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Detection and removal of barcode swapping
in single-cell RNA-seq data
Jonathan A. Griffiths1, Arianne C. Richard 1,2, Karsten Bach3, Aaron T.L. Lun 1 & John C. Marioni 1,4,5

Barcode swapping results in the mislabelling of sequencing reads between multiplexed

samples on patterned flow-cell Illumina sequencing machines. This may compromise the

validity of numerous genomic assays; however, the severity and consequences of barcode

swapping remain poorly understood. We have used two statistical approaches to robustly

quantify the fraction of swapped reads in two plate-based single-cell RNA-sequencing

datasets. We found that approximately 2.5% of reads were mislabelled between samples

on the HiSeq 4000, which is lower than previous reports. We observed no correlation

between the swapped fraction of reads and the concentration of free barcode across plates.

Furthermore, we have demonstrated that barcode swapping may generate complex but

artefactual cell libraries in droplet-based single-cell RNA-sequencing studies. To eliminate

these artefacts, we have developed an algorithm to exclude individual molecules that have

swapped between samples in 10x Genomics experiments, allowing the continued use of

cutting-edge sequencing machines for these assays.
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Recent reports have shown that the DNA barcodes used to
label multiplexed libraries can “swap” on patterned flow-
cell Illumina sequencing machines, including the HiSeq

4000, HiSeq X, and NovaSeq1,2. This results in mislabelling
whereby reads assigned to one sample are derived from molecules
in another, thus compromising the interpretation of many 'omics
assays (Fig. 1). Barcode swapping is particularly problematic for
single-cell RNA sequencing (scRNA-seq) experiments, where
many libraries are routinely multiplexed together. For example,
barcode swapping could lead to cells that appear to falsely express
particular marker genes, or yield spurious correlation patterns
that may confound clustering and other analyses.

The severity and consequences of barcode swapping in scRNA-
seq studies remain poorly understood. Sinha et al.1 estimated
swapping rates of “up to 5–10%” from a plate-based scRNA-seq
experiment; however, these estimates were obtained from only
two wells in a single micro-well plate. The lack of replication
makes it difficult to generalize the results to other scRNA-seq
studies. Furthermore, the effect of barcode swapping on high-
throughput droplet-based scRNA-seq protocols3 has not been
explored. This is a key consideration due to the increasing use of
droplet-based methods for large-scale single-cell studies4,5 where
many samples are necessarily multiplexed together for efficient
sequencing.

Here, we robustly quantify the fraction of swapped reads in
each of two plate-based single-cell RNA sequencing datasets. We
found that approximately 2.5% of reads were mislabelled between
samples on HiSeq 4000, and observed no correlation between
the swapped fraction of reads and the concentration of free
barcode across plates. Furthermore, we demonstrate that barcode
swapping can generate complex but artefactual cell libraries in
droplet-based scRNA-seq data. To eliminate these artefacts, we
developed a computational method to exclude swapped reads
in 10x Genomics experiments, enabling the continued use of
cutting-edge sequencing machines for droplet-based assays.

Results
Barcode swapping in plate scRNA-seq experiments. A number
of widely-used scRNA-seq library preparation methods isolate
and process individual cells in wells of a microwell plate before
performing library preparation in parallel6–8. A unique combi-
nation of sample barcodes characterises the library associated
with each cell, usually by adding a different barcode to each end
of a cDNA molecule. One barcode typically indexes the row
position for each cell on the microwell plate, while the other
barcode indexes the column position. Swapping of either or both
barcodes therefore moves reads between cell libraries. We used
two independent plate-based scRNA-seq datasets to quantify
the swapping fraction, i.e., the fraction of all cDNA reads across
all sequencing libraries multiplexed on a single flow-cell lane
that were mislabelled.

In the first dataset (Richard et al.9, see Methods and
Supplementary Note 3), two plates of single mouse T cells were
multiplexed for sequencing on a HiSeq 4000 instrument. Each
of these plates used entirely different sets of column and row
barcodes: none of the barcodes were reused between the plates
(Fig. 2a). As such, there exists a set of barcode combinations
that should contain zero reads (“impossible” combinations), as
the two sets of barcodes for these combinations were never
mixed during the experiment. However, reads mappable to the
mouse genome were still present in the impossible combinations
at approximately 1% of the frequency in the expected combina-
tions (Fig. 2b). This cannot be explained by contamination from
free-floating nucleic acids, which can only affect the expected
combinations used during library preparation. Indeed, the

number of reads in each impossible combination was propor-
tional to the number of reads in the real cell libraries that
shared exactly one barcode with the impossible combination
(Fig. 2c). This is consistent with read misassignment to an
impossible combination due to swapping of a single barcode
from the pool of cDNA in the expected combinations.

To estimate the swapped fraction in the Richard et al. dataset9,
we regressed the library size of the impossible combinations
against the summed library sizes of the real cells that shared
exactly one barcode (Fig. 2c, see Methods and Supplementary
Note 3 for more details). This yielded an estimate of the swapped
read fraction of 2.18 ± 0.08%. For comparison, we repeated this
procedure on the same libraries sequenced on HiSeq 2500,
yielding a much lower swapped fraction estimate of 0.22 ± 0.01%.
This is consistent with the proposed mechanism of barcode
swapping on the new Illumina machines. Notably, our estimates
are calculated over many wells with impossible combinations,
offer an estimate of uncertainty, and are robust to contamination.
This represents an improvement over previous estimates1, which
only sought to technically demonstrate the existence of swapping
by considering two wells of a single plate.

In the second dataset (Nestorowa et al.10, see Methods and
Supplementary Note 4), we considered plates of single cells whose
libraries had been sequenced on both the HiSeq 2500 and 4000.
We modelled each cell’s gene expression profile in the HiSeq
4000 data as a linear combination of contributions from the
HiSeq 2500 data. Specifically, for each cell, we considered
contributions from itself, cells that share exactly one barcode,
and cells that share no barcodes (see Methods and Supplementary
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Fig. 1 A schematic of the mechanism for barcode swapping, as proposed by
Sinha et al.1. On new models of the Illumina sequencing machines, flow cell
seeding and DNA amplification take place simultaneously, without any
washes of the flow cell between steps. As a result, free sample indexing
barcodes remain in solution and can be inadvertently extended using DNA
molecules from libraries with different barcodes as templates. The transfer
of mislabelled molecules between nanowells of the flow cell results in
clustering and sequencing of incorrectly labelled DNA molecules
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Note 4 for details). The relative contribution from other cells
was used to estimate the swapping fraction across all cells in
the plate. Across 16 independent plates of single cells (each
of which was sequenced separately), we estimated a range of
swapped read fractions with mean 2.275 ± 0.359%, consistent
with the first experiment (Fig. 2d). We also observed that
nearly all expressed genes were affected by swapping (Methods
and Supplementary Note 4), consistent with its global effects
on the pool of sequencable DNA.

Given the range of estimated swapping fractions in the
Nestorowa et al. data10, we reasoned that we could identify the
factors driving barcode swapping by considering the library
characteristics of each plate. Specifically, we investigated the
association with the amount of free library barcode, which had
previously been linked to swapping rates1. We used Agilent’s
Bioanalyzer Expert 2100 software to quantify the amount of free
barcode (DNA lengths 45–70 bp) and the amount of sequencable
cDNA (400-800 bp) in the multiplexed library from each plate.
However, we did not observe a strong correlation of swapping
fraction estimates with the ratio of free barcode to sequencable
cDNA (Fig. 2d). Similarly, no correlation was observed with the
total amount of free barcode per plate, or the ratio of free barcode
concentration to mappable reads (Methods and Supplementary
Note 4). This suggests that the extent of barcode swapping is not

primarily determined by the amount of free barcode in
experiments using typical barcode concentrations.

Removing effects of barcode swapping in plate experiments.
The most obvious solution for barcode swapping is to use a
sequencing machine that does not use a patterned flow-cell,
which we have shown reduces the swapping rate by an order of
magnitude. Where this is not possible, an approach for compu-
tationally “unmixing” the expression profiles has been descri-
bed11, where the swapping rate is estimated using the subset of
genes that are detected above a certain threshold in only a single
cell on a plate.

For general plate-based scRNA-seq experiments, we recom-
mend the use of an experimental design similar to that in the
Richard et al. dataset9 (Fig. 2a). By leaving a fraction of possible
barcode combinations unoccupied, a researcher can robustly
estimate the swapped fraction of reads. This serves as a useful
quality control metric for individual experiments, whereby
datasets with high swapping rates can be flagged and discarded
to avoid generating misleading biological results. The swapping
fraction calculated using our approach leverages the expression
levels of all genes, and makes no assumptions about the
distribution of biological gene expression (i.e., before barcode
swapping) across a plate. This should provide a more robust
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Fig. 2 Characterization of barcode swapping in plate-based scRNA-seq experiments. a The experimental design of the Richard dataset. Two 96-well plates
of cells were multiplexed for sequencing. Expected barcode combinations are marked in blue, while impossible barcode combinations are marked in grey.
b Distribution of the library sizes (i.e., number of mapped reads) in the expected and impossible barcode combinations. c Library size of each impossible
combination (observed swapped reads), plotted against the sum of the library sizes of the expected combinations that share exactly one barcode with that
impossible combination (available swapping reads). An example is illustrated graphically in the inset Figure for one impossible combination (red) and
the contributing expected combinations (orange). The gradient represents the fraction of available reads from the expected combinations that swap into
each impossible combination. d Estimated swapping fractions for different plates of the Nestorowa et al. [10] dataset, plotted against the ratio of the
concentration of free barcode to the concentration of cDNA of the correct length for sequencing. A linear regression fit is shown with its 95% confidence
interval. The slope of the fitted line is not significantly different from 0 (p= 0.129)
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estimate of the swapped fraction for each experiment and
improve the accuracy of any subsequent computational
correction11.

Unique dual indexing represents another experimental solution
to barcode swapping2. Under this scheme, two unique barcodes
are used for each sample in a multiplexed sequencing experiment.
A single barcode swap will move reads to barcode combinations
that are not used by any other sample, thus avoiding any mixing
of libraries between samples. However, the need for unique
indices greatly restricts the number of libraries that can be
multiplexed for a given number of barcodes (see Supplementary
Note 7 for scalability calculations). This is particularly proble-
matic for single-cell studies where large numbers of cell libraries
need to be multiplexed for efficient sequencing. To use unique
dual indexing in such cases, a researcher must have a large
number of available barcodes, which may not be practical.

Barcode swapping in droplet scRNA-seq experiments. New
single-cell RNA-seq protocols use microfluidic systems to massively
multiplex library preparation by capturing individual cells in
droplets3,12. These methods enable the efficient generation of
thousands of single-cell libraries in a single experiment. Cell label-
ling is achieved by the incorporation of a cell barcode in the reverse
transcription step that occurs in each droplet. Each cell barcode is
selected randomly from a large pool of possible sequences. A single
sample barcode is then used to label different batches of single cells
for multiplexed sequencing. The cell barcode is never free in solu-
tion; only the sample barcode is expected to swap.

We consider two major effects of barcode swapping in droplet-
based experiments. Firstly, it is possible that the same cell barcode
is used in two or more multiplexed samples. Between these
samples, swapping will mix transcriptomes of different cells
labelled with the same cell barcode, similar to the effect observed
in plate-based assays. The second effect arises when a “donor”
sample contains a cell barcode that is not present in another
“recipient” sample. Swapping of molecules labelled with this
donor-only barcode will produce a new artefactual cell library in
the recipient sample. This new library will have a similar
expression profile to the original cell in the donor sample and
may be identified as a real cell. Indeed, swapping from cell
libraries that are especially large may generate artefactual libraries
in recipient samples that are as large and complex as real cells,
making it difficult to find and remove them.

We demonstrated the existence of artefactual cell libraries in
real data by testing whether samples from droplet-based
experiments shared more cell barcodes than expected by chance.
We obtained 10x Genomics data for human breast tumour cells
and mouse epithelial cells, sequenced separately on the HiSeq
4000. In both of these experiments, at least one sample
comparison exhibited excess sharing according to a hypergeo-
metric test (Methods and Supplementary Figs. 31,32, Supplemen-
tary Note 5). We also obtained 10x Genomics data for mouse
embryonic cells sequenced on the HiSeq 2500, and resequenced
the aforementioned mouse epithelial cells on the HiSeq 2500. In
both of these experiments, no excess sharing was observed
(Supplementary Figs. 29,30). This is again consistent with an
increased rate of barcode swapping on the new Illumina machines.

Removing effects of barcode swapping in droplet experiments.
One obvious solution to mitigate the effect of barcode swapping is
to discard any cell libraries with shared cell barcodes across
multiplexed samples. This removes both homogenised and swap-
derived artefactual libraries from further analysis, thus avoiding
misleading conclusions driven by barcode swapping. However,
cell-based removal is not appropriate when many cells are

captured across many samples for a single multiplexed sequen-
cing run. This is because many cells will share cell barcodes by
chance, even in the absence of barcode swapping. Removal of
these cells will result in unnecessary loss of data (Fig. 3a). For
example, applying this strategy to 30 multiplexed samples of
20,000 cells each would exclude over 50% of cell libraries. An
alternative approach is necessary for high-throughput droplet
scRNA-seq datasets that are now routinely generated4,5,13.

We have developed a computational method that removes
individual swapped reads from 10x Genomics data, avoiding the
exclusion of entire cell libraries. Specifically, we considered
molecules across multiplexed samples that contain the same
combination of unique molecular identifier, cell barcode, and
aligned gene. Due to combinatorial complexity, these molecules
are extremely unlikely to arise by chance, and are almost certain
to be generated by barcode swapping. For each observed
combination of these labels, we calculated the fraction of reads
that were present in each sample. Where one sample contained
the majority of all reads for a molecule (≥80%), we considered
this as the sample-of-origin, and removed the molecule count
from all other samples. Where this was not the case, we removed
the molecule from all samples (Fig. 3b), as an unambiguous
determination of the sample-of-origin was not possible.

We applied our method to the aforementioned mouse
epithelial cell dataset sequenced on the HiSeq 4000. In one
experiment, two samples (B1, B2) appeared to contain many cells
with expression profiles that were distinct from those of the cells
in the other samples (Fig. 3c). We observed that cells in these
samples had smaller library sizes than in other samples (Fig. 3d).
Further inspection revealed that many cell barcodes in B1 and B2
were also present in other samples (Supplementary Note 5). We
hypothesised that the majority of cell libraries in samples B1 and
B2 derived from barcode swapping. Exclusion of swapped reads
resulted in the loss of nearly all called cells from these samples
(Fig. 3e, Methods and Supplementary Note 6), indicating that
they consisted almost entirely of artefactual swapped libraries.

These results demonstrate the importance of excluding
swapped reads prior to further analysis. Failure to do so would
have resulted in misleading biological conclusions if the
artefactual cells were used in analyses such as clustering and
detection of differentially expressed genes. Indeed, the artefactual
cells form their own cluster (Fig. 3c, Supplementary Fig. 33),
and could be misinterpreted as a cell type exclusive to samples B1
and B2. We also observed that 2.5% of cell libraries from
the other samples were no longer called as cells after removal
of swapped reads. While only a small number of cells are
removed from these samples, this may still be important in
studies involving rare cell types where the presence of a few cells
can affect the interpretation of the results.

As a control, we applied our method to two 10x Genomics
experiments using mouse epithelial cells that were not multiplexed
together. These were the aforementioned HiSeq 2500-sequenced
mouse epithelial cells and the data from a similarly HiSeq 2500-
sequenced published study14. Here, our method removed a
negligible number of molecules (<0.0005%, Supplementary
Note 6). This demonstrates that our method is able to specifically
exclude swapped reads. Our method is implemented in the
DropletUtils Bioconductor package for 10x Genomics experiments,
and can be easily applied in a conventional analysis pipeline.

Discussion
Using plate-based scRNA-seq datasets, we have reproducibly
estimated the fraction of barcode-swapped reads on the HiSeq
4000 to be approximately 2.5%, which is lower than previously
reported1. Different amounts of free DNA barcode did not affect
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our swapping fraction estimates, suggesting that free barcode
concentration is not the primary factor determining the variation
in barcode swapping rates across experiments. We recommend
that plate-based scRNA-seq experiments that reuse cell barcodes
should continue to be sequenced on non-patterned flow-cell
machines such as the HiSeq 2500 to minimise barcode swapping.
We have also implemented a computational method for removing
swapped reads from 10x Genomics data without removing
entire cell libraries. This permits the cost-effective use of the
highest-throughput sequencing machines (e.g., the HiSeq 4000)
for large-scale droplet scRNA-seq experiments while avoiding the
confounding effects of barcode swapping.

Methods
Richard dataset analysis. Two 96-well plates of single-cell RNA-seq libraries of
mouse T-cells were prepared according to the Smart-seq2 protocol6 with minor
modifications (see Supplementary Note 3 for more information). Libraries were
sequenced on both the HiSeq 2500 and the HiSeq 4000. Demultiplexing was
performed allowing for reads to be assigned to libraries with both expected and
“impossible” barcode combinations. Reads were mapped to the mm10 genome, and
the number of read pairs mapping to the exonic region of each gene were counted.

We performed a simple linear regression on the number of observed
swapped reads for each impossible combination, with respect to the number of reads
available for swapping. Available reads are those in expected barcode combinations
that share exactly one barcode with the impossible barcode combination. We used the

gradient of the fitted line to obtain an estimate of the fraction of swapped reads for
this experiment (see Supplementary Note 3). As a control, we repeated this procedure
with the same libraries sequenced on HiSeq 2500.

Nestorowa dataset analysis. We obtained count matrices from the authors of the
Nestorowa et al. study10 (also available at NCBI GEO accession GSE81682). For
each plate, we fitted a linear model to quantify contributions of different cells in the
HiSeq 2500 data to the swapping-affected transcriptomes of the HiSeq 4000 data
(see Supplementary Note 4). The fitted model was used to estimate the swapping
fraction for that plate. The mean and standard deviation of swapping fractions
were then computed across plates.

To quantify the concentration of free barcode, we used the BioAnalyzer Expert
software on the traces collected during library preparation, considering the area
under the curve between DNA lengths 45 to 70 base pairs. To quantify the
concentration of sequencable cDNA, we considered the area under the curve
between DNA lengths 400 to 800 base pairs. We then tested for any significant
relationship between these concentrations and the estimated swapping fraction on
each plate.

We fitted a gene-wise linear model to describe the contribution of the HiSeq
2500 expression profiles to those of the HiSeq 4000 data. This model differs from
the previous one as it yields gene-specific estimates rather than entire plate
estimates (see Supplementary Note 4). We tested for a non-zero swapping term in
this model, and counted the number of genes with a significant positive or negative
swapping term. As a control, we repeated this procedure on libraries sequenced on
two lanes of a HiSeq 250015.

Droplet methods. Mouse epithelial cell libraries were generated as described in
Bach et al.14.
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We tested for an excessive sharing of cell barcodes using a hypergeometric test
(see Supplementary Note 5). This was performed on data from both the HiSeq
4000 and, as a control, the HiSeq 2500.

To evaluate the cell exclusion strategy, we simulated the random sampling of
10x Genomics cell barcodes into each of a number of samples (see Supplementary
Note 6). We applied cell exclusion by removing all barcodes that were shared
between samples, and counted the fraction of cell libraries that were incorrectly
discarded. This was repeated using different numbers of samples and different
numbers of cells per sample.

We performed a simple analysis of the HiSeq 4000-sequenced mouse epithelial
cells using the R packages scran16 and Rtsne17 (see Supplementary Note 5).

Our molecule exclusion approach was implemented by removing molecules that
share the same combination of UMI, cell barcode, and aligned gene (see
Supplementary Note 6). This method is available in the DropletUtils package.
We tested the method on the HiSeq 4000-sequenced mouse epithelial cell
dataset, calling cells using emptyDrops18 using an FDR threshold of 0.01 and
a minimum cell size of 1000 UMIs.

Code availability. A Github repository (https://github.com/MarioniLab/
BarcodeSwapping2017) contains a detailed report that expands on the analyses
described herein, describing models and showing results. The repository also
contains a script to download the processed data, and the code used to generate the
report.

Data availability. Raw data can be acquired from ArrayExpress accession codes
E-MTAB-6843 for plate-prepared mouse T-cells, and E-MTAB-6854 for
droplet-prepared HiSeq 2500- and HiSeq 4000-sequenced mouse epithelial cells.
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