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Systems immunology frameworks link multicellular immune 
perturbation phenotypes and setpoints to response outcomes

       
 

Matthew P. Mulè 
 Abstract

This thesis develops frameworks for using top-down systems biology approaches with
multiomic single cell technology to understand variation in human immune system
response outcomes. We integrate human population, cell subset and single cell variations 
in molecular phenotypes which give rise to baseline setpoints, are perturbed by
vaccination or drug treatment, and are linked to emergent response / clinical outcomes.
In Chapter 2, we dissect noise sources in data derived from new methods which
simultaneously measure protein and mRNA in single cells (e.g., CITE-seq). After
identifying two main sources of noise, we develop an open source software method for
normalizing and denoising CITE-seq protein data. We then develop a computational
framework for analyzing the effects of timed immune system perturbations applied to
human cohorts profiled with multimodal single cell technology. Chapter 3 applies these
methods on a human vaccination cohort profiled using CITE-seq. We first define highly 
interpretable immune cell subsets using unsupervised clustering based on the denoised
protein data, then contrast the transcriptome pathways within these subsets that are
differentially induced by vaccines formulated with and without an adjuvant. These
robust phenotypes are further interpreted using single cell computational reconstructions 
of cell states. Using these comparative analyses, along with unbiased analysis of
baseline phenotypes linked to antibody response, we identify a multicellular “naturally
adjuvanted” human immune system setpoint more poised to respond to vaccination.
Chapter 4 applies the methods developed above to a cohort of cancer patients treated
with immune checkpoint inhibitors. In this work, we identify multicellular baseline
setpoints linked to development of immune related adverse events after treatment which 
are uncoupled from the phenotypes induced by treatment. Together, these approaches
help advance a quantitative, predictive understanding of human immune system
variation, and pave the way for further human perturbation cohort studies across
biological disciplines.
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1 TOP DOWN HUMAN SYSTEMS IMMUNOLOGY 
WITH SINGLE CELL MULTIOMICS 

1.1 Introduction 
Biological systems are organized in a hierarchy of scales from molecules and cells to 

organisms and populations. Higher level biological system behaviors, such as the 

formation of immune memory, are “emergent”; the coordinated activity of molecules, 

interacting cells, and functional changes within tissues cascade into these higher level 

system behaviors. Cell and molecular biology played substantial roles in immunology 

research of the past 7 decades in confirming theories of clonal selection1, defining 

molecular mechanisms of immune memory2,3 and clarifying interconnectedness of 

innate adaptive arms of the immune system4–6. Genomic technologies of the past two 

decades have brought the complexity of these lower level immune system properties 

further into focus. Since the identification of just two specialized lymphocyte subsets 

more than 50 years ago7 we now recognize an array of specialized immune cell subsets 

with distinct protein8,9, chromatin10,11, epigenome12, transcriptional13–16 and cytokine 

circuitry. 

Integrative systems approaches applied to understand the logic of gene regulatory 

circuits and cell signaling components have long had a role in molecular biology and 

physiology17. More recently, advances in high throughput technologies have 

empowered full system scale statistical modeling with “top down” approaches. Without 

the catalogues of system components and their lower level interactions identified by 

reductionist studies, the top down approach would have no scaffold on which build a 

quantitative understanding human phenotypic variations. However, reductionist 
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approaches using model organisms have limited capacity to directly explore unbiasedly 

why identical immune system perturbations applied to the human population result in 

variations in the emergent response18. These outcome variations in the population are 

readily apparent in SARS-CoV2 infection response19, vaccination response20 and 

immune checkpoint inhibition21,22; all topics explored during this thesis work. Human 

immune systems are shaped by unique experiences–the antigen ecology encountered in 

an individual’s environment23–27, intrinsic factors including age, sex, and genetics, and 

the interaction of these variations with nonlinear and stochastic processes governing 

cellular response28. 

Top down approaches use vaccination29,30 as an ethical in vivo perturbation, or ex vivo 

stimulation of cells31 collected from human cohorts followed by quantitative modeling 

of molecular responses to develop a quantitative and predictive understanding of human 

immunology32,33. Linking molecular immune system variations to emergent response 

variations requires rigorous analytical frameworks20. In this work, we develop 

approaches to integrate immune states across biological scales to explore how 

multicellular immune system states may cascade into different emergent response 

outcomes. 

Given the complexity and multiscale nature of immune response variation, it can be 

helpful to group immune system organization into different biological layers. We next 

provide an organizing framework for conceptualizing layers of immune system 

information, review the experimental methods that profile these layers at distinct phases 

of the response, and describe the types of data created form these technologies in the 

context of human cohort studies. An overview of challenges in computational/statistical 

approaches for linking molecular and emergent responses is provided to motivate our 

adoption of new multimodal single cell sequencing technologies. We then describe 

challenges in implementing these new technologies in order to frame the tools and 

analysis frameworks developed in this thesis aimed at addressing them. Finally, we 

provide a comprehensive review of insights emerging from top down systems 

immunology studies that use this ex vivo and in vitro perturbation. From this synthesis, 

we describe the idea of immune “setpoints” which have emerged from our own work 

and other studies finding the baseline immune system state can influence molecular and 

emergent responses. We further build on these ideas in the results chapters. 
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1.2 Experimental and analytical approaches for top down human 
systems immunology 

1.2.1 Layers of immune system organization 
The composition of the human immune system exhibits marked variation34; frequency 

of cells in blood provides a high-level organizing layer of immune system composition. 

Cell frequencies have dynamic patterns; at the shortest time scales, cortisol controls 

circadian immune cell egress and tissue homing35 which makes effector T cell 

populations peak at night, while naive and memory subsets peak during the day36. 

Seasonal changes in cell frequency have been inferred from transcriptomics37 although 

high resolution measurements showed lack of seasonal effects in more finely resolved 

subpopulations38. Besides these rhythmic variations, on the scale of months, person to 

person variation was higher than within individual longitudinal variation, in general 

across 126 cell subsets in a cohort of over 60 individuals, adjusting for age, sex and 

ethnicity39. The same pattern was later observed in a geographically distinct (Belgian) 

population of 177 individuals40. More recently a study of 99 healthy adults age 50-65 

found elevated within-individual longitudinal cell frequency variation was associated 

with poor metabolic health38. Cell frequency provides just one organizing layer of 

immune system information exhibiting substantial between individual variation34. 

Below we group layers of immune system organization defined by both biological 

information and the types of data that can be collected and integrated with other layers 

in multiscale analysis. 

Layer 1: human population scalar measurements. Layer 1 data have one scalar 

measurement per individual that cannot be further deconstructed, for example, an 

individual’s age. Response quality surrogates are often be measured at this scale 

including the fold change in antibody titers following vaccination. Population variation 

in these quality measures can be modeled as a function of other layer 1 data, or any 

layer below. 

Layer 2a: population variations in immune cell frequency or number Layer 2a is 

the frequency / counts of immune cell subsets across individuals. Cell frequency data 

are distinct from layers below because they exist at a distinct cellular level of biological 

organization (as opposed to molecules). Cell enumeration is often reported as frequency 

relative to a parent population, though absolute counts can reveal lymphopenia when 
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relative lymphocyte frequencies are similar41. These data form a 2-dimensional matrix 

of cell types by individuals, often with repeated measures over time. 

Layer 2b: molecular measurements at the individual level Layer 2b has the same 

structure as layer 2a, but describes a lower biological level of organization in the form 

of molecules across individuals. There are 2 classes of layer 2b data. “Native” data are 

linked to a single biological source and can’t be further broken down, such as the 

plasma proteome. “Aggregate” data are derived from a heterogeneous background, for 

example, bulk tissue gene expression measurements–these can only be further 

deconvolved to cellular constituents computationally. 

Layer 3: Molecular phenotypes within immune cell populations. Layer 3 are 

molecular measurements like layer 2b but are further indexed within distinct immune 

cell subsets which pinpoint information masked by bulk profiling42. Layer 3 data 

include chromatin accessibility or gene expression within subsets and are often derived 

from cell sorting followed by sequencing. This data can be aggregated as a single 

matrix though there can be advantages to using a 3-dimensional data structure, where 

features are separately filtered and modeled for each cell type. 

Layer 4: Molecular phenotypes within single cells. Layer 4 data are molecular 

measurements of single cells and multiomic single cell methods43–47. The structure of 

these data includes multiple sets of features (e.g. genes and proteins) for all cells 

belonging to each individual. Importantly, multimodal protein and mRNA data can be 

re-aggregated to reconstruct the biological layers above. Findings from higher layers 

can be deconstructed with these data down to the level of single cells. Layer 4 data can 

be used to create computational reconstructions of cell states on lower dimensional 

embeddings48–50 which can also be used to interpret statistical results from higher layers 

(Fig. 1.1). 

1.2.2 Experimental technologies to capture immune response phases at 
different organizing layers 
The purpose of perturbing a complex biological system is to identify regulators and 

effectors in order to build models that can make predictions and ultimately infer the 

manipulations that elicit a desired change33,51. Systems biology studies of vaccination 

attempt to move toward the latter goal by mapping correlates of protection to other 

lower layer data using mathematical and statistical machine learning models. 
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Perturbations in these studies generally take two forms: 1. ex vivo stimulating blood 

immune cells with a pathogen or cytokine and measuring effector responses31. 2. in vivo 

vacination20. Different experimental technologies capture different phases of the 

multicellular orchestrated immune response. Cell stimulation approaches offer a 

focused look at one of the phases outlined below, whereas vaccination invokes the 

entire synergistic response process. 

Immediate response phase: The immediate phase reflects the initial cell-intrinsic 

signaling cascade in response to antigen or cytokine stimulation on the scale of minutes. 

Common stimulants include lymphocyte receptor stimulation52,53, whole antigen (heat 

killed or live pathogens), and partial antigens, including pathogen associated molecular 

patterns (PAMPs) like lipopolysaccharide (LPS). After stimulating specific pattern 

recognition receptors (PRRs), second messengers relay phosphoprotein signals which 

can be measured optimally 15-30 minutes after stimulating cells using ELISA (creating 

layer 1 data) or intracellular flow cytometry and Cy-TOF for single cell 

measurements54,55 (layer 4 data). A hallmark of the immediate response phase is the 

activation of what have been defined as “class B” transcription factors56,57. These 

mediate the “immediate” response because they are present in the cell in inactive form, 

for example CREB, HIF-1a, NF-kB, and STATs56,57. Population variations in these 

phosphosignaling relay proteins thus represent variations in cell-intrinsic signaling 

capacity to regulate the transcription the phases of the response below. 

Early response phase Activation of pre synthesized transcription factors above mediate 

transcription of early “primary response genes” (PRGs)56,57; immune responses are 

mediated by combinatorial induction of broadly active and cell type specific PRGs, 

which include other transcription factors mediating further induction of secondary 

response genes58. This middle phase can thus be broken down into several sub-phases 

controlled by “Class C” transcription factors inducing either broad (C1) or more cell 

type specific genes (C2 and C3)56. This coordination is governed by structural aspects 

of the epigenome59 which result in coregulation of response genes with lineage-specific 

transcription factors such as SPI1 in monocytes / macrophages58,60. Distinct classes of 

genes are induced within this phase lasting from hours to the early days after 

stimulation. Metabolic changes and secreted cytokines can also be profiled from this 

phase. The early response phase can be profiled with bulk or single cell gene expression 

measurement up to around 4-5 days following ex vivo stimulation or in vivo 
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vaccination. At these timescales, it can be difficult to resolve the induction of specific 

early genes from their downstream regulated targets such, as those regulated by both 

type I and type II interferons.  

Late response phase: The early response genes induce soluble or physical 

communication relays between other cells and tissues. For example, interacting cells 

from blood and lymph organize into germinal centers hours to days following 

vaccination. These cell dynamics and interactions can be profiled from blood 1 to 4 

weeks following stimulation (most relevant to vaccination studies), where expression 

changes likely reflect cellular dynamics. Serum measurements can also profile the 

circulating cytokines mediating cell-cell communication relays at this phase. 

Emergent response phase Measures of end point response quality make up the 

“emergent” response dictated by the dynamic processes in the earlier phases. For 

example, after vaccination, generation of antibody producing B cells proceeds through 

interactions including T follicular helper (tFH) cells61 memory and naive B cells, and 

other antigen presenting cells62. The functional response can be assayed weeks to 

months following vaccination through measurement of IFN-g release from cytotoxic T 

cells, or the fold change in antibody titers. 

1.2.3 Technologies and analytical frameworks to identify multicellular 
immune networks linked to outcomes 
Top down human studies aim to define molecular features which are 1. linked to 

individual “intrinsic” factors including age sex and genetics; 2. Induced by perturbation 

coherently across individuals; 3. Correlated with emergent response quality such as post 

vaccination antibody titer fold change. Population variations and longitudinal profiling 

can identify robust correlates of response outcomes in top down vaccination studies20. 

Below we refine these ideas for cohort studies on single cell multiomics and describe 

the motivation for the analysis framework developed for this thesis. 

Bottom up approaches using ordinary differential equations to model system dynamics 

usually assume prior knowledge of connections between components of a closed 

system. Top down methods instead rely on perturbation and measurement of the system 

en masse to define the impacted features and link them to population variations in 

higher level behaviors. To accomplish this, most studies reviewed in the sections below 
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utilize generalizations of multivariate generalized linear models (GLMs) including 

machine learning methods which internally depend on GLMs.  

These approaches model the deviation of each feature from the mean of sampled 

individuals as an additive combination of modeled covariates. Coefficient estimates 

from the population samples may represent a thin slice of the environmental landscapes 

which can interact with covariates to modify the level of the modeled feature63. Scaling 

these studies to thousands of diverse individuals in the future will help alleviate this 

sampling bias. The effect size or fraction variance explained by each intrinsic covariate 

can then be calculated for each feature (i.e. gene and protein). Collinearity (correlation) 

among covariates themselves (e.g. intrinsic variables) can make interpretation of their 

individual effects challenging. Two correlated variables can also relate to the feature 

being modeled in a causal structure where one variable mediates the effects of another 

on the outcome. Directed acyclic graphs and structural equation models can help 

identify and quantify these effects64–66.  

Data returned by top down technologies commonly include sequencing-based outputs 

which yield molecule counts. Dedicated statistical count models exist for bulk(layer 2 

and 3)67,68 and single cell data69. A limitation of the dedicated statistical software for 

analysis of sequencing counts is the relative lack of available methods for multi sample 

time series data with repeated measurements from each individual. For example, 

software for implementing these count models do not have available functionality to 

estimate covariance between repeated measures from the same individual with varying / 

random effects. The Limma software70 uses a single genome wide average covariance 

applied to all features, however Hoffman and colleagues71 showed how this approach 

can inflate error due to systematically under or over estimating the intra subject 

correlation for features below or above this average. The authors then extended 

multilevel linear models to RNAseq data for complex experiment designs. The 

approach uses efficiently parallelized functions for maximum likelihood estimation with 

per gene covariance, enables arbitrarily complex random effects structures using lme472, 

and integrates observation level weights accounting for mean variance count trend73. 

We adopted this method and implemented for subset level modeling (layer 3) and 

further deconvolved results using additional single cell multilevel models and 

computational reconstructions of cell state, as further detailed in the methods sections of 

chapter 3 and 4 (see fig. 1.1). 
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Top down approaches with highly multiplexed measurements are “p > n” problems74 

with more modeled features than samples, creating challenges both for building 

predictive models and type I error inflation. Several approaches exist to help limit false 

discoveries; in addition, the high modularity of biological processes75 can be leveraged 

to take advantage of this dimensionality challenge. At the individual feature level, 

Empirical Bayes methods help regularize coefficient estimates toward the genome wide 

trend76. Monte Carlo cross procedures20,39 and various machine learning methods can 

also define only the features most robustly linked to outcomes through use of 

regularizing priors77,78. Some studies set out to define a minimal set of robustly 

“differentially expressed” features passing a false discovery cutoffs. When combined in 

a meta-analysis framework, this has a proven valuable for developing clinical 

stratification tools79,80. However, in many studies outlined below, this approach is also 

used to disentangle and understand the biology of the perturbation. Eliminating all but 

the strongest of “differentially expressed” features from consideration can be limiting 

because this ignores known biology of the data generation process in favor of dissecting 

the biology of a class of genes defined by statistical properties (large effect size and 

small variance). Biological systems are highly modular75 with structured regulatory 

networks81,82 (e.g. see “early response phase” above). For this reason, computational 

approaches that attempt to 1. reconstruct gene regulatory networks directly83–85, 2. 

group genes into functional modules via data mining or mutual information86–88, or 3. 

unbiasedly construct correlation networks89,90, offer an opportunity improve 

identification of coherent and predictive biological processes induced by perturbation. 

Importantly, these approaches often identify biological processes that would not meet 

statistical cutoffs in gene-centric analysis. A related process for recovering modular 

patterns is to compress data in unsupervised fashion into lower dimensional vectors 

which capture the maximal variation across features (PCA) or in a way which 

simultaneously captures variation of an outcome variable (e.g. partial least squares). 

These compressed dimensions can then be interpreted or used to form network 

structures for further statistical or mathematical analysis such as topological data 

analysis91. 
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1.2.3.1 multi-modal single cell technologies for multiscale modeling 

Determining whether observing a gene or pathway after perturbation represents an 

intracellular transcriptome state transition vs changes to cell type composition is a major 

challenge. Some studies simply use transcriptome measurements as a proxy for cell 

frequency92 through computational deconvolution algorithms93. The recent development 

and commercialization of droplet microfluidic technologies94–96, has led to massive 

uptake of single cell RNA sequencing technology97. A second wave of technology 

improved both the scalability of scRNAseq through sample multiplexing98,99 and the 

development of multi-omic data modalities43 including simultaneous protein 

phenotyping44,45 such as CITE-seq (Cellular Indexing of Transcriptomes and Epitopes). 

In initial pilot experiments we found these techniques to be promising, however there 

was abundant noise in protein data which obscured the identification of true cell 

populations. We address this in chapter 2 through experimental deconvolution of 

protein noise sources and development of a dedicated method, dsb, for protein 

normalization100. 

Best practice computational analysis tools for clustering, integration, cell type 

identification and downstream analysis of single cell data101,102 are not well suited for 

complex human cohort experiment designs including repeated timed pre-post 

perturbation measures from individuals nested in different outcome or treatment groups. 

To address these challenges, we created computational pipelines to implement 

multilevel models within immune subsets defined by dsb normalized protein level. 

These methods created maps of highly interpretable immune cell perturbation 

phenotypes coherently induced across individuals and varying between outcome groups. 

We then further deconstructed these robust statistical results by understanding feature 

behavior along lower dimensional embeddings which position cells along a continuum 

of intermediate states48–50,103; for example combining these pseudotime methods with 

real time kinetics relative to perturbations and protein data helped identify processes 

such as differentiation obscured in aggregate data. We further interpreted results by 

leveraging population variations to create correlation networks from these multicellular 

baseline and perturbation phenotypes. Together these approaches create a framework 

for quantifying multicellular networks linked to coherent and predictive immune 

responses (Fig. 1.1). 
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Figure 1.1 Multiscale analysis for top down single cell human immunology. 
The Structure of the data shown are a theoretical top down systems immunology study 
with the same structure as the data in this thesis work. “Layer 4” single cell molecular 
data e.g. CITE-seq and CyTOF are collected to deconvolve baseline and pre vs post 
perturbation immediate (assessed by phosphoprotein level after ex vivo stimulation) and 
early / late (assessed by single cell mRNA after in vivo vaccination) timed perturbation 
response phenotypes between two or more groups with different emergent outcomes, 
e.g. antibody response at a later (d28 or d70) timepoint. At the single cell level, the 
immediate response phase is shown as phosphorylation of a STAT protein (bottom left); 
CyTOF measurement assesses phosphoprotein levels at single cell resolution in 
combination with phenotyping antibodies to pinpoint immediate signaling phenotypes. 
The early response phase is broken down into functional modules based on co-
expressed mRNA “modules” aggregating genes using prior knowledge or based on 
correlated expression. Both module expression and phosphoprotein expression assessed 
with CITE-seq and CyTOF can be aggregated to the mean activity of “layer 3” cell 
subsets based on surface protein phenotypes. A multiscale modeling approach for 
CITE-seq analysis is shown on the right where the timed perturbation phenotype of a 
gene module “M1” is modeled with a mixed effects generalized linear model 
incorporating population intrinsic variables (e.g. age and sex), the perturbation effect, 
and a varying / random effect to model variation in baseline expression across donors. 
Statistical contrasts applied to the model fit can identify perturbation phenotypes 
differing between groups after adjusting for these effects, as shown by the box plot 
distribution of “M1” across the two response groups. The identity of M1 can be further 
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understood by visualizing its expression in a computational reconstruction of single cell 
states (bottom middle). In this case expression of M1 increases with increasing values 
of component 1 on the y axis. The reconstruction can be further interpreted by 
incorporating a different data modality collected from the same cells. For example, in 
this case, a protein associated with differentiation, “Protein A”, increases along 
component 1 as well. Putting all of these results together, we can interpret “M1” as a 
dynamic differentiation process perturbed coherently by the treatment after adjusting for 
age and sex specifically in group 2 but not group 1. When we carry out this analysis on 
all cell subsets on many modules, we can use the population variations in the cohort to 
examine their correlated activities to understand circuitries of cells differing between 
groups or perturbed by treatment (bottom right). This reveals, for example, that M1 is 
correlated across individuals with a different process M2 in a different cell type.  

 

1.3 Insights from systems biology studies of human immunology 
We next highlight themes and concepts which have emerged from studies taking top 

down systems biology approaches, using ex vivo cell stimulation and in vivo 

vaccination, to study human immunology. Several challenges make comparison of these 

studies difficult. In general results are interpreted / reported nonuniformly, as expected 

for an emerging field emphasizing innovation. For example, for transcriptome analysis, 

some authors take a “differential expression” gene-centric approach instead of  

interpreting co-expressed gene modules, others use models without adjustment for 

covariates, and many profile relatively small cohorts. In addition, studies commonly 

rely on qualitative comparison of separate analysis of sub groups. This last point in 

particular is important; for example, if a perturbation induces a change in one group 

with adjusted p less than 0.05 and another group with adjusted p greater than 0.05, this 

is not equivalent specifically testing whether the difference in in fold change between 

the groups is “significant” at that same p<0.05 level104. To test the differences in 

perturbation effects between a priori defined groups, we emphasize the use of statistical 

contrasts throughout the results chapters to incorporate information across groups. Lack 

of adjustment for covariates is also important as their effects can be considerably linked 

to molecular features and obscure identification of “root” correlates of response20. With 

these caveats in mind, below we aim to integrate information gleaned from these 

studies, comment on major emerging themes and highlight areas for further study. 
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1.4 Genetics 

1.4.1.1 Genetic control of the human immune system  
During the Neolithic rise of animal domestication, zoonotic transmission expanded 

human pathogen burden leading to new diseases in population dense areas105. It would 

be expected that variants impacting the ability of immune cells to sense the landscape of 

pathogens would be critical for adaptation to the recent shifting pathogen landscape. 

Indeed, evidence exists for purifying selection against pattern recognition receptor 

loci106 that can cause immunodeficiency107,108, while balancing selection maintains 

allelic diversity at HLA class I109 and interleukin gene loci110 in geographic regions with 

high pathogen diversity. 

Studies of immune-mediated disease have also shed light on genetic control of immune 

function including single gene underpinnings of sporadic non-familial primary 

immunedeficiency111 and complex inheritance of common immune mediated 

diseases112. Within-cases GWAS have further defined how variants linked to disease 

prognosis are distinct from disease risk loci in inflammatory bowel disease113. These 

studies have defined how genetic variations can lead to diverging immune response 

behaviors depending on context. For example, an allele linked to better Crohn’s disease 

prognosis via reduced inflammation increased susceptibility to malaria in Kenyan and 

Vietnamese cohorts114. The genetic architecture of immune function can thus represent 

a two edged sword depending on interactions with an individual’s environment. Our 

findings on shared immune system setpoints prior to trigger in healthy individuals and 

lupus patients associated with beneficial or detrimental plasmablast activity 

respectively, mirror this finding115 (see Fig. 1.2 below).  

Globally, genetics tend to impact a smaller number of molecular phenotypes than other 

intrinsic variables, but with greater effect sizes66. Combinatorial flow cytometry panels 

have defined GWAS loci linked to variable immune frequency9 and genetic effects have 

been shown to have relatively larger effects on innate cell frequency116. Genetics can 

also control “layer 4” variations through association with cell to cell surface protein 

dispersion within an individual117. The genome also contributes to more fine-grained 

variations in disease traits as demonstrated by recent statistical analysis of population 

genetics data. Modern GWAS hits explain much less than predicted genetic variation, 

“missing heritability”118 later shown to be due to aggregated effects of common variants 

with less than “genome wide significant” effects119,120 enriched in non-coding 
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regions121. One study identified that while GWAS hits for complex traits (height) have 

higher individual effect sizes, common variants are massively enriched for positive 

effect sizes with low p values which contribute a majority of total heritability and are 

uniformly distributed across the genome in regulatory regions122. The authors proposed 

most expressed genes are highly connected through regulatory networks to the nearest 

“core” GWAS hit, explaining why most heritability derives from genes with less 

obvious effects122. These results implicate comprehensive mapping cell-specific gene 

regulatory architecture induced by immune perturbation as a crucial element to truly 

understand human immune variations in health and disease. 

1.4.1.2 Genetic control of immune ex vivo cell stimulation phenotypes 

The impact of genetic variation on cytokine response was assessed in more than 400 

individuals after stimulation of PBMCs using models for age sex and cell counts123. 

Cytokine qualitative trait loci (cQTL) were enriched for PRR genes and their myeloid 

specific enhancers in a context dependent manner and significantly correlated with 

more than 20 cytokine stimulation responses. These loci overlapped with regions 

undergoing positive selection124 and the same variants increased risk for infections, 

demonstrating evolution tuning immediate phase immune responses. Another report of 

197 Europeans used a similar approach to compare bacterial and fungal stimulation of 

PBMC125 to investigate genetic control of ex vivo cytokine responses. GWAS traits 

binned into functional categories (e.g. metabolic related, cancer related) identified 

infectious disease, heart disease, and immune-mediated disease enriched for cytokine 

quantitative trait loci (cQTLs). Infectious disease susceptibility loci were associated 

with lower cytokine production, while immune mediated disease were linked to higher 

cytokine production. Correlated response fold change across individuals demonstrated 

population variation in cytokine response levels were stimulation-specific rather than 

cell type specific. This suggests context specific genotype effects, rather than global 

genetic control of cytokine production. Interestingly cytokines thought to be derived 

from T helper 17 cells (TH17) which have roles in autoimmunity126 and bacterial/fungal 

response127 formed a separate, pathogen-independent correlated cluster indicating 

certain individuals have elevated TH17 response potential. 

Genetic control of interferon circuitry was also identified in a report of monocytes 

stimulated with LPS and interferon from 432 Europeans128. Expression quantitative trait 

loci (eQTL) pairs identified were linked to time-dependent downstream effects, for 
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example a variant associated with lower interferon beta receptor expression following 

2h of LPS stimulation propagated to downstream ISGs in cis at 24h. Another study of 

innate cell genome architecture stimulated dendritic cells (DCs) from African, 

Caucasian, and East Asian descended individuals with LPS, influenza and IFNb129. This 

study found 57 variants linked to all three stimulation conditions, including LPS, that 

reflected a shared induction of the interferon pathway. These results support the notion 

that evolution tolerates significant variation in interferon circuitry in health, as is the 

case in disease states130. 

In a study of transcriptional responses to CD4 T cell stimulation53 a positive correlation 

was observed between tonic CD4 T cell IFN transcripts and their levels following 48h 

of TCR stimulation with TH17 polarizing cytokines, suggesting tonic IFN response 

genes may control a positive feedback mechanism relating interferon dependent 

inflammatory cytokines. Stimulation dependent variants implicated in autoimmune 

disease risk131,132 were also linked to IL2 signalling (IL2RA). The authors hypothesized 

protective alleles localized to regulatory CD4 T cells (Treg) which echo more recent 

mouse studies of self-activated T cells found to be locally constrained via Treg 

activation through their IL2R133. Another study of mono (MZ) and dizygotic (DZ) twins 

aged 8 to 82 years measured cell frequencies, serum proteins and stimulated 8 cell 

populations with cytokines to measure the immediate response within single cells25. 

Structural equation models revealed phosphoprotein response to most cytokine 

stimulations had little evidence of heritability, yet a small number had substantial 

genetic effect sizes, a pattern seen in other comprehensive studies reviewed below66. 

pSTAT5 response to IL2 in T cells were among the most heritable responses, 

supporting a role for genetic control of immediate T cell signalling circuits that control 

the early response genes identified through transcriptomic analysis above53. 

1.4.1.3 Genetic control of timed vaccine perturbation response 

Twin studies have demonstrated no heritability in antibody response to TIV 

vaccination25. To identify more fine scale genomic regulators of influenza vaccine 

response, Franco and colleagues genotyped two cohorts of over 100 individuals and 

measured gene expression at baseline, and day 1, 3 and 7 post vaccination134. The 

authors used mixed effects models and a conditional independence test framework135 to 

infer causal (loci which modify gene which modify antibody response) SNP transcript 

pairs with changes in variance significantly explained by genotype over different 
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timepoints post vaccination. Genetic effects at multiple loci were only apparent after the 

vaccine perturbation and gene-transcript pairs with high variance were enriched for 

antigen presentation, cytotoxic T cell activity, DC maturation and membrane 

trafficking. Antigen presentation genes were most strongly coupled to humoral immune 

response and trended towards being causal though the study was underpowered to 

define these effects. Overall the study points to genetic variation in antigen presentation 

capacity apparent only after timed in vivo perturbation linked to improved vaccination 

response. 

1.5 Sex 

1.5.1.1 Sex effects on immune system function 
Sex differences in immune system function can be attributed to both increased X 

chromosome immune gene expression and hormonal control of immune signalling136. 

Androgens (testosterone) suppress immune cell activity through increasing expression 

of anti-inflammatory cytokines137. Conversely, estrogens can stimulate monocyte and 

lymphocyte activation and differentiation and can increase expression of 

proinflammatory cytokines138. Incomplete X inactivation can also play a role in 

mediating increased responses to immune cell stimulation, including (X chromosome) 

TLR7 induced interferon response in pDCs139. These may influence vaccination 

responses, as antibody titers after influenza vaccination are typically higher in women 

than men, though this varies by vaccine140. 

1.5.1.2 Sex effects on ex vivo stimulation phenotypes 
Sex effects were well characterized in a study which stimulated cells from an age, sex, 

and ethnicity balanced cohort of 1000 individuals with a host of pathogens66. Of more 

than 500 sex dependent genes, 181 were only mediated by sex only after stimulation; of 

those, 45% were sex dependent after all 6 stimulation conditions. The analysis 

framework used by the authors incorporated age, blood cell composition and technical 

variables and structural equation models. Increased CD4 T cell and reduced monocyte 

frequencies in women mediated some of the sex-dependent effects. The mediation of 

gene expression changes through monocyte frequency were consistent with cytokine 

secretion in response to pathogen stimulation in a different study, which found men had 

higher monocyte derived serum cytokine responses to most pathogens141. This study 

attempted to define roles of sex steroids by sub group analysis of women taking oral 
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contraceptives which identified lower IFN-gamma and TNF-alpha after LPS stimulation 

in the oral contraceptive group. These steroid hormone effects appear to be relevant in 

humans in vivo as outlined below.  

1.5.1.3 Sex effects in systems biology studies using vaccination 
Sex mediated transcriptional responses have also been linked to post vaccination 

antibody levels, with a role for both sex effects on B and T cell activation142. Two early 

top down studies of yellow fever vaccination responses did not adjust for intrinsic 

covariates in estimating vaccine effects on the transcriptome143,144. Klein and colleagues 

reanalyzed these data using 2 way analysis of variance to estimate effects of vaccination 

and sex136 and found 10-fold more genes passing an FDR cutoff in females compared to 

males as a function of time post vaccination, including many interferon response genes 

(ISGs). This reanalysis did not test marginal effects at certain timepoints or adjust for 

other variables (e.g. age), nonetheless, they demonstrate the importance of consideration 

of population covariates in human studies. 

A later report found roles for hormonal control of immune states in analysis of sex 

effects on influenza vaccination responses145. The authors found an interaction effect 

predictive of antibody responses between sex and the baseline expression of a module 

of genes related to lipid synthesis. Modeling antibody titer fold change as a function of 

the interaction between sex and the lipid module revealed opposite effects in males and 

females, with higher lipid module expression correlating with reduced antibody 

responses in males (log odds < 1) but increased responses (log odds > 2) in females. 

Stratifying men by testosterone level showed the interaction between testosterone level 

and the lipid module was only significant for high testosterone males; i.e. the lipid 

module did not impact antibody responses in the male lower testosterone group or 

females. These thoughtful analyses provide evidence for hormones shaping the baseline 

immune state in a sex-specific manner, explaining part of the observed sex bias in 

vaccination response. 

1.6 Age 

1.6.1.1 age - overview 
The immune system gradually converges early in life through a stereotypic 

developmental trajectory marked by gradually increasing lymphocyte fractions91 and 

substantial changes in the thymus146. Immune systems then gradually diverge. For 
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example, in a twin study, heritability of childhood immunizations were found to be 

high, but adult (influenza) vaccination had no heritability25. Evolution appears to favor 

incomplete negative thymic selection of T cell clones for self-antigens–even HIV- and 

CMV-specific clones are present in seronegative individuals147. It was hypothesized 

early life infection risk may elicit such a strong evolutionary constraint on reaching 

sexual maturity, that a more broadly reactive TCR repertoire increases survival 

probability relative to “opening holes” in the repertoire created by more strict central 

tolerance18. Incidence of autoimmunity rises with age and most genes being positively 

selected in the human population increase risk of development of autoimmune 

disease148, lending further support to stronger selection for early life protective 

immunity with consequences only later in life. 

At the cellular level, reduction in circulating Naive CD8 T cells is a universal age 

related change149,150. T cell repertoire changes are reminiscent of synaptic development, 

with gradual increases then pruning with age151,152. Age related reduction in immune 

response capacity is likely mediated in part by cell intrinsic signalling deficiencies153. In 

addition, cell-to-cell expression variation within individuals can change with age 

including low distribution of CD38 in T cell subsets, prompting speculation that more 

uniform CD38 might reflect narrower phenotypic diversity within immune subsets 

correlating with age117. Bulk gene expression profiles indicate inflammatory processes 

increase with age after adjusting for sex and cell frequencies154. Many older individuals 

develop chronic elevation of blood markers related to inflammation such as CRP, a 

process thought to involve inflammasome and NFKB activation, increasing risk of 

cardiovascular disease155. 

1.6.1.2 Age effects on ex vivo stimulation phenotypes 
With age, cytokine and transcriptional responses to cell stimulation decline156. A 

comprehensive profiling study measuring single cell phosphoprotein signaling with cy-

TOF used partial least squares (PLS) regression to identify combinations of cell 

frequencies with high covariance with later pSTAT signaling responses to cytokine 

stimulation. Three latent variables predicted stimulation response to multiple pSTAT 

signals across many cell subsets, when projected onto this “immunotype” latent space, 

younger individuals fell within a narrower distribution than older individuals indicating 

cumulative influence of environmental factors shaped diverging individual 
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immunotypes over time. Specific factors linked to age included increased memory and 

effector memory populations, CD161+ CD4+ T cells and NKT cells157. 

In a different report, PBMC cytokine responses of older individuals had globally 

reduced cytokine production to more than 20 stimulation–cytokine combinations, 

except for IL1b and IL6 in response to S. aureus and C. albicans hyphae. Circulating 

IL1B and IL-6 were also elevated in older individuals at baseline, suggesting 

amplification of a “poised” age related inflammatory circuit linked to inflammageing141. 

A study of within subject longitudinal stability in immediate phosphosignaling 

capacity158 revealed longitudinal stability of older individuals was high for 6 of 17 age 

associated cytokines but low for the remaining stimulation phenotypes. Older adults 

tended to have higher longitudinal stability than younger adults, yet had diminished 

cytokine responses for specific markers with age dependent longitudinal instability. The 

authors interpreted instability as a hallmark of a degrading cytokine response, mirroring 

later findings on longitudinal instability linked to poor cardiovascular health38. In an 

analysis of 1000 individuals’ PBMC expression responses to diverse stimuli, binning 

age in 5 levels revealed 20- to 29-year-olds had the strongest transcriptional responses 

to stimulation with influenza virus (enriched for type I interferon response genes)66. 

Surprisingly, the strongest age difference was relative to that of the 30- to 39-year-old 

group rather than the oldest individuals. Elevated inflammation seen with age may 

partially overlap with these ISGs. While these bulk-derived findings have no cellular 

resolution, intriguingly an in vivo study outlined below found similar trends. 

1.6.1.3 Age effects in systems biology studies using vaccination 

Several efforts have attempted to link age related hyporesponse to vaccination with 

molecular features in top down studies of vaccination. One report defined age related 

effects along a continuum of all possible age partitions for the cohort using a “barrier” 

approach159 which surprisingly also revealed 30-40 year olds had the lowest relative 

responses compared to young individuals in 24-h post-vaccination ISG responses. 

Another study identified a baseline bulk gene expression module enriched for apoptosis 

genes which covaried with age160; multiple predictive models suggested the module was 

a root correlate of response in the elderly. A later transcriptomic meta-analysis defined 

baseline correlates of response in older and younger individuals–the interferon and 

myeloid activation phenotype predictive of robust responses in younger individuals was 

not predictive in older individuals161 indicating age-related inflammation signals differ 
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from the innate / IFN related processes elevated in younger individuals with robust 

responses. A more recent meta-analysis across 5 vaccine seasons from Yale echoed the 

findings above; early post vaccination transcriptional response with the most significant 

meta-effects included innate activation and interferon responses in young individuals 

which were not correlated with response in older individuals162 (see Supplementary 

table 4 in162). A similar effect was seen at early timepoints in another metaanalyiss163 

which also noted cell frequency of monocytes in blood increased to the same degree in 

young and older individuals, indirectly implicating potential cell intrinsic, as opposed to 

cell-frequency driven transcriptional response effects. 

Interestingly, a study specifically looking at the effect of age on vaccination response 

found stereotypical plasmablast associated gene expression observed on day 7 occurred 

on day 2 in older individuals, and was absent in frail individuals164. This kinetic pattern 

may thus represent unfavorable processes linked to hyporesponse when seen in other 

contexts reviewed below. Another report focused on T follicular helper cells which 

control selection and survival of the germinal center B cells mediating the antibody 

response165. Circulating Tfh (cTfh) cells were found to have an interferon signature 

lacking in lymph node Tfh cellsi  HA-specific circulating cTfh cells from older 

individuals did not induce interferon transcriptional response genes that were 

upregulated in the young, and instead upregulated inflammation associated IL2 and 

TNF. Mice that could not regulate IL2 were shown to have less Tfh cells and germinal 

center B cells in the draining lymph node and spleen. This study thus directly links age 

                                                

 

 

 

 

 

 
i Circulating Tfh cells were defined in this study without using CXCR3. The circulating counterpart of 

Tfh cells were originally defined in a study correlating them with anti-HIV neutralizing antibodies374. In 

that study they were defined as PD-1+CXCR3-CXCR5+. This subset cells had different transcriptional 

signatures from the CXCR3+ subset; these differences could be an area of further study. 
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related inflammation to the cells critical for antibody generation in response to 

influenza. 

1.7 Environment 

1.7.1.1 Environmental effects on immune system responses in human populations 

A major function of the immune system is to sense the environment; antigen 

experiences accumulate to structure the full complement of lymphocyte receptors into a 

unique fingerprint of each individual. Age-related divergence in the heritability of early 

life vaccinations25, may be due to accumulated environmental exposure causing 

immune systems to diverge over time. Immune system parameters such as CD4 Treg 

circulating frequency also exhibit progressively less heritability over time25. Reduced 

cell frequency variation between cohabitating individuals also suggests adaptation to the 

unique antigen ecology of the domicile40. While antigens mediating these adaptations 

are unknown, it is increasingly appreciated that the microbiome can tune host immune 

responses166,167 and may be involved.  

CMV may be among the antigen encounters which most strongly perturbs global 

immune parameters independent of antigen specificity25. The repertoire itself appears to 

also by skewed toward CMV in seropositive individuals168,169. The downstream effects 

of CMV positivity may be associated with cancer and cardiovascular disease170,171, 

though molecular mechanisms for these effects are lacking. Additionally there is some 

evidence CMV positivity increases response capacity to unrelated antigens172. 

Finally, evidence has accumulated for decades that innate cells adapt to local 

environments. Most recently, there has been a resurgence of interest in non-specific 

protective effects of vaccination, first described in a 1959 study demonstrating BCG 

vaccination potentiates subsequent immune responses to tumor challenge173. Priming 

with various stimuli, which could conceivably differ depending on environmental 

exposure, appears to increase non-specific response capacity through increased 

hematopoiesis of myeloid progenitors and altered chromatin remodeling around 

inflammatory and myeloid specific genes174,175 in mice. Some weaker evidence suggests 

these same molecular changes may play a role in human innate cell memory as well176. 

1.7.1.2 Environment effects on ex vivo stimulation phenotypes 
The effect of CMV seropositivity on responses to non-CMV antigens is difficult to 

parse due to confounding of CMV seropositivity with age. However by binning 
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individuals into 9 age groups, it was shown that CMV positivity increased “biological 

age” in all age bins, even within 20-30 year olds. The biological age was linked to 

decreased pSTAT signaling in response to stimulation157. Cell intrinsic immediate 

signaling effects were further shown to exhibit environmental effects in the form of 

seasonality in increased TNF responses to LPS stimulation in whole blood in February 

and March177, in line with seasonal elevation of basal inflammation observed in 

transcriptomics studies37. Conflicting data from a large cohort found TNFa gene 

expression and baseline serum cytokine levels peak in summer141. The same study 

found inferred “monocyte derived” cytokines including TNFa, IL-1B and IL-6 after 

whole blood stimulation with bacterial, viral and fungal pathogens also all peaked in 

summer. BMI had a comparatively higher effect on cytokine response to pathogen 

stimulation of blood cells than sex or smoking status in this study. 

In a systematic analysis of healthy Tanzanians, rural compared to urban living was 

associated with lower inflammatory and interferon basal transcriptional phenotypes. 

This was unexplained by age, sex, or genetics, but rather was linked to metabolic 

changes driven by flavones in the rural diet rich in traditional stable cereals, vegetables 

and banana beer. The flavone rich serum of urban dwelling individuals reversed 

elevated TNF response phenotypes induced by urban serum stimulation of 

monocytes178. The microbiome likely also mediates effects on immune function through 

metabolic intermediaries. In work linking the gut microbiome to variations in post 

stimulation cytokine responses, TNFa levels were positively correlated with fungal 

stimulations with ~9% of variance explained by 20 microbiome principal 

components179. Metagenomic analysis indicated variation in TNFa and IFNg were 

related to microbial palmitoleic acid and tryptophan metabolism. 

1.7.1.3 Environment effects on molecular responses to vaccination  
To test the impact of the microbiome on influenza vaccination responses, an 

interventional study ablated the microbiome in one group of individuals with broad 

spectrum antibiotics180. After not observing response differences in an initial cohort, the 

study was repeated using subjects who were naive to flu strains in the vaccine; 

antibiotic treated individuals had reduced responses to one strain of influenza in this 

second cohort. Surprisingly typical coherent day 1 and day 7 transcriptional and cellular 

signatures were observed in both control and antibiotic treated groups, with similar 

magnitude of effects, perhaps in line with the modest response differences due to 



 

 

 

1—28 

antibiotic treatment. Antibiotic treatment increased expression of AP1 target genes 

which are linked to inflammation and vaccine hyporesponsiveness in older individuals 

24h post vaccination163. While this indicated antibiotics temporarily induce an 

inflammatory program, only secondary bile acid reduction in the treated group was 

correlated with the lower response to the single strain. The effects of CMV on 

vaccination responses have been investigated through comparison of young and old 

individuals with and without CMV seropositivity181. Circulating IFN-g levels and CD8+ 

T cell pSTAT1 and pSTAT3 responses to IL-6 were elevated in the young CMV+ 

individuals who had higher antibody responses across two cohorts than young CMV- 

individuals. The authors attempted mechanistic studies with a mouse model of shorter 

and longer term CMV latency, +/- IFN knockout which supported the idea that 

interferon effects may mediate the elevated responses in CMV+ young individuals. 

A study of the intersection between environment, immune development and vaccine 

responses defined immune developmental trajectories unified between Dutch and 

African children from Mozambique and bordering Tanzania. The populations differed 

in their rate along the developmental trajectory24, with memory lymphocyte 

accumulation slower in Dutch children but converging to the level of Tanzanians by age 

2. Children from bordering Mozambique also diverged from Tanzanians with increased 

activated HLADR+CD38+ monocytes, circulating Tfh and plasmablasts at baseline. 

Children from Mozambique also had increased malaria vaccination (RTS,S) responses 

compared to Tanzanians. The authors found and experimentally supported the notion 

that vaccination response differences were due to anemia negatively impacting B cell 

development in Tanzanians. This study demonstrates how metabolic processes can be 

mediated by socioeconomic factors influencing immune system development with 

relevance for vaccination response outcomes. 

1.8 Coherent and predictive in vivo immune phenotypes 
identified in diverse vaccination studies 

1.8.1 Molecular responses induced by timed vaccine perturbation 
The earliest pioneering systems biology study using vaccination in 2007 by Fuller and 

colleagues profiled n=5 patients before and after a Francisella tularensis vaccine and 

defined modular patterns of genes with shared kinetics182. This identified “sustained up” 

pathways elevated past 2 weeks linked to proliferation, “down early” genes from 
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decreased frequencies of lymphocytes and “up early” mapping to myeloid cells and 

inflammation. These patterns broadly recur in the subsequent studies outlined below 

which further attempted to identify coherently induced modular patterns as well as those 

predictive of response quality. Vaccination studies measuring the transcriptome which 

focused on evaluating vaccine candidates183,184 or defining minimal genes185,186 as 

opposed to dissecting human variations are not reviewed in detail below. Antibody 

titers are often the response quality metric used, though specific response quality 

metrics unique to the biology of a certain vaccines are also defined. Even for highly 

efficacious vaccines like yellow fever, antibody and T cell responses can provide a 

measure of quantitative immunogenicity–despite the near universal protective nature of 

this vaccine, correlating molecular features with immunogenicity still provides a natural 

experimental model to understand quantitative variations in human immune systems. 

1.8.2 Influenza 
A study of influenza vaccination in 92 individuals by Bucasas and colleagues187 was the 

first to adjust models for pre-existing influenza memory by defining the “titer response 

index” as the residual of a linear model adjusting for batch and baseline titer. Using 

cross validated mixed effects one way (time) ANOVA models without intrinsic 

covariate adjustment, the authors found the 24h post vaccination transcriptional 

response included IFN stimulated genes, IL6 pathway and JAK-STAT signaling genes. 

A gene signature predictive of titer response index included early IFN and antigen 

presentation genes and SPI1, a monocyte/macrophage lineage-determining transcription 

factor implicating monocyte frequency, cell intrinsic monocyte activation or both in the 

early response. Around the same time another group compared the trivalent inactivated 

vaccine (TIV) to the live attenuated influenza vaccine (LAIV)188 which induces lower 

antibody titers. This study classified “high” response rate as individuals who met the 

World Health Organization criteria for response; 22/28 individuals receiving TIV were 

“high” responders. Many of these individuals would not be defined as high responders 

in other studies which focus on quantitative response level within the cohort, a difficulty 

of cross study comparison. Just 4/28 individuals receiving LAIV were “high” 

responders. Some ISGs induced by LAIV were hypothesized to reflect responses 

tailored live virus. Expression of interferon related genes 3 days post vaccination were 

correlated with high responders across both vaccines, and a supervised machine 

learning approach aimed at feature selection189, identified a small number of genes 
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predictive of response, including day 7 signatures of activated B cells / plasmablast like 

TNFRSF17, but also day 3 expression of LST1, PYCARD, NLRP12, HSPA6, SPA6, 

LILRB2, LILRA1, LILRA3, and SIGLEC6. We investigated the enrichment of these 

signals against a compendia of databases190 which suggested they are highly expressed 

in non-classical monocytes and are predicted to be regulated by SPI1. Early ISG / 

myeloid cell activation potentially linked to antibody response by Bucasas et al. 187 may 

thus persist to day 3. Intrinsic covariates were not adjusted for in this study.   

The cohort profiled in chapters 2 and 3 were from an influenza vaccination study 

conducted at the NIH Clinical Center39. This report developed a metric to adjust for 

baseline antibody level while accounting for non-linearity between baseline titer and 

response. The adjusted maximum fold change (adjMFC) quantified relative response 

within bins defined by initial titer and represents response rate relative to individuals 

with similar baseline immunity. Coherent molecular responses were defined by 

adjusting transcriptome data for baseline expression, age, sex, batch, hidden batch 

effects191 and ethnicity. Pathways enriched within coherently elevated genes on day 1 

included PRRs, Fc-gamma Receptor-mediated phagocytosis, ISGs and NK cell 

signaling. Activated DC and monocyte subsets assessed by flow cytometry also 

increased coherently on day 1. Supervised diagonal linear discriminant analysis192 

defined predictive models and cross validation procedures defined robust correlations 

when predictive models were not achieved. ISG pathways on day 1 were robustly 

correlated with antibody titer maximum fold change, but not adjMFC. Predictive 

models could be built from both day 7 populations (B cell / antibody related genes) and 

more surprisingly, from baseline cell population frequencies described below (see 

section 1.8.8). 

A unified meta-analysis demonstrated the robustness of the early inflammatory / 

interferon signatures using cohorts recruited at Yale over 5 seasons162. These authors 

developed a correction factor for baseline titers which built upon the titer response 

index187 and adjMFC39, but does not require pre-defined bins and uses an exponential 

function to account for nonlinearity. As described above (see section 1.6.1.3) early ISG 

and innate cell modules linked to response differed between old and young, consistent 

with prior studies163. The study identified the expected day 7 plasmablast signature but 

also interestingly day 28 expression of KLRB1 (CD161) positively correlated with 

response across 5 seasons in young adults but negatively associated with response in 



 

 

 

1—31 

older individuals. Whether this represented an NK cell or T cell frequency or state is 

unknown. Another integrative analysis163 combined datasets with larger cohorts134 and 

used an artificial neural network (ANN) classifier193 to find predictive models 

irrespective of age. The ANN classifier selected a small number of predictive modules 

on 100 different trials, finding the expected day 7 B cell signatures identified in prior 

studies. Frequency of selected modules for each trial were not reported and the same 

module was selected at most ~20% of the time (Supplemental table 3 from Nakaya 

2015), however clear patterns emerged with monocyte / receptors, DC activation and 

cell cycle processes with test / training accuracy ~ 70% were selected in nearly all trials. 

Defining the cellular origins of these signatures and understanding multicellular circuits 

and dynamics between baseline, early, and late expression profiles of influenza 

vaccination response are major goals of chapter 3. 

1.8.3 Pneumococcus 
Obermoser and colleagues194 used expression of 62 gene modules they derived in a 

prior study86 to compare early and late transcriptional responses elicited by the 23 

valent unadjuvanted pneumococcal vaccine to TIV. The carbohydrate based 

pneumococcal vaccine did not induce any interferon response on day 1. Of 5 modules 

uniquely elevated by TIV, 4 captured ISG / IFN related processes and the 5th reflected 

myeloid cell activity or frequency recapitulating the major themes reviewed above. 

Further kinetic profiling showed TIV-induced ISGs were seen as early as 15h post 

vaccination. The authors sorted neutrophils, Monocytes, CD4 and CD8 T cells to 

attempt to localize the ISGs and found them preferentially up in neutrophils and 

monocytes, though notably they were also upregulated at lower magnitude in both T 

cell subsets at this early (24h) timepoint. Both vaccines induced modules related to 

inflammation and apoptosis on day 1. We further explore early apoptosis in chapter 3 in 

the context of adjuvant specific responses. Pneumococcal vaccine specific modules 

were related to inflammation, with driver genes including IL-1RN, TLR4, TLR5, TLR6, 

TLR8, CR1, MMP9 CD58, IL-8RA, CXCL1 and IL-1b. Both vaccines induced 

plasmablast frequency expansion correlating with B/plasma cell gene modules on day 7, 

with quantitatively higher day 7 fold change sustained out to day 10 in pneumococcal 

group. Carbohydrate based vaccination thus induced more inflammatory responses and 

larger total plasmablast expansion and persistence in blood compared to TIV. 
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1.8.4 Yellow Fever 
The live yellow fever vaccine induces durable antibody and T cell response lasting 

decades195. It is possible that this replication competent vaccine may induce a second 

wave of responses after replication. A study from Emory university first reported the 

pan vaccine signature TNFRSF17 with other B cell related transcriptional responses on 

day 7 as correlates of later antibody response144. A cohort from Montreal measured 

different timepoints and found the plasmablast and B cell fold change appeared most 

induced day 14, as opposed to day 7143. In another cohort meta-analysis, we found 

indeed plasmablast kinetics were vaccine specific and were delayed following yellow 

fever vaccination with peak responses on day 14196. Early (day 3) response genes 

correlated with later T cell immunity in both studies appeared to reflect diverse 

metabolic processes and potentially innate cell activation of unknown origin (e.g. day 3 

genes included activation (CD69) metabolism (ALDH3B1), complement (C1QB), and 

TLRs (TLR7, MYD88) though the cellular origins of these signals were unknown. The 

induction of a combined T helper 1/2 (TH1/TH2) profile is hallmark of YF vaccination, 

a process thought to relate to YF directly triggering multiple TLR pathways on DCs in 

mice197 and in humans198. A more recent study of YF vaccination from China had 

increased temporal resolution at early timepoints including 4h and days 1, 2, 3, 5 and 

later timepoints199. This early time resolution identified genes linked to innate cell 

ontology and cytokines downregulated at 4 hours, potentially implicating early 

extravasation into tissues. Unsupervised co-expression networks89 implicated both DCs 

and CD4 T cells in early responses, with innate cell and interferon response generally 

subsequently increasing and peaking around day 5, consistent with a second wave of 

responses to replication competent vaccines. 

1.8.5 Malaria 
The complex life cycle of plasmodium falciparum presents a challenge for current 

vaccines which lead to short lived immunity and fail to neutralize the liver stage, though 

promising candidates are on the horizon200,201. An early malaria challenge study202 

showed early induction of proteasome activation and IFNg 72h post vaccination could 

predict protection. A later challenge study compared 3 doses of RTS,S (RRR) with a 2 

dose AS01 adjuvanted formulation after priming with a circumsporozoite expressing 

adenovector (ARR)203. Coherent transcriptional responses to both vaccines were similar 

and overlapped with the authors’ prior studies of yellow fever144, but differed in 
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signatures of protection. Similarly both vaccines had comparable efficacy, but different 

correlates of protection. 

Antibody titer against circumsporozoite protein on the day of challenge corelated with 

protection for RRR. Surprisingly, RRR had an inverted pattern of antibody response 

signatures from the vaccines outlined above–plasmablast gene modules on day 1, and 

innate immunity modules related to antigen presentation, DC activation, and type I IFN 

on day 6, correlated with antibody response / challenge protection. These specific early 

plasmablast module genes were uncorrelated with plasmablast levels in serum, unlike 

the tight coupling seen after YF144 and influenza39 vaccination so may have derived 

from a different subset of activated B cells. Intriguingly in a study of VZV 

vaccination204 (reviewed below, 1.8.6) a small subset of individuals had elevated 

baseline and an order of magnitude higher day 3 post vaccination induction of an 

inositol phosphate metabolism module. These individuals had peak plasmablast 

expression at day 1, and not day 7; in this context peak plasmablast response was linked 

to lower day 28 antibody levels, as well as lower activated CD4+ T cells on day 7, 

whereas the opposite was true in the inositol phosphate low group. In the context of 

studies showing early peak plasmablast activity on day 2 in elderly patients164, together 

these results suggest early plasmablast activity but not peak activity, could reflect innate 

cell crosstalk with B cell subsets which mediates a positive feedback circuit sustaining 

IFN response genes later (d7) and associated with improved antibody response, as seen 

in RRR. However, early peak plasmablast responses may indicate a metabolic state 

coupled to hyporesponsiveness also linked to hyporesponse with age. Further studies 

may be warranted to investigate the effects of metabolic interventions targeting these 

pathways on immune responses in older individuals .  

For RRS, frequency of CSP-specific polyfunctional CD4 T cells and not antibody level 

correlated with protection; modules related to antigen presentation, DC and monocyte 

activation and TLR signaling the first day after each dose were correlated with the level 

of CD4+ T-cell responses. This study also found a strong negative association between 

NK cell module activity on day 56 (28 days following boost); similar modules are 

coherently downregulated by both MF59 adjuvanted and unadjuvanted influenza 

vaccines but are not linked to antibody responses205. NK cell frequencies are variable 

and unstable at the population level20,34, and as suggested by the authors, it is unknown 

if the negative association after malaria vaccination represents reduced NK cell 
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frequency due to enhanced NK activity in tissue206, or negative regulation antibody 

responses207 implicated by animal models. 

1.8.6 VZV 
The DNA virus Varicella Zoster (VZV) can reactivate to cause Herpes Zoster 

(shingles), a process thought to be linked to declining cellular immunity with age208 

Declining frequency of VZV specific T cells208 and not antibody levels, are linked to 

reactivation. IFN producing VZV specific T cells are therefore utilized as a correlate of 

protection. The relevance of these circulating cells was demonstrated with a procedure 

involving subdermal injection of VZV antigens followed by punch biopsy209. VZV-

specific CD4 T cells elevated in blood early after vaccination, but not tissue resident 

memory cells (TRM), were thought to be the origin of vaccine-responsive CD4 cells 

recovered from the biopsy based on their migratory gene expression signatures. The 

importance of circulating CD4 T cells in VZV responses was emphasized by a report 

which used supervised clustering of VZV specific IFN producing T cell kinetics pre and 

post vaccination over one month210. The authors found CD4 T cell attrition on day 28 

from the peak at day 8 or 14 was critical for determining the increase in antigen specific 

T cells post vaccination. Monocyte activation genes day 1 post vaccination influenced 

expansion and subsequent persistence of effector T cells in a model of CD4 contraction 

kinetics. Sorted activated CD4 cells also demonstrated cell intrinsic cell cycle and 

proliferation transcriptome signatures which predicted T cell persistence in age adjusted 

linear models, indicating cell cycle checkpoints establish the extent of attrition of the 

predictive effector T cell populations. 

Interestingly, a module positively linked to peak responses and negatively linked to 

contraction within CD4 T cells, was SREBF1 target genes (though this was not 

specifically commented on, see Fig 7A Qi et al.210) which are involved in fatty acid and 

carbohydrate metabolism. A later study of VZV vaccination used a multi-omic network 

integration model of bulk transcriptomics, metabolomics, cytokines and cell populations 

in response to VZV vaccination204. In this study, a multivariate model adjusting for sex, 

age, study site, and baseline VZV IgG, found SREBF1 activity positively associated 

with T cell responses at day 3 and antibody responses at day 7. Multiomic network 

analysis found the SREBF1 module was a major hub integrating intracellular programs 

and extracellular cytokine and metabolic signals across timepoints. These two studies 

demonstrate the benefit of directly profiling transcriptomes within sorted cells, since 
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SREBF1 signal could be pinpointed at least in part to the CD4 cells which were 

themselves the effectors of response quality. 

1.8.7 Adjuvants 
Adjuvants overcome hyporesponsiveness seen in the elderly and enhance responses 

through diverse mechanisms thought to occur at the axis of innate cell-lymphocyte 

information transfer211. MF59 (alum based) and AS03 (oil in emulsion, studied in 

chapter 3) are known to broaden the antibody repertoire212 such that individuals make 

antibody to drift variants or even different strains of virus not included in the 

vaccine213,214. Based on these observations it was suggested these formulations may act 

directly on naive B cells213 through an unknown mechanism. Previous molecular study 

of oil in emulsion adjuvants implicate their local action, which may involve ER stress215 

and IL2 producing CD4 T cells216, early innate cell activation, and interferon 

responses217,218. Oil in emulsion adjuvants can also homogenize population variation in 

transcriptional responses205 by inducing more uniformly strong responses; the degree to 

which different formulations have this property may be adjuvant dependent219. In a 

study of MF59 adjuvanted TIV, day 1 IFN and DC activation bulk transcriptome 

signatures were positively correlated with later antibody titers but interestingly were 

negatively corelated by day 3205. We further review and explore differences in 

adjuvanted vs unadjuvanted vaccines in chapter 3. 

1.8.8 Baseline states predictive of functional response 
Together, the studies above demonstrate how intrinsic variations and environmental 

factors can tune the molecular and cellular profile comprising the baseline immune 

system status. Pre-existing immunity measured through antibody titer forms another 

aspect of the baseline immune state emphasized above in the context of endpoint metric 

adjustment. Other latent factors likely contribute to baseline immune states unaccounted 

for by adjusting for baseline titer. An illustrative example from a study of an HIV 

vaccine candidate identified a distinct effect of pre-existing immunity on molecular 

responses220. Baseline transcriptomic modules linked to the outcome variable, cytotoxic 

CD8 responses, consisted of inflammatory cytokines, myeloid cell activation markers 

and ISGs. Surprisingly, baseline memory response to the adenovirus vector used in the 

vaccine was correlated with complete attenuation of early myeloid cell and interferon 

activation. 
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Despite these and other challenges accumulating evidence suggests a positive 

association between baseline interferon and potentially myeloid cell programs as well as 

B cell populations and later antibody responses to influenza vaccines. In the NIH 

vaccination study described above39 transcriptional signals related to nucleotide 

metabolism, TREM1 signaling, Fc-gamma receptor signaling, PRR genes and ISGs 

were all robustly corelated with antibody response. In addition, several lymphocyte and 

innate subsets passed the strict criteria for being predictive of antibody response. 

Longitudinal analysis identified the predictive populations that were stable over time 

within individuals which potentially made them more indicative of a homeostatic 

immune “setpoint”. Stable populations included CD161+ IL22 expressing T cells which 

were positively correlated with baseline PRRs TREM1 signaling ISGs gene. Population 

variation in basal ISGs with CD161+ cells producing TH-17 associated cytokines (IL-

22) are interesting in light of the potential IFN related TH17 circuit implicated in the 

Immvar study of CD4 stimulation phenotypes53. The results implicate population 

variations in the interplay between interferon levels, lymphocytes with an inflammatory 

profile and innate cells which have been implicated in prior studies221,222 and may 

induce mixed T helper lineages seen after yellow fever vaccination. These topics 

warrant further study.  

Baseline CD38+ transitional B cell populations (independent of antigen specificity) 

were also predictive of antibody response39, a finding later replicated in a yellow fever 

vaccination cohort223. In addition, Sobolev et al. found transitional B cell populations 

positively associated with adverse reactions to more potent adjuvanted vaccines159. Are 

these transitional B cell populations sentinels of a more globally responsive / reactive 

immune “setpoint” given their baseline link to these outcome phenotypes? We 

addressed this question in our work describing a shared immune setpoint between 

healthy individuals vaccination responses and SLE patients plasmablast associated 

flares115. In this work, we further investigated the biology of the predictive baseline B 

cell populations using baseline CITE-seq data from high and low influenza vaccine 

responders. First, by developing a bulk transcriptional surrogate of the predictive stable 

B cell populations using only <800 longitudinally stable genes, a ten gene signature 

(TGsig) predictive of antibody response across multiple influenza and yellow fever 

cohorts was defined. We then investigated whether this baseline signature linked to 

more robust B cell responses to vaccination could be linked to a molecular phenotype in 

B cell driven autoimmune disease. The level of TGsig at disease free timepoints was 
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correlated with elevated plasmablast activity during flares in a subset of SLE patients 

with B cell molecular profiles. We then utilized the denoising method described in 

chapter 2 on baseline CITE-seq data to define protein based immune subsets in high and 

low responders to pinpoint the TGsig genes. This analysis revealed a potential circuit 

driven by IFN hypothesized to derive from more activated pDCs driving paracrine 

activation of B cells through CD40-CD40L levels in T helper cells (Fig. 1.2). 

 

Figure 1.2 Inferred circuitries of a shared baseline immune setpoint.  
Figure adapted from Fig.6b from Kotliarov et al. (2020). Model describing the 
molecular/cellular underpinnings and differences between high versus low responders. 
Activation of this entire circuit (including the components in the plasmablast/plasma 
cell box on the right) typically follows infection, vaccination, or occurs during 
autoimmune disease flares. Here we propose that the high responders tend to have more 
activated pDCs and thus more Type I IFNs and activated B and T cells at baseline, but 
only upon additional antigenic and/or inflammatory co-stimulation (and flare trigger in 
the case of SLE patients) does the system mount a full-blown plasmablast/plasma cell 
response cumulating in the generation of antibodies. Open questions include: 1) What 
sets the system into such temporally stable ‘activated’ states in pDCs, lymphocytes, and 
other myeloid cells? 2) What constrains the activated immune baselines from mounting 
full-blown plasmablast/plasma cell responses? 3) What is the antigen specificity 
repertoire of the activated lymphocytes at baseline? 

 

How much might this setpoint generalize to other vaccines? While an early comparative 

study found baseline expression of monocyte modules negatively correlated response to 

influenza vaccination163, the authors described challenges of batch effects but attempted 
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integration of data across all studies. Later, a meta-analysis strategy224 used by the 

Human Immunology Project Consortium161 used the adjMFC metric described above 

and implemented study level random effects on non-normalized data to borrow 

information across cohorts and improve generalzability224. This revealed baseline 

expression BCR signaling (M54), platelet activation (III) (M42) and inflammatory 

response (M33) were positively correlated with baseline adjusted antibody response in 

young individuals with FDR < 0.11, even after adjusting for cell frequencies in the 

validation cohort (the transcriptome and cell frequencies were measured in ref.39 used 

for validation). These modules were not predictive of response in older individuals, 

indicating “inflammageing” signatures may be distinct from the inflammatory 

activation positively linked with response in the young. Subsequent analysis attempted 

to identify generalized baseline signatures across different vaccines. Class imbalance 

made universal prediction challenging, however unsupervised and supervised analysis 

honed in on innate cell inflammatory activation which we pinpointed to monocytes225. 

Related to baseline states predictive of antibody response and the divergence of 

signatures with age, a “bioage” signature reflecting finer shades of age related 

inflammation was negatively associated HBV vaccine response independent of sex and 

other clinical covariates223. The bioage score reflected decreased B cell signaling and 

increased inflammatory signaling (C1, MYD88, IRF7) at baseline. A later study226 also 

found certain inflammatory regulators TNF and IL-9 at baseline negatively associated 

with HBV primary antibody responses, however baseline expression of CD14, LYN, 

IFITM3 (implicating activated monocytes) was associated with increased HBV 

antibody response. Furthermore post vaccination, these IFN induced states were 

elevated, suggesting monocyte ISGs may have been primed then elevated further by 

vaccination, possibly in younger individuals, with inflammation driven by TNF 

signaling reducing response in the elderly. 

1.9 Concluding remarks 
The studies reviewed above indicate molecular signatures related to intrinsic factors, 

coherent perturbations, and baseline states linked with response can be identified with 

top down systems biology approaches. The aim of these systems biology studies is to 

identify the precise molecular perturbations within cells that are linked to responses. A 

key limitation of the studies above is the limited resolution of bulk profiling which they 

all utilize. We extend multimodal single cell methods to a top down systems biology 
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study of vaccination to address this challenge. On the methodological front, a key 

advance includes identifying how noise in CITE-seq protein data is distinct from the 

type of noise observed in single cell mRNA data. We describe comprehensive 

deconvolution of these noise sources and our dedicated software method, “dsb”, in 

chapter 2. A second advance is development of a multiscale analysis framework for 

timed perturbation systems biology studies. We packaged multilevel modeling and 

various downstream functionality into another R package that can accommodate 

complex cohort single cell nested experiment designs227. This framework enables the 

identification of multicellular immune networks consisting of coupled transcriptional 

modules within cell types defined by (denoised) protein levels. In chapter 3 and 4 we 

use dsb and this software framework to help understand multicellular perturbation 

phenotypes induced by vaccination and immunotherapy, extend the concept of immune 

setpoints and understand their functional relevance. Unresolved questions which could 

not be answered without these approaches include 1. What are all unbiased states linked 

to perturbation responses within protein defined subsets? 2. What are the cellular 

origins of past signatures bulk expression at the gene level module level and single cell 

level? 3.What are the post vaccination kinetics of baseline states linked to the response 

and are those same cells perturbed by vaccination? Finally, by extending this 

framework to the setting of cancer immunotherapy, we ask whether setpoints and 

response phenotypes can be identified and linked to other clinical outcomes, such as 

adverse events.  
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2 NORMALIZING AND DENOISING PROTEIN 
EXPRESSION DATA FROM DROPLET-BASED 
SINGLE CELL PROFILING 

This work was published in Nature Communications as:  

Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein 

expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 

(2022). 

https://www.nature.com/articles/s41467-022-29356-8  

DOI: 10.1038/s41467-022-29356-8 

The figures referenced as “Supplementary Fig” refer to the figures shown in the 

Appendix. The appendix of this thesis is the ‘supplementary note” for the article above 

as referenced in the chapter below as “appendix”. The appendix can also be found here.  

2.1 Abstract 
Multimodal single-cell profiling methods that measure protein expression with oligo-

conjugated antibodies hold promise for comprehensive dissection of cellular 

heterogeneity, yet the resulting protein counts have substantial technical noise that can 

mask biological variations. Here we integrate experiments and computational analyses 

to reveal two major noise sources and develop a method called “dsb” (denoised and 

scaled by background) to normalize and denoise droplet-based protein expression data. 

We discover that protein-specific noise originates from unbound antibodies 

encapsulated during droplet generation; this noise can thus be accurately estimated and 
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corrected by utilizing protein levels in empty droplets. We also find that isotype control 

antibodies and the background protein population average in each cell exhibit 

significant correlations across single cells, we thus use their shared variance to correct 

for cell-to-cell technical noise in each cell. We validate these findings by analyzing the 

performance of dsb in eight independent datasets spanning multiple technologies, 

including CITE-seq, ASAP-seq, and TEA-seq. Compared to existing normalization 

methods, our approach improves downstream analyses by better unmasking biologically 

meaningful cell populations. Our method is available as an open-source R package that 

interfaces easily with existing single cell software platforms such as Seurat, 

Bioconductor, and Scanpy and can be accessed at "dsb [https://cran.r-

project.org/package=dsb]".  

2.2 Introduction 
Recent developments in multimodal single cell analysis involve using DNA barcoded 

antibodies to simultaneously profile surface proteins together with the transcriptome 

(e.g., CITE-seq) and/or chromatin accessibility (e.g., ASAP-seq) in single cells44–47. 

This greatly enhances our ability to discover, define, and interpret cell types and states, 

particularly those comprising the immune system given extensive existing knowledge 

connecting surface protein profiles to immune cell subsets and functions9. Droplet-

based sequencing of single cells stained with DNA-barcoded antibodies provides a 

readout of protein levels in the form of antibody-derived tag (ADT) counts for each 

protein. This “cytometry via sequencing” approach bypasses spectral interference 

inherent in fluorescence-based cytometry methods, thus enabling simultaneous profiling 

of hundreds of proteins in single cells. While low-level normalization and modeling 

approaches for single cell RNA-seq data have received considerable attention228–234, 

those for protein/ADT are in their infancy and more importantly, the extent and sources 

of noise have not been quantitatively analyzed despite the substantial levels of apparent 

noise reported in raw protein counts44.  

Stochastic processes during single cell mRNA capture and sequencing contribute to 

sampling noise235,236 and other technical variations leading to reduced UMI counts, 

including zero counts for genes despite actual mRNA expression in a given cell. Such 

noise can be modeled with statistical distributions237–239 or normalized, for example, by 

standardizing the total number of mRNA reads between cells commonly performed via 

scaling factors computed from each cell’s total mRNA “library size”240 (defined herein 



 

 

 

2—42 

as the total UMI count for a given assay/data modality in each cell). However, these 

methods are not appropriate for surface protein count data for several reasons. First, a 

major noise component of ADT data appears to be added background noise because 

cells tend to have positive counts for multiple classes of proteins that are reported to be 

mutually exclusively expressed in distinct cell subsets. For example, compared to sparse 

mRNA counts, only two 0 values are present across more than 11,000 cord blood cells 

stained with 13 surface proteins in the original report of the CITE-seq method44. 

Second, current methods/experiments still measure only a small fraction of unique 

proteins with a wide range of antigen density on different cell types, resulting in 

individual protein counts in single cells spanning ~2-3 orders of magnitude (e.g., less 

than 10 to more than 1000); differences in total protein counts between cells therefore 

depend on the specific antibody panel used. Finally, the total protein counts detected on 

a given cell may reflect both technical but also biological variations such as cell size 

across cells and cell types, especially given the dependence of the total ADT counts on 

the specific antibody panel used.   

The original developers of CITE-seq normalized ADT data by using a centered log ratio 

transformation (CLR). The resulting values can be interpreted as either a natural log 

ratio of the count for a given protein relative to the other proteins in the cell (CLR 

"across proteins", as implemented in the original report of CITE-seq44) or relative to 

other cells (CLR "across cells", a modification used in later work by the authors98, 

which renders CLR less dependent on the composition of the antibody panel). The CLR 

transformation helps to better separate cell populations, but it does not directly estimate 

and correct for specific sources of technical noise including the apparent background 

noise mentioned earlier. The authors accounted for protein-specific noise in human cells 

by spiking in mouse cells to set a per-protein cutoff for determining whether a CLR 

transformed (across-protein) expression value was above that in mouse cells44. This 

approach appears not adopted beyond its original use, likely because it entails more 

complex experiments and analyses. More recent reports applied other approaches, for 

example, fitting models to estimate background and foreground distributions for each 

protein without using spike-in control cells241,242, or using isotype antibody controls to 

estimate background47,243. It is unclear the extent to which these approaches remove 

noise versus biologically relevant signals since the noise sources remain unidentified; 

some proteins also have multimodal distributions across cells, while isotype controls are 

not typically used in flow cytometry for quantitative thresholding244 since their level can 
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reflect both biological and technical variations. Thus, determining the major sources of 

noise and developing dedicated methods to account for them are major unmet needs 

given the swift adoption and proliferation of multimodal single cell profiling methods 

involving the measurement of protein expression with DNA barcoded antibodies.  

 Here we perform experiments and computational analyses to reveal two major 

components of protein expression noise in droplet-based single cell experiments: 1) 

protein-specific noise originating from ambient, unbound antibody encapsulated in 

droplets that can be accurately estimated via the level of “ambient” ADT counts in 

empty droplets, and 2) droplet/cell specific noise revealed via the shared variance 

component associated with isotype antibody controls and background protein counts in 

each cell. We develop an R software package, “dsb" (denoised and scaled by 

background), the first dedicated low-level normalization method developed for protein 

ADT data, to correct for both of these noise sources without experimental 

modifications. Our application of this approach to our own and several external data 

sets spanning multiple technologies and assay types demonstrates the generalizability of 

dsb to enhance downstream analysis, including manual and unsupervised protein-based 

and multimodal (joint protein-mRNA) identification of cell populations and states. 

 

2.3 Results 

2.4 Analysis of unstained cells reveals ambient antibody capture 
as a major source of protein-specific noise 
To assess protein count noise, we first utilized our previously reported dataset 

measuring more than 50,000 Peripheral Mononuclear Cells (PBMCs) from 20 healthy 

human donors115 stained with an 87 CITE-seq antibody panel (including four isotype 

controls; Totalseq-A reagents, Biolegend). Consistent with the original CITE-seq 

report44, we noticed non-zero counts for most proteins in each cell, resulting in positive 

counts even of markers not expected to be expressed in certain cell types. We also 

noticed non-zero, “ambient” protein counts in tens of thousands of empty droplets 

containing capture beads without cells, which emerge naturally due to Poisson 

distributed cell loading, reminiscent of cell-free RNA observed in droplet-based single 

cell RNAseq245–247. We reasoned that background noise in CITE-seq data may partly 

reflect such unbound, ambient antibodies captured in droplets. To assess whether counts 
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in empty droplets indeed reflect the ambient component in cell-containing droplets, we 

compared background protein levels in cell-free droplets with droplets capturing 

unstained control cells spiked into the cell mixture after cell staining and washing but 

prior to droplet generation (Fig. 2.1a). We found positive protein counts even for 

unstained control cells, and that the average log transformed level per protein in empty 

droplets and unstained control cells were highly correlated (Fig. 2.1b). A similarly 

strong correlation was observed between the average protein counts in subpopulations 

of stained cells “negative” for a given protein and those in empty droplets 

(Supplementary Figs. 1a-c; negative cells correspond to those in the fraction with lower 

expression of the protein–see Methods), further suggesting that the noise component 

correlated across cells is dominated by ambient antibody capture. Thus, protein counts 

in empty droplets, which are available in all single cell droplet experiments, provide a 

direct estimate of the ambient background due to free antibody capture for each protein. 

Consistent with our findings on ambient antibody capture as the major source of 

background noise in CITE-seq data, a recent study reporting CITE-seq antibody 

titration experiments across a wide concentration range demonstrated that background 

noise increased with the antibody staining concentration, with some antibodies at or 

above 2.5µg/mL having even more cumulative UMIs in the empty droplets compared to 

cells248. Our observation thus motivated the first step of our method to remove protein-

specific technical noise: transforming counts of each protein in cell-containing droplets 

by subtracting the mean and dividing by the standard deviation of that same protein 

across empty droplets (see Methods). The resulting transformed protein expression 

values for each cell reflect the number of standard deviations above the expected 

ambient capture noise, thus centering the negative cell population for each protein 

around zero to help improve interpretability of the resulting protein expression values 

(Fig 2.1c).  
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Figure 2.1 Antibody derived protein UMI count data noise source assessment. 

a.  1-2: Experimental setup and potential noise sources in CITE-seq data. 3: protein-
specific noise: if ambient antibody encapsulated in droplets constitutes a major source 
of protein-specific noise, values should be highly correlated with those in unstained 
control cells (top); if control cells contain information on noise not captured by empty 
drops, the correlation should be weak. 4: Cell-specific noise evaluated through the 
correlation between the background protein population mean and isotype controls 
across single cells. Created with BioRender.com. b. Average protein log10(count+1) of 
unstained control cells spiked into the stained cell pool prior to droplet generation (y-
axis) versus that of droplets without a cell (x-axis). Pearson correlation coefficient and p 
value (two sided) are shown. c. Density histograms of protein expression of lineage-
defining proteins within major subsets in stained cells (black) and unstained controls 
(red) normalized together using dsb step I (ambient correction and rescaling based on 
levels in empty droplets). d. A two-component Gaussian mixture model was fitted to 
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the protein counts within each single cell; the distributions of the component means 
from all single cell fits (blue=”negative” population; red=”positive” population) are 
shown, protein distributions from a randomly-selected cell shown in the inset. e. 
Comparison of Gaussian mixture models fit with between k = 1 and k = 6 
subpopulations to dsb normalized protein values for n = 28,229 cells from batch 1 after 
dsb step I (ambient correction) but prior to step II, vs the model fit Bayesian 
Information Criteria (BIC, using mclust R package definition of BIC where larger 
values correspond to a better fit) from the resulting 169,374 models. Boxplots show the 
median with hinges at the 25th and 75th percentile, whiskers extend plus or minus 1.5 
times the inter quartile range. k=2 component Gaussian mixtures have the best fit in 
more than 80% of cells (orange, right inset bar plot). f. Pearson correlation coefficients 
among isotype controls and background component mean inferred by Gaussian mixture 
model (µ1 fitted per cell as in d); all corresponding p values (two sided) are less than 
2e-16.  g. Scatter density plot between µ1, the mean of each cell’s negative 
subpopulation from the per-cell Gaussian mixture model (blue in Fig. 2.1c) versus the 
mean of the four isotype controls across single cells. Pearson correlation coefficient is 
shown (two-sided p value < 2e-16).  h. The distribution of the dsb technical component 
as calculated using a 2 component (x-axis) vs. 3 component (y-axis) mixture model to 
define the µ1 parameter, Pearson correlation coefficient, p value (two sided) < 2e-16.   

 

2.5 Shared variance between isotype controls and background 
protein counts in single cells provide cell-intrinsic normalization 
factors 
 

In addition to ambient noise correlated across single cells as captured by average 

readouts from empty droplets, cell/droplet-intrinsic technical factors including but not 

limited to oligo tag capture, cell lysis, reverse transcriptase efficiency, sequencing depth 

and non-specific antibody binding, can contribute to cell-to-cell variations in protein 

counts that should ideally be normalized across single cells. Given that the differences 

in total protein UMI counts between individual cells could reflect biologically relevant 

variations such as those due to the physical size of naïve vs. activated lymphocytes, 

library size normalization (dividing each cell by the total library size) could remove 

biological rather than technical cell to cell variations. In addition, since current CITE-

seq antibody panels are a small subset of total surface proteins, the assumption that total 

UMI counts should be similar among cells may not be valid. Here we integrated two 

types of independently derived measures to reveal a more conservative (i.e., avoiding 

over-correction and removal of biological information), robust estimate of the factor 

associated with cell-intrinsic technical noise (Fig. 2.1a).  
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First, the four isotype control antibodies with non-human antigen specificities in our 

panel could in principle help capture contributions from non-specific binding and other 

technical factors discussed above. The counts of the isotype controls were only weakly 

(but significantly) correlated with each other across cells (Fig. 2.1f), and interestingly, 

the correlation between the mean of four isotype controls and the protein library size 

(which has both biological and technical components) across single cells was even 

higher (Pearson correlation 0.45) than that between the protein library size and the 

individual isotype controls (average Pearson correlation 0.25). This suggests that while 

each isotype control may be individually noisy, and their levels may still partially 

reflect biological contributions, collectively their shared component of variation (i.e., as 

reflected by their average) may better capture technical noise in the experiment. Second, 

to further boost the robustness of estimating cell-intrinsic technical noise, particularly 

given that the number of isotype controls available in practice can be limited, we sought 

an additional estimate of droplet-intrinsic technical variation. Since each cell in a 

sample of multiple distinct cell types (e.g., PBMCs) is expected to express only a subset 

of protein markers in staining panels, we reasoned that the distribution of each cell’s 

non-staining proteins (e.g., those specifically expressed in other cell types/lineages) 

could be differentiated from the cell’s “positively expressed” proteins by fitting a 2-

component mixture model to each cell. If so, the average counts in the population of 

non-staining/negative proteins could reflect and therefore serve as another readout of 

the cell’s technical component that could then be integrated with the cell-intrinsic noise 

captured by isotype controls. To assess this hypothesis, we applied a Gaussian mixture 

model with two (k=2) subpopulations to fit the protein counts within each single cell 

after correcting for the protein-specific ambient noise we identified above (see below 

and Methods; Fig. 2.1d). We found clear separation between the background (with 

mean=µ1) and positive (mean=µ2) protein population with substantial cell-to-cell 

heterogeneity of subpopulation means (Fig. 2.1d). We next assessed the robustness of 

using a 2-component mixture to model the protein counts of individual cells by 

comparing k=1 to 6 component models assessed using the Bayesian Information 

Criterion (BIC). While two-component models had the best fit in a majority (81%) of 

cells, indicating a bimodal protein distribution within single cells, k=3 models had the 

best fit in nearly all remaining cells (Fig. 2.1e, Supplementary Figs. 2a-b; see also 

Supplementary Note). The BIC for these cells were very similar to the corresponding 

k=2 models (Supplementary Fig. 2c), indicating that the 2-component fits were 
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identifying very similar positive and negative populations. Importantly, for the minority 

of cells with optimal k=3 or 4 models, the resulting mean of the lowest expression 

population (µ1 estimate) was highly concordant when the same cells were fit with a k=2 

model (Supplementary Figs. 2d-f). These data suggest that a 2-component Gaussian 

mixture fit of the protein population within single cells can robustly delineate the 

negative background protein count population for most cells.  

Together µ1 and the isotype controls provide estimates of technical noise within each 

single cell. However, each variable may be individually noisy; we thus assessed 

information sharing among these variables. The correlations between µ1 and each 

individual isotype control (average correlation r = 0.33) or the average of all four 

isotype controls (r=0.59) were higher than those between the isotype control themselves 

(average correlation r = 0.11), suggesting that the shared variation (i.e., average) 

between the independently inferred µ1 and isotype controls captured unobserved, latent 

factors contributing to technical noise (Figs. 2.1f-g). We thus reasoned that the first 

principal component score (λ) capturing the shared variation of µ1 and the isotype 

controls across single cells would be a robust measure of technical noise intrinsic to 

individual cells.  λ was associated with the protein library size across single cells within 

cell clusters (Supplementary Fig. 3a clusters defined after dsb steps I and II, see 

Methods), supporting the notion that λ captures the technical component of the protein 

library size. Furthermore, consistent with the observation above regarding the Gaussian 

mixture model fit, λ was highly concordant regardless of whether the background (µ1 

estimate) was defined using a k=2 or k=3-component Gaussian mixture (Fig. 2.1h).  

Given the information sharing between µ1 and isotype controls, we recommend the 

inclusion of multiple isotype controls in CITE-seq experiments to serve as anchors for 

robust inference of technical normalization factors (see Supplementary Note). Together, 

our data indicate that while the signal from individual measures such as isotype controls 

can be noisy and may reflect multiple yet often unknown sources of variation, their 

correlated component of variation can serve as a robust normalization factor for surface 

protein expression in single cells. Thus, in a second, optional but recommended step, 

our method computes λ for each cell as its “technical component”, which is then 

regressed out of the ambient noise corrected protein values (Fig. 2.1c) generated by step 

1 above (see Methods). The underlying modeling assumptions of the dsb technical 

component also held well in seven independent datasets generated via different assay 
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platforms and protein panels of diverse sizes (from 17 to more than 200 proteins; see 

below).  

2.6 Comparison with other transformations and assessing dsb in 
independent datasets generated by different technology platforms 
The unstained spike-in cells above should reflect the level of protein specific, “ground-

truth” noise, we thus used these cells to visually compare dsb with other normalization 

transformations (Supplementary Fig 3e; see Methods). Unstained cells normalized using 

dsb centered around zero, while CLR or log transformation placed these cells at 

arbitrary locations. For example, CD4 has a trimodal distribution due to absence of 

expression in populations such as B lymphocytes, low expression in CD14+ monocytes 

and high expression in helper T cells; dsb normalized values centered the background 

population together with unstained control cells at zero and delineated low-level CD4 

staining on monocytes. In contrast, these monocytes are closer to and partially 

overlapped with the unstained population when CLR or log normalization were used 

(Supplementary Fig 3e). We further compared dsb to CLR (the version that normalizes 

across cells) since CLR is the most commonly applied transformation for ADT data to 

date and normalization across cells should depend less on the protein staining panel 

than CLR across proteins. Using k-medoids clustering of single cells based on protein 

expression data only, the Gap-Statistic249, which reflects improvement in within-cluster 

coherence relative to that expected of random data drawn from a reference distribution, 

was consistently higher using dsb than CLR across different values of k. However, the 

trend as a function of k was similar between dsb and CLR, suggesting that the 

improvement could be partly due to scaling differences between these two 

transformations (Supplementary Fig. 3f). Finally, differential expression analysis 

comparing major immune cell populations with the rest of the cells revealed that key 

lineage and cell-type specific proteins (e.g., CD56 on NK cells) tended to have larger 

fold changes when using dsb normalized protein values compared to CLR 

(Supplementary Fig. 3g).  

We next tested the general applicability of dsb by using several independent, publicly 

available CITE-seq datasets. We first assessed whether the modeling assumptions 

developed using our own CITE-seq data would generalize to four other CITE-seq 

datasets that profiled ~5,000 to 10,000 cells using 14–29 surface phenotyping proteins 

and 3 isotype controls, and were generated using different versions of the 10X 
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Genomics droplet profiling kit than the one we used. Similar to our dataset, we detected 

a large number of empty droplets containing antibody reads (>50,000) inferred by the 

EmptyDrops245 algorithm used in the Cell Ranger barcode rank algorithm; the number 

of cell-containing droplets estimated by Cell Ranger and further filtered by quality 

control metrics (3,000-8,000 droplets) was also consistent with the number of loaded 

cells (Fig. 2.2a, Supplementary Figs. 4a,h,o). Thus, protein-specific ambient noise can 

be estimated as in our data set using these empty droplets. Applying dsb without any 

modification resulted in biologically interpretable protein-based clusters (Figs. 2b,c, 

Supplementary Figs. 4e-f,l-m,s-t) and canonical immune cell populations could be 

clearly delineated by conventional biaxial plots (Fig. 2.2d, Supplementary Figs. 4g,n,u). 

Importantly, the model fitting behavior and correlations among isotype controls and 

background counts observed in our dataset were similarly observed in these 

independent datasets, including: 1) The k=2 component Gaussian mixture model had 

the best fit according to BIC in most single cells (Fig. 2.2e, 89% average across 4 

CITE-seq datasets); 2) the estimated µ1 (mean of background protein counts) for each 

cell correlated significantly with the mean of isotype controls across single cells and 

was higher than the correlation with individual isotype controls (Figs. 2.2f,g, 

Supplementary Figs. 4b-c,i-j,p-q); 3) the inferred technical component using isotype 

controls and µ1 was correlated with the protein library size (Fig. 2.2h, Supplementary 

Figs. 4d,k,r); finally, 4) even on the smallest panel (14 phenotyping antibodies, 3 

isotype controls) the per cell technical component λ was highly concordant regardless of 

whether the background (µ1 estimate) was defined using a k=2 or k=3-component 

Gaussian mixture (Supplementary Fig. 2.2g).  
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Figure 2.2 Assessment of dsb model assumptions and performance of dsb normalization 
on external datasets.  

Panels a-h: application of dsb to a publicly available dataset generated using 10X 
genomics “NextGem” chemistry measuring 29 proteins across ~5K cells. a. The protein 
library size distribution of empty and cell-containing droplets used for dsb 
normalization. b.  UMAP of single cells based on dsb normalized protein values with 
colors representing clusters obtained from clustering cells on dsb normalized protein 
values. c. Heatmap of the average of dsb normalized values per protein-based cluster 
shown in (b). d. The distribution of CD14 and CD4 dsb normalized values. e. As in Fig. 
2.1e, Gaussian mixture model parameters fit to the dsb normalized values of each single 
cell after step I (ambient noise/background droplet based correction). The Bayesian 
Information Criterion (BIC) of the model vs. number of components in the model fit for 
each cell (n=3774 cells). Boxplots show the median with hinges at the 25th and 75th 
percentile and whiskers extending plus or minus 1.5 times the inter quartile range. f. As 
in Fig. 2.1f, Pearson correlation coefficient matrix of variables used to define each cell’s 
technical component; each isotype control and µ1, the Gaussian mixture model 
background mean across proteins for each cell. g. As in Fig. 2.1g, Pearson correlation 
coefficient between the inferred cell-specific background mean µ1 from the Gaussian 
mixture model vs. the mean of isotype controls in each cell.  h. The relationship 
between each cell’s technical component and the cell’s protein library size (Pearson 
correlation coefficient shown as in Supplementary Fig 3a with 95% confidence interval 
in grey). i. Summary statistics for the eight independent datasets assessed in this study; 
Cor 1 and 2 correspond to the Pearson correlation coefficient for assessing the 
relationships between variables shown in (h) and (g) across cells for each dataset.  
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We next tested the applicability of dsb to several new types of multimodal single cell 

data generated by technologies that measure surface protein expression in droplet 

captured single cells using oligo-barcoded antibodies including 1)  “proteogenomic” 

data (protein + DNA mutation assays from Mission Bio; 9 proteins plus an isotype 

control), 2) ATAC-seq with Select Antigen Profiling (ASAP-seq: protein and chromatin 

accessibility; 238 proteins plus isotype controls), and 3) Transcription, Epitopes, and 

Accessibility (TEA-seq: protein + chromatin accessibility and transcriptome 

assessment; 45 proteins plus one isotype control). All datasets had ADT reads in a large 

number of empty droplets (Supplementary Figs. 5a,d,e). Our method was compatible 

with the proteogenomic dataset, helping to identify markers for each cell cluster after 

correcting for protein-specific background levels estimated from >16,000 empty 

droplets (Supplementary Figs. 5a-c). In the ASAP-seq dataset that measured multiple 

isotype controls, µ1 again correlated significantly with the mean of isotype controls 

across single cells and this correlation was higher than that among the individual 

isotype controls (Supplementary Figs. 5f,g), and the inferred per-cell dsb technical 

component was correlated with the library size as observed above (Supplementary Fig. 

5h). In TEA-seq and ASAP-seq data, the negative staining cells could often be 

identified by applying the same 3.5 threshold that we applied in our and other data sets 

(Supplementary Figs. 5i-k and see below). The compatibility and utility of dsb with 

large protein panels such as in the ASAP-seq dataset is consistent with our recent CITE-

seq analysis of Covid-19 patients using a similarly large panel where dsb helped enable 

accurate cell population identification by both automated clustering and manual 

gating250. A summary of results from these datasets is shown in Fig. 2.2i.  

 

2.7 Case study I: dsb improves interpretation of protein-based and 
joint protein-mRNA clustering results 
 

We next further investigated the ways in which normalization with dsb could help 

improve cell type identification. By design, dsb zero-centers the background population 

for each protein and provides normalized expression interpretable as signal above 

expected background noise. These features are thus particularly helpful in manual 
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gating across cell lineages (Supplementary Fig. 6a) and can improve the annotation of 

cell types derived from unbiased clustering. In contrast, distinguishing true biological 

expression from noise within individual cell clusters can be challenging when using 

transformations such as the CLR, partly because CLR protein values lie on a non-zero-

centered scale (each protein also has a distinct noise floor); therefore, cells can appear 

to express markers known to be specific for other cell lineages. For example, in cluster 

4 from our PBMC data (framed cluster in Fig. 2.3a), proteins such as IgA/IgM and 

CD57 could be mis-interpreted as showing signal above noise (Fig. 2.3b). In contrast, 

dsb normalized values for IgA, IgM, and CD57 are zero-centered (Fig. 2.3b), indicating 

that the level of these proteins in this cluster was statistically similar to the level in 

empty droplets and were therefore not expressed (Figs. 2.3c,d–red proteins). In contrast, 

CD16, CD244, and CD56 had dsb values above 8 (i.e., greater than 8 standard 

deviations above the mean in empty droplets, +/- the correction from regressing out the 

technical component), suggesting these were CD57 negative CD16++CD56+ NK cells, 

which are not known to express B-cell markers such as IgM or IgA. In general, cell 

clusters identified using dsb normalized protein values had cell type-defining proteins 

detected above the same threshold (3.5) applied within each cell cluster (Fig. 2.3e, 

Supplementary Figs. 6b–c).  

 We also assessed compatibility of dsb with an unsupervised joint mRNA-

protein clustering algorithm that constructs a weighted nearest-neighbor (WNN) joint 

embedding of CITE-seq mRNA and protein data251 (Fig. 2.3f). We ran WNN clustering 

using the same processed mRNA  data together with ADT data normalized by either dsb 

or CLR (across cells). The clustering results were similar, suggesting dsb and CLR led 

to broadly concordant results. However, closer examination of individual clusters 

revealed that dsb could lead to more interpretable results. Notably, CD14 positive cells 

(presumably monocytes) were distributed across multiple dsb-derived clusters, 

including cluster 3 characterized by elevated CD86 (Fig. 2.3g). In contrast, the CLR 

value of these same cells was relatively low for CD86 but high for other markers (e.g., 

CD8 and IgM) that should not be expressed by monocytes (Fig. 2.3h). Furthermore, 

median CLR values in these cells (but not dsb – Fig. 2.3g) were correlated with the 98th 

percentile of expression in empty droplets across proteins (R = 0.67, p = 3.1e-10; Fig. 

3h), suggesting that protein-specific ambient noise contributed substantially to the CLR 

values; this noise source was successfully accounted for by dsb via the use of empty 

droplets. Finally, relative to the rest of the cells, differentially expressed transcripts in 
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dsb-derived cluster 3 include inflammatory and activation genes (Fig. 2.3i), consistent 

with the CD86-high phenotype revealed by dsb.  

 

Figure 2.3 Case study I: dsb improves interpretation of cell clusters derived from 
protein-based and joint mRNA-protein clustering.  
a. UMAP plot of single cells labeled by cluster number (clustering was performed using 
dsb normalized protein values). b. The distribution of protein expression of cluster 4 
(highlighted with a grey box in (a)) using CLR (across cells) or dsb for normalization. c. 
Median log + 1 protein levels (left) and CLR transformed across cells (as in (b), right) 
in cells from cluster 4 versus the level in empty droplets; proteins highlighted in red are 
comparable in expression to “positive” proteins after log transformation (left) and CLR 
transformation across cells (right) but are similar to background levels in empty droplets 
(identity line y = x shown in black). All proteins with median log10 expression greater 
than 1 but less than 3.5 after dsb normalization are labeled with the protein name. d.  
Similar to (c), but the y axis shows the median dsb normalized values; proteins in red 
(those near the diagonal in (c)) are now residing below our uniformly applied dsb 
positivity threshold of 3.5, reflective their proximity with mean counts in empty 
droplets; proteins above the red line have median dsb normalized expression within the 
highlighted cluster 4 (see (a) and (b)) above 3.5, i.e., 3.5 standard deviations above 
ambient noise, +/- adjustment for the cell intrinsic technical component. e. The dsb 
normalized value vs. the median value in empty droplets of proteins within a subset of 
protein-defined clusters. A subset of proteins informative for cluster identification from 
B cell and dendritic cell subsets with a dsb value above 3.5 (red line) are annotated with 
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the protein name within each panel and are labeled in red when below 3.5 within each 
subset. Proteins labeled for B cell subsets (C13: Unswitched B cells, C5 Transitional B 
cells, C12 Switched B cells) include B cell proteins CD20, CD19, IgD, and IgM, 
proteins labeled for the dendritic cell subsets (C16: pDC, C14: mDC) include innate cell 
markers CD1c, CD1d, CD34, CD14, CD16, and CD303.  f. UMAP plot of the same 
cells shown in (a) but the UMAP embeddings and clusters here were derived using 
Seurat’s weighted nearest neighbor (WNN) mRNA-protein multimodal algorithm 
applied to dsb normalized values. g. Similar to (d) but derived using cells from WNN 
cluster 3; Pearson correlation coefficient and p value (two sided) are shown between 
median dsb normalized values and the 98th percentile expression value (log10) of the 
same protein in empty droplets. h.  Similar to (g) but for CLR normalized values. i. 
Differentially expressed genes (ROC test; see Methods) for cell in cluster 3 vs other 
clusters.  

 

2.8 Case study II: dsb unmasks MAIT cell population in tri-modal 
TEA-seq data 
As a second example, we further analyzed trimodal transcriptome, protein, and 

chromatin accessibility (TEA-seq) data252. Visual inspection suggested improvement in 

biaxial plots after dsb normalization as the same interpretable threshold of 3.5 applied to 

all datasets in this study delineated two cell populations based on CD4 and CD14 (Fig. 

2.4a) compared to normalization with protein library size (as implemented in the 

original TEA-seq study), and CLR (Supplementary Fig. 9a-b). To assess unsupervised 

multimodal clustering, we carried out the same comparison of CLR and dsb 

normalization using WNN clustering (combining mRNA and protein) as above but on 

TEA-seq data. Similar to above, the clustering results overlapped significantly (Chi-

squared test, p < 2e-16 Supplementary Fig. 9 c-d). However, we noticed phenotypic 

marker differences within a specific T cell cluster that could substantially change the 

biological interpretation of the resulting cell population. During thymic development, 

human T cells rearrange variable, diversity and joining (VDJ) genes at the T Cell 

Receptor (TCR) locus. The resulting TCR gene rearrangements are distinct to functional 

categories of T cells with known specialized functions. This TEA-seq data included 

antibodies specific for alpha-beta (TCR a/b - conventional helper and cytotoxic T cells), 

gamma-delta (TCR g/d gamma-delta T cells), and Va7.2 (specific for mucosal 

associated invariant T (MAIT) cells). The MAIT TCR Va7.2 median dsb values were 

high (~15 standard deviations above background noise) in cell cluster 14 (with more 

than 700 cells); as expected, cells in this cluster expressed TCR Va 7.2 exclusively with 

no other TCR proteins according to dsb normalization (Fig. 2.4c, Supplementary Fig. 
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9f). In contrast, the CLR normalized values of the cells in this cluster had higher median 

values for TCR a/b than TCR-va7.2; both TCRs were similarly distributed and it was 

thus unclear which was truly expressed given the uncertain noise floor of CLR 

normalized counts (Fig. 2.4d, Supplementary Fig. 9e). This was also the case for the 

gamma-delta T cell receptor protein, which was around zero after dsb normalization 

(Supplementary Fig, 9e-f). CD56, CD3, CD8, and KLRG1 in Cluster 14 were also 

positive based on dsb (more than 6 standard deviations above background noise) (Fig. 

2.4e), thus broadly consistent with the known phenotype of CD8+ MAIT cells253. These 

cells have distinct biological functions from conventional T cells, partly due to their 

semi-invariant T Cell Receptor (TCR-Va7.2) specific for bacterial metabolic products 

presented via Major Histocompatibility Complex related protein MR1254. Based on 

CLR normalized protein levels alone, cells in cluster 14 had a phenotype resembling 

conventional T cells with elevated cytotoxic capacity (TCR a/b, KLRG1 and CD56 

positive)255,256. Since dsb corrects for protein-specific noise, we hypothesized that the 

apparent expression of both TCRs in cluster 14 after CLR normalization was likely due 

to ambient noise present in CLR transformed data. Supporting this notion, the median 

CLR values (but not the dsb-derived values) were correlated with the 98th percentile 

values from empty droplets (Pearson correlation 0.8, two-sided p = 2.4e-7, compared 

Pearson correlation 0.13, two-sided p = 0.39 for dsb), and both the alpha-beta and 

gamma-delta TCR proteins were among the highest ranked proteins based on 

expression in empty droplets (Figs. 2.4e-f). To further assess the identity of this cluster, 

we performed unbiased differential mRNA expression analysis of cluster 14 cells versus 

other clusters (Fig. 2.4g). Among the top discriminative markers for cluster 14 was the 

transcription factor ZBTB16 (Fig, 2.4g), which is known to be elevated during iNKT 

and MAIT cell differentiation257, expressed by mature MAIT cells258,259, but suppressed 

during conventional naïve T cell differentiation260. We next constructed a 165-transcript 

MAIT cell signature derived from the top differentially expressed genes reported in an 

independent study, which used bulk RNA-seq to compare FACS-sorted TCR-Va7.2+ 

human MAIT cells versus other T cells lacking this TCR261. This MAIT cell signature 

was significantly enriched (Fig. 2.4h) in differentially expressed genes from cluster 14 

(normalized GSEA enrichment score 2.64, p value 1e-10). As this example 

demonstrates, dsb helped to avoid potential misannotation of a T cell subset and 

revealed biologically coherent mRNA and protein profiles of MAIT cells. Thus, dsb is 
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compatible with and can improve downstream analysis outcomes of multimodal single 

cell data such as TEA-seq.   

 

Figure 2.4 Case study II: application of dsb to tri-modal TEA-seq data unmasks a MAIT 
cell population obscured by noise in CLR normalization. 
Analysis of TEA-seq (transcriptome, epitopes and accessibility) tri-modal single cell 
assay data. a. dsb normalization of protein data from TEA-seq showing the distribution 
of CD4 and CD14 with the same 3.5 threshold used throughout the study. b. UMAP 
plot of single cells and clusters derived by WNN joint mRNA-protein clustering with 
protein data normalized using dsb. c. Bi-axial distribution of the alpha beta and va7.2 T 
Cell Receptor (TCR) proteins in cluster 14 cells normalized by dsb and d. the same cells 
CLR normalized values. e. Similar to Fig. 2.3g but here for cluster 14 from (b) using 
dsb or f. CLR normalized values (y-axis); in both plots Pearson correlation coefficients 
and p values (two sided) are shown between normalized values (y axis) and values in 
empty droplets (x axis). g.  Differential expression analysis (ROC test) of genes in 
cluster 14 vs other clusters. h. Gene set enrichment of a MAIT cell signature 
constructed from FACS-sorted TCR-va7.2+/MAIT cells compared to other T cells 
(RNA-seq data from Park et. al. 2019) with genes ranked by log2 fold change in cluster 
14 cells vs other cells as in (g).  

 

2.9 Discussion of Chapter 2 results 
Our experiments and computational analyses revealed ambient capture of antibodies by 

droplets is a major source of protein-specific noise in droplet-based ADT data. Our 

method, dsb, estimates and corrects this noise component without experimental 

modifications since we found that it can be reliably estimated using empty droplets, 
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which are abundant in droplet based single cell datasets. On top of protein-specific 

noise, cell intrinsic noise was apparent given our observation of the strong correlation 

(i.e., shared variance) among distinct isotype controls and the average ADT level of 

background proteins inferred by mixture modeling within single cells. This correlated 

component affords dsb to implement a conservative approach to estimate and correct for 

cell-to-cell technical noise, an improvement over approaches that use individual isotype 

controls or total protein library size because individual variables alone are inherently 

noisier and could contain more biological (as opposed to technical) signals. We found 

that application of dsb to both our own and independent multimodal single cell datasets 

with ADT data improved the identification and annotation of cell types and states based 

on protein-based or multimodal clustering approaches.   

 

Recent methods proposed to use joint probabilistic modeling of mRNA and 

protein242,262 with one of the goals being identification of protein expression above 

noise. For example, TotalVI262  uses an mRNA and protein generative neural network 

model to estimate posterior probability distributions of protein expression, which 

identified cells with zero, low, or high probability of CD4 protein levels in human 

PBMCs. As expected, this identified monocytes and T-helper cells based on known low 

and high surface CD4 protein levels on these cells, respectively; these populations were 

similarly recovered by dsb normalized populations. While such end-to-end probabilistic 

models hold promise for single cell analysis, the TotalVI counts are denoised in non-

normalized UMI count space–to use these raw UMI counts for downstream analysis 

tasks outside the probabilistic neural network framework, the values would still need to 

be normalized, for example via a log transformation. Such probabilistic models are thus 

complementary to and distinct from dsb, which focuses on low-level protein- and cell-

intrinsic denoising and normalization unique to ADT protein data by directly inferring 

and removing the two noise components detailed in our analyses above. In addition, the 

specific noise sources revealed by our analyses and approaches to estimate them could 

lead to more informative prior distributions used by Bayesian probabilistic modeling 

approaches such as TotalVI. As demonstrated here, the denoised and normalized data 

from dsb can be used in any downstream analysis application to potentially enhance the 

results of higher level single cell data analysis methods, such as joint protein-mRNA 

clustering251,263–265 
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We further detail the experimental evidence for noise sources as well as the modeling 

assumptions, caveats, and limitations of our method in the Supplementary Note. Briefly, 

we assessed 1) the robustness of our estimation of protein-specific noise, 2) the 

sensitivity of dsb normalized values to different methods of defining empty droplets, 3) 

the impact of different cutoffs for defining background droplets for use with dsb, 4) 

normalization across batches: normalizing multiple experimental batches together vs. 

applying normalization separately to each batch, and 5) caveats for using dsb on 

datasets without isotype control antibody measurements. The use of different methods 

for defining background droplets had negligible impact on normalized expression 

values, however, defining a reasonable subset of barcodes as background droplets still 

requires care. The dsb package documentation provides code to extract and quality 

control the background droplet population from the raw data matrix. It uses all cell 

barcodes from the Cell Ranger alignment tool by default, although other alignment tools 

such as kallisto266 and CITE-seq-Count267 can also be used. In our own dataset used 

above, we also found little differences in dsb-normalized expression values between 

first merging data across from batches before applying dsb vs. applying dsb to each 

batch individually. However, in general this could be dependent on the extent of 

uniformity among the batches. Finally, additional analysis further supported the benefit 

of including isotype controls to help correct for cell-to-cell technical noise in step II of 

dsb (see Supplementary Note for details). 

 

The dsb package is computationally efficient and can process on the order of 105 cells 

on a laptop, e.g., the primary dataset in this study (with >53,000 cells) was normalized 

and denoised in under 4 minutes. The output can be easily integrated with diverse single 

cell software platforms such as Bioconductor102, Seurat268, and Scanpy269. 

 

2.10 Methods - Chapter 2 
 

The denoised scaled by background normalization (dsb) method 
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The dsb method is implemented via the R package “dsb” https://cran.r-

project.org/package=dsb  through a single function call to DSBNormalizeProtein(), 

which models and accounts for 1) protein-specific ambient noise correlated across 

single cells as captured by average readouts from empty droplets and 2) droplet/cell 

specific technical noise revealed via the shared variance component associated with 

isotype control antibodies and background protein counts in each cell. Internally the 

function is carried out in two major steps. In step I, protein counts in empty droplets are 

used to estimate the expected ambient background noise for each antibody. Each 

protein’s counts in cell-containing droplets are thus rescaled using this expected noise 

measurement as:  

 

1.      Y = #$%	(()*+)	-	./
0/

 

 

Where log 𝑥2 is the natural log of the count for protein Y in cell i, P is a pseudocount 

added to prevent taking the log of zero and to stabilize the variance of small counts, 

and µ4 and 𝜎4 are the mean and standard deviation of empty droplets for protein Y, 

respectively, computed in the same way in natural log space with pseudocount P added. 

The value of P can be empirically chosen; we use 10 by default, finding this provides 

good clustering performance and visualization of the CITE-seq data we have analyzed.  

The transformed expression estimate (Y) for the protein in each cell can be interpreted 

as the number of standard deviations above the expected ambient background noise of 

that protein. This expression matrix can be returned without further removing technical 

cell to cell variations in step II, for example if isotype controls are not available, by 

setting denoise.counts = FALSE in the R function, however we strongly recommend 

using isotype controls and further correcting cell to cell technical variations by fitting 

and removing each cell’s dsb technical component in step II below by setting 

denoise.counts = TRUE and use.isotype.control = TRUE (the function default).  

 

In step II, dsb denoises cell-to-cell technical variations by defining and removing the 

“technical component” of each cell’s protein values after ambient correction from step 

1. This step fits a model to each cell to learn the background population mean, and then 

combines this value with the shared variation in values of isotype control proteins. In 
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the first part of this two-part step, dsb fits a Gaussian mixture model through the 

expectation-maximization algorithm implemented with the mclust270 R package to the 

transformed count of each cell from step 1 with k = 2 mixture components: 

 

2.   (𝑓𝑥2) = 	𝜙8𝑁8(𝑥	|	µ8, 𝜎8	) +	𝜙=𝑁=(𝑥	|	µ=, 𝜎=)		 

 

In the model above, the log normally distributed proteins of each cell i comprising the 

non-staining noise/background protein subpopulation for that cell are estimated by (N1), 

and µ1 is the mean of the background protein subpopulation N1 in that cell. A noise 

variable matrix is then constructed by combining all the fitted µ1 values with the 

isotype control values for all cells. dsb then calculates principal component 1 (i.e. the 

primary latent component “λ”) of these variables in the noise matrix across cells: 

 

3.   𝜆8 = 𝜙8,8	(µ1) + 𝜙8,=(𝐼𝑠𝑜𝑡𝑦𝑝𝑒1)…	𝜙8,H(𝐼𝑠𝑜𝑡𝑦𝑝𝑒	𝑝) 

 

Where loading vectors in equation III calculated by the R function prcomp() are 

multiplied by the noise matrix, forming each cell’s PC1 score λ1 which determines the 

cell’s “dsb technical component”. Finally, the dsb technical component for each cell is 

then regressed out of the ambient-noise-corrected values “Y” from part 1; the values 

returned by dsb are the residuals (plus intercept) of a linear model regressing the 

ambient corrected values on the technical component for each protein. Internally, to 

implement this step dsb uses a function from the limma70 package removeBatchEffect() 

for robust and efficient matrix decomposition to fit and then regress out the effect of a 

specified covariate (in this case the technical component 𝜆8 from equation 3) from a 

matrix of variables (proteins) across observations (cells).  

 

We strongly recommend using isotype controls if using the cell to cell denoising step 

(i.e. if setting denoise.counts = TRUE) as we observe that the use of more isotype 

controls increases the robustness of the calculation of the technical component. See the 

dsb software documentation on CRAN and the Supplementary Note for additional 
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information on usage and definition of the technical component in experiments without 

isotype controls.  

 

CITE-seq on 20 human PBMC samples 

CITE-seq data analyzed here were previously used to assess the cellular origin and 

circuitry of baseline immune signatures115; an earlier version of dsb was used therein to 

normalize the protein data which is identical to the default method implemented in the 

dsb  package, with exception of the pseudocount used (1 vs 10, see below). Experiment 

details can be found in our prior report115. Briefly, oligo-labelled antibodies for sample 

barcoding (cell “hashing”) and surface target protein detection were obtained from 

Biolegend. After incubating each sample with a barcoding antibody98, cells from each 

donor were pooled into one tube and stained with an optimized mixture of oligo-

labelled CITE-seq antibodies against target surface proteins. Two experimental batches 

were performed on consecutive days, using aliquots of the same pool of antibodies for 

each batch. The pooled donor cells from each of two batches were each distributed 

evenly across 6 lanes (per batch) of the 10x Genomics Chromium Controller using 

Single Cell 3’ expression reagents (version 2). Sample barcoding (HTO) and target 

surface protein (ADT) libraries were prepared as in the original CITE-seq report and 

according to the publicly available CITE-seq protocol (version 2018-02-12, cite-

seq.com). cDNA libraries were prepared using the 10x Genomics v2 kit according to 

manufacturer’s instructions. Libraries were sequenced using the Illumina HiSeq 2500 

using v4 reagents. We used CITE-seq Count267 for HTO and ADT read mapping and 

Cell Ranger for RNA mapping, and cells were then demultiplexed as previously 

reported98,99,115 (see Supplementary Note for additional details on demultiplexing, see 

supplementary Data 1 for a list of antibodies used in this study).  

 

Healthy donor CITE-seq data analysis   

Raw CITE-seq data from our prior report115 were normalized with the dsb package 

using the default parameters and empty/background droplets as defined by either clear 

breaks in the protein library size distribution or droplets defined as negative/background 

by sample demultiplexing with little impact on normalized values (See Supplementary 

Note and Supplementary Fig. 8). The denoise.counts argument was set to TRUE which 
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carries out the recommended step 2 (denoising cell-cell technical variations by 

estimating and regressing out the technical component for each cell) and the 

use.isotype.control argument set to TRUE (defining each cell’s technical component by 

combining isotype control antibody values and the mean of background counts as 

detailed above). See section below “Assessment of performance of dsb vs CLR” for 

methods related to normalization comparisons. Uniform Manifold Approximation 

Projection271 (UMAP) was run with the umap-learn Python package in R using 

reticulate with parameters n.neighbors = 35, min.dist = 0.6. Unsupervised protein based 

clustering was performed using Seurat272 to implement the SLM273 algorithm as we 

previously reported115 directly on a distance matrix formed on the protein vs cells 

matrix of CITE-seq proteins (without isotype controls) after normalizing with dsb (in 

our original report, using pseudocount 1). We retained these cell type annotations used 

in the original report but renormalized data for all analysis in this paper using dsb with 

the current package default pseudocount = 10 which resulted in identically distributed 

relative protein values across cell clusters (Supplementary Fig. 6c, see also Fig. 5c in 

Kotliarov et. al. 2020).  

 

Assessment of performance of dsb vs CLR  

Our CITE-seq PBMC data of ~53,000 cells from healthy donors profiled with 83 

phenotyping proteins and 4 isotype controls (as shown in Fig. 1 and 3, from Kotliarov 

et. al.) was used for comparison of CLR and dsb normalization using statistical tests, 

cell type annotation from protein based clustering and comparison of multimodal 

mRNA + protein-based clustering. For comparisons, the default implementation of dsb, 

with denoise.counts = TRUE and use.isotype.control = TRUE, was compared to the 

CLR transformation across cells, parameters normalization.method = CLR and margin 

= 2 in the NormalizeData() function in Seurat version 4251. The Gap statistic249 for dsb 

and CLR normalized data was calculated based on k medoids clustering algorithm with 

k values from 1 to 20, using with 20 bootstrap samples to obtain the reference null 

distributions. Differential expression testing of protein markers comparing each cluster 

to all other clusters was performed for the major cell types in the coarse clustering 

(clusters C0-C10) as reported in Kotliarov et. al.115 vs all other cells using the 

FindMarkers() function in Seurat to implement a Wilcox test with a log fold change 
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threshold of 0.3. See section below “Weighted Nearest Neighbor analysis of CITE-seq 

and TEA-seq data” for information on clustering comparison. 

 

Assessment of dsb on external CITE-seq (protein + mRNA) datasets  

Raw and filtered UMI matrices for RNA and ADT counts from Cell Ranger were 

downloaded from the 10X Genomics website. Background droplets and cells were 

defined and the default dsb normalization was carried on each dataset as described in 

the tutorial in the dsb package documentation https://github.com/niaid/dsb. Cells were 

defined as barcodes in the filtered Cell Ranger output, and background drops were 

defined as after removing the cells from the from the raw Cell Ranger output, where a 

range of ~5e4 to 7e4 background droplets containing protein reads were used to 

measure ambient background. Background drops could be clearly differentiated from 

cell containing droplets by an order of magnitude difference in the protein library size 

distribution (see blue vs orange distributions in Supplementary Figs. 4 a,h,o). The 

droplets in each of these populations were then subjected to standard scRNAseq quality 

control metrics based on mRNA content, mitochondrial read proportion and protein 

library size with filters tuned to each dataset in order to retain only high-quality cells in 

the cell protein matrix and to remove potential cells from the background protein 

matrix. The number of cell-containing droplets after QC was consistent with the 

expected per-lane cell recovery based on the cell loading density of the experiment. 

Proteins with very low raw data signal (a maximum UMI count < 5 across all cells) 

were removed prior to normalization, resulting in removal of the CD34 protein from 

two datasets. After these basic quality control steps, dsb normalization was carried out 

using default parameters in the dsb package (denoise.counts = TRUE and 

use.isotype.control = TRUE). Cells were clustered on a cell by protein Euclidean 

distance matrix of dsb normalized values not including isotype control proteins as 

described above. UMAP was run with n_neighbors parameter = 40 and min_dist 

parameter = 0.4. Cluster labels reflect graph-based clustering in Seurat with resolution 

tuned to each dataset.  

 

Assessment of dsb on external proteogenomic (protein + DNA mutation assay) data 
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The Mission Bio example data was downloaded from the company’s website. Since this 

dataset only analyzed ten surface proteins, we performed ambient noise removal, 

rescaling based on counts in the observed empty droplets only (i.e. performing step 1 

only by setting the denoise.counts argument to FALSE). UMAP was run with the 

min_dist parameter set to 0.4 and the n_neighbors argument set to 40 directly on dsb 

normalized protein values. Clustering was done on a Euclidean distance matrix using 

Seurat with a resolution parameter set to 0.5 as described above.  

 

Analysis of ASAP-seq (protein + chromatin accessibility) and TEA-seq (protein + 

mRNA + chromatin accessibility) data  

ASAP-seq and TEA-seq data were downloaded from GEO and preprocessed according 

to the workflows provided in the publicly available analysis code from the original 

manuscripts. Cell containing droplets were defined as the droplets that passed the 

authors original quality control metrics. For dsb normalization, we subset non-cells 

from the raw protein data, estimating noise from the major peak in library size 

distribution, with quality control to eliminate potential cells from the background 

matrix, following a similar procedure outlined in the dsb documentation with some 

modification for ASAP-seq data where mRNA data are not available thus background 

was estimated based on protein alone from the subset of droplets that did not pass the 

authors quality control metrics for cells.  For comparison, in both datasets cells were 

normalized with CLR (across cells, margin = 2 in the NormalizeData() function using 

Seurat) and for TEA-seq, an additional log transformation with library size scaling 

factors (NormalizeData() function with parameter normalization.method = 

“LogNormalize”).  Analysis of differentially expressed genes in specific clusters vs all 

other cells was carried out in Seurat with the function FindMarkers() using an ROC 

test. Gene Set enrichment analysis of the MAIT cell signature was performed with the 

fgsea package274 based on genes ranked by the log2 fold change of genes in cluster 14. 

 

Weighted Nearest Neighbor analysis of CITE-seq and TEA-seq data 

For multimodal clustering of the TEA-seq and CITE-seq healthy donor datasets, we 

used the weighted nearest neighbor algorithm251 with the Seurat function 

FindMultimodalNeighbors(), with slight modification. In pilot analysis of the WNN 
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algorithm we found both CLR and dsb joint embeddings and clustering improved by 

using protein data directly instead of compressing protein data into principal 

components. We used the normalized values of 45 (TEA-seq) and 69 (our healthy donor 

CITE-seq data) phenotyping proteins directly in the joint model (we first removed 14 

uninformative / poor performing proteins that had very low average dsb values across 

all protein based clusters from the protein data matrix from the healthy donor CITE-seq 

data). We compared the same joint clustering approach with the only difference being 

the normalization used in the input data. In analysis of both the CITE-seq and TEA-seq 

datasets, the mRNA data was compressed into 30 principal components; the same 30 

mRNA principal components were combined with either dsb or CLR normalized 

protein data for joint clustering. First, mRNA data were normalized with the Seurat 

function NormalizeData() with the parameter normalization.method =“LogNormalize”, 

implementing a natural log transformation, standardizing by the library size and 

multiplying values by 1e4. These values were compressed into 30 principal components 

based on scaled values for variable genes selected by setting the 

FindVariableFeatures() function with the selection.method parameter set to ‘vst’. For 

the CLR WNN model, protein data were normalized by the CLR across cells (using the 

Seurat function NormalizeData() with normalization.method = “CLR” and margin = 2). 

For the dsb WNN model, data were normalized using the default implementation of 

dsb, (parameters denoise.counts = TRUE, use.isotype.control = TRUE). Seurat was then 

used to separately cluster the two weighted nearest neighbor graphs constructed from 

mRNA principal components and either CLR or dsb normalized input protein data.  

 

Data Availability  

Datasets used in this analysis are available to download at: 

https://doi.org/10.35092/yhjc.13370915. The public datasets included in the data 

repository were downloaded online and are also available from 10X genomics at 

https://support.10xgenomics.com/single-cell-gene-expression/datasets and from 

Mission Bio at https://missionbio.com/capabilities/dna-protein/#Data. ASAP-seq and 

TEA-seq datasets were downloaded from GSE156477 and GSE158013 respectively.  

 

Code Availability 
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The dsb software package is available for download on CRAN: 

https://cran.r-project.org/package=dsb. 

An analysis workflow with R code to reproduce the analysis results reported in this 

manuscript are available for download from github:  

https://github.com/niaid/dsb_manuscript/. 
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3 MULTISCALE DECONSTRUCTION OF 
VACCINATION RESPONSES REVEALS HIGH 
ANTIBODY RESPONDERS TO 
UNADJUVANTED VACCINES ARE NATURALLY 
ADJUVANTED 

3.1 Abstract 
We developed a multiscale analytical framework to deconvolve human population, 

vaccine formulation, immune cell subset, and single cell variations in response to 

vaccination using multimodal single cell data. Integrating mixed effects models with 

computational reconstructions of cell state deconvolved past bulk derived “signatures” 

of response and further defined classes of shared and cell type specific perturbation 

states across biological scales. A contrast approach identified AS03 adjuvant specific 

perturbations including B lymphocyte survival and sensory receptors unrestricted to a 

particular pathogen class. Remarkably, monocytes and dendritic cells of high 

responders appeared “naturally adjuvanted” with baseline elevation of the same sensory 

phenotypes which were induced post vaccination specifically by adjuvant AS03. This 

adjuvant like high responder baseline setpoint reflected tightly coupled multicellular 

transcriptional circuitries including correlated sensory receptors and interferon 

signaling. Primed baseline circuitries themselves were then coherently induced 1 day 

post vaccination within the same cell types following influenza vaccination and by 

mRNA vaccination in a separate cohort. The naturally adjuvanted transcriptional state 

also extended to cell intrinsic differences in phosphoprotein signaling competence 
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following ex vivo stimulation with PRR ligands. Together, discovery of a naturally 

adjuvanted immune setpoint and mapping of detailed circuitries open avenues for 

immune response engineering, while our analytical approach provides a framework for 

future systems biology studies utilizing population variation and multiscale modeling to 

understand human in vivo perturbation phenotypes. 

 

3.2 Introduction 
Human immune systems exhibit substantial person to person variation34,40,275. 

Population variations in immune responses outcomes to the same perturbation, such as 

antibody responses to vaccination, can be linked to cellular and molecular immune 

system components using top down systems biology approaches20. Such studies have 

used unbiased profiling to identify signatures of timed perturbation states and 

quantitative antibody response39,143,159,160,162,163,187,194,276, including those mediated 

through individual intrinsic factors, such as genetics134 age161,164, and sex145. 

Furthermore, accumulating evidence from these studies supports the hypothesis that 

immune system status prior to perturbation can influence response quality39,161,223,277,278. 

For example, we identified bulk transcriptome signatures reflecting a stable immune 

system “setpoint” linked both to improved antibody response following vaccination in 

healthy individuals and to plasmablast activity during disease flares in lupus patients115. 

More recently, bulk blood transcriptome profiling studies identified prognostic 

signatures in healthy children at risk of type 1 diabetes prior to development of the 

disease279, and at baseline in cancer patients prior to immunotherapy induced 

autoimmunity92.  

 

These systems immunology approaches endeavor to develop a holistic understanding of 

immune cell processes which elicit optimal immune responses33,280. Several technical 

challenges impede moving from biomarker signatures identified to date into such an 

integrated picture. Protein phenotypes measured using cytometry cannot assess diverse 

internal cell states captured by transcriptomics, however bulk blood transcriptome 

profiles are confounded by substantial between-individual variations in circulating 

immune cell subset frequency9,39,117. Single cell transcriptomics can further resolve cell 

states, yet interpretation remains challenging when measuring chromatin accessibility or 
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mRNA alone given existing knowledge cataloging immune cell types using surface 

protein38,39,117,281. Multi-modal single cell transcriptome and protein profiling methods 

such as CITE-seq44 hold promise for unifying these modalities to derive more 

interpretable insight from immune system profiling. However, how to model timed 

perturbation responses and define meaningful variations spanning biological scales 

from individuals, to cell types and single cells remains a major unmet analytical 

challenge.  

 

We profiled 52 PBMC samples from 26 individuals before and after vaccination with 

pandemic influenza vaccines using CITE-seq. Individuals were nested into three 

groups: those with 1) high or 2) low antibody responses to an unadjuvanted vaccine and 

3) individuals vaccinated with an AS03 adjuvanted vaccine. In this work we developed 

a multilevel modeling framework to integrate population variations, response kinetics 

and reconstruction of single cell states. These approaches deconvolved cell phenotypes 

linked to timed vaccine perturbations and further revealed phenotypes associated with 

desirable emergent response properties induced specifically by AS03282. In addition, we 

found extensive rewiring of baseline cellular innate cell circuitries of high compared to 

low antibody responders to unadjuvanted vaccination which reflected elevated innate 

immune cell potential. Comparative analysis of cell states induced specifically by 

adjuvant AS03 with these unadjuvanted baseline cell phenotypes, and further 

experiments measuring early phosphoprotein signaling responses to pattern recognition 

receptor stimulation, revealed high responders to the unadjuvanted vaccine had  a 

“naturally adjuvanted” baseline immune set point. Our analytical approach paves the 

way for multiscale analysis of timed perturbation studies using single cell data in 

humans. Furthermore, our findings open avenues for defining targets of immune 

response engineering and vaccine development based on defining population variation 

in precise cellular phenotypes linked to desirable immune responses. 

3.3 Results 

3.4 CITE-seq experiment design to measure human response 
variations to timed vaccine perturbation across biological scales 
We assessed 52 PBMC samples from n=26 donors pre and post vaccination using 

CITE-seq. Subjects received either the 2009 seasonal + pandemic type A strain vaccine, 
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or a pandemic avian influenza strain formulated with oil in emulsion adjuvant AS03. 

Twenty subjects including n=10 high and n=10 low responders in the unadjuvanted 

vaccine group were profiled at baseline and on day 1 or 7 post vaccination (Fig. 3.1 

a,b). We derived sources of noise in CITE-seq protein data and developed a dedicated 

normalization method100, then extensively tested the reliability of CITE-seq to recover 

and unify known cell surface and transcriptome phenotypes. For example, we gated 

activated B cells vs plasmablasts (which are prone to experimental loss) based on CITE-

seq surface protein levels which recovered cell type specific transcriptional signatures283 

derived from the same flow sorted subsets (Fig. 3.2a).   
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Figure 3.1 Single cell portraits of human vaccination response through within cluster 
mixed models comparing vaccination effects over time between groups 
 

a. Human vaccination response study outline; CITE-seq data was generated from n=52 
PBMC matched pre- and post-vaccination PBMC samples from n=26 subjects including 
2 response groups and two vaccine formulations. 10 high and 10 low responders from 
the 2009 TIV + pandemic H1N1 influenza vaccination without adjuvant were profiled 
with a subset of 8 and 12 subjects split evenly between high and low responders 
profiled on day 1 and 7 respectively. 6 subjects vaccinated with a pandemic H5N1 avian 
influenza vaccine formulated with adjuvant AS03 were profiled at baseline and day 1 
post vaccination. b. The hierarchical structure of the CITE-seq data collected on 52 
PBMC samples for a single cluster is shown to motivate necessity of multilevel 
modeling approach for transcriptome analysis. Clusters are based on surface protein 
(select proteins from naïve B cell cluster shown); within each cluster modeled with 
weighted mixed effects models clusters are represented by cells from PBMC samples 
indexed by individual, timepoint and different response groups (high and low 
responders) and vaccine group (unadjuvanted vs adjuvanted). c. For each of > 700 
samples aggregated by protein based cell type and individual x timepoint, the average 
dsb normalized protein expression in each cell type is shown. d. Top: the fraction of 
variance explained in a multivariate model across libraries aggregated by cell type, 
individual and timepoint; bottom: as in d, with models fit within each protein based cell 
type, i.e. within colored columns of c. e. variance fractions for 5 genes within CD14 
monocytes (model from bottom of d) with additional visualizations of gene expression 
(y axis) vs the experimental factor (x axis) explaining maximal variance for the 5 genes. 
f. top: enrichment of genes ranked by their variance explained by age; subset of genes 
with positive association with age in CD8 naïve and CD161+ T cell clusters; bottom: 
select genes positively associated with age within the two cell types.  

 

3.5 Transcriptome variation decomposition into protein based cell 
type, individual, age, sex and vaccination effects 
Cells clustered based on dsb normalized and denoised100 level of 82 CITE-seq surface 

proteins enriched known immune phenotypes (Fig. 3.2 c, d). Individuals were 

represented in a majority of clusters at both timepoints (Fig. 3.2 e,f). Certain subsets 

represented by only two to three subjects (e.g. NKT and CD57+ CD4 T cells) were 

detected within individuals at both timepoints as expected based on stable, within-

individual longitudinal variation in human cell phenotypes39,281 (Fig. 3.2 f). We next 

deconstructed variation of each gene into that attributable to cell types, individuals, 

intrinsic factors (age, sex) and vaccination using multivariate mixed effects models. 

Models first fit to each gene across more than 700 transcriptome libraries indexed by 

cell type, individual, and timepoint (Fig. 3.1c, columns), intuitively revealed cell type 

(Fig. 3.1d, top) explained on average more than 30% of gene variation across the 
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transcriptome (range 0-100%), consistent with known cell type specific transcriptome 

profiles. To further identify intrinsic and vaccination effects independent of cell type 

specific expression effects, we next fit models within protein based subsets (Fig. 3.1d, 

bottom). (Fig. 3.1e) highlights variance fractions for select genes within CD14 

Monocytes. As expected sex explained nearly all variation in expression of Y-

chromosome gene DDX3Y. More unexpectedly, a transcription factor genetically 

linked to rheumatological pathology284, PPARGC1B, and apoptosis regulator TP53RK 

were negatively and positively associated with age respectively. Globally, models 

identified substantial between-subject variations (Fig. 3.1D) which, for example, 

accounted for nearly 100% of variation in TMEM176B, an inflammasome signaling 

regulator285. Finally, timepoint relative to vaccination accounted for more than 50% of 

variation in STAT1; related differential expression models revealed vaccination induced 

expression of this gene 24h post vaccination (see below). Age contributed high variance 

fractions across genes in CD8 naïve and CD8+ CD161+ T cells relative to other cell 

types; inflammatory processes were enriched among genes positively correlated with 

age (Fig. 3.1f), consistent with sterile inflammation linked to aging155.  
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Figure 3.2 Quality control of CITE-seq perturbation transcriptome response detection 
and surface protein phenotypes compared to microarray and flow cytometry data 
a. Manually gated cell populations based on dsb normalized CITE-seq surface protein 
expression, orange box: plasmablast (CD19+CD71+IgD-CD20-CD38++) and blue box: 
activated B cell (CD19+CD71+IgD-CD20+CD38+/-). b. Transcriptome analysis of 
gene module scores specific to each gated populations (as in Ellebedy et. al.) p-values = 
unpaired Wilcoxon test between populations. c. Density distribution of dsb normalized 
protein expression binned by protein based cluster for select populations. d. 
Hierarchically clustered histograms of dsb normalized protein distribution within each 
protein-based cluster. A select subset of proteins are shown and are colored by the main 
cell populations that they are most informative for discriminating. Red = T cell proteins, 
light blue = B cell proteins, green = monocyte proteins, dark blue = NK cell proteins, 
orange = pDC proteins, pink = pDC/HSC markers, black = cell state markers. e. The 
percentage of total cells for each PBMC sample in each major lineage black = B cell, 
orange = CD4 T cells, blue = CD8 T cells, red = myeloid (all monocytes, HSC, mDC 
and pDC), green = NK cells, light grey = unconventional T cells (MAIT-like and 
CD103 + T cells). f. Log number of cells per sample by protein based cluster. 
Individual specific proteins are detected at both timepoints.  
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3.6 Bulk day 7 transcriptional correlates of antibody response are 
derived from a small population of plasmablast cells and not 
naïve or memory B cells 
We next used similar mixed effects models to define genes coherently perturbed across 

individuals by vaccination on days 1 and 7 after adjusting for variation in donor 

expression, age, sex, technical factors and baseline antibody titers (see methods). 

Enrichment based on genes ranked by day 7 vaccination effect size from the non-

adjuvanted influenza vaccine revealed naïve B cell CD4 memory T cell metabolic 

processes and activation (Fig 3.3a,b). The proportional shift circulating plasmablasts are 

hypothesized to drive known day 7 blood transcriptome signatures predictive of 

antibody response to multiple vaccines39,163,276. Indeed, plasmablasts expressed the 

highest levels of predictive day 7 bulk transcriptome signatures relative to other subsets 

(Fig. 3.3c). B cell maturation antigen (BCMA) receptor TNFRSF17, had the highest 

fold change in both microarray and aggregated CITE-seq data (Fig. 3.3d). Absolute 

deconvolution of reads to each cell type revealed nearly all of the TNFRSF17 UMI 

counts were derived from just n=89 day 7 CD38high CD20- plasmablast cells and not 

naïve or memory B cell subsets (Fig. 3.3e). 
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Figure 3.3 Deconvolution day 7 antibody titer associated transcriptome signatures and 
additional shared and cell type specific early day 1 perturbation phenotypes. 

a. Perturbation phenotypes of naïve B cells day 7 post vaccination. Gene set enrichment 
based on model adjusted post vaccination effect size. b. As in a, for memory CD4 T 
cells. c. Protein based cell type specificity of day-7 bulk transcriptomic based gene 
expression signatures predictive of antibody response from previous systems biology 
studies of influenza vaccination (Supplementary table 1). Single cell level module score 
distribution shown for day 7 cells for each cell type. d. Correlation between genes in 
M156 detected in CITE-seq (sample level pseudobulk) vs microarray data (Pearson 
correlation). e. Composition of raw counts of the B cell growth factor receptor 
TNFRSF17 gene, a driver of M156 on day 7 across protein-based cell types (shown in 
(e)) shows CD38++ B cells (plasmablasts) are the primary source of the signal. f. Left: 
Heatmap of model adjusted log fold change 24h post vaccination vs baseline of a core 
interferon signature shared across subsets – genes selected were increased in at least 5 
subsets with logFC > 0.1 and raw p value < 0.05. Right: the average expression of the 
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core shared interferon signature genes across subsets. g. As in f, highlighting genes 
more specifically induced within a single cell type post vaccination.  
 

Deconvolution of the early response to unadjuvanted influenza vaccination reveals 

shared and cell type specific patterns  

Unadjuvanted influenza vaccination response studies consistently report interferon 

stimulated gene expression (ISG) detected early (1-3 days) post vaccination in bulk 

transcriptome data. Furthermore, ISG and antigen presentation gene upregulation on 

day 1 has been found to correlate with higher antibody response187 though cellular 

origins of the response genes were unknown. Based on microarray profiling 4 select 

subsets, early reports hypothesized this signal derived primarily from DCs on day 3188 

or monocyte/granulocytes on day 1194 however, unbiased profiles of all cells mediating 

these responses are uncharacterized. Here, unbiased CITE-seq assessment and 

enrichment against curated pathways, including influenza vaccine signatures curated 

from the literature, identified three broad patterns of coherent cell perturbation 

phenotypes 24 hours following vaccination based on their localization across cell 

subsets (Fig. 3.4a).  

 

The first pattern was characterized by significant enrichment of genes downstream of 

type I and type II interferon signaling shared across cell types (Fig. 3.4a). 46 “core 

genes” collectively induced within least 5 cell types each (Fig 3.3 f, g), captured this 

shared state including transcription factors IRF1 (notably, induced across 15 cell types) 

STAT1, IRF7, and IRF9, pattern recognition receptor (PRR) genes IFITM1 and 

IFITM3, inhibitors of vial transcription GBP1286 and ISG15287, and antigen presentation 

genes TAP1, and PSMB9 (Fig. 3.3 f,g). The second pattern included states unique to 

classical non nonclassical monocytes, such as adhesion molecule ICAM1, JAK2, 

antigen presentation / HLA genes, and inhibitors of viral replication OAS3288, and 

ISG20289. The third pattern represented cell type specific perturbation genes (Fig. 3.3 

f,g), most notably, inflammatory processes uniquely induced within classical 

monocytes. The “reactome interferon signaling” pathway (Fig. 3.4a) reflected all three 

response patterns, with 10-15 shared ISGs across subsets, specific ISGs shared by 

classical and non-classical monocytes, and a set of classical monocyte specific genes 

(Fig. 3.4b). Normalized expression of genes driving this pathway within classical 

monocytes clustered individual samples distinctly by time relative to vaccination, 
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indicating coordinated cell perturbation phenotype across individuals, as intended by 

our mixed model framework (Fig. 3.4c).  

 

Genes driving the classical monocyte “IL6 production” pathway reflected early 

initiators of inflammation MYD88, DDX-58 (RIG-I), TNF and TRAF6. Inflammatory 

processes were further implicated by monocyte specific expression of IL-1 and IL-15, 

and chemokine CCL2290 (Fig. 3.3g). Classical monocytes were also enriched for 

hypoxia and mTORC1 signaling pathways (Fig. 3.4a). While live influenza can activate 

and subvert mTOR to support viral replication291; inactivated vaccination more likely 

reflected the role of mTOR in supporting inflammation292. Analysis of genes driving the 

pathway suggested mTOR induced glycolytic metabolism, a process induced after VZV 

vaccination204 and linked to non-specific innate memory in monocytes293. mTOR 

enrichment within CD25+ CD4 effector T cells, MAIT-like cells, mDCs and NK cells 

may have been intrinsically induced by TIV or by monocyte specific expression of IL-

15 (Fig. 3.3g), an essential cytokine for activating mTOR in human NK cells294.  
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Figure 3.4 Deconstruction of transcriptome perturbation phenotypes induced day 1 post 
vaccination with seasonal TIV + 2009 pandemic strain vaccine  

a. Day 1 post vaccination transcriptional response within protein-based cell types. Gene 
set enrichment (red = positive enrichment/upregulation, blue = negative enrichment/ 
downregulation) of modules based on genes ranked by pseudobulk weighted linear 
mixed effects model baseline vs day 1 effect size (see methods). Interferon response 
modules tend to be increased across cell types. b. Leading edge genes from the 
reactome interferon signaling module across subsets with enrichment adjusted p values 
< 0.05. c. The leading edge genes within the CD14 monocyte cluster in the reactome 
"interferon signaling" module demonstrate a coordinated change of IFN genes in 
monocytes post vaccination. d. Pseudotime trajectory inferred with the DDR-tree 
algorithm constructed with genes changing across monocyte subsets 24h post 
vaccination (see methods). The true timepoint relative to vaccination of each cell along 
mRNA trajectory component 1 is highlighted in the top marginal histogram; cells are 
colored by inferred pseudotime. Three branches from left to right are enriched for 
resting classical monocytes, activated classical monocytes from post vaccination, and 
nonclassical monocytes. Cells progressively downregulate CD14 and upregulate CD16 
protein level along the rightmost branch; protein data shown in the bottom margin basis 
spline fit to dsb normalized protein level for CD14 and CD16 (protein levels were not 
used to construct the trajectory). e. Gene expression of select leading edge genes from 
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enrichments in CD14 monocytes based on branch-dependent differential expression 
show two broad patterns. Pattern 1 genes are perturbed by vaccination with highest 
expression in post vaccination classical monocytes – dashed line at pseudotime value of 
9.5 represents the peak of activation. Pattern 2 genes continuously increase across 
pseudotime and have highest expression in CD16+ cD14- non-classical monocytes. The 
top row shows example genes from each category. The bottom row shows the subset of 
genes falling into each category from the combined hallmark MTORC1 
signaling/Hypoxia pathways and reactome interferon signaling pathways. Below each 
category / pathway, enrichment of gene ontology (GO) biological process and Kegg 
pathways for the subset of genes from each pathway and category.   

 

 

3.7 Multiscale subset and single cell reconstruction with protein 
integration resolves interwoven monocyte perturbation and 
differentiation states 
We next explored how results from these statistical models could be coupled to 

unbiased single cell computational reconstructions of transcriptome states. Embedding 

monocytes in a tree based295 latent space identified a three branched mRNA-based 

computational reconstruction of pseudotime296. Inferring quantitative relationships 

between cells in such reconstructions can be error prone297,298, however, a multiscale 

approach integrating 1. Cell subset level statistical results detailed above, 2. Time 

kinetics relative to vaccination, and 3. protein information from the same cells, revealed 

finer shades of monocyte phenotypic variation in response to vaccination. The ends of 

the three branches were enriched with pre-vaccination classical monocytes (left branch), 

day 1 post-vaccination classical monocytes (top branch) nonclassical monocytes present 

equally pre and post vaccination (right branch) (Fig. 3.4d top). The canonical 

differentiation process of classical to non-classical monocytes is defined by loss of 

CD14 and gain of CD16 protein; CITE-seq protein levels were thus critical for 

identifying the third branch as a differentiation process based on decreasing CD14 and 

increasing CD16 levels (Fig. 3.4d, bottom margin). Integrating the monocyte genes 

coherently perturbed by vaccination (leading edge genes from Fig. 3.4a) at the subset 

level with this single cell computational reconstruction identified two categories of 

genes based on branch-dependent differential expression (see methods). Category 1 

genes, had perturbation effects within either CD14 monocytes alone (CCL2, defined 

above as a monocyte-specific perturbation gene) or both within CD14 and CD16 

monocytes (TNFSF10), whereas category 2 genes (e.g. IFITM2, FCERG1) 
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continuously increased across the spectrum of pseudotime with highest expression in 

nonclassical monocytes  (Fig. 3.4e, top row). We further investigated the IFN response 

and mTOR / hypoxia perturbations within classical monocytes at the single cell level by 

testing genes driving those pathways for branch dependent differential expression. IFN 

response genes mostly fell in category 1 (more than 40 genes) though 5 genes, PTPN1, 

IFITM2, IFITM3, HLA-C and EIF4E2 followed category 2. The combined mTOR and 

hypoxia pathway genes followed a similar pattern, though notably the genes falling in 

category 2 were more enriched for glycolysis than pattern 1 genes which were enriched 

for ER stress (Fig. 3.4e, bottom). This integrative multiscale analysis thus suggests the 

glycolytic shift in classical monocytes in part captures a process where classical 

monocytes acquire a more inflammatory monocyte-like state, highlighting interwoven 

activation and differentiation processes.   

 

3.8 Vaccination with adjuvant AS03 induces a pattern recognition 
sentinel state unrestricted to pathogen class 
Through an unknown mechanism, AS03 enhances vaccine potency by eliciting 

increased level and diversity of anti-influenza antibodies compared to unadjuvanted 

vaccines, even when formulated with 1/10th the antigen dose282. Previous studies of the 

cellular response to AS03 have described strong early ISGs in innate cells217–219,282 

induced by this adjuvant by comparing the dose-sparing AS03 formulation a low dose 

control formulated with PBS. Here, we used a different approach in order to define 

AS03-specific stimulation phenotypes beyond early ISG and inflammatory activation. 

We first applied a statistical contrast defining the difference in the 24h fold change 

between the AS03 adjuvanted vaccine versus the unadjuvanted vaccine described above 

(formulated at therapeutic dose for an unadjuvanted vaccine). We next validated the 

AS03-specificity and strain independence of these phenotypes using data from an 

external study which profiled FACS sorted immune lineages (e.g. total B cells, T cells) 

from subjects receiving the same vaccine formulated with AS03 vs PBS217 (Fig. 3.5a). 

By design, this approach identified only processes which were perturbed to a 

statistically greater degree or were specific to AS03 including positive enrichment of 

several pathways related to surface receptors in monocyte and mDCs (Fig 3.5b, red) 

which were highly concordant within analogous more coarsely defined innate subsets in 

the validation cohort (Fig. 3.5b, light blue). Further investigation of the leading edge 
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genes driving these enrichments revealed they were related to innate sensory capacity 

unrestricted to a particular pathogen class. In CD14 monocytes, AS03 specific sensory 

genes included FPR2, which enhances immune cell chemotaxis in response to bacterial 

metabolites299 and c-GAS, a cytosolic DNA sensor which activates antiviral response 

via STING300 (Fig. 3.5c). Within mDCs, inflammatory chemotaxis receptors FPR1299 

and CCR1301 were specifically induced in subjects receiving the AS03 formulation. 

P2RY13 an ADP sensor active during inflammation302, and TLR4, the PRR for bacterial 

lipopolysaccharide303 were uniquely induced by AS03 in both subsets (Figs. 3.5 c-d). 

To examine variations in these phenotypes at the level of single cells we sub-clustered 

monocytes and mDCs together based on mRNA and protein251 (Fig. 3.5e). A mixed 

effects count model identified one sub-cluster “C2” increased in frequency across 

individuals on day 1 (Fig. 3.5f). Relative to other clusters, day 1 cells from C2 had an 

activated “DC-like” transcriptome with high expression of HLA genes and IFN 

inducible transcripts (Fig. 3.5g) although mDCs clustered independently in C5 likely 

driven by their distinct protein phenotype. The fraction of cells expressing both sentinel 

genes and interferon response genes were nearly uniformly increased early after 

vaccination across sub-clusters (Fig. 3.5h). At the module level, all sub-clusters 

increased expression of AS03-specific sentinel phenotypes including sub-clusters that 

decreased in frequency post-vaccination (Fig. 3.6a). The activated C2 monocyte 

phenotype thus emerged after vaccination, yet all sub clusters had a “responsive” 

internal state demonstrated by their upregulation of both AS03 specific and interferon 

response states.  
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Figure 3.5 Early transcriptional responses to AS03 adjuvanted vs non-adjuvanted 
vaccines  
a. Schematic to illustrate the contrast applied within protein based clusters to dissect 
AS03 adjuvant specific perturbation phenotypes. Right: the model contrasts within each 
cell type the difference in fold change between AS03 adjuvanted and unadjuvanted 
subjects, as shown in the schematic with boxplots. Genes are then ranked for 
enrichment based on the effect size of this contrast reflecting AS03 specificity, e.g. 
modules with positive normalized enrichment score have higher day 1 fold change in 
the AS03 vaccine group compared to the unadjuvanted vaccine. b. Gene set enrichment 
analysis of weighted pseudobulk mixed model comparing transcriptional response 24-
hours post vaccination between AS03+H5N1 vs. H1N1 non adjuvated vaccine in 
Classical Monocytes and mDCs. c. Select genes driving difference in perturbation 
response distinct to AS03 adjuvant within CD14 monocytes and d. in mDCs. e. Sub-
clustering of CD14 monocytes and DCs UMAP plot labeled by cluster. f. Mixed effect 
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binomial count model comparing baseline to day 1 post vaccination cluster cell 
frequency as a fraction total monocytes, x-axis shows the log odds of cells from a 
cluster being from day 1 vs day 0, individual modeled with random effect. g. Top 
discriminative genes from cluster 2 relative to other clusters x-axis is the average 
difference in the fraction of cells expressing the gene from C2 vs all other clusters; y 
axis–log2 fold change C2 vs all other clusters. Tests done on day 1 cells only. h. 
fraction of cells expressing genes at baseline (grey) and day 1 post vaccination (blue). i. 
The correlation between antibody avidity to the heterologous strain (x-axis – H5N1 
Vietnam HA) vs the vaccine strain (y-axis – Indonesia H5N1 HA) (Pearson correlation) 
measured by surface plasmon resonance assay on day 42 post vaccination in subjects 
receiving AS03 adjuvant. j. PMAIP1 (NOXA) expression across donors within naïve B 
cells pre and post vaccination. k. correlation between the day 1 fold change in the CD40 
activation score and the apoptosis signature in naive B cells.  

 

3.9 AS03 adjuvant induces an apoptosis suppression and survival 
state in lymphocytes 24h post-vaccination 
We and others previously described how AS03 expands antibody response diversity by 

eliciting antibodies to influenza clades beyond those included in the vaccine213,214 282. 

Further analysis of post-vaccination serum revealed antibody binding avidity to HA 

protein of the influenza virus strain in the vaccine was highly correlated across 

individuals with binding to a non-vaccine strain HA protein (Fig. 3.5i), an effect only 

seed in individuals vaccinated with AS03. This suggested expansion of B cell clones did 

not emerge at the expense of strain-specific immunity, but rather that AS03 may have 

nonspecifically reduced B cell selection constraints. Suppression of apoptosis in naïve B 

cells was also specific to subjects vaccinated with AS03, including of a downregulation 

of a lymphocyte turnover module (Fig. 3.6b) and of canonical apoptosis gene NOXA 

(PMAIP1), which was upregulated in non-adjuvanted subjects (Fig. 3.5 j). NOXA 

deficiency is known to increase lymphocyte repertoire diversity304,305, for example B 

cells from NOXA-/- mice outcompete wild type cells for entry into the germinal center 

following influenza vaccination and infection, these cells subsequently persist due to 

inefficient apoptosis305 and increase diversity of anti influenza antibodies. The naïve B 

cells in humans after vaccination with AS03 may thus phenocopy those of influenza 

vaccinated NOXA-/- mice through a similar process. Supporting this hypothesis, single 

cell analysis indicated naïve B cells from subjects vaccinated with AS03 had increased 

expression of a gene signature derived from CD40 activated B cells306,307 with the 

opposite direction of change following vaccination in unadjuvanted subjects on day 1 

(Fig 3.6c). Both apoptosis and CD40 activation had conserved direction change within 
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sorted total B cells in the validation cohort comparing AS03 to the PBS control ( Fig 

3.6d), though apoptosis was not significant after FDR correction owing to the original 

CITE-seq signal being derived from changes in a small fraction of only naïve B cells. 

The day 1 fold change in CD40 activation in naïve B cells across individuals was also 

negatively correlated with the apoptosis signature (Fig. 3.5k), suggesting phenotypic 

coupling of these states. Together these results highlight two potential mechanisms by 

which AS03 may drive desirable antibody responses. Heightened innate pathogen 

sensing capacity could drive recruitment and activation of cells presenting antigen and 

interacting with B cells, which in turn suppress apoptosis potentially initiating more 

naïve B cells into the germinal center reaction to increase antibody breadth.  

 

Figure 3.6 External cohort validation of AS03 perturbation phenotypes and additional 
analysis AS03 induced lymphocyte phenotypes  
a. Mixed effects model of module-level fold change of single cell gene module scores 
for AS03 specific leading edge genes tested in monocyte sub-clusters, positive effect 
size indicates upregulation across individuals; individual modeled as a random effect. b. 
As in Fig 3.5b for Naïve B cells. c. Single cell mixed effects model of differential 
expression between groups as a function of time post vaccination. The effect size for the 
time effect for each cohort was opposite, (bottom contrast on bottom margin of plot). 
The right margin shows the estimated marginal means of the model averaged over 
levels of covariates. d. Naïve B cell derived perturbation phenotypes (leading edge 
genes from CITE-seq based enrichments of contrast model) tested in validation cohort 
of total sorted B cells (Naïve B cell AS03 specific pathways from CITE-seq data tested 
vs all CD19+ cells in the validation cohort).  
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3.10 A broadly activated multi cell type coupled immune cell 
network defines the baseline immune set point of high antibody 
responders 
We previously described overlapping baseline immune set points between SLE patients 

and healthy subjects115.  Since that analysis was constrained to dissect the biology of 

bulk predictive signature linked to B cell phenotypes, here we devised an unbiased 

comparative analysis of baseline immune cell phenotypes associated with increased 

antibody responses. We first contrasted transcriptome phenotypes robustly enhanced in 

high vs low responders, then devised a network analysis approach to define their inter 

and intracellular coupling across subjects based on shared information in gene 

expression (see methods). High responder effector lymphocyte and innate cell 

phenotypes could be grouped into 9 functional categories which together defined a 

broadly activated high responder immune setpoint network (Fig. 3.7a, Fig. 3.8a). Two 

highly connected cell phenotypes network are highlighted in (Fig. 3.7 b, c). Within 

CD14 monocytes, the “FC receptors and phagocytosis” pathway included specific genes 

involved in sensory capacity (e.g. FCGR3A, FCGR1A, FCGR2A), regulators of 

cytoskeletal reorganization active during phagocytosis (e.g. PAK1, ARPC5 CFL1 

ARF6) and genes reflecting activation related to second messenger signaling 

(PIP5K1A, PIK3CD AKT1, MAPK12, ARPC2). This monocyte phenotype elevated in 

high was coupled to 27 other cell phenotypes elevated in high responders (adjusted p < 

0.05), and was thus a high degree node “hub” in the setpoint network (Fig. 3.7b, (Fig. 

3.8b). The distribution of expression across high (red) and low responders (blue) is 

shown for two network edges, which reflect how the CD14 monocyte FC receptor state 

was correlated with both antigen presentation in naïve B cells and the interferon 

response in CD16 monocytes (Fig. 3.7b, bottom). This CD16 monocyte interferon 

response phenotype itself was hub in the network, coupled to 28 other cell phenotypes, 

including those within a CD8-CD4-CD161+ T cell cluster, phenotypically similar to 

MAIT cells (Fig. 3.7c). CD161 high T cell subsets are known to have tissue homing 

capacity308 and MAIT cells can also act as sensors of bacteria through their invariant 

TCR and TLRs254,309 yet also limit lethal influenza infection in vivo310 in a manner 

dependent on interferon producing cytokines IL-18 and IL-12311. The interferon 

response pathway in CD16 monocytes was correlated with interferon response and 

cytokine signaling pathway in these MAIT-like cells (Fig. 3.7c, bottom) which reflected 

shared baseline upregulation of IFITM1, IFITM2, ISG15 and IFI6. Furthermore, the 
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quantitative level of the baseline states including cytokine signaling in MAIT cells and 

the FC receptor phenotype of CD14 Monocytes was tightly coupled to the quantitative 

level of the day 7 plasmablast activity signature in blood (Fig. 3.7d). These high degree 

nodes thus capture both correlated activity of the setpoint in different cell types across 

individuals, and correlated activity of later antibody producing plasmablast cell 

responses on day 7 which itself is predictive of day 70 antibody levels.  

 

How baseline set point phenotypes are themselves kinetically altered within the same 

immune subsets by vaccination is unknown, limiting our understanding their putative 

functional relevance. Given the similarities between phenotypes comprising this 

baseline innate setpoint network of high responders and the states coherently induced 

within subsets following vaccination (Fig. 3.4a) we directly modeled the early (24h) 

post–vaccination kinetics of the baseline genes elevated in high responders in a cell type 

specific manner. Using a single cell mixed effects model adjusting for several 

covariates (see methods) we found that the same genes comprising the baseline high 

responder setpoint network in CD14 and CD16 monocytes, mDCs and MAIT cells were 

themselves coherently induced across individuals by vaccination within the same 

subsets (Fig. 3.7e). This suggested that the innate network setpoint reflecting a naturally 

activated immune state may have primed responses to vaccination since it was itself 

induced by vaccination.  
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Figure 3.7 The immune setpoint network phenotypes of high responders their day 1 
post-vaccination kinetics and correlation with plasmablast activity 

a. Construction of the baseline high responder setpoint network. First gene set 
enrichment analysis of modules enriched pre-vaccination (baseline) in high vs. low 
responders within each cell type, adjusting for age, sex, batch. The leading edge genes 
from these enrichments were correlated across donors within and between cell types. 
Within a cell type, the Jaccard similarity of each pairwise leading edge gene was 
subtracted from the spearman correlation coefficient to correct for correlation due to 
two signals sharing the same genes (within a cell type) and high confidence high 
connectivity edges were retained in the network (see methods). b-c Two selected highly 
coupled cell phenotypes in the high responder setpoint network. The edges highlighted 
in red are shown below as correlations of the activity of the leading edge genes from 
those modules across donors within the cell type indicated by the edge. d. The 
correlation of signature expression within cell types with the day 7 fold change in the 
predictive signature we previously found was predictive of antibody response associated 
with plasmablast activity from microarray data. e. The post vaccination kinetics of the 
components of the high responder innate setpoint network. A single cell mixed effects 
model of module activity was used to estimate the baseline high vs low responder effect 
size (red) and day 1 fold change across subjects adjusting for age, sex, number of cells 
per donor and modeling individual with a random effect. f. Day 1 vs 0 prime and day 22 
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vs 21 boost kinetics of baseline high responder states tested in an external cohort of 
monocytes and DCs manually gated from CITEseq data (GSE171964) collected on 
individuals vaccinated with mRNA vaccine BNT162b2. The difference in the fold 
change between boost (d22 vs d21) and prime (d1 vs d0) p values: mDC 0.59, CD14 
monocyte < 0.001.  

 

Figure 3.8 Additional information on the immune setpoint network of high responders  

a. Spearman correlation matrix of cell phenotypes associated with high vs low 

responders as shown in Fig 3.7a with more detail. b. The degree distribution of nodes in 

the high responder setpoint network. The nodes highlighted in (Fig 4 b-c are indicated 

with a black arrow and box. Points are colored by cell type; the annotation of modules 

may be the same for a given row (e.g. reactome interferon in CD14 and CD16 

monocytes) but the same module is captured by different genes driving the high 

responder effect in each cell type (e.g. they reflect cell type specific cell phenotypes).  

 

 

We next investigated whether the setpoint network was also induced in monocytes and 

mDCs following mRNA vaccination, which emerged as efficacious formulations during 

the covid19 pandemic312. Reanalysis of CITE-seq data collected from six individuals313 

vaccinated with the BNT162b2 mRNA SARS-Cov2 vaccine demonstrated setpoint 

genes of CD14 monocytes and mDCs were also induced day 1 across n=5 individuals 

within protein gated mDC and CD14+ monocytes after mRNA vaccination. 

Furthermore, the fold change of the monocyte setpoint genes were elevated to a greater 

extent after the second dose (day 21 vs 22) than after dose 1 of mRNA vaccination (Fig. 
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3.7f) in classical monocytes. This further demonstrated the baseline setpoint circuitries 

could themselves reflect a naturally primed state which enhances immune response 

potential. The mRNA vaccine lipid nanoparticle (LNP) carrier is thought to act an 

adjuvant312 given that protein vaccines formulated with LNPs increase GC B cells and 

HAI titers314 and when administered without mRNA, LNPs alone recruit both classical 

monocytes and DCs to the injection site. Interestingly these same phenotypes we 

identified as being perturbed by AS03 and primed at baseline in high responders were 

also the only two cell types which translate the mRNA vaccine antigen315. Priming of 

the high responder setpoint phenotypes in particular within classical monocytes by 

mRNA vaccination suggests high responder innate network circuitries acts like a 

“natural adjuvant”, increasing innate immune potential prior to stimulation. 

 

3.11 High responders have a naturally adjuvanted baseline 
immune system set point 
We next formally tested whether high responder DCs and monocytes were also primed 

with processes specifically induced by the AS03 adjuvant (as an experimental model of 

adjuvantation). As a group, these AS03 specific phenotypes defined as genes driving 

pathway enrichments from the AS03 specific model (shown in Fig. 3.5b) were in fact 

downregulated after unadjuvanted vaccination, suggesting they reflected distinct states 

from the unadjuvanted response kinetics observed above (Fig. 3.9a). Further pruning 

genes with validated adjuvant specificity from analysis of the validation cohort 

comparing AS03 to PBS demonstrated conserved enrichment including of sentinel 

genes highlighted in Fig 3.5c-d. Consistent with the naturally adjuvanted hypothesis, 

AS03-specific cell phenotypes were elevated at baseline in high responders compared to 

low responders in both mDCs and CD14 monocytes. A separate study of AS03 

identified increased circulating frequencies of activated HLADR+ cells including 

monocytes 24h following vaccination159. Having established that the internal monocyte 

transcriptional phenotype reflected baseline elevation of states coherently induced by 

vaccination, we examined the baseline surface activation status of unadjuvanted donors 

monocytes at baseline and found that again high responders appeared to phenocopy 

AS03 cellular responses, with increased HLADR+ monocyte frequency at baseline 

detected using flow cytometry data from our full cohort39 (Fig. 3.9d). Furthermore, 

post-vaccination HLADR kinetics revealed high responders elevated post vaccination 
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activated HLADR+ monocyte frequency to a greater extent than low responders 

especially at day 1 (Fig. 3.9e), suggesting amplification of immune state biased toward 

stronger responses. This further suggested high responder setpoint circuitry reflected 

naturally adjuvanted innate immune cells. 

 

Figure 3.9 High responders have a naturally adjuvanted immune competent setpoint 
with cells more poised to respond to innate stimulation 
a. Average expression of a combined gene signature reflecting the AS03 specific 
induced states within DCs and CD14 monocytes. b. Gene set enrichment of the 
combined AS03 specific signature on the validation cohort in analogous subsets; select 
sentinel genes in the leading edge of the validation are shown. c. The average 
expression in high vs low responders of the mDC and CD14 monocyte AS03 specific 
day 1 induced validated signature tested in analogous subsets. d. Log cell frequency of 
HLA-DR+ classical monocytes as a percentage of total classical monocytes in high vs 
low responders at baseline, p value from a Wilcoxon rank test. e. The kinetics over two 
baseline timepoints and three post vaccination timepoints for HLA-DR+ classical 
monocytes. Mixed effects model with an interaction for time and response group and a 
random effect for subject ID–high responder effect size 3.17 p value  = 0.0005, low 
responder effect size 1.89, p value = 0.14, difference in estimated marginal day 1 vs 
baseline fold change not significant, response time vs time only interaction model 
ANOVA p = 0.063.  f. Schematic outlining CyTOF stimulation experiment. PBMCs 
isolated from high and low responders were stimulated with PRR ligands. Stimulation 
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phenotype and markers driving stimulation were defined with HDStIM. g. UMAP plot 
of a random subset of 5000 monocytes pre and post stimulation with stimulated cells in 
orange (unstimulated = blue). h. Variable importance for automatic determination of 
responding cells from HDStIM. i. The post stimulation median marker intensity of 
phosphor markers within the CD14 monocyte cluster, the post stimulation aggregated 
data are shown, effects tested using a mixed model adjusting for batch and modeling 
individual with a random effect. Difference in pre vs post stimulation fold changes in 
high vs low responders contrast estimate and p values: p38 contrast effect: 0.104, p = 
0.058, pCREB contrast effect: 0.223, p = 0.024, pERK 0contrast effect: 0.58, p = 0.055. 
Note only the post stimulation timepoint is shown.  

3.12 The naturally adjuvanted setpoint is an immunocompetent 
state with sentinel cells more able to kinetically signal PRR 
ligands 
Transcriptional circuitries forming the high responder naturally adjuvanted setpoint 

included correlated sensory capacity and primed IFN response potential in innate cells, 

both linked to later plasmablast expansion and antibody response (Fig. 3.7a-d), and 

elevation of adjuvant induced phenotypes which also in part reflected innate cell 

sensory function. To further understand naturally occurring variation in the earliest 

innate cell protein signaling kinetics in response to antigenic ligands sensed by these 

cells, we ex vivo stimulated PBMCs from the same 10 high and 10 low responders with 

multiple innate PRR ligands (Fig. 3.9f). We used Cy-TOF profiling for cell surface and 

intracellular phosphor-signaling readouts, and defined responding cell and markers 

driving stimulation phenotypes automatically using a computational algorithm, 

HDStIM316 (Fig. 3.9g-h). CD14 monocytes were strongly perturbed by LPS stimulation, 

driven by phosphorylated p38, CREB, IkBa, and ERK (Fig. 3.9h). Supporting the idea 

that the naturally adjuvanted setpoint also reflected cell intrinsic signaling capacity, the 

difference in the post-stimulation fold change of p38, pERK and pCREB to LPS, 

adjusting for batch and including a donor random effect, was higher in high vs low 

responders (Fig. 3.9i). Together these results provide further insights into how naturally 

adjuvanted individuals innate cells are primed to improve antibody generation following 

vaccination. The cell intrinsic phosphoprotein signaling capacity of monocytes may 

have acted to both establish the observed transcriptional setpoint as well as amplify 

early post vaccination innate responses. For example, the main ligand of LPS (TLR4) 

signals through IRF3 to activate interferon response genes including ISG15 and IFN-b 

which activate antiviral gene expression programs in an autocrine / paracrine fashion317. 

Elevated cell intrinsic signaling potentially enhanced through signals sent through 

elevated basal innate cell pathogen sensors (Fig. 3.7a-b) could have primed pre-
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vaccination IFN response programs (Fig. 3.7a-c) which fed forward to elevate baseline 

antigen presentation capacity (Fig. 3.7a,b, Fig 3.9e). These basal interferon response 

processes were further triggered by vaccination (Fig 3.7e-f) and likely further amplified 

by inflammatory effectors (Figs. 3.4 a-c, f-g) leading to enhanced monocyte antigen 

presentation capacity 24h later (Fig. 3.9d,e) plasmablast expansion on day 7 (Fig. 3.7d) 

and ultimately, elevated antibody response.  

 

3.13 Discussion of Chapter 3 results 
Biomarker signatures derived from immune system profiling studies can form the basis 

of clinical stratification tools80, or hypothesis generation for further targeted study. In 

this work, we demonstrated a framework for using CITE-seq to integrate information 

across biological scales, down to the level of single cells to improve insight and 

hypotheses gleaned from top-down profiling. Our approach identified multicellular 

transcriptome circuitries of high responders poised toward baseline activation of early 

response genes induced by vaccination, including processes which were specifically 

induced by adjuvant. Together, these processes formed the basis of a naturally 

adjuvanted baseline immune setpoint, analogous to a compressed spring, with cells 

poised to respond to innate stimulation. The discovery of the naturally adjuvanted state 

provides detailed molecular circuits as immune engineering targets which advances the 

concept we proposed of altering immune setpoint circuitries toward those which 

improve response outcomes in a variety of contexts278. Furthermore, our approach here 

provides a proof of principle for utilizing human population variation to define 

precision medicine targets by applying these multiscale models to link molecular 

features to emergent response outcomes, a long standing goal of human systems 

immunology approaches.  

 

Our study has several limitations. Profiling tissues such as lymph nodes could give a 

more complete picture of vaccination response variations. Despite the logistical 

challenges of profiling human tissues, recent pioneering work collected lymph nodes 

following influenza vaccination, revealing germinal center B cells were a mix of naïve 

and memory in origin318. While that proof of concept study was small (n=8) and single 

cell profiling was run on only one individual, the computational framework developed 
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for this study could be applied to future work integrating blood and tissue data from 

hundreds of individuals to contrast vaccine formulations on molecular phenotypes. With 

respect to linking the phenotypes from blood to tissue, our analysis revealed predictive 

day 7 bulk expression signatures were derived nearly exclusively from a small number 

of plasmablast cells; the lymph node study by Ellebedy and colleagues318 revealed these 

same circulating plasmablast clones do indeed transit to the lymph node as expected. In 

that study, B cell clones were computationally tracked through shared recombined 

lymphocyte receptor sequences319. A natural extension applied to findings of our work 

here include determining the lineage origin of the innate cells in circulation on day 1, 

including the sensory/sentinel cell states induced by AS03 and the naturally adjuvanted 

phenotypes forming the high responder setpoint. Tracking the precise clonal origins of 

innate cells lacking recombined receptors in humans presents a major challenge, though 

recent developments in mitochondrial gene profiling of single cell ATAC-seq data 

could be informative in this context320.  

 

Baseline immune biomarkers have been increasingly linked to outcomes115,223,277,278 

however, little is known about the cellular origins or dynamics of these cellular 

processes following an immune trigger. Here we pinpointed the specific antibody 

response associated innate cell set point circuitries and found they were themselves 

induced by vaccination, including being enhanced further after initial priming by 

mRNA vaccination. This suggests either an ongoing or a previous immune exposure 

could be responsible for tuning the naturally adjuvanted setpoint. We recently 

participated in a  consortium meta-analysis of bulk transcriptome data which identified 

baseline signatures linked to antibody responses overlapping with bulk gene expression 

signatures seen during bacterial sepsis likely stemming from innate cells as well225. This 

suggests tonic signals derived from the microbiome321 or past infection could tune 

innate cell tone, interestingly, bacterial depleting antibiotic treatment in humans only 

impacted antibody responses to a strain of influenza in naïve individuals180. Using 

epigenome profiling, it was also recently shown that vaccination with AS03 induced 

alterations in chromatin accessibility322 which overlapped alterations linked to 

potentiation of innate immune memory174,176, and the IRF family. Using an “orthogonal 

omic integration” approach323, we predicted transcription factors controlling the genes 

in AS03 specific DC and classical monocyte signatures which overlapped with the 
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naturally adjuvanted high responder setpoint. Predicted transcription factors included 

PU.1 and members of the CEBP family175 (data not shown) which have been linked to 

potentiation of innate responses following prior exposure. Human studies comparing 

engineered setpoints induced by different vaccines are needed to further resolve these 

interesting chromatin and transcriptome circuitries linked to improved secondary 

responses. Together, our dataset, software pipeline, and curated findings help advance 

vaccine studies toward a quantitative, predictive understanding of human immunology, 

and pave the way for further in vivo single cell drug / perturbation screens across 

biological disciplines.  

 

3.14 Methods – Chapter 3 
Human vaccination comparison cohorts and antibody response assessment 

Healthy volunteers were enrolled on the National Institutes of Health (NIH) protocols 

09-H-0239 (Clinicaltrials.gov: NCT01191853) and 12-H-0103 (www.clinicaltrials.gov: 

NCT01578317). Subjects enrolled in 09-H-0239 received the 2009 seasonal influenza  

vaccine (Novartis), and the 2009 H1N1 pandemic (Sanofi-Aventis) vaccines, both  

without an adjuvant. Subjects in 12-H-0103 received a vaccine formulated with the 

adjuvant AS03 containing avian influenza strain H5N1 A/Indonesia/05/2005 (GSK). In 

both cohorts, virus neutralizing antibody titers assessed using a microneutralization 

assay were determined as previously reported. The highest titer that suppressed virus 

replication was determined for each strain in the 2009 inactivated influenza vaccine: 

A/California/07/2009 [H1N1pdm09], H1N1 A/Brisbane/59/07, H3N2 

A/Uruguay/716/07, and B/Brisbane/60/2001 or for AS03 adjuvanted influenza vaccine, 

H5N1 A/Indonesia, clade 2.1. High and low antibody responders to the unadjuvanted 

vaccination were defined using the adjusted maximum fold change (AdjMFC) which 

adjusts the fold change for the baseline antibody titer (methodological details in the 

supplementary methods of our previous report39). In the unadjuvanted cohort, n=10 high 

responders and n=10 low responders were selected for CITE-seq profiling. All subjects 

were analyzed pre–vaccination, with a subset of 8 and 12 donors profiled on days 1 and 

7 post-vaccination also split evenly between high and low responders. In the adjuvant 

cohort, n=6 subjects with robust titer responses were selected for CITE-seq.  
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CITE-seq profiling peripheral blood mononuclear cells  

We optimized a custom CITE-seq antibody panel of 87 markers using titration 

experiments and stained cells with a concentration of antibody appeared to saturate 

ligand of the cell population with the highest marker expression, or used the 

manufacturers recommended concentration when below saturation. We stained the 52 

PBMC samples across three experimental batches using a single pool of which were 

combined in the optimal concentration and concentrated in an Amicon Ultra 0.5mL 

centrifugal filter by spinning at 14,000 x g for 5 minutes. Three aliquots of 12µL from 

the 36µL volume of optimized antibody mixture was used on 3 subsequent days to 

minimize between experiment technical variability. Frozen PBMC vials from each 

donor were washed in pre-warmed RPMI with 10% FBS followed by PBS. 1x106 cells 

from each sample were stained with a hashing antibody98 simultaneously with 1µL FC 

receptor blocking reagent for 10 minutes on ice. After washing the hashing reaction 3 

times in cold PBS, cells were counted and pooled in equal ratios into a single tube and 

mixed. The sample pool was concentrated to 5x106 cells in 88µL of staining buffer. 

12µL of the concentrated optimized 87 antibody panel was added to stain cells (total 

reaction volume 100µL) for 30 mins on ice. After washing cells, we diluted cells to 

1400 cells / µL, recounted 4 aliquots of cells and 30µL of the stained barcoded cell pool 

containing cells from all donors was partitioned across 6 lanes of the 10X Genomics 

Chromium Controller for each of the 3 batches for 18 total lanes. We proceeded with 

library prep for the 10X Genomics Chromium V2 chemistry according to the 

manufacturer’s specifications with additional steps to recover ADT and HTO libraries 

during SPRI bead purification as outlined in the publicly available CITE-seq protocol 

https://cite-seq.com (version 2018-02-12). We clustered Illumina HiSeq 2500 flow cells 

with V4 reagents with pooled RNA, ADT and HTO libraries in a 40:9:1 ratio (20µL 

RNA, 4.5 µL ADT, 0.5µL HTO). Libraries were sequenced using the Illumina HiSeq 

2500 with v4 reagents. 

 

CITE-seq data bioinformatic alignment and sample demultiplexing  

Bcl2fastq version 2.20 (Illumina) was used to demultiplex sequencing data. Cell Ranger 

version 3.0.1 (10x Genomics) was used for alignment (using the Hg19 annotation file 

provided by 10x Genomics) and counting UMIs. The fraction of reads mapped to the 

genome was above 90% for all lanes and sequencing saturation was typically around 
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90%. ADT and HTO alignment and UMI counting was done using CITE-seq-Count 

version 1.4.2. We retained the “raw” output file from Cell Ranger containing all 

possible 10X cell barcodes for each 10X lane, and merged the CITE-seq-count output. 

For each 10X lane, barcodes were concatenated with a string denoting the lane of origin 

and data for ADT, HTO and mRNA. We then utilized combined sample demultiplexing 

to assign the donor ID and timepoint to each single cell. Both the timepoint and 

response class were identifiable based on the hashing antibody. The first round of 

demultiplexing was carried out via cell hashing antibodies. The union of singlets 

defined by the multiseq deMUTIplex procedure324 and Seurat’s HTODemux function 

were retained for further QC. Negative drops identified by HTODemux were retained 

for further QC and use in denoising and normalizing protein data. The second round of 

sample demultiplexing was carried out via Demuxlet99 to assign the unique donor ID by 

cross-referencing unique SNPs detected in mRNA single cell data against a vcf file with 

non-imputed illumina chip based genotype data from the same donors. Demuxlet 

provided an additional round of doublet removal via an orthogonal assay (mRNA) to 

antibody barcode (HTO) based demultiplexing thus providing further data QC. Only 

cells that met the following conditions were retained for further downstream QC, 

normalization and analysis: 1) The cell must be defined as a “singlet” by antibody 

barcode based demultiplexing and by demuxlet. 2) The identified donor from demuxlet 

must match one of the expected donors based on cell hashing. Cells were then further 

QCd based on mRNA using  calculateQCmetrics function in scater325. Cells were 

removed that had with greater or less than 3.5 median absolute deviations from the 

median log mRNA library size.  

 

mRNA and surface Protein count data normalization 

We denoised and normalized ADT data using an open source R package we developed 

for this work called dsb100 which removes noise derived from ambient unbound 

antibodies and cell to cell technical noise. We used function DSBNormalizeProtein with 

default parameters. We normalized mRNA on the entire dataset with the normalizeSCE 

and multiBatchNorm functions from scran326 using library size-based size factors. 

Various analysis utilized aggregated mRNA data which was separately normalized for 

analysis at the subset level as a “pseudobulk” library; single cell mRNA data were also 

rescaled for specific analysis as outlined below.  
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Protein-based clustering and cell type annotation   

Using protein to define cell type facilitated improved interpretation of transcriptome 

differences between vaccination groups. Cell types were defined with statistically 

independent  information, protein, from transcriptome data being modeled within each 

cell type (Fig. 1a). We clustered cells directly on a distance matrix using the parallelDist 

package calculated from the non-isotype-control proteins all cells using Seurat’s 

FindClusters function using parameters:  res =1.2, modularity.fxn = 1, algorithm = 3 

(SLM273). We annotated cell types in the resulting clusters post hoc based canonical 

protein expression in immune cell populations. This procedure improved separation of 

known immune populations compared to compressing protein data using principal 

components as commonly done for higher dimensional mRNA data (data not shown). 

Analysis of unadjuvanted vaccination responses was first done blind to the adjuvanted 

cohort data. We thus first applied high dimensional clustering of the unadjuvanted 

cohort and annotated cell types with additional manual gates to purify canonical cell 

populations such as memory and naïve T cells. We next merged unadjuvanted and 

adjuvanted cohort cells and used annotations to guide combined clustering annotation, 

again manually refining cell populations using biaxial gating scripts in R to purify cell 

some cell populations. For annotation, the distribution of marker expression within and 

between clusters was compared using density histogram distributions of marker 

expression across clusters at the single cell level, biaxial marker distribution and median 

and mean aggregated protein expression across clusters.  

 

Hierarchical transcriptome variance deconstruction to intrinsic individual, cell type and 

vaccine effects  

To estimate the contribution of intrinsic and experimental factors to the total variation 

in expression of each gene, we used the variancePartition package. The set of models 

used for estimating variance fractions are distinct but related to those used for testing 

differential expression and contrast vaccination effects within subsets (see below). We 

first aggregated data by summing expression for each individual, timepoint and cell 

type. The normalized aggregated expression was used to model the mean variance 

relationship using observation level weights using voom. Mixed effects linear models of 

the expression of each gene across the aggregated libraries were then fitted using lme4. 
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For example, for a given gene “y” the total variance was defined by 780 measurements 

derived from the 58 PBMC deconvolved into 15 protein-based cell types tested. The 

model fit to each gene “g” was:  

 

𝑔	 = 	K𝑋M
M

𝛽M +	K𝑍P𝑎P
P

+	𝜀S		 

 

Where X and Z are the matrices of fixed and random effects respectively, and random 

effects are modeled with a Gaussian distribution and errors incorporate voom weights.  

𝑎P	~	𝑁(0, 𝜎V=) 

       𝜀S~	𝑁W0, 𝑑𝑖𝑎𝑔W𝑤S[𝜎\=[ 

The variancePartition package then incorporates both fixed and random effects in 

calculating the fraction of variation attributable to each variable in the model. For 

example, the variance in g attributable “subjectID” denoting the subject of origin which 

was modeled as a random effect is equal to:  

𝜎S]^_M`abcd= =
𝜎efghijklmn	
=

∑ 𝜎ei	
=

M +	∑ 𝜎Vp	=
P +	𝜎`=

		 

The denominator in the fraction above is the total variance of gene g, and each variable 

in the model contributes a fraction of the total variance which together always sum to 1. 

In the first model above, age sex, subjectID, timepoint, response, and a cell type and 

timepoint interaction term were included with categorical variables as random effects as 

required by the variancePartition framework. A second set of models fit within each cell 

type increased the apparent variance explained by the experimental factors independent 

of major cell type specific expression driving gene variation. This model included age 

sex, subjectID, timepoint, and response/vaccine group (unadjuvanted group high vs low 

responders, or AS03 group) and an interaction term for time and group.  

 

Within cell type linear mixed effect models of vaccination effects on gene expression 

We next used linear mixed models to test vaccination effects while adjusting for 

intrinsic and individual level variation. Gene expression counts were aggregated within 
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each protein based cell type by summing counts for each sample. The lowest frequency 

cell types without representation across individuals and time relative to vaccination 

(e.g., HSCs, donor-specific cell types, or plasmablasts which were mainly detected on 

day 7) were excluded from this analysis. Three main analysis were carried out to model 

gene expression within each cell type to estimate the following vaccination effects over 

time across individuals: 1) unadjuvanted subjects day 1 vs baseline, 2) unadjuvanted 

subjects day 7 vs baseline, 3) A contrast of the difference in day 1 fold change between 

unadjuvanted and adjuvanted subjects in a combined model. All models were fit with 

the 'dream' method71 which incorporates precision weights73 in a mixed effects linear 

model fit using lme472. The models included a random intercept for subject ID to adjust 

for variation in baseline expression and non-independence of repeated measures from 

the same individuals. Models For models 1 and 2 above (unadjuvanted vaccination 

effects) we fit the following model: gene ~ 0 + time + age + sex + (1|subjectID).  

The fitted value for expression y of each gene g corresponds to: 

	𝑦S = 𝛽qS +K𝑋M
M

𝛽M + 𝜀S	 

With variables time, age and sex represented by covariate matrix 𝑋. The 𝛽q  term 

corresponds to the varying intercept for each donor represented by the (1|subjectID) 

term. This models variation across subject baseline expression 𝑆q around the average 𝛾q 

using a Gaussian distribution with standard deviation 𝜏S= . Errors 𝜀S  incorporate 

precision weights 𝑤S calculated using the function voomWithDreamWeights as below: 

𝛽qS = 𝛾q + 𝑆q 

𝑆q~	𝑁W0, 𝜏S=[ 

𝜀S~	𝑁W0, 𝑑𝑖𝑎𝑔W𝑤S[𝜎\=[ 

 

In this model the day 1 or day 7 effect across subjects was the time effect from the 

model. The effect size was then used to rank genes for enrichment testing for each cell 

type.  

Model 3 was specified as gene ~ 0 + group + age + sex + (1|subjectID). The “group” 

variable corresponds to a combined factor representing the vaccine formulation received 

(adjuvanted vs unadjuvanted) and timepoint (baseline or day 1 post vaccination). with 4 
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level: “d0_AS03”, “d1_AS03”, “d0_unadjuvanted”, “d1_unadjuvanted”. A contrast 

matrix 𝐿v`wbx  corresponding to the difference in fold changes between adjuvanted and 

unadjuvanted subjects was applied to the fitted values:  

𝐿v`wbx = [		−1 1 1			−1 0 0		] 

With the first four columns representing the group factor and the two 0s representing 

age and sex effects. The contrast fit outputs the difference in fold change after adjusting 

estimates for age, sex and donor variation with positive effects representing increased 

fold change in the adjuvant group compared to the unadjuvanted group. This also 

captures genes with opposite effects in the two groups, for example, upregulation in the 

AS03 group and downregulation in the nonadjuvanted subjects.  

 

Transcriptome data was uniformly processed for all fitted models above. Aggregated 

(summed) single cell UMI counts were normalized within each protein based cell type 

using the trimmed means of M values method. Genes were retained which had a pooled 

count per million above 3 using the edgeR filterByExprs function; cell type specific 

gene filtering removed genes non expressed by each lineage from analysis ensured the 

model assumptions used to derive precision weights and account for the mean variance 

trend were met. We verified the log count per million vs. voom fitted residual square 

root standard deviation had a monotonically decreasing trend within each cell type. 

Models were fit with wrappers around functions, dream, and eBayes from the 

variancePartition package. For the AS03 validation cohort, pre normalized data were 

downloaded from the study supplemental data and a similar model to model 3, 

contrasting the difference in fold change was fit with a contrast again using a donor 

random intercept.  

 

Enrichment testing of vaccination effects within cell types using hypothesis sets and 

unbiased pathways   

To test enrichment of pathways based on the estimated gene coefficients corresponding 

to the three vaccination effects defined above, we performed gene set enrichment 

analysis using the fgsea327 package splitting monte carlo algorithm. Genes for each 

coefficient (i.e. models 1-3) and each cell type were ranked by their effect size, (the 

empirical Bayes moderated signed z statistic), corresponding to pre vs post vaccination 
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or the difference in fold change for model 3. For day 1 enrichment, a set of 5 signatures 

derived from bulk transcriptome profiling influenza vaccination (see supplementary 

table), and an additional 25 pathways curated from public databases were tested. For 

Day 7 and the difference in fold change between adjuvanted and unadjuvanted subjects, 

an unbiased set of pathways were tested from Li et al. Blood Transcriptional modules88, 

MSigDB Hallmark, reactome and Kegg databases. Individual gene subsets, for example 

category and pattern genes not based on a full ranked list were tested for enrichment 

using enrichr190. 

 

Derivation of the high responder baseline immune setpoint network  

To define cell phenotypes robustly associated with high vs low responders to the 

unadjuvanted vaccine at baseline, we used limma70 to fit a linear model of antibody 

response (high vs low) adjusting for age sex and batch (e.g. in R symbolic notation, 

gene ~ AdjMFC + age + sex + batch) as fixed effects on aggregated (summed) data for 

each cell type, similar to models above without varying effects for subject ID, i.e.:  

𝑦S =K𝑋M
M

𝛽M +	𝜀S 

Errors incorporated voom weights as above. Gene coefficients for each cell type 

corresponding to model adjusted empirical Bayes regularized estimates for high vs low 

responder effect at baseline were input into gene set enrichment analysis against the 

unbiased set of pathways described above. We then calculated the average module z 

score115 using log counts per million from each cell type of the high responder 

associated cell phenotypes (using only high responder associated leading edge genes), 

resulting in a matrix of baseline normalized expression of pathways across 20 

individuals (10 high and low responders) for each cell type specific signal. We next 

tested for phenotypic coupling of these signals within and between cell types by 

calculating the spearman correlation and correcting p values with the FDR method. We 

noticed within the same cell type, pathway enrichments could sometimes be driven by a 

similar shared set of genes. We therefore calculated the Jaccard similarity coefficient of 

each pairwise enrichment signal (leading edge genes driving the high vs low responder 

difference), within each cell type, and adjusted intracellular correlation effect sizes such 

that they reflected “shared latent information” (SLI) by subtracting the Jaccard 

similarity index from the Spearman correlation coefficient 𝜌:   
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𝑆𝐿𝐼	 = 	𝜌 −		
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵			 

For example, given enriched pathways A and B within a cell type, if at one extreme, 

these two pathways are driven by the same exact shared 10 leading edge genes, the 

Spearman 𝜌 of their normalized expression would be equal to 1, yet this apparent 

correlation is arbitrary since the two pathways reflect the same genes. However, the 

shared latent information would be equal to 0 because the Jaccard similarity of the two 

sets is also equal to 1 (since the leading edge genes from the enrichments are also the 

same). The remaining correlation strength reflected by SLI thus represents the 

phenotypic coupling of intracellular states across individuals due to another latent factor 

besides artifactually sharing similar driving genes. For inter-cellular correlations 

between two distinct cell types, we do not subtract the Jaccard similarity of gene 

content from 𝜌 as we consider the same genes to be distinct signals when measured in 

different cell types. We further constructed a sub network from a subset of cell types 

forming the high responder baseline setpoint. Only correlations with adjusted p values < 

0.05 were retained and a weighted undirected network was constructed using igraph, 

retaining only the strongest links above the median weight (with weights incorporating 

the SLI metric described above). Each node (high responder cell phenotype) was also 

correlated across individuals with the day 7 fold change of a gene expression signature39 

reflective of plasmablast activity derived from bulk microarray data from the same 

subjects and select high degree nodes were highlighted in the text.  

 

Single-cell mixed-effect models of gene expression  

Single cell mixed effects models were used to test the early kinetics of baseline states 

enriched above and select AS03 associated signatures within innate subsets.   

Early kinetics of baseline associated cell phenotypes. Each cell type specific phenotype 

enriched in high vs low responders in the aggregated linear model described above were 

scored in single cells from subjects on day 0 and day 1 as the average expression of the 

specific leading edge genes enriched in high vs low responders. The single cell module 

scores were fitted with a linear mixed model for each cell type to 1) re-test the baseline 

association at the single cell level and 2) to test their post vaccination effect size within 

the same cell subset. These models estimated variation at the single-cell level instead of 

at the individual donor aggregated level. Otherwise they correspond to similar models  



 

 

 

3—104 

as described above fit using lme4, with a donor random intercept, without voom 

weights. Two models were tested with highly concordant effect sizes, 1) a parsimonious 

model of time relative to vaccination with a donor random effect and 2) a more complex 

model including the time relative to vaccination, the number of cells per individual 

sample for a given cell type, age, sex and a donor random effect. Normalized expression 

of each module was standardized within each protein based subset by subtracting the 

mean and dividing by the standard deviation of the module score across the cell type. 

After fitting models, the baseline high vs low responder effect and the day 1 vs baseline 

effect sizes and standard errors across subsets was calculated using the emmeans 

package with a custom contrast. All models were checked for convergence criteria.  

AS03 specific innate cell subcluster expression of select modules. Monocyte and mDC 

combined protein + mRNA joint sub-clusters from the adjuvant cohort were tested for 

expression of AS03 specific modules derived from the aggregated model and gene set 

enrichment. The cell type specific leading edge genes were scored as above and fitted 

using the formula module score ~ 0 + timepoint + subcluster + subcluster:timepoint + 

(1|subjectid). This model was fitted across all monocytes to allow the vaccination effect 

to vary by subcluster while modeling variation across donors. The vaccination effect on 

module expression conditional on subcluster and the day 1 vs baseline effect was 

calculated using the emmeans package.  

 

AS03 Innate cell sub cluster association with vaccination 

To test the association of innate cell sub cluster with vaccination effects, we fitted an 

aggregated binomial mixed effects model. The model formula n/total ~ time*cluster + 

(1|subjectid) was fit using lme4 with the glmer function (family = ‘binomial’) and 

weights parameter equal to the total number of cells from each donor. This model 

enabled estimation of the proportion p of cells in each cluster c from each subject S 

belonging to each timepoint t accounting for within-donor replicated cells (i.e., 

pseudoreplication) in each cluster taking the form:  

𝑙𝑜𝑔𝑖𝑡(𝑝a) = 𝛽q� + 𝑐𝛽8H + 𝑡𝛽=H + 𝑐𝑡𝛽�H +	𝜀H	 

𝛽q� = 𝛾q + 𝑆q 

𝑆q~	𝑁W0, 𝜏H=[ 
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𝜀H~	𝑁(0, 𝜎\=) 

The log odds of a given sub cluster being increased in frequency post vaccination were 

calculated using the emmeans package.  

 

Monocyte differentiation and perturbation pseudotime analysis 

To construct a combined monocyte differentiation and perturbation single cell map we 

used the DDR tree algorithm with monocle2. The trajectory was constructed using the 

genes that changed as a function of time (q value <0.15 using the differentialGeneTest 

in monocle, ribosomal genes and genes expressed in less than 15 cells removed). The 

DDRtree algorithm was implemented using the monocle function reduceDimension 

with arguments residualModelFormulaStr = subjectID and max_components = 2 and 

pseudotime calculated with function orderCells. Independently of the genes used to 

construct the trajectory we then tested the genes from the mixed effects model of 

vaccination effects from monocytes (specific leading edge genes from 'reactome 

interferon signaling', 'GO IL6 PRODUCTION', 'reactome IL4 and IL13 signaling', 

'HALLMARK inflammatory response', 'KEGG JAK STAT signaling') for branch 

dependent differential expression using the BEAM function from monocle. Select genes 

were highlighted and categorized based on their expression dynamics along real time 

and pseudotime. 

 

CyTOF cell stimulation of high and low responder baseline cells  

Samples were thawed in a 37°C water bath and washed twice with warmed complete 

media with Universal Nuclease (Pierce) added. Cells were then washed a final time and 

resuspended in complete media. 1 million cells per condition were added to individual 

wells and rested in a tissue culture incubator for 2 hours (37°C, 5% CO2). Samples were 

then stimulated with either PMA/Ionomycin ((final concentration [10 

ng/mL])/([1µg/mL]); Sigma-Aldrich), LPS (final concentration [1µg/mL]; Sigma-

Aldrich), IFN-a (final concentration [10,000U/ml], PBL Assay Science), or left 

unstimulated. After 15 minutes at 37°C, samples were fixed with paraformaldehyde 

(2.2% PFA final concentration) for 10 minutes at 25°C. Samples were washed twice 

with Maxpar Barcode Perm Buffer (1X concentration; Standard Biotools). Samples 

were then barcoded with Cell-ID 20-Plex Pd Barcoding Kit (Standard Biotools) and 
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incubated at 25°C for 30 minutes. Samples were then washed twice with Maxpar Cell 

Staining Buffer (Standard Biotools) and combined into corresponding barcoded batches 

of 5 samples (4 conditions per sample) and washed a final time with Maxpar Cell 

Staining Buffer. Samples were then stained with a titrated antibody-panel for 

extracellular markers (Supplementary Table) for 30 minutes at 25°C. After staining, the 

cells were washed twice with Maxpar Cell Staining Buffer and permeabilized in 

methanol (Fisher Scientific) overnight at -80°C. The next day, samples were washed 

twice with Maxpar Cell Staining Buffer, and stained with a titrated panel of antibodies 

for intracellular signaling markers (Supplementary Table) at 25°C for 30 minutes. 

Samples were then washed twice with Maxpar Cell Staining Buffer, and labeled with 

Cell-ID Intercalator Ir ([1:2000] in Maxpar Fix-Perm Buffer; Standard Biotools) 

overnight at 4°C. The following day, samples were washed twice with Maxpar Cell 

Staining Buffer and resuspended in 500µL freezing media (90% FBS (Atlanta 

Biologicals) + 10% DMSO (Sigma-Aldrich), and stored at -80°C until acquisition. The 

day of acquisition, samples were thawed and washed twice with Maxpar Cell Staining 

Buffer and then once with Cell Acquisition Solution (Standard Biotools) before being 

resuspended in Cell Acquisition Solution supplemented with 10% EQ Four Element 

Calibration Beads at a concentration of 6 x 105 cells/mL (to approximate 300 

events/sec). Samples were acquired on the Helios system (Standard Biotools) using a 

WB Injector (Standard Biotools). After acquisition, samples were normalized and 

debarcoded using the CyTOF Software’s debarcoder and normalization tools (Standard 

Biotools). The panel and protocol were adapted for use at CHI from the Stanford 

HIMC. The phosphor markers driving the stimulated phenotype and responding cells 

were automatically defined using the HDStIM R package316. The median 

phosphomarker intensity for each individual sample and cell type and stimulation was 

calculated and modeled with a mixed effects model adjusting or batch and using a 

random effect for donor ID. The difference in fold change between unstimulated and 

stimulated cells was calculated using a custom contrast with the emmeans package.  

 

Code availability  

All code to replicate the analysis in this paper including all (Figures is available in the 

following repository: https://github.com/NIAID/fsc (not yet public). The computational 

framework used in this paper is available as an R package: 
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https://github.com/MattPM/scglmmr. This package was created to implement mixed 

effects models at the aggregated and single cell level from single cell genomics 

perturbation experiment data with repeated measures multi individual nested group 

designs.  
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4 CONTRASTING AUTOIMMUNE AND 
TREATMENT EFFECTS REVEALS BASELINE 
SET POINTS OF IMMUNE TOXICITY 
FOLLOWING CHECKPOINT INHIBITOR 
TREATMENT 

This work is posted on BioRxiv 

doi.org/10.1101/2022.06.05.494592 

4.1 Abstract 
Immune checkpoint inhibitors (ICIs) have changed the cancer treatment landscape, but 

severe immune-related adverse events (irAEs) can trigger life-threatening autoimmunity 

or treatment discontinuation. Uncovering immune phenotypes associated specifically 

with irAEs but not antitumor immunity could help mitigate treatment discontinuation 

and improve clinical outcomes. We carried out simultaneous transcriptome and surface 

protein profiling of blood immune cells from thymic cancer patients before and after 

treatment with the anti-PD-L1 antibody avelumab. All patients had antitumor responses, 

yet a subset developed severe myositis. Our analytical approach disentangled 

phenotypes linked to treatment responses versus irAEs and identified a temporally 

stable, pre-treatment immune set point associated with irAEs consisting of correlated 

innate and adaptive cell phenotypes, including genes downstream of mTOR in T-cell 

subsets. Together these findings suggest pre-treatment biomarkers of irAEs in thymic 
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cancer patients and raise the prospect of therapeutically dampening autoimmunity while 

sparing antitumor activity in cancer patients treated with ICIs. 

 

4.2 Introduction 
Immune checkpoint inhibitors (ICIs) have demonstrated durable benefit and improved 

survival in a subset of patients with advanced cancers328. However, this therapeutic 

benefit comes with a risk of immune-related adverse events (irAEs), common side 

effects of checkpoint inhibitor therapy ranging in frequency between around 50–90% 

depending on the type of cancer and checkpoint inhibitor329–331. These autoimmune 

reactions can be life-threatening, and can affect almost any organ system, with the most 

common symptoms being rash, pruritus, fatigue, and diarrhea331. While a majority of 

irAEs can be safely managed by discontinuing ICI treatments and/or giving low-dose 

steroids, some patients require high-dose steroids or anti-cytokine agents332,333 which 

can decrease the antitumor effect of ICIs. Patients experiencing mild or moderate irAEs 

can be re-challenged with ICIs under close monitoring334; however, the risk of 

developing a subsequently fatal irAE often precludes continuation of treatment for 

patients developing severe autoimmunity. There is thus an urgent need for unbiased 

identification of molecular phenotypes associated with irAE risk to help inform 

potential biomarkers and treatment strategies to dampen autoimmune effects while 

sparing antitumor immunity335.  

Factors contributing to autoimmunity versus antitumor immunity in patients receiving 

ICIs remain unclear336. Immune inhibitory receptors targeted by these drugs play 

essential roles in maintaining self-tolerance, as documented in patients with germline 

mutations affecting these receptors and in transgenic mouse models lacking immune 

checkpoint inhibitory receptors337–339. Inhibition of negative feedback on immune 

activation by ICIs may thus cause autoimmune reactions in cancer patients by 

exacerbating pre-existing clinical or subclinical autoimmunity by increasing the 

probability of loss of immune tolerance340. IrAE rates are higher in patients treated with 

dual ICIs, yet single-agent ICI treatment is sufficient to cause autoimmunity in around 

20% of patients341,342. Individual variations in baseline (i.e., pre-treatment) immune 

status (or “set points”115,278,343) may, for example, provide different levels of buffering 

(or pre-disposition) to develop adverse events. For example, a single “hit” to certain 
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regulatory pathways might be sufficient to cause pathology in some (e.g., those with 

less buffering capacity344) but not all patients. Identifying baseline pre-treatment 

molecular signatures and states associated with irAE outcomes could uncover 

biomarkers of immune toxicity with which to select patients for treatment and inform 

potential treatment interventions. A recent study shed light on the local reaction of T 

cells at the onset of irAE-related colitis, finding cycling T cells and alterations in T 

regulatory cells associated with irAEs345. Another report suggested baseline activated 

CD4 memory T-cell abundance could serve as a biomarker of post-treatment severe 

irAEs92. Despite these advances, previous unbiased systems-level analyses often used 

profiling approaches that have limited cellular resolution. Furthermore, statistical 

assessment of differences between signatures associated with irAEs and antitumor 

responses is lacking, but is critical for understanding the delicate interplay and shared 

mechanisms between ICI-induced autoimmunity and antitumor immunity. Biomarkers 

that specifically mark irAEs but not antitumor immunity could help in the development 

of interventional strategies with minimal impact on the efficacy of ICI therapies. 

4.3 Study Design 
We set out to contrast treatment-associated and irAE-associated immune system states 

by profiling peripheral immune cells of patients with metastatic thymic cancer before 

(baseline) and after administration of the anti-PD-L1 antibody avelumab (at the time or 

irAE development, or its equivalent in patients not developing irAE). We chose to study 

irAEs in thymic cancer for the disease’s stable tumor cell-intrinsic property (low tumor 

mutation burden), good response to ICIs, and high incidence of irAEs346,347. Prior 

studies in other cancers using cytometry348 and single-cell RNA sequencing349,350 

investigated responses to ICIs, yet the transcriptional state and phenotype of well-

resolved immune cell populations before and after treatment are understudied, 

particularly involving contrasting treatment- and irAE-associated effects. We addressed 

these gaps by using CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by 

Sequencing), a multimodal technique combining surface protein phenotyping and 

transcriptome profiling simultaneously in single cells, followed by mixed-effects 

modeling to identify cell subset-specific signatures associated with the development of 

irAE but not with clinical outcome. Our CITE-seq antibody panel targeted 82 surface 

proteins and included 4 isotype controls, as previously described115. Nine patients were 

chosen for CITE-seq analysis; all had clinically similar antitumor activities based on 
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RECIST (Response Evaluation Criteria in Solid Tumors). While no patients had 

clinically observable autoimmune disease at baseline, five individuals developed 

myositis after an average of two doses of avelumab. Paired peripheral blood 

mononuclear cell (PBMC) samples from baseline (pre-treatment) and at the onset of 

irAEs post-avelumab (two cycles post-avelumab for the non-irAE group) were used for 

analysis. Our dataset included more than 190,000 cells from 18 PBMC samples, with 

two timepoints per patient (Fig 4.1a) and a median of 10,804 cells per sample (Fig 4.2a-

c).  

 

Figure 4.1 Multimodal single-cell analysis deconvolves transcriptome states associated 
with irAEs and ICI treatment within protein immune phenotypes 
a. Top: hypothesized schematic illustrating different types of immune cell states and 
how those measured parameters reflect the clinical phenotypes: the antitumor response 
effects (white-blue) and autoimmune toxicity (green-red). Red lines represent the group 
of patients developing irAEs after treatment and blue represents those without irAEs. 
Cell states from left to right: State type 1: perturbed by treatment across all patients 
which can be associated with antitumor effects but also with autoimmune toxicity; State 
type 2: increased post-treatment in the irAE group (these could reflect a higher fold 
change in the irAE group or oppositely regulated states); State type 3: baseline 
differences in the irAE group exhibiting temporal stability over the course of treatment, 
which is associated with irAEs but not treatment effects. Middle: transcriptome 
comparisons carried out within protein clusters to identify different cell states 
corresponding to the states above. Bottom: study scheme devised to define cell state 
differences above: eighteen PBMC samples from nine patients with thymic cancers 
were profiled at baseline and post-avelumab treatment; five of them developed an irAE 
(myositis) post-treatment and the other four patients did not develop an irAE. PBMC 
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samples collected before treatment (baseline) and post-avelumab (at the onset of irAE 
and matched time points in the non-irAE group) were profiled using CITE-seq with a 
panel of 82 antibodies.  b.  CITE-seq surface protein expression map of PBMCs. Circle 
color is the mean dsb ‘denoised’ and normalized protein level; the scale of dsb values 
can be interpreted as the number of standard deviations above background noise. Circle 
size is the percentage of cells in the cluster that express the protein above the 
expression-positive cutoff of 3.5.   

 

4.4 High dimensional protein-based immune cell phenotyping 
Defining cell clusters and subsets with surface protein alone allowed us to identify cell 

type based on well-studied surface markers (Fig 4.1b, Fig 4.2d), thereby separating 

transcriptome measurements from cell type identity. This facilitated improved 

interpretation of transcriptome differences between outcome groups within cell clusters 

that were defined with statistically independent (protein) information from 

transcriptome data. We clustered cells using spectral clustering based on the denoised 

expression level of 82 surface proteins. This procedure identified 43 cell clusters 

spanning major cell lineages, including subsets of B cells, monocytes, dendritic cells 

(DCs), natural killer cells, and T cells (Fig. 4.1b, Fig. 4.2d). The substantial number of 

antibodies in our panel for marking T-lymphocyte phenotypes and cell states revealed 

significant heterogeneity within CD8+ and double negative (CD3+CD4–CD8–) T-cell 

subsets, with most of these clusters/phenotypes detected across donors (Fig. 4.2d).  
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Figure 4.2 Clinical and protein based immune cell clustering details  
a. Blood creatine kinase (CK) levels (y-axis) vs. time from the initiation of avelumab 
treatment in patients profiled with CITE-seq b. Sample multiplexing and CITE-seq 
experiment scheme. c. Left–Uniform manifold approximation projection (UMAP) of 
PBMC colored by main immune cell lineages with a subset of the map expanded (inset) 
containing the T cell subsets indicated in the box. Right–the distribution of the number 
of cells per subset for the clusters shown (top, main lineage, bottom, the T cell subsets 
shown in the bottom UMAP plot). d. CITE-seq dsb normalized and denoised surface 
protein expression from single cells in bi-axial plots with the corresponding cells in 
density plots colored by the spectral clustering annotation. The protein phenotypes align 
with known canonical cell types which enhances the interpretability of mRNA states 
associated with the clinical outcomes. 
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4.5 Statistical modeling of avelumab treatment and toxicity 
effects between patient groups 
Our analysis approach focused on defining cell states associated with irAEs decoupled 

from treatment response within immune cell types defined by protein. To this end, we 

applied statistical contrasts to identify changes of cell functional states due to three 

major effects: 1) ICI treatment effects–pre- vs. post-avelumab treatment effects shared 

across all subjects; 2) ICI-associated irAE effects–the difference in pre- vs. post-

treatment effect between irAE and non-irAE groups; and 3) baseline effects–differences 

in cell state prior to avelumab treatment between groups (analogously shown in Fig. 

4.1a). By subtracting treatment effects (both effects 1 and 2) from baseline differences, 

we further focused on baseline cell states associated with impending irAEs exhibiting 

temporal stability over the course of treatment; these cell states were thus uncoupled 

from ICI response effects. To accommodate our experimental design containing patients 

with repeated measurements nested in groups, we used weighted mixed-effects models 

at the single-cell level and on pseudo-bulk data aggregated within each cluster to model 

variations across donors over time and between outcome groups (see Methods). We 

tested enrichment of a pre-specified list of gene modules based on our hypothesis of 

pathways that could tune immune states related to irAEs and response in addition to 

carrying out unbiased analysis of 50 MSigDB Hallmark pathways.  

 

4.6 Defining immune checkpoint inhibitor treatment effects 
We first assessed cell type-specific avelumab treatment effects (Fig. 4.1a- State type 1) 

by identifying, within each cell cluster above, the transcriptional differences between 

post- vs. pre-treatment across patients. Transcriptional signatures of T-cell activation, 

interferon pathways, PD-1 signaling and T-cell exhaustion were elevated within 

multiple T-cell subsets (Fig. 4.3a). Activated CD38++  CD8+ T cells and naïve CD8+ T 

cells had the highest number of enriched pathways. In the CD38++ subset, upregulation 

of  T-cell activation and cell cycle signals included genes CDC25B, CDC27, MCM3, 

and CSK2 (Fig. 4.3a). Upregulation of GZMA, OAS1, IFITM2, LCK, MKI67, and 

PDCD1 in this subset driven by elevated activation protein CD38 was consistent with a 

proliferating effector phenotype (Fig. 4.3b). Interestingly, cell cycle states were 

enriched in the opposite direction (downregulated post-avelumab) in several other T-

cell subsets including CD8+ TEMRA and CD8+ naïve T cells  (Fig. 4.3a). Genes 
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driving pathway enrichments tended to be mutually exclusive among different cell 

clusters/subsets (as defined by the Jaccard similarity of the “leading edge” genes for 

each gene set/pathway; see Methods) (Fig. 4.4a). The presence of cell cycle signatures 

in CD38++ effector T cells post-avelumab treatment is reminiscent of phenotypes 

revealed in prior studies, e.g., those focusing on the dynamics of T-cell changes during 

ICI treatment350,351 and a study of ICI-induced colitis345. Together, our and others’ 

observations suggest that a proliferation signature of peripheral CD8+ effector T cells is 

coupled to ICI treatment responses.  

 

Figure 4.3 Avelumab treatment effects across individuals and specific to irAEs 
a. State type 1: treatment effects : gene set enrichment based on genes ranked by the 
pre- vs. post-avelumab treatment effect from donor-weighted pseudobulk models fit 
within protein based subsets. b. Selected genes from the CD38++CD8+ effector T-cell 
cluster in leading-edge genes of the enriched pathways shown. c. State type 2: 
difference in treatment effects between the irAE and non-irAE group: gene set 
enrichment.  d. Selected genes from the classical monocyte cluster with a treatment 
effect upregulated in the irAE group – genes include those with oppositely regulated 
directions (CD38 mRNA) or genes only perturbed in the irAE group (IL15). 

 

4.7 Defining treatment effects unique to immune related adverse 
events 
While ICI may trigger qualitatively similar responses in different patients, the 

quantitative extent of these responses may differ between irAE and non-irAE patients. 

To evaluate this possibility, we identified treatment response-associated irAE effects by 



 

 

 

4—116 

comparing the difference in post-treatment vs. baseline fold changes between the irAE 

and non-irAE groups (Fig. 4.1a, State type 2); this analysis identified 35 enrichments 

involving 14 cell types. Within classical monocytes in particular, interferon 

transcriptional signatures were highly enriched (Fig. 4.3c) and leading-edge genes in 

these pathway enrichments tended to be mutually exclusive (Fig. 4.4b). IL15 and 

interferon-simulated genes (ISGs) B2M, CD38 and STAT1 were oppositely regulated 

between groups from baseline to post-treatment (upregulated in the irAE group and 

downregulated in the non irAE group). These further suggested that interferon-

responsive monocytes were activated in the irAE group after treatment with avelumab 

(Fig. 4.3d). This IFN response in monocytes that is associated with irAEs may 

phenocopy the elevated interferon response states seen in inflammatory diseases such as 

lupus352, and has also been observed in patients with myositis353. In addition, cell 

cycle/proliferation signals were enriched post-treatment in the irAE compared to the 

non-irAE group in CD8 effector memory T cells (Fig. 4.3c).  
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Figure 4.4 Shared information in molecular phenotypes related to avelumab treatment 
and irAEs 

a. UpSet plot of the intersection of leading edge genes for cell state type I (treatment 
effect) in CD38++ CD8+ T cells shown in Fig 4.3a. b. As in (a) for classical monocyte 
enrichments shown in Fig 4.3c. c. An expanded version of the baseline cell state 
correlation map shown in fig 4.5d. Sample level baseline pseudobulk expression 
correlations of temporally stable baseline states associated with development of later 
irAE. Each box represents the Pearson correlation coefficient (two sided) of donor 
pseudobulk data with all correlations with FDR adjusted p value < 0.02 not shown.  
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4.8 A baseline metabolic transcriptional signature is associated 
with post-treatment irAEs independent of treatment effects 
We next searched for signatures of baseline (prior to treatment) immune states in 

patients who developed irAEs post-treatment. We focused on signatures uncoupled 

from avelumab treatment effects. We first identified baseline states associated with 

post-treatment irAEs, then subtracted enrichment signals associated with avelumab 

treatment (see Methods). This procedure resulted in a map of temporally stable cell 

type-specific signatures, or “set points”, associated with the post-treatment development 

of irAEs independent of treatment effects (i.e., those defined by Fig. 4.3a-d, State type 1 

and 2 in Fig. 4.1a). Inflammatory and metabolic signatures including mTOR and TNFα 

pathway genes were enriched within multiple cell subsets (Fig. 4.5a). DCs have known 

roles in modulating autoimmune and antitumor responses354 and both CD1chigh and 

CD1clow DCs in the irAE group appeared to have an elevated inflammatory signature 

at baseline, e.g., TGFB, TNFA, and inflammatory response pathway enrichments. They 

also displayed potential enhanced tissue migratory capacity given the enrichment of 

epithelial-to-mesenchymal transition genes,  including CD44, VIM, VCAN, THBS1, 

and SDC4 (Fig. 4.5a). These primed DC subsets were also elevated for several 

metabolic-related transcript differences, for example, involving mTORC1 signaling, 

hypoxia, and cholesterol homeostasis. Some of these inflammatory and metabolic 

signatures are also shared by CD8+ T cells, in particular memory cells re-expressing 

CD45RA (CD8+ TEMRA), which displayed elevated TNF signaling, hypoxia, 

cholesterol homeostasis, and mTOR signatures in the irAE group (Fig. 4.5a). By design, 

these phenotypes we uncovered were not enriched in the irAE group after avelumab 

treatment, where innate immunity and inflammatory signatures such as those associated 

with IFNs were more specific to CD14+ classical monocytes (Figs. 4.3c,d).   
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Figure 4.5 Baseline immune set points associated with irAEs 

a. Baseline gene set enrichment map based on genes ranked by weighted pseudobulk 
model effect size within each cluster comparing patients with eventual irAEs to those 
without irAEs. Red and blue indicate pathways positively and negatively enriched 
respectively in patients before avelumab treatment who developed an irAE after 
receiving avelumab. The pathway names (y-axis) highlighted in blue are from the 
MSigDB hallmark collection, and pathways in dark orange are curated gene sets based 
on a pre-study defined hypothesis (Supplementary Table 3). b. Average single cell 
expression of leading-edge genes from the Hallmark mTOR pathway baseline 
enrichment associated with the irAE group within the TEMRA cell cluster. Samples 
from both time points are ordered according to hierarchical clustering with complete 
linkage. c. The coefficient corresponding to baseline irAE vs. no-irAE (red) and the fold 
change across donors (tan) from a single-cell mixed-effects model of other mTOR 
signatures across CD8 T-cell subsets. Tan lines with a coefficient effect size near 0 are 
temporally stable; pathways with an effect size above 0 are associated with irAEs; error 
bars are 95% confidence intervals of the contrast applied to mixed-model fits.  d. 
Sample-level baseline pseudobulk expression correlations of temporally stable baseline 
cell states associated with development of irAEs after avelumab treatment. Each box 
represents the Pearson correlation coefficient (two-sided) of donor pseudobulk data with 
the FDR adjusted p-value (FDR adjustment across all temporally stable baseline 
enrichments, subset of states shown in correlation matrix) shown with asterisks. e. 
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Scatterplots of average donor expression for selected inter- and intracellular correlations  
shown in d.  

 

4.9 Correlated cell-state phenotypes underlie baseline set point 
signatures of irAEs 
Given the critical role of the mTOR pathway in tumorigenesis355 and autoimmunity356, 

we further examined the genes driving mTOR pathway enrichment within CD8 

TEMRA cells (Fig. 4.5a). These leading-edge mTOR genes (mTOR-LE) naturally 

clustered in all samples, independent of time points, into two clusters segregated by 

irAE status (Fig. 4.5b). The independence from time points confirmed that our 

procedure identified temporally stable enrichment signals that were stable between the 

pre- and post-treatment time points. Expression of mTOR-LE genes was elevated in 

thymic cancer patients compared to both the non-irAE group and healthy donors (n=20) 

assessed with the same CITE-seq panel within gated CD8 TEMRA cells (Fig. 4.6a-c). 

mTOR-LE genes such as SLC2A1, GAPDH, FADS1, FADS2, LDLR, and ADIPOR2 

(Fig. 4.5b) suggested this enrichment may reflect a metabolic state downstream of 

mTOR, since these genes are involved in glucose and lipid metabolism. Therefore, we 

further tested 6 distinct mTOR signatures covering different aspects of the pathway 

from public databases (Fig. 4.6c-e) by repeated differential expression models using a 

k-cell permutation approach (see Methods). All mTOR signals as well as the TNF 

pathway were consistently enriched in the irAE group in CD8 TEMRA, (Fig. 4.6d), 

suggesting the mTOR-LE signal may have reflected an immune state controlled in part 

by upstream mTOR signaling. We next wondered if this state could be shared by other 

cell types. Using a more sensitive model accounting for variation at the single cell level 

and modeling expression of the 6 mTOR pathways defined above (see Methods) 

revealed mTOR signatures elevated at baseline in the irAE group within double-

negative (DNT: CD4–CD8–), double-positive, and CD8+ subsets including CD8+ 

TEMRA, TEM, CD27–  naïve-like cells (Fig. 4.5c), while CD4 subsets were not 

enriched for mTOR pathways. Consistent with temporal stability of the original CD8 

TEMRA mTOR-LE signature, baseline elevation in the irAE group was uncoupled from 

treatment effects in these subsets (Fig. 4.5c, tan estimate and errors near 0). Notably, 

mTOR signatures were not upregulated in the irAE group within the activated CD8+ 

CD38++ T-cell cluster which had a post-treatment phenotype overlapping with 
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antitumor responses357 (see above Fig. 4.3a,b). To investigate molecular identity of 

these protein-based cell types independent of the irAE group differences, we integrated 

healthy donors’ and thymic cancer patients’ CITE-seq data into a joint CD8 T-cell map 

(Fig. 4.7a-d). CD8 TEMRA were distributed across multiple clusters including cluster 

1, which was enriched for mTOR-LE genes and expressed genes controlling terminal 

effector fate HOPX358,34 GZMH,359 and the transcription factor ZEB2360 (Fig. 4.7c).  

 

Figure 4.6 Robustness assessment of baseline signatures of irAEs 
a. Manually gating CD8 TEMRA cells from healthy donors and thymic cancer patients 
as CD3+ CD8+ CD62L- CD45RA+ CD27- based on dsb normalized protein 
expression. b. Average expression of the leading mTOR-LE gene signature in the 
manually gated subsets. c. Robustness assessment of mTOR signature enrichment in 



 

 

 

4—122 

irAE vs non-irAE thymic cancer patients and healthy donors; k=45 random cells were 
re-sampled from each donor to form a downsampled pseudobulk library the resampling 
procedure was repeated 100 times each followed by a full reanalysis of the weighted 
pseudobulk model with gene set enrichment based on effect size for the contrast 
indicated. Grey lines reflect the n=100 down sampled analysis with enrichment from the 
analysis using the full data (all cells from each donor) shown as the black line and the 
original enrichment signal from the TEMRA cluster in red. d. As in c; showing the full 
distribution of normalized enrichment scores across the k-cell permutation testing 
procedure. e. UpSet plot of mTOR signatures tested in (d) with gene membership in 
each module shown. 
 

To further characterize shared information between distinct baseline irAE-associated 

enrichment signals, we correlated baseline expression of enriched pathway leading-edge 

genes across subjects both within and between cell types (Fig. 4.5d, Fig. 4.4c). 

Supporting our hypothesis that CD8 TEMRA mTOR captured a more global irAE-

associated metabolic state, as reflected by mTOR’s elevation across different effector 

and naive CD8 subsets in the irAE group (Fig. 4.5c), CD8 TEMRA mTOR-LE 

expression correlated with other irAE-associated metabolic and inflammatory signaling 

pathways across subjects (top row of Fig. 4.5d). For example, the CD1c DC 

inflammatory signaling and TEMRA mTOR phenotypes were correlated across donors 

(inset in blue in Fig. 4.5e). The level of the TEMRA mTOR signal was correlated with 

TEMRA TNF signaling (Fig. 2e) and this TNF signal was associated with the level of 

innate-cell mTOR and inflammatory signaling (Fig. 4.5d,e). The irAE baseline innate 

inflammatory and metabolic phenotype appeared distinct from states related to 

interferon tone, as mDC interferon signaling was negatively enriched in the irAE group 

and negatively correlated with metabolic and inflammatory states across subsets. 

Together, these correlated cell phenotypes suggest stable inter- and intracellular 

rewiring of inflammatory and metabolic states comprising a shared immune set point of 

patients primed toward development of autoimmunity after treatment with avelumab. 
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Figure 4.7 Integrated T cell embedding with healthy donor and thymic cancer T cells  

a. CD8 T cells from the n=20 healthy donor cohort were used as a reference dataset on 
which to project thymic cancer patient cells to form an integrated CITE-seq healthy and 
cancer T cell map. Cells are colored by integrated assay clustering using Seurat based 
on 2000 genes regularized Pearson residuals values. The density of the TEMRA cells 
from the thymic cancer cohort are shown overlaying the integrated mRNA based 
clusters. The density of cells with mTOR score > 3 absolute deviations from the median 
mTOR signature score is shown second from right. The right-most UMAP is as above, 
but for the density of g2m phase score. b. The proportion of cells from each donor 
belonging to each cluster in the integrated clustering. c. Differential expression of 
markers between clusters based on regularized Pearson residuals with donor effect 
regressed out, ROC test implemented in Seurat. d. dsb normalized protein expression in 
clusters as in (c). 

 

4.10 Assessing irAE-associated T-cell signature in tissue-
localized T cells associated with ICI-induced colitis 
The circulating CD8+ T-cell set point signature we identified may phenotypically 

overlap with those found in tissues associated with adverse immune reactions. We 

investigated this further by assessing our CD8+ T-cell signatures in single-cell RNA 
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sequencing data obtained from a published study of CD8+ T cells isolated from 

colonoscopy biopsies of healthy donors (n=8) and patients with melanoma with (n=8) 

and without (n=6) active ICI-induced colitis345. We focused on eight CD8+ T-cell 

clusters defined by unsupervised clustering (Fig. 4.8a,b); three of these CD8 clusters 

were specific to the CD8+ T cells isolated from colitis lesions (Fig. 4.8c) as identified 

by a mixed effects frequency model comparing the colitis to the no colitis group, all of 

which had an effector phenotype based on mRNA expression (Fig. 4.8d). We further 

examined cluster 4 (“effector 1”) and cluster 10 (“effector 2”) as these had sufficient 

numbers of cells after aggregation across subjects (see Methods). Within these T-cell 

clusters, donors with colitis had higher relative expression of the mTOR-LE gene 

signature compared to T cells from either healthy donors or ICI-treated melanoma 

patients without colitis (Fig. 2.8e). Interestingly, BHLHE40, a member of our mTOR-

LE signature, is the gene with the most significant differential expression between ICI-

induced colitis vs. non-colitis in cluster 10 (effector cluster 2, data not shown). This 

gene is a crucial regulator of cytokine production associated with autoimmune 

responses361, which is consistent with the notion that the mTOR-LE gene signature 

reflects a “poised” metabolic/inflammatory phenotype. 
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Figure 4.8 Evaluation of blood irAE signatures in checkpoint inhibitor induced colitis 
colonic tissue T cells 
a. UMAP projection of CD3+ cells from melanoma and healthy colonic biopsies; colors 
indicate clusters derived from graph-based clustering based on 30 principal components 
from regularized Pearson residuals of 2000 genes. b. Average cluster expression of 
select genes used for annotation in Luoma et al. c. Structure of experiment data from 
Luoma et. al. 2020 (GSE144469) which profiled patients treated with combined 
checkpoint inhibitors who went on to have suspected colitis that was either confirmed 
on biopsy with overt colitis (red) vs. no evidence of colitis (blue) and healthy colon 
biopsies (grey) with CD3+ cells FACS sorted followed by single-cell RNA-seq. Bottom 
shows association testing using an aggregated binomial generalized linear mixed model 
of the association of cells from each cluster with the colitis vs. no colitis groups.  d. 
Expression of selected differentially expressed genes for each cluster of colonic T cells 
from a one cluster vs. all  ROC test (Seurat).  e. The average colitis T-cell expression of 
the mTOR-LE gene signature within effector CD8 T-cell clusters 10 and 4 across 
donors.  

 

4.11 Discussion of Chapter 4 results 
In this work we identify a set of highly interpretable multimodal molecular states 

associated with ICI response and adverse events. We found multiple cell functional 
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states linked to ICI response were also likely coupled to those involved in irAEs. 

However, patients with post-treatment irAEs shared a common baseline immune set 

point, reflecting elevated inflammatory tone and metabolic differences across the innate 

and adaptive immune systems. Our analysis suggested that this baseline set point may 

be tuned by common upstream regulators such as mTOR, which is known to regulate 

metabolic states such as hypoxia362. Given the role of mTOR inhibitors as both 

antitumor agents and suppressants of autoimmunity, our results provide the rationale for 

evaluating the concurrent use of mTOR inhibitors with ICI in an attempt to diminish the 

risk of developing irAEs while preserving the antitumor effects of ICI. Intriguingly, a 

case report of a renal allograft patient with melanoma treated with an ICI and an mTOR 

inhibitor found the antitumor effect could be preserved while the autoimmune toxicity 

could be limited363. However, further studies are needed to confirm these observations.  

Our study has several limitations. Multimodal single-cell profiling of more than 

190,000 cells created a high-resolution map of cell states, but the number of patients 

included in our study is limited and, due to experimental constraint at the time of this 

experiment, samples were split across two batches. We have previously found staining 

batch has limited impact on technical effects in CITE-seq data115,250. However, 

assessment of batch effects across sample groups was limited due to the small sample 

size confounding in this dataset. Future single-cell analysis of irAEs could include 

additional subjects to assess the generalizability of the molecular states we derived 

herein. The generalizability of these findings to other types of cancers and ICIs could 

also be assessed in future work, although we did find overlap in signals within tissue 

autoimmunity from melanoma patients treated with different ICIs. Finally, it will be 

interesting to link differences in immune cell states detected from blood with those at 

the tissue level from sites of involvement by the irAEs. While these clones would be 

difficult to trace in humans, lineage tracing mouse model systems could be informative 

in studying the origins of these cells. Together, our dataset, analysis, and curated results 

can serve as both a framework and a rich source of hypothesis-generating data to inform 

future precision immunotherapy research on biomarkers and treatment strategies for 

irAEs.   
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4.12 Methods – Chapter 4 
Clinical/sample collection  

Patients with advanced thymic cancers were enrolled in clinical trial NCT03076554 

approved by the NCI’s Institutional Review Board and received avelumab, an anti-PD-

L1 antibody, every two weeks. PBMC samples were collected before starting therapy, 

at the end of every treatment cycle, and at the onset of irAEs. No patients had any 

history of autoimmune disease prior to treatment.   

 

Multiplexed CITE-seq single-cell transcriptome and protein profiling  

Cells were thawed in RPMI with 10% FBS and washed and stained in 1xPBS with 

0.04% BSA. CITE-seq was performed as previously described in Kotliarov et al. using 

the same antibody panel. Donor cells were stained with sample barcoding antibodies98, 

washed, and pooled into a single tube; two staining batches were used to accommodate 

a greater number of samples than available barcode antibodies. Although a single batch 

design was planned using lipid indexing324, a subset of samples had red cells noticeable 

in the PBMC prep; we therefore used HTO staining in 2 batches due to unknown effect 

of residual RBC membranes on LMO staining (Supplementary Table 4). Pooled cells 

were stained with a concentrated optimized panel of 86 antibodies (including 4 isotype 

controls; anti-mouse (rather than anti-human) CD206 was incorrectly included in the 

panel and not considered in the analysis). The stained cell pool was then washed and 

prepared according to the 10X Genomics cells partitioned across eight lanes of the 10X 

Genomics chromium microfluidic instrument per staining batch. Sequencing libraries 

were prepared using the 10X Genomics 3’ assay with version 3 reagents. Antibody-

derived tag (ADT) libraries from sample barcode antibodies and surface phenotyping 

antibodies were prepared according to the publicly available protocol on cite-seq.com. 

Sequencing was performed on an Illumina NovaSeq system.  

 

Normalizing and denoising CITE-seq protein levels and protein-based clustering 

After sample demultiplexing and doublet removal based on sample barcoding 

antibodies, CITE-seq surface protein data were normalized and denoised using dsb100 to 

correct protein-specific background noise using ADT reads in empty droplets and 

correct technical cell-to-cell variations using isotype controls/models fitted to each cell. 
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Default dsb algorithm parameters  were used (denoise.counts = TRUE, 

use.isotype.controls = TRUE). The normalized values were then batch corrected using 

limma. Single cells were clustered using a Euclidean distance matrix formed from the 

normalized protein values as input to spectral clustering using Seurat version 3.1.5272. A 

total of 44 cell clusters were annotated based on protein expression.  

 

Analysis of aggregated transcriptome data within protein-based clusters  

Gene expression counts were aggregated into a pseudo-bulk library within each protein-

based cluster by adding counts for each sample x cell type into a summed count matrix, 

and cell types without representation (e.g., donor-specific clusters) were excluded from 

analysis. The aggregated counts for the n=18 samples across each cell type were 

normalized using the trimmed means of M values method364 and genes were retained 

which had a pooled count per million above 3 across sufficient samples based the edgeR 

filterByExprs function. Filtering genes in a cell type-specific manner removed genes 

from analysis unexpressed by a given cell type (e.g., genes specific to a different 

lineage) and ensured assumptions of the model to derive precision weights73 used to 

account for variations in sample quality/library size were met, i.e., the log count per 

million vs. fitted residual square root standard deviation had the expected monotonically 

decreasing trend within each cell type (see below).  

 

Estimating subject and group-level effects within protein-based clusters 

Target estimates of statistical analysis were treatment and group-level transcriptional 

effects within the protein-based clusters defined above. Models were fitted to single-cell 

and aggregated data (see below). To assess these effects, we contrasted fitted values of 

fixed and mixed effects linear models of gene expression within protein clusters. A 

contrast matrix L was constructed with a single combined factor variable group.time 

corresponding to irAE outcome group and time point relative to treatment with levels 1 

= irAE baseline, 2 = irAE post-avelumab, 3 = no irAE baseline, 4 = no irAE post-

avelumab (columns, below). The matrix was used to make the following comparisons 

(rows) based on fitted model values (see below) 1) ICI treatment effects–across all 

subjects, 2) ICI-associated irAE effects–the fold change difference between groups and 

3) baseline effects–the baseline difference between the irAE and non-irAE group. 
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The first two rows of contrast matrix above were applied to estimate 1) the coefficients 

for the treatment effect across all donors and 2) the difference in fold changes between 

the irAE and non-irAE groups from mixed-effect model fits. Mixed effects models on 

aggregated data to estimate treatment effects across donors and fold change differences 

between groups. Estimation of avelumab treatment effect across all donors and the 

difference in treatment effects between irAE groups was modeled with a mixed-effects 

model including a varying effect for subject ID to model variation in baseline 

expression. Models were fit using the formula f1 = gene ~ 0 + group.time + 

(1|subjectID) and fit models using the “dream” method71 as in Chapter 3.  

 

Modeling baseline states associated with development of irAE  

The third row of the contrast matrix above was used to estimate baseline differences 

using a fixed-effects model with limma with the function lmFit using voom73 precision 

weights as above in a fixed-effects model. The Empirical Bayes moderated t statistics 

for each gene comparing the irAE group to the non-irAE group were calculated using 

the limma70 eBayes function. After gene set enrichment (see below “Enrichment testing 

of hypothesis set and unbiased pathways in model contrasts”), we defined the subset of 

these baseline states associated with later irAEs which exhibited temporal stability over 

the course of treatment. The pathways enriched in the irAE group with adjusted p 

values < 0.01 were further filtered by removing any enrichments evidence of kinetic 

change (including weak evidence). For each enriched pathway within each cluster, if 

either the treatment across donors or the irAE-associated treatment effect enrichments 

(see below “Estimating avelumab treatment effects across donors and between groups”)  

had adjusted p values of 0.1 or less and were either positively or negatively enriched, 

these were considered kinetically altered by treatment for the purpose of filtering the 

baseline signals. These kinetically altered signals were subtracted from the baseline 

enrichments in a cell type-specific fashion, and the remaining enriched baseline 

pathways associated with development of post-treatment irAEs were considered 

temporally stable states. 
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Single-cell mixed-effect models  

The same formula f1 above (see “Mixed effects models on aggregated data to estimate 

treatment effects across donors and fold change differences between groups”) was used 

in a linear mixed model on expression of gene modules within single cells in specific T-

cell subsets. The model estimated variation at the single-cell level instead of at the 

individual donor aggregated level and otherwise corresponds to the same model formula 

as described above without voom observational weights in the error term. Gene 

expression of each gene g in each cell i was normalized log transformed with library 

size scaling factors using the Seurat function NormalizeData() with 

normalization.method = ‘LogNormalize’ to implement the transformation:  

 

log	 �1 +	
10�	 × 𝑈𝑀𝐼2,S
∑ 𝑈𝑀𝐼2

� 

 

Average expression of gene modules/pathways was then calculated for each module for 

each single cell and standardized within each protein-based subset by subtracting the 

mean and dividing by the standard deviation of the average score. Models were fit using 

the R package lme472 and the treatment effect across donors, and the baseline difference 

between irAE and no irAE groups was estimated using the contrast matrix L above with 

the emmeans package365. Models were checked for convergence criteria and no models 

were flagged as having singular fits. 

 

Enrichment testing of hypothesis set and unbiased pathways in model contrasts  

To test enrichment of pathways based on the estimated gene coefficients corresponding 

to the three effects defined above, we performed gene set enrichment analysis using the 

fgsea package274 using 250,000 permutations of the ranked gene list to form null 

distributions for p values; genes were ranked based on the empirical Bayes moderated t-

statistic for the baseline comparison of irAE status or with the raw t-statistic for mixed-

effect models comparing treatment effects over time. Two gene sets were assessed: first 

a hypothesis set of modules curated from the Li et al. Blood Transcriptional modules88 
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MSigDB Hallmark366  Reactome367 and pathways curated from literature368–370 were 

tested for enrichment (Supplementary Table 3); the full MSigDB Hallmark pathways 

were tested independently. The Jaccard similarity of enrichments within cell types was 

calculated using the geneOverlap371 package.  

 

k-cell permutation profiling of CD8 T-cell signatures and enrichment 

To assess the robustness of gene set enrichments, TEMRA cells were manually gated 

based on dsb normalized CITE-seq protein expression of CD3,CD8,CD45RA, and 

CD27. The same cells were gated from the previously published data on 20 healthy 

donors from Kotliarov et al., and the average expression of the mTOR-LE genes was 

compared across thymic cancer irAE groups and healthy donors using a non-parametric 

Wilcoxon rank test. To account for variability in the number of cells per donor in both 

manually gated and unsupervised TEMRA clusters, we quantified stability of enrichment 

to cell sampling variations. We re-ran the pseudobulk baseline differential expression 

model (as described above “Modeling baseline states associated with development of 

irAE”) 100 times with libraries constructed from random k-cell samples (without 

replacement) of 45 cells from each donor. The k value of 45 was chosen as it was the 

median number of cells in the group (healthy donors) with the lowest number of gated 

TEMRA across all donors. Pseudobulk libraries were constructed and differential 

expression testing of the irAE vs. non-irAE groups and healthy donors was carried out 

as above using limma. Genes within each k sample were tested for enrichment using 

two complementary methods with highly concordant results. 1) genes were filtered for 

testing based on the pseudobulk expression profile of the k cell pool with a minimum of 

3 counts per million based on the design matrix as above. 2) The same genes as in the 

original TEMRA cluster were fit with limma regardless of their expression status in the k 

cell pool. Genes were then ranked by empirical Bayes t statistic comparing irAE vs. 

non-irAE or irAE vs. healthy donors (not shown and highly concordant with irAE vs. 

non-irAE, as expected based on the average expression profiles in Supplemental Fig. 

3b). Gene set enrichment was assessed using 250,000 permutations of the gene rank list 

for the null distribution, as described above.  

 

Integrated analysis of healthy donors and thymic cancer patients 
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Seurat version 3.1.5 was used to integrate healthy donor and thymic cancer PBMC data 

using healthy donors as the reference dataset. Regularized Pearson residuals233 were 

used to normalize data for integration with a covariate for subject. Integrated data were 

clustered using 30 principal components. Differential expression was compared 

between integrated clusters with an ROC test in Seurat (FindAllMarkers, test.use = 

‘roc’). Immune cells from cancer patients often clustered more distinctly; however, this 

shared state map based only on mRNA helped further define mRNA substates 

irrespective of the group comparisons described above.  

 

Analysis of colonic T cells from patients with and without colitis following checkpoint 

inhibitor treatment from Luoma et al. 2020 

We reanalyzed the colonic T-cell data from Luoma et al. (GSE144469) which included 

three patient groups: healthy donors, patients treated with ICIs with subsequent colitis 

(irAE group) and without colitis (non-irAE group). T cells were isolated from the site of 

the colitis lesion in the irAE group. T-cell single-cell mRNA data were clustered using 

30 principal components from 2000 variable genes (FindVariableFeatures with 

selection.method = ‘vst’) using Seurat version 3. Differential expression of genes 

between clusters was carried out using a one-cluster vs. all-ROC classifier implemented 

in Seurat. Cluster association with irAE group status was carried out with an aggregated 

binomial mixed-effects model to estimate the proportion p of cells in each cluster c 

from each subject S belonging to each group g accounting for within-donor replicated 

cells (i.e., pseudoreplication) in each cluster using the same mixed effects binomial 

count model in Chapter 3.  

 

Code availability 

Analysis code and documentation to reproduce this work is available in the  

repository: https:// https://github.com/niaid/irAE_manuscript  
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5 CONCLUDING REMARKS 

More detailed discussions related to specific results of each chapter are given in the 

discussion sections above. At the beginning of undertaking this thesis work, the initial 

report of the CITE-seq method and two reports of sample multiplexing methods had just 

been published. We scaled these technologies to large scale systems immunology 

studies. Experimentally, we utilized both genetic and antibody based barcoding / 

demultiplexing to extend single cell profiling complex experiment designs with many 

individuals with different perturbation timepoints (see methods of chapter 3). We then 

deconvolved noise sources in the protein data modality and used this information to 

develop a scalable normalization method, dsb, which has been adopted by the 

community46,372. Analytically we further developed a framework for integrating human 

population, cell subset, and single cell variations multimodal single cell data.  We 

applied both of these methods to clinical cohorts described in chapter 2 and 3 which 

helped identify multicellular perturbation states and immune setpoints linked to 

treatment response. We have also successfully applied these approaches to several other 

projects since then250.  A major goal of top down systems immunology we help advance 

through these approaches is the identification of precise baseline and perturbation states 

within immune cell subsets and their correlated activities associated with  desired 

responses.  

 

With these approaches, we provided the first evidence for very detailed molecular 

circuits forming a “naturally adjuvanted” baseline immune system phenotype.  Many 

questions remain unknown, for example, what determines the setpoint of high 
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responders? Could differential activation of endogenous retroviruses activate innate 

immune cells to help program the setpoint? Given the apparent role of tonic interferon 

signaling in the baseline setpoints related to vaccination response, it could be fruitful to 

investigate differences in endogenous retroviruses within immune subsets found in 

discarded sequencing reads. Since the models we used to define baseline setpoints 

adjusted for age sex and batch, these factors likely are not major determinants of the 

molecular phenotypes we identified. It is still possible that other intrinsic variations like 

genetics played a role in defining the baseline states. Out other recent work not 

discussed in this thesis has identified persistent changes that can be induced by 

vaccination on the scale of multiple months. Is it possible that high responders had 

recovered from a viral or bacterial illness mirroring this process in the months prior to 

the vaccination study, leading to a more poised baseline state? 

Conceptualizing these baseline immune states as a “setpoint” borrows the term from 

system control theory which presupposes a homeostatically regulated desired goal state. 

Whether we should use such descriptions to define the global properties of immune 

system should be further debated. For example, does the notion of a setpoint represent 

an ontological property of immune system behavior, or is it a more tautological 

representation? Levin and colleagues have written on the usefulness of defining such 

“goal state” endpoints in top down systems biology modeling51. If we consider the time 

scales and environmental diversity over which the immune system must function, 

singular setpoints leading to deterministic responses would not give enough flexibility 

for the immune system to adjust to local environments. The setpoints we identified are 

comprised of correlated modular activity “poised” within multiple innate cell subsets. 

Perhaps the “naturally adjuvanted” baseline state leading to better vaccine responses 

were dictated by adaptations to local microenvironments dictated by pathogen diversity 

and antigen encounter frequency. These may globally tune degrees of “sentinel” 

capacity of innate cells lasting on the order of months. In the context of our work 

defining shared setpoints between autoimmunity and vaccination responses, if the 

determinants of the setpoint could be identified, they could be potentially controlled and 

tuned to improve autoimmune disease outcomes. 

With respect to autoimmunity, ongoing work applies many of the subset level “layer 3” 

statistical models to sorted subsets from vasculitis, inflammatory bowel disease, lupus, 

and idiopathic pulmonary fibrosis. These datasets build on prior work linking cell 
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subset level immune states during active disease to clinical outcomes52,373 but include 

many more defined immune subsets. These datasets represent an ideal opportunity to 

test the pathways unperturbed by immunomodulating treatment, since they are collected 

during active disease prior to treatment. Whether the molecular activities of these 

disease associated immune subsets overlaps with states induced by vaccination in 

healthy individuals, adverse events in patients following checkpoint inhibition, or have 

similarities with the multicellular baseline circuitries identified here will be interesting 

to investigate. 
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Supplementary Note 
 

Robustness of protein-specific noise estimation assessed by using different approaches to define 
empty/background droplets  
 
The dsb package utilizes the raw (unfiltered) output of UMI count aligners such as Cell Ranger, 
Kallisto1 or as we used here, CITE-seq Count2. The unfiltered output (for example, in Cell Ranger, 
the raw output) of droplet barcodes versus UMI counts includes all cell containing and empty (or 
“background”) droplets, both of which can be inferred using thresholding methods based on the 
mRNA and protein library sizes in combination with algorithms like EmptyDrops3 to distinguish 
cells from background noise (as done by default by Cell Ranger)–see dsb package documentation 
tutorial. In all datasets analyzed by us to date, a considerable number (at least 50,000 after QC) of 
background droplets (i.e., barcodes inferred to not contain at least one cell) can be found using 
library size based thresholding (see below for robustness assessments). The protein counts derived 
from these background droplets reflect contributions from ambient antibodies, which as shown in 
the main text, were highly correlated with the protein counts detected in unstained control cells 
included in our experiment. Thus, as discussed in the main text, protein counts in empty droplets 
can serve as an estimate of the expected ambient levels of antibodies. To assess the robustness of 
estimating protein-specific noise in relation to how background droplets are defined, we compared 
three approaches to define background droplets. As detailed in our previous report4, due to the 
number of samples included in our experiment, demultiplexing samples required data from both 
sample barcode (“cell hashing”) antibodies and mRNA (for genetic based demultiplexing, i.e., by 
cross referencing independently generated patient genotype data using demuxlet, see Methods and 
Kotliarov et. al. 2020). After removing doublets and defining singlets on the basis of data from 
both the hashing antibodies and genotypes, the remaining (non-doublet, non-singlet) droplets were 
used to define background droplets in two different ways. First, "Library size background 
droplets" were defined solely based on library size information where we used clear breaks in the 
distribution of protein library sizes across the remaining droplets followed by removal of droplets 
in the top 10th percentile based on the mRNA library size in order to eliminate droplets containing 
low quality cells. The library size approach to define background droplets is most compatible with 
experiments that do not have sample multiplexing or hashing antibody data, such as the external 
CITE-seq datasets from 10X Genomics used in this paper (Fig. 3 and Supplementary Fig. 4).  

 
The second background droplet inference method we tested requires CITE-seq 

experimental workflows similar to ours, where many samples are multiplexed in the same 
experiment using sample barcoding antibodies (and/or genetic based demultiplexing). After using 
Seurat's K-medoids function to computationally classify cell barcodes as containing singlets, 
doublets, or negatives based on the hashing antibody counts, we defined "Hashing background 
droplets" as those classified as "negative" by this demultiplexing software. These droplets had 
staining below the threshold to be called positive for any one of the hashing antibodies and 
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therefore in principle, their antibody counts should reflect only ambient capture. Such hashing 
“negatives” were an order of magnitude fewer in number than those determined by library size 
above, largely due to the threshold used for determining whether a droplet is included in the hash 
demultiplexing pipeline (the top 35,000 barcodes from each lane). Hashing background droplets 
were further filtered to: 1) include only droplets classified as “ambiguous” by SNP demultiplexing 
(via demuxlet), i.e., these cannot be attributed to a single or multiple distinct donors based on 
cross-referencing mRNA reads in the droplet with independently generated genotype data, and 2) 
exclude any droplet with >80 unique mRNAs to remove cell-containing droplets with low-quality 
mRNA capture. Using this alternative method to define background droplets, we similarly 
observed that the relative amount of antibody was highly correlated between unstained cells and 
these background droplets (along the unity line in Supplementary Fig. 1b, top).  

 
Interestingly, while the correlation was similarly high, antibody levels in unstained cells or 

in hashing background droplets were greater than those in library size background droplets 
(Supplementary Fig. 1b top vs bottom). The greater magnitude of antibody counts by a 
multiplicative factor in log-count space (slope in bottom panel of Supplementary Fig. 1b is 1.24 
with near zero intercept) suggests that unstained cells and demultiplexing background droplets 
capture additional antibodies. Unstained cells may serve as an additional antibody capturing 
“reservoir”, e.g., due to non-specific (or specific) binding of the ambient antibody remaining after 
multiple wash steps. However, this would not explain their concordance with demultiplexing 
background, which, as supported by both genetic (via demuxlet classification) and barcoding 
antibody (via Seurat k-medoids classification) data, should have a low chance of containing fully 
intact cells. It is still possible, despite filtering out droplets with low mRNA counts, that 
demultiplexing background droplets contained some very low-quality cells or cell membrane 
debris that together could capture additional antibodies from the environment via specific/non-
specific binding. Demultiplexing background droplets could also have more ambient mRNA (as 
described above in order to be included in the hashing antibody demultiplexing step) than droplets 
defined using the protein library size distribution alone, and thus they (as also in the unstained 
control cell droplets) could conceivably serve as an additional set of free antibody-capturing 
molecules. Importantly, however, we emphasize the difference between empty/background 
droplets defined using protein library size distribution versus hashing antibody demultiplexing had 
negligible effect in the resulting dsb normalized values (see below).  

 
We further investigated a third approach to estimate protein background noise–the mean of 

each protein across the subset of stained cells that were inferred to belong to the “negative” 
population for each protein. Without dsb rescaling, we fit a two component Gaussian mixture 
model to the log + 1 transformed count of each protein across single cells, resulting in 2 
populations of cells: those positive or negative for the protein. Each protein’s background mean, 
“A” (see Supplementary Fig.1a), reflects the average log transformed count of the non-staining 
cell population for that protein, i.e., cells that do not express that protein. The protein level in 
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unstained controls and empty drops were both highly correlated with A (Supplementary Fig. 1c). 
Thus, antibody levels in unstained droplets on average are similar to those in droplets with stained 
cells not expressing the target protein.  

 
We thus have tested three different ways to estimate the average background protein noise 

correlated across droplets. We further found that the noise signal captured in library size 
background droplets appears to be universally found in data from all of the droplet-based oligo 
barcoded antibody experiments we examined and is thus a generalizable method of estimating 
noise.   
 
Importance of using isotype control antibodies for estimating cell-intrinsic normalization 
factors 
 
Our method is compatible with experiments lacking isotype controls by either not removing the 
cell-specific technical variation (use denoise.counts = FALSE in dsb) or by removing the technical 
component with a single fitted parameter, the per-cell mean of the background protein population 
(parameters denoise.counts = TRUE, use.isotype.control = FALSE). However, additional analyses 
further support our findings that inclusion of isotype controls benefits cell to cell technical noise 
correction (step II). Despite the ability of µ1 alone to provide information about the cell-intrinsic 
technical component, we recommend the inclusion of multiple isotype controls in CITE-seq 
experiments to serve as anchors for better estimation of technical normalization factors because µ1 
alone may carry signals beyond those from technical factors (e.g., low-level antigen specific 
binding). In our data for example, µ1 exhibited greater correlation with µ2 than did the mean of 
the isotype controls (Supplementary Figs. 3b,c), including when sub-sampling random draws of 
four proteins from those used to compute µ1 within each cell to assess whether signal from four 
background proteins is equivalent to that of four isotype controls (Supplementary Fig. 3d). 
Furthermore, even with isotype controls as anchors, the estimated cell-intrinsic background may 
encompass signals from non-specific binding to surface Fc receptors. Cell types such as 
monocytes with higher relative Fc receptor expression may thus receive more correction than 
other cell types. However, empirically we have not found this to have adverse effects on 
normalized values in populations such as monocytes, cell type identification, or downstream 
analysis (Supplementary Figs. 6b, c). Careful blocking of Fc receptors before antibody staining, 
which is standard practice and was performed in our experiments, likely contributed to mitigating 
this effect. 
 
Robustness of dsb normalized values to background droplet definition  
 
Given the strong correlation observed between average protein levels in unstained control cells 
and both empty drops and droplets with stained cells expressing background level of the protein 
(Supplementary Fig. 1b,c), ambient antibodies appear to capture the major noise component that 
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contributes to each protein’s specific noise floor. In external 10X Genomics CITE-seq datasets, we 
distinguished between empty droplets and cells using the Cell Ranger alignment tool which uses a 
method inspired by the EmptyDrops3 algorithm to identify cell-containing droplets. The number of 
estimated cell-containing droplets depends on the number of cells loaded during droplet generation 
which should then inform the value input to the Cell Ranger expect_cells parameter; typical 
experiments recover on the order of 103 to104 droplets. Empty droplets capturing ambient ADTs, 
typically between 5x104 to 1x105 in number, can be robustly defined from the remaining, non-cell-
containing barcodes in the raw output matrix. The raw output matrix lists all possible cell barcode 
combinations (more than 6 million  barcodes in the Version 3 and Next Gem assays), many of 
which have no evidence of capture in the experiment (i.e. no data for mRNA or ADT reads) and 
empty droplets capturing ambient ADT must be subset from this output in order to avoid biasing 
the background estimates. The steps to complete this process are completed in a few lines of code 
as detailed in the dsb package documentation. A substantial subset of the cell barcodes estimated 
by Cell Ranger to not contain a cell had ADT reads with an order of magnitude lower protein 
library size compared to the cell-containing droplets. We then applied quality-control thresholds 
determined based on protein and mRNA counts for each dataset, for example, excluding certain 
“empty” droplets from being used in the background distribution that likely corresponded to 
potentially low-quality cells (e.g., removing empty droplets with more than 80 unique mRNA). 
This procedure revealed a clear population of more than 50,000 background droplets in each 
dataset. In some external datasets, there were two distinct background populations based on 
protein library size (Supplementary Fig. 7a). dsb normalized values were robust to using different 
background subpopulations (Supplementary Fig. 7a,b). When only the lower ADT background 
peak was used to simulate an experiment with extremely low background, dsb normalized values 
still separated canonical cell populations but were less zero-centered due to the low estimated 
background for some proteins (third row, Supplementary Fig. 7b). We have not encountered a 
dataset like this simulation scenario to date, however, in the future as antibody panels continue to 
increase in size, some antibodies may be titrated down to extremely low concentrations. 
Theoretically, this could decrease background levels in empty droplets for certain proteins to a 
level that could impact the first step of dsb as shown above. Our method could be easily adjusted 
in this hypothetical case by modifying the standardization step to accommodate lower background 
dispersion. 

 
Within batch normalization vs. pooled normalization across multiple batches 

 
The experimental design of the main dataset used here to develop our approach include n=20 
unique donors distributed over two experimental batches; this presented multiple options for dsb 
normalization. Background/empty drops could be defined with either of the two methods 
described above (demultiplexing or library size), and cells could then be normalized by combining 
all cells / background into a single matrix and normalizing both batches together, or each batch of 
cells could be normalized separately, using only the empty droplets within each batch. To test how 
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robust the resulting dsb normalized values were to single vs multi-batch normalization, as well as 
to further validate the findings described above on the robustness of dsb normalized values to 
different definitions of background, we tested the 4 possible normalization schemes with 
background droplets classified by either protein library size distribution or demultiplexing, then 
normalized with dsb by either merging cells and background from both batches together, or 
normalizing each batch separately. The resulting dsb normalized values were consistently similar 
across all four of these normalization schemes (Supplementary Fig. 8).  Since we expect ambient 
antibody to be a major contributor of correlated noise across cells, experimental standardization of 
staining time and the number of washing steps prior to droplet generation as well as use of the 
same pool of manually concentrated antibody on each batch could be important contributing 
factors in mitigating batch to batch variations. Our method is not designed as a batch effect 
removal tool, however, as enabled by the standard, normalized expression value scale from dsb, 
the approach of applying a uniform background cutoff threshold across proteins in diverse datasets 
can potentially help mitigate batch effects. The performance of existing batch correction tools5,6 
including single cell integration methods7–10 on ADT data could be an area of further investigation 
to compare upstream dsb to other normalization methods as more datasets become available.  
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Supplementary Figures 
 
Supplementary Fig. 1. Robustness assessment of estimating ambient ADT noise in cell-
containing droplets using ADT levels in empty droplets via comparison with unstained controls. 
 
Supplementary Fig. 2. Robustness assessment of models fitted to each cell in dsb (step II part I).  
 
Supplementary Fig. 3. Analysis of isotype control contribution to dsb technical component and 
comparison of dsb normalized values to centered log ratio normalization. 
 
Supplementary Fig. 4. Analysis of dsb normalization on external CITE-seq datasets. 
 
Supplementary Fig. 5. Analysis of dsb normalization on TEA-seq, ASAP-seq and Mission Bio  
datasets. 
 
Supplementary Fig. 6. Manual and automatic cell type identification with protein levels after dsb 
normalization from healthy donor PBMC data (data from Kotliarov et. al. 2020). 
 
Supplementary Fig. 7. Robustness assessment of dsb normalized values to different subsets of 
empty droplets used for background correction with dsb. 
 
Supplementary Fig. 8. Batch processing with dsb: analysis of merging multiple batches then 
normalizing, vs. separate normalization applied within each batch. 
 
Supplementary Fig. 9. Additional figures from analysis of TEA-seq data (data from Swanson et. 
al. 2021). 
  



a                                        b           c
 

R = 0.99 , p < 2.2e−16

CD16_PROT

CD18_PROT

CD197_PROT

CD244_PROT

CD25_PROT

CD28_PROT

CD294_PROT

CD38_PROT

CD40_PROT

CD45RA_PROT

CD5_PROT

CD56_PROT

CD62L_PROT

CD8_PROT

HLA−ABC_PROT

HLA−DR_PROTIgD_PROT

IgM_PROT

TCRgd_PROT

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
 Empty droplet mean log10 + 1 protein

un
st

ai
ne

d 
co

nt
ro

ls
 m

ea
n 

lo
g1

0 
+ 

1 
pr

ot
ei

n

18529 background drops defined by hashing

R = 0.99 , p < 2.2e−16

CD16_PROT

CD18_PROT

CD197_PROT

CD244_PROT

CD25_PROT

CD28_PROT

CD294_PROT

CD38_PROT

CD40_PROT

CD45RA_PROT

CD5_PROT

CD56_PROT

CD62L_PROT

CD8_PROT

HLA−ABC_PROT

HLA−DR_PROT

IgD_PROT

IgM_PROT

TCRgd_PROT

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5
 Empty droplet mean log10 + 1 protein

un
st

ai
ne

d 
co

nt
ro

ls
 m

ea
n 

lo
g1

0 
+ 

1 
pr

ot
ei

n

557460 total background drops

R = 0.95 , p < 2.2e−16

CD16_PROT

CD18_PROT

CD197_PROT

CD244_PROT

CD25_PROT

CD28_PROT

CD294_PROT

CD38_PROT

CD40_PROT

CD45RA_PROT
CD5_PROT

CD56_PROT

CD62L_PROT

CD8_PROT
HLA−ABC_PROT

HLA−DR_PROT

IgD_PROT

IgM_PROT

TCRgd_PROT

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
mean of background: stained cells

un
st

ai
ne

d 
co

nt
ro

ls
 m

ea
n 

lo
g1

0 
+ 

1 
pr

ot
ei

n

negative stained cell mean A vs unstained control

R = 0.94 , p < 2.2e−16

CD16_PROT

CD18_PROT

CD197_PROT

CD244_PROT

CD25_PROT

CD28_PROT

CD294_PROT

CD38_PROT

CD40_PROT

CD45RA_PROT

CD5_PROT

CD56_PROT

CD62L_PROT

CD8_PROT HLA−ABC_PROT

HLA−DR_PROTIgD_PROT

IgM_PROT

TCRgd_PROT

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0 2.5
mean of background: stained cells

 E
m

pt
y 

dr
op

le
t m

ea
n 

lo
g1

0 
+ 

1 
pr

ot
ei

n

negative stained cell mean A vs empty droplets

Supplementary Fig. 1



 10 
 

 
 

   
  

 

   

 
 

    

   
 

 
  

  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
              

           
              

                
            
             

              
               

             
             
            

            
           

           
            

              
                 

                     
              

          

Supplementary Figure 1
a. Expanded from Fig. 1a: to assess the relative contribution of the ambient antibody 
component of noise correlated across droplets, three different measurements of protein- 
specific background noise were defined for each protein: 1) (top row, right column) for 
each protein, the average log transformed value of the subset of stained cells that were not 
part of the proteins “positive” population and comprised the “non-staining” population of 
cells (the negative cell population for each protein was inferred through a Gaussian 
mixture model fit separately to each protein, see Methods) 2) (middle row, right column): 
unstained control cells spiked into the cell mixture prior to droplet generation as shown in 
the experiment diagram (left column), 3) (bottom row, right column): empty droplets as 
defined by either the protein library size distribution or inferred by sample barcode 
antibody demultiplexing (see Methods). b. Pearson correlation coefficient and p value (two 
sided) between unstained control cells (y-axis) and empty droplets (x-axis) with empty 
droplets defined by either demultiplexing (top “hashing background droplets”) or library 
size distribution (bottom, “library size background droplets”, see supplemental note) c. 
Pearson correlation coefficient and p value (two sided) between y-axis: unstained controls 
(top panel) or library size background droplets (bottom panel) versus x-axis: the mean of 
the protein in stained cells that were negative for the protein (“mean A” as shown in top 
panel of a). In all plots the dashed line at unity (y = x) is shown for reference and the solid 
line is the fitted regression line with the shaded region representing the 95% confidence 
interval of the linear model fit centered around the fitted values. Illustration created with
BioRender.com.
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Supplementary Figure 2  
Assessment of the modeling assumptions for defining each cell’s background protein 
population mean µ1 with a k=2 component mixture model for use in the per-cell technical 
component regressed out of dsb normalized counts in step II–see related figures on 
external validation datasets (Supplementary Fig. 4). a. Gaussian mixture model fits (from 
Figs. 1d-e) partitioned by each protein-based cell cluster (clusters are the same as defined 
after dsb normalization in Kotliarov et. al. 2020). Boxplots show the median BIC with 
hinges at the 25th and 75th percentile and whiskers extending plus or minus 1.5 times the 
inter quartile range. The number of cells for each cluster: cluster 0 = 10927, 1 = 8268, 10 = 
1250, 11 = 967, 12 = 853, 13 = 773, 14 = 371, 15 = 343, 16 = 292, 17 = 225, 18 = 218, 19 
= 165, 2 = 6655, 20 = 137, 21 = 74, 3 = 4853, 4 = 4507, 5 = 4236, 6 = 2510, 7 = 2287, 8 = 
1892,  9 = 1398. b. Similar to the barplot shown in Fig.1e, but partitioned by high 
resolution protein based cluster; cells with k = 3 as the best fit were not biased to a specific 
protein-based cluster. c. For 17% of cells with k = 3 models having the best fit (cells from 
Fig 1e), the difference in BIC between k = 3 vs. k = 2 and k = 2 vs. k = 1 models is shown. 
d. The distribution of Gaussian mixture model subpopulation means for k = 2 and k = 3 
models for the subset of cells with k = 3 as the optimal fit (means < 15 shown to focus on 
µ1 distributions) shows k = 3 and k = 2 models fit similar values for µ1 in these cells. e. As 
in (d); the small minority of cells (shown in red in (b)) with k = 4 as the best fit. f. A single 
arbitrary example cell that had an optimal BIC with the k = 3 model; the distribution of 
inferred mixture model means is shown for the 2-subpopulation (left) and 3-subpopulation 
(right) model fits showing overlapping value for µ1. g. As in Fig.1h, using the 10X 
Genomics CITE-seq dataset “PBMC V3 10K” which measured only 14 surface 
phenotyping proteins and 3 isotype controls. The distribution of the dsb technical 
component as calculated using a 2 component (x-axis) vs. 3 component (y-axis) mixture 
model to define the µ1 parameter.  
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Supplementary Figure 3 
a. Each cell’s inferred technical component λ (y-axis) vs the cell’s protein library size; panel 
number indicates protein-based clusters (see Methods) as shown in Supplementary Fig. 6 
and Fig 3. R indicates Pearson correlation coefficient of linear fit, 95% confidence interval 
highlighted in grey. b. The Pearson correlation coefficient and p value (two sided) between 
µ1 and µ2 from single cell k = 2 component mixture models fit across all proteins in each 
cell. c. The average of isotype controls after dsb normalization step I (ambient correction) 
vs µ2 as in (b) Pearson correlation coefficient and p value (two-sided). d. The distribution 
of n=100 Pearson correlation coefficients between each cell’s µ2 and 100 random samples 
of k=4 µ1 proteins from each single cell (blue) shaded region is the 50% highest density 
interval, red line is the Pearson correlation coefficient of µ2 and the mean of isotype controls 
in each cell from batch 1 (28,229 cells). e. Single cell protein expression of CD4 vs. CD14 
normalized by different methods. Contour lines in red are the distribution of CD4 and CD14 
in unstained control cells after normalization in the exact same way as the stained cells in 
black within each panel, including dsb normalization using the same empty droplets for 
ambient correction of the unstained cells. Outlier cells (less than 0.3% of total cells in any 
panel) are removed to focus on the three main cell populations. The default implementation 
of dsb using steps I and II (top left panel) and CLR across cells are shaded in blue and grey 
respectively as these methods are further compared in subsequent panels and in Figs. 4 and 
5. f. The Gap Statistic (see Methods) for different number of clusters (k) obtained using the 
k-medoids clustering algorithm on normalized protein values from dsb vs. CLR (across 
cells), bars are standard errors of the gap statistic calculated by the clusGap R function. g. 
Log fold-change estimates from differential expression analysis of proteins for each major 
cell type shown in comparison with the rest of the cell types (blue – dsb, grey – CLR across 
cells).  
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Supplementary Figure 4  
Panels as shown in Fig. 2 (10X Genomics dataset “PBMC 5k” Next Gem assay) for 
additional 10X genomics datasets using different assays and protein panels. a-g “PBMC 
10k” V3 assay, h-n “PBMC 5k” V3 assay and o-u “PBMC 5k” 5 prime V2 assay. 95% 
confidence intervals of linear model fits (d,k,r) in grey. Pearson correlation coefficients 
and p values (two sided) are shown (c, j, q). 
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Supplementary Figure 5 
a. A mixture of n=4 leukemia cell lines from example data generated via the Mission Bio 
‘Tapestri” platform for simultaneous “proteogenomic” assessment of surface proteins and 
DNA. The protein library size (total UMI) distribution was used to distinguish between 
cell-containing and empty droplets without cells. b. UMAP analysis based on dsb 
normalized values; cells are labeled by graph-based cluster identity. c. heatmap of the 
average expression of each dsb-normalized protein in each cluster. The range of values is 
on the same scale for all proteins, ranging from less than 0 to 14, corresponding to 14 
standard deviations from the average background level estimated using empty droplets–
cell-to-cell technical variations were not inferred by calculating the technical component 
for each cell (step II of dsb) in this dataset due to the small number of proteins profiled 
(n=10, see Supplementary Note and Methods). d. As in (a) for TEA-seq and e. ASAP-seq 
datasets. Cell-containing droplets defined by the QC pipeline from Swanson et. al. and  
Mimitau et. al., respectively; note that only protein was used to estimate background from 
the subset of droplets that did not meet cell QC for the ASAP-seq dataset (see methods). f. 
As in Fig. 1f, correlation matrix of variables comprising the dsb technical component. g. 
As in Fig.1g, isotype control mean vs. background mean per cell. Pearson correlation 
coefficient and p value (two sided) is shown. h. As in Supplementary Fig. 3a, relationship 
between protein library size and the dsb technical component. Linear trend shown in blue 
with 95% confidence intervals in grey. i. UMAP projection and clusters based on dsb 
normalized protein values. j. Biaxial plot of CD3 vs. CD4 with the dsb threshold of 3.5 
shown. k. As in (j) but with data normalized using the CLR transformation (across cells). 
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Supplementary Figure 6  
a. Biaxial gating strategy for identifying major immune cell subsets with dsb normalized 
values. Grey = T cells, Blue = Monocytes, Purple = B cells. b. As in Fig. 3e, the average 
log transformed protein count in empty droplets (x-axis) vs the average dsb normalized 
values (y-axis) for each protein-based cell cluster–the threshold above which proteins are 
annotated in the plot is 3.5 corresponding to 3.5 standard deviations above expected noise 
+/- the technical component correction applied in step II (see methods). In each plot the 
same subset of proteins is highlighted in blue for comparison of individual marker values 
between clusters; proteins highlighted in blue are CD1d, CD1c, CD14, CD103, CD16, 
CD3, CD4, CD8, CD28, CD161, CD45RO, CD45RA, CD33, CD56, CD71, CD27, 
CD244, KLRG1, CD195, CD38, CD127, CD16, CD34. When the protein value is above 
the 3.5 threshold, it is labeled with the protein name in each individual panel. c. Heatmap 
of average dsb protein normalized expression in each cluster. 
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Supplementary Figure 7  
Robustness of dsb normalized values to different definitions of background droplets. a. 
Distribution of protein library size for the 10X genomics Chromium Version 3 “PBMC 
10K” dataset which had a bimodal distribution for the non-cell-containing droplets shown 
in blue. In each row, a different threshold based on the protein library size was used to 
define background droplets, which were then used to normalize the same population of 
cell-containing droplets (shown as the orange distribution) with the dsb package. b. The 
dsb normalized values are shown for canonical protein-based phenotypes with biaxial 
scatterplots. The scale of the 3rd row is negatively impacted by eliminating the major 
empty droplet background peak with greater mean value and only using the empty droplet 
background peak with very low mean protein library size.    
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Supplementary Figure 8 
Stability of dsb normalized values when processing multiple batches in a single normalization vs 
normalizing each batch separately, both using two definitions of background droplets with the dsb 
package. a–d show protein library size distributions of background droplets defined using either 
the protein library size distribution alone or droplets defined as negative during demultiplexing 
(see Supplemental note) across n = 2 batches. The raw Cell Ranger outputs from each staining 
batch of cells were split across n=6 lanes per batch of the 10X Chromium instrument and for each 
definition of background, the dsb results for merged vs split batch normalization are shown in e-
h. 
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Supplementary Figure 9 
Analysis of TEA-seq (transcriptome, epitopes and accessibility) tri-modal single cell assay data. 
a. TEA-seq data normalized by Library size based normalization (as in Swanson et. al.), and b. 
CLR across cells. c. UMAP plot of single cells and clusters derived by WNN joint mRNA-protein 
clustering with data normalized using CLR (see Fig. 4b for dsb normalized data). d. Contingency 
of clustering results between joint mRNA and protein Weighted Nearest Neighbor (WNN) 
clustering with CLR normalized (rows) or dsb normalized (columns) values as input to the protein 
matrix. The bottom margin shows the same data as circles with area proportional to frequency to 
show clusters with cell assignment differences. The average protein expression profiles of the 
clusters from e. CLR and f. dsb for protein normalization are shown as heatmaps.  


