to solve the problem of interest: that of considering uncertainties
in kinetic parameters in the optimisation of maintenance scheduling and production in an
industrial process containing a reactor using decaying catalysts. The modification was that,
using a multiple scenario approach to consider uncertainties, an initial formulation as an
MSMICOP with relaxed binary controls was converted into its stochastic form, which was
then solved in a manner similar to that in the previous methodologies, as per a solution
procedure of the principle of Implementation II. The attractive feature of this stochastic
formulation was that only the size of the DAE system increased proportionately with the
number of scenarios considered compared to a deterministic/single scenario case, but the
number of decision variables and constraints remained the same as in the latter case.

The problem considered involved a process which was a modification of a case study of
the process considered while fulfilling the first objective, in order to include uncertainties
in the values of the kinetic parameters of the catalyst deactivation rate constant, and the
Arrhenius parameters of the pre-exponential factor and the activation energy of the product
formation reaction. Four case studies were considered in this problem. For each of the three
uncertain parameters, one case study was used to identify the individual effect of uncertainty
in that parameter and this was done by attempting to solve three sub-problems within the case
study, each which considered a different range of uncertainty for the uncertain parameter,
while sampling 20 scenarios from within these range of values. The fourth case study was
used to analyse the effect of all these parameters being uncertain simultaneously, alongside
the effect of the number of scenarios generated. This was done by attempting to solve five
sub-problems that considered 5, 10, 15, 20 and 25 scenarios for each of the three uncertain
parameters simultaneously, while sampling from a specified range of uncertainty that, for a
given parameter, remained the same across all sub-problems. And for all sub-problems of all
case studies, the same set of initial points were used.

The methodology was successful in obtaining high quality solutions for all sub-problems
of all case studies, in the sense that all ODEs were solved to the specified integration toler-
ances, and the optimisation converged to within the stipulated optimality tolerances. The
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trends of the decision and state variables over the time horizon for all case studies were simi-
lar to that of the related case involving no uncertainty considerations which was examined
when attempting to fulfil the first objective. The main effects of uncertainties were seen in
the values of the objective functions, and the frequency and timings of catalyst replacements.

A comparison between the results of the three case studies that identified the individual
effects of uncertainty in each parameter with that of a deterministic run performed using
the same initial points provided apparent insights into the relative effects of uncertainties
in different parameters. However, the results of the fourth case study, which showed wide
variations in solutions between sub-problems that considered different numbers of scenarios,
suggested that an insufficient number of scenarios were being considered in all of the case
studies examined. In addition, it was highlighted that the results of all case studies were
obtained using only one set of initial points and that the true effects of uncertainties can only
be identified only when several different initial points are used.

It was concluded that to obtain the true solutions of all these case studies, several runs had
to be performed while using different initial points and while considering a large number of
scenarios. But the computational power required for such a task was not available. However,
the property of the proposed methodology, that only the number of DAEs increase with
the number of scenarios considered, while the number of decision variables and constraints
remain the same as in a deterministic case, suggested that the methodology can obtain high
quality solutions when a large number of scenarios and several initial points are used as well,
provided the computational power required for such a task was available.

Thus, a methodology was developed that is capable of solving the problem of optimi-
sation of maintenance scheduling and production in a process containing a reactor using
decaying catalysts, while considering uncertainties in kinetic parameters. Further, in this
methodology, by virtue of the feasible path approach, a multiple scenario approach could be
used to obtain a stochastic problem formulation that contained the same number of decision
variables and constraints compared to a deterministic case, and this property, in addition
to the relatively small problem size enabled by the feasible path approach and the penalty
term homotopy technique, made the methodology robust in solving the problem, regardless
of the number of scenarios considered. The features of the feasible path approach and the
penalty term homotopy technique also enable the reliability and efficiency of the methodol-
ogy, respectively, in a manner similar to that enabled for the methodologies used to fulfil the
first two objectives. Thus, the methodology developed also offered potential advantages of
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robustness, reliability and efficiency over the use of mixed-integer optimisation techniques in
the conventional methodologies, if such methodologies were to be used to solve this problem.
Hence, the third objective of the thesis was fulfilled.

To sum up, the optimal control methodologies developed were able to effectively solve
problems involving maintenance scheduling and production in processes using decaying
catalysts. The features common to all methodologies developed include the feasible path
approach to solve differential equations and a penalty term homotopy technique to enforce
binary values for the controls that schedule catalyst changeovers, which are considered
continuous in the problem formulation. These features, by providing advantages over the
practices followed in mixed-integer optimisation techniques, enable the optimal control
methodologies developed to overcome the drawbacks that are faced or would be faced by
methodologies using mixed-integer optimisation techniques to solve these problems. These
advantages are enumerated as follows:

1. Robustness: This is enabled by the relatively small problem size obtained which
facilitates convergence to optimal solutions. The relatively small problem size is
obtained by virtue of the following features:

(i) The feasible path approach, that solves differential equations without creating
additional constraints in the optimisation phase, as is done by mixed-integer
methods

(ii) The penalty term homotopy technique to schedule catalyst changeovers with-
out mixed-integer methods, which allows to maintain the same problem size,
regardless of the number of catalyst loads available to be used

(iii) In the case where model-inherent uncertainties are present, the feasible path
approach, when used with a multiple scenario approach to consider uncertainties,
enables a stochastic problem formulation that has the same number of decision
variables and constraints as in a deterministic case, regardless of the number of
scenarios considered

2. Reliability: This is enabled by the feasible path approach that solves the differential
equations present in the problem to a high accuracy using state-of-the-art integrators,
unlike mixed-integer methods which approximate such differential equations as a
collection of steady state constraints.
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As a further comment, the feasible path approach, by enabling robustness and reliability,
also enables the methodology to avoid making the difficult compromise between
accuracy and ease of convergence, which is faced by mixed-integer methods.

3. Efficiency: This is enabled by the penalty term homotopy technique that can decide
how many catalyst loads to use and when to replace each catalyst load, inherently
during the optimisation. No additional computational effort would be required to
identify optimal catalyst replacement schedules even if an infinite number of catalyst
loads were available. This is unlike mixed-integer methods which require increasing
computational effort with increasing number of catalyst loads available.

5.3 Future work

In this thesis, optimal control methodologies have been developed to effectively solve a few
problems within the domain of problems involving optimisation of maintenance scheduling
and production in processes using decaying catalysts. There are numerous directions of
future research that can be drawn from the work presented in this thesis.

In all of the problems considered in this thesis, it has been assumed that the rate constant
of the catalyst deactivation is independent of temperature. However, in applications of
biochemical engineering, for example, enzymatic catalysts are used, and the deactivation
rate constants of these enzymatic catalysts commonly have an even greater dependence on
temperature compared to the main reaction. It is of interest to optimise maintenance schedul-
ing and production in such processes, for cases which are deterministic as well as which
involve uncertainty, by applying optimal control methodologies similar to those developed
in this thesis, and to analyse the results obtained, especially how the optimal policy for the
operating temperature comes out to be.

The problems considered in this thesis involve only a single reactant feed to either a
single reactor or parallel lines of reactors, in order to produce a single product. However, in
ethylene plants, for example, multiple reactors operate in parallel which process multiple
feeds to produce multiple products. It is sought to derive an optimal control methodology, of
the principle of those developed in this thesis, in order to optimise maintenance scheduling
and production in such a set up.

Further, in this thesis, the problem of optimisation of maintenance scheduling and pro-
duction while considering uncertainties in kinetic parameters has been examined only for a
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process containing a single reactor using decaying catalysts. It is of interest to analyse similar
aspects in processes containing parallel lines of reactors using decaying catalysts, while
considering a single feed producing a single product as well as multiple feeds producing
multiple products.

As mentioned in the concluding section of Chapter 4, it is sought to derive optimal
control methodologies alternative to that developed in this thesis, by drawing from concepts
of the other popular preventive methods of handling uncertainty, to perform the optimisation
under uncertainty of the maintenance scheduling and production in processes using decaying
catalysts. That is, it is intended to apply techniques of methods such as fuzzy programming,
robust optimisation and parametric programming to an optimal control formulation of such a
problem and to obtain solutions as a standard nonlinear optimisation problem in a manner
similar to that done throughout this thesis. It would be interesting to compare the results
obtained using such methodologies with the results obtained using the stochastic optimal
control formulation in this thesis. And when using such methodologies, it is of interest to
identify the effect on the optimal operations of not only the uncertainty in kinetic parameters,
as has been done in this thesis, but also the effect of uncertainty in parameters such as prices
and demand.

It is highlighted that optimal control methodologies of the principle of those developed in
this thesis can be applied to optimise maintenance scheduling and production planning in
other processes experiencing decaying performances, whose problem structures are similar
to the problems considered in this thesis. In the literary review section of Chapter 3, a
number of publications were mentioned which use mixed-integer methodologies to optimise
maintenance scheduling and operating conditions in varied processes that operate parallel
lines of different types of units, such as gas engines, evaporators and compressors, to name a
few examples, all of which experience decaying performances. Such processes are of similar
structure to the problems considered in this thesis which involve processes using decaying
catalysts. It is of interest to apply optimal control methodologies of the principle of those
developed in this thesis in order to optimise maintenance scheduling and operating conditions
in such processes and attempt to overcome the drawbacks that the use of mixed-integer
optimisation techniques introduce in the solutions obtained in those publications.

There are limitations to the research presented in this thesis. While robust, reliable and
efficient solutions for all problems considered in this thesis, that could overcome the draw-
backs of mixed-integer optimisation techniques, could be obtained using solution procedures
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of the principle of Implementation II, this solution procedure faced the disadvantage of being
unable to obtain a bang-bang behaviour for the catalyst changeover controls. It was possible
to state that Implementation II could obtain optimal solutions only by the fact that the range
of objective function values obtained by Implementation II for two case studies of the single
reactor problem compared well with those obtained by Implementation I, which was able to
obtain a bang-bang behaviour for the catalyst changeover controls. But Implementation I
could obtain a limited set of solutions only for the case studies involving relatively less
nonlinear models and failed completely when more nonlinear models were involved. The
fact that two solution procedures are required is unfavourable, and it would be convenient if
a single solution procedure could be obtained that combines the advantageous features of
Implementations I and II.

Developing such a solution procedure could be a direction for future research. For
example, research could be carried out on why the MATLAB ODE integrator suite is unable
to integrate highly nonlinear process models and why the f mincon optimiser on MATLAB
has a tendency to converge prematurely depending on the initial guesses used for the decision
variables. Resolving such issues could result in a superior version of Implementation I and
thereby, the development of the desired solution procedure. Alternatively, research could be
carried out on why the IPOPT optimiser within the CasADi module in Python is unable to
obtain bang-bang behaviour for the catalyst changeover controls. Resolving that issue could
enable obtaining a superior version of Implementation II and thereby, result in the desired
solution procedure.

And finally, the development of a dedicated software for optimisation of maintenance
scheduling, which incorporates algorithms of the types presented in this thesis, can help in
bridging the gap between the development of these methodologies and their wider application
in the industrial context. The software can contain features such as requiring the specification
of the initial guesses, parameters and the nature of the control parametrisation as inputs,
with the outputs being the optimal solution values and graphs. A software capable of
incorporating algorithms of the types presented in this thesis is not available currently: for
example, gPROMSTM (Process Systems Enterprise, 2020), which is one of the most advanced
commercial simulators, cannot obtain multistage optimal control problem solutions as it
does not allow for junction conditions. This is an avenue for future research that holds great
commercial potential.
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