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Abstract

Different types of thin metal films and oxide materials are studied
for their potential application in nanoelectronics: gold and copper
films, nickel nanoelectrodes, oxide nanograin superconductors, car-
boxyl ferromagnetic microspheres and graphene oxide flakes. The
crystallization and surface morphology of gold and copper films on
Si04/Si substrates is investigated as a function of annealing tempera-
ture. Annealing arranges the Au crystallites in the [111] direction and
changes the morphology of the surface. Relaxation of the Au layer at
high temperatures is responsible for the initial stages of cluster forma-
tion. These may form at disordered points on the surface and become
islands when the temperature is increased. In the case of Cu/SiOy/Si
films, oxides are formed after thermal oxidation at different tempera-
tures up to 1000 °C. The phase evolution Cu — Cu + Cuy,O — Cuy,0O
— CuyO + CuO — CuO is detected. Pure Cu,O films are obtained
at 200 °C, whereas uniform CuO films without structural surface de-
fects are obtained in the temperature range 300 - 550 °C. A resistivity
phase diagram, which is obtained from the current-voltage response
of the copper oxides, is presented. In the case of thin nickel films,
the necessary reagents, conditions and processes required to obtain
nano and atomic gaps between soft and clean nickel electrodes are de-
scribed by using a conventional electrochemical cell. Current-voltage
characteristics are also presented to evaluate possible applications of

the nanogap electrodes in electronic nanodevices.

In addition to the metal surfaces, oxides materials such as the su-
perconductor LaCaBaCuzO; (Lalll3), carboxyl ferromagnetic mi-

croparticles and graphene oxide flakes are studied. Lalll3 is a high



critical temperature superconductor with Teoonsery = 80 K and its
structure is similar to the tetragonal YBCO. This thesis explores the
attachment of Lalll3 nanograins on Au(111) surfaces through self-
assembled monolayers of HS-CgH;4-HS [octane (di)thiol] for their po-
tential application in nanotransistors. It is found that Lalll3 parti-
cles (100 nm mean diameter) can be functionalized by octane (di)thiol
without affecting their superconducting critical temperature (T¢ = 80
K). A design for a superconducting transistor fabricated by immobi-
lized Lalll3 nanograins in between two gold electrodes which could
be controlled by an external magnetic field gate is suggested. Further-
more, the mechanical reorientation of thiolated ferromagnetic micro-
spheres bridging a pair of gold electrodes under an external magnetic
field is studied. Finally, a flexible film made of graphene oxide flakes
is prepared and characterized by X ray diffraction. It is achieved by
the chemical oxidation of commercial graphite and the subsequent re-
action with NaOH. It is found that the interlayer distance between
graphene increases upon oxidation due to the formation of chemical

groups and results in the delamination and flexibility of the flakes.
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Chapter 1

Introduction

During the last half a century, electronic devices have shrunk every year following
Moore’s law (Moore, 1965), which states that the number of transistors that can
be placed inexpensively on an integrated circuit approximately doubles every
two years (see Figure 1.1). This trend has continued for more than fifty years
(Figure 1.1 (top)) and it is predicted to continue for several more years (Figure 1.1
(bottom)). However, the costs for manufacturers follow an inverse trend which
threatens the continuity of Moore’s law since the costs of plants for the fabrication
and testing are growing continuously. The performance-to-price ratio of chips may
double every two years, but the cost of building the production plants keeps on
growing quickly (for instance, Intel is spending $ 7 billion upgrading its fabrication
plants). Moreover, the fabrication becomes more complex as transistors shrink in
size. The scale is staggering, but the current generation of chips is 40 nm across. It
is hard to miniaturize integrated circuits below the 10 nm scale. Overall, design
and research becomes more expensive with each new generation device. This
observation is known as Rock’s Law (or Moore’s Second Law) (Ross, 2003) which
states that fabrication costs follow an exponential decrease. Since increasing
speed and miniaturization are the basis of electronic sector competition, there
will be a high impact in the development of the information and communications
technology when the limit of Moore’s law is reached.

In order to continue increasing the speed, shrink the size and improve the
power of electronic devices and thus to maintain the Moore’s law, new materials

and designs are needed. This holds for artificial materials with great potential
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1.1 Thin metal films

in novel devices. For example, materials that push the operating temperature of
nanoelectronics devices to room temperature, new approaches in nanoparticles,
new substrates, etc. The search for novel materials, thin metal films and oxides
to replace the silicon-based nanoelectronics is currently an area of intense effort.
In the next sections, both thin metal films, oxide materials and their manufacture

are briefly described.

1.1 Thin metal films

In the case of thin metal films, the development of vacuum technology, new
surface sensitive probes and powerful computational techniques permits a better
study and provides new processes to be used in micro- and nano-electronics.
Thin metal films range from fractions of a nanometer (monolayer) to several
micrometers in thickness and they have many applications depending on the film
construction. For example, there are abundant non-toxic materials with potential
application in photovoltaic sollar cells (Alharbi et al., 2011), new thin films such
as silicon-oxycarbides are being investigated for ion battery applications (Shen
& Raj, 2011), there is a rising interest in shape memory alloy thin films such as
Fe-Pd because of the possibility to get rapid actuation response due to rapid heat
dissipation (Han et al., 2010) and so on.

For manufacturing, there are many techniques which allow the deposition of
thin metal films onto a substrate or onto other deposited layers. The deposition
techniques fall into two broad categories, depending on whether the process is

primarily chemical or physical (Smith, 1995):

1.1.1 Chemical deposition

In this technique, a metal fluid precursor undergoes a chemical change at a solid
surface, leaving a metal layer. The metal fluid surrounds the solid object, depo-
sition happens on every surface, with little regard to direction. Thin metal films
from chemical deposition techniques tend to be conformal, rather than directional.

Chemical deposition is further categorized by the phase of the precursor:
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1.1.1.1 Electroplating

Electroplating is a plating process in which metal ions in a solution are moved
by an electric field to coat a surface (Schlesinger & Paunovic, 2010). The process
uses an electrical current to reduce cations of a desired material from a solution
and coat a conductive object with a metal. Electroplating is used for abrasion
and wear resistance, corrosion protection, lubrication, aesthetic properties, etc.
The process used in electroplating is called electrodeposition. It is analogous to a
galvanic cell acting in reverse. The part to be plated is the cathode of the circuit
while the anode is made of the metal to be plated. Both components are immersed
in a solution called an electrolyte containing one or more dissolved metal salts
as well as other ions that permit the flow of electricity. A power supply supplies
a direct current to the anode, oxidizing the metal atoms that comprise it and
allowing them to dissolve in the solution. At the cathode, the dissolved metal
ions in the electrolyte solution are reduced at the interface between the solution
and the cathode. The rate at which the anode is dissolved is equal to the rate
at which the cathode is plated. In this manner, the ions in the electrolyte bath
are continuously replenished by the anode. This technique is discussed in more
detail in §2.3 and Chapter 5.

1.1.1.2 Chemical solution deposition

Chemical solution deposition (CSD) uses a liquid precursor, usually a solution
of organometallic powders dissolved in an organic solvent. This is a relatively
inexpensive, simple thin film process that is able to produce stoichiometrically
accurate crystalline phases. This technique is also known as Sol-Gel (Sakka,
2010) because the “sol”(or solution) gradually evolves towards the formation of

a gel-like diphasic system.

1.1.1.3 Chemical vapour deposition

Chemical vapour deposition (CVD) generally uses a gas-phase precursor, often a
halide or hydride of the element to be deposited (Dobkin & Zuraw, 2010). In a
typical CVD process, the substrate is exposed to one or more volatile precursors,

which react and/or decompose on the substrate surface to produce the desired
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deposit. Frequently, volatile by-products are also produced, which are removed
by gas flow through the reaction chamber. Plasma enhanced CVD (PECVD)

uses an ionized vapour, or plasma, as a precursor.

1.1.2 Physical deposition

Physical deposition uses mechanical, electromechanical or thermodynamic means
to produce the thin metal film (Smith, 1995). Since most metals can be held
together by relatively high energies and chemical reactions are not used to store
these energies, commercial physical deposition systems tend to require a low-
pressure vapour environment to function properly. The metal to be deposited is
placed in an energetic, entropic environment, so that particles of the metal escape
its surface. Facing this source is a cooler surface which draws energy from these
particles as they arrive, allowing them to form the solid layer. The whole system
is kept in a vacuum deposition chamber, to allow the particles to travel as freely
as possible. Since particles tend to follow a straight path, thin films deposited
by physical means are commonly directional, rather than conformal. Examples

of physical deposition include:

1.1.2.1 Thermal evaporation

Thermal evaporation uses an electric resistance heater to melt the metal and
raise its vapour pressure to a useful range. This is done in high vacuum, both
to allow the vapour to reach the substrate without reacting with or scattering
against other gas-phase atoms in the chamber and to reduce the incorporation
of impurities from the residual gas in the vacuum chamber. In this technique
only metals with a much higher vapour pressure than the heating element can
be deposited without contamination of the thin film. Molecular beam epitaxy
is a particularly sophisticated form of thermal evaporation. In that case a high-
energy beam from an electron gun boils a small spot of metal; since the heating
is not uniform, a lower vapour pressure metal can be deposited. In this thesis,
conventional evaporation in an EDWARDS 306 evaporator system was used to
fabricate the thin metal films and the fabrication conditions for each sample will

be discussed in each chapter.
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1.1.2.2 Sputtering

Sputtering relies on a plasma (usually a noble gas, such as argon) to eject the
metal from a “target”to deposit it onto a substrate (Wasa et al., 2004). It is
especially useful for metal compounds or mixtures. It is a fast technique and it

also provides a good thickness control.

1.1.2.3 Pulsed laser deposition

This is a technique where a high power pulsed laser beam is focused inside a vac-
uum chamber to eject the metal of a target to be deposited on a substate (Eason,
2007). When the laser pulse is absorbed by the target, the energy first leads to
electronic excitation and is then converted into thermal, chemical and mechanical
energy resulting in evaporation, ablation, plasma formation and even exfoliation.
The ejected species expand into the surrounding vacuum and are deposited on

the typically hot substrate.

In this thesis, the chemical and physical deposition technique “electroplat-
ing”and the physical deposition technique “thermal evaporation”are used to fab-
ricate different thin metal films on SiOy/Si substrates. The morphology, crys-
tallization and oxidation of the deposited thin metal films are studied for their
potential use in nanoelectronics. Because there are many types of thin metal films
which can be used in nanoelectronics, this thesis surveys the properties of three
of them: gold, copper and nickel. It is not a thesis on the theory of metal surfaces
but rather on some experimental characterization of these metals. SiO4/Si was
used as a substrate as it is commonly used in nanoelectronics. SiOs is an insu-
lator which can be used as backside gate for nanoelectronic devices. It is easily
produced by thermal oxidation of Si and it has great stability and good adherence
to many metals (Benouattas et al., 2000; Ferullo et al., 2006; Xu et al., 1993).

1.2 Oxide materials

Oxides are compounds containing oxygen atoms, usually in the oxidation state of

-2. Oxides result when elements are oxidized by oxygen present in air. Since al-
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most all elements are in contact with the atmosphere, then even materials which
are considered to be pure elements often contain coatings of oxides which usually
protect the material from further corrosion. In the presence of water and oxygen
(or simply air), some elements such as lithium, sodium, potassium, rubidium,
caesium, strontium and barium rapidly oxidize. The surface of most metals be-
comes oxides and hydroxides in the presence of air. Due to its electronegativity,
oxygen forms chemical bonds with almost all elements to give the corresponding
oxides. Nowadays, a broad range of functional properties such as piezoelectricity
and ferroelectricity, high dielectric permittivity, superconductivity, colossal mag-
netoresistance and ferromagnetism have been found in oxide materials. Moreover,
transition metal oxides are intensively studied for their complex phases, structural
phase transitions, metal-insulator transitions and magnetic ordering transitions.
Cuprates (such as YBayCu3O7, Lay_,Sr,CuQy, Bi-Sr-Ca-Cu-0, etc) are high T¢
superconductors (Poole et al., 2007). Colossal magnetoresistance was discovered
in manganites such as LaMnOj3 and derivates (Baldini et al., 2011). Ferroelec-
tricity and piezoelectricity in PbZr,Ti;_,O3 have wide applications (Popescu-
Pogrion et al., 2004). Graphene oxide is an attractive alternative to graphene for
producing flexible electronic devices (Wei et al., 2010). Manufacturing methods
including doping, epitaxial superlattice growth and nanoengineering techniques
make it possible to fabricate high quality nanostructures of different oxides and
they are becoming an important part of many new electronic devices. Their
novel properties make oxide electronics and the integration of oxides with semi-
conductors a promising approach to extend and accelerate information technology
development. In this thesis superconductor oxide grains and graphene oxide are

investigated for their use as novel components in nanoelectronic devices.

1.3 Structure of this thesis

The thesis studies some properties of thin metal films and oxide materials for
their potential application in nanoelectronics. It is important to mention that no
devices are presented, the study of thin metal films such as gold, copper and nickel
and oxides such as LaCaBaCusO; and graphene oxide flakes for their potential use

in nanoelectronics is discussed instead. In addition to this introductory chapter,
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the thesis contains eight further chapters; one of them describes the experimen-
tal techniques for the preparation and characterization of the samples, three of
them discuss gold, copper and nickel thin films, another three refer to some oxide
materials such as the superconductor oxide LaCaBaCusOy, carboxil ferromag-
netic microparticles and graphene oxide flakes and the last chapter presents the
final conclusions and suggestions for further work. The overview structure of this

thesis is presented in Figure 1.2 and briefly summarized as follow:

Chapter 2: Experimental techniques

Metal surfaces . . . .

oot
o ©

Chapter 3: Gold
Chapter4: Copper

Chapter 6: Oxide superconductor
Chapter 7: Ferromagnetic microspheres

Au, Ni ; 4 AuNi

Si0,/Si

Chapter5: Nickel nanogap electrodes Chapter 8: Graphene oxide flakes

Vs
o,

Chapter9: Future work

|
40
IV

Figure 1.2: Structure of this Thesis

e Chapter 2: Introduces the experimental techniques used in this thesis for

the fabrication and characterization of the samples.
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Chapter 3: Thin gold films on SiO, substrates were studied following an-
nealing. It is found that thin Au films can be crystallized on SiO, substrates
by annealing. Annealing arranges the Au crystallites in the [111] direction
and changes the morphology of the surface, forming gold islands over the
surface. It is suggested that a relaxation of the Au layer at high tempera-

tures should be responsible for the initial stages of cluster formation.

Chapter 4: In this chapter the crystallization and electrical resistivity of
the prepared oxides in a Cu/SiOy/Si thin film by thermal oxidation are
studied. The phase evolution Cu — Cu + CuyO — CuO — CuyO +
CuO — CuO is detected during the oxidation of copper. A resistivity
phase diagram, which is obtained from the current-voltage response, is also

presented here.

Chapter 5: In this chapter the fabrication of nickel nano-spaced electrodes
by electroplating is discussed. The necessary reagents, conditions and pro-
cess required to obtain nano and atomic gaps between soft and clean surfaces

electrodes are described.

Chapter 6: The oxide superconductor LaCaBaCu3O; (Lalll3) is pre-
sented. Its functionalization and attachment to Au(111) surfaces through
self-assembled monolayers (SAMs) is reported. In addition, a design for
a superconducting transistor fabricated by immobilized Lall13 nanograins
in between two gold electrodes, which could be controlled by an external

magnetic field gate, is suggested.

Chapter 7: In this chapter, the mechanical reorientation of carboxil ferro-
magnetic microspheres bridging a pair of gold electrodes under an external
magnetic field is studied. The physical reorientation of the ferromagnetic
particles is sensed by I-V characterization and analyzed from the magnetic

hysteresis response while suspended in a liquid solution.

Chapter 8: In this chapter, the preparation and X-ray diffraction of
graphene oxide flakes is reported. The preparation follows a chemical ox-

idation of commercial graphite and subsequent reaction with NaOH. The
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X-ray diffraction reveals that the interlayer distance between graphene in-
creases by oxidation due to the formation of chemical groups and results in
the delamination and flexibility of the flakes, which can be used in nano-

electronics.

e Chapter 9: In this final chapter, the overall conclusions are stated and

suggested further work is discussed.
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Chapter 2

Experimental techniques

In this chapter some of the experimental techniques used for the fabrication and
characterization of nanosized materials are described. The most employed tech-
niques within this thesis are lithography (for the fabrication of the metal elec-
trodes), X-ray diffraction (for crystallization studies), electroplating (for electrode
nanogaps formation) and Magnetic Properties Measurement System (MPMS, for
magnetic measurements). In this chapter, a general description of these tech-
niques is presented. The following chapters contain the respective experimental
sections in which details of the experimental conditions for each sample processing
are described in more detail. Since there is extensive information in the literature
about these techniques, a detailed theoretical description is out of the scope of
this thesis. Instead, attention is focused on the procedure and general conditions

followed during fabrication and characterization of the samples.

2.1 Lithography

In nanotechnology, lithography is the process of printing patterns onto a layer
called a resist, using a localised interaction between the resist and an engraving
micro-tool or particle beam. The lithographic technique can be classified accord-
ing to the micro-tool or type of radiation used. The two types of lithography
used in this work are photolithography and e™-beam lithography. Photolithogra-
phy, also called “optical lithography”, is a well known method used to produce a

11



2.1 Lithography

pattern by ultraviolet (UV) light. A wafer is coated with a photosensitive chem-
ical resist and exposed to UV light through a photomask which is held against
it or in close proximity. The mask has opaque and transparent parts which re-
produce the relevant pattern. It is generally a quartz plate coated with a thin
chromium layer in those regions where opacity is required. In contrast, e”-beam
lithography scans a beam of electrons in the patterned regions of the resist. It
allows better resolution than photolithography and nanometer sized features can
be achieved without the use of lithography-masks. The limitation of e- beam
lithography is the very long time it takes to pattern an entire wafer. After the
pattern is transferred to the resist, removal of either the exposed or non-exposed
regions of the resist (“developing”) is required. The purpose of the lithography is
to create very small structures in the resist that can subsequently be transferred
to the substrate material, often by etching. For further detailed information on
this stage, the reader is directed to the book published by Levinson (2010). In
this work, metal micro- and nano-electrodes were fabricated on Si/SiO, wafers
by combining traditional photolithography and e™-beam lithography. The main
purpose was to obtain metal electrodes separated by micro- or nano-gaps which
can be bridged with different types of particles. The electrodes then connect
the particles with the measurement apparatus. The steps of the manufacturing

process are now described in more detail.

2.1.1 Electrode design

Using the program Autocad, patterns for photolithography masks and e™-beam
lithography were designed. The Autocad files were sent to Compugraphics Inc.
for the fabrication of the chromium masks. The designs for the micro- and nano-
spaced gap electrodes patterns are shown in Figures 2.1 and 2.2 respectively.
In Figure 2.1, six patterns were drawn and they were uniformily distributed on
the mask. Each pattern has four arrows (the electrodes) pointing at each other
forming a cross. Two of them are intended to be used as source (S) and drain (D)
electrodes and the other two as gate electrodes for the potential fabrication of
electronic devices. The main differences between the patterns distributed on the

mask are the S and D electrode tip angles and their respective gap widths. The

12
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electrode tips of the three devices located on the left column (called asymmetric)
have different angles, whereas the electrode tips of the three patterns located on
the right column (called symmetric) have a similar angle. The electrode tips in
the vertical axes of each pattern are sharper than those of the S and D electrodes.
The main purpose of this mask design is to obtain micro-gaps of variable sizes
from 1pym to 2pum in which different types of microparticles will be attached.
Moreover, the electrodes obtained with this photolithography mask are used to
study the gap width evolution by electrodeposition as is discussed in more detail
in Chapter 5. In Figure 2.2, the patterns for four devices are drawn and they are
uniformily distributed on the mask. In contrast to the previous design, in which
the critical characteristics are situated on the center, the critical characteristics
of the new pattern (with dimensions 10 x 24 mm) are situated on the edge to
give better handle during electroplating (See Chaper 5). Each pattern has three
electrodes (source (S), drain (D) and gate (G)) pointing to each other. Depending
on their critical characteristics, they are classified in two types: A and B. In type
A, the three electrodes form an angle of 120° between them. In type B, only the
S and D electrodes point to each other and the G electrode is perpendicular to
them. The gap separations in all patterns is 200 nm. These patterns are intended
to be used for those samples in the nanometer scale. On the bottom of Figures
2.1 and 2.2, additional patterns for a second photolithography process are found.
They are called “windows”. The function of the windows is to expose circular
and rectangular areas on the top of the critical characteristics and those areas in
which wire connection will be necessary to be in contact with the atmosphere.
The rest of the surface will be coated by a polymer to protect the electrodes and

to prevent oxidation.

Figure 2.1: Design patterns for micro-gap electrodes

2.1.2 Resist coating

Resists are organic polymer solutions to be deposited on the wafers and destined

to receive the radiation or the interaction used during the lithographic process.
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____________________________
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Figure 2.2: Design patterns for nano-gap electrodes
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A polymer resist is typical for photolithography or e™-beam lithography. Re-
sists comprise two parts: a matrix, insensitive to the writing radiation, which
fulfils the mechanical requirements of the resist, and an active component, sen-
sitive to the radiation, which either accelerates or slows down the rate at which
the resist dissolves in a solvent (the developer). There are thus two types of
resists: positive resists for which exposure increases the solubility and negative
resists for which exposure reduces the solubility. In this work, positive resists
polymethyl methacrylate (PMMA, Microchem Inc.) and ZEP520A (diluted in
ZEP-A (1:2 ratio), Zeon Corporation) were used for the photolithography and
e~ -beam lithography respectively. Prior to coating, the Si/SiO, substrates were
degreased in acetone and washed ultrasonically in isopropyl alcohol (IPA) follow-
ing a standard procedure. The wafers were then spun about their axis at a high
rate spin, flinging off the excess resist. For lithography, the PMMA was spun
on the wafer and spun at 2000 rpm for 60 s to obtain a 600 nm thickness. For
e~ -beam lithography, the ZEP520A + ZEP-A (1:2) was spin coated at 3000 rpm
for 100 s to obtain around a 100 nm thickness. After the resist coating, soft bakes
of the wafers at 180 °C for 4 min were followed to densify the resist and evaporate

residual solvent.

2.1.3 Exposure

As mentioned in the last section, PMMA and ZEP520A are positive resists. They
are insoluble in developers, but are made soluble by exposure to UV and e™-
beam radiation respectively. By exposing these resists selectively in the areas
described in Figures 2.1 and 2.2, the patterns are created on the films. Many resist
thicknesses and radiation doses were tried in order to achieve optimal results.
In the case of the photolithography, the PMMA was exposed by a deep ultra-
violet (DUV) light (240 nm wavelength) with 8.9 mW/cm? intensity using a
mask aligner model MJB4 (SUSS Microtech). For the patterns which required
e~ -beam lithography, two equipments were used: a LEICA VB6 UHR from the
Cavendish electron beam nano-lithography facility (beam voltage 100 kV and
current density 2000 Acm~2), and a Jeol JBX-6000FS from the Materials and

15
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Structures Laboratory of the Tokyo Institute of Technology (beam voltage 50
kV, beam current of 100 pA and irradiation dose of 100 xC/cm?).

2.1.4 Developing

In this step, the exposed areas of the resists are removed with developers. Com-
ercial developers for optical resists usually contain sodium hydroxide (NaOH).
However, sodium is considered an extremely undesirable contaminant in nano-
electronic devices because it degrades the insulating properties of gate oxides.
Metal-ion-free developers such as methyl ketones are now used. In this work,
methyl isobutyl ketone (MIBK, Microchem Inc.) was used to remove the exposed
areas of the resist with DUV. The photolithography samples were inmersed in
a beaker containing MIBK diluted in IPA (1:2) for 10 min. For the e -beam
lithography, amyl acetate (ZED-N50, Zeon Corporation) was used. The devel-
oped samples were then post-baked at 120 °C for 20 min. This was to make the

remaining resists more durable.

2.1.5 Metal deposition

The developed patterned wafers were deposited with three different metals sep-
arately: gold, copper or nickel. For that purpose, small Au, Cu or Ni pellets
(99.999% purity) were evaporated from a boat on to polished SiO5 (80nm)/Si(100)
substrates using a BOC Edwards 306 evaporator system with a base pressure of
1077 mbar. The rate of evaporation was maintained at 0.1 nm/s and the thick-
ness of the metals (40-100 nm) was measured by a quartz crystal microbalance
located next to the wafers. Before evaporating gold, a thin layer of Ti (5 nm)

was deposited as an adhesion promoter.

2.1.6 Lift-off

After metal deposition, the resists were no longer needed and they were removed
from the substrates: hardened PMMA was disolved in acetone with the help of
a hot plate at 70 °C for 4 h, whereas the ZEP520A + ZEP-A was removed with
dimethylacetamide (ZMAC, Zeon Corporation).

16
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(a) Efﬁ(}pened windowﬁ-
PMMA PMMA
Au/Ni Au/Ni

(b)

Rectangularwindow

circular window

circular window

-

Figure 2.3: Lithographically defined metal electrodes for the present work: (a)
representation of the transverse section of an arbitrary pair of electrodes, (b)
electrodes obtained with the patterns shown in Figure 2.1, (¢) and (d) type A
and B electrodes obtained with the patterns shown in Figure 2.2.
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Some of the electrodes obtained following the procedures described above
are shown in Figure 2.3. A cross-section representation is shown in Figure 2.3a.
Si04/Si is used as a substrate in this work as it is commonly used in nanoelectron-
ics. SiOs is an insulator which can be used as a backside gate for nanoelectronic
devices. It is easily produced by thermal oxidation of Si and it has great stability
and good adherence to copper and nickel (Benouattas et al., 2000; Ferullo et al.,
2006; Xu et al., 1993). The electrodes are made of gold or nickel, depending on
their application, as described in the following chapters. Copper is not used for
the critical features due to its ease of oxidation as described in Chapter 4. It is
used mainly in larger areas of the samples and for wire connections. A protective
layer of PMMA allows easier handling of the samples and prevents oxidation and
surface damage during cutting. Rectangular or circular windows are opened on
the tips of the electrodes for each sample. Figure 2.3(b) shows some electrodes
obtained with the patterns shown in Figure 2.1. The horizontal electrodes (S
and D) are separated by a 2 um gap. These electrodes were used for growth
evolution studies of the electrodes by electrodeposition and for attaching ferro-
magnetic microspheres, which will be described in more detail in Chapters 5 and
7 respectively. Figures 2.3 (¢) and (d) show some type A and type B electrodes
obtained with the patterns shown in Figure 2.2. They are separated by approxi-
mately 200 nm and obtained mainly by e™-beam lithography. They will be used
for nanogap formation as described in Chapter 5. Those samples which followed
electrodeposition were connected to copper wires (125 pm diameter) by silver
conductive paint and cured at 110 °C for 20 min. Alternatively, some samples

were cut and bonded to chip carriers by gold wires.

2.2 X-ray diffraction - XRD

X-rays are elecromagnetic radiation with high energy and small wavelength.
When it is incident on a solid material, part of the beam is diffracted (Figure
2.4a). This phenomenon happens if the atoms of the material are well arranged
(crystallites) and the Bragg condition, which relates the wavelength of the X-ray
with the interatomic distance and the incident angle of the incident beam, is

met. If the Bragg condition is not satisfied, the nature of the diffraction is not

18



2.2 X-ray diffraction - XRD

constructive and the diffracted intensity of the beam is weak. The fundamental
application of XRD is the qualitative identification of the mineral composition of
crystalline samples and their unit cell parameters. A diffractometer registers the
diffracted beam from a crystalline sample which is irradiated with a monochro-
matic X-ray such as that of the Cu Ka line. The detector is specially designed to
collect the distribution of the diffracted intensity from the sample as a function
of the scanning angle 20 (see Figure 2.4b).

Considering an arrangement of atoms and the X-ray diffraction planes as
shown in Figure 2.4a, according to the Bragg law, constructive interference occurs

when:

nA = 2dsin 6 (2.1)

where 6 is the incident angle between the X-ray radiation and the sample, d
is the interplanar distance which is characteristic for each crystalline sample. In
general, when an X-ray is incident on a sample, it interacts with many crystallites
oriented in different directions (Figure 2.4b) . The geometry of the equipment
permits the detection of only the reflected X-ray with 6 angle. A typical sample
contains crystallites and grain boundaries, so around 80% of the signal comes
from the crystallites (grain sizes ~ 10~%m = 10*A) and 20% comes from the
grain boundaries. The Bragg law allows the calculation of interplanar distances.
For example, the interplanar distances of the family of planes represented in

Figure 2.4c are:
dl()() =a (22)

dig0 = acosf = G— = L (2.3)

vVa? + 4a? - V5

From Equation 2.1:

i = = — 2.4
S1n 6100 2d100 2% ( )

: A V5A
Sin 0120 = 2 = 2% (25)
120
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Incident beam

Diffracted beam
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Figure 2.4: Representation of (a) an incident X-ray beam on a crystal with inter-

layer distance d, (b) random oriented crystallites in a polycrystalline sample (the

detector is specially designed to collect the distribution of the diffracted intensity

from the sample as a function of the scanning angle 26) (c) family of planes in a

crystalline structure in which a, b and ¢ are the crystal parameters, and (d) an

X-ray diffractogram.
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Also,

sin 0120 > sin 9100 (26)

Then, 0109 > 9100; 0129 and ‘9100 are < 7T/2 and dygg > diog
A diffractogram, such as that represented in Figure 2.4d, registers the intensity
of the diffracted X-rays as a function of the scanning angle 26. In particular, for

a family of planes hkl, the Bragg law is:

nA = 2dhkl sin 9,’)“ (27)

where the interplanar distance dpy; is characteristic of the crystallites forming
the sample. 67,, depends on the wavelength X of the incident beam over the hkl
planes.

In this thesis, the XRD measurements were performed in collaboration with
Prof. Angel Bustamante (University of San Marcos, Peru), using a Rigaku diffrac-
tometer with a Bragg - Brentano geometry and using K a-Cu wavelength radiation
(A = 1.5418A4), 30 kV voltage, 15 mA current intensity and a nickel filter.

2.3 Electroplating

Electroplating is a well-known technique for coating surfaces with different metal
films; there are plenty of literature reports about the application of this technique
to relatively large-area surfaces (Schlesinger & Paunovic, 2010). By creating a
potential difference between a metal surface and an auxiliary electrode inmersed
in an electrolyte, oxidation and reduction (redox) reactions occur and the metal
ions from the electrolyte are deposited on the electrode surfaces. The oxidation
of a substance is characterized by the loss of electrons, while the reduction is
distinguished by a gain of electrons. Metal displacement from the electrolyte
to the metal surface is achieved by reduction. In this section we describe the
electrodeposition process and the conditions used to form nanogaps between the
nickel electrodes described in §2.1.

The process takes place in a standard electrochemical cell, like that repre-

sented in Figure 2.5 used in this work. The potential is controlled and measured
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2.3 Electroplating

between a reference electrode (R.E.) and a working electrode (W.E. - cathode),
the sample. An auxiliary electrode (counter electrode, C.E.) is placed at the an-
ode and the current is measured between this electrode and a cathode. During
plating, voltage differences produce redox reactions in the system and result in
the deposition of the metal ions (M?*) onto the sample. In general, the redox
equation for a metal solution in a basic electrochemical cell is expresed by equa-
tion 2.8. At the anode, the metal ions are oxidized, becoming M?*. These ions
associate with other ion components in the electrolyte and are attracted by the

negative charge of the sample surface.

M*T 4 Zem +— M (2.8)

Since the electrolyte consists of metal ions in aqueous solution (aq), there is
more than one reaction that can take place (Palfreyman, 2009); among them, the

reaction of water should be considered:
2H,0(1) + 2e~ — Hy(g) + 20H™ (aq) (2.9)
which divides into two half reactions, each of which will occur at one of the

electrodes, the anode and cathode respectively (Cooper, 2011):

2H,0(1) — O2 + 4H™ (aq) + 4e~ (2.10)

2H" (aq) + 2¢~ — Hay(g) (2.11)

At the anode, the hydrogen and oxygen are the oxidant (electron acceptor)
and water is the reductant (electron donor). At the cathode, the hydrogen ions
are the oxidant and gaseous hydrogen is the reductant. After a certain period of

time a dynamic equilibrium results.

2.3.1 Cyclic voltametry (CV)

Cyclic voltametry (CV) is an electrochemical technique which provides infor-
mation about the thermodynamics of redox processes, kinetics of heterogeneous

electron-transfer reactions, coupled chemical reactions, detection of the surface
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I || |
"o { Q_‘\ ®) ] Anode
(-)
Reference
\ e Electrode
Workiqg— N e
Electrode
(sample) 2
(W) 2
@
=)
Oxidation
MZ+Ze >M

\ Electrolyte

Figure 2.5: Conventional cell for electrodeposition. The sample is placed at the

cathode and the voltage is referenced against a reference electrode.
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2.3 Electroplating

processes like absorption, oxide layer information, etc. CV involves the imposi-
tion of a triangular waveform as a potential on the working electrode, like that
represented in Figure 2.6, by the function generator with the simultaneous mea-

surement of the current.

Electrode
Potential
V) E=E +vt
E cathodic t
""""""""""""""""""""""""""""" V > scanrate
L Q
S \ %
< \®
\\\J
time(s)
"E't';n'a};{c' """"""""""""""""""""

Figure 2.6: Triangular waveform of the potential as a function of time on the
working electrode produced by the function generator. By convention, the pos-
itive forward voltage is called “anodic direction”, whereas the negative reverse

voltage is called “cathodic direction”.

The negative and positive turn-round potentials (E¢¢hodic and Egnedic) have
the advantage that any adsorbed impurities blocking the electrode of interest can
be removed either by oxidation or reduction. Moreover, reproducible behaviour in
CV depends on a series of parameters such as the electrolyte purity, the electrode
material, the choice of the turn-round E¢®hodic and E¢"°di¢ potentials and the rate

of change of the potential (sweep or scan rate “v”). Typical scan rates lie between

5mV/s and 1 V/s. For complex reactions, the sweep rate is recommended to be
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2.3 Electroplating

slow (e.g. 10 mV/s).
Considering the interface between the electrode and electrolyte as represented

in Figure 2.7, two types of current appear:

I(t) = aDV?1/2 4 aCuy (2.12)
Iraradic Capacitance—contribution

where D is the diffusion coefficient, V' is the scan rate and C' is the capacitance.
In addition, the internal resistance of the electrolyte causes an additional drop

in the potential:

V(t) = Vapp(t) = I(t)R (2.13)

where V(t) is the working electrode potential, V,,, is the applied cell voltage
and I(t)R is the ohmic potential drop caused by the internal resistance of the
electrolyte. If cyclic voltammograms with rapid scan rates are required (> 10
V/s), then I(t)R needs to be very small.

Figure 2.7: A Faradic current and capacitive layer appear at the electrode and

electrolyte interface.
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2.3 Electroplating

In order to simplify the theoretical analysis, only reduction processes are con-
sidered. At the begining of the plating process, as the potential rises, the surface
concentration Cy of the reacting electrolyte falls from the bulk concentration
Cy towards C'4=0. Due to the differences between the concentrations of the elec-
trolyte frontier (C4), the electrode frontier and the rest of the solution, a gradient
(C‘)&;NCA) emerges and increases as C'4 decreases. Then, the flux of material from
the electrolyte to the surface decreases. This mass transport is mediated by diffu-
sion. However, dy also increases with time following the expression dy = v/7Dt.
And eventually, at higher potentials, when charge transfer is fast and the current
has reached its mass-transport-limited value, increasing d will cause the current
to decrease again.

The above process can be better understood from the current variation as
a function of the electrode potential represented in Figure 2.8 and described as

follows:

e Zone 1. The surface concentration of A decreases while that of B increases.
In this zone, the current is dominated by Faradic electron transfer and it

increases exponentially: [ a%.

e Zone 2. As (Cy tends to zero, the concentration gradient (005;157‘*) and Oy
(the thickness of the difussion layer) increase with time. The flux of material

from the electrolyte to the surface of the electrode starts (e.g beginning of

diffusion effect). The increase of I slows following I« T:Dt.

e Zone 3. The surface concentration of A becomes negligible (C4~0). The
influence of mass transport becomes similar to the influence of charge trans-
fer (diffusion). The reversible potential of the redox is reached. I reaches a
maximun /p and it is described by the Randless-Sevcik equation (Hamann
et al., 2007):

Ip = 2.69 x 10°n32D*2 ACV'/? (2.14)

where the constant C has units mol~'V'/2 and represents the bulk concen-
tration in mol/cm?®, n is the number of electrons transferred, A is the area

of the electrode in cm?, D is the diffussion coefficient of the species in cm? /s
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Potential E . Overpotential

Figure 2.8: Current variation as a function of electrode potential.

and v is the scan rate in V/s. In addition, it is empirically known that as

the sweep rate increases, the peak occurs at higher potential values.

e Zone 4. In this zone, dy increases independently of the potential, causing
I to decrease. Deposition continues on electrode B, dominated by mass

transport (diffusion).

2.4 Magnetic measurements

The magnetic characterization of those samples for which it was required, was
performed in a Direct Current - Magnetic Property Measurement System (DC-
MPMS) equipped with a Superconducting Quantum Interference Device (SQUID)
from the Quantum Design Company. The system consists of a superconducting
coil, with a SQUID sensor, as is schematically represented in Figure 2.9. The
superconducting coil creates a DC magnetic field applied to the sample inside the
coil. During measurements, the sample is moved upwards and downwards in the

set of coils and thus a current is induced on the coils. This current is proportional

27



2.4 Magnetic measurements
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Figure 2.9: Schematic representation of a magnetic property measurement system
(MPMS). Raising and lowering the sample produce a change in the magnetic flux
in the sensor coils and induces a current which is transferred to a multiloop coil

where it is measured by a SQUID sensor.

to the change of the magnetic flux. The signal is amplified by the SQUID sensor
which is a superconducting loop containing two Josephson junctions. At each
junction there will be a phase difference in the wave-functions of the different
superconductors. This phase difference, 46, is proportional to the magnetic flux

threading the whole ring, ®, by:

2e 21 d
Al=— @ Adl=—— 2.1
0 3 f d B, (2.15)

28



2.4 Magnetic measurements

h
2e

through the SQUID loop without dissipation is also dependent on the threading

where &5 = 2x 1077 gauss cm. The critical current, I, which is able to pass

flux. Thus if a bias current equal to I is applied, then the voltage is:

AV = %A@ (2.16)
where L is the self inductance of the loop.

SQUIDs are sensitive enough to measure extremely weak magnetic fields and
moments as low as 5 x 107 T and 10~7 emu ! respectively. Their noise levels
are as low as 3 fT Hz~ %2 (Drung et al., 2007). The system is contained in a
helium cryostat so that the temperature can be controlled between 5K and room
temperature (RT). To ensure enough homogeneity of magnetic field during the
sample displacement, the centre was previously calculated by measuring a piece
of permalloy and displacements of 3 cm were set during the sequence routine.

In Chapter 7 the magnetic hysteresis of magnetic microspheres in liquid sus-
pension is performed. However, since the standard holder for the magnetometer
consists of a simple gelatine capsule designed specially for powder or dried sam-
ples, a new holder for liquid solution was designed. The encapsulated sample is
placed in a plastic tube (Figure 2.9) and then slid down into the MPMS (i.e. in a
low pressure environment). There are two risks at this point. Firstly the capsule
begins to dissolve on contact with the liquid sample. Secondly the low pressure in
the SQUID equipment could induce evaporation and in this way not only are the
samples lost, but also the equipment could suffer serious damage. To overcome
these problems, a new sample holder was designed. It consisted of a diamag-
netic truncated cone made of plastic, 13 mm long (see Figure 2.10). A drop of
approximately 1 ul of suspended beads in sucrose solution with a concentration
of about 1.0% w/V was added, and the ends were sealed with mounting wax.
The new container was robust enough to support an external pressure of 107°
mbar in a previous test performed in a thermal evaporator (BOC Edwards 306).

In addition, since the density of water is too low to suspend particles over long

!The unit for magnetic moment is not a base unit in the International System of Units (SI)
and it can be represented in more than one way (in A m? or in J T~!, which are equivalent).
However, for small magnetic moments values, the CGS unit emu (= 1073 A m? or J T~1) is

frequently used.
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Figure 2.10: Specially designed sample holders for measuring samples in liquid
suspension in a MPMS-SQUID. Note that there is no precipitation in the dark

coloured solution

timescales (4 to 6 hours are required to acquire data from the magnetometer), the
samples were suspended in 40% w/V sucrose solution. The liquid solution was
prepared by diluting 4 g of sucrose (Sigma Ultra 99.55 GC) in 6 ml of distilled
water.

Despite the fact that the behaviour of magnetic particles in fluids can be
deduced by means of particle fluid-dynamics, electrophoresis and magnetophoresis
theory, few experimental studies can be found in the literature. Most theoretical
formulas are obtained for particles in the size range from approximately 1 pm to
1 mm because the mechanics of submicron particles are strongly influenced by
random thermal (Brownian) motion and Van der Waals forces. The upper limit
(1073 m) is based on a reasonable working definition of what constitutes a classical

particle (Fannin et al., 2006; Thomas & Jones, 1995). The principal forces acting
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Figure 2.11: Representation of the forces acting on a microsphere in suspen-
sion and under an applied magnetic field. The MPMS takes some seconds while

increasing or decreasing H. F); and Fp appear during that time interval.

on a microsphere in liquid suspension and under an external magnetic field are
represented in Figure 2.11. Without the magnetic field, the two main forces acting
over a microsphere are the gravitational force (F¢) and the buoyancy force (Fg),

which cancel each other in opposite directions at equilibrium:

d3
Fo = PrT %9 (2.17)
6
d3
Fis = pa 6,,9 (2.18)

where p, and p, are the densities of the microsphere and the fluid respectively, d,
is the diameter of the microsphere and g is the aceleration due to gravity. When
the external magnetic field is applied, a force called the “magnetophoretical” force

(Far) appears and, according to Thomas & Jones (1995):
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2.4 Magnetic measurements

M2 — M1 2
Fy=2 S| —=—= | VH 2.19
M LT <M2+2M1> \Y% ( )

where 1 and o are the magnetic permeabilities of the fluid and the microsphere,
respectively. H is the external applied field and r the radius of the microsphere.
In addition, a drag force Fp appears every time the particle changes position:
Py = wd> pav*Cp
8
where Cp is the drag coefficient (~24/Re, where Re is the Reynolds number;

(2.20)

since the regime for microfluids is laminar, Re < 2.0 (Hansen et al., 2007)).
Measuring hysteresis loops of magnetic microspheres suspended in fluids is
rarely reported in the literature. In most studies, the hysteresis loops in sus-
pension are indirectly derived from AC susceptibility measurements (Cung et al.,
2004; Fannin & Charles, 1999; Fannin et al., 1999; Kotzitz et al., 1999; Prieto-
Astalan et al., 2004). The principal reason is the lack of suitable equipment
for this task, although some researchers have designed their own instruments to

measure susceptibility as a function of H (e.g. the toroidal technique designed
by Fannin (1986)).

With this knowledge of the experimental details, we can move on to the de-
scription of the samples studied in this thesis. It starts with thin gold films in the

next chapter and continues with the other materials in the subsequent chapters.
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Chapter 3

Thin gold films: Crystallization
and surface morphology following

annealing

In this chapter, the crystallization and surface evolution study of thin Au films on
Si09 substrates following annealing at different temperatures above the eutectic
point of the Au/Si system is reported. Samples were prepared by conventional
evaporation of gold in a high vacuum (1077 mbar) environment on substrates
at room temperature. Thermal treatments were performed by both furnace and
flame annealing techniques. Thin Au films can be crystallized on SiO, substrates
by both furnace and flame annealing. Annealing arranges the Au crystallites in
the [111] direction and changes the morphology of the surface. Both slow and
rapid annealing result in a good background in the XRD spectra and hence clean
and complete crystallization which depends more on the temperature than on
the time of annealing. The epitaxial temperature for the Au/SiO;y system is in
the range of 350 °C - 400 °C. Furnace and flame annealing also form crystallized
gold islands over the Au/SiO, surface. Relaxation at high temperatures of the
strained Au layer, obtained after deposition, should be responsible for the initial
stages of cluster formation. Gold nucleation sites may be formed at disordered
points on the surface and they become islands when the temperature and time
of annealing increase. The growth rate of crystallites is highest around 360 °C.

Above this temperature the layer melts and gold diffuses from the substrate to
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the nucleation sites to increase the distance between the islands and modify their
shapes. Well above the eutectic temperature, the relaxed islands have hexagonally
shaped borders. The mean crystallite diameters grow up to a maximum mean size
of around 90 nm. The free activation energy for grain-boundary migration above
360 °C is 0.2 eV. Therefore the type of silicon substrate changes the mechanism
of diffusion and growth of crystallites during annealing of the Au/Si system.
Epitaxial Au(111) layers without formation of islands can be prepared by furnace
annealing in the range of 300 °C - 310 °C and by flame annealing of a few seconds

and up to 0.5min.

3.1 Introduction

Thin gold films are used for many applications such as in circuit boards and
sensor manufacturing (Kepley et al., 1985). Au is favorable because it is highly
conductive and it is not easily oxidized. Nowadays there is special interest for the
formation of self-assembled monolayers (SAMs) of thiolated molecules on gold
surfaces; this is achieved by taking advantage of the covalent link between the
sulfur of a thiol group of the molecule and the Au substrate. There are plenty of
reports in the literature on this subject (Dubois & Stellacci, 2008; Harder et al.,
1998; Herrwerth et al., 2003; Rundqvist et al., 2005; Valiokas et al., 1999, 2000;
Vanderah et al., 2000; Zolk et al., 2000). To facilitate the formation of SAMs, it
is desired that the molecular axis is almost perpendicular to the Au surface. In
the case of alkane thiols, the bonding configuration of the gold and the molecular
axis is tilted 20° - 30° off the surface normal only when the Au crystallites in the
thin film are orientated in the [111] direction (Héhner et al., 1992; Nuzzo et al.,
1989; Ulman, 1996; Ulman et al., 1989).

Preparation of epitaxial Au(111) has primarily involved distinct methods such
as annealing-sputtering on crystal surfaces (Gibbs et al., 1988; Liew & Wang,
1990; Ocko et al., 1990; Telieps et al., 1990; Zei et al., 1989), molecular beam
epitaxy (Sellmann et al., 2001) and pulsed laser deposition (Scheibe et al., 1990),
all of which require ultra-high-vacuum conditions (around 10~!Y mbar). However,
other easier to implement techniques also exist to achieve the [111] direction of

gold surfaces such as furnace annealing (Caune et al., 1991; Mancini & Rimini,
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1970) and flame annealing (Hamelin et al., 1990; Kolb & Schneider, 1985). In the
former the heating rate is almost constant whereas in the latter the heating rate
is linear or exponential.

Regarding the substrates used for Au deposition, one of the best materials
is mica because it is smooth, does not require an adhesion promoter such as
chromium or titanium to produce thin films with good mechanical properties
(Chidsey et al., 1988; Dishner et al., 1998) and produces large and flat crystal-
lites (Golan et al., 1992). Based on the fact that the substrate temperature during
deposition plays an important role in metal surface crystallization (Briick, 1936),
it is possible to obtain a well-defined orientation above a critical temperature
called the “epitaxial temperature” (which also depends on the type of substrate).
Below the critical temperature crystallites are randomly oriented. For gold on
mica the epitaxial temperature is around 450 °C (Pashley, 1956). Furthermore,
it has been found that when evaporating gold on mica at substrate temperatures
ranging from -150 °C to 400 °C, thin films exhibit an increasing grain size together
with a grain flattening as the substrate temperature increases (Buchholz et al.,
1991). Atomically smooth plateaus ranging from 60 nm to 100 nm lateral exten-
sion were also observed on the surface (Vancea et al., 1989). Flame annealing
of epitaxial thin gold films obtained after heating the mica substrate at 380 °C
produces grains up to 360nm in size (Dishner et al., 1998). Some researchers have
claimed that the imperfect cleavage of mica in air promotes regions with different
defect characteristics and densities during growth (Salmeron et al., 1987).

For practical electronic uses, the Si(100) substrate is preferable to mica. In
studies using single-crystal Si(100) as substrates, it has been reported that rough
surfaces are obtained following gold deposition. A “Hill-like” landscape was ob-
served with an average height variation of about 16 nm (Vancea et al., 1989).
Large crystallites of about 500 nm in size with the [011] direction of the crystal-
lites parallel to the [011] direction of the silicon were also reported (Mathieu et al.,
1988). According to Golan et al. (1992), evaporation of gold onto Si[100] results
in non-structured thin films, and annealing at 250 °C has the effect of grain en-
largement. In addition, as soon as Au-Si junctions are formed, silicon atoms can
out-diffuse at room temperature (RT) to the surface of the gold layers (Bishop

& Riviére, 1969). This implies an extensive interfacial reaction which breaks the
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covalent Si-Si bonds and provides free Si atoms. Furthermore, because Au is very
reactive and miscible with Si, a multitude of Au,Si, compounds is produced by
thermal reactions (Marchal et al., 1980; Tsaur & Mayer, 1981; von Allmen et al.,
1980). First investigations proposed that the nucleation of gold on silicon is based
upon the formation of a gold silicide layer on the surface (Buchholz et al., 1991;
Salmeron et al., 1987). It was confirmed by Ma and Allen (Ma & Allen, 1993)
that the Au/Si(100) interface deposited at 80 °C is not abrupt and contains a
disordered Si-rich Au-Si alloy decorated with pure Au nanocrystallites. Recent
reports suggest that silicide is already formed after depositing gold on silicon at
RT and it transforms after annealing at 200 °C for 20 to 40 min (Chang et al.,
2004).

Obtaining epitaxial Au(111) on SiOs is even more useful in micro- and nano-
electronics (for instance when the substrate is used as a transistor gate). However,
the main drawback of this substrate is that the formation of microcrystals with
the same crystallographic orientation is extremely difficult to achieve during de-
position. This is because most of the surface is amorphous, containing only small
amounts of fcc SiOs crystallites oriented in the [100] plane direction. Most post
annealing studies of Au/Si thin films report annealing temperatures up to 250
°C for almost 5 min (Mancini & Rimini, 1970) and 180 min (Golan et al., 1992)
which are below the eutectic point of the Au-Si system which is 363 °C for a
Au(80.5%):51(19.5%) composition (this is many hundreds of degrees below the
melting point of its individual pure components Au (1063 °C) and Si(1412 °C)
(Massalski, 1987; R.Castanet et al., 1978)). Comprehensive studies of the effect of
thermal post-annealing of Au thin films over Si-based substrates for different an-
nealing temperatures above the eutectic point of Au-Si have not been performed
yet. Such studies might help to understand the crystallization and morphology
evolution of this system with temperature. In this work we have studied the
crystallization and surface morphology of gold growth at RT on SiO, substrates
after ex-situ annealing: from 300 °C to 900 °C for 3 hours (by furnace annealing)
and its comparison to temperatures applied for a short duration of time from
0.5 min to 5 min (by flame annealing). We have found that after annealing at
temperatures higher than the eutectic point of the Au/Si system, crystallized

islands of different shapes and sizes were formed on the surface of the samples by
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both annealing techniques. We explain the islands evolution with temperature

and time of annealing by means of surface diffusion.

3.2 Experimental

Gold was evaporated on comertial polished SiOy(24m)/Si(100) substrates using
an Edwards 306 evaporator system with a base pressure of 10~ "mbar. The sub-

2 areas) were cleaned with acetone, isopropyl alcohol and ultra-

strates (1x2 cm
sound following standard procedure before deposition. Small Au pellets (99.999%
purity) were evaporated from a tungsten boat and substrates were located 10 cm
above this source. The rate of evaporation was maintained at 0.1 nm/s and the
thickness of gold was measured by a quartz crystal microbalance located next to
the sample. In contrast to other reports in which substrates are heated up to 500
°C during sputtering deposition (Chang et al., 2004), in the present work the sub-
strates were intentionally kept at RT during evaporation in order to characterize
only post-annealing effects on the samples. Samples consisted of 40 nm thick Au
films on polished SiO2/Si surfaces (Au/Si02). A thin layer of Ti (5 nm) was used
as adhesion promoter between Au and the substrates. It was expected that this
interface would also avoid the out-diffusion of Si to the Au layer.
Post-deposition thermal treatment of the samples was carried out in two ways:
furnace annealing and flame annealing. The first technique consisted in annealing
the sample for 3 hours in a tubular oven (LENTON LTF-PTF Model 16/610) in
air flow at different temperatures up to 900 °C (Figure 3.1). The increment rate
of the temperature was 1 °C/min. In order to study the effects of annealing, the
maximum selected temperatures where chosen in the range of 300 °C - 900 °C
and it was kept constant within 1 °C for 3 hours, after which the samples were
allowed to cool down slowly (1.4 °C/min) so as to minimize any stress which
might develop during cooling. Flame annealing consisted in placing a sample
horizontally over the conical blue zone of a flame generated by a propane torch
until the surface color of the sample changed. The thin film was then rapidly
quenched by immersing it into a beaker of methanol and drying it in a stream of
nitrogen. Figure 3.1(b) is a representation (not to scale) of the temperature vs.

time sensed by a NiCr-Ni (type K) thermocouple positioned 2 - 3 mm from the
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samples during flame annealing. According to the figure, after 30 s, the heating
rate changes from 14 °C/s to 0.25 °C/s. Samples were annealed for 30 s in order
to avoid the initial stages of heating transmission through the substrate. In total,
four samples were flame annealed for 30 s, 1 min, 2 min and 5 min, respectively.
The maximum temperature they supported during flame annealing was in the
range of 930 °C - 1067 °C. Here we denote the highest temperature measured
by the thermocouple as the annealing temperature. The temperature fluctuation

during flame annealing was around £3 °C.

T(°C)
300°C — 900°C e
Satiig (& hiedrs) Cooling 930 0.25°C/s
1°C/min 1.4°C/min 149C/s
30s 300s  t(s)
(5min)

(a) (b)

Figure 3.1: Variation of the temperatures during the heat treatment (not to scale)

for (a) furnace annealing and (b) flame annealing.

Crystallization of the samples after annealing was studied by X-ray diffraction
(XRD). The data were collected from 25° to 60° (0.02° step) using a powder
universal diffractometer, Rigaku HGZ (Cu Ka radiation). Crystallites’ mean

sizes were calculated with Scherrer’s formula (Cullity, 2001):

~ 0.916A
a Brri1cosOni
Where ) is the wavelength of the X-rays (1.54060 A), 0y is the Bragg angle
and Spk is the pure-diffraction line broadening (in radians), which can be easily
found by measuring the full width at half maximum (FWHM) of the hkl reflection.

Morphology analyses were done with the help of an atomic force microscope

(3.1)

(AFM, Nanoscope Dimension 3100, Digital Instrument) in tapping-mode scans.
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Scanning electron micrographs were taken only over some samples, where the
morphology of the annealed thin films differed significantly from the pristine
ones. The analysis was performed using a scanning electron microscope (SEM-

XL30 SFEG).

3.3 Results and discussions

The XRD analysis is presented in Figure 3.2. As shown, after evaporation (raw
sample) the Au layer has some crystallites oriented in the [111] direction but
most of the sample is amorphous. Some peaks belonging to the Si-based substrate
appear, and the main reflection of Ti (around 38.402°) is hidden in the background
of the spectra and thus negligible. Gold silicides were not found as in the case of
Au on Si(100) (Chang et al., 2004; Valladares et al., 2010a). Growth of a silicide
in thin metal films over silicon substrates occurs by diffusion across the interface.
The presence of an oxide layer at the interface is known to hinder the diffusion
across the interface (Sekar et al., 1992, 1993). Since our samples consisted of
gold layers on 2 pm thick SiO, substrates with a thin Ti interface layer, no gold
silicide was expected to be found. After furnace annealing at 300 °C for 3 hours,
the (111) texture of the gold layer increases and the reflections belonging to the
Si substrate are less visible (Figure 3.2(a)). After annealing the sample for 3
hours at 350 °C, which is around 10 °C below the eutectic point of the Au-Si
system, the [211] reflection belonging to the substrate is not visible any more
and it almost disappears in the background of the spectrum. This means that
more Au grains in the sample are crystallized in the [111] direction and hence its
respective reflection becomes higher in the spectra. Nevertheless, the shape of
the background spectra reveals that the sample is still amorphous and that this
annealing temperature is not enough to complete the crystallization. Annealing
the sample over the eutectic point, at 400 °C, leads to a high (111) crystallization
of the thin gold film, which means that the epitaxial temperature of Au on silicon
is somewhere in the interval of 350 °C - 400 °C. Hence it is reasonable to suggest
that the epitaxial temperature is in the region of 363 °C (the eutectic point). This
epitaxial temperature is lower than others found for different substrates (e.g. 450

°C for gold-mica (Pashley, 1956)). Further annealing up to temperatures as high
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as 900 °C for the same duration produces even higher crystallization of the thin
Au film and some interesting changes in the morphology are found, as will be
discussed below. Eventually, at 900 °C almost all the Au is crystallized in the
[111] direction with a completely flat background spectrum. As mentioned above,
rapid annealing of the samples was achieved by flame annealing. Figure 3.2(b)
shows that flame annealing the sample 30 s also reduces considerably the Si(211)
reflection in the spectra. Nevertheless the shape of the background spectrum
and the (211) reflection belonging to the Si substrate reveal that, this time, long
annealing duration is not enough to complete the crystallization. Despite the
fact that after 30 s the highest temperature was around 930 °C, the epitaxial
temperature criterion is not followed here due to the rapid rate of heating. If the
sample is annealed for 1 min, the Si(211) reflection belonging to the substrate
almost disappears. Most of the Au grains in the sample are crystallized and
hence the Au(111) reflection in the XRD spectra becomes bigger and sharper.
Therefore, epitaxial formation of gold is visible from 1min onwards and there are
only small changes if the sample is annealed up to 5 min. This is because during
that period of time the temperatures vary less than 100 °C at a slow heating rate
of 0.25 °C/s.

In general, from Figure 3.2 we can deduce that after both furnace and flame
annealing, Au thin films on SiO, substrates can be crystallized despite most
of the substrate being amorphous and containing only a small amount of SiO,
crystallites. Furthermore, the differences between the cubic cell parameters are
around 4.08 A for gold (PDF No 89-3697), 4.06 A for Ti (PDF No 88-2321)
and 4.52 A for SiO, crystals (PDF No 89-3609). Annealing overcomes these
mismatches by arranging the Au layers in the [111] direction and changing the
morphology of the surface as will be discussed next. The fact that gold, Ti and
SiO, have cubic structures seems to be the only condition for both elements to
allow epitaxial growth. Both slow and rapid annealing gives negligible background
in the XRD spectra and hence clean and complete crystallization. It is concluded
from here that crystallization of gold strongly depends on the temperature even
if the sample is annealed rapidly. Despite the fact that flame annealing does not
follow the epitaxial temperature criterion due to the heating rate, crystallization

of the Au layer can be easily reached after annealing for a few seconds.
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Figure 3.2: XRD analysis of Au/SiO; after (a) 3 hours furnace annealing and (b)

flame annealing. In both figures the intensity axes are normalized.

41



3.3 Results and discussions

The AFM scans of the as-deposited (raw) samples are smooth without any dis-
cernible morphological feature. Scans over areas of 100 ym? of Au/SiO, samples
after furnace and flame annealing are presented in Figures 3.3 and 3.4, respec-
tively. Their respective cross sections, showing the variation of the surface height
along the white dashed lines, are plotted in the corresponding topographic images.
As seen in Figure 3.3, after 3 hours furnace annealing at 300 °C clusters appear in
some areas, while the surrounding surface is still smooth. The situation changes
when the sample is annealed at 400 °C. The surface becomes rough and hillocks of
gold cover almost all of the thin film. Its respective cross-section, along the white
dashed line, indicates that the hillocks have different heights and vary from 50
nm to 150 nm. Annealing the sample at 500 °C under the same conditions leads
to more agglomeration of gold islands without any specific shape. According to
the cross-section, the height of the islands becomes almost identical (100 nm).
After further annealing at 700 °C, it can be seen that the borders of the clusters
are rounded, the distances between clusters increase and the borders are better
distinguished. The surface image and the cross-section indicate that apparently
there was gold diffusion on the surface of the sample, and the islands’ average
height increases to 250 nm. Annealing up to 900 °C gives a better resolution of
the islands; their shape is almost the same, and although they are not equally
distributed over the surface, the separation between them ranges from 0.5 pm
to 3 pm. The average height this time increases up to 300 nm. Measuring one
isolated island reveals that they have flat terraces. By looking at the surfaces of
the samples through an optical microscope (images not shown here), the islands
are golden in colour, whereas the background is grey (the typical colour of the
Si0Oy substrate). Therefore migration from the strained gold to the islands has
occurred.

Figure 3.4 shows the surface evolution of the sample after flame annealing.
According to the figure, after 30 seconds of flame annealing there appear clusters
randomly dispersed over the surface of the sample; the surrounding surface is still
smooth. The cross-section along the white dashed line indicates that the heights
of the measured clusters are similar (35 nm). The formed clusters have sharp tops.
The situation changes drastically when the sample is annealed for 1 min. The

surface becomes rough because almost the entire surface contains high islands.
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Figure 3.3: AFM analysis of Au(40nm)/SiO2 after furnace annealing.
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It is reasonable to say that during the time interval between 0.5 min to 1 min
more clusters appear on the surface and rapidly grow by forming the presented
landscape. The respective cross-section, along the white dashed line indicates
that the islands have different heights ranging from 100 nm to 150 nm and have
rounded tops. Annealing the sample for 2 min leads to more agglomeration of
gold islands without any specific shape. According to the cross-section, the height
of the islands ranges from 100 nm to 150 nm as in the previous case, but their
tops are flatter. After further annealing up to 5 min the islands grow even more
and reach different heights. The cross-section indicates that some islands reach
up to 300 nm height. Flat terraces up to 1 um size were also found on the tops.
The maximum islands heights reached during the different intervals shown in
this figure are plotted in Figure 3.6(b) (see page 49) for different flame annealing

times.
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Figure 3.4: AFM analysis of the sample Au(40nm)/SiO, after flame annealing.
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Distances between islands can be better distinguished in SEM images. Figure
3.5 shows some SEM micrographs of the annealed samples. Figure 3.5(a) confirms
that after furnace annealing at 500 °C for 3 hours gold islands of different shapes
and sizes are formed. Diameters of these islands vary from tens to thousands
of nm. Islands with different shapes have also been observed after annealing
Au/Si(100) samples (Chen & Chen, 1996; Valladares et al., 2010a). Figure 3.5(b)
shows that after furnace annealing at 900 °C they have hexagonal-shaped borders
with planar terraces and they are randomly orientated over the substrate. Figures
3.5(c) and 3.5(d) correspond to samples after flame annealing for 1 min and 2
min, respectively. It can be seen that the islands are not as close together as
apparent from the AFM figures; this is because the AFM scans were done in
tapping mode. The hexagonal border shapes of the islands are better resolved
after 2 min than after 1 min flame annealing. However they are rounder than
their furnace annealing counterparts. Table 3.1 provides information about the

height of the formed gold island and its roughness as measured by AFM.

Table 3.1: Height of the gold islands and roughness (rms in nm) detected by
AFM.

Furnace Annealing

Temperature Height range (nm) Roughness (rms in nm )

300 °C 50 -100 8.3
400 °C 50 - 150 16.5
500 °C 100 29.4
700 °C 200 - 250 37
900 °C 300 56.5
Flame annealing
Time Height range (nm) Roughness (rms in nm )
0.5 min 35 4.3
1 min 100 - 150 6.6
2 min 100 - 150 5.4
5 min 200 - 300 3.4

45



3.3 Results and discussions
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Figure 3.5: SEM micrograph of Au/SiO, samples after 3 hours furnace annealing
at (a) 500 °C, (b) 900 °C and after flame annealing for (c¢) 1 min and (d) 2 min.
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The initial stages of the island formation are still unclear. Some explanations
relate it to the out-diffusion of Si into the Au film to increase the formation
of AuxSiy. The nucleation and the increasing amount of these gold silicides is
because Au induces a breaking of the underlying Si bonds. During annealing, ad-
atoms of gold agglomerate on top of these silicides and grow by forming islands
(Bishop & Riviére, 1969; Chang et al., 2004). However, this case is not applicable
here because, as mentioned before, our samples consisted of gold layers on 2
pm thick SiOy substrates with a thin Ti interface layer and the formation of
silicides has not been detected in the XRD. In our case, the mismatch between
the cell parameters of the Au, Ti interlayer and SiOy produces a strained Au
layer during evaporation. Strain relaxation at higher temperatures would be
responsible for the initial stages of the cluster formation. Above the eutectic
point the layer melts. The melting starts most likely from the grain boundaries
and from the interface. Moreover, during the quenching of the sample, Au atoms
should crystallize from the liquid, when the temperature reaches the liquid curve
in the phase diagram. This is done by growing the existing solid gold grains. As
the temperature continues to fall, more and more Au crystallizes. Eventually,
when the temperature drops to the eutectic point, the liquid crystallizes with
the characteristic structure of lamellae islands. Nevertheless hexagonally shaped
islands are formed, if the sample is annealed well above the eutectic temperature.
Probably it is caused by some relaxation which appears in the SiO, substrate and
was not observed at lower temperatures due to the differences in the latent heat
of fusion between Si (50.21 kJ/mol), Ti (14.15 kJ/mol)) and Au (12.55 kJ/mol).

The mean crystallite diameter (D) calculated by Sherrer’s formula (Equation
3.1) for the raw sample and samples after furnace (DT) and flame annealing (Dt)
are shown in Figure 3.6. According to the figure, the mean crystallite size of the
pristine sample is around 25 nm. This is quite similar to that obtained after evap-
orating gold over unpolished Si(100) substrates (Valladares et al., 2010a). After
annealing, the crystallites grow monotonically with the rate decreasing towards
higher temperatures (Figure 3.6(a)) and as the time of annealing increases (Fig-
ure 3.6(b)). Table 3.2 provides information about the mean crystallite diameter
obtained from the XRD and the mean diameters of the formed islands scanned
by AFM and visualized by SEM. The higher values in the AFM case are due to
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Table 3.2: Mean crystallite diameters obtained by XRD and mean diameters of
the islands scanned by AFM and visualized by SEM. NT indicates that mea-
surements have not been performed and L indicates the lamellae shape of the
islands.

Furnace Annealing
Temperature (°C) XRD (nm) AFM (pm) SEM (pm)

300 25 0.3 NT

400 68 L L

500 73 1 L and 1

700 87 2 NT

900 88 2.5 1
Flame annealing

Time (min) XRD (nm) AFM (pm) SEM (pum)

0.5 min 25 0.7 NT

1 min 89 1.5 0.5

2 min 88 1.5 0.5

5 min 94 1.5 0.3

the gap distance between the cantilever and the border of the islands caused in
typical AFM scans.
The mean crystallite diameter follows the empirical equations given below

after furnace and flame annealing respectively:

Dy =085 x T (3.2)

Dy =64 x t™ (3.3)

where T is the furnace annealing temperature, t the flame annealing time, ny
the temperature exponent (~0.7) and n; the time exponent (=0.3). The latest
value is slightly similar to that reported by other authors for Au deposited onto
Formvar substrates (Mancini & Rimini, 1970). According to them, this value

suggests that the growth mechanism is grain-boundary migration.
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Figure 3.6: Crystallites’” mean diameters of Au/SiO, following (a) furnace an-

nealing and (b) flame annealing.
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It is worth remembering that the principal differences between both types of
annealing technique presented here are the heating (cooling) rate and the time
of annealing. Furnace annealing is slower and provides more control of thermal
conditions than flame annealing. Regarding the final surfaces, both types of an-
nealing provide epitaxial gold islands with maximum mean crystallite diameters
of around 90 nm. The annealing history seems to be more important for the final
shape of the clusters. Because slow annealing rates are achieved by the furnace
technique, the growth rate (G) can be related to the derivative of Dy (Figure
3.6(a)). From the information given by XRD, AFM and SEM, we can deduce the
morphology evolution of the sample surface during annealing. Three main events
can be identified, as seen in Figure 3.6. The exact point at which each event
happens is difficult to determine precisely because changes occur progressively.
The changes of colors between each field in the figure are rough estimates for each
transition. The situation is harder to predict for the flame annealing than for the
furnace annealing. Transitions during flame annealing occur abruptly due to the
fast heating rates. Initially after evaporation the surface consists of a strained
and amorphous Au layer which crystallizes after annealing. The slow increase
of D in the early annealing stages of growth by both techniques may be due to
the highly disordered initial structure (excess point defects, dislocations, lattice
strain, etc.) which is present in a thin film after deposition. Gold-island nucle-
ation sites may be formed in those disordered points facilitated by the relaxation
of the strained Au layer, when the temperature and time of annealing increases.
The clusters coexist with the gold layer substrate and they grow in size with
the annealing temperature and time (mixed zones in the figure). The maximum
inflection point of the derivative of D is close to the eutectic temperature of the
Au/Si system (363 °C). This means that the nucleation rate is highest around
this temperature. Annealing the sample at higher temperatures produces more
gold that diffuses from the substrate to the clusters to form separated islands of
different shapes (relaxed islands zones in the figure). Well above the eutectic tem-
perature, the relaxed islands have hexagonally shaped borders. The activation
energy corresponding to grain-boundary displacement above the eutectic temper-
ature has been obtained by fitting the downward trend part of the derivative of
Dy with the following equation (Mancini & Rimini, 1970):
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kgT

where Gy is the rate constant, |@| is the activation energy, T the absolute tem-
perature and kg the Boltzmann constant (8.617343x107° eV/K). This equation

describes, approximately, the rate of grain-boundary displacement; Gg is propor-

G = Gpexp ( (3.4)

tional to the driving force and is related to the entropy changes (Amelinckx &
Dekeyser, 1969). The free energy of activation for grain-boundary migration (|Q)|)
derived here is 0.2 eV. This value is double that calculated when Au is deposited
on a (100) textured silicon substrate (~0.09 eV) (Valladares et al., 2010a). There-
fore the texture of the substrate changes the mechanism of diffusion and growth
of crystallites during annealing of the Au/Si system.

The fact that above 360 °C the surface morphology transforms to gold islands
spread over the SiO, substrate is a good indication for obtaining an epitaxial
Au(111) layer covering the whole of the SiOy substrate. This could be achieved
by simply annealing the sample at temperatures below 360 °C. If the furnace
annealing technique as presented here is used for this purpose, suitable tempera-
tures are in the range of 300 °C - 310 °C, just before Dy changes drastically and
islands start to nucleate (Figure 3.6(a)). However it is important to remember
that the total crystallization of the strained Au layer is not obtained at that tem-
perature range (see Figure 3.2(a) in page 41). The situation is different if flame
annealing is used for the same purpose. Despite being much faster and easier to
perform than the previous technique, it allows less control of the temperature.
An epitaxial Au(111) layer, covering almost all the surface, could be achieved by
annealing the sample for a few seconds (less than 30 s in which D, changes dras-
tically (Figure 3.6(b)). In the furnace annealing technique the (111) crystallinity
of the strained Au film increases but complete crystallization is not obtained
(see Figure 3.2(b) on page 41). Recently there has been significant interest in
self-assembly of organic molecules on annealed Au(111) layers (Rundqvist et al.,
2006).
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3.4 Conclusions

3.4 Conclusions

Thin gold films on SiOy substrates can be crystallized after both furnace and
flame annealing despite most of the substrate being amorphous and containing
only a small amount of SiO, crystallites. Annealing overcomes this by arranging
the Au layers in the [111] direction and by changing the morphology of the sur-
face. Both slow and rapid annealing give good background in the XRD spectra
indicating clean and complete crystallization, which depends more on the temper-
ature than on the time of annealing. The epitaxial temperature for the Au/SiOs
system should be around 360 °C. Annealing also forms crystalline gold islands
on the Au/SiO, surface. The mismatch between the cell parameters produces
a strained layer of Au during evaporation. Strain relaxation at higher tempera-
tures is believed to be responsible for the initial stages of the cluster formation.
Gold island nucleation sites may be formed at disordered points on the surface
such as excess point defects, dislocations, lattice strain, etc.; they become islands
when the temperature and time of annealing increase. The highest growth rate
of crystallites is around the epitaxial temperature. Above this point, the melting
starts most likely from grain boundaries and the interface. It produces more gold
diffusing from the strained Au layer to the clusters to increase the distance be-
tween the islands and modify their shapes. Far above the epitaxial temperature,
the relaxed islands have hexagonally shaped borders. The mean crystallite diam-
eters grow with time and temperature of annealing following a polynomial trend.
However, this trend ends when the crystallites reach a maximum mean size of
around 90 nm. The free energy of activation for grain-boundary migration above
the eutectic temperature is 0.2 eV. This value is nearly double the free energy cal-
culated when Au is deposited on the (100) silicon substrate (which is ~0.09 eV).
Therefore the type of silicon substrate changes the mechanism of diffusion and
growth of crystallites during annealing of the Au/Si system. Epitaxial Au(111)
layers without formation of islands can be achieved by furnace annealing in the
interval between 300 °C - 310 °C and by flame annealing for a few seconds (<0.5

min).
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Chapter 4

Thin copper films: Thermal

oxidation

In this chapter, the crystallization and electrical resistivity of the formed oxides
in a Cu/Si04/Si thin film are studied after thermal oxidation by ex-situ annealing
at different temperatures up to 1000 °C. Upon increasing the annealing temper-
ature, the phase evolution Cu — Cu + Cu;O — CuyO — CuyO 4+ CuO — CuO
was detected from the XRD. Pure CuyO films are obtained at 200 °C, whereas
uniform CuO films without structural surface defects such as terraces, kinks,
porosity or cracks are obtained in the temperature range 300 - 550 °C. In both
oxides, crystallization improves with annealing temperature. A resistivity phase
diagram, which is obtained from the current-voltage response, is presented here.
The resistivity was expected to increase linearly as a function of the annealing
temperature due to evolution of oxides. However, anomalous decreases are ob-
served at different temperature ranges, this may be related to the improvement

of the crystallization and crystallite size when the temperature increases.

4.1 Introduction

Copper is used in a very broad range of electronics applications due to its good
electrical conductivity, low cost and non-toxicity (Jing et al., 2008). However,
there are still obstacles which limit the use of copper in nano-electronics, mainly

because of (i) its diffusion into commonly used silicon substrates and (ii) its ease
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of oxidation even under a vacuum atmosphere. In the first case, it is widely
known that copper slowly diffuses in contact with Si substrates resulting in line-
to-line leakages or electrical shorting of electronic devices (Nagao et al., 2003).
The chemical physics underlying this diffusion is currently under intense study
(Wang, 1994; Willis & Lang, 2004). To slow the diffusion, SiO, substrates are
commonly used. SiOs is an insulator easily produced by thermal oxidation of
Si and has great stability and good adherence to copper and other noble met-
als (Benouattas et al., 2000; Ferullo et al., 2006; Xu et al., 1993). Regarding
oxide formation, like other noble metals, thin semiconducting oxide layers easily
form on copper surfaces upon contact with air. The two principal types of oxides
formed on copper films are cuprous oxide (CuyO, cuprite) and cupric oxide (CuO,
tenorite) (Neumann et al., 1984; Schramm et al., 2005). CuyO is a p-type semi-
conductor with cubic crystalline structure (a = 4.27 A) and energy gap 2.0 - 2.2
eV (Marabelli et al., 1995). Nowadays thin CuyO films are intensively investigated
due to their potential applications in spintronics (Pearton et al., 2004), catalysis
(Ramirez-Ortiz et al., 2001) and solar cells (Fernando & Wetthasinghe, 2000; Han
& Tao, 2009a). In contrast, CuO is a p-type semiconductor with monoclinic crys-
talline structure and cell parameters a = 4.6837 A, b = 3.4226 A, ¢ = 5.1288 A
and f = 99.54°. Its energy gap is in the range 1.21 - 1.51 eV. This is an attractive
system for many researchers due to its photoconductive and photo-thermal ap-
plications (Koffyberg & Benko, 1982) and for studies of the transport mechanism
in high-temperature CuO-based superconductors (Zheng et al., 2001). Although
the formation of these two types of oxide is still considered the principal obstacle
in using thin copper films in nano-electronics, they have promising applications
in large-area electronics, especially when the oxides are high purity and epitaxi-
ally grown. For example, for solar-cell applications, the literature reports different
techniques for the fabrication of crystalline thin copper oxide films. Among them,
molecular beam epitaxy (Muthe et al., 1998), spray-pyrolysis deposition (Kosugi
& Kaneko, 1998), anodic oxidation (Roos et al., 1983), electrochemical deposition
(Mukhopadhyay et al., 1992; Wang & Tao, 2007), reactive sputtering (Drobny &
Pulfrey, 1979; Izhizuka et al., 2001; Ogale et al., 1992) and chemical oxidation
(Fujinaka & Berezin, 1983) are expensive techniques, which require special condi-

tions and usually result in mixed phases. The simplest and cheapest technique to
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achieve single-phase copper oxide films is thermal oxidation (Akkari et al., 2007;
Figueiredo et al., 2008, 2009). In this technique, thin copper oxide films are eas-
ily obtained by ex-situ annealing of thin copper films. The desired type of oxide
can be controlled by the annealing temperature. In this chapter, the oxidation
evolution of thin copper films by thermal oxidation is studied. Specifically, the
phase formation, crystallization and electrical resistivity of the different types of
oxide formed on Cu/SiOs thin films following annealing at different temperatures

up to 1000 °C are investigated.

4.2 Experimental

Copper was evaporated on polished SiO,/Si substrates using an EDWARDS 306
evaporator system at a base pressure of 10~7 mbar. Commonly, SiO5(60 nm)/Si
substrates are used when depositing copper for micro- and nano-electronics ap-
plications. However in this work, SiOs (2 pm)/Si were used, because a thick SiOs
interlayer slows the diffusion of copper into the silicon substrate and it prevents
possible current leakage during the electrical characterization. Moreover, with
this substrate, the use of adhesion promoters such as chromium or titanium is
avoided and thus the formation of alloys during annealing at high temperatures
is also avoided. The SiOy (2 pm)/Si substrates were uniformly cut into 1 X
2 cm? pieces and cleaned with acetone, isopropyl alcohol (IPA) and ultrasound
following a standard procedure. Small Cu pellets (99.999 % purity) were then
evaporated from a tungsten crucible and the substrates were located 10 cm above
this source. The rate of evaporation was maintained at 0.1 nm/s and the thickness
of the deposited copper was measured by a quartz crystal microbalance located
next to the sample. During the deposition process the substrates were actively
maintained at room temperature in order to characterize post-annealing oxide
formation on the samples. The pristine samples consisted of Cu(100 nm)/SiO5(2
pum)/Si structures. The thermal oxidation was carried out by annealing the sam-
ples in a tubular oven (LENTON LTF-PTF model 16/610) in air atmosphere, at
different temperatures from 150 °C to 1000 °C similar to annealing thin gold films
(see Chapter 3 and our previous publications (Valladares et al., 2009a, 2010a)).

The heating rate was set to 10 °C/min. Once the maximum desired temperature
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was reached, it was kept for 3 hours to allow free diffusion of the copper atoms
on the surface. Next, the quenching rate was set to 1.4 °C/min so as to minimize
possible stresses in the thin films.

Phase formation and surface crystallization were analyzed by X-ray Diffraction
(XRD) using a powder universal diffractometer, Bruker AXS model D8 FOCUS
(Cu-K,; radiation), the step size was 0.02 °(26), and the counting time for each
point was 4 s. The average sizes of the crystallites were estimated from the
main reflections of the XRD using the Debye-Scherrer formula (see Equation 3.1
in page 38) and neglecting peak broadening caused by residual stresses in the
thin films. The surface morphology was observed through a scanning electron
microscope (SEM) Philips XL-30. Before SEM analysis, most of the surfaces were
carefully scratched with the help of a needle in order to reveal part of the SiOq
and to distinguish the thin copper oxide films. The electrical characterization was
performed in a probe station Graill0-205-LV Nagase Techno-Engineering Co.,
LTD at room temperature (RT) and in high vacuum 8.6 x 107% Pa. Two BeCu
electrodes (source (S) and drain (D)) touched directly the surfaces of the samples.
The current response was sensed in the drain electrode after applying source-drain
bias in the range -5 to 45 V. The electrical resistivities were calculated using the
relationship:

A

p= RZ (4.1)

where p is the resistivity in Q.cm, A is the cross-section of the film, L is the
electrode separation during measurements (1 mm approximately) and R is the

resistance obtained from the inverse of the I-V slopes.

4.3 Results and discussion

Figure 4.1 shows the X ray diffraction (XRD) of the samples after annealing at
different temperatures up to 1000 °C. Following the deposition, the raw sample
shows sharp diffraction peaks at 2 6 around 43.49° and 50° belonging to the
Miller indexes of Cu (PDF2 No 2-1225) [111] and [200] respectively. This confirms

that during deposition, the Cu atoms reached the substrate with enough thermal
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energy to form a well-orientated Cu crystalline layer. Following annealing at
different temperatures, the formation of Cu,O (PDF2 No 1-1142) with cubic
structure followed by the formation of monoclinic CuO (PDF2 No 2-1040) is
detected due to the thermal oxidation. Initially, annealing at 150 °C allows
the Cu to improve crystallization in the [111] and [200] directions. However,
peaks at 36.4° and 42.4° corresponding to the reflections [111] and [200] of CuyO
respectively, appear. Therefore, together with the crystallization improvement,
annealing at this temperature makes some copper atoms bond to oxygen atoms
to form CuyO as the first oxide phase. This oxidation could be mediated by the

equation (Neumann et al., 1984):

2Cu + %OQ — CU.QO (42)

At 200 °C, the CuyO peaks got better defined and the lack of the Cu reflections
reveals that annealing at this temperature is enough for a complete oxidation of
the thin copper film. After annealing at 250 °C, the [200] reflection of the Cuy,O
is hardly detected which means that most of the Cu,O phase is crystallized in the
[111] direction. Furthermore, the reflections [-111] and [111] belonging to CuO
appear, revealing initial transformation of Cuy,O into CuO. This phase transition
might be mediated by the following equation (Akkari et al., 2007):

1
CUQO + 502 — 2Cu0O (43)

The transition from CuyO to CuO is better observed after annealing the sam-
ples at 275 °C, in which the XRD reveals sharp Miller indexes [-111] and [111]
belonging to the CuO coexisting with CusO. Also, at this annealing temperature,
the CuyO phase is highly crystallized in the [111] direction and it may have effects
in the electrical characterization as will be discussed below. At 300 °C, most of
the surface is covered by CuO and a very small amount of CuyO is detected.
The transitions from Cu to CuyO and from CuyO to CuO in this work are in
good agreement with the oxidation behavior of thin Cu films on glass substrates
reported by other authors (Figueiredo et al., 2008; Gao et al., 2001; Koffyberg &
Benko, 1982). Following further annealing above 300 °C, the CuO stabilizes and

formation of other additional type of oxide is not detected (data not shown here).
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However, the mean grain size of this oxide increases with annealing temperature
as we discuss next. At high temperatures such as 900 and 1000 °C, reflections
belonging to the silicon-based substrate appear, predicting uncovered areas of the
substrate as shown in the SEM images in Figure 4.2.

In general, from the XRD, the sequence of the oxide phase formation on the
thin copper films by thermal oxidation is Cu — Cu + Cu;O — CuyO — Cuy0
+ CuO — CuO. Note that the formation of pure CuyO occurs at smaller interval
of annealing temperature (around 200 °C) than that required to obtain pure thin
CuO films (300 - 1000 °C). Moreover, no copper silicides were detected by the
XRD even at the highest temperatures, which means that the SiO, interface is
thick enough to prevent diffusion of copper into the silicon substrate. The an-
nealing temperatures for the formation of each phase are clearly distinguished
in the XRD (Figure 4.1) and listed in Table 4.1. The table also lists the mean
crystallite sizes obtained from the FWHM of the principal reflections by using
Scherrer’s formula (see Equation 3.1 on page 38) and other characteristics pro-
vided by the XRD. From the table, the mean crystallite size of the pristine Cu
sample is around 19 nm, and it slightly increases after annealing at 150 °C. Cuy,O
also appears after annealing at this temperature with crystallite average size (c.a.)
6 nm. However, this size increases up to 15 nm at 275 °C. At 250 °C, CuO starts
to nucleate with crystallite diameters of (c.a.) 9 nm, and it grows with annealing
temperature up to 40 nm at 1000 °C. The growth of CuO crystallites at higher
annealing temperatures such as 800 - 1000 °C causes porosity and cracks on the
thin film surface as discussed with the SEM micrographs next.

SEM micrographs of the thin copper oxides films obtained by thermal oxi-
dation after annealing the thin copper films at different temperatures are shown
in Figure 4.2. As mentioned in the experimental section, some parts of the sur-
faces were carefully scratched with a needle in order to reveal the SiO, substrate
and to compare it to the thin copper oxide films. After annealing at 200 °C
a grained surface seems to cover the substrate. After annealing at 250 °C, the
grains agglomerate to form a dense and rough surface perhaps caused by the
transition from CusO to CuO. At 300 °C most of the component is CuO with a
small amount of CuyO. It also contains small agglomerations making the surface

rougher. The sample annealed at 350 °C shows fine grains as the main component
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Figure 4.1: XRD patterns of thin copper films after annealing at different tem-
peratures up to 1000 °C

29



4.3 Results and discussion

Table 4.1: Summary for the XRD data of thin copper oxide films obtained by

thermal oxidation.

Temperature (°C) Phase [hkl] 26 (°) crystallite size (nm)

RT Cu [111] 4343 19
Cu [200]  50.60

150 Cu [111] 4343 21
Cu [200]  50.60
Cu,O  [111] 3635 6
Cu,0  [200] 42.70

200 Cu0  [111] 3635 13
CuO  [200]  42.70

250 Cu0  [111] 3674 14
CuO  [111] 3863 9
CuO  [111] 35.50

275 Cu,O  [111]  36.63 15
CuO  [111] 3874 17
CuO  [-111] 35.50

300 CuO  [111] 3886 21
CuO  [-111] 35.70

900 CuO  [111] 3895 35
CuO  [-111] 35.70

1000 CuO  [111] 38.05 40
CuO  [-111] 35.56

of the thin film. At 400 °C, the surface becomes rougher than in the previous
cases and the grained nature of the CuO surface is better appreciated. Further
annealing at 550 °C and 800 °C makes the grains grow, confirming the results
obtained from the XRD. It was reported by Jeong and Aydil that the improve-
ment in grain size and crystallization increase the stress in thin copper oxides
films (Jeong & Aydil, 2010). This effect has been deduced from this work by
the presence of low porosity and cracks formed after annealing at 800 °C. After
annealing at 900 °C, the granular morphology is clearly distinguished. They have

edged borders and cover the whole surface, the degree and size of the porosity
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4.3 Results and discussion

also increases. Porosity and void formation were also observed by other authors
at around this annealing temperature (Musa et al., 1998). Eventually, at 1000
°C, multiple fractures cover most of the CuO surface. These fractures originate
due to the growth of the grains and may be orientated parallel or perpendicular
to the <111> directions and follow crystal dislocations. It is expected that the
porosity and fractures affect the electrical measurements of the thin film as we

discuss next.

) 10009C

Figure 4.2: SEM micrographs of the oxide formed on thin copper films on SiO,/Si
substrates after annealing at different temperatures. The scratched areas reveal

a regular, compact and soft substrate surface.

The electrical characterization is presented in Figure 4.3. In Figure 4.3(a),

the I-V measurements are shown, the inset figure is a representation of the mea-
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4.3 Results and discussion

surement configuration with the source and drain electrodes connecting to the
sample. The current on the drain (Ip) electrode was recorded as a function of
the applied drain-source voltages Vpg. As shown in the figure, ohmic responses,
which in all cases pass through the zero coordinate point, are observed in the
Ip for all annealing temperatures. This behavior implies constant resistances in
all the thin copper oxide films fabricated in this work. For clarity only the I-V
characteristics of some annealing temperatures are depicted. The highest slope
corresponds to the sample annealed at 150 °C, which indicates the lowest re-
sistance of the annealed samples. At higher annealing temperatures, the slopes
decrease dramatically indicating higher resistances.

Table 4.2 summarizes the analytical results of the electrical properties of the
formed oxides obtained by thermal oxidation. As discussed above, annealing
increases oxidation and thus, large decays in the conductivity were expected.
However, in the temperature range 250 - 275 °C and 300 - 900 °C anomalous
decreases of the resistivity are detected. This effect is better appreciated in Fig-
ure 4.3(b), in which the variation of the resistivity as a function of the annealing
temperature is depicted to obtain a resistivity phase diagram. This diagram is
very similar to those obtained by oxidation of thin copper films on glass substrates
reported by other authors (Drobny & Pulfrey, 1979; Figueiredo et al., 2008). The
colored areas indicate the dominant phases for each interval of temperature. The
main regions are Cu + Cuy0O, Cuy0O, CuyO + CuO and CuO. It is not possible to
determine the exact transition temperature because the oxidation occurs progres-
sively. Therefore, the changes in color contrasts are rough estimations for each
transition. Initially, after evaporation, the surface consists of a strained copper
layer with resistivity around 6 x 107° Q cm. Note that oxide growth starts on
the copper surface immediately after evaporation and exposure of the sample to
air. The fair-mustard-colored area indicates the Cu,O which is the first type
of oxide produced by thermal oxidation. The resistivity increases exponentially
up to (c.a.) 1.4 x 10* Q cm when annealing at 200 °C. The rate of increase
of the resistivity slows above this temperature up to 250 °C. This is because the
amount of pure copper decreases considerably with thermal oxidation, and at 250

°C probably there is no more metal copper to oxidize.
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Figure 4.3: a) I-V characteristics of the thin copper-oxide films obtained at differ-
ent annealing temperatures; b) resistivity phase diagram of the thermally oxidized

thin copper films.

63
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Table 4.2: Electrical characteristics of the CupsO and CuO obtained by thermal

oxidation of thin copper films. R = resistance, p = resistivity, ¢ = conductivity

Temperature (°C) Phase R (©2) p (Qecm) o (Sem™t)
RT Cu 0.6 6.0 x 107° 1.7 x 10~*
150 Cu + CuyO 3.6 x 102 3.6 x 1072 2.8 x 10

175 Cuy0 1.3 x 107 1.3 x 10> 7.6 x 10~*
200 Cuy0 1.4 x 108 1.4 x10* 7.3 x107™°
250 CusO + CuO 24 x 108 24 x 10* 4.2 x 107°
275 Cu0 + CuO 8.0 x 10" 8.0 x 10> 1.3 x 10~*
300 CuO 2.3 x 109 23 x10° 4.4 x 1076
400 CuO 1.6 x 10 1.6 x 10° 6.4 x 1076
500 CuO 52 x 10% 5.2 x 10* 1.9 x 107
550 CuO 3.7 x 108 3.7 x 10* 2.7 x 107
800 CuO 1.7 x 10  1.7x 10° 5.9 x 1076
900 CuO 6.1 x 101 6.1 x 10° 1.6 x 1077
1000 CuO 1.3 x 10" 1.3 x 10" 74 x 1072

From 250 °C up to approximately 325 °C (mustard-colored area), CuyO and
CuO coexist. Interestingly, at 275 °C, a decrease in the resistivity is detected.
This behavior in the resistivity of CusO has been observed for many years and
it is not completely understood. It was initially believed that this effect was
exclusively dependent on the excess of oxygen content in the copper oxide (Zhuze
& Kurchatov, 1932). However, this assumption was discarded because CusO was
found to be a p-type semiconductor and thus the conduction should originate due
to the presence of holes in the valence band and it could be improved by doping
(Olsen et al., 1982-1983). In this sense, it has been confirmed that in this material
the carriers are generated by Cu-vacancies in the crystalline structure (Asbrink
& Norrby, 1970; Kikuchi & Tonooka, 2005). Drobny and Pulfrey (Drobny &
Pulfrey, 1979) suggest that during the transition from CuyO to CuO, the CuO
sites probably act as electrically neutral defects and replace the electrically active
copper vacancies resulting in the decrease of the resistivity. Whatever the case

is, in addition to those proposed mechanisms, assuming that the conductivity
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in this material is dominated by intra-grain mobility, then it is expected to be
enhanced by improvement of crystallization together with the increase of grain
size, resulting in a decrease of the resistivity. This was confirmed above: at 275
°C Cuy0 reaches higher crystallization and bigger grain size, and a decrease of
the resistivity was observed at this temperature. Nevertheless, further annealing
also accelerates the transition of CusO to CuO which eventually results in an
excess of the latter and a continued increase of resistivity.

Above the annealing temperature of 300 °C, CuO stabilizes and the resistivity
decreases again, especially at the initial stages of the CuO area. This decrease
in the resistivity of pure CuO has attracted intense interest of many researchers,
especially in the field of superconductivity. To compare, each Cu atom in the CuO
monoclinic structure is planar-coordinated by four O atoms and one additional
apical O atom forming a distorted tetrahedron (Asbrink & Norrby, 1970). This
arrangement of atoms in the crystalline structure resembles those of high-T¢
copper oxide superconductors, usually composed by multiple perovskite blocks -
such as YBa—2Cu30O7, in which the planar-coordinated Cu by the four O atoms
is believed to be the layer in which super-currents flow. Similar to the case
of the Cuy0, in the present work, we observed that annealing produces better
crystallization and bigger sizes of the CuO crystallites leading in a decrease of
the resistivity. Therefore, it is reasonable to believe that improvement of the
crystallization and bigger crystallite sizes improve conductivity in both types of
oxides. Eventually, the increase of the resistivity observed at temperatures higher
than 800 °C may be caused by the crystal defects, porosity and dislocations
detected above.

Due to the fact that pure CuyO and thin CuO films have been found to be
formed at 200 °C and above 300 °C respectively by following the thermal oxida-
tion technique described here, hetero structures of thin copper oxide films, such
as that shown in Figure 4.4, can be easily fabricated and tested for potential
electrical applications. For instance, recently copper oxide hetero junctions have
been reported to be good candidates for solar-cell applications (Mimani et al.,
2004; Mittiga et al., 2006; Peng et al., 2010). Copper oxide hetero structures
CuyO/CuO on SiOy/Si or on other types of substrates could be inexpensively
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4.3 Results and discussion

fabricated as follows. A deposited thin copper film on SiO,/Si can be trans-
formed into CuO/SiO2/Si by annealing above 300 °C. In a subsequent step,
copper could be deposited on this system and annealed at 200 °C to form the
next CuyO layer. Alternatively, a Schottky barrier can be formed on the latest by
direct deposition (e.g. by evaporation) of copper or other metal on top. Thus the
top layer can be used as an electrode for electrical connections. Eventually, since
both CuyO and CuO are p-type semiconductors, by n-doping either of them, p-n
copper oxide hetero junctions similar to those reported by other authors can be
more easily fabricated and tested for solar cell applications (Han & Tao, 2009b).
Moreover, investigations of these materials which present various electrical be-
haviours are promising for a better understanding of the conductivity mechanism

in semiconductor hetero-junctions.

Evaporation

~
Annealing

=200 °C ~y

Annealing
>300 °C

Figure 4.4: Design of a copper oxide hetero structure which can be fabricated by

following the thermal oxidation described in this work.
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4.4 Conclusions

Thin films of CuyO (cubic structure) and CuO (monoclinic structure) were ob-
tained by thermal oxidation following annealing Cu thin films at different temper-
atures. At low annealing temperatures some copper atoms bond oxygen atoms
to form CuyO as the first oxide phase. It is not possible to determine the ex-
act temperature transition because oxidation occurs progressively. However, the
phase transition upon increasing the annealing temperature is Cu — Cu + CuyO
— Cuy0 — CuyO + CuO — CuO. Following the technique presented here, pure
thin Cu,O films are obtained at 200 °C, whereas, thin CuO films are obtained
above the annealing temperature 300 °C. Annealing also improves crystalliza-
tion and increases the crystallite sizes of both copper oxides. The resistivity
phase diagram obtained by I-V characterization, presents anomalous decrease of
the resistivity at the annealing temperature ranges 250 - 275 °C and 300 - 600
°C. Together with hole doping “effect”, this behavior in the resistivity may be
related to the good crystallization and bigger crystallite sizes produced by anneal-
ing. Although oxide formation still limits the use of copper in nanoelectronics,
the thermal oxidation technique described here can be used to fabricate copper
oxide hetero structures which are very useful for their potential applications in

large-area electrical devices.
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Chapter 5

Thin nickel films: Nanogap

electrode fabrication

In this chapter the fabrication of nickel nano-spaced electrodes for electronic nan-
odevices by electroplating is discussed. The necessary reagents, conditions and
processes required to obtain nano and atomic gaps between soft and clean elec-
trodes are described. In the electroplating method, the sample is immersed in a
solution which contains the metal ions to be deposited, these metal ions of the
electrolyte move towards the sample under an applied voltage. The technique is
described by electrodepositing nickel ions from an electrolyte on to nickel elec-
trodes in a conventional electrochemical cell. Current-voltage characteristics are
also presented to evaluate possible applications of the nanogap electrodes in elec-

tronic nanodevices.

5.1 Introduction

Nano and molecular electronics devices require the fabrication of symmetrical
metal electrodes separated by a nanogap (“nanogap electrodes”) in which a spe-
cific molecule or crystal can be placed in order to connect them to the macro-
scopic world. In the last two decades, vertical structures in which a self-assembled
monolayer (SAM) of molecules is electrically connected on one side with a scan-
ning tunneling microscope (STM) (Datta et al., 1997; Emberly & Kirczenow,
2003) or conductive probe atomic force microscope (C-AFM) (Wold & Frisbie,
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2001) and on the other side by a metallic surface have been demonstrated. Even
though this approach has yielded many important results, it suffers from limi-
tations such as the enormous asymmetry of the electrodes, the requirement of a
high vacuum environment, difficulties in mass production and difficulty to main-
tain a stable chemical bond between the molecule and the microscope tip due
to mechanical vibration. To solve these problems, more recently, new coplanar
metal /molecule/metal devices have been proposed. Nanogap electrodes are fab-
ricated before the molecular components, and they are subsequently inserted.
This methodology has the advantage that the junction can be characterized with
and without the presence of the molecule thus allowing the characterization of
the molecule. Among others, three are the most remarkable new approaches for
making in plane nanogaps: (i) controlling a break junction mechanically, (ii) elec-
trical breakdown of thin metal wire via electromigration and (iii) electroless and
electrochemical plating. These techniques are schematically represented in Figure
5.1. The first technique was first developed by Moreland & Ekin (1985). A Nb-Sn
wire mounted on a flexible glass beam can be broken to form an electron tunnel-
ing junction between the fracture elements. The method was later improved by
other researchers. Notched wires of different metals are obtained first with lithog-
raphy, by bending the substrate with a piezoelectric transducer connected to a
pushing rod and the gap is then formed after breaking the neck (Figure 5.1(a))
(Kergueris et al., 1999; Krans et al., 1995; Muller et al., 1996; Parks et al., 2007,
Reed et al., 1997; Ruitenbeek et al., 1996; Smit et al., 2002; Zhou et al., 1995).
Using this method, the gap between the electrodes can be flexibly and precisely
adjusted to fit different molecules, but it cannot be removed from the appara-
tus and thus is unsuitable for solid-state device applications. In contrast, in
the electromigration-induced break junction technique (EIBJ technique - Figure
5.1(b)), the nanogap is produced by applying large current densities to the wire.
At high current densities, momentum transfer from the electrons to the ions in
the lattice causes some ions to drift gradually in the direction of the electron flow
(Bolotin et al., 2004; Durkan, 2007; Khondaker, 2002, 2004; Liang et al., 2002;
Mahadevan & Bradley, 1999, 2000; Park et al., 1999; Taychatanapat et al., 2007).
This mass flux can lead to the growth of voids in the wire, finally causing the

formation of the gap (Mahadevan & Bradley, 1999). This process is useful to
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obtain nanogaps up to 1 nm with high efficiency (Park et al., 1999) and it can
be controlled by observing the current-voltage characteristics until a tunneling
signal is sensed (Park et al., 1999, 2002). However, to date, massive fabrication
of multiple nanogaps in an array of electrodes is still difficult to achieve by this
technique. In the electrochemical technique, common lithographically-obtained
electrodes are grown to reduce their initial separation. The process takes place by
submerging the electrodes in an electrolyte usually containing different types of
metal ions (Figure 5.1(c)). The metal ions can be selectively deposited onto the
electrode surfaces assisted by reductive agents. The gap distance depends on the
reaction time, reactant concentration and applied voltage between the electrodes
(Céspedes et al., 2002; Deshmukh et al., 2003; Kashimura et al., 2003; Kervennic
et al., 2002, 2003; Li et al., 2000; Morpugo et al., 1999; Sahoo et al., 2006; Sokolov
et al., 2007; Yang et al., 2002). Furthermore, by using a feedback system, the
process can be reversed in the dissolution mode for controlled etching of atoms
from the electrode surfaces to the solution and thus the gap dimension can be
monitored. To date, the electrochemical plating technique is one of the most used
technique for the fabrication of metal electrodes separated by a nanogap. Next,
we discuss more about the electrodeposition technique.

Table 5.1 summarizes some of the most noticeable results and conditions for
the fabrication of metal nanogaps using the electrochemical technique. When
surveying the literature, we found that, with some exceptions, e-beam lithography
(EBL) or focused ion-beam milling (FIB) techniques are mostly used to obtain
the initial electrode separation in the range 40-400 nm. Most authors use lock-in
amplifiers to control the deposition and to study the quantum conductance in
situ. Little consideration has been given to the tunneling current enhancement
caused by the electrochemical potential relative to the reference electrode (Shu
et al., 2000) or by the presence of the ions in the electrolyte (Garcia et al., 2003;
Hua & Chopra, 2003; Kervennic et al., 2002; Morpugo et al., 1999). Moreover,
although most of the experiments listed in the table provide general views about
the electrodeposition process, they do not provide enough information about the
reactions that take place or details on the electrolyte characterization, which are
also necessary in order to prevent the formation of passivation or oxidation layers

on the surface. It is also seen from the table that gold electrodes are preferred by
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electrolite

| n

Figure 5.1: In-plane techniques for the fabrication of nanogaps: in the break-
junction technique (a) the gap is formed after bending the flexible substrate;
in the EIBJ technique (b) high density currents allow the electromigration of
atoms to form the gap; and in the electroless and electrochemical technique (c)

electrodes forming an initial wide gap are plated to reduce the gap separation
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most authors; in fact, as mentioned above, gold is a good conductor and prevents
oxidation. However, magnetic deposition on magnetic metal electrodes can be
more attractive since they allow the study of single charge and spin transfer. For
instance, ferromagnetic electrodes forming a point contact could be very helpful
for studying the controversial ballistic magnetoresistance (BMR) effect (Egelhoff
et al., 2004; Elhoussine et al., 2002; Gabureac et al., 2004; Mallett et al., 2004;
Ozatay et al., 2004; Svedberg et al., 2004; Yang et al., 2002). In the next section

we describe the fabrication of nickel nanogaps by the electrodeposition technique.

5.2 Experimental

In this section, we describe the fabrication of nickel nanogap electrodes using a
standard electrochemical cell. We characterize the electrolyte, describe the elec-
trochemical conditions and study the time evolution of the electrode growth up
to the point of contact. During the plating process the separation width between
the electrodes decreases exponentially with time and the nanogap is achieved
by stopping the electroplating just before the electrodes touch. In addition, we
demonstrate that even if the electrodes are completely bridged during the elec-
troplating technique, the EIBJ technique mentioned above can be successfully

applied to re-open the nanogaps.

5.2.1 Fabrication of the initial electrodes

The initial working electrodes were fabricated by lithography technique and lift-
off process, the process is explained in detail in Section 2.3 in page 21. In brief;
first, Small Ni pellets (99.999% purity) were evaporated from a ceramic boat
on the tips of gold wires previously deposited on polished SiOs (2 pm)/Si(100)
substrates using an Edwards 306 evaporator system with a base pressure of 10~7
mbar. The samples were cleaned with acetone, isopropyl alcohol and ultrasound
following a standard procedure before deposition. The rate of evaporation was
maintained at 0.1 nm s~ and the thickness of nickel (70 nm) was controlled by a
quartz crystal microbalance located next to the sample. Two configurations were

designed; one containing four non-uniform electrode arrows in which the initial
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Table 5.1: Electroplating conditions and results for the fabrication of nanogaps

and nanocontacts reported in the literature. In all cases, lock-in amplifiers were

used to measure the quantum conductance in-situ.

EBL: Electron (e)-beam

lithography, FIB: Focus Ion Beam milling, NM: No measurement has been per-

formed.
Electrode Deposition Initial Electrolyte Initial gap Final FExsitu  Reference
metal metal method width gap data
width
Gold Gold EBL 0.01 M 50-400 nm 5 nm NM
KAu(CN) Morpugo
" 2 et al.
Gold Gold EBL 0.1 mM 100 nm <lnm I-V .
Kervennic
KAu
et al.
Gold Gold EBL 0.01 M 50-200 nm 10 nm NM .
Kashimura
KAu(CN)2
et al.
1d EBL .02 M 2 2 I—
Go Copper 0.0 50 nm nm \%4 Deshuikh
CuSOy4
et al.
Gold Nickel FIB 1.5 M 100 nm Contact NM
Sahoo
Ni(SO3NH3)s
et al.
Gold Nickel EBL 0.01-0.02 100 nm Contact I -V .
Kashimura
M NiSOy4
et al.
Gold Nickel Porous 0.50 M 60-120 nm  Contact NM .
Elhoussine
NiSO4
et al.
Gold Cobalt FIB CoS0Oy4 100 nm Contact NM
Sokolov
et al.
Gold Cobalt FIB 0.22 M 250 nm 2 nm I1-V Deshuikh
CoS0O4
et al.
Platinum Gold EBL 0.01 M 50-200 nm 8 nm NM .
KAu(CN) Kashimura
u
2 et al.
Platinum Platinum EBL 0.10 M  40-80 nm 20-3.5 I-V .
Kervennic
KoPtCly nm
et al.
Nickel Nickel FIB H3NiSOg 100 nm Contact NM
Yang et al.
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gaps of two of them was 2.5 pm width (see Figure 5.2 (a)); and the other with
three uniform electrode arrows with initial gaps of 200 nm (see Figure 5.2 (a)).
The samples were coated with a layer of Polymethyl Methacrylate (PMMA) to
protect their surfaces and to avoid leakage during measurement. To focus the
plating only in the tips of the electrodes during the electrodeposition process,
rectangular windows of dimensions 28 ym x 100 um were opened on the PMMA
coating, thus exposing the tips of the four electrodes samples. Similarly, circular
windows of 6 um diameter were opened on the PMMA protecting layer on the
samples with three electrodes. Figure 5.2 (c) is a representation (not to scale)
for the lateral section in both types of samples. In the figure, the gold layers will
help the conection to the electrical devices, the nickel layers are the surfaces to
be plated and the opened window in the PMMA will ensure deposition only on
the region of interest. The four-arrow samples are used to study the gap width
evolution with time of electrodeposition, whereas the three-arrows samples were

used to study the effects of electromigration after bridging the electrodes.

5.2.2 Electroplating

The electroplating took place in a conventional electrochemical cell described in
§2.3 on page 21. The reference electrode (R.E.) consisted of a commercial SCE
saturated Calcomel KCl and the counter electrode (C.E.) was a platinum mesh. A
potentiostatic control ensured that the real potential E(t) at the working electrode
(W.E.) with respect to the R.E. remained almost the same during the applied
voltage generated by the function generator. The control also helped to minimize
any additional drop in the potential caused by the internal resistance of the elec-
trolyte. The electrolyte was prepared by dissolving nickel sulfate (NiSOy, Sigma
Aldrich 13635) and boric acid (H3BOj3, Sigma Aldrich B9645) in aqueous solution.
H3BOj3 is commonly used in pure nickel and nickel alloys electroplating because it
shows some interesting properties such as excellent buffering to maintain a steady
pH in the electrolyte, surface activity, resistance to hydrogen evolution reaction
and improved current efficiency (Grand & Talbot, 1993; Horkans, 1979; Karwas &
Hepel, 1989; Popov et al., 1993; Tilak et al., 1977; Wu et al., 2003). Since we are

plating in the nanoscale, the addition of any other additives is not recommended
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Figure 5.2: Initial nickel electrode configurations protected by a PMMA coat:
(a) Four-electrode configuration with a rectangular window opened over the non-
uniform arrows, (b) Three-electrode configuration with a circular window opened
over the uniform arrows. (c) Representation (not to scale) of the lateral cross-
section for both types of samples. The initial samples are obtained by conven-

tional lithography techniques, see §2.1 on page 11 for more detail.
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in order to avoid the risk of contamination, passivation-layer formation and a
rough surface. After trying with different concentrations of the electrolyte com-
ponents, we found that the best control of deposition in nano-scale is achieved by
combining 50 mM of NiSO,4 and 500 mM of H3BOg, whereas for micro-sized or
larger area characteristics, higher concentration of nickel sulfate is required. The
cyclic voltammetry (CV) technique was performed for the electrolyte character-
ization and it was carried out in the same electrochemical cell. This technique
is usually employed to estimate the potential for optimum plating and to study
the deposition process and explained in Section 2.3 on page 21. The CV was per-
formed by applying different scan rate potentials, and a nickel surface was chosen
during CV in order to study the chemical reactions on this metal. For this pur-
pose, a thin nickel film (100nm thickness) was covered by electroplating tape,
except an area of 0.72 cm? and placed in the working electrode. The scans were
addressed in the cathodic direction (from +0.5 to -0.15 V vs. SCE). All electro-
chemical experiments were performed at 25 °C, pH 3.67 and using a Potentiast/
Galvanostat (VersaStat TM II - Princenton Applied Research) interfaced with a
personal computer (PC) and controlled by the Power Suit program.

5.3 Results and discussion

Figure 5.3(a) shows the cyclic voltammetry curves of the plating bath at different
scan rates. As shown in the figure, for most scan rates, when the potential is
scanned from +0.5 V to -0.6 V, no significant current flow is observed. Accord-
ing to the CV, the metal deposition starts at around -0.6 V vs. SCE. As the
cathodic potential increases from -0.6, the current also increases and reaches a
peak at around -1.0 V. This peak corresponds to the reduction of Ni** to Ni in
the working electrode. The exponential trend of I at higher absolute values of V
might be associated with capacitive charge currents caused by oxygen evolution
in the aqueous solution as proposed by Mimani et al.. At a scan rate of 156 mV /s,
when the potential is reversed the current follows the same potential dependence
up to the irreversibility point of -1.1 V. The irreversibility point increases as the

scan rate increases. After the potential reaches back to -0.6 V, negative currents
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start to flow independently of the scan rate. A new peak continues and its in-
tensity depends on the scan rate potentials. This wide peak corresponds to the
oxidation of Ni to Ni?* together with a possible hydrogen evolution reaction in
the auxiliary electrode (Mimani et al., 1993). In general, the CV in the figure
is quasi-irreversible independently of the scan rate. Different scan rates do not
change the shape of the cyclic loop but increase the loop area, the peak current
and peak potentials separation, as shown in the inset in the figure. These charac-
teristics in the CV reveal that the Nerst equation is only approximately satisfied
(Heinze, 1984). To obtain the diffusion coefficient (D) we use the Randless-Sevcik
equation (equation 2.14 in page 26) which gives the value 4x107° cm?/s. Based
on these results, any applied potential from the region -1.2 V to -1.5 V versus
SCE can be selected for a good deposition of Ni. It is obvious that from this inter-
val, the lowest applied potential (-1.2 V) provides the slowest deposition which is
preferred for a better control of the micro and nano characteristics. Figure 5.3(b)
shows the current and charge transfer variations during electrodeposition at the
recommended -1.2 V applied voltage. The current varies exponentially follow-
ing the Nerst Law (Bard & Faulkner, 2001) and correctly implies that changing
the applied potential by several milli-volts modifies drastically the electroplating
rate. Typically, an inducing current of 0.2 pyA allows an electroplating rate of 1
As™! at room temperature (Kashimura et al., 2003). During the experiment, we
also observed that a slight increment of the applied potential results in enhanced
surface roughness together with a decrease of the density of the deposited metal
(data not shown here). From the plot, it is also clear that as time passes, the
increase of the surface area allows more charge transfer. The mass transfer ob-
tained by the Faraday law is shown in the inset of the figure, and fitting it with

time of the electrodeposition, the following relation is obtained:
m = 2.3 x 107932 (5.1)

where m is the deposition mass during the process and t is the time. In this
way, it is possible to control the amount of metal deposition on the electrodes by
adjusting the time of electrodeposition.

Figure 5.4 presents micrographs of the growth evolution of the type of elec-

trode configuration with rectangular window described above. As expected, the
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Figure 5.3: (a) Cyclic voltammetry of 50 mM of NiSO4 and 500 mM of H3BOj in
aqueous solution at different scan rates. (b) Current and charge variation with

time during electrodeposition. Inset (b): deposition mass as function of time.

78
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electrodeposition was focused only on the exposed area of the window. The images
reveal typical plated surfaces, in which nickel ions migrate from the electrolyte
to the electrodes, making them grow. As described above, in the anode of the
cell, the nickel loses two electrons and becomes 27, Ni?+ associate with (SOy)?~
in the solution. In the cathode, the negative charge of the surface attracts the
positively charged Ni*T from the solution and repels negative charged ions. The
process follows equation 5.1 and stops when the applied voltage is switched off.
Therefore, the electrode growth can be controlled with the applied voltage and
stopped at different times to achieve a desired width. In the figure, the initial
nickel electrodes have a thickness of 50 nm and were separated by about 2.5 pm.
Electrodeposition makes the thickness grow up to 50 times and the gap separation
decreases with electroplating time until they make contact.

Figure 5.5 shows the nickel electrodes exposed with circular window described
above after they were electrodeposited until forming a contact. Note that the
vertical electrode which has not been connected to the electrochemical set-up has
etched after contact with the electrolyte. Moreover, due to the smaller and more
pointed electrode tips than in the previous case, during electroplating, the metal
ions of the electrolyte are better guided by the electric field to the sharpest points.
Then since the highest gradients of the field are located in the outer corner of
each arrow, out of plane growth of the electrodes results. As we will see next,
contact electrodes obtained by electrodeposition can be easily reopened by the
electromigration-induced breaking junction (EIBJ) technique and then the out-of-
plane electrodes would provide some advantages because: (i) there is no residual
interlink of metallic adhesion layer over the SiO5 and preventing the formation of
parallel conduction channels on the substrate which can disturb the measurements
(Gabrielson, 1993), (ii) there is smaller probability for island formation due to
Joule heating (Trouwborts et al., 2006), and (iii) it avoids the use of molecular
adhesion layers beneath the metal (Mahapatro et al., 2006). Molecular devices
could be obtained by depositing the molecules on the electrodes before breaking
and inducing them to migrate into the gap by subsequent heating. In this way
undesired contact between molecules and substrate can be avoided.

At an electrodeposition time of 290 s, the formed gap can hardly be seen

by the microscope and I-V measurements need to be performed to detect them
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Figure 5.4: Electrode growth during electroplating.
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Figure 5.5: Electrochemical plated nickel electrodes after forming contact, (a)

top view and (b) lateral view.

as it will be discussed next. The electrodeposition procedure described above
means that Equation 5.1 is successfully applicable and allows the control of the
gap width between the electrodes by setting the time of electrodeposition alone,
but always bearing in mind the other parameters such as electrolyte components,
applied voltages, etc. Following this procedure, it is not necessary to average
measurements from many samples to find a desired gap width. Figure 5.6 shows
the gap width variation with time of electrodeposition. Up to 160 s, the gap

width decreases exponentially following the trend:

d = 2.44¢ 10 (5.2)

where d is the gap width (in microns) and ¢ is the plating time (in s). This vari-
ation behavior is expected considering that the mass transfer during deposition
is not linear with time as discussed above. However, we found that at deposition
times higher than 190 s a linear relation dominates the last stages before the
electrodes get into contact as shown in the figure inset. In the next section the
current-voltage characterization is performed.

Figure 5.7 shows the current-voltage response for the Ni samples electrode-
posited during 290, 315 and 350 s. We have observed recordable and reproducible

[-V characteristics in the milliampere and microampere range in repeated scans,
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Figure 5.6: Gap width variation (measured by SEM) with electroplating time.
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which confirms the stability of the samples. In the figure, three different signals
behaviors corresponding to different ranges of electrode separation can be identi-
fied. In the first case, the zero dashed line indicates that no current flows which
corresponds to a large electrodes separation. The second case related to sam-
ples electrodeposited during 290 s and 315 s shows tunneling behavior revealing
nanogap formation. In the third case, after 350 s the measurements show ohmic
behavior revealing that the electrodes are in contact. In the tunneling signals,
after 290 and 315 s of electrodeposition, the samples allow currents of 0.12 uA
(=30 nS conductance) and 8.2 mA (/2 mS conductance) to tunnel at 4.0 V re-
spectively. Note that the conductance quantum Go=2e?/h is ~77.48 uS. In this
work the narrower gap widths of the samples were not calculated by using the
Simmons’ model due to the high asymmetry of the arrow tips of the electrodes.
However, it has been reported that a tunneling conductance in the order of the
nS is the typical response of gaps with about ~1 nm width (Kergueris et al.,
1999; Li et al., 2000; Reichert et al., 2002) which decreases exponentially as the
gap width increases (Simmons, 1963). Therefore, the gap width of the sample
electrodeposited after 290 s should be around 1 nm whereas the electrodes elec-
trodeposited after 350 s should have atomic separation. These results obviously
confirm that at larger deposition times the gap between electrodes decreases and
the conductance increases and eventually at 350 s the electrodes make contact.
Once the contact is formed, the detected resistance is 157 €2 which implies ~ 80
G conductance; this means that around eighty conducting channels have been
formed. The contact allows current densities up to around 4.5 x 10710A /cm? and
at applied voltages higher than 8.0 V the junction breaks as shown in the stress-
ing curve in figure inset. Once the junction breaks a nanogap is again formed as
we discuss next.

Nanogaps can also be reopened after the electrodes contact by inducing the
junction to break by means of the electromigration EIBJ technique. For in-
stance, the resistance of the contact shown in Figure 5.7 above was 158 2. Ap-
plying higher voltages than 1.5 V allows electromigration, the contact breaks at
a threshold current (I;,) of 11 mA. The nanogap is then reopened due to the
physical motion of atoms out of the high-current density areas i.e the contact
(Ho & Kwok, 1989; Tu, 2003). Figure 5.8 shows the I-V measurement of the
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Figure 5.7: Current-voltage responses of the electrodes 290, 315 and 350 s of elec-
trodeposition. The tunneling behavior reveals that nanogaps are formed at 290 s
and 315 s, whereas Ohmic behavior indicates that a contact is formed after 350
s of electroplating. Inset: current stressing curve of the sample electrodeposited
during 350s.
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reopened gap (blue line in the figure) and tunnelling behaviour is detected again.
Considering the effective frontal area around A~7.8x107'? c¢m?, the threshold
current density (Ji,=Is,/A) for the nanogap formation by electromigration is 1.4
x 1079A/cm?. Jy, values of about 2.9x1078 A/cm? have been obtained using
gold wires (Ho & Kwok, 1989) and this implies that J, values of the order of
1078 -107% A /cm? are required for the nanogap formation by EIBJ. Moreover, the
breaking signal due to the EIBJ technique ensures that the nanogap has reopened
and hence the I-V signal shown in the figure results from tunneling through the
gap and not through natural oxide layers. To date, there is no exact mechanism
for electron transport through nickel nano-electrodes in nanodevices. Neverthe-
less, it might be interpreted as follows: when no external magnetic field is applied
the electrodes have randomly oriented magnetic moments and the gap behaves
as a tunnel barrier (as represented inset down in the figure). This disorientation
should be responsible for the asymmetric tunneling current when the voltage bias
is applied. In contrast, when a magnetic field is applied (e.g. 3.5 kG), the mag-
netic moments align, the resistance is reduced and this causes the conductance to
become symmetrical (red line in the figure). Similar results have been obtained
by other authors (Céspedes et al., 2004; Valladares et al., 2010d), and it has also
been proposed that under external magnetic fields, the double energy bands of
the ferromagnetic electrodes split, increasing the number of sub-bands crossing
the Fermi level and thus increasing the conductance in the electrodes (Johnson,

2007; Sokolov et al., 2007).

5.4 Conclusions

We have successfully demonstrated that it is possible to control the production
of nickel nanoelectrodes separated by a nanogap by the electroplating technique.
The gaps obtained by this technique fall beyond the resolution of e-beam lithog-
raphy. Careful selection of the electrochemical variables such as the electrolyte
concentration, applied potential, cleaning, etc. permit the control of nanogap
formation by the time of electrodeposition. Regarding the electrolyte, we showed
that that 50mM of NiSO4 combined with 500 mM of H3BOj allow high perfor-

mance. During the process, the gap width decreases exponentially with time until
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Figure 5.8: I-V tunneling behavior in a reopened nickel nanogap. Inset:
Schematic representation of the tunneling effect in the nickel electrodes. Asym-
metry is corrected by the application of an external magnetic field suggesting
that charge transfer in the nickel electrodes depends on the orientation of the

magnetic moments.
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the electrodes come into contact. Different nanogap widths can be obtained stop-
ping the process at desired deposition times. The present method offers various
benefits such as extremely small gaps, high-yield (~100%) fabrication and read-
ily available instrumentation. Once the gap is closed, it can be reopened again
by the ex-situ EIBJ technique. Applying an external magnetic field corrects the
[-V asymmetry; this effect should be related to the orientation of the magnetic

moments in the nickel electrodes.
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Chapter 6

Oxide superconductor
LaCaBaCu307: Attaching grains

on gold surfaces

LaCaBaCu3O; (Lalll3) is a high-critical-temperature superconductor (HTS)
with Te(onsery = 80 K and its structure is similar to the tetragonal YBCO. In
this chapter we explore the attachment of Lal113 nanograins on Au(111) surfaces
through self-assembled monolayers (SAMs) of HS-CgH;4-HS [octane (di)thiol] for
their potential application in nanotransistors. We show that Lalll3 particles
(100 nm mean diameter) can be functionalized by octane (di)thiol without af-
fecting their superconducting critical temperature (T = 80 K). X-ray photoe-
mission spectroscopy (XPS) analysis reveals that the thiol functional heads link
the superconducting grain surfaces creating sulfonates and we deduce that bond-
ing between the S atoms and Cu(1) atoms of the Lall13 structure would occur.
We suggest a design for a superconducting transistor fabricated by immobilized
Lall13 nanograins in between two gold electrodes which could be controlled by

an external magnetic field gate.

6.1 Introduction

Despite current efforts, the replacement of semiconductor technologies by single-

molecule electronic devices (SMEDs) is still many years away. Several challenges
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and problems persist, including, the lack of direct microscopy to confirm the
presence of a particular molecule on the junction of the devices, variations in
the microscopic configuration from device to device and the necessity of great
care and many control experiments. These ensure that silicon devices continue
to dominate electronics technologies (Natelson, 2009). Nevertheless, it is widely
believed that the present semiconductor-based microelectronics cannot achieve
circuit density sufficient to maintain Moore’s law (Birnbaum & Williams, 2000;
Moore, 1965; Reed & Tour, 2000) and that future electronics will require suitably
sized functional elements for the development and design of new architectures
and devices. Nanograins could be such elements as they exhibit both small size
and size-tunable physical properties which can be customized to meet the require-
ments of nanoelectronic devices in the near future (Li et al., 2009; Shipway et al.,
2000). Within this group, superconducting nanograins are particularly attrac-
tive. The benefits of superconducting electronics over semiconductor electronics
are the high carriers mobility which allows ultrafast switching speed (for digital
applications) and high sensitivity /response to electromagnetic phenomena over a
very wide frequency spectrum (for analogue applications) (Booth et al., 1999).
Some attempts to fabricate superconducting transistors based on thin-film super-
conductors attached to metal electrodes have been reported (Mikoushkin et al.,
2003; Moran et al., 2003). Nevertheless, the drawbacks of such superconducting-
film devices are the intense interdiffusion between layers obtained during growth
and the wide area of contact with metal electrodes (> 1 yum?). On the other hand,
a recent publication reports superconductivity in a single-Cgg molecule trapped
between two aluminum electrodes (Winkelmann et al., 2009). This promising
approach annuls the use of superconductors as thin films. However, it falls in
the category of SMEDs working at very low temperatures (< 1 K). To overcome
problems such as interdiffusion, size and working temperature, pre-prepared high
T¢ cuprate superconductor (HTS) nanograins can be utilized by attaching them
between metal electrodes. For this purpose it is required that the HTS nanograins
are able to attach functional molecules which can then be used to bind the metal
electrodes. There are few literature reports about these structures, mainly reports

on the attachment of organic molecules (such as alkyl-amines and alkane-thiols)
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on “large” surface areas (tens of square microns) of ceramic pellets and film sub-
strates of YBayCu3O7 (YBCO, Te= 90 K) (Mirkin et al., 1998, 1997). Mirkin
et al. propose a mechanism for the self-assembly of alkyl-amines on YBCO thin
films (Mirkin et al., 1998; Zhu et al., 1998). In that mechanism, alkyl-amine
reagents become oxidized to alkyl-imines upon their exposure to HTS’s and the
superconductor is reduced. The resulting oxygen-deficient region supports the for-
mation of the self-assembled monolayers specifically attacking the Cu** atoms.
However, the lack of reports on nanometer-scale structures raises the question
whether nano-sized HTS particles are able to attach functional groups without
destroying their superconducting properties as HT'S thin films do. In this chapter
we report that HT'S LaCaBaCu30; (Lalll3, T¢ = 80 K) grains (100 nm mean
diameter) can be functionalized with octane (di)thiol molecules and be attached
on gold surfaces. From X-ray photoemission spectroscopy (XPS) analysis, we
suggest that the binding of the thiol functional heads to the Lalll3 grains is
dominated by sulfonate formation where the S atoms of the thiols bond with the
Cu(1) atoms of the Lalll3. In addition, we found that the superconductivity
of the grains survives the functionalization and then we calculate their magnetic
phase diagram in order to explore their application in electronical devices. Fi-
nally we present a metal-insulator-superconductor transistor design using these

thiolated-HTS grains that can be controlled by an external magnetic field gate.

6.1.1 The superconductor LaCaBaCu30;

The compound CaLaBaCu3zO; (Lalll3) is a superconductor with critical tem-
perature Teoonsee =80 K. Its crystalline structure is tetragonal, similar to the
YBayCu3O7 (YBCO). The two main characteristics which make Lalll3 attrac-
tive are that its T¢ is above the boiling temperature of the liquid nitrogen (T¢
= 80 K [10-14]) (Gunasekaran & J.V. Yakhmi, 1993; Gunasekaran et al., 1992;
Leeuw et al., 1988; Peng et al., 1989; Yagi et al., 1991) and the low applied mag-
netic fields that it can support without losing its superconductivity (Valladares
et al., 2010b,c). The cell parameters of Lalll3 are a = b = 3.88 A and ¢ =
11.60 A whereas for YBCO superconductor are a = 3.83 A, b = 3.89 A and ¢
= 11.70 A. Figure 6.1 shows schematically a structural comparison of Lalll3
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with YBCO. YBCO has an orthorhombic Pmmm structure and becomes super-
conductor below Te(onsery of around 90 K (left in the figure), whereas Lalll3
is superconductor and has tetragonal structure (right in the figure). Moreover,
other important differences between both structures are: (i) While the rare earth
Y in the YBCO structure is sandwiched between two oxygen-deficient Ba-Cu
perovskites, the (1/2, 1/2, 1/2) position in the Lalll3 structure is shared by La
and Ca atoms. (ii) The O(1)(0,1/2,0) of the CuO chains is fully occupied in the
superconducting YBCO, whereas O(1) is partially occupied (occupancy =~ 0.5) in
the Lal113 structure. The literature reports indicate that Lal113 superconductor
does not present structural variation after single atom substitution. For instance,
its tetragonal structure does not change under different oxygen content (Awana &
Narlokar, 2001; Yamaya et al., 1993) or when the Cu(1) site ((0,0,0) site in Figure
6.1) is doped with Zn content (Awana & Narlokar, 2001; Rajvir, 1997). However
Lalll3 structure becomes orthorhombic (Pmmm) when polyhedrons formed by
a cation and oxygen atoms such as oxyanions (BO3)?~ or (PO4)*" are located in
the Cu(1) site (Dominguez et al., 2006; Valladares et al., 2004, 2006). Whatever
is the case, the T¢ of the system depends on the doping concentration. Re-
garding its magnetic properties, in contrast to the YBCO-7, the Lall13 presents
interesting properties such as (Valladares et al., 2010b): (i) A magnetic flux can
penetrate easily the bulk in its vortex region (Hoy < H < Heo), (ii) fewer mag-
netic fields can be trapped in the L1113 than in YBCO and (iii) small currents
are able to flow in the bulk. Thus possible applications of Lalll3 are restricted
to applied fields lower than 10 kOe (=~ 1 T) and in the range of 41 K - 76 K.
In addition, the “peak effect”is observed during current-density calculation and
it is probably caused by secondary phases or from clusters of oxygen vacancies
acting as field-induced pins. In this chapter we study these characteristics and
calculate the magnetic phase diagram for Lall1l3 showing the irreversibility line
in order to find the magnitudes of applied magnetic fields which allow potential

application of this superconductor in nanoelectronic devices.
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Figure 6.1: Comparison between YBCO (left) and Lall13 (right) structures.
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6.2 Experimental

Lal113 superconductor grains were prepared by conventional solid state reaction
(SSR) method in collaboration with Prof. Angel Bustamante (University of San
Marcos, Peru), using the same procedure reported elsewere (Valladares et al.,
2004, 2006). Appropriate amounts of LayO3, BaCO3, and CuO were mixed and
ground in an agate mortar. A Lalll3 pellet of 1 cm? diameter was formed by
pressing the powders at 4 tonne/cm? for 6 min. It followed three heat treatments
(represented in Figure 6.2 (a)) in a tubular oven (LENTON LTF-PTF Model
16/610). First, a calcination at 950 °C for 24 h allowed the ingredients to stick
toguether. The sample was then reground and sintered at 975 °C in air for 12 h
before furnace cooling to room temperature (RT). After grinding for a third time
to obtain uniform grains, the sample was annealed at 575 °C in oxygen flow for 24
h and furnace cooled to RT in the same gas atmosphere. Figure 6.2(b) shows the
scanning electron micrograph of the grains obtained by this technique. As shown
in the picture, the grains are different border shapes and sizes with small amount
of nanograins. In order to improve the grain sizes in the nanoscale, the precursors
before heat treatment were prepared by a co-precipitation method, following the
same procedure reported more recently (Valladares et al., 2010b) and in collabora-
tion with Prof. Bustamante and his group. In brief, a solvent was obtained by dis-
solving stoichiometric amounts of Ca(OOCCHj3),1.4H,0, La(OOCCH3)31.5H,50,
Ba(OOCCHj3), and Cu(OOCCH;3)2H,0 acetates in aqueous solution of ethanol
(1:1) at room temperature. At the same time, a mixture of oxalic acid HCOO-
COOH (2 gr) of aqueous solution and ethanol (200 ml) was prepared as a solute.
Next, the solvent was dripped in the solute with continuous stirring, agitation
and with control of the pH for 12 h at room temperature. After filtering for 3 h
with the help of conical filter-paper No. 40, the sediment was dried at 40 °C for
48 h. The Lalll3 precursor obtained by this procedure was ground in an agate
mortar and followed the heat treatments described above. A scanning electron
micrograph of the sample obtained by this co-precipitation technique is presented
in 6.2 (c). The grain sizes are in the nanometer scale and they are more uniform

than those obtained by the solid state reaction method. The mean crystallite
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Figure 6.2: (a) Heat treatment for the preparation of the Lalll3 superconduc-
tor grains, (b) SEM micrograph of grains obtained by conventional solid state
reaction method and (¢) SEM micrograph of grains obtained by precipitation of

precursors.

diameter obtained from XRD analysis (not shown here) by using Scherrer’s for-
mula is 73nm. The fact that nearly uniform grain sizes have been obtained after
the preparation is important for potential electronic applications and magnetic
analysis, since irregular grains imply grain boundaries with different areas and
thus less-uniform Josephson junctions between superconducting grains, as we will
see below.

In order to check if the superconductor Lalll3 grains can be immobilised on

gold surfaces, which is required for potential electronic applications, a gold film
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was fabricated following the steps described in Chapter 3. In brief, gold was
evaporated on a polished SiOs (2 pm)/Si(100) substrate using an Edwards 306
evaporator system with a base pressure of 1077 mbar. The substrates (1x2 cm?)
were degreased in acetone and cleaned ultrasonically in isopropyl alcohol following
a standard procedure before deposition. Small Au pellets (99.999% purity) were
evaporated from a tungsten boat with the substrates located 10 cm above the
source. The rate of evaporation was maintained at 0.1 nm/s and the thickness
of gold (70 nm) was measured by a quartz crystal microbalance located next to
the sample. A thin layer of Ti (3 nm) was used as adhesion promoter between
Au and the substrates. In order to improve the crystallization of the gold in the
[111] direction, post-deposition thermal treatment of the gold film was carried
out by flame annealing as described in Chapter 3 and reported in our previous
works (Valladares et al., 2009a, 2010a). The gold film was placed horizontally
over the conical blue zone of a flame generated by a propane torch for 25 s which
is enough to obtain a Au(111) film with improved crystallinity. The film was
then rapidly quenched by immersing it into a beaker of methanol and drying it
in a stream of nitrogen. The substrate was then immediately immersed in 10 ml
of 1 mM HS-CgHi4-HS (Alfa Aesar B24693, octane (di)thiol) in ethanol for 72
h as shown in Figure 6.3 (top left). At the same time the Lalll3 grains (100
nm mean diameter) were functionalized by dispersing and mixing them in 0.5 ml
of 4 mM of octane (di)thiol in ethanol for the same duration (Figure 6.3 (top
right)). During this process, some particles stuck together forming groups and
we observed that the number of groups increases with time and molarity. After
72 h part of the functionalized particles were dried at 45 °C for 30 min for its
magnetic and electronic characterization, the remaining part was poured into a
beaker containing 5 ml of ethanol and the washed gold substrate (as shown at the
bottom in Figure 6.3). The system was left for 72 h at RT and finally rinsed with
large amounts of ethanol to remove the unlinked particles from the substrate.
For the characterization, magnetic measurements of the dried samples were
performed with a DC magnetic property measurement system (DC-MPMS-SQUID)
of Quantum Design. External DC magnetic field in the range of -55 kOe to 55
kOe were applied to 21 mg of the functionalized Lalll3 at different tempera-
tures (from 10 K to 290 K), in both zero-field cooling (ZFC) and field-cooling
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(FC) modes to obtain the magnetic phase diagram and thus the magnetic condi-
tions required for potential application of the sample. The XPS was performed
at SUPERESCA beam line, Elettra Sincrotrone, Trieste, Italy. Different photon
energies were applied to obtain the core-level spectra (up to 650 eV) and the
valence-level spectra (up to 200 eV), the data were collected at RT and 30 K
in ultrahigh-vacuum environment (pressure < 2x10~? mbar). The micrographs

were taken using a scanning electron microscope (SEM; SFEG XL30).

6.3 Results and discussion

Following the procedure described above, it was possible to prepare, function-
alize and attach Lalll3 superconductor grains on gold surfaces through a self-
assembled monolayer (SAM) of alkane (di)thiols. Figure 6.4(a) shows an SEM
micrograph of two linked Lalll3 grains of 100 nm diameter attached to the gold
surface by SAMs of HS-CgH14-HS. In contrast to unlinked grains which are eas-
ily removed from the substrate by rinsing the sample with ethanol or propanol,
the linked particles remain on the substrate after several washings and nitrogen
streams. To facilitate the modeling between the superconducting particles and the
gold substrate interfaces let us consider only one monolayer of HS-CgH14-HS. It is
well known that the molecular axis is tilted only a few degrees with respect to the
normal of the Au(111) surface (Chen & Li, 2006; Love et al., 2005). Although no
ionic, dipole-dipole, and hydrogen bonding interactions take place, the tethering
of the thiol to the gold occurs by a combination of dative bonding (chemisorp-
tion) between sulfur and gold. It has been reported that the strong affinity of
S for Au plays an important role in the stability of Au-thiols systems, whereas
intermolecular van der Waals forces are responsible for the lateral packing of the
layer (Hornyak et al., 2008). Thus we can depict the SAM configuration between
a particle and the gold surfaces as shown in Figure 6.4(b). However there are
several considerations that are necessary to be taken into account with respect to
the other end of the SAM, namely, that the Lalll3 is an oxide superconductor
and according to some reports, the S linker cannot react directly with oxide layers
(Vericat et al., 2006). Therefore, to allow the thiol group to react with the Lal113

crystallites it is necessary to eliminate first the passivation layer (usually CuO,
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Figure 6.4: (a) SEM micrograph of a gold surface with two linked thiolated-
superconducting grains attached, and (b) representation of the SAM linking the

grains and gold surfaces.

BaCOa, etc.) which surrounds the particles. This could be achieved by a redox
reaction as we will discuss below. Once this is achieved, the thiol head finds the
crystallites where the bare crystalline structures of the Lalll3 are located. As
seen above (Figure 6.1) , the Lalll3 has two Cu atoms, one of them [Cu(1)] is
situated in the charge reservoirs forming the CuO chains and the other [Cu(2)] is
in the active planes forming the superconducting CuO, layers. It is reasonable to
deduce that the SH functional heads bond only with those Lall13 unit cells that
are situated on the surface (Figure 6.4(b)). At this point, the important question
is which atom of the Lall13 structure binds to the SH head groups.

In order to elucidate better the binding between the SH functional heads and
the Lal113 superconducting grains, XPS measurements were carried out. Figure
6.5 shows the O 1s, S 2p and the valence-level spectra of the dry functionalized
sample compared to the non-functionalized one. The measurements were taken
at RT and 30 K in order to compare the behavior of the sample in its normal and
superconducting state. In Figure 6.5(a), the O 1s peak belonging the Lal113 band
level at RT comprises three peaks, similar to that reported for YBCO (Weaver
et al., 1988), two of which originate from the oxygen atoms located on the CuO,

superconducting planes and the other from the oxygen atom located on the CuO
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chains. After functionalization, the spectra show only one peak shifted by 1.5
eV which belongs to the oxidation of the attached octane (di)thiol; this peak
is more intense and covers the previous one. At 30 K the O 1s photoemission
peak of the Lalll3 spectra without functionalization is shifted by about 4 eV
with respect to the RT one and shows different peak intensities. These responses
are caused by the charge transfer between the charge reservoirs and the active
planes in the superconducting state of Lal113 which is typical of HT'Ss (Lynch &
Olson, 1999). Similarly to RT, the high intensity peak caused by photoemission
of the thiol oxidation screens the peaks of the Lalll3 oxygen atoms. Since the
XPS sensitivity ranges from 1 to 2 nm deep depending on the kinetic energy of
the photo-electrons (Briggs & Grant, 2003), the photoemission intensities of the
oxygen atoms belonging to the Lalll3 crystallites inside the grains are mostly
screened by the emission intensities of the oxidized octane(di)thiols attached on
the surface. Scanning the S 2p band energy before and after functionalization,
results in the spectra signals shown in Figure 6.5(b). At that band energy and at
RT, the Lalll3 without functionalization shows two peaks, which are caused by
the Ba photoemission which shares the positions with La and/or Ca in the Lal113
structure (see Figure 6.1 in page 92). After functionalization, two peaks are
notorious at 167 eV and 172 eV. It is obvious that these peaks do not correspond
to the spin-orbit doublets S 2p3 /5 and S 2p; /2 because they always appear together
with 1.18 eV separation and 2:1 intensity ratio (Wagner, 1979). In the figure, the
peaks indicate a large amount of oxidized sulfur species screening the barium
peaks. The peak at 172 eV corresponds to sulfates (Lichtman et al., 1981),
whereas the peak at 167 eV corresponds to sulfonate formation (Sung & Kim,
2001). The same situation occurs at 30 K without appreciable variation in the
intensities, the Ba, La, and Ca peaks belonging to the Lall13 bare structure are
screened by the sulfide peaks of the functional thiol groups. The sulfate formation
is an indication that corrosion occurred during assembly, thus a redox reaction,
in other words, the octane (di)thiol molecules have been oxidized, while probably
the surface region of the superconductor was reduced commensurate with this
oxidation. In that way some atoms of the exposed superconducting crystallites
should have reacted with the thiol heads to form the sulfonates. If that is the case,

one must consider that it is unlikely that S bonds La, Ca or Ba cations situated
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inside the structure and shielded by oxygen atoms (see the structure in Figure
6.1(b) on page 92) to form the sulfonate. Moreover, bonding the Cu(2) would
affect the superconducting layers and thus destroy the superconductivity. This
leads us to believe that the S atoms of thiols bond to the Cu(1) atoms situated
in the vertices of the Lalll3 structure to form copper sulfonates, as represented
in the inset of the Figure 6.5(b) (see also the Figure 6.4(b) on page 98). This
could seem reasonable since it has been reported that Cu can chemisorb S atoms
from thiols forming copper sulfonates (Ron et al., 1998; Sung & Kim, 2001). To
complete the XPS analysis, the spectra near the valence-band energy is presented
in Figure 6.5(c). The Fermi energy (EF) level is represented by the O level in the
figure and was referenced by a gold strip mounted on the same sample holder (Eg
= 5.51 eV). At RT the more pronounced peaks are those belonging to the O 2s
and the CuO chains. After functionalization (blue line) the main observed peak
corresponds to the S 3p belonging to the attached (di)thiols on the grain surface.
Nevertheless the shape of this line near the Fermi level decays faster than in the
previous spectra. Such behavior implies that it has a lower density of states and
thus it is more insulating. This can be understood taking into account that alkane
thiols are insulators and since they cover almost all the surface a like-insulator
response is sensed by the photoemission spectra. At 30 K, O 2s and CuO peaks
are shifted indicating charge transfer in the superconducting state. However the
thiolated spectra show that the sulfur peak of the thiol screens those peaks and
confirms that the octane (di)thiol shields almost all the sample.

In order to check the effects of the functionalization on the superconductiv-
ity properties, M(T) measurements were performed in a MPMS-SQUID before
and after functionalization at low temperatures. Figure 6.6 shows the M(T) de-
pendence in ZFC and FC conditions. According to the figure, the onset critical
temperature Teonsery = 80 K of the Lallll3 is not affected after functionaliza-
tion with HS-CgH4-HS. Nevertheless, the ZFC and FC loops of the Lal113 fall
to low values faster than when it is functionalized. The fact that the magnetic
moment of a HTS at temperatures in the Meissner state turns to higher values
(such as in the functionalized case in the figure) is an indication of the presence
of impurity or secondary phases in the sample (Poole et al., 2007). In effect,

the functionalized sample contains on its surface carbon atoms and oxide which
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belongs to the octane (di)thiol, thus its magnetic response behaves as in a “dirty”

sample.
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Figure 6.6: M(T) dependences of the Lal113 before (blue spheres) and after (red
spheres) functionalization with HS-CgHy4-HS.

Now we calculate the magnetic phase diagram of the Lall1l3 grains to obtain
information about the magnetic conditions in which this superconductor could
be applied. For this purpose, the temperature dependence of the magnetic mo-
ment in the superconducting state has been measured under different external
magnetic fields. Figure 6.7(a) shows some of these measurements at ZFC and
FC conditions, at H.,; = 5, 25, 100, 250, 500 and 1000 Oe. According to the
figure, Lalll3 becomes diamagnetic from around the onset temperature 78 K
and the diamagnetic saturation is reached at low temperatures. The transition
widths for the diamagnetic saturation under H.,; = 5 Oe is better appreciated in
the inset plot. A wide transition width of around 40 K is found for the sample
under the indicated applied magnetic field. Wide transition widths in HTSs are
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mainly caused by its granular nature together with possible secondary phases,
thus the grain boundaries could be considered then as weak Josephson junctions
(Krabbes et al., 2006). The irreversibility temperature T;,. (temperature which
separates reversible and irreversible regions) is found in this work from each point
in which the ZFC and FC M(T) loops start separation. For example, under an
external applied magnetic field of 5 Oe as shown in the inset figure, T;.,, = 60
K. In general, multiple T, obtained from different M(T) measurements define
the irreversibility line in a magnetic diagram phase as it will be discussed next.
Moreover, it is possible to derive the magnetic moment behavior as a function
of different applied magnetic fields from multiple M(T) measurements, as shown
in Figure 6.7(b) in which, as an example, the plot is derived for four different
temperatures below T¢. In the plots, the peaks indicate the lower critical field
Heq and the upper critical field Heo. The latter can be obtained from the in-
tercepts with the abscissa (Poole et al., 2007). Similar to the direct-measured
hysteresis loops reported in the literature (Valladares et al., 2010b), both critical
fields tend to be high as the temperature approaches 0 K and they decrease con-
tinuously with increasing temperature until the transition temperature T¢ where
they become zero. Therefore, M(H) loops contract as temperature increases.
From the collected data and plots described above, we derived a magnetic
phase diagram for the Lal113 which is presented in Figure 6.8. The various parts
of the diagram are explained in the following. As long as the external flux density
does not exceed Hgq, the bulk Lalll3 is in a diamagnetic Meissner state, where
the magnetic flux is completely expelled from the interior by surface currents.
In the area between Hey(T) and Heo(T), the magnetic flux penetrates the bulk
Lall13 in the form of flux lines (mixed state). Magnetic flux motion has to be
prevented by a flux pinning (Fp). Aslong as the flux lines are pinned, a maximum
supercurrent density (J¢) can flow without any loss. This critical current density
Jo depends on the applied magnetic field and on the temperature. If the current
density exceeds Jo ( Hy < H < Heo ), then the flux line lattice (or parts of
it) starts to move. Because of thermal fluctuations, the mobility of the flux line
lattice strongly increases with applied magnetic field and temperature. Above the
irreversible field H;,., the vortex lattice becomes so strong that currents cannot

flow without losses although the superconductor Lall13 is not yet in the normal
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state. This means that possible applications of Lalll3 are restricted to the field
range below H;... To a first approximation, H;.. scales with the applied field

following the trend:

T\"
Hirr = Hirr(O) (1 - T_C> (61)

Where H;,.0) = 48 kOe, T = 76 K and the exponent n is one of the factors
which provides indication of the superconductor applications (it usually varies
considerably in different HT'Ss (Felner et al., 1989; Miiller et al., 1987; Yeshurun
& Malozemoff, 1988; Yeshurun et al., 1987). The shape of the irreversibility field
line obtained here is quite similar to that obtained for YBCO in the range 55 -
90 K (Kiipfer et al., 2000). The exponent n in the temperature range 41 - 76 K
is 2.8, this value is double that obtained for bulk YBCO (n =~ 1.4). Interestingly,
Kiipfer et al. have found that after reducing the oxygen content in the structure
of YBCO, H;,., shifts to lower values. Although Lall13 has a similar structure to
YBCO with deficiency of oxygen in the CuO chains (see Figure 6.1 in page 92)
and the shape of the irreversibility line similar to YBCO, we cannot assure that
n and the low irreversibility line are exclusively originated by the arrangement of
oxygen atoms in the structure, because the crystallite boundaries and secondary
phases might contribute to this property as well. Eventually, extrapolating Heo
and H¢p in the figure to T = 0, values of Heog) =~ 53.5 kOe and Heq(g) = 0.5
kOe can be estimated.

As discussed above, Lall13 is a type II superconductor at the boiling temper-
ature of liquid nitrogen. In contrast to YBCO which at 77 K can support external
magnetic fields up to 6x10? Oe, or even more depending on its purity (Krabbes
et al., 2006); Lall13 can support less than 1x10* Oe under the same conditions
without losing its superconductivity (Valladares et al., 2010b). This character-
istic could be useful for the fabrication of superconducting transistors controlled
by relatively low applied magnetic fields as a transistor gate. Figure 6.9 shows a
design of an external magnetic field-gated superconducting transistor, in which,
with the help of alkane (di)thiols, a superconductor nanograin bridges two gold
(or other metal) electrodes, the source (S) and the drain (D). Through change

of the amount of the SAMs, one could vary the electron transport injection, i.e.
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Figure 6.8: Magnetic phase diagram of the LaCaBaCuzO7.
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charge transfer, electron tunneling or the resistances R; and Ry. At T < T¢, the
application or absence of the upper critical magnetic field ( H = Hgy), can be
used to control the device. The superconducting or non-superconductor states
can be achieved by simply turning “on” or “off” H = Hgs in order to allow the
current flowing to two corresponding states of block/pass (or off/on). In this way
the external H could control the superconducting nano-device like a transistor
gate. For instance, taking an applied voltage (at the drain) Vp=1 and the field
H = Hgo = 1 units, and considering the presence/absence of the resulting voltage
as 1/0; the result is that if H = 0, V = 1 and vice versa if H = 1, V = 0; the
proposed transistor thus work as an inverter switch. Logic gates such as AND
or NOR could be obtained using two of these inverters in series or in parallel
respectively. Further digital circuits can be logically built on combinations of
various logic gates. Eventually, partial conduction could be achieved when the

external field is set to values Hoy < H < Heo.

6.4 Conclusions

In summary, it has been proved that the high T superconductor LaCaBaCusO~
nanograins can be linked to Au(111) surfaces through self-assembled monolay-
ers of HS-CgH14-HS. These molecules can be adsorbed on the surface of Lalll3
nanoparticles without destroying its superconducting properties. X-ray photoe-
mission spectroscopy (XPS) analysis suggests that links are mediated by the
formation of copper sulfonates originated by the S atoms of the thiol heads and
Cu(1) atoms of the Lalll3 structure. These functionalized particles can be im-
mobilized on gold electrodes and they can be used for the fabrication of electronic
nanodevices such as magnetic-field-gated superconducting transistors. The irre-
versibility line in the magnetic phase diagram of the Lall1l3 grain fits and expo-
nent trend n suggest that this superconductor can support low applied magnetic
fields, for example at 70 K, the superconductivity is destroyed by applying 2 kOe
magnetic field. Thus Lall13 superconducting grains are promising candidates to

fabricate nanotransistors controlled by external magnetic fields.
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its corresponding electrical representation (bottom).
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Chapter 7

Carboxyl ferromagnetic
microspheres: Reorientation
response under an applied

magnetic field

In this chapter, the mechanical reorientation of thiolated ferromagnetic micro-
spheres bridging a pair of gold electrodes under an external magnetic field is stud-
ied. When an external magnetic field (0.7 T) is applied during the measurement
of the current-voltage characteristics of a carboxyl ferromagnetic microsphere
(4 pm diameter) attached to two gold electrodes by self-assembled monolayers
(SAMs) of octane di-thiol (CgHjsSs), the I-V trace becomes distorted. Instead
of magnetoresistance, this effect is caused by a mechanical reorientation of the
ferromagnetic sphere, altering the number of SAMs between the sphere and the
electrodes and thus modifying the conduction in the system. The physical reori-
entation of the ferromagnetic particles is studied by measuring their hysteresis

loops while suspended in a liquid solution.

7.1 Introduction

As part of the continued drive to shrink electronics circuits in order to main-

tain Moore’s law (Moore, 1965), researchers have managed to attach individ-
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ual molecules and nanostructures to nanogap electrodes to form single-electron
transistors (SETs) and have measured their electrical conductance. However,
fabricating reliable SETSs is extremely challenging due to the lack of direct ob-
servation confirming the presence of a particular molecule on the junction of the
device and the great care required during assembly. The experimental results
usually differ from the theory and an exact explanation of the characteristics
of the structures becomes difficult. For instance, recently, molecular switching
has been observed in an endohedral metallofullerene which, following a careful
analysis of the current-voltage characteristics, was shown to arise from a reori-
entation of this molecule caused by the interaction between its electric dipole
moment and an external electric field (Yasutake et al., 2005). Nevertheless, the
situation becomes more difficult in single molecules or nanostructures carrying a
magnetic moment, since only a few experiments have succeed in fabricating SET's
based on magnetic structures (Bogani & Wernsdorfer, 2008; Roch et al., 2011;
Zyazin et al., 2010). Microstructures are easier to assemble on metal surfaces
(Long et al., 2005; Valladares et al., 2010c) and thus a study of these reliable sys-
tems with easier-to-interpret characteristics is helpful for a prior understanding
of more complex systems. In this work, we report the reorientation of a ferro-
magnetic microsphere attached to a pair of gold electrodes and its effect on the

current-voltage characteristics in the presence of an external magnetic field.

7.2 Experimental

The fabrication of the samples comprised many steps. Photo-lithographically de-
fined arrays of gold electrode pairs, separated by 2 um gaps, were patterned by a
conventional evaporation and lift-off process. Small Au pellets (99.999% purity)
were evaporated from a tungsten boat on polished SiO2(80nm)/Si(100) substrates
using an Edwards 306 evaporator system with a base pressure of 10~7 mbar. The
rate of evaporation was maintained at 0.1 nm s~* and the thickness of gold (40
nm) was controlled by a quartz crystal microbalance located next to the substrate.
The gold electrodes were functionalized with CgH;gS, (octane di-thiol, Alfa Aesar
B24693) following standard procedures (Ulman, 1996). In parallel, carboxyl fer-
romagnetic spheres of mean diameter 4 um (CFM-40-10, Spherotech Inc.) with
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polystyrene cores and iron oxide shells were dried, suspended in distilled water
or coated with octane di-thiol (CgH5S,). The latter were obtained by dispersing
and mixing the ferromagnetic spheres in 0.5 ml of 2 mM octane di-thiol in ethanol
for 48 h. During this process, some spheres stuck together forming groups and we
observed that the number of groups increases with time and molarity. The coated
spheres were transferred to a beaker containing 5 ml of ethanol and the function-
alized electrodes. The system was left for 48 h at room temperature (RT) and
finally rinsed with large amounts of ethanol to remove the unlinked spheres from
the substrate. The final sample consisted of thiolated ferromagnetic microspheres
bridging pairs of gold electrodes by self-assembled monolayers (SAMs) of octane
di-thiol. Current-voltage (I-V) measurements of the system were performed in a
probe station Graill0-205-LV Nagase Techno-Engineering Co. LTD, at RT and
in a high vacuum of 8.6 x 1073 Pa. Two BeCu electrodes (source (S) and drain
(D)) were in direct contact with a pair of the gold electrodes and the current
response was sensed in the drain electrode after applying a source-drain bias in
the range -5 to +5 V (in forward and reverse mode). An external magnetic field
of 0.7 T was switched on in-plane to study the physical response of the spheres
during the electrical measurements. In order to understand the mechanical mo-
tion of the ferromagnetic spheres under external magnetic fields, the samples were
suspended in a liquid solution and the magnetic hysteresis loops were measured
in a Magnetic Property Measurement System (MPMS-SQUID) from Quantum
Design. Since the density of the distilled water is too low to hold the spheres
in suspension over long timescales (4-6 h are required to acquire data from the
magnetometer), the spheres were suspended in a sucrose liquid solution as better
described in our previous work (Valladares et al., 2009b) and in §2.4. In brief,
3 g of sucrose (sigma Ultra 99.55 GC) was diluted in 6 mL of distilled water to
suspend the spheres and to avoid sedimentation. Since the standard holder for
the MPMS consists of a simple gelatine capsule designed especially for powder
and dried samples, a new sample holder consisting of a diamagnetic cone plastic
was fabricated to hold the liquid solution (see Valladares et al. (2009b) and Fig-
ure 2.10 on page 30). A drop of approximately 1 uL of suspended spheres in the

solution was measured in the MPMS equipment.
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7.3 Results and discussion

Figure 7.1 shows arrays of gold electrodes in which the CFM microspheres are
attached through SAMs of octane di-thiol. The linking of the thiols to the gold
occurs by a combination of dative bonding (chemisorption) between sulphur and
gold as has been reported elsewhere (Ulman, 1996). The immobilization of the
spheres at the electrodes is mediated by the strong affinity of the sulphur atoms
of the functional group and gold, whereas intermolecular van der Waals forces
are responsible for the lateral packing of the layers (Ulman, 1996). Despite the
fact that it is not clear that chemisorption or physisorption of thiols occurs on
the carboxyl surface of the sphere, strong immobilization of them to the elec-
trodes was indeed tested via several washings of ethanol, propanol and distilled
water. The system thus ensures that the spheres do not detach from the elec-
trodes when an external magnetic field is applied. In Figure 7.1(a) the optical
microscope image at 50 x magnification shows groups of thiolated microspheres
indicating long-time functionalization. In contrast, in Figure 7.1(b), individual
microspheres are attached to the gold electrodes. This was achieved by adjusting
the functionalization time to 48 h. The less distinct image of the microspheres in
Figure 7.1(b) is caused by the diffraction of light through the optical microscope
at the chosen magnification (75 x).

Figure 7.2 shows the I-V response of an arbitrary individual iron-coated
polystyrene (CFM) sphere attached to two gold electrodes. Initially, in the ab-
sence of the sphere, a tunnelling current is detected and the forward and reverse
bias superpose as shown in Figure 7.2(a). This superposition remains after sev-
eral scans and indicates mechanical and electrical stability of the system. After
bridging the electrodes with a thiolated microsphere, a similar tunnelling current
and superposition on the forward and reverse bias is observed with increasing
magnitude of the current. This increase is generated by the higher conductivity
of the SAMs-sphere-SAMs bridging the source and drain electrodes and repre-
sents a lower electrical resistance than in the empty case, as expected. However,
the situation changes when an external magnetic field is applied. As shown in
Figure 7.2(b), as soon an external magnetic field of 7 kG is switched on, the

current signal is distorted. The response of the current for forward bias does
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Figure 7.1: Optical microscope images of multiple microspheres (magnification
50x (a)) and individual microspheres of 4 ym mean diameter (magnification 75x
(b)) bridging gold electrodes.
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not match that of the reverse bias. Change of the resistance in the presence of
magnetic fields (magneto resistance) has been widely observed, mainly in charge
transport through iron nanostructures directly (Guo et al., 2008; Parkin, 1995).
However, the transport mechanism in the microspheres presented in this work
is completely different. It is unlikely that the current passes the carboxyl/iron
coating and the polystyrene core since the current should flow through the SAMs
and carboxyl surface of the sphere. Therefore, the I-V distortion may originate
from inertial mechanical vibration of the microsphere in response to the applied
magnetic field. The decrease in the magnitude of the current in the reverse bias
from -2 to -5 V to lower values should originate from a decrease in the number of
self-assembled monolayers (SAMs) between the sphere and the electrodes.

To understand better the mechanical movement of the ferromagnetic micro-
spheres under an external magnetic field, magnetic hysteresis loops of immobilized
and suspended microspheres were studied. Immobilized hysteresis loops were ob-
tained from dried and packed microspheres, whereas suspended hysteresis loops
were taken after suspending them in a sucrose liquid solution as explained above.
Figure 7.3 shows the hysteresis loops of the magnetic microspheres under three
conditions: immobilized, in liquid suspension without thiol coating and in liquid
suspension after thiol coating. Figure 7.3(a) shows the comparison between the
hysteresis loop of the immobilized microspheres and the suspended spheres. It
can be noticed that when immobilized, a classic hysteresis loop of a ferromagnetic
material is observed. The remnant magnetization point is half of the saturation
obtained at around 0.4 T. ! In the figure, the scattered points in the suspended
loop are probably noise caused by the motion of the spheres. When saturation
is reached, most of the magnetic moments of the spheres are aligned with the
external field and from then the diamagnetic behaviour of the plastic container is
observed, giving a downward trend to the plots. In contrast to the immobilized
case, the hysteresis loop of the suspended spheres does not display a coercive

field. Figure 7.3(b) shows the comparison between the hysteresis loops of the

!The saturation magnetization is around 0.1 emu, and according to the information in the
SPHEROTECH .INC datasheet, there are around 2.3 x 10® microspheres /mL. It means that,
0.5 mL of microspheres/DI water solution contains 1.15 x 10% microspheres. Therefore, the
magnetic moment of each individual microsphere is around 0.1/1.15 x 10% = 8.69 x 107!° emu.
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Figure 7.2: I-V responses of a particular CFM microsphere bridging two gold
electrodes by SAMs of octane di-thiol: (a) comparison of the I-V signals before
and after bridging the electrodes with a microsphere, and (b) comparison of the

[-V signals with and without an external magnetic field.
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immobilized ferromagnetic spheres and the thiolated spheres in suspension. The
behaviour of the magnetization is similar to the previous case. The reason for
the absence of coercivity in the hysteresis loops of the suspended ferromagnetic
spheres is because the magnetic moments abruptly switch to align with the ap-
plied magnetic field when it reverses. Since the spheres are suspended in a liquid
medium, they have more degrees of freedom (translation and rotation) than in
the immobilized case. When the direction of the external magnetic field reverses,
in addition to the magnetic moment orientation, the suspended spheres physi-
cally rotate. This is essentially a reversible process and hence the loops exhibit
zero coercivity. In the immobilized case, this is not possible; since all the spheres
are packed or are stuck together, only reorientation of the magnetic moments
occurs. As mentioned above, the noise in the hysteresis loops of the suspended
case is caused by motion of the spheres. The spheres are not completely static
because the sample holder is in continuous vertical motion during the scanning
of data in the MPMS-SQUID equipment and hence the relative position of the
spheres varies. However, in equilibrium, the gravitational force, Fg, of a par-
ticular sphere is equal to the buoyancy force, Fp (see Figure 2.11 in page 31).
The magnetophoretical force, Fj;, generated during application of the magnetic
field over the sphere is compensated by a drag force (Fp), especially when the
external magnetic field changes value (see section 2.4 in page 27). When the
applied magnetic field changes value in the MPMS, it is not uniform and F,
appears (Equation 2.19 on page 32) and the microsphere moves slightly over the
applied field direction, resulting in a change of the exact position of the sphere
detected by the SQUID and hence the noise is produced. The vertical movement
of the sphere due to this change causes Fp (see Equation 2.20 on page 32). This
force tries to minimize the sphere displacement (Valladares et al., 2009b). As the
spheres accelerate, the drag force increases, causing a decrease in the accelera-
tion. Eventually a force balance is achieved when the acceleration is zero and the
maximum or terminal relative velocity is reached or when applied field becomes
constant in the MPMS equipment. At this point not all the spheres return to
their original position.

From the discussion above, an external magnetic field tends to displace and

rotate the CFM microspheres. A representation of a microsphere attached to the

116



7.3 Results and discussion

-1_o° —— Immobilized (M, __ = 0.1 emu)
¢ —o— Suspended (M. __=2.5 X 10™emu)

15T

— 9 — Functionalized
& Suspended M_, = 0.001 emu

Figure 7.3: Hysteresis loops of ferromagnetic microspheres in three conditions:
dried, suspended and functionalized suspended: (a) Comparison between dried
and suspended and (b) comparison between dried and functionalized and sus-
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gold electrodes is presented in Figure 7.4. The sphere is immobilized between
the gold electrodes by the SAMs of octane di-thiol which are not shown in the
figure. When the applied magnetic field is switched on, the sphere tends to move
towards the direction of field. However, the sphere cannot be completely detached
from the electrodes. Translation and rotation inertia promote a slight vibration
of the sphere. This may to the number of SAMs in some areas of contact to
decrease, thus altering the conductivity, as observed in Figure 7.2. The fact that
the microspheres respond under external magnetic fields when attached to the
electrodes could be helpful when characterizing SETs fabricated with magnetic
nanostructures which up to now have been only studied theoretically (Waintal &
Brouwer, 2003).

ext

Figure 7.4: Representation of the reorientation response of a carboxyl ferromag-
netic microsphere (CFM) attached to two gold electrodes by self-assembled mono-

layers of alkane di-thiol.
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7.4 Conclusions

In summary, when an external magnetic field is applied to a system consisting of
a ferromagnetic sphere bridging two gold electrodes by self-assembled monolayers
of alkane-(di)thiol, the sphere tends to physically move in the direction of the field
causing the number of linkers to decrease and resulting in a disturbance in the

current-voltage signals.
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Chapter 8

Graphene oxide flakes:

Preparation and X ray diffraction

In this chapter, I describe the preparation of a flexible film made of graphene oxide
flakes and its characterization by X-ray diffraction (XRD). Following chemical ox-
idation of commercial graphite and subsequent reaction with NaOH, structurally
distorted graphene oxide flakes are obtained. X-ray diffraction reveals that the
interlayer distance between graphene sheets increases by oxidation due to the for-
mation of chemical groups and results in the delaminated flakes which can form

a flexible film of multiple graphene oxides.

8.1 Introduction

Different two-dimensional carbonaceous layers are described in this section in or-
der to understand better the formation and structure of the graphene oxide flakes
prepared in this work. Graphene, graphene oxide and graphane are described and

their principal characteristics are listed in the table 8.1.

8.1.1 Graphene

Graphene (G) is an allotrope of carbon; its crystalline structure is planar hexag-

onal based on sp?-bonded carbon atoms. Many graphene sheets stacked together
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8.1 Introduction

with interplanar spacing of 3.3 A form graphite. Graphene is also the basic struc-
tural element of some carbon allotropes including charcoal, carbon nanotubes
and fullerenes and can be considered as an indefinitely large aromatic molecule.
Table 8.1 summarizes some properties of the planar graphitized layers. As indi-
cated in the table, graphene allows a carrier mobility of around 15000 cm?V~!s™!
which is comparable to the best Si metal oxide field-effect transistors (MOSFET)
at low temperature. In addition, graphene mobility is relatively temperature-
independent, making room-temperature 2D graphene mobilities among the high-
est of the field effect transistor (FET) devices. However, transport mechanisms
in graphene are still not completely understood. Although many characteristics
have been reported in the transport experiments, two have been highlighted and
particularly discussed in the literature: (i) The low-density “minimum conductiv-
ity” o9, which is the value of the conductivity at or near the Dirac point (EF=0).
And (ii) the high-density conductivity o, which is linear with respect to the car-
rier density n, giving a constant mobility =o /ne. The temperature-independence
of the mobility of carriers between 10 K and 100 K (Chen et al., 2008b; Moro-
zov et al., 2008; Novoselov et al., 2005) has been explained in terms of charged
impurity scattering (Adam et al., 2007). Furthermore, it has been reported that
dopants influence the carrier mobility in graphene, but some initial properties can
be recovered after heating the graphene (Chen et al., 2008a; Schedin et al., 2007).
For example, potassium ions can reduce the mobility 20-fold, and this mobility

reduction is reversible after removing potassium from the graphene by annealing
(Adam et al., 2007).

8.1.2 Graphene oxide

When graphene is oxidized, the oxygen atoms are adsorbed on its surface forming
epoxy C-(O)-C groups (Lee et al., 2010). Graphene oxide is obtained by oxidation
of graphite (Brodie, 1859; Hudson et al., 1997; Hummers & Offeman, 1958; Stau-
denmaier, 1898). Graphite oxide is very sensitive to humidity (Hofmann et al.,
1934), and easily adsorbs HO, which increases the interlayer distance (Lerf &
Buchsteiner, 2006) and allows other species to intercalate the layers. The exten-

sive presence of saturated sp® bonds, the high density of electronegative oxygen
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8.2 Preparation

atoms bonded to carbon and other “defects” give rise to the energy gap in the
electron density of states (Boukhalov & Katnelson, 2008) and makes graphene

oxide non-conducting. Some properties of graphene oxide are listed in Table 8.1.

8.1.3 Graphane

Graphane is hydrogenated graphene and it is believed that it has a puckered
structure (Savchenke, 2009). It has been found that graphane behaves as an
insulator and its resistivity grows by two orders of magnitude when the temper-
ature decreases from 300 to 4 K (Elias et al., 2009). In contrast to graphene,
ambipolar field effect with the neutrality point near zero-gate-voltage has not
been observed after its hydrogenation (Srinivasan & Saraswathi, 2010). Some

properties of graphane are listed in Table 8.1.

8.2 Preparation

The procedure followed for the preparation of graphene oxide flakes is schemat-
ically presented in Figure 8.1. The samples were prepared in collaboration with
Dr. D.W. Lee. Initially, graphite powders were bought from Sigma Aldrich (prod-
uct number 496596) and I followed a method which combines the Brodie and the
Staudenmaier techniques (Brodie, 1859; Staudenmaier, 1898) for oxidation. A
considerable amount of graphite was weighed (=~ 5g) and mixed with 25 mL of
nitric acid (HNOj3) and 50 mL of sulfuric acid (H2SO,) in a beaker. The process
was carried out in a fume bench to avoid inhalation of the toxic acids. 10 g of
positive catalyst potassium chlorate (KClO3) was added while slowly stirring the
solution with the help of a glass rod. The reaction was kept in an ice bath for
some days changing the acids periodically. Graphite is black in color and it is
brightened to brown or dark yellow after oxidation. After one week of reaction we
observed that the solution became brown. The acids were then removed and the
sample was washed three times with distilled water. The sample was then dried
overnight at 70 °C (higher temperatures would decompose the material). Thus
graphite oxide (GO) is obtained. To obtain the graphene oxide flakes, the GO
sample was reacted with sodium hydroxide (NaOH, Sigma Aldrich No. 655104)
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8.2 Preparation

Table 8.1: Electrical and chemical characteristics of graphene (G), graphene oxide

(GO) and graphane (Ga) reported in the literature.

Graphene (G)

Preparation ClassificationChemical Ambipolar? Carrier mobility Resistivity

bondings
Exfolating Conductor sp® Pierson  Yes 15000 cm?V-1s7!  ~107%Qcm
graphite or semi- at RT Geim &
Novoselov metal Novoselov
et al. Pierson

Graphene oxide (GO)
Preparation Classification Functional groups Chemical bondings
Oxidating graphite Insulator C-(OH) Hydroxyl; C-(0)-C  sp?, sp®
Brodie; Hudson Epoxy, C=(0) Carbonyl
et al; Hum- (edge), (OH)-C=(0O) Carboxyl
mers & Offeman; (edge) Szabo et al.
Staudenmaier
Graphane (Ga)

Preparation ClassificationFunctional Chemical Ambipolar? Carrier mobility

groups bondings
Cold hydro- Insulator (H)-C sp?>  Srini- No Srinivasan 14000 (at RT) and
gen plasma Elias et al. vasan & & Saraswathi 10 ecm?V~1s7! (at
Elias et al. Saraswathi liquid He)
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Figure 8.1: Schematic representation of the preparation of GO flakes.
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diluted in water (0.5 M) for two weeks. NaOH destroys the epoxy groups of
the GO as explained below and the sample turns black again. When the sample
is dried the desired product is obtained. The final sample is a film consisting of
graphene oxide flakes which can be easily handled or spread on a plastic substrate

as shown in the figure.

8.3 Characterization by XRD

Figure 8.2 shows the XRD patterns of samples of graphite, graphite oxide (GO)
and NaOH-reacted graphite oxide. Graphite shows its typical peaks at 26.82°
and 54.84°. Its structure is hexagonal P63 /mmc (spatial group 194) and the re-
flections correspond to the Miller indexes (002) and (004) respectively. Carbon
atoms are arranged in the (0,0,0); (1/3,2/3,0); (0,0,1/2) and (2/3,1/3,1/2) posi-
tions of the structure as they are denoted by C1, C2, C3 and C4 respectively in
the inset of the figure. As mentioned above, the carbon layers in graphite form
graphene, they are not distorted and two adjacent layers are displaced by half
of the c-dimension. The principal peak of the GO appears around 12.28° which
corresponds to an interlayer distance of about 7.20 A. However, a small amount of
diffuse scattering is observed in the background of the diffraction. This amorphic-
ity is explained from the functional groups epoxy (C-O-C) and hydroxyl (-OH)
which are formed in the structure (Hofmann et al., 1934; Lee et al., 2010; Lerf
et al., 1998). Table 8.2 lists the full width at half maximun (FWHM), the mean
crystallite diameter (D), the interlayer distance (d/2) and the average number of
sheets in the mean crystallite (N). Note that following oxidation, the crystallite
size, which was obtained by Scherrer’s formula (see Equation 3.1 on page 38), in-
creases, implying that the number of distorted sheets decrease. When GO reacts
with NaOH, the number of reflections in the XRD pattern increases (Figure 8.2).
These additional reflections indicate structural deformation which originate from
the decomposition of the epoxy groups to hydroxyl and -ONa groups (the model
inside the figure shows the formation of -ONa in the structure without distortion).
In general, the interlayer distance increases after oxidation and with reaction with
NaOH due to the functional groups formed between layers. Oxygen atoms in the

GO structure have an electronegativity of 3.4417 and it is higher than for carbon,
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8.3 Characterization by XRD

hydrogen, and sodium atoms (2.55, 2.20 and 0.93 respectively). The charges in
the structure should transfer from carbon, hydrogen, and sodium atoms to oxy-
gen atoms because charge transfer depends on electronegativity. In contrast, in
the NaOH-GO structure sodium and hydrogen atoms bonded with oxygen atoms
have positive charges (Nat and HT), while oxygen atoms have negative charges
(O?7). As more hydroxyl groups and -ONa groups are produced between the lay-
ers, more charges are transferred to oxygen atoms and more charges are localized
between the layers because GO is an insulator. As a result, N might increase due

to the electrostatic interaction among the chemical groups.

Graphite

d=6.70 A
€

d=7.20A

Intensity (arb. units)
@ ﬂ

Graphite Oxide o

2000 1 oy : >
NaOH reacted GO

10.02 A

20(%)

Figure 8.2: X-ray diffraction of graphite (G), graphite oxide (group of graphene
oxide, GO) and NaOH-reacted graphite oxide (GO flakes).

126



8.4 Conclusions

Table 8.2: Principal characteristics obtained by XRD of the samples graphite
(G), graphite oxide (GO) and NaOH- reacted graphite oxide (NaOH-flakes).

Sample zmax (°) FWHM D(nm) d/2(A) N
Graphite 26.82 0.243 34.2 3.3 103
GO 12.31 0.493 16.5 3.6 46
NaOH-GO 10.29 0.257 31.6 4.3 74

8.4 Conclusions

A new method for the preparation of graphene oxide flakes has been achieved by
oxidizing comercial graphite and reacting it with NaOH. The product consists of
multiple and distorted graphene oxide flakes forming a film which can be easily
deposited in flexible substrates. XRD reveals that the interlayer distance between
graphene increases by oxidation due to chemical groups formation. These effects
make possible the formation of delaminated flakes which can form a flexible film

based of multiple graphene oxides.
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Chapter 9

Conclusions and future work

9.1 Overall conclusions

Different properties of noble metal films and oxide materials have been studied
for their potential use in nanotechnology. In the case of gold and copper films,
annealing changes the morphology and crystallization. Gold does not oxidise
and thus a high degree of crystallization in the [111] direction can be easily ob-
tained together with changes of the surface morphology. Both slow and rapid
annealing give a good background in the XRD spectra indicating clean and com-
plete crystallization, which depends more on the temperature than on the time
of annealing. Strain relaxation at high temperatures should be responsible for
the initial stages of gold cluster formation. Gold island nucleation sites may be
formed in disordered points on the surface such as excess point defects, disloca-
tions, lattice strain, etc.; they become islands when the temperature and duration
of annealing increase. Under annealing, gold crystallites reach a maximum mean
size of around 90 nm. In contrast, copper easily oxidizes, CusO and CuO were
obtained following annealing Cu thin films at different temperatures. At low an-
nealing temperatures some copper atoms bond to oxygen atoms to form Cuy,O
as the first oxide phase. It is not possible to determine the exact temperature
transition because oxidation occurs progressively. However, the phase transition
upon increasing the annealing temperature is Cu — Cu + CuyO — Cuy0 —
Cu0 + CuO — CuO. Following the technique presented in this thesis, pure

CuyO films are obtained at 200 °C, whereas CuO films are obtained above an
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9.1 Overall conclusions

annealing temperature of 300 °C. The resistivity phase diagram obtained by I-V
characterization presents an anomalous decrease of the resistivity at the annealing
temperature ranges 250 - 275 °C and 300 - 600 °C. Together with a hole-doping
effect, this behavior in the resistivity may be related to the good crystallization
and bigger crystallite sizes produced by annealing. Although oxide formation
still limits the use of copper in nanoelectronics, the thermal oxidation technique
described here can be used to fabricate copper oxide hetero-structures which are
very useful due to their potential applications in large-area-electrical devices.

In the case of nickel, it is possible to fabricate nickel nanoelectrodes separated
by a nanogap by the electroplating technique. Gaps obtained by this technique
fall beyond the resolution of e-beam lithography. Careful selection of the elec-
trochemical variables such as the electrolyte concentration, applied potential,
cleaning, etc., permit the control of nanogap formation by the duration of elec-
trodeposition. During the process, the gap width decreases exponentially with
time until the electrodes come into contact. The present method offers various
benefits such as extremely small gaps, high yield (=100%) fabrication and readily
available instrumentation to be applied in nanoelectronics.

Furthermore, the oxide materials studied in this thesis present properties
that are also promising for use in nanoelectronics. The oxide superconductor
LaCaBaCu3O7 (Lalll3) can be linked a Au(111) surface through self-assembled
monolayers of alkane-thiols. These functional groups are adsorbed on the sur-
face of Lal113 nanoparticles without destroying their superconducting properties.
The links might be mediated by the formation of copper sulfonates originated by
the S atoms of the thiol heads and the Cu(1) atoms of the Lalll3 structure.
Functionalized oxide superconductor particles can be immobilized on gold elec-
trodes and are promising candidates to fabricate nanotransistors controlled by
external magnetic fields. To compare, carboxyl ferromagnetic microspheres have
been attached to gold electrodes and an external magnetic field has been applied
during current-voltage measurement. It has been found that the microspheres
tend to physically move in the direction of the field, producing a disturbance in
the current-voltage signals.

Finally, a new method for the preparation of graphene oxide flakes has been

reported by oxidizing commercial graphite and reacting it with NaOH. The prod-
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uct consists of multiple distorted graphene oxide flakes forming a film which can
be easily deposited on flexible substrates. XRD reveals that the interlayer dis-
tance between graphene increases by oxidation due to chemical group formation.
These effects allow delamination and flexibility of the NaOH-reacted GO flakes

which can be eventually used in micro and nanoelectronics.

9.2 Future work

Further work is necessary to assemble the material components studied in this
thesis and fabricate nanoelectronic devices such as that shown in Figure 9.1. From
the study of thin metal films, it has been demonstrated that gold resists oxidation
and self-assembled monolayers can be formed on its surface to attach to other
structures. Thin copper films are not a good candidate for nanoelectronic device
fabrication due their ease of oxidation. However, heterostructures of copper oxides
are promising for use in solar cells. Like copper, nickel also oxidizes, however its
magnetic properties make it attractive for use in nano-spintronic devices. Oxide
superconductors and magnetic particles could be tested by placing them between
the nanogap electrodes and controlling them by an external magnetic field. For
instance, the superconducting or non-superconducting states of Lalll3 grains
could be controlled by turning “on” or “off” the critical magnetic field. This
would allow the current flowing to two corresponding states of block/pass (or
off/on). In this way the external magnetic field could control the nano-device
like a transistor gate. Taking an applied voltage (at the drain) Vp=1 and the
field H = Heo = 1 units, and considering the presence/absence of the resulting
voltage as 1/0; the result is that if H = 0, V. = 1 and vice versa; the proposed
transistor will thus work as an inverter switch. Logic gates such as AND or NOR
could be obtained using two of these inverters in series or in parallel respectively.
Further digital circuits can be logically built by a combination of various logic
gates. Finally, in the case of graphene oxide flakes, there are currently extensive
research efforts in this area and the preparation technique described in this thesis,
together with controlled delamination, could be used for the mass production of

flexible graphene oxide devices and electronic circuits.
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Oxide

Metal

Figure 9.1: General representation of a nanoelectronic device which can be fab-

ricated by using the different components described in this thesis.
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Appendix A
Cover article and alert

During the work for this thesis, several articles have been published. Some of
them have been chosen as the cover of some journals or appeared as web
alerts.

For instance, in the following figures, the cover of Nanotechnology, Vol. 21,
Nov 2010 and its corresponding web alert is presented.

Note : These images have been removed from this version for publisher
copyright reasons.








http://nanotechweb.org/cws/article/lab/44242
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