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We describe a quench protocol that allows the rapid preparation of ground states of arbitrary interacting
conformal field theories in 1 + 1 dimensions. We start from the ground state of a related gapped relativistic
quantum field theory and consider sudden quenches along the spacelike trajectories t2 − x2 = T 2

0 (parameterized
by T0) to a conformal field theory. Using only arguments of symmetry and conformal invariance, we show that
the post-quench stress-energy tensor of the conformal field theory is uniquely constrained up to an overall scaling
factor. Crucially, the geometry of the quench necessitates that the system approach the vacuum energy density
over all space except the singular lines x = ±t . The above arguments are verified using an exact treatment of the
quench for the Gaussian scalar field theory (equivalently the Luttinger liquid), and numerically for the quantum
O(N ) model in the large-N limit. Additionally, for the Gaussian theory, we find in fact that even when starting
from certain excited states, the quench conserves entropy, and is thus also suitable for rapidly preparing excited
states. Our methods serve as a fast, alternative route to reservoir-based cooling to prepare quantum states of
interest.
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I. INTRODUCTION

Experimentally engineering and harnessing the power of
artificial quantum systems for the purpose of quantum sim-
ulation and quantum computation is an important present
challenge. While much progress has been made on the front
of developing extremely isolated quantum systems—ultracold
atoms in optical lattices [1–4] or traps [5,6], nitrogen va-
cancy centers [7–12], ion traps [13–15], superconducting
qubit structures [16–19], etc.—as these systems grow more
complex, it becomes harder to devise equally elaborate tools
to manipulate them while maintaining isolation from sources
of decoherence. It is therefore important to theoretically de-
termine the minimum set of control knobs needed to prepare
certain quantum states of interest, and the most efficient way
to do so. This is the challenge of quantum state preparation.

In this regard, the adiabatic principle has served as a basis
for many investigations (cf. Ref. [20]). In its simplest form,
the idea is to prepare the system in an eigenstate of a Hamil-
tonian that is easily accessible—usually gapped, such that
the ground state lacks long-range entanglement—and subse-
quently tune the Hamiltonian slowly to evolve this eigenstate
into the target state. When this action is performed sufficiently
slowly, the system continues to evolve in an eigenstate of the
instantaneous Hamiltonian. The limitation of this approach is
its speed—to avoid exciting the system in the process, the time
taken must be of the order of the inverse-square of the smallest
instantaneous spectral gap between the target and excited
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states [21], a quantity which diverges in the thermodynamic
limit for many systems/problems of interest [22–24].

To achieve faster preparation, recent work has proposed
engineering counterdiabatic drives [25–28] that counter the
production of excitations during adiabatic evolution, or intro-
ducing “optimal-control” protocols [29–34] (including “bang-
bang” protocols [35–38]) that entirely dispense with the adi-
abatic ansatz. While these methods indeed outpace adiabatic
protocols, they often rely on extensive numerical simulations
to explore the parameter space of preparation protocols to
find the optimal one; importantly, insights from protocols
found for finite-size systems do not appear to carry over
in an obvious way to the thermodynamic limit. For present
experimentally achievable system sizes [1], it is still most
efficient to create a thermodynamically large reservoir of low-
energy excitations [39,40] that can remove entropy from the
subsystem of interest; this may, however, prove challenging
to extend to larger systems, systems that exhibit integrability,
and systems that themselves have low-energy excitations.

In this work, we build upon previous work [24,41]
(and also related work in the Kibble-Zurek community, see
Refs. [42,43]) by some of the present authors and discuss
a general paradigm for preparing the ground state of arbi-
trary interacting conformal field theories (CFTs) in spatial
dimension d = 1. Such systems are particularly challenging
to cool because they harbor gapless excitations, and are often
integrable (e.g., Luttinger liquids). As in previous work, we
assume that initially the system resides in the ground state
of a related gapped relativistic quantum field theory (QFT),
which is easier to prepare due to the presence of a gap. We
next consider a quench to the CFT of interest by eliminating
the relevant perturbation that gaps out the low-energy modes
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FIG. 1. (a) Protocol studied in Ref. [24]. (b) Hyperbolic quench
protocols considered in this work. (c) Schematic representation of
the spatiotemporal dependence of the post-quench energy-density as
fixed by conformal symmetries, in the post-quench region t2 − x2 �
T 2

0 . “Heat waves” emerge [41] near the boundaries of the quench
trajectory, but become localized near x = ±t over time. The energy
density decays as ∼1/t2 everywhere else, approaching the minimum
∼1/L2 in time ∼O[L].

in the QFT along a special space-time trajectory. While the
previous work considered a quench wherein the local mass
was set to zero along a superluminally moving front, here we
consider a hyperbolic quench trajectory, (ct )2 − x2 = T 2

0 ; the
two protocols are illustrated in Fig. 1. As we show, this class
of quench trajectories represents an entire family of ground-
state preparation protocols (delineated by T0) that prepare the
ground state in time t ∼ O[L] where L is the system size; the
optimal luminal quench considered previously corresponds to
the limit T0 → 0. More importantly, studying this family of
quenches allows us to uncover the purely geometric origins of
the cooling mechanism of the luminal quenches of Ref. [24],
at least in d = 1, thus proving rigorously their use for cooling
arbitrary interacting CFTs.

More concretely, it was previously argued that the super-
luminal motion of the quench front resulted in the production
of a chiral population of excitations [24,41,44]. In the case of
the optimal luminal quench, all excitations moving against the
front were found to be Doppler-shifted to zero energy, while
the excitations moving along were infinitely excited. These
hot excitations pile up (in a way similar to a sonic boom) at
the quench front. As a result, all the dissipation in the quench
protocol is swept away in an infinitesimally sharp front, allow-
ing the rapid preparation of the vacuum state everywhere else
in the system. Generalizing such a protocol to an interacting
setting where hot excitations can be reflected back is not
obvious; however, plausible arguments and numerical data
were provided to show how the introduction of a small amount
of adiabaticity—by way of an additional time-scale for the
local quenching of the gap—can make the protocol amenable
to the interacting case.

Here we show that the superluminal quench protocol con-
sidered previously is exact even for interacting systems by
uncovering the geometric origins of the cooling process. In
particular, the hyperbolic quenches considered here can be
interpreted as occurring uniformly in space at a fixed time
in conformal coordinates (η, ξ ), defined by the relations
t = T0eη cosh ξ and x = T0eη sinh ξ . The quench involves the
removal of the mass term at η = 0 for all ξ . Translations in
ξ correspond to an isometry of the system (equivalent to a
Lorentz boost), the quench surface η = 0 as well as the initial
prequench state (i.e., the ground state of the QFT). As a result,
the conformal system heats up uniformly in the conformal
coordinates after the quench, and exhibits equilibrium in this
coordinate system. In the laboratory frame, this appears to be
a highly anisotropic nonequilibrium steady state. Crucially, in
this state, the energy density approaches the vacuum energy
as ∼1/t2 everywhere except on the singular lines x = ±t .
Given the purely geometric foundations for the result, the
protocol is applicable to arbitrary CFTs. (Note that our results
bear resemblance to the observation of nonequilibrium steady
states in critical systems related to stationary states in Lorentz-
boosted frames [44–48]; our system here looks static in a
conformal coordinate system instead.) We show that the space
and time dependence of the stress-energy tensor is completely
constrained by arguments of symmetry and conformal invari-
ance, and the only input specific to the quench protocol is a
scaling function related to the initial energy density generated
by the quench. Consistent with the previous work, we find
that in the limit T0 → 0, that is, when the quench reduces
to a symmetric copy of the luminal quench considered in
Ref. [24], the energy density at all spacetime points away
from the singular lines t = ±x is arbitrarily close to that of
the vacuum immediately away from the quench front.

While more work needs to be done to appreciate the
effectiveness of such hyperbolic quenches quenching from
initially excited states, here we show that for the Gaussian
theory at least, a uniform momentum-independent excited
state mode population n of massive bosons directly translates
to the same population n of massless bosonic excitations
after the quench. In this way, the quench appears to preserve
entropy (except along singular lines x = ±t) more generally
even when starting from these particular excited states. This
result should be particularly useful for preparing ground states
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of one-dimensional systems described by a Luttinger liquid—
if the temperature of the experimental system is initially below
the mass gap, the excitations in the post-quench massless
theory mirror the exponential suppression of the prequench
massive theory due to the gap.

This paper is organized as follows. In Sec. II, we discuss
the formal argument for cooling in our protocol using sym-
metry and conformal invariance. In Sec. III, we provide a
validation of our findings by performing an exact calculation
of the quench in a Gaussian scalar field theory. To provide
additional verification in an interacting setting, in Sec. IV we
examine our quench protocol in the quantum O(N ) model in
the large-N limit using numerical simulations. We complete
the analysis in Sec. V by showing that symmetry arguments
alone do not constrain the stress-energy tensor in higher di-
mensions. We conclude by summarizing our results in Sec. VI.

II. ARGUMENT FOR COOLING

We denote the laboratory coordinates as xa = (t, x) and
define conformal coordinates xμ = (η, ξ ) which are related to
the laboratory coordinates by

t = T0eη cosh ξ, x = T0eη sinh ξ . (1)

Note that the conformal coordinates cover only the region t �
|x| of spacetime. The metric of Minkowski spacetime takes
the form

ds2 = −dt2 + dx2 = T 2
0 e2η(−dη2 + dξ 2). (2)

We assume that at t = 0−, our system resides in the ground
state of a particular gapped (gap ∼ m) quantum field theory.
We then argue that quenching the quantum field theory to a
conformal field theory along the specific space-time trajectory
t2 − x2 = T 2

0 allows one to approach the ground state of the
conformal field theory rapidly.

Let us now understand the role of the conformal coor-
dinates (η, ξ ). First, note that constant η surfaces provide
a hyperbolic foliation of the region t > |x| of Minkowski
spacetime into Cauchy surfaces defined by the relation t2 −
x2 = T 2

0 e2η. The quench trajectory is a particular such Cauchy
surface, defined by η = 0 (see also Fig. 2). Further, we are
interested in the description of our system within the post-
quench region t2 − x2 � T 2

0 which is confined to the region
t � |x|. For these reasons, it is clear that the conformal
coordinates are more suitable for the problem at hand. To
facilitate this, we must describe the initial prequench state at
η = 0−. This is done by a Hamiltonian evolution of the ground
state at t = 0 to η = 0 (choosing the appropriate notion of
“time” which maps the t = 0 Cauchy surface to the η = 0
one). Importantly, due to causality, one need only consider
the prequench Hamiltonian for this evolution without any
reference to the quench.

Another useful property of the conformal coordinates is
that translation in ξ , that is ξ �→ ξ + a, is an isometry of the
system, as is clear from the form of the Minkowski metric
in conformal coordinates Eq. (2). One can also see this by
noting that a translation in ξ corresponds to a Lorentz boost
transformation in the laboratory frame coordinates: (t, x) �→
(t cosh a + x sinh a, t sinh a + x cosh a). This is therefore a

FIG. 2. Quench trajectory in the laboratory coordinates (above)
vs the conformal coordinates (below).

symmetry of the prequench relativistic quantum field theory,
the quench surface t2 − x2 = T 2

0 ≡ η = 0 as well as the post-
quench conformal field theory. Further, the prequench state,
which is assumed to be the vacuum state of the relativistic
quantum field theory, is also preserved by Lorentz boosts.
These properties imply that the post-quench state must also
be invariant under ξ translations. More precisely, multipoint
correlation functions 〈O1(η1, ξ1) · · · 〉CFT in the post-quench
state can depend only on the differences ξi − ξ j .

We now consider the one-point function of the stress tensor
〈Tμν (η, ξ )〉CFT of the conformal field theory in the space-time
region above the quench. (The energy density in particular is
given by the component Ttt (x, t ) of the stress-energy tensor.)
Note that describing the stress-energy tensor of the Lorentz-
invariant massive theory for η < 0 is not generally feasible
(the mass is dynamical and scales as e2η; an exact description
for the Gaussian can be derived as in Sec. III), and is also
not necessary to establish how cooling occurs in the post-
quench region of space-time where the CFT applies. Now,
due to Lorentz-invariance of the prequench and post-quench
theory, we note that the one-point correlator 〈Tμν (η, ξ )〉CFT

is independent of ξ . Tracelessness and conservation further
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imply the general form

〈Tμν (η, ξ )〉CFT =
(

A B
B A

)
. (3)

where we additionally note that the components do not depend
on the conformal time η; this follows from the conservation
of energy and momentum, enshrined in the operator identity
∇μT μν = 0. This is a feature of 1+1 dimensions and does
not hold generally in higher dimensions. Finally, we note that
A and B are unknown parameters that depend on the details of
the prequench state and the quench itself.

The above form may be further simplified in theories
that are parity invariant, i.e. invariance under x → −x or
equivalently ξ → −ξ . This holds in many condensed matter
systems and we assume it holds in the rest of the paper.
As before, this symmetry is preserved by the quench and is
therefore a symmetry of the post-quench state. Parity invari-
ance together with translational invariance then implies that
〈Tηξ (η, ξ )〉CFT = B = 0. With the form of the stress-energy
tensor of the theory completely fixed up to a constant, we
can revert back to the laboratory coordinates and read off the
following result for the stress-energy tensor:

〈Tab(t, x)〉CFT = f (mT0)

(t2 − x2)2

(
t2 + x2 −2xt
−2xt t2 + x2

)
, (4)

where by dimensional analysis we have incorporated the
constant as an appropriate scaling function above (recall that
m is the gap of QFT). This scaling function depends on the
precise details of the QFT and CFT we are working with but
there are some general claims that can be made regarding
the limiting behavior of this function. First, in the limit of
the mass m → 0, the energy generated in the quench must
go to zero since there is no perturbation in this limit. Thus,
f (mT0) → 0 in the limit m → 0 and keeping T0 fixed. By
corollary, this implies that for fixed m and T0 → 0, that is as
the quench approaches the luminal limit, the laboratory frame
energy density 〈Ttt 〉CFT vanishes everywhere away from the
light cone t = ±x.

Let us further note that the procedure works just as well for
T0 �= 0. As is clear from Eq. (4), the energy density at finite x
tends to zero as ∼1/t2 everywhere. This behavior can be at-
tributed to conformal dilation of the energy density as follows.
Excitations are created at all wave vectors in ξ -coordinates,
and these wave vectors are preserved for subsequent time
evolution in η. For x 	 t , we have dx ∼ tdξ—thus modes
varying over a length scale dx ∼ T0dξ at the initial time vary
at a length scale tdξ at long times. This dilation of wave
vectors causes the energy of massless modes to decrease as
∼1/t . Moreover, the modes now occupy a larger volume, ∼t .
These effects together result in a decrease in energy density
as ∼1/t2. Finally, as a consequence, the energy density is
∼O[1/L2] in time t ∼ O[L], putting these quenches (with
T0 �= 0) in the same class parametrically as the quench for
T0 → 0 (although the latter is clearly faster), and faster than
the uniform adiabatic algorithm which takes time t ∼ O[L2]
to generate a state with exponentially small energy density
above the vacuum state.

This completes our discussion of the general proof of the
effectiveness of the cooling procedure for arbitrary CFTs.
We next verify the arguments explicitly by showing that the

quench in the Gaussian theory conform exactly to Eq. (4),
and then discussing the protocol in the context of a model
with nonlinearities and infrared/ultraviolet cutoffs, the O(N )
model in the large-N limit.

III. QUENCH IN THE GAUSSIAN THEORY

We now solve the quench in the case of a Gaussian scalar
field and show that the energy density is explicitly of the form
predicted by Eq. (4).

A. Preliminaries

The free massive scalar field is described by the action

S[φ] = −1

2

∫
d2x

√−g[gμν∂μφ∂νφ + m2φ2]

= 1

2

∫
dηdξ

[
(∂ηφ)2 − (∂ξφ)2 − m2T 2

0 e2ηφ2], (5)

which leads to the equations of motion[−∂2
t + ∂2

x − m2
]
φ = [−∂2

η + ∂2
ξ − m2T 2

0 e2η
]
φ = 0. (6)

We begin by working in the conformal coordinates. The
general solution to the equations of motion Eq. (6) is

φ =
∫

dq

2π
[aquq + a†

qu∗
q], uq(η, ξ ) = eiqξ fq(η),

fq(η) =
√

π

2
e

π
2 qH (2)

iq (mT0eη ), (7)

where H (2) are Hankel functions of the second kind. The
mode coefficients aq, and a†

q are elevated to operators in
the quantum-mechanical setting, but we do not specify the
commutation relations between these for the moment—these
will be set by demanding that the field operators satisfy equal-
time (real time t) commutation relations. The normalization
of the modes satisfies

(uq, uq′ )η = 2πδ(q − q′), (uq, u∗
q′ )η = 0, (8)

where the operation (·, ·) corresponds to the Klein-Gordon
inner product defined by

(φ1, φ2)η = i
∫

dξ (φ∗
1∂ηφ2 − φ2∂ηφ

∗
1 ). (9)

As a consequence of the above, the mode expansion coeffi-
cients can be extracted from a particular solution φ via the
relations

aq = (uq, φ)η, a†
q = (φ, uq )η. (10)

We could have also analyzed the problem in the laboratory
frame where in the most general solution takes the form

φ =
∫

dk

2π
[AkUk + A†

kU
∗
k ], Uk (t, x) = eikxFk (t ),

Fk (t ) = 1√
2ωk

e−iωkt , ωk ≡
√

k2 + m2. (11)

As before the normalization is chosen so that

(Uk,Uk′ )t = 2πδ(k − k′), (Uk,U ∗
k′ )t = 0,

(φ1, φ2)t = i
∫

dx(φ∗
1∂tφ2 − φ2∂tφ

∗
1 ), (12)
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and where the KG inner-product acts on a fixed time t-slice.
Again, we may find the mode coefficients in this expansion
via the relation

Ak = (Uk, φ)t , A†
k = (φ,Uk )t . (13)

The two solutions for the field operator in Eqs. (7) and (11)
must obviously agree with each other and additionally satisfy
the correct equal-t commutation relations.

In order that the solution of Eq. (11) satisfy the equal
t commutation relations [φ(t, x), ∂tφ(t, x′)] = iδ(x − x′), we
require [Ak, A†

k′ ] = 2πδ(k − k′). (In fact, the simplicity of the
final commutation relations to ensure the correct equal-time
commutation relations is a byproduct of the form of choosing
the Klein-Gordon inner product for normalizing modes.) The
usual Fock vacuum |
〉 is represented by the vacuum of the
bosons Ak ∀ k.

We now show that both the above conditions are satisfied
for the solution in Eqs. (11) for the choice

[aq, a†
q′ ] = 2πδ(q − q′), aq|
〉 = 0 ∀ k. (14)

This result is a happy accident, as was pointed out Fulling
et al. [49] which occurs because translations in ξ are an
isometry of the space time. In fact, one can show that
the solution even satisfies an equal-η commutation relation
[φ(η, ξ ), ∂ηφ(η, ξ ′)] = iδ(ξ − ξ ′). The fact that the vacuum
of bosons Ak agrees with the vacuum of bosons, aq follows
from the fact that the “positive-frequency” modes of the two
sets of solutions can be expressed in terms of each other
without the aid of using the “negative-frequency” or complex-
conjugate solution. In particular, the following results hold:

uq = i
√

2π

∫
dk

2π

1√
ωk

eiq arcsinh k
m Uk,

Uk = −i
√

2π

∫
dq

2π

1√
ωk

e−iq arcsinh k
m uq. (15)

Using the identities∫
dk

2π

1

ωk
ei(q−q′ )arcsinh k

m = δ(q − q′),∫
dq

2π
eiq[arcsinh k

m −arcsinh k′
m ] = ωkδ

(
k − k′), (16)

we can show

Ak = i
√

2π

∫
dq

2π

1√
ωk

eiq arcsinh k
m aq,

aq = −i
√

2π

∫
dk

2π

1√
ωk

e−iq arcsinh k
m Ak . (17)

Thus, a state annihilated by all Ak is concomitantly also
annihilated by all aq.

B. The quench

We now calculate the properties of the system after the
quench. Recall that the initial mass of the system is m and
at η = 0, it is quenched to m̃ → 0 (all post-quench quantities

are capped by a tilde). We then have the equations

(� − m2)φ = 0 (η < 0),

(� − m̃2)φ̃ = 0 (η > 0),

{φ − φ̃, ∂ηφ − ∂ηφ̃}|η=0 = {0, 0}. (18)

[Here, � ≡ e−2η(∂2
ξ − ∂2

η ).] The last equation of the above
corresponds to the two continuity of the amplitude and time-
derivative of the field operators. The first two equations are
solved by

φ =
∫

dq

2π
[aquq + a†

qu∗
q],

φ̃ =
∫

dq

2π
[ãqũq + ã†

qũ∗
q], (19)

where the modes ãq are defined as aq but with the mass set
to m̃. The last two equations can be used to relate the pre-
and post-quench mode coefficients. To do this, we evaluate
Eq. (10) at η = 0 where using the last equation of Eq. (18),
we can replace φ ↔ φ̃. Thus,

aq = (uq, φ̃)η=0 = αqãq + βqã†
−q,

ãq = (ũq, φ)η0 = α∗
qaq − βqa†

−q, (20)

with Bogoliubov coefficients

αq = i[ f ∗
q f̃ ′

q − f̃q f ′∗
q ]η=0,

βq = i[ f ∗
q f̃ ′∗

q − f̃ ∗
q f ′∗

q ]η=0, (21)

where the functions fq were defined in Eq. (7). Note that the
commutation relations of the bosons aq and ãq require |αq|2 −
|βq|2 = 1. As a further check, one can show easily that for
m̃ = m, αq = 1, and βq = 0. We may thus represent the post-
quench field operator result

φ̃ =
∫

dq

2π
[aqγ̃q + a†

qγ̃
∗
q ],

γ̃q = eiqξ [α∗
q f̃q − β∗

q f ∗
q ]. (22)

The coordinate-invariant representation of the stress-energy
tensor of the Gaussian scalar field theory in d = 2 is

Tμν = ∇μφ̃∇νφ̃ + 1

2
gμν[−∇γ φ̃∇γ φ̃ + m̃2φ̃2]. (23)

The expectation value of this tensor above the vacuum is
defined by 〈Tμν〉 = 〈
|:Tμν :|
〉, where we have introduced
normal ordering such that the expectation value of the stress-
energy tensor in vacuum is identically zero. Using the explicit
formulas of the previous section, we find

〈Tηη〉 = 〈Tξξ 〉 =
∫

dq

4π
[(|∂ηγ̃q|2 − |∂ηũq|2)

+ (|∂ξ γ̃q|2 − |∂ξ γ̃ |2)

+ m̃2(|γ̃q|2 − |ũq|2)],

〈Tηξ 〉 =
∫

dq

2π
[∂μγ̃q∂νγ̃

∗
q − ∂μũq∂ν ũ∗

q]. (24)

Using the explicit formulas derived in this section, we find
〈Tηξ 〉 = 0 since the corresponding integrand is odd in q. With
the value of 〈Tμν〉 determined, we may perform a coordinate
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FIG. 3. The energy density at x = 0 is plotted as a function
of time, t . For T0 	 m−1 = 1, the energy density at the origin at
the precise instant of the quench is independent of T0, and subse-
quently decays as t−2. This agrees with expectations from Eq. (4).
In the inset, we examine the scaling function of Eq. (4) by plotting
E
(x = 0, t = T0). We see that f (mT0 ) ∼ (mT0 )2 for T0 	 m−1, and
f (mT0 ) ∼ mT0 for T0 � m−1. Note that the former implies that ε = 2
for the Gaussian theory.

transformation to easily show that 〈Tab〉 that satisfies Eq. (4),
proving the assertion for the Gaussian theory. While analytic
formulas are available, they are unwieldy for direct evaluation.
In Fig. 3, we numerically evaluate the scaling function f (mT0)
of Eq. (4). In Fig. 4, we show the cooling effect graphically
with a heat map in space-time.

C. Quench from excited states

We now show that at least for the Gaussian theory, the
quench protocol works even when starting with excited states,
in the sense that it maps an excited state of the massive theory
to one with the same population in the massless theory, with
no entropy production in the bulk.

In particular, let us assume that we start in a state described
by a large gap m such that the dispersion of relevant modes
may be neglected. (For instance, if we smooth the protocol
everywhere on a time-scale τ ∼ m−1, the quench is a nona-
diabatic process only for modes with energy ωk � τ−1, or

momenta k � m for which we may ignore the disper-
sion.) In this case, the mode occupation of the laboratory-
coordinate plane-wave modes is 〈AkA†

k′ 〉 = 2πδk,k′nk ≈
2πnB(m/kBT ) ∀ k 	 m. Here nB is the usual thermal boson
population function. Now, using the results of Eqs. (16) and
(17), this initial state can be equivalently represented in terms
of a uniform population of the conformal modes aq, satisfying
〈a†

qaq′ 〉 = 2πδq,q′nB(m/kBT ).
We would now like to find the mode population of the post-

quench massless modes ãq, and more importantly, the popula-
tion of the massless plane-wave modes Ãq. (The modes Ãq are
defined as the modes Aq but with a mass m̃ → 0). The result is
surprisingly simple: the population of modes Ãq, is precisely
given by the population of the initial massive plane-wave
modes Aq, that is, 〈Ã†

qÃq′ 〉 = 〈A†
qAq′ 〉 = 2πδq,q′nB(m/kBT ). To

see this, first note that, as a corollary, the post-quench con-
formal mode population is also 〈ã†

k ãk′ 〉 = 2πδk,k′nB(m/kBT ).
Next, if we denote the prequench state by |E〉 and the post-
quench state with the population 〈ã†

k ãk′ 〉 as noted above by
|Ẽ〉, it follows that

〈E |Tμν |E〉 = 〈Ẽ |Tμν |Ẽ〉

+
[

2nB

(
m

kBT

)
+ 1

]
〈
|:Tμν :|
〉. (25)

The coordinate transformation of this result then reveals, as
per previous analysis, that the energy density of the post-
quench system now relaxes to the energy density of the state
Ẽ , which is categorized by the exact same population of
modes ∼nB(m/kBT ) as the massive modes before the quench.
(See Fig. 5 for a numerical verification of this result in the
Gaussian case.)

This result is particularly significant from an experimental
point of view as it is relatively simpler to prepare a state
with a temperature T 	 m/kB such that the initial mode
population is exponentially suppressed. Further, note that
the same population of modes before and after the quench
naively implies that there is precisely no entropy creation
in this rather violent quench process—however, we must
recall that there are singular features along the lines x = ±t
prevalent in the second term of Eq. (25). Nonetheless, given
the spatial locality of these singular features, we expect all

FIG. 4. The energy density E
(x, t ) of the Luttinger liquid (or Gaussian scalar field) with initial mass m = 1, Luttinger parameter K = 1,
is plotted after a quench from a state with a finite mass for different quench trajectories parameterized by T0. The quench is most effective in
the limit T0 → 0, but results in cooling at long times for all T0.
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FIG. 5. Illustration of the protocol starting from the vacuum
(n̄ = 0) and from a uniformly populated excited state (n̄ = 0.2) in
the Gaussian theory. (a) Energy density at x = 0 as a function of t ,
showing saturation to V and (1 + 2n̄)V in the two cases. (b) Energy
density above the final vacuum, E
, in logarithmic scale.

the entropy production to be channeled along these singular
lines, much like all the energy production was seen to be
concentrated on these lines for the vacuum quench. We leave
a more detailed exploration of the entropy production in the
Gaussian theory, as well as a more general treatment in the
interacting setting, for future work.

IV. NUMERICAL SIMULATIONS

In the following we present numerical simulations of the
quench in an interacting quantum theory and also probe
the effect of various nonidealities that result in the loss of
conformal invariance in realistic systems. We study these
questions in the context of the quantum O(N ) model in the
large-N limit which admits a simple mean-field description
and allows for extensive numerical simulation. While this is
not a conformal field theory, the gap can in principle be made
arbitrarily small—when this gap is made smaller than other
cutoffs, the system is approximately critical, and can be used
to test our theoretical analysis in an interacting context.

A. The O(N) model in the large-N limit

In d = 1, the Hamiltonian of the O(N ) model reads

H = 1

2

∫
dx

(
|�|2 + |∂x�|2 + r|�|2 + λ

2N
|�|4

)
, (26)

where � and � are canonically conjugate N-component
fields, satisfying

[�i(t, x),� j (t, x′)] = iδ(x − x′)δi j,

|�|2 = ∑
i �

2
i , and |�|4 = (|�|2)

2
. In the limit N → ∞, the

Hamiltonian is amenable to a mean-field treatment which
reduces the problem to that of a self-consistent Gaussian
scalar field theory. Within the mean-field ansatz which is exact

in the limit N → ∞ (and following Ref. [50,51]), we note

Heff(t ) = 1

2

∫
dx

[|�|2 + |∂x�|2 + m2
eff|�|2],

m2
eff(t, x) ≡ r + λ

〈 |�(t, x)|2
N

〉
, (27)

which is a Gaussian theory with a self-consistently renormal-
ized mass term. Since all components of � are equivalent and
independent in this limit, we need only work with a single
one of them, φ(t, x), replacing 〈|�(t, x)|2〉/N by the expec-
tation value 〈φ2(t, x)〉. The resulting equations of motion are
nonlinear but efficiently solvable on a classical computer.

In what follows, we work solely in laboratory frame
coordinates (t, x). We regularize the equations of motion
by imposing infrared and ultraviolet cutoffs. The former is
achieved by putting the system on a finite segment of length L
with periodic boundary conditions, φ(t, x + L) ≡ φ(t, x). The
latter comes in the form of a momentum cutoff, |k| < �/2,
with φk+�(t ) ≡ φk (t ). In practice this reduces the continuum
field theory to a 1D lattice of M ≡ L�/2π sites with periodic
boundary conditions. Lattice sites correspond to momenta
kn = 2π

L n, with n ∈ {−M/2 + 1, . . . , M/2}.
We perform a mode expansion of the field φ:

φ(t, x) =
∑

p

fp(t, x)ap + f ∗
p (t, x)a†

p, (28)

where the {ap} are a set of annihilation operators for the initial
vacuum labeled by momentum p, and the coefficients fp are
called mode functions. In the presence of spatial translation
invariance, these depend on position x as fp(x) ∼ e−ipx. This
does not hold when translation invariance is broken, as in
our spatiotemporal quench protocol. The Fourier-transformed
field φk (t ) ≡ M−1/2 ∑

x φ(t, x)eikx can be written as

φk (t ) =
∑

p

fp,k (t )ap + f ∗
p,−k (t )a†

p, (29)

where fp,k (t ) ≡ M−1/2 ∑
x fp(t, x)eikx. We call fp,k the mode

function matrix. It is an M × M matrix; both its indices are
momenta. In the presence of translation invariance (see e.g.
the treatment in Ref. [50]) the matrix is diagonal, and the
dynamics is fully described by the mode vector fk . In the
present case, fp,k (0) is initially diagonal, but off-diagonal
entries are populated dynamically over the course of the
quench.

Upon decomposing φ(t, x) as in Eq. (29), the equation of
motion

(
∂2

t − ∂2
x + r(t, x) + λ〈φ2(t, x)〉)φ(t, x) = 0 (30)

maps to a system of M2 nonlinear, time-dependent, second-
order ODEs in the mode functions fp,k (t ). Canonical commu-
tation relations [φp, φq] = [πp, πq] = 0, [φp, πq] = iδp,q are
mapped to the matrix equations

Im( f † f ) = Im(g†g) = 0, Im( f †g) = −1

2
I, (31)
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where I is the M × M identity matrix and g = ḟ . The initial
conditions are given by

fp,k (0) =
√

1

2
k
δp,k, gp,k (0) = −i

√

k

2
δp,k,

with 
k =
√

k2 + m2
eff . The effective mass meff is determined

self-consistently by demanding that m2
eff = r + λ〈φ2〉:

m2
eff = r + λ

2M

M/2−1∑
n=−M/2

1√
k2

n + m2
eff

, (32)

with kn = 2πn/L. The effective mass is always positive, but
approaches 0 as r → −∞.

We implement the quench protocol by varying the param-
eter r in a space-time dependent with the form

r(t, x) = r0 + (r1 − r0)σ

(
t −

√
x2 + T 2

0

)
, (33)

where σ (t ) = 1
2 [1 + tanh(t/τ )] is a step function smoothed

over a time scale τ . The limit τ → 0 yields the instantaneous
quench discussed analytically in Secs. II and III.

We numerically integrate the equations of motion
[Eq. (30), with the form of r(x, t ) as in Eq. (33)] using a
fourth-order Runge-Kutta method. The evolved mode func-
tion matrix fp,k (t ) is used to calculate the energy density
above the vacuum of the final theory, E
(x, t ) at various time
steps and compared to the analytical predictions. An example
is shown in Fig. 6(a), in the form of a heat map in space-time.
We clearly see the hot region near the quench front t2 − x2 =
T 2

0 , as well as the cooling effect away from the front. To better
understand the nature of this cooling, in Fig. 6(b) we show the
energy density at the center of the system, E
(x = 0, t ), as a
function of time. Eq. (4) predicts this should fall off as t−2 for
an instantaneous quench to a CFT. Despite the presence of a
variety of finite cutoffs that break conformal invariance (the
small but finite mass, the IR and UV cutoffs L, �, and the
smoothing time τ ), we see good agreement with the predicted
scaling. This confirms the validity of the argument presented
in Sec. II away from the noninteracting limit considered in
Sec. III, and also indicates its robustness to small violations
of the assumptions. The latter aspect is important for the
experimental applicability of the protocol, and we investigate
it more thoroughly in the following.

B. Effect of finite cutoffs

In a realistic implementation of the protocol, the massless
modes in the final theory would likely have a phononlike
dispersion: linear near k = 0, but highly nonlinear, or even
flat, sufficiently far from k = 0. As a simple model for this,
we consider the dispersion


2
k = m2

eff +
(

�

π

)2

sin2
( π

�
k
)
. (34)

Here � is the UV cutoff, defined by |k| < �/2. It can be
thought of as arising from a microscopic lattice spacing a
via � = 2π/a, giving |k| < π/a. If meff is quenched from a
positive value to zero, then after the quench one gets modes

FIG. 6. Simulated quench in the large-N O(N ) model. (a) Color
plot of the energy density in spacetime for T0 = 2. (b) Energy density
above the final vacuum E
 at x = 0 exhibits 1/t2 relaxation across
a range of values of the quench parameter T0. The squared-mass
parameter r is quenched from r0 = 1 to r1 = −10. The interaction,
with strength λ = 10, renormalizes the initial mass squared to m2

eff �
1.6 and the final one to m2

eff � 1.6 × 10−6, giving a nearly massless
theory. The IR cutoff (system size) is L = 40, the UV cutoff is
� = 20π . The simulation includes M = L�/2π = 400 modes.

that propagate at the speed of light only for |k| 	 �. For
these modes, the cooling argument is expected to hold, with
the energy production being confined in spacetime near the
quench front. But for modes with |k| ∼ �, that have group
velocities much smaller than 1, the argument is expected
to fail. This seemingly implies that the cooling protocol is
inapplicable in systems with phononlike dispersions of the
type in Eq. (34).

The key to overcoming this issue lies in the possibility
of tuning the smoothing time, τ , of the quench. Indeed, a
mode with frequency 
k � τ−1 will see the quench as an
adiabatic process, and thus will remain in its vacuum state.
Only modes with low enough frequency will be affected by a
sudden quench, and by tuning τ one can ensure those modes
are within the linear dispersion regime, 
k � |k|. This is
illustrated in Fig. 7, where we present results of numerical
simulations in the free theory (λ = 0) with the dispersion (34)
with varying values of the UV cutoff � and smoothing time τ .

In particular, Fig. 7(a) shows a sweep over � at fixed τ . The
energy density at x = 0 relaxes down to a finite asymptotic
value above the vacuum, due to the excitations carried by
large-k, sub-luminal modes; this value approaches 0 as � is
increased and sub-luminal modes are pushed past the τ−1

cutoff, crossing over into an adiabatic regime. Figure 7(b)
shows instead a sweep over τ at fixed �, confirming the same
picture. This latter scenario is also the one most relevant to
experiment. The UV cutoff � is unlikely to be controllable
in many implementations of 1D quantum systems. On the
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FIG. 7. Effect of cutoffs on quench in the free theory with
phononlike dispersion, Eq. (34). r is quenched from r0 = 102 to
r1 = 10−2. The IR cutoff is L = 40. Interactions are absent (λ = 0)
and T0 = 2. (a) Effect of increasing UV cutoff � at fixed τ = 0.1.
The state relaxes down to a finite asymptotic energy density that
decreases with �. Inset: the dispersion 
k vs k for the values of �

considered (solid lines), along with the value of τ−1 (dashed line).
(b) Effect of increasing the smoothing time τ at fixed � = 12π .
Inset: the dispersion 
k vs k (solid line), along with the values of
τ−1 considered (dashed lines).

contrary, we can expect any experimental platform capable of
implementing the quench protocol here described to have a
reasonable degree of control over the smoothing time τ .

V. HIGHER DIMENSIONS

In this section, we consider a generalization of the above
argument to d > 1. In particular, we consider a hyperbolic
quench protocol in the directions (t, x), independent of the
remaining spatial directions (x2, · · · , xd )—such a protocol
is chosen over a more symmetric radial quench because it
is advantageous to work with the same special conformal
coordinates as in the d = 1 case. We show that the stress-
energy tensor is not completely constrained by the argument
of symmetry and conformal invariance as in the d = 1 case.
This does not of course rule out the possibility that the quench
is effective in preparing low-energy states even in higher-
dimensions. For instance, the quench protocol works in the
Gaussian case in higher dimensions; we discuss this later.

We denote the laboratory coordinates by xa =
(t, x, x2, · · · , xd ) and the conformal coordinates denoted
by xμ = (η, ξ, x2, . . . , xd ). Then, assuming parity invariance,
isotropy along the transverse directions, invariance under
ξ -translations, conservation, and tracelessness, the stress
tensor takes the form

〈Tμν〉

= diag

(
A(η), A(η) − A′(η),

e−2ηA′(η)

d − 1
, . . . ,

e−2ηA′(η)

d − 1

)
.

(35)

Thus, we are left with some particular function A(η) whose η-
dependence cannot be constrained by symmetry and conserva-
tion laws. For the energy density in the laboratory coordinates,
we find the form

〈Ttt 〉 = md−1

(t2 − x2)2
[ f (η, mT0)(t2 + x2) − ∂η f (η, mT0)x2],

η = 1

2
log

[
T 2

0

t2 − x2

]
, (36)

where we have added factors of m by dimensional analysis
expressing A(η) in terms of a dimensionless scaling function
f (η, mT0).

First note that due to the undetermined η-dependence, we
cannot make any general claims about cooling for arbitrary
T0. We can examine the limit T0 → 0 by considering the
limit m → 0 instead. In this limit, we must obtain 〈Ttt 〉 → 0.
For d > 1, this is achieved as long as f (η, mT0) stays finite
for m → 0, or diverges too slowly to compensate the md−1

mass dependence. Thus, we cannot guarantee that the energy
density relaxes to zero even in the limit T0 → 0.

As mentioned above, this does not rule out the possibility
that the quench does in fact work in higher dimensions. Here
we show that the quench is in fact effective in cooling for the
Gaussian theory. The (d + 1)-dimensional free theory in this
protocol is equivalent to a set of decoupled wires parametrized
by k⊥ undergoing the original (1 + 1)-dimensional protocol
with all but a set of zero measure having k2

⊥ > 0, thus giving
rise to a massive-to-massive quench. Note again that the
quench generates excitations with all wave vectors in the con-
formal spatial coordinate ξ . In the free field theory, the wave
vectors of these modes are preserved over subsequent time-
evolution. Following the same argument described in the
second last paragraph of Sec. II, we find that the dilation of
wave vectors at large t causes the energy of massive modes
to approach the finite value of the final (k⊥-dependent) mass
(This is contrast to massless modes whose energy approaches
zero as ∼1/t). Together with an increase in the occupation
volume of these modes as �x ∼ t , we find a decrease in
energy density as ∼1/t . Thus, the quench results in cooling
to a vacuum state in higher dimensions, as well.

VI. SUMMARY AND DISCUSSION

In this work, we studied a new kind of spatiotemporal
quench protocol that can be utilized for the purpose of rapidly
preparing ground states of critical models in one dimension.
In particular, we studied the quench from the ground state of
a gapped relativistic quantum system, closing the gap along
the spacelike trajectory t2 − x2 = T 2

0 . We showed that such
a quench causes the system to relax to the final vacuum
everywhere except on the singular lines x = ±t . This work
extends our vocabulary of solvable spatiotemporal quenches
in one-dimensional systems going beyond the previously
studied case of single-velocity superluminal quenches. More
importantly, it provides a robust geometric argument for the
validity of the findings in Ref. [24] to the case of general
interacting critical systems. These observations make the pro-
tocol we present particularly useful for preparing low-energy
states in one-dimensional systems that may be described
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by a low-energy Luttinger liquid theory, or more generally
by strongly-coupled conformal field theories. We confirmed
these predictions by concretely studying the quench for the
Gaussian scalar field theory, and numerically in an interacting
setting by simulating the quench in the quantum O(N ) model
in the large-N limit.

In this work we also considered quenches in the scalar
free field theory starting from an excited state, finding that
the mode populations of massive bosons (which in an ex-
perimental setting would be suppressed exponentially for a
temperature smaller than the mass) directly translates to the
mode population of the post-quench massless bosons. Thus,
the quench process also appears to conserve entropy (again
barring the singular lines x = ±t). We leave a more careful
treatment of this result for future work, where we also aim
to explore such quenches from excited initial states in an
interacting setting.

Finally, we showed that the above arguments do not
straightforwardly extend to the higher dimensional case where
we find the stress-energy tensor cannot by constrained by
symmetry arguments alone. This is perhaps natural given the
uniqueness of one-dimensional systems where scattering is
heavily constrained by the limited phase space available, and
thus operates in a very different way to higher dimensional
systems. However, we know that the quench protocol can
be used in higher dimensions for the purposes of cooling
(based on previous work in Ref. [24]) by introducing limited
adiabaticity in the way of a finite time-scale τ over which the
superluminal quench is smoothed. A numerical investigation
of the efficacy of this method in creating the ground state
of the Hubbard model at half-filling, which is of immense
experimental importance especially for related studies in ul-
tracold atoms, is also left for future work. We also mention
in passing that progress may be made in understanding such

quenches in higher dimensions by exploring whether insights
from the Unruh result [52,53] (for correlations of the system
on hyperbolic timelike hypersurfaces) can be used in our
computations which involve propagation of the system in time
following a quench on related spacelike hypersurfaces.

Finally, from an experimental point of view, our findings
may be investigated in systems of ultra-cold atoms trapped in
flat-band potentials [54,55], besides arrays of Josephson Junc-
tions [56,57], and ion traps [58–60]. Experiments on atom
chips [5,61] studying in particular the dephasing between
halves of a split quasi-one-dimensional condensate have been
used to investigate spatially uniform, instantaneous quenches
of the mass in a Luttinger liquid setting. A spatiotemporal
quench of the sort investigated here may be created in these
systems by splitting the quasicondensate along the space-time
trajectories discussed, and appear to be a promising experi-
mental candidate for realizing the physics discussed here.
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