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Abstract High-fidelity simulations of turbulent reacting flows enable scientific un-
derstanding of the physics and engineering design of practical systems. Whereas
direct numerical simulation (DNS) is the most suitable numerical tool to understand
the physics, under-resolved and large-eddy simulations offer a good compromise be-
tween accuracy and computational effort in the prediction of engineering flows. This
compromise speeds up the computations but reduces the space-and-time accuracy of
the prediction. The objective of this chapter is to (i) evaluate the predictability hori-
zon of turbulent simulations with chaos theory, and (ii) enable the space-and-time
accurate prediction of rare and transient events using a Bayesian statistical learning
approach based on data assimilation. The methods are applied to DNS of Moderate
or Intense Low-oxygen Dilution (MILD) combustion. The predictability provides an
estimate of the time horizon within which the occurrence of ignition kernels and
deflagrative modes, which are considered here as rare and transient events, can be
accurately predicted. The accurate detection of ignition kernels and their evolution
towards deflagrative structures are well-captured on a coarse (under-resolved) grid
when data is assimilated from a costly refined DNS. Physically, such an accurate
prediction is important to understand the stabilization mechanism of MILD com-
bustion. These techniques enable the space-and-time-accurate prediction of rare and
transient events in turbulent flows by combining under-resolved simulations and ex-
perimental data, for example, from engine sensors. This opens up new possibilities
for on-the-fly calibration of reduced-order models for turbulent reacting flows.
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1 Introduction

Turbulent flows are chaotic flows. As such, the space-and-time accurate prediction
of the solution is difficult to achieve because of the butterfly effect [29]: Two nearby
initial conditions, which can differ by a very small amount, will practically diverge in
time from each other with an exponential rate. This divergence rate is the dominant
Lyapunov exponent. Whereas the statistics of turbulent flows are not significantly
affected by tiny perturbations, the instantaneous solution is. (Having accurate predic-
tions on the instantaneous solution is crucial for the prediction of rare and transient
events.) For example, running the same code with the same initial conditions on a dif-
ferent number of processors should in principle provide two statistically equivalent
solutions, but with completely different instantaneous fields after a few time steps.
This fact is well-known in turbulent flows [5, 15, 37]. Albeit the butterfly effect
seems to be a showstopper for the time-accurate prediction of turbulent flows, such
a prediction can be greatly aided by physics-informed data-driven methods. In this
chapter, first, we use dynamical systems theory to estimate the predictability of sim-
ulations with the Lyapunov time. Second, we improve the space-and-time accurate
prediction of rare and transient events with statistical learning by data assimilation.
The turbulent reacting flow under investigation is relevant to Moderate or Intense
Low-oxygen Dilution (MILD) combustion.

Dynamical systems theory provides the predictability of a chaotic simulation,
which is the time scale after which the trajectories diverge due to the butterfly effect.
There exist different approaches to characterize a chaotic solution [5, 15, 38]. On one
hand, geometric approaches estimate the fractal dimension of the chaotic attractor,
which provides an estimate of the active degrees of freedom of the chaotic dynam-
ical system. An accurate measure is the Hausdorff dimension [19], which is often
approximated by box counting, based on phase-space partitioning and correlation di-
mension based on time series analysis [24]. On the other hand, dynamical approaches
estimate the entropy content of the solution, for example via the Kolmogorov-Sinai
entropy, and the separation rate of two nearby solutions via the Lyapunov expo-
nents. The dominant Lyapunov exponent is a practical measure to compute the
predictability of large scale simulations because it (i) is easy to calculate [5] and
(ii) does not depend on the initial conditions in ergodic processes [22]. In large
scale fluid-dynamics simulations, the Lyapunov exponent was calculated in channel
and bluff-body flows[4], homogeneous isotropic turbulence [31, 32], reacting and
non-reacting turbulent jets [32], a two-dimensional airfoil [20], backward-facing
step [33], partially-premixed flames [23], to name only a few.

Once the predictability of the simulation is estimated, we assimilate data from
a refinded DNS on a coarse grid by statistical learning. Statistical learning by data
assimilation finds the statistically optimal combination of model predictions and
observations by combining concepts from control theory, probability theory and
dynamic programming. The data assimilation technique used in this study is the
ensemble Kalman filter [6, 17]. In the ensemble Kalman filter, a Monte Carlo ap-
proach is used to estimate the statistics at every timestep [14], which makes it (i) a
computationally efficient technique in terms of storage requirements, (ii) amenable
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to parallel computing and (iii) non-intrusive. Compared to other data assimilation
techniques based on the Kalman filter, e.g., the extended Kalman filter, the ensemble
Kalman filter is particularly suitable for highly nonlinear systems [18], such as tur-
bulent diffusion flames [28] and premixed flames [42, 43], the latter of which display
strongly nonlinear events, such as cusp formation and pinch-off. In non-reacting
flows, the ensemble Kalman filter was applied to the prediction of aerodynamic
flows [9, 10]. As argued in [43], data assimilation is practically useful to make a
qualitative reduced-order model quantitatively accurate.

MILD combustion is a concept for future low-emission and high energy efficiency
combustion devices. This concept utilizes exhaust gas recirculation (EGR) to achieve
a high reactant temperature and low oxygen environment, which are crucial to obtain
the high energy efficiency and low pollutant emissions [8]. However, because of
those particular turbulence and chemical conditions with recirculating gases carry-
ing radicals, the physical understanding ofMILD combustion is challenging. Indeed,
in contrast to conventional combustion, reaction zones in MILD combustion have
been shown both experimentally and fromDNS to be volumetrically distributed [35],
interacting with each other leading to a complex morphology [13, 30]. Furthermore,
both ignition and deflagrative modes of combustion coexist, whose interaction con-
tributes significantly to the global heat release dynamics [11]. However, despite the
insight gained in these previous studies, the mechanism leading to the occurrence
of the ignition kernels and the stabilization of deflagrative flames remains unknown,
making their prediction a hard task. The objective of this chapter is to (i) calcu-
late the predictability of MILD combustion case under investigation by determining
its Lyapunov exponent for different grids, and (ii) make an under-resolved DNS
more predictive for the space-and-time-accurate evolution of chemical reactions, in
particular, the occurrence of ignition kernels and their evolution into deflagrative
structures. The second goal is achieved by statistical learning with Bayesian data
assimilation, in particular, with the ensemble Kalman filter.

In Section 2, the fundamentals of Lyapunov analysis from chaos theory are
presented to estimate the predictability time. A practical and non-intrusive algorithm
for the calculation of the (dominant) Lyapunov exponent and corresponding covariant
Lyapunov vector is described. In Section 3, the ensemble Kalman filter is introduced
with aBayesian approach. The algorithm is shown step by step for parallel computing.
In Section 4, theMILDcombustion simulation is explained alongwith theDNS setup.
In Section 5, the predictability and ensemble-Kalman filtered DNS are computed for
MILD combustion. The chapter ends with conclusions and future directions.

2 Lyapunov analysis from chaos theory

This section introduces the key concepts and results of Oseledets’ theorem [34],
which lay out the fundamentals of Lyapunov analysis [21]. The turbulent reacting
flow problem is governed by partial differential equations, i.e., the Navier-Stokes
equations, mass and energy conservation, and equations for the chemistry. On spatial
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discretization, the turbulent reacting problem can be cast as an nonlinear autonomous
dynamical system {

Ûq(t) = F(q(t), θ)
q(0) = q0

, (1)

where Û( ) ≡ d( )/dt; q ∈ RNdo f is the state vector (e.g., pressure, velocity, species,
etc., at each discrete location), where Ndof denotes the degrees of freedom from
numerical discretization of the spatial derivatives; θ is the vector containing the
parameters of the system; and F : RNdo f → RNdo f is a nonlinear function, which
encapsulates the discretized boundary conditions. The subscript 0 denotes the initial
condition. In this chapter, the parameters are constant, therefore, the dependency on
θ will be dropped unless necessary for clarity. In Lyapunov analysis, we calculate
the evolution of infinitesimal perturbations. The solution is split, accordingly, as

q(t) = q̄(t) + q′(t), (2)

where q̄(t) is the original (unperturbed) solution of (1), and q′(t) is the infinitesimal
perturbation such that | |q′(t)| | ∼ O(ε), where ε → 0. The perturbation is governed
by the tangent equation {

Ûq′ = J(t)q′

q′(0) = q′0
, (3)

where J(t) ≡ dF
dq

��
q̄(t)

is the Jacobian. In a turbulent flow, the Jacobian is time-
dependent because the unperturbed solution is chaotic. The formal evolution of the
perturbation, q′, is given by the tangent propagator, which maps q′ from time t to
time t̃, as

q′(t + t̃) = M(t, t̃)q′(t), (4)

where ÛM = J(t̃)M with M(t, 0) = I and I being the identity matrix. From Eq. (3),
the norm of an infinitesimal perturbation, q′0, asymptotically evolves as an exponen-
tial [34]

| |q′(t̃)| | = | |q′0 | |e
λ(q′0,q̄)t̃ t̃ →∞. (5)

The characteristic Lyapunov exponent is defined as

λ(q′0, q̄) = lim
t̃→∞

1
t̃

log
| |M(0, t̃)q′0 | |
| |q′0 | |

= lim
t̃→∞

1
t̃

log
| |q′(t̃)| |
| |q′0 | |

. (6)

Physically, the Lyapunov exponent is the average exponential expansion rate of
an infinitesimal volume of the phase space, which moves along the attractor. A
chaotic system, hence a turbulent flow, has at least one positive (unstable) Lyapunov
exponent. In other words, a turbulent flow is characterized by an unstable tangent
space. Furthermore, in a turbulent flow, there always exists a zeroLyapunov exponent,
which is associated with the neutrally stable direction of the unperturbed solution,
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q̄(t). As mathematically and numerically shown by [25, 26], (i) if the attractor is a
steady solution, the Lyapunov exponents are equal to the real part of the eigenvalues
of the Jacobian at the fixed point; and (ii) if the attractor is a periodic solution,
the Lyapunov exponents are equal to the real part of the Floquet exponents. The
Lyapunov exponent is norm-independent, however, some norms are more physically
significant than others. Oseledets’ theorem [34] proves that there exist N Lyapunov
exponents λ1 ≥ λ2 ≥ · · · ≥ λNdo f

, which are constants of the chaotic attractor. To
each Lyapunov exponent, λj , there exists an associated covariant Lyapunov vector,
φ j , which is the solution of

dφ j

dt̃
= Jφ j − λjφ j . (7)

In this chapter, we do not consider degenerate Lyapunov exponents, which, how-
ever, can appear in thermoacoustic oscillations [25, 26]. Equation (7) shows that a
covariant Lyapunov vector is evolved by the tangent system and has bounded norm
because the second term on the right-hand side suppresses the exponential growth.
A tangent vector, q′0, can be decomposed in a basis of covariant Lyapunov vectors,
{φ1, · · · , φNdo f

}. Assuming ergodicity [34, 38], the Lyapunov exponents are inde-
pendent of the initial conditions, i.e., λ(q′0, q̄) = λj . Figure 1 illustrates pictorially
the significance of Lyapunov exponents and covariant Lyapunov vectors. Three co-
variant Lyapunov vectors are shown at two different instants, each associated with
a different Lyapunov exponent, which can be positive (unstable, red colour), zero
(neutrally stable, orange colour) and negative (stable, green colour).

Fig. 1: Schematic of the significance of unstable (red), neutral (orange) and stable
(green) covariant Lyapunov vectors and exponents [25].
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2.1 Non-intrusive computation of the dominant Lyapunov exponent
and covariant Lyapunov vector

We focus on the dominant Lyapunov exponent and covariant Lyapunov vector. The
adjective “dominant” will be dropped for brevity unless necessary for clarity. More-
over, the dominant Lyapunov exponent will be denoted λ, i.e., the subscript 1 is
dropped. Obtaining accurate estimates of the Lyapunov exponent and covariant Lya-
punov vector is straightforward even in large-scale simulations. A non-intrusive
method is based on the calculation of the separation trajectory, also known as the
error trajectory. The separation trajectory is the difference between two nearby
trajectories (which can be Eulerian fields), which originate from two close ini-
tial conditions. Because it is almost sure for the separation trajectory to have a
component–even miniscule–in the direction of the dominant covariant Lyapunov
vector, the separation trajectory will almost surely diverge along the covariant vector
with an exponential divergence rate provided by the Lyapunov exponent. This is why
the (dominant) Lyapunov exponent and (dominant) covariant Lyapunov vector are
of paramount importance in chaotic flows. They can be calculated as described in
the following practical and non-intrusive algorithm.

1. Statistically converged solution. Run a numerical simulation (1) until
statistical convergence is reached (q̄(t)).

2. Reset time, t = t0.
3. Perturb. At t = t0, evaluate the perturbed solution q∗ as

q∗(t0) = q̄(t0) + ε | | q̄(t0)| |, (8)

where ε is a small number, typically in the range 10−9 − 10−3 and | |q(t0)| |
is a norm of order 1.

4. Separation trajectory. Advance both solutions, q̄(t0) and q∗(t0), to some
time t f and evaluate the separation trajectory

∆q(t) = q∗(t) − q̄(t) t0 ≤ t ≤ t f . (9)

5. Identification of the linear region t1 ≤ t ≤ t2 where ln (‖∆q(t)‖) grows
linearly. t f in item 4 must be larger than t2. If the linear region of the sep-
aration trajectory looks noisy, i.e., the local Lyapunov exponent markedly
fluctuates, an ensemble simulation is recommended.

6. Covariant Lyapunov vector. This is the separation trajectory in the linear
region, i.e., ∆q(t) t1 ≤ t ≤ t2.

7. Lyapunov exponent. Because of (5), the Lyapunov exponent is the slope
of the linear region, which can be obtained by linear regression

λ =
1

t2 − t1
ln

(
‖∆q(t2)‖
‖∆q(t1)‖

)
. (10)
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2.1.1 Predictability

Several definitions of predictability are offered in the literature [5]. However, for the
purpose of this chapter, the predictability is defined as the Lyapunov time, which is
the inverse of the Lyapunov exponent

tp ≡
1
λ
. (11)

FromEq.(10), the predictability is the time that a norm of the separation trajectory
takes to get amplified by e ≈ 2.718. Physically, the predictability provides a time
scale for the divergence of two nearby trajectory due to the chaotic nature of turbulent
flows. Nastac et al [32] showed that the Lyapunov time scale is slightly larger than
the Kolmogorov time scale for both forced homogeneous isotropic turbulence and
turbulent jets. The predictability is an important factor for the time-accurate calcu-
lation of rare and transient events, such as extinction and re-ignition. Because these
rare and transient events occur within a small time scale, the numerical simulation
and grid should accurately resolve the dynamics within the predictability. In tur-
bulent (reacting and non-reacting) large-eddy and direct numerical simulations, as
the grid resolution approaches the smallest physical scales, the Lyapunov exponent,
hence predictability, reaches a plateau [32]. Therefore, the Lyapunov exponent was
proposed as a metric to assess the quality of a large-eddy simulation [32]: If grid a
has the same Lyapunov exponent as grid b, the grid with fewer degrees of freedom
can be used to predict rare and transient deterministic events.

3 Data assimilation from Bayesian inference

Data assimilation is a method to make a model more predictive given data from
external observations. The physical model provides a prediction on the solution,
which is called forecast, which is updated with a statistical learning algorithm to
provide a more accurate state, which is called analysis. Data assimilation is here
treated as a problem in Bayesian inference, where existing knowledge is quantified
in the form of a probability distribution over candidate solutions. When external data
becomes available, the probability distribution is updated, effectively combining
the existing knowledge with the data. To introduce data assimilation as a Bayesian
problem, we consider the nonlinear dynamical system (1) at discrete times denoted
by the subscript k. The evolution of the state is governed by the deterministic physical
model F, its parameters θ and the initial condition q0. The data assimilation problem
is cast as a probabilistic state space model

qk = qk−1 +

∫ tk

tk−1

F(q(t), θ) dt ∼ p(qk | qk−1, θ, F), (12)

yk = M(qk) ∼ p(yk | qk). (13)
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The states qk and the observations yk are considered realizations inside their re-
spective probabilistic state spaces (symbol ∼), whose degrees of belief are provided
by the conditional probability distributions p(qk | qk−1, θ, F) and p(yk | qk), re-
spectively. We assume that (i) the physical model is described by a Markov chain;
and (ii) observations are conditionally independent in time, which means that the
probability of an observation depends only on the current state. The objective of data
assimilation is to find the joint probability distribution p(q0:N, y1:N, θ, F), which
provides a complete statistical description because all the probability distributions
of interest ensue from it. (The symbol : signifies that all states are considered, e.g.,
q0:N signifies that the state q is considered from timestep 0 to N inclusive.) First, in
state estimation the objective is to compute p(q0:N | y1:N, θ, F), which provides the
belief in a series of states given a physical model and parameters. Second, in param-
eter estimation the objective is to compute p(θ | y1:N, F), which provides the belief
in a set of parameters given a physical model. Parameter estimation can be combined
with state estimation, where the parameters are concatenated in the state vector such
that they are subject to the same probabilistic state space (Eq. (12)) [43]. Third, in
model comparison the objective is to compute p(F | y1:N ), which provides themodel
that is more likely to be predictive as compared to other models. Practically, the joint
probability distribution is rarely computed because the probabilistic state space,
which spans multiple timesteps, is high dimensional [2]. Therefore, state estimation
computes the conditional probability distribution at a single timestep. Conditional
probability distributions that are relevant to state estimation are (i) filtering, (ii)
smoothing and (iii) prediction. Filtering estimates our belief in the current state
given observations in the past and present, i.e., p(qk | y1:k, θ, F). Smoothing esti-
mates our belief in the current state given observations in the past, future and present,
i.e., p(qk | y1:N, θ, F). Prediction estimates our belief in the future state given the
observations in the past and present, i.e., p(qN+1 | y1:N, θ, F). In section 5.1, we
will perform state estimation without smoothing through an ensemble Kalman filter.
For smoothing, parameter estimation and model performance in premixed flames,
the reader may refer to [42, 43].

3.1 Bayesian filter and ensemble Kalman filter

To introduce the ensemble Kalman filter with a Bayesian approach, we first explain
the Bayesian filter. First, the state is predicted by the Chapman-Kolmogorov equation
(prediction step)

p(qk | y1:k−1, θ, F) =

∫
p(qk | qk−1, θ, F)p(qk−1 | y1:k−1, θ, F) dqk−1. (14)

Typically, the Chapman-Kolmogorov equation, which involves a high dimensional
integral, is solved by a Monte Carlo simulation. Second, the state is updated by the
Bayes’ rule (update step)
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p(qk | y1:k, θ, F) =
p(yk | qk)p(qk | y1:k−1, θ, F)

p(yk | y1:k−1, θ, F)
, (15)

where the left-hand side is the posterior, the first term in the numerator of the
right-hand side is the likelihood and the second term is the prior. The Bayesian
filter is sequential in nature, which reduces the complexity of data assimilation
and enables on-the-fly statistical learning. In the Kalman filter, the prior and the
likelihood in the update step of the Bayesian filter are assumed to be normal, i.e.,
p(qk | y1:k−1, θ, F) = N

(
qk | ψ

f ,C
f
ψψ

)
and p(yk | qk) = N (yk | Mqk,Cεε),

where N is a normal distribution with mean in the first argument and covariance
matrix in the second argument. The measurement operator, M , is assumed linear in
this chapter. The mean of the prior is denoted by ψ f , the covariance matrix by C

f
ψψ ,

and the covariance matrix of the likelihood, also known as the observation error,
by Cεε . The Kalman filter [27] finds the filtered distribution as follows

p(qk | y1:k, θ, F) = N
(
qk | ψ

a,Ca
ψψ

)
, (16)

ψa = ψ f +
(
MC

f
ψψ

)T [
Cεε + MC

f
ψψM

T
]−1︸                                     ︷︷                                     ︸

Kalman gain

(
y − Mψ f

)
︸        ︷︷        ︸

Innovation

, (17)

Ca
ψψ = C

f
ψψ −

(
MC

f
ψψ

)T [
Cεε + MC

f
ψψM

T
]−1 (

MC
f
ψψ

)
, (18)

where the superscript f denotes forecast (everything related to the prediction), and
the superscript a denotes analysis (everything related to the update). If the physical
model is highly nonlinear, such as turbulent flows, the prediction of the covariance
matrixC f

ψψ for theKalman filter is computed byMonte Carlo sampling. This is called
the ensemble Kalman filter [17]. Instead of a mean ψ and a covariance matrix Cψψ ,
a distribution is represented by a sample ψ j , j = 1, 2, . . . n where n is the number
of samples. During the prediction step, the ensemble members ψ j evolve in time
independently. Before the update step, the statistics are estimated from the sample
as follows

ψ ≈
1
n

n∑
j=1

ψ j , Cψψ ≈
1

n − 1

n∑
i=1
(ψi − ψ) ⊗ (ψi − ψ), (19)

where ⊗ is the dyadic product. The sample covariance matrix Cψψ involves division
by n − 1 instead of n to avoid a sample bias. There exist several implementations of
the ensemble Kalman filter, which differ in the update step. In the most straightfor-
ward implementation of the ensemble Kalman filter [17], each ensemble member is
individually updated (Eq. (17)). In so doing, the observations must be randomly per-
turbed to guarantee a statistically consistent analysis scheme [6]. This is the approach
used in this chapter. Alternatively, to avoid the introduction of randomly generated
numbers in the observations, the square-root filter can be used [40, 43], where the
mean and the deviations of the ensemble members are updated. While no spurious



10 Luca Magri and Nguyen Anh Khoa Doan

errors due to the random perturbations of the observations are introduced, the square
root filter requires a singular value decomposition.

3.1.1 Numerical implementation of the ensemble Kalman filter

The Kalman gain K ≡ C
f
ψψM

T
[
Cεε + MC

f
ψψM

T
]−1

is not explicitly computed
because it is more efficient to perform a number of matrix-vector computations from
right to left. From Eq. (17), the i-th sample of the analysis is conveniently expressed
as

ψa,i = ψ f ,i +
1

n − 1

n∑
j=1

(
ψ f , j − ψ f

) [
M

(
ψ f , j − ψ f

)]T
︸                                                 ︷︷                                                 ︸

CψψMT

bi, (20)

where Kbi = yi − Mψ f ,i . The parallel algorithm is summarized in the following
gray box using the indices i and j as in(20).

1. Compute yi − Mψ f ,i on each CPU i;
2. Compute ψ f (MPI_Allreduce to make it available on all CPUs);
3. Compute ψ f , j − ψ f on each CPU j;
4. Compute MCψψM

T with O(mn2) operations as

MCψψM
T =

1
n − 1

n∑
j=1

[
M

(
ψ f , j − ψ̄

)]
⊗

[
M

(
ψ f , j − ψ̄

)]
; (21)

5. Compute Cεε + MC
f
ψψM

T ;

6. Solve
(
Cεε + MC

f
ψψM

T
)
bi = yi −Mψ f ,i for bi on each CPU i (e.g., with

LAPACK), and collect all bi on all CPUs (e.g., MPI_Allgatherv);

7. Compute the scalars
[
M

(
ψ f , j − ψ f

)]T
bi on each CPU j;

8. Compute C f
ψψM

T bi and evaluate Eq. (20) on each CPU i (MPI_Reduce).

The ensemble covariance matrix C f
ψψ of the model prediction has rank n− 1, and

so does the m-by-m matrix MC
f
ψψM

T . Depending on the covariance matrix Cεε of
the measurement, the m-by-m matrix Cεε + MC

f
ψψM

T may be singular. Therefore,
if n ≤ m, the matrix MC

f
ψψM

T is rank deficient. In the absence of measurement
errors, solving the linear system in item 6 is a minimum-norm least-squares problem.
An alternative approach is to use the square root filter (Section 3.1). Note that a finite
ensemble size can cause the covariance to be underestimated, which can lead to
covariance collapse [39]. There are a few tricks to avoid this, such as a simple
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covariance inflation [1, 41]

ψa,i = ψa + β(ψa,i − ψa) + α, (22)

where β is themultiplicative covariance inflation, which could be a scalar or amatrix,
and α is the additive covariance inflation, which is a vector.

4 Direct numerical simulation of MILD combustion

In this chapter, the analysis methods described in sections 2 and 3 are applied to
Direct Numerical Simulation (DNS) of Moderate or Intense Low-oxygen Dilution
(MILD) combustion. The DNS data considered for this analysis is generated fol-
lowing the methodology presented in [13]. The configuration is a non-premixed
methane/diluted air MILD combustion with internal EGR at atmospheric pressure.
The DNS domain is a cube of 1 cm3 with inflow/non-reflecting Navier-Stokes Char-
acteristic Boundary Conditions (NSCBC) [36] outflow boundary conditions in the
x-direction and periodic boundary conditions in the y and z directions. As to the
generation of the initial conditions, in a first preprocessing stage, initial fields of tur-
bulence, mixture fraction, Z , reaction progress variable c, and speciesmass fractions,
Yα, are generated. To do so, first, laminar premixed flames under MILD combustion
conditions are computed for various values of Z and the scalar mass fractions are
tabulated as a function of Z and c. Subsequently, initial 3D reaction progress vari-
able and mixture fraction fields are generated with prescribed means, 〈Z〉 and 〈c〉,
and lengthscales, `Z and `c using the method of [16]. Z is defined using Bilger’s
definition [3] and the progress variable is based on the fuel mass fraction. The scalar
mass fractions from the laminar flames calculations are then mapped onto these 3D
fields. Additionally, an initial decaying homogeneous isotropic turbulence field is
generated with the required turbulence characteristics. This turbulence field is then
combinedwith the scalar fields previously generated, which interact in a non-reacting
simulation for about one large eddy turnover time to ensure that the velocity-scalar
correlations have sufficiently evolved. The fields obtained are then used as the initial
and inflowing conditions for the second stage, which is the actual reacting DNS of
MILD combustion. Further details on this methodology can be found in [13].

In this chapter, DNS similar to theAZ1 case of [13]with a 5123 mesh is performed.
The initial characteristics of this DNS are summarized in Table 1. Additionally, the
oxidizer considered is composed of 3.5% of O2, 13.4% of H2O, 6.7% of CO2
and 76.4% of N2. The initial turbulence Reynolds numbers based on the integral
length scale and Taylor microscale are respectively Ret = 96 and Reλ = 34.73. The
chemical mechanism used here is an extended version of the Smooke methane/air
mechanism as detailed in [13]. We removed OH∗ chemistry to allow the timestep
to be larger, i.e., ∆t = 10ns. A study of the chemical markers, such as OH∗, can be
found in [12].
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Table 1 DNS initial conditions. Λ0 is the integral lengthscale, η is the Kolmogorov lengthscale
and u′ is the initial root- mean square value of the velocity fluctuations.

Grid Λ0/`Z 〈XO2 〉 Xmax
O2

`Z/`c 〈Z 〉 Zst σZ 〈c〉 σc u′ [m/s] η [µs]
5123 0.60 0.0270 0.035 1.30 0.008 0.010 0.0084 0.56 0.26 16.67 47.7

A typical heat release rate field is presented in Fig. 2. There exist multiple iso-
surfaces of heat release rate that are not confined to thin reaction zones, where both
ignition and deflagration combustion modes can be found [11].

Fig. 2: Isosurface of heat release rate field in DNS of MILD combustion (threshold
at ÛQ = 1.75 · 108 [W/m3]) with temperature field (in [K]) on the bottom and side
surfaces.

In addition to the fine DNS with a 5123 mesh, DNS on coarser grids of 963,
1283 and 2563 points are performed. These DNS are initialized using the solution
of the fine DNS after it has reached a steady state. The DNS is run with the code
SENGA2 [7] which solves the fully compressible reacting Navier-Stokes equations
with a 10th order finite difference scheme for spatial discretization and a third order
low-storage Runge-Kutta scheme for time integration on CSD3 (Cambridge, UK), a
Tier-2 cluster.

5 Results

5.1 Predictability of DNS of MILD combustion

Following the procedure described in section 2, the predictability of the DNS of
MILD combustion is assessed on coarse DNS grids with respectively, 963, 1283

and 2563 grid points. Each simulation is initialized from the last snapshot of a
statistically converged DNS on the 5123 grid. Subsequently, the inlet velocity of the
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coarse simulations are perturbed, with ε = 10−3 and the separation trajectory of each
simulation is presented in Fig. 3.

(1) (2) (3) (4)

(5)

963

1283

2563

Fig. 3: Separation based on velocity as a function of time with meshes 963 (red),
1283 (blue) and 2563 (violet). The dashed lines indicate the slope of the linear region
of the separation trajectories. Additional panels show the mid x-y plane of the norm
of the separation trajectory, log10(| |δu| |), for the mesh 1283. In the linear region, this
is the norm of the covariant Lyapunov velocity vector.

The values of the Lyapunov exponent, extracted by linear regression, highlighted
using dashed lines in Fig. 3, are summarized in Table 2. It is seen that the Lyapunov
exponent increases between the 963 and 1283 and saturates for 2563. This indicates
that most of the chaotic dynamics is captured by the 1283 grid. Furthermore, the
separation frames highlight that the separation occurs in the upstream region of the
domain where the decaying isotropic turbulence is being injected into the domain
(see panels (1) and (2) in Fig. 3). In that region, the separation originates chiefly
because of how the perturbed and unperturbed velocity fields are evolving into
different turbulence fields, upstream of the main heat release regions.

Table 2 Lyapunov exponents and predictability of the MILD combustion configuration.
963 1283 2563

λτη 0.00509 0.00835 0.00826
1/(λτη ) 195.46 119.76 121.06
tp = 1/λ [µs] 562.2 342.7 346.4
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In addition to the first highlighted linear region, there appears a second seem-
ingly linear region for t/τη = 200 to 300. This suggests that another phenomenon
is responsible for the separation of the simulations at a later time. Indeed, large
separation downstream of reaction zones appear and contribute to the increase in
separation between the simulations (see panels (3) and (4) in Fig. 3). This separation
is due to the diverging heat release rate fields, which yields different velocity fields
downstream of the reaction zones. We conjecture that the change in slope is linked
to the change in timescale between the regions upstream and downstream of the
reaction zones, i.e., the downstream region has a much smaller turbulence level due
to the heat release. Finally, it should be noted that the particular DNS cases have a
quite limited Reynolds number and have high temperature with large viscosity. As a
result, the Lyapunov exponents of MILD combustion are smaller than those of the
forced-homogeneous isotropic turbulence of [32]. Combustion makes a turbulent
flow more predictable from a dynamical systems point of view.

5.2 State estimation of DNS of MILD combustion

The ensemble Kalman filter described in section 3 is applied here to improve the
prediction of the heat release rate evolution in the DNS of MILD combustion. In
the present problem, the measurements are taken from the finely resolved DNS
(on the 5123 mesh) and the forecasts are obtained by running an ensemble of 10
coarse DNS, each with a mesh of 1283 nodes. The initial velocity field for each
coarse DNS is perturbed by a factor ε | |u| | where ε is a random number following
a Gaussian distribution centred around 10−3 with standard deviation of 10−4. The
observations from the fineDNS,whichmimic observations from an experimental rig,
are located in a cube of length 3mm centred around the point (3.149, 3.149, 3.149)
[mm] as illustrated in Fig. 4. It was observed from the fine DNS that this location
corresponds to a region where both ignition and flame propagation occur, which
are difficult to predict accurately in space and time. Therefore, this region is a spot-
on location where to apply data assimilation to appreciate its performance. In the
observation box, sampling locations are uniformly distributed with 21 samples in
each direction for a total of 9261 sampling locations. At each of these locations, the
values of velocity (u, v and w), YOH and YCH2O are collected from the fine DNS to
mimic experimental measurements from Particle Image Velocimetry (PIV) or Planar
Laser-Induced Fluorescence (PLIF). The state vector, ψ, is taken to be the same as
the experimental measurements, hence, the observation matrix M is the identity
matrix. Furthermore, the observation error is taken to be the standard deviation
of the observed quantity in a smaller cube of length 78µm, which corresponds to
1/40 of the entire observation box centred around each measurement location from
the fine DNS. This corresponds to passing from the fine grid of 5123 nodes to
1283 nodes on the coarse DNS. Data assimilation is performed every 40µs, which
corresponds to approximately one tenth of the average ignition delay time for the
mixture under study. The evolution of the logarithm of the Root Mean Squared
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Fig. 4: Observation box (in red), where the measured quantities (velocity field, CH20
and OH) are taken.

(RMS) error (RMSE), computed as the trace of the ensemble covariance matrix,
RMSE = tr(C f

ψψ) where ψ is just composed of the measured states is shown in
Fig. 5a. At the beginning, the RMS error is small because nearly identical initial
conditions are used for all cases. Because of the chaotic nature of the turbulence
flow, the RMS subsequently grows. At each data-assimilation event, the uncertainty
is markedly decreased by approximately half a decade. Another metric to assess how
more predictive the filtered solution is with respect to the unfiltered solution is the
evolution of the normalized error of the heat release rate (Fig. 5b)

∆̃ ÛQ =

√∫
V
( ÛQm − ÛQc)

2dV∫
V
ÛQmdV

(23)

which is integrated in the observation box, V , where ÛQm is the heat release rate
computed on the fine DNS and ÛQc is either the heat release rate from the coarse DNS
(red line in Fig. 5b) or the one from the mean evolution obtained from the Kalman
Filter procedure (blue line in Fig. 5b). It can be observed that the Ensemble Kalman
Filter procedure allows for an improvement on the prediction of the evolution of the
heat release ratewith an overall lower error. In addition to these global statistics, Fig. 6
illustrates the evolution of the heat release rate in the observation box during the time
period shown in Fig. 5 for the fine DNS with a mesh of 5123, the coarse DNS with a
mesh of 1283 and the mean field from the Ensemble Kalman filter method, denoted
EnsKal DNS in the following. In frames (1) and (2), the morphology of the reaction
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Fig. 5: Evolution of the (left) RMSE and (right) normalized error of ÛQ from the
coarse DNS (red) and the average evolution from the Ensemble Kalman Filter (blue).
Dashed vertical lines indicate when the data from the fine DNS is assimilated.

zones are approximately the same for all simulations as they are evolving from the
same initial field (or the slightly perturbed field in the case of the Ensemble Kalman
filter). The coarse features of the reaction zones for the coarse and EnsKal DNS come
from the under-resolved DNS, which cannot capture all the detailed morphological
features of the fineDNS. In frame (3), which is after the first data-assimilation event, a
specific ignition kernel is highlighted. While both the coarse and EnsKal DNS show
that they capture that feature, its evolution in time (frame (4)) is fuller and more
quantitatively accurate in the EnsKal DNS. This indicates that the EnsKal DNS has
assimilated the correct consumption of species, in particular of CH2O, which acts as
a precursor, to predict the heat release morphology. Additionally, in frame (5), one
can observe another ignition kernel, highlighted in the blue box, whose shape has
been better captured by EnsKal DNS. From frame (5) to (6), there are major reaction
zones interaction, which roughly corresponds to the peak in error at t = 100µs in
Fig. 5b. From frame (5) to (7), one can observe the evolution of the previous reaction
zone, which has merged with neighbouring reaction zones to form a deflagrative
structure. While the merging is captured by all the simulations, the morphology of
the EnsKal DNS more accurately represents the morphology of the fine DNS. This
is thanks to the successful assimilation of the velocity field, which is an essential
physical quantity to assimilate for the propagation of the various interacting reaction
zones. In conclusion, the turbulent MILD combustion case presented highlights how
data assimilation enables space-and-time accurate prediction of both macroscopic
quantities (volumetric heat release rate, Fig. 5b) and local quantities (heat release
morphology, Fig. 6).

6 Conclusions and future directions

The butterfly effect limits the time-accurate prediction of turbulent flows, which
are chaotic flows. Tools from chaos theory and statistical learning are, thus, called
upon. The inverse of the dominant Lyapunov exponent provides an estimate of the
predictability of the flow, which is a characteristic time horizon within which the
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Fig. 6: Evolution of the isosurface of ÛQ = 1.75 · 108 [W/m3] in the observation
box during the simulation (left: fine DNS, middle: coarse DNS, right: average of the
ensemble). Red and blue boxes highlight some of the key features. Panels 1 to 8 are
respectively for t = 0, 35, 60, 80, 105, 120, 140, 155µs in Fig. 5b.



18 Luca Magri and Nguyen Anh Khoa Doan

butterfly effect makes two nearby trajectories diverge. The ensemble Kalman fil-
ter enables statistical learning of the state given predictions from a physical model
and observations from a more refined simulation or laboratory experiments. We
use Lyapunov theory and the ensemble Kalman filter on a turbulent reacting prob-
lem relevant to Moderate or Intense Low-oxygen Dilution (MILD) combustion. In
MILD combustion, it is paramount to accurately capture ignition kernels and their
evolutions towards deflagration because this interplay stabilizes the combustion pro-
cess. The occurrence and dynamics of ignition kernels is seemingly random (albeit
deterministic) due to this turbulent mixture containing high temperature spots and
recirculating radicals. So assessing the predictability of our simulations helps to
determine whether they can reliably capture such transient events, for example in
terms of the mesh size requirements. By assimilating data from a refined simulation,
the ensemble Kalman filter greatly improves the space-and-time accurate predic-
tion in an under-resolved simulation by detecting the occurrence of ignition kernels,
the stabilization of deflagrative modes and intricate changes in the flow morphol-
ogy. The physics-informed data-driven methods presented open up new possibilities
for the space-and-time accurate prediction of rare and transient events in turbulent
flows by combining an under-resolved simulation, or a reduced order model, with
data from experiments. As an example, this can be exploited to learn and calibrate
subgrid-scale models for large-eddy simulation.
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