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Abstract  

Background 

Barrett’s oesophagus predisposes to adenocarcinoma. However, most Barrett’s 

patients will not progress and endoscopic surveillance is invasive, expensive, and 

fraught by issues of sampling bias and the subjective assessment of dysplasia. This 

study investigated whether a non-endoscopic device, the Cytosponge, could be 

coupled with clinical and molecular biomarkers to identify a low-risk group for non-

endoscopic follow-up. 

Methods 

Patients with Barrett’s underwent the Cytosponge test prior to their surveillance 

endoscopy. Clinical and demographic data were collected and Cytosponge samples 

were tested for a molecular biomarker panel including three protein biomarkers 

(p53, c-Myc, and Aurora kinase A), two methylation markers (MYOD1 and RUNX3), 

glandular atypia and TP53 mutation status. A multivariable logistic regression model 

was used to compute the conditional probability of dysplasia status. A simple model 

with high classification accuracy was selected and applied to an independent 

validation cohort.  

Findings 

In a discovery cohort (n=468) a model with high classification accuracy consisted of: 

glandular atypia, p53 abnormality and Aurora kinase A positivity and the interaction 

of age, obesity and length of the Barrett’s segment. 35% patients fell into the low-

risk category and the probability of being a true non-dysplastic patient was 162/162 

(Confidence Intervals at 0.01 significance level 96-99·99%). In the validation cohort 

(n=65) 25/65 patients (38%) were classified as low risk and the probability of being a 

true non-dysplastic was 96·0% (99% CI 73·8-99·99%). The moderate-risk group 

comprised 27 non-dysplastic and 8 high grade dysplasia (HGD) cases while the high 

risk group had 0 non-dysplastic and 5 HGD patients (8% cohort).  

Interpretation 
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A combination of biomarker assays from a single Cytosponge sample can be used to 

determine a group of patients at low risk for whom endoscopy could be avoided. 

This strategy could help to avoid over-diagnosis and over-treatment in Barrett’s 

patients. 

Funding 

The BEST2 study was funded by Cancer Research UK.  
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Research in context 

Evidence before the study 

We searched PubMed from database inception to September 1st, 2001 with the 

MESH terms: biomarkers, cancer progression, Barrett’s oesophagus prior to the start 

of the BEST2 trial, in order to review the status of the literature. This important area 

has attracted a lot of attention and aside from the histopathological assessment of 

dysplasia the most promising biomarkers include p53 status, copy number 

alterations and recently methylation panels have been investigated. All of these 

studies have relied on endoscopic sampling which is invasive and resource intensive. 

Furthermore, most effort has focussed on identifying patients at high risk for cancer. 

However since the majority will not progress to cancer, strategies to risk-stratify 

patients and avoid over-diagnosis are also very important. Furthermore, given the 

heterogeneity in the molecular genetic patient profiles of those progressing to 

cancer, identifying very low risk patients may be a more achievable biomarker 

strategy. A non-endoscopic cell collection device (Cytosponge) has been shown to be 

effective to diagnose Barrett’s when coupled with a biomarker TFF3. The aim of this 

study was to determine whether additional biomarkers could identify patients at 

very low risk in whom further monitoring could be performed via the Cytosponge. 

Endoscopy and treatment could then focus on the highest risk patients.  

Added value of the study 

We tested a clinical and molecular biomarker panel on Cytosponge samples (7 

variables) and used multivariable logistic regression to identify a minimal panel that 
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could risk stratify patients. The optimal panel comprises: age, length of Barrett’s 

segment, waist:hip ratio and three biomarkers scored in a binary fashion to indicate 

p53 status, Aurora kinase A expression and glandular atypia and divides patients into 

low, moderate and high risk. This risk score was validated in an independent patient 

cohort and shown to confidently identify approximately 30% patients with a low risk 

for malignant progression. The high and moderate risk patients would be triaged for 

endoscopy which could be prioritised accordingly. To the best of our knowledge this 

is the first multidimensional panel applied to non-endoscopic oesophageal cell 

samples (ie, one involving DNA mutation, protein expression and clinical variables) to 

determine the risk profile for a patient with Barrett’s oesophagus. 

Implications of the evidence 

Currently monitoring of patients with diagnosed Barrett’s relies on endoscopy which 

is invasive for patients and expensive for the health care system. The use of a 

Cytosponge-biomarker test has the potential to more objectively risk stratify 

patients and identify a low-risk group for monitoring within the primary care setting 

that could be spared endoscopy.  
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Introduction 

Oesophageal adenocarcinoma (OAC) patients have a median survival of one year, 

despite advances in therapy.1 The burden of OAC could be reduced by diagnosing 

more cases of the precursor lesion Barrett’s oesophagus (BO) while identifying those 

at increased risk for cancer development before treating them endoscopically.2 

However, this is a formidable task since the incidence of gastro-oesophageal reflux is 

approximately 5 per 1000 person-years in the UK.3 Furthermore, despite clinical 

guidelines for endoscopic referral, primary care practice varies and low endoscopy 

referral rates correlate with poor outcomes.4 The scale of the problem and the 

psychological and fiscal costs of endoscopy necessitate a new strategy. 

We have developed a non-endoscopic diagnostic test which involves a cell-collection 

device which, coupled with the biomarker trefoil factor 3 (TFF3), diagnoses BO.5,6 The 

device, called Cytosponge, comprises a medical-grade foam sphere on a string 

compressed within a gelatine capsule that is swallowed whilst holding onto the 

string. After 5 minutes, this dissolves within the stomach allowing the foam sphere 

to expand, before being pulled from the stomach through the oesophagus to the 

mouth. Cells are collected along the entire oesophageal lining, minimising the 

sampling bias inevitable with endoscopic biopsies. The sample is transported to the 

laboratory in preservative at room temperature and processed to paraffin for TFF3 

biomarker assessment. Data from studies so far, amounting to over 2,000 patients, 

have shown that this approach is safe, has favourable acceptability rates compared 

to endoscopy, a sensitivity of 79·5-87% (depending Barrett’s segment length), and a 

specificity of 92·4% for diagnosing BO.5,6 

For TFF3-positive patients, it is essential that additional biomarkers are tested to 

assess the presence of genetic or molecular abnormalities indicative of dysplasia, as 

positive tests in patients with very benign disease at low risk of progression are 

commonplace in early cancer detection.7 Over-diagnosis and over-treatment have 

adverse consequences for both patient and healthcare providers.8 Our primary goal 

is thus to identify Barrett’s patients with a very low risk profile, so that these 

individuals can be reassured without endoscopy.  
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We have shown that TP53 mutations qualify for a risk stratification biomarker and 

are detectable using the Cytosponge.9 We have also shown that the Cytosponge-

sample is representative of the multiple clones within a diverse genetic content.10 

However, for a risk-stratification tool to be clinically applicable, it is important not to 

miss patients with high grade dysplasia (HGD) and intramucosal adenocarcinoma 

(IMC). Although TP53 mutation has a high specificity, it will not identify all patients 

with HGD or early cancer, since the prevalence is 70-80%.9,11 To increase our 

sensitivity for detecting high-risk Barrett’s patients, we propose including additional 

molecular biomarkers combined with clinical factors.   

Histopathological grade of dysplasia is a good predictor when confirmed by 

independent pathologists,12 so we included a measure of glandular atypia present 

within the Cytosponge sample. c-Myc was included as it is recurrently amplified in 

OAC,15 while many of its target genes have been identified as overexpressed in 

Barrett’s with dysplasia.15 Copy number change is a strong predictor of progression 

and changes dramatically in the transition to invasive disease.10,16,17 Due to the 

infeasibility, expense and low sensitivity of performing cell cycle analysis or SNP 

arrays on FFPE Cytosponge material, we selected immunohistochemical expression 

of Aurora kinase A (AurKA) as a surrogate aneuploidy marker.18 AurKA expression 

has also been shown to be significantly upregulated in Barrett’s with HGD and OAC 

compared to non-dysplastic.19  

In addition to TP53 sequencing, p53 staining was included as this has been shown to 

be associated with dysplasia,20 although the p53 staining-absent pattern cannot be 

reliably scored on the Cytosponge samples and was excluded. Recent evidence has 

shown that methylation is a good predictor of progression.22 Five genes shown to be 

methylated with increasing grade of dysplasia were tested: p16, ESR1, MYOD1, 

HPP1, and RUNX3.21 After reviewing pilot data, only MYOD1 and RUNX3 were taken 

forward, as these were the most promising (See Appendix, p3). 

In summary, the tissue biomarkers taken forward into this study were therefore: 

atypia, AurKA, p53 abnormality (mutations and protein over-expression), c-Myc 

overexpression, MYOD1 and RUNX3 methylation (Appendix, p3). Clinical information 
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including demographics and symptoms were also assessed as additional biomarkers 

of risk. 

 

Hence, the study aims were: to identify a clinically applicable risk-stratification 

biomarker panel which could be performed on the Cytosponge samples; - to apply 

this panel to a large cohort of patients with BO and a TFF3-positive Cytosponge 

sample to confidently identify a low-risk group of at least 30% of cases who could be 

spared endoscopy; and - to test the Cytosponge risk-stratification model on an 

independent cohort of patients. 

  



 

10 
 

Methods: 

Study design and participants 

The prospective, multi-centre BEST2 case-control cohort was designed to examine 

risk stratification in the Barrett’s (case) arm as a secondary objective.6 Ethics 

approval was obtained from the East of England–Cambridge Central Research Ethics 

Committee (No: 10/H0308/71) and registered in the UK Clinical Research Network 

Study Portfolio (9461). Patients in the validation cohort were selected from newly 

registered BEST2 patients and from the CASE1 study (see Appendix, p4).22 Earliest 

date of enrolment for participants was 07/07/2011. Written informed consent was 

obtained for each patient. Data was collected on demographics, clinical exposures 

(alcohol, tobacco, drugs), and symptoms and anonymised. We collected W:H ratio 

and BMI in the BEST2 study but found that BMI is much more frequently measured 

in clinical practice and is less prone to error. For the validation cohort we therefore 

used BMI only. There was no minimum segment length requirement for BO provided 

they had a least one TFF3 positive cell. Cytosponge specimens were processed to 

paraffin blocks, as previously published.6 The gastroscopies were performed within 

an hour of Cytosponge collection. Biopsy samples were taken from any visible lesions 

and from each quadrant, every 2 cm as recommended by the Seattle surveillance 

protocol. Diagnostic biopsies were reviewed locally. Biopsies with a diagnosis of 

dysplasia were reviewed in a consensus meeting by experienced pathologists from 

four institutions (M.O., M.N., B.D., and P.K.) that were blinded to the Cytosponge 

test result.  

Procedures 

The processed TFF3 positive sample was cut into consecutive sections and the first 

slide containing two sections was stained with H&E.  No enrichment was made for 

TFF3 positive or histopathological atypical areas prior to assessment for molecular 

biomarkers – the entire Cytosponge section was evaluated for each biomarker. 

Any glandular atypia present on this slide was assessed by two expert pathologists 

(M.O. and S.M.) blinded to the clinical diagnosis and a consensus reached (Kappa 
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0.66). For protein biomarker immunohistochemistry (IHC), slide 4 was used for p53, 

slide 8 for c-Myc and slide 10 for AurKA.  Slides were stained using the BondMax 

autostainer with the Leica Bond Polymer Detection kit.  The conditions and 

antibodies used can be found in the Appendix, p5.   

p53 staining with an intensity of 3 was considered significant, as previously 

published.20 c-Myc intensity was scored as 0-3 with 2 and 3 being considered 

significant staining.23 As p53 is most commonly scored in a binary fashion and also 

due to the varying amount of Barrett’s tissue in the Cytosponge samples, we decided 

against using a % scoring system. AurKA scoring was determined with a pilot study to 

evaluate different cut-offs and bearing in mind clinical feasibility. Thus AurKA was 

scored as non-significant or significant staining, with non-significant being fewer 

than 5 positive-staining cells, in the whole section.  

Genomic DNA was extracted from 8x10µm sections of the processed Cytosponge 

FFPE clot using Deparaffinization Buffer (Qiagen) and the QIAamp FFPE DNA Tissue 

Kit (Qiagen).  The manufacturer’s protocol was followed with the exception that 

samples were incubated at 56oC for 24 hours instead of 1 hour, and 10 µl of extra 

Proteinase K were added to the samples halfway through the incubation. FFPE-

extracted DNA was quantified by PCR using primers specific to ALU115 repetitive 

elements (See Appendix, p1). 10-25ng quantified DNA was used for library 

preparation using TP53 Accel-Amplicon comprehensive panel (Swift Biosciences) 

according to manufacturer’s guidelines and sequenced on the Illumina Miseq 

machine using 150bp paired-end sequencing to achieve an average of 10,000-fold 

coverage per sample. 

Outcomes 

Sequencing quality was checked using the FastQC program.  Trimmed reads were 

aligned to GRCh37 human reference genome (hg19) using BWA aligner, then sorted 

by genomic positions and processed using the GATK pipeline. The GRCh38 version 

was not available when we started this work. We used LoFreq to detect low allele-

frequency variants from the Cytosponge samples and annotated the results using 

VEP command from ensembl database. Libraries were prepared in duplicate for each 
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sample and mutations called in both duplicates with an allele frequency above 0·5% 

were considered as true positives.  

DNA was bisulphite-converted using the EZ DNA Methylation-Gold™ kit (as described 

by Zymo Research).  Samples were eluted in 25 µl water and 2 µl was used per 

MethyLight reaction, as previously described.24 β-actin was used to normalise for 

amount of input DNA. Universally methylated and bisulphite-converted DNA (D5010-

1, Zymo Research) was used to derive standard curves for each primer and probe set 

and a calibrator was used in all experiments to allow absolute quantification of 

methylation levels.  Amplification conditions used for all reactions were: 95oC for 10 

mins followed by 50 cycles of 95oC for 15 seconds and 60oC for 1 minute. Percentage 

methylation of each gene was calculated as previously published,17 as was the 

combined methylation value for RUNX3 plus MYOD1. The data underlying our choice 

of these 2 biomarkers is shown in the Appendix, p3.  

Statistical analysis 

The histopathological diagnosis from the endoscopy biopsy taken at the same time 

as the Cytosponge was used as the gold standard for comparison. Data analysis was 

performed using R statistical software version 3.0.2,31 and missing values were 

imputed using iterative regression imputation.32 A logistic regression model was 

used to compute the conditional probability to have Barrett’s with high grade 

dysplasia/intramucosal adenocarcinoma (HGD/IMC), given the covariates. Consider a 

simple decision theory problem. Rather than modelling the dichotomous response 

variable Y directly (Best2diagnosis; 1: HGD/IMC, 0: Negative), we modelled the 

probability that Y belongs to a particular category, given the value of p covariates, 

say X={X1,…,Xp}. We classified samples based on estimating the conditional 

probabilities p(Y|X) and then predicted the risk-profile of a patient as follows: 

 Low-risk if p(Y=1|X) <= c1 

 Moderate-risk if c1 < p(Y=1|X) < c2 

 High-risk if p(Y=1|X) >= c2 

where c1 and c2 are estimated from the data (see Appendix, p1). A model consisted 

of glandular atypia, p53 abnormality, Aurora kinase A IHC and the interaction of BMI 



 

13 
 

(or waist:hip ratio), Barrett’s oesophagus maximum length and age was selected. The 

model with BMI is preferable clinically.  Estimated model coefficients and confidence 

intervals are provided in the Appendix, page 1. Clopper-Pearson Binomial confidence 

intervals for proportions are provided. 

Role of the funding source 

The BEST2 study was funded by Cancer Research UK. (Grant ref; C14478/A12088, 

http://www.cancerresearchuk.org/). The funders had no role in study design, data 

collection, analysis and interpretation, decision to publish, or writing of the report. 

The study received infrastructure support from the Cambridge Human Research 

Tissue Bank, which is supported by the National Institute for Health Research (NIHR) 

Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital. R.C.F. is 

funded by an NIHR Professorship and receives core funding from the Medical 

Research Council and infrastructure support from the Biomedical Research Centre 

and the Experimental Cancer Medicine Centre. R.C.F. and C.S.R. had full access to all 

the data in the study. The corresponding author had the final responsibility to 

submit for publication.  

Results 

Patient characteristics 

TFF3-positive Cytosponge samples from 468 Barrett’s patients with intestinal 

metaplasia were assessed.  Of these, 376 had no dysplasia and 92 had HGD/IMC 

(Figure 1).  Patients with HGD/IMC were older (Mann-Whitney test, p<0.0001), had 

longer Barrett’s segments (p<0.0001) and had a higher waist:hip ratio (p=0.008) 

(Table 1).  

Biomarker panel performance  

Seven biomarkers, including three protein biomarkers for p53, c-Myc, and AurKA 

(Figure 2), two methylation markers (MYOD1 and RUNX3), glandular atypia and TP53 

mutation were assessed on all 468 Cytosponge samples with very few assays failing 

http://www.cancerresearchuk.org/
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and resulting in missing data (Table 2). All biomarkers were analysed separately to 

estimate their sensitivity and specificity for detecting HGD/IMC compared to no 

dysplasia on the Cytosponge specimen. A positive value for p53 abnormality resulted 

from either significant p53 staining or TP53 mutation. The combined methylation 

value for MYOD1 and RUNX3 was also analysed (Table 2). AurKA IHC was the most 

sensitive biomarker (78%; 65-88%) for detecting HGD/IMC compared to no dysplasia. 

p53 IHC was the most specific biomarker (96%; 92-98%) p53 IHC and TP53 mutation 

alone both had sensitivities of 58% (44-70%), but combining these increased 

sensitivity to 72% (58-83%) (Table 2).  

No biomarkers were sensitive and specific enough individually.  As our main aim was 

to identify a low-risk group who would be spared endoscopy, we performed a 

multivariable logistic regression analysis considering all biomarkers and a list of 

demographic information, clinical exposures (smoking, alcohol, medication), 

symptoms, and endoscopic findings (see Appendix, p6) to identify such a group.  

Using a 3-risk model approach (low-, moderate-, and high-risk), we selected the 

smallest possible number of predictors that attained the best possible specificity. 

The model with the best classification performance consisted of four predictors, with 

coefficient estimate shown in brackets: glandular atypia (2.435), p53 abnormality 

(1.802), AurKA IHC (0.876), and the interaction of age, waist:hip ratio, and maximum 

Barrett’s segment length (0.0000634). Atypia and a positive AurKA score were 

associated with a longer segment length (Wilcox text p=<0.0001) and p53 status to a 

lesser extent (p=0.002), (Appendix, p10). 

Testing this model on the full cohort resulted in all HGD/IMC Barrett’s patients being 

categorised as moderate- or high-risk (Figure 3 and Table 3). For the low-risk 

category, the probability of being truly non-dysplastic was 162/162 (Confidence 

Interval at 0.01 significance level 96-100%) and the probability of being a HGD/IMC 

patient was 0/162 (0·01-4%). Furthermore, given a patient has HGD/IMC, the 

probability of this sample being classified as low-risk was less than 5·6%. For the 

moderate-risk group, the probability of being truly non-dysplastic was 86% (79-91%) 

and the probability of being a true HGD/IMC was 14% (9-21%). For high-risk patients, 

the probability of being a true HGD/IMC was 87% (73-95%) and the probability of 
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having non-dysplastic endoscopic biopsies was 13% (5-27%). Analysis of clinical data 

on the non-dysplastic patients misclassified as high-risk determined that one patient 

was diagnosed with metastatic adenocarcinoma, two had HGD/IMC requiring 

endoscopic therapy, two had an endoscopic diagnosis of indefinite for dysplasia and 

remain under follow-up, while the remaining 5 have not yet developed dysplasia.  

Next, we checked the model in a cohort of 65 patients, with baseline characteristics 

similar to the discovery cohort (Table 1). 25/65 patients (38%) were classified as low-

risk and these included 24 non-dysplastic cases and 1 with HGD (Table 3). Hence, if 

categorised as low-risk, the probability of being truly non-dysplastic was 96·0% 

(99%;73·8-99·99%). There were 27 non-dysplastic and 8 HGD cases classified as 

moderate-risk which made up 54% of the cohort and the high-risk group comprised 5 

HGD and no non-dysplastic patients (8% cohort).  

Low grade dysplasia (LGD) is a difficult histopathological diagnosis with low inter 

intra-observer variability and variable outcomes12, so including them in the model 

from the start could cause confounding. We therefore analysed them separately. 

Out of 50 patients with LGD diagnosed from endoscopic biopsies taken on the same 

day as the Cytosponge, 16 were categorised as high-risk, 29 as moderate-risk and 5 

as low-risk. Since a diagnosis of LGD is now a clinical indication for endoscopic 

ablation therapy, following evidence for the superiority of ablation therapy 

compared with surveillance,13 it is impossible to assess the patients’ natural history. 

However, we also examined how the diagnosis related to the highest grade of 

dysplasia ever recorded in these  patients with LGD at the time of the Cytosponge 

and found that 7/16 (44%) patients in the high-risk category had a diagnosis of 

HGD/IMC on endoscopic biopsies taken before or after the Cytosponge test. This was 

more likely than in LGD patients assigned to the moderate or low-risk groups – 7/29 

(24%) and 1/5 (20%), respectively (Appendix, p7). We also examined the treatment 

offered to these patients as a surrogate for the severity of disease: patients 

categorised as high risk were more likely to require surgical or endoscopic resection 

in addition to ablation therapy (Figure 4). 

Discussion  
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This study demonstrates the possibility of performing a combination of biomarker 

assays from a single Cytosponge sample. Combining the biomarkers (p53 

abnormality, glandular atypia, and AurKA staining) with clinical variables (age, length 

of Barrett’s, and obesity), and using logistic regression enables us to risk-stratify 

patients into three risk groups. The primary objective was to determine with high 

confidence a group of patients at low risk for whom endoscopy could be avoided. 

The validation cohort suggests that the algorithm provides a high level of confidence 

(74-99% confidence intervals) for determining patients who are dysplasia-free. In 

both discovery and validation, approximately one third of patients fell into the low-

risk category which could have a substantial impact on the financial and 

psychological burden for this group. High-risk patients should be prioritised for 

endoscopy and endoscopic therapy if dysplasia is confirmed. For moderate-risk 

patients an endoscopy would be recommended, though in the future a repeat 

Cytosponge might be an alternative given that the natural history of BO is generally 

slow and we have previously shown that repeating the Cytosponge improves 

sensitivity for biomarkers.6 

Current practice relies on subjective histopathological assessment of dysplasia.20 The 

latest UK BSG guidelines suggest using p53 IHC to help improve diagnostic 

confidence, and further studies have strengthened the evidence for this,20 although 

this practice is not yet widely adopted. In the risk score developed here we use 

several objective measures, but also include pathologists’ assessment of glandular 

atypia. The p53 status is based on both whole-gene sequencing as well as an 

immunoscore. We sequenced most coding exons (E2-11) and did not rely on TP53 

hotspot analysis, since sequencing has demonstrated that mutations can occur 

anywhere along the gene.9 The AurKA staining is used as a surrogate for copy 

number and the scoring is binarised to make it as straightforward as possible. 

Currently, clinical features are excluded from clinical assessment of patients 

undergoing surveillance, although Barrett’s segment length is a well-recognised risk 

factor.27 The relevant contribution of individual biomarkers to the risk prediction 

varies, with glandular atypia and p53 status being the most important (see Appendix, 

p8).   
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We restricted the main analyses in the discovery and validation cohorts to 

distinguish between non-dysplastic Barrett’s and HGD, because LGD is a diagnostic 

conundrum. Recent studies have shown that the outcome of a LGD diagnosis can 

vary considerably depending on whether or not the diagnosis was confirmed by 

multiple pathologists at different institutions.29 When we performed the risk 

stratification panel on patients with LGD, we found that patients fell into all three 

risk categories. These cases had all been reviewed by at least two pathologists. 

Unsurprisingly, these cases therefore mainly (88%) fell into the moderate and high-

risk categories, in keeping with previous studies in which a consensus diagnosis of 

LGD has a higher risk of malignant progression.12 It is interesting that in our study 

LGD patients in the high-risk category were more likely to have a diagnosis of 

HGD/IMC at some time during their endoscopic history and to harbour a visible 

lesion, suggesting that the risk category is meaningful. 

The question arises as to how clinically applicable the risk score would be. We did 

not perform any enrichment of the Barrett’s cells within the Cytosponge samples 

and we did not normalise any of the biomarkers according to the number of TFF3+ 

cells in order to make this laboratory panel as clinically applicable as possible.  p53 

immunostaining is routine in histopathology for various conditions and automation 

of nuclear scoring is well-described. Sequencing of a single gene, such as p53, is 

becoming common-place in oncology.30 The AurKA stain is cytoplasmic and less 

robust: we have used a binary score to make it as practical as possible and, since this 

contributes the least to the final score, further studies should evaluate whether this 

could be omitted. Our analysis used BMI or waist:hip ratio and we have found that 

these can be used interchangeably: BMI would be preferable clinically, being less 

prone to measurement error. The risk category can be easily calculated (see 

Appendix, p9, and separate Excel file) and this is becoming common in management 

of several conditions, including cardiovascular disease.31 The economics of our 

approach would need to be determined, but avoiding endoscopy and 

histopathological assessment of multiple biopsies could save money and reduce the 

burden of an invasive procedure for patients. 
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There are a number of limitations to our study. Most centres involved are tertiary 

referral centres and so the population studied may not represent a surveillance 

cohort in a general hospital i.e. at higher risk and also may have a different standard 

of care. The number of patients is reasonable for a risk-stratification study but 

testing in larger prospective cohorts is required. Another difficulty is with regards to 

the choice of a gold standard for comparison. We have chosen the grade of dysplasia 

at the endoscopy performed alongside the Cytosponge. Due to sampling error and 

subjective histopathological assessment, this will lead to miscategorisation. 

Consensus pathology review of biopsies taken at the same time as the Cytosponge 

was performed on all cases with dysplastic Barrett’s however this was not feasible 

for the large number of cases without dysplasia which could lead to a false-negative 

gold standard diagnosis. For example, when we examined the patients categorised 

as high-risk by the Cytosponge who had no dysplasia (discovery cohort) or LGD on 

endoscopic biopsies, we found that some of them had had a diagnosis of HGD in an 

endoscopy performed before or soon after the Cytosponge. If you take non 

dysplastic patients at the time of Cytosponge but who had previously had high grade 

dysplasia, i.e. 12 patients - then 4 were high risk, 5 moderate risk and 3 low risk. The 

number of cases with missing biomarker data was very small. However, the sections 

cut for p53 sequencing were done last and in some cases there wasn’t sufficient to 

perform the assay. We hope that collection of long-term follow-up data on these 

patients will provide further confirmation of the value of the Cytosponge risk score.  

We expect that the risk stratification algorithm presented here can be further 

improved by alternative biomarkers. Before incorporating the Cytosponge-biomarker 

test into clinical practice for surveillance, a large randomised clinical trial powered 

according to the data presented here will be required in which patients are allocated 

to a follow-up or treatment strategy based on their Cytosponge result. In our view, 

this innovative strategy combining a non-endoscopic device with a multi-dimensional 

biomarker panel has the potential to improve management of patients with pre-

malignant BO in whom risk stratification is essential to avoid over-diagnosis and 

over-treatment. 
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Table 1: Demographics of the discovery and validation cohorts 

 Discovery cohort Validation cohort 

 Non-dysplastic 
Barrett’s 

oesophagus 

Barrett’s 
oesophagus with 

HGD or IMC 

Non-dysplastic 
Barrett’s 

oesophagus 

Barrett’s 
oesophagus with 

HGD  

Number 376 92 51 14 

Age (years) 64 (56-71) 69 (63-74) 63 (53-69) 62 (49-67) 

Ethnicity 
number (%) 
            
White 
            Other  
            
Refused 

 
366 (97·3%) 

9 (2·4%) 
1 (0·3%) 

 
91 (98·9%) 

1 (1·1%) 
0 (0·0%) 

 
49 (96·1%) 

2 (3·9%) 
0 (0·0%) 

 
14 (100·0%) 

0 (0·0%) 
0 (0·0%) 

Sex (M:F) 3·8 : 1 7·4 : 1 4·1 : 1 13·0 : 1 

BMI 28·1 (25·5-
30·8) 

28.8 (26·1-31·1) 28·1 (25·6-30·4) 27.8 (25·3-31.9) 

Waist:hip 
ratio  

0·94 (0·90-
0·98) 

0.95 (0·93-1·01) Not recorded* Not recorded* 

Hiatus 
hernia (%) 

78·4% 82·0% 86·3% 92·9% 

Barrett’s 
oesophagus 
maximum 
length (cm)  

4 (3-7) 7 (5-10) 4 (3-6) 5 (4-7) 

Data shown reflect median (IQR) for age, BMI, waist:hip ratio and Barrett’s oesophagus maximum 
length. Male: female ratio rounded to the nearest tenth. HGD = high-grade dysplasia, IMC = 
intramucosal adenocarcinoma. 
*Waist:hip ratio was seldom recorded, so only BMI was used for the validation cohort.  
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Table 2: Sensitivity and specificities estimates for the individual biomarkers comparing non-

dysplastic Barrett’s oesophagus and Barrett’s oesophagus with high grade dysplasia. p53 

abnormality was computed using the combined data for p53 IHC and TP53 mutation (i.e. 

either significant p53 staining or TP53 mutation would give a positive value for p53 

abnormality). Clopper and Pearson Binomial Confidence Intervals are provided for 

dichotomous variables. Logistic regression classification was performed using each of the 

continuous variables. Number of samples with missing data is shown.  

 

  

Biomarker Sensitivity (%) Specificity (%) Missing data (%) 

p53 IHC 58 (44-70) 96 (92-98) 1 (0.2) 
TP53 mutation 58 (44-70) 85 (80-90) 13 (2.8) 
p53 abnormality 72 (58-83) 83 (77-88) 13 (2.8) 
Glandular atypia 64 (50-77) 94 (90-97) 1 (0.2) 
cMyc IHC 63 (49-75) 72 (66-78) 3 (0.6) 
Aurora kinase A IHC 78 (65-88) 70 (64-77) 4 (0.9) 
MYOD1 methylation 67 (61-74) 64 (50-77) 7 (1.5) 
RUNX3 methylation 74 (67-79) 60 (46-73) 7 (1.5) 
Combined MYOD1 and 
RUNX3 methylation 

70 (63-76) 62 (48-75) 7 (1.5) 
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Table 3: Risk classification results for the discovery and validation cohorts. NDBO= Non-

dysplastic Barrett’s oesophagus, HGD= Barrett’s oesophagus with high grade dysplasia, 

IMC=intramucosal adenocarcinoma 

Discovery cohort (n=468) Validation cohort (n=65) 

Risk 
classification 

NDBO  HGD/IMC  Risk 
classification 

NDBO  HGD  

Low (n=162) 162 (43%) 0 (0%) Low (n=25) 24 (47%) 1 (7%) 

Moderate 
(n=238) 

205 (55%) 33 (36%) Moderate 
(n=35) 

27 (53%) 8 (57%) 

High (n=68) 9 (2%) 59 (64%) High (n=5) 0   (0%) 5 (36%) 
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Figure 3: Risk classification results for the 468 discovery cohort patients. Barrett’s 

patients with no dysplasia are depicted by a square and patients with high-grade dysplasia or 

intramucosal adenocarcinoma are depicted by triangles.  
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Appendix: Risk stratification of Barrett's oesophagus using a non-endoscopic 

sampling method coupled with a biomarker panel 

Materials and methods 

FFPE DNA extraction and TP53 sequencing on Cytosponge samples 

The primer sequences specific to ALU115 repetitive elements used for quantification of FFPE 

extracted DNA by PCR were: (forward) 5’-CCTGAGGTCAGGAGTTCGAG-3’ and (reverse) 5’-

CCCGAGTAGCTGGGATTACA-3’. 

Methylation analysis on the Cytosponge 

The sequences of the primers and probes used were: MYOD1 forward primer: 5’-

GAGCGCGCGTAGTTAGCG-3’, MYOD1 reverse primer: 5’-TCCGACACGCCCTTTCC-3’, 

MYOD1 probe: 5’-6FAM-CTCCAACACCCGACTACTATATCCGCGAAA-TAMRA-3’, ACTB 

forward primer: 5’-TGGTGATGGAGGAGGTTTAGTAAGT-3’, ACTB reverse primer: 5’-

AACCAATAAAACCTACTCCTCCCTTAA-3’, ACTB probe: 5’-6FAM-

ACCACCACCCAACACACAATAACAAACACA-TAMRA-3’ (from Eads, Danenberg et al. 2000), 

RUNX3 forward primer: 5’-GGCTTTTGGCGAGTAGTGGTC-3’, RUNX3 reverse primer: 5’-

ACGACCGACGCGAACG-3’, RUNX3 protein: 5’-6FAM-

CGTTTTGAGGTTCGGGTTTCGTCGTT-TAMRA-3’ from the Meltzer laboratory. 

Statistical analysis  

Let Y be the response variable (Best2diagnosis; 1: HGD/IMC, 0: Negative) and X={X1,…,Xp} 

represent p covariates. Recall that we classified samples based on estimating the conditional 

probabilities p(Y|X) using a logistic regression model and then predicted the risk-profile of a patient as 

described in main text, where c1 and c2 are estimated from the data as described below. First, a 

biomarkers logistic regression model (with glandular atypia, p53 abnormality and Aurora kinase A IHC 

as covariates) was selected using a backward model selection approach
32

. More precisely, we started 

with a model consisting of all biomarkers then the least significant variable was dropped, so long as it 

was not significant at the 0.05 critical level. We proceeded by removing non-significant variables in a 

sequential manner (applying the same rule) until all remaining variables were statistically significant. 

The fitted conditional probabilities of being HGD/IMC were computed using the selected logistic 

regression model and then they were classified in three risk-groups, i.e. low, moderate, and high risk, 

as described above. The lower threshold c1 was selected to maximise (minimise) the number of 

negative (HGD/IMC) samples classified in the low-risk group. The other threshold c2 was selected to 

maximise (minimise) the number of HGD/IMC (negative) samples classified in the high-risk group. In 

an attempt to increase classification accuracy (as defined below), we fitted logistic regression models 

consisting of the selected biomarkers plus an additional covariate representing any of all available 

clinical variables. We have also fitted models including the main effects of clinical features and/or 

second and/or third order interactions between the clinical variables. The classification procedure 

described above was subsequently applied on each fitted model. The predictive performance of each 

model was assessed using the following simple approach. All models were ranked (i) in an ascending 

order according to the total number of misclassified patients (HGD/IMC in low-risk group and negative 

patients in high-risk group) and, subsequently, (ii) in a descending order based on the total number of 

correctly classified patients (negative patients falling into the low-risk group and HGD/IMC patients 

falling into the high-risk group). In this fashion, the higher the ranking of a model is, the better 

predictive performance is supposed to have. A model consisted of glandular atypia, p53 abnormality, 

Aurora kinase A IHC and the interaction of BMI (or waist:hip ratio), Barrett’s oesophagus maximum 

length and age was selected. We are aware of the increased chance of overfitting, thus we emphasized 

on enrolling a validation cohort to assess the “out-of-sample” performance and get more trustworthy 

results. The predictive performance of the selected model on the validation cohort seems promising.     
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Estimated model coefficients, standard errors, z-statistics and p-values are provided below: 

Coefficient Estimate Std. Error Z-value P-value 

Intercept -4.019 0.384 -10.471 <0.00000000000000002 

Atypia 2.435 0.362 6.732 0.000000000017 

p53_Status 1.802 0.325 5.544 0.00000003 

AURKA 0.876 0.340 2.574 0.01005 

AgexMxBMI 0.0000634 0.000022 2.885 0.00392 

  



 

34 
 

Tables 

Sensitivity and specificity assessment of methylated regions to detect dysplasia on the 

Cytosponge. 

In a pilot experiment consisting of 113 Cytosponge samples (15 controls,  54 Barrett’s with no 

dysplasia, 20 Barrett’s with LGD and 24 Barrett’s with HGD), five methylated regions (p16, HPP1, 

RUNX3, ESR1 and MYOD1) were assessed to see which subset of methylated regions performed the 

best and had the best sensitivity and specificity to detect dysplasia on the Cytosponge.  Together 

RUNX3 and MYOD1 gave the best area under the curve when comparing any dysplasia with no 

dysplasia and were therefore taken forward to evaluate further on the Cytosponge samples.   

 
Methylation regions AUC 

ESR1 0.739 

HPP1 0.754 

MYOD1 0.771 

P16 0.673 

RUNX3 0.754 

P16 HPP1 0.757 

P16 RUNX3 0.727 

P16 ESRI 0.741 

P16 MYOD1 0.762 

HPP1 RUNX3 0.770 

HPP1 ESR1 0.755 

HPP1 MYOD1 0.773 

RUNX3 ESR1 0.754 

RUNX3 MYOD1 0.786 

ESR1 MYOD1 0.762 

P16 HPP1 RUNX3 0.764 

P16 HPP1 ESR1 0.753 

P16 HPP1 MYOD1 0.770 

P16 RUNX3 ESR1 0.754 

P16 RUNX3 MYOD1 0.771 

P16 ESR1 MYOD1 0.758 

HPP1 RUNX3 ESR1 0.761 

HPP1 RUNX3 MYOD1 0.776 

HPP1 ESR1 MYOD1 0.763 

RUNX3 ESR1 MYOD1 0.769 

P16 HPP1 RUNX3 ESR1 0.759 

P16 HPP1 RUNX3 MYOD1 0.773 

P16 HPP1 ESR1 MYOD1 0.761 

P16 RUNX3 ESR1 MYOD1 0.761 

HPP1 RUNX3 ESR1 MYOD1 0.765 

P16 HPP1 RUNX3 ESR1 MYOD1 0.763 
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Sites of patient recruitment 

Recruitment site Location Principle investigator Number of patients 

Addenbrooke's Hospital Cambridge Rebecca Fitzgerald 195 

University College London Hospital London Laurence Lovat 145 

Royal Victoria Infirmary Newcastle Michael Griffin 118 

Nottingham Queen's Medical Centre Nottingham Krish Ragunath 76 

Queen Alexandra Portsmouth 
  

Pradeep Bhandari 35 

South Tyneside NHS Foundation Trust South Tyneside Colin Rees 15 

University Hospital of North Tees Stockton-On-Tees Mathew Rutter 12 

University Hospital of North Durham County Durham and 
Darlington 

Anjan Dhar 12 

Queen Elizabeth II Hospital Welwyn Garden Danielle Morris 8 

St Mark's Hospital London, Northwick Park Adam Haycock 6 

North Tyneside General Hospital North Shields Stephen Attwood 5 

Hinchingbrooke Hospital Huntingdon Anita Gibbons 4 

Bedford Hospital Bedford Jacqueline Harvey 2 
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IHC staining conditions and antibodies used. 

Antigen Protocol Antigen 

retrieval 

Antibody Antibody  

dilution 

p53 Protocol F H1(30) NovocastraTM Mouse Monoclonal Antibody 
p53 Protein (DO-7) 

Product Code: NCL-p53-DO7 

1:50 

c-Myc MRC+E* H2(20) Epitomics c-MYC antibody, clone Y69, Rabbit monoclonal 

Cat #: 1472-1 

1:50 

Aurora 

kinase A 

MRC+E H2(30) Millipore Anti-Aurora-A (C-term), clone EP1008Y, Rabbit 

Monoclonal  

Cat #: 04-1037 

Lot specific dilution 

as the concentration 

is not normalised 
between lots 

* For c-Myc staining, the primary antibody was incubated with 60 minutes 
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Demographics, clinical history and molecular biomarkers included in the model selection. 

Selected predictor and interaction variables are highlighted in bold.   

  

 

Model input 

 

 

Options 

Demographics   

 Age  

 Gender M/F 

 BMI  

 Waist:hip ratio  

 Family history of EAC Y/N 

Smoking history   

 Current smoker Y/N 

 Total years smoked  

 Time since stopped smoking (years)  

 Number of pack-years  

Alcohol history   

 Number of alcohol units per week  

Medication history   

 Ever taken NSAIDs Y/N 

 Current NSAID status Currently taking, not taking, NA 

 NSAID dose frequency Never, on demand, at least daily, NA 

 NSAID duration (years)  

 Currently on H pylori medication Y/N, don’t know 

Symptoms   

 Chest pain Never, sometimes, often/daily 

 Burning chest Never, sometimes, often/daily 

 Acid taste in mouth Never, sometimes, often/daily 

 Number of years since heartburn started Never, <10 yrs, 10-20 yrs, >20 yrs 

Endoscopic findings   

 Hiatus hernia Y/N 

 Barrett’s oesophagus maximum length 

(cm) 

 

 Oesophagitis Y/N 

 Presence of oesophageal nodules or ulcers Y/N 

 Barrett’s oesophagus surveillance length 

(years) 

 

Biomarker panel on 

Cytosponge specimens 

  

 Glandular atypia 0/1 

 p53 IHC 0/1 

 TP53 mutation 0/1 

 p53 abnormality 0/1 

 cMYC IHC 0/1 

 Aurora Kinase A IHC 0/1 
 MYOD1 methylation (%)  

 RUNX3 methylation (%)  

 MYOD1+RUNX3 methylation (%)  
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Diagnosis follow-up of patients in the high, moderate, and low risk groups diagnosed with low-

grade dysplasia at baseline. 

 
Risk group Number of patients diagnosed 

with high grade dysplasia 

Total number of patients 

 

Percentage diagnosed with 

high grade dysplasia 

High risk 7 16 43.75% 

Moderate risk 7 29 24.10% 

Low risk  1 5 20% 
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Marginal effects of individual predictors. 

 

A marginal effect is a measure of the direct effect that a change in a particular biomarker, e.g. from 

negative to positive score, has on the predicted probability of having a high grade dysplasia, when the 

other predictors are kept fixed. All marginal effects were computed as in Greene
27 

using the R function 

"logitmfx" from R-cran library "mfx". 

 
Predictor Marginal effect Range 

 

Atypia 40% 19-61% 

p53 status 24% 10-38% 

Aurora kinase A 9% 1-17% 

log of interaction between age, maximal Barrett’s length, and obesity 8% 2-14% 
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Risk stratification prediction tool 

Predictor Type Vale Probability (P) Classification 

p53 abnormality 

(combination of IHC 
and mutation) 

Binary a  =1/(EXP(4.019+a*(-

1.802187)+b*(-
2.434713)+c*(-

0.8756866)+d*e*f*(-

0.00006342102))+1) 

Low risk P<0.0345 

Moderate risk 0.0345<P<0.48 
High risk P>0.48 

 

 
In MS Excel: 

=IF(P<0.0345,"Low 

Risk",IF(P>0.48,"High-Risk","Moderate-
Risk")) 

Glandular atypia Binary b 

AurKA staining Binary c  

Age Continuous d 

BMI Continuous e  

Maximal Barrett’s 
oesophagus length 

Continuous f  
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Biomarker profiles associated with Barrett’s segment length. Y–axis (M) refers to the maximum length of the Barrett’s segment. X-axis 0 or 1 refers to p53 

normality or abnormality respectively.   


