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Abstract

An understanding of the spatial dimension of economic and social activity re-
quires methods that can separate out the relationship between spatial units that
is due to the effect of common factors from that which is purely spatial even in
an abstract sense. The same applies to the empirical analysis of networks in gen-
eral. We use cross unit averages to extract common factors (viewed as a source
of strong cross-sectional dependence) and compare the results with the principal
components approach widely used in the literature. We then apply multiple testing
procedures to the de-factored observations in order to determine significant bilat-
eral correlations (signifying connections) between spatial units and compare this to
an approach that just uses distance to determine units that are neighbours. We
apply these methods to real house price changes at the level of Metropolitan Sta-
tistical Areas in the USA, and estimate a heterogeneous spatio-temporal model for
the de-factored real house price changes and obtain significant evidence of spatial
connections, both positive and negative.
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1 Introduction

The nature and degree of spatial dependence in economic, geographical, epidemiological
and ecological systems has long been the focus of intensive study. Geographers regard the
fundamental question in economic geography to be what explains the uneven pattern of
economic activity in space. Indeed the New Economic Geography starting with Krugman
(1991) addresses exactly this question. But where we have a data rich environment with
observations on many spatial units over many time periods there may be obstacles to
understanding these uneven patterns in spatial data because of complex dependencies
between spatial units that reflect both local (clustering) and common factors. Recent
developments in spatial econometrics have generated a growing literature on methods
for modelling and measuring spatial or cross-sectional dependence in data sets with a
panel structure where there are observations over time (T ) and over space (N). This
in turn has identified a number of central research questions. What is the source of
dependencies in space? To what extent are the observed dependencies between different
spatial units due to common factors - for example, aggregate shocks - that affect different
units rather than being the result of local interactions that generate spatial spill-over
effects? Is the implementation of estimation procedures of panels that implicitly assume
spatially correlated units justifiable when the degree of their cross dependence has not
been established? Do existing methods of identifying neighbouring relationships fully
reflect the spatial structure of the underlying data studied?
To answer these and other related questions two basic approaches have been devel-

oped in the literature, namely spatial and common factor models. Spatial processes were
pioneered by Whittle (1954) and developed further in econometrics by Anselin (1988),
Kelejian and Prucha (1999), and Lee (2002), amongst others. Factor models were in-
troduced by Hotelling (1933) and first applied in economics by Stone (1947), and have
been developed further to deal with data sets where the cross section and time series
dimensions are both relatively large, by Forni and Lippi (2001), Forni, Hallin, Lippi, and
Reichlin (2000), and Stock and Watson (1998). These methods have been applied exten-
sively in finance and macroeconomics, notably by Chamberlain and Rothschild (1983),
Connor and Korajczyk (1993), Forni and Reichlin (1998), Stock and Watson (2002a,b),
and Kapetanios and Pesaran (2007).
Factors can be represented by cross-sectional averages at regional and/or national

levels - Pesaran (2006), or can be estimated by Principal Components (PCs). The number
of principal components can be determined, for example, using the various information
criteria proposed by Bai and Ng (2002), amongst others. Estimation of panels with
spatially correlated errors include the use of parametric methods based on maximum
likelihood - Lee (2004), Yu, de Jong and Lee (2008), Lee and Yu (2010), or the GMM
approach proposed by Kelejian and Prucha (1999, 2010), Kapoor, Kelejian and Prucha
(2007), and Lin and Lee (2010). Furthermore, non-parametric methods using spatial
HAC estimators have been applied by Conley (1999), Kelejian and Prucha (2007), and
Bester, Conley and Hansen (2011). Chudik and Pesaran (2014) provide a review of recent
literature on estimation and inference in large panel data models with cross-sectional
dependence.
The factor and spatial econometric approaches tend to complement one another, with

the factor approach more suited to modelling strong cross-sectional dependence, whilst
the spatial approach generally requires the spatial dependence to be weak. See, for ex-
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ample, Chudik, Pesaran and Tosetti (2011). This presents a challenge as most panel data
sets are subject to a combination of strong and weak cross dependencies, and a method-
ology that is capable of identifying and dealing with both forms of cross dependence is
needed. This paper proposes a two-stage estimation and inference strategy, whereby in
the first step tests of cross-sectional dependence are applied to ascertain if the cross-
sectional dependence is weak. If the null of weak cross-sectional dependence is rejected,
the implied strong cross-sectional dependence is modelled by means of a factor model.
Residuals from such factor models, referred to as de-factored observations, are then used
to estimate possible connections amongst pairs of cross section units, and ultimately to
model the remaining weak cross dependencies, making use of extant techniques from
spatial econometrics or generalisations thereof.
In our application of spatial econometric techniques, in addition to using standard

spatial weights matrices based on contiguity and geodesic distance, we also consider the
use of pair-wise correlations of the de-factored observations to identify if a given pair of
cross section units is connected by testing whether the associated pair-wise correlation is
non-zero. To avoid the multiple testing problem that such an approach entails we employ
Bonferroni (1935) and Holm (1979) procedures discussed in Bailey, Pesaran and Smith
(2014). Finally, following Aquaro, Bailey and Pesaran (2014), we consider a generalisation
of the traditional spatial autoregressive model for large panel data sets that allows the
spatial parameters to vary over the cross section units.
The paper also provides a detailed application of the proposed two-step methodol-

ogy to the analysis of real house price changes across different Metropolitan Statistical
Areas (MSAs) in the US. We consider de-factoring of the observations using Principal
Components applied to the full data set as well as by regions, and compare the results to
de-factoring using simple national and regional cross-sectional averages. The de-factored
observations are then used to estimate the patterns of connections across MSAs by the
Holm multiple testing procedure applied to the N(N − 1)/2 pair-wise correlations, dis-
tinguishing between positively related N ×N connection (weights) matrix, Ŵ+, and the
negatively related connection matrix, Ŵ−. These positive and negative connection ma-
trices are then compared to geodesic based spatial matrices, Wd, (d being the selected
distance measure between different MSAs) and their closeness examined by means of
contingency tables. A heterogeneous spatio-temporal model of de-factored house price
changes is then estimated by the quasi maximum likelihood (QML). The results confirm
important dynamics in the de-factored house price changes as well as statistically signif-
icant positive and negative spill-over effects across the MSAs, with the positive effects
being more prevalent.
The rest of the paper is organised as follows: Section 2 motivates and describes

the first stage of the proposed two-step spatio-temporal modelling strategy. Section
3 focuses on the second stage of the proposed approach and suggests first a correlation
based method for approximating network connections using de-factored observations from
the first stage, and second introduces a heterogeneous version of the traditional spatial
econometrics model. Section 4 presents the empirical application to the US real house
price changes, with some concluding remarks provided in Section 5. Data specifications
and sources are relegated to the Appendices.
Notation: The largest and the smallest eigenvalues of the N × N matrix A = (aij) ,

are denoted by λmax (A) and λmin (A) , respectively, ‖A‖ = λ1/2max (A′A) is the spectral (or

operator) norm of A, ‖A‖1 = max1≤j≤N

{∑N
i=1 |aij|

}
is its maximum absolute column
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sum norm, and ‖A‖∞ = max1≤i≤N

{∑N
j=1 |aij|

}
is its maximum absolute row sum norm.

K is used to represent a finite generic positive constant.

2 Cross-sectional dependence (CSD) in panels

Cross-sectional dependence may be due to common effects coming from aggregate factors
which are pervasive by nature, and/or can result from spatial interactions between units
which are localised in character. In order to build a strategy for distinguishing between
the two types of cross dependence it is useful first to analyse their properties with the
help of two established and widely used econometric models: spatial and factor models.

2.1 Spatial dependence - a form of weak CSD

The standard spatial econometric model with a homogeneous spatial autoregressive co-
effi cient, ψ, can be written as

xit = ψx∗it + uit, for i = 1, 2, ..., N, (1)

where x∗it = w′ix◦t, x◦t = (x1t, x2t, ..., xNt)
′, wi = (wi1, wi2, ..., wiN)′ is the N × 1 vector

of fixed weights attached to the neighbours of the ith unit, and uit is the idiosyncratic
component of xit which is assumed to be serially and cross-sectionally independently
distributed, with zero means and variances var(uit) = σ2ui , 0 < σ2ui < K < ∞. Writing
the above N equations in matrix notation we have

x◦t = ψWx◦t + u◦t, (2)

where u◦t = (u1t, u2t, ..., uNt)
′, W = (w1,w2, ...,wN)′, and var(u◦t) = Σu = diag(

σ2ui , i = 1, 2, ..., N
)
. This model is commonly known as a first-order spatial autore-

gression, or SAR(1) for short.
The N × N weight matrix, W, is typically sparse, with its non-zero elements set a

priori, using physical or economic distance. In practice W is row-standardised so that
Wτ = τ , where τ is a N×1 vector of ones. A review of spatial econometrics literature is
provided by Anselin (2001), and more recently by LeSage and Pace (2010). Many different
choices of W are considered in the literature. Physical and economic distances have
been used (Conley and Dupor (2003), Conley and Topa (2003), Pesaran, Schuermann
and Weiner (2004)). In some instances trade flows might be relevant, whilst in the
case of inter-industry dependencies input-output matrices might provide the appropriate
‘spatial’metric - Holly and Petrella (2012). Alternatively, there may be dependencies
between geographical areas that reflect cultural similarity, and migration or commuting
relationships.1 Using one of these distance metrics the W matrix is then constructed a
priori and equation (2) is estimated directly.2

Irrespective of the distance measure used, spatial dependence relates to spill-over
effects that are not pervasive in nature. In other words it conforms to the notion of cross-
sectional weak dependence (CWD) as defined in Chudik, Pesaran and Tosetti (2011).

1Interactions in social networks can also be ‘spatial’in an abstract sense. For example Bhattacharjee
and Holly (2013) explore interactions among members of a committee using a spatial analogy.

2The regional science literature has long been aware of the potential problems with the prior specifi-
cation of theW matrix. For recent contributions see Corrado and Fingleton (2012).
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To see why, consider the SAR(1) model defined in (2). Assuming that (IN − ψW) is
invertible, we have

x◦t = Gu◦t, (3)

where G = (IN − ψW)−1. It is now easily seen that V ar (x◦t) = Σ = GΣuG
′, and we

have

‖Σ‖1 = ‖GΣuG
′‖1 ≤ ‖Σu‖ ‖G‖1 ‖G′‖1 ≤ sup

i
(σ2ui) ‖G‖1 ‖G‖∞

≤ K ‖G‖1 ‖G‖∞ . (4)

Suppose that |ψ| ‖W‖∞ < 1, then

‖G‖∞ =
∥∥IN + ψW+ψ2W2 + ....

∥∥
∞

≤
(
1 + |ψ| ‖W‖∞ + |ψ|2 ‖W‖2∞ + ...

)
=

1

1− |ψ| ‖W‖∞
< K.

Similarly, ‖G‖1 < K < ∞, if it is further assumed that |ψ| ‖W‖1 < 1. Therefore, G
has bounded row and column sum matrix norms if |ψ| < min (1/ ‖W‖1 , 1/ ‖W‖∞), and
under the same condition, using (4), it follows that Σ will also be row (column) bounded.
Denoting the correlation matrix of x◦t by R = (ρij) and assuming that var(xit) =

σ2xi > 0 is bounded away from zero, then R = D−1/2ΣD−1/2, where D = diag(σ2xi ,
i = 1, 2, ..., N). Hence

‖R‖1 =
∥∥D−1/2ΣD−1/2

∥∥
1
≤ 1

mini(σ2xi)
‖Σ‖1 < K. (5)

Also, λmax(R) ≤‖R‖1 < K. Therefore, λmax(R) controls the degree of cross-sectional de-
pendence and is bounded in the case of SAR(1) models so long as |ψ| < min (1/ ‖W‖1 , 1/ ‖W‖∞),
a condition generally assumed in the spatial econometrics literature. This result readily
extends to higher order SAR models.

2.2 The factor model - a form of strong CSD

At other end of the spectrum we consider the factor model as a form of strong cross-
sectional dependence. To this end we draw from the analysis in Pesaran (2014) which
tests for weak cross-sectional dependence. Suppose that x◦t is generated according to the
following m-factor model

x◦t = Γf t + ε◦t, (6)

where f t = (f1t, f2t, ..., fmt)
′ is the m× 1 vector of unobserved common factors (m being

fixed) withE(f t) = 0,Σff = Cov(f t) = Im, and Γ = (γ1,γ2, ...,γN)′ is theN×mmatrix
of the factor loadings γi = (γi1, γi2, ..., γim)′, for i = 1, 2, ..., N, ε◦t = (ε1t, ε2t, ..., εNt)

′ are
idiosyncratic errors that are cross-sectionally and serially independent, with zero means
and constant variances, ω2i , 0 < ω2i < K, i = 1, 2, ..., N. As before, the degree of cross-
sectional dependence of x◦t is governed by the largest eigenvalue of the correlation matrix
of x◦t, R = (ρij). It is easily seen that under the above factor model

ρij =

m∑
`=1

δi`δj`, for i 6= j, (7)
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where δi` = γi`/
√
ω2i + γ ′iγi, and ρii = 1. Also, since ω2i is a fixed non-zero constant,

then the scaling of γi` by
√
ω2i + γ ′iγi ensures that γi` and δi` are of the same order of

magnitude. For example, δi` = 0 if γi` = 0, and δi` 6= 0 if γi` 6= 0, and vice versa.
Consider now the effects of the `th factor, f`t, on the ith unit, xit, as measured by δi`,

and suppose that these factor loadings take non-zero values for M` out of the N cross
section units. Then, following Bailey, Kapetanios and Pesaran (2014 - BKP), the degree of
cross-sectional dependence due to the `th factor can be measured by α` = ln(M`)/ ln(N),
and the overall degree of cross-sectional dependence by α = max`(α`). They define α as
the exponent of N that gives the maximum number of xit units, M = max`(M`), that
are pair-wise correlated. The remaining N −M units are either uncorrelated or their
correlations tend to zero at a suffi ciently fast rate. BKP refer to α as the exponent of
cross-sectional dependence and takes any value in the range 0 to 1, with 1 indicating the
highest degree of cross-sectional dependence.
The exponent of cross-sectional dependence of xit can be equivalently defined in terms

of the scaled factor loadings, δi. Without loss of generality, suppose that only the first
M` elements of δi` over i are non-zero, and note that3

δ̄`N = N−1

(
M∑̀
i=1

δi` +
N∑

i=M`+1

δi`

)

=

(
M`

N

)(
M−1

`

M∑̀
i=1

δi`

)
= Nα`−1µ` = O(Nα`−1), (8)

where µ` = M−1
`

∑M`

i=1 δi` 6= 0, and α = max`(α`).

2.3 Average pair-wise correlations as a measure of cross-sectional
dependence

As a statistical measure of cross-sectional dependence, λmax (R), can be diffi cult to
analyse, especially for temporally and cross-sectionally dependent data sets. Instead, we
can summarise the degree of cross-sectional dependence among the N units conveniently
by their average pair-wise correlations, defined by

ρ̄N =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

ρij,

which can be written equivalently in terms of the correlation matrix, R, as

ρ̄N =
τ ′Rτ −N
N (N − 1)

=
τ ′Rτ

N (N − 1)
− 1

N − 1
, (9)

where τ is anN×1 vector of ones. In general, noting that (τ ′τ ) λmin(R) ≤ τ ′Rτ ≤ (τ ′τ )
λmax(R), we have

λmin(R)

(N − 1)
≤ τ ′Rτ

N (N − 1)
≤ λmax(R)

(N − 1)
,

3The main results in Pesaran (2014) and Bailey, Kapetanios and Pesaran (2014) remain valid even if∑N
i=M`+1

δi` = O(1). But for expositional simplicity we assume that
∑N

i=M`+1
δi` = 0.
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and
λmin(R)− 1

(N − 1)
≤ ρ̄N ≤

λmax(R)− 1

(N − 1)
.

Therefore, in the case of weakly cross correlated processes, such as the spatial autore-
gressive models, where λmax(R) is bounded in N , ρ̄N → 0, as N → ∞. It is also clear
that standard spatial econometric models cannot deal with cases where ρ̄N differs from
zero for suffi ciently large N .4

In the case of the factor model given by (6), we have,

ρ̄N =

(
N

N − 1

)(
δ̄
′
N δ̄N −

∑N
i=1 δ

′
iδi

N2

)
, (10)

where δ̄N = N−1
∑N

i=1 δi =
(
δ̄1N , δ̄2N , ..., δ̄mN

)′
, and δ̄`N is given by (8). Further, noting

that m is fixed and using (8) we have

δ̄
′
N δ̄N =

m∑
`=1

δ̄
2
`N =

m∑
`=1

O(N2α`−2) = O(N2α−2),

where as before, α = max`(α`). Similarly

N−2
N∑
i=1

δ′iδi =
m∑
`=1

(
N−2

N∑
i=1

δ2i`

)
=

m∑
`=1

O(Nα`−2) = O(Nα−2).

Hence ρ̄N = O(N2α−2).
The values of α in the range [0, 1/2) correspond to different degrees of weak cross-

sectional dependence. For these values of α, ρ̄N tends to zero very fast, at orders that
range from N−2 to N−1. The values of α in the range [1/2, 3/4) represent moderate
degrees of cross-sectional dependence. In this case, ρ̄N tends to zero at rates ranging
from N−1 to N−1/2. ρ̄N converges to a non-zero value only if α = 1, although for values
of α in the range of [3/4,1), cross-sectional dependence is still quite strong with ρ̄N tending
to zero rather slowly.

2.4 Degrees of cross-sectional dependence and the two-step ap-
proach

Since in many applications cross-sectional dependence could be due to common factors as
well as spatial or network dependence, it is important that both sources of cross-sectional
dependence are taken into account. Mistaking factor dependence, as in (6), for spatial
dependence can lead to spurious inference as to the pervasiveness and the degree of the
cross-sectional dependence. In consequence, identifying the strength of such dependence
is of special significance.

4In cases where the degree of cross-sectional dependence is relatively high, one would expect λmax(R)
associated with the correlation matrix of the spatial model to be relatively large when W is row-
standardized and ψ is close to unity. Using simulations we can confirm that in such cases λmax(R)
rises with N but at a slower rate, such that αN = ln (λmax(R)) / ln(N) tends to a value which is below
1/2. Also, as is expected, for each N , αN rises with |ψ| - see Bailey, Kapetanios and Pesaran (2014) for
details regarding the specification of αN .
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Suppose observations x◦t = (x1t, x2t, ..., xNt)
′, t = 1, 2, ..., T, are available and the aim

is to model the cross dependence between xit and xjt across i, j = 1, 2, ..., N, with N and
T relatively large. A first step requires one to evaluate the strength of the cross-sectional
correlation in x◦t. The application of spatial methods should only be considered if the
cross-sectional exponent of the observations, α, is suffi ciently small, and particularly not
close to unity. Regarding temporal dependence, this can be modelled through common
factors or unit-specific dynamics using autoregressive distributed lag models or GVAR
specifications (Pesaran, Schuermann and Weiner (2004), and Dees, di Mauro, Pesaran
and Smith (2007)).
A two-step procedure suggests itself:

Step 1: Apply the cross-sectional dependence (CD) test developed in Pesaran (2004,
2014) to x◦t, t = 1, 2, ..., T .

(a) Only proceed to spatial modelling if the null of weak cross dependence is not
rejected.

(b) If the null of weak dependence is rejected, model the (semi-) strong dependence
implied by the test outcome using factor models and check that the residuals
from (6), denoted by ε̂◦t = (ε̂1t, ..., ε̂Nt)

′ and referred to as de-factored ob-
servations, are weakly cross-correlated (by applying the CD test now to ε̂◦t,
t = 1, 2, ..., T ).

Step 2: Supposing that the analysis in the first step yields de-factored observations that
are reasonably weakly cross-correlated, proceed to spatial or network modelling of
the de-factored observations. The residuals ε̂◦t can also be used to estimate the
strength of connections over the cross section units.

In order to test for weak dependence, denote the sample estimates of the pair-wise
correlations of the (i, j) units of x◦t, t = 1, 2, ..., T , by

ρ̂ij = ρ̂ji =

∑T
t=1 (xit − x̄i) (xjt − x̄j)(∑T

t=1 (xit − x̄i)2
)1/2 (∑T

t=1 (xjt − x̄j)2
)1/2 , (11)

where x̄i = N−1
∑N

i=1 xit. The CD statistic is then defined by

CD =

[
TN(N − 1)

2

]1/2 ̂̄ρN , (12)

where ̂̄ρN =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

ρ̂ij. (13)

Pesaran (2014) shows that CD →d N(0, 1), under the null hypothesis that the cross-
sectional exponent of x◦t, t = 1, 2, ..., T, is α < (2− ε)/4 as N →∞, such that T = κN ε,
for some 0 ≤ ε ≤ 1, and a finite κ > 0.
If the null hypothesis of weak dependence is rejected in step 1 of the above procedure,

then according to BKP the exponent of cross-sectional dependence, α, can be estimated.
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There are different ways of estimating this exponent if 1/2 < α ≤ 1. We refer to Bailey,
Kapetanios and Pesaran (2014) for details.
For de-factoring of the observations common factors can be estimated either by the

Principal Components Analysis (PCA), or by cross-sectional averages. Both approaches
can be applied to the data set as a whole, or to sub-groups of the data set separately.
The grouping can in turn be based on some a priori criteria, or could be estimated using
discriminant or some other suitable statistical analysis. In the empirical application we
use the regional classifications of the MSAs in the USA, but it would also be interesting
to apply the group membership procedure recently developed for factor models by Bai
and Ando (2014).
The success of de-factoring could be checked by the application of Pesaran’s CD test

to the de-factored observations. The spatial modelling stage can then begin once we are
satisfied that the de-factored observations do not exhibit strong forms of cross-sectional
dependence. In the case where the spatial weight matrix is given a priori, it might be
possible to combine the two steps in one meta approach that simultaneously deals with
factor and spatial dependence. It is not clear that such a meta approach would also be
possible if the spatial weights, wij, are to be endogenously determined.

3 Spatial econometrics models revisited

The de-factored observations can now be modelled using spatial econometric techniques
that are available in the literature. However, in our application we consider two extensions
of this literature, namely endogenising the choice of the spatial weights matrix, W, and
allowing the spatial parameter, ψ, in the SAR model, (1), to be heterogeneous across i.

3.1 Correlation-based specification of spatial weights matrices

TypicallyW is constructed using geodesic, demographic or economic information brought
in exogenously, and not contained in the data set under consideration, here {xit, i =
1, 2, ..., N ; t = 1, 2, ..., T}. Geographical contiguity can be used as in Holly, Pesaran and
Yamagata (2011a,b). In economic applications, economic measures, such as commuting
times, trade and migratory flows across geographical areas have been used. For example,
in GVAR modelling trade weights are used in the construction of link matrices that relate
individual economies to their trading partners in the global economy - Pesaran, Schuer-
mann and Weiner (2004). Such measures are often preferable over geodesic measures -
since they are closer to the decisions that underlie the observations, xit, and they allow
also for possible time variations in the weighting matrix which of course is not possible
if we use only physical distance measures in the construction of W.
In practice, however, suitable economic distance might not be available in many ap-

plications,and it is desirable to see if W can be constructed without recourse to such
exogenous information. In applications where the time dimension is reasonably large
(around 60-80), it is possible to identify the non-zero elements of W with those elements
of ρ̂ij, as expressed in (11), that are different from zero at a suitable significance level.
There is a related literature that addresses the issue of identification of neighbours by
non-zero elements of an assumed sparse covariance matrix or its inverse. The inverse co-
variance matrix is used in Markov networks defined as a graphical model that represents
variables as nodes and ‘conditional’dependencies (partial correlations) between variables
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as (undirected) edges. Estimation then amounts to setting elements of the inverse co-
variance matrix to zero - Dempster (1972).5 A number of estimation approaches have
followed, using lasso type penalties applied to the estimation of the inverse covariance
matrix directly. The main problem with this approach is that once de-factoring has taken
place the interpretation of the resulting inverse covariance matrix is ambiguous. Further-
more, finding a good estimate of the inverse covariance matrix especially when N > T
can be challenging. The second approach uses the so-called covariance graph at its fo-
cus which is the corresponding graphical model for ‘marginal’dependencies (marginal
correlations). Methods of estimating covariance matrices with zero elements include con-
tributions by Chaudhuri, Drton and Richardson (2007), Khare and Rajaratnam (2011),
Butte, Tamayo, Slonim, Golub and Kohane (2000), and Rothman, Bickel, Levina and
Zhu (2008, 2010).6

In this paper we follow the second approach and employ the multiple testing procedure
recently developed in Bailey, Pesaran and Smith (2014, BPS) which tests the statistical
significance of the pair-wise correlations of the de-factored observations, ρij. As shown
below, it is simple to implement, is invariant to the ordering of the underlying units, and
consistently estimates the true positive rate and the false positive rate of zeros and ones
of the underlying Wmatrix.
The multiple testing problem arises when we are faced with a number of (possibly)

dependent tests and our aim is to control for the size of the overall test. Suppose we
are interested in a family of null hypotheses, H01, H02, ..., H0n and we are provided with
corresponding test statistics, Z1T , Z2T , ...., ZnT , with separate rejection rules given by
(using a two sided alternative)

Pr (|ZiT | > CViT |H0i ) ≤ piT ,

where CViT is some suitably chosen critical value of the test, and piT is the observed p
value for H0i. Consider now the family-wise error rate (FWER) defined by

FWERT = Pr [∪ni=1 (|ZiT | > CViT |H0i )] ,

and suppose that we wish to control FWERT to lie below a pre-determined value, p.
Bonferroni (1935, 1936) provides a general solution, which holds for all possible degrees
of dependencies across the separate tests. By Boole’s inequality we have

Pr [∪ni=1 (|ZiT | > CViT |H0i )] ≤
n∑
i=1

Pr (|ZiT | > CViT |H0i )

≤
n∑
i=1

piT .

Hence, to achieve FWERT ≤ p, it is suffi cient to set piT ≤ p/n. However, Bonferroni’s
procedure can be quite conservative, particularly when the tests are highly correlated.
This means that the procedure does not reject as often as it should and therefore lacks
power. A step-down procedure is proposed by Holm (1979) which is more powerful than

5A recent economic application of this approach is provided by Barigozzi and Brownlees (2013).
6For further contributions in this area see Meinshausen and Buhlmann (2006), Peng, Wang, Zhou

and Zhu (2009), and Bien and Tibshirani (2011), among others.
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Bonferroni’s procedure, without imposing any further restrictions on the degree to which
the underlying tests depend on each other.
If we abstract from the T subscript and order the p-values of the tests, so that

p(1) ≤ p(2) ≤ .... ≤ p(n),

are associated with the null hypotheses, H(01), H(02), ..., H(0n), respectively, Holm’s pro-
cedure rejects H(01) if p(1) ≤ p/n, rejects H(01) and H(02) if p(2) ≤ p/(n − 1), rejects
H(01), H(02) and H(03) if p(3) ≤ p/(n− 2), and so on.7

In our application, we apply multiple testing procedures to distinct non-diagonal ele-
ments of the sample estimate of R = (ρij), namely R̂ = (ρ̂ij), where ρ̂ij is the correlation
of the de-factored price changes between i and j MSAs. BPS show that the application
of the Bonferroni procedure to R̂ yields a regularised version which converges to R at the
rate of

√
mNN/T under the Frobenius norm, where mN is bounded in N , and represents

the number of non-zero off-diagonal elements in each row of R. More importantly for the
present application, BPS establish that the zeros ofW = (wij) are consistently estimated
by

ŵij = I

(∣∣ρ̂ij∣∣ > Cp(N)√
T

)
,

where Cp(N) = Φ−1
(

1− p
N(N−1)

)
, p is the pre-specified overall size of the test (which

we set to 5% in the empirical application), and Φ−1 (·) is the inverse of the cumulative
standard normal distribution. More specifically, consider the true positive rate (TPR)
and the false positive rate (FPR) of ones/zeros in the Wmatrix as defined by

TPR =

∑∑
i 6=j

I(ŵij 6= 0, and ρij 6= 0)∑∑
i 6=j

I(ρij 6= 0)
(14)

FPR =

∑∑
i 6=j

I(ŵij 6= 0, and ρij = 0)∑∑
i 6=j

I(ρij = 0)
. (15)

BPS show that under certain plausible regularity conditions TPR→ 1 and FPR→ 0 as
N and T →∞ with probability one, so long as ρmin = mini,j(ρij) > Cp(N)/

√
T .

Similar results also hold if the Holm procedure is applied. Let n = N(N − 1)/2 and
order the p-values of n individual tests in an ascending manner, which is equivalent to
ordering

∣∣ρ̂ij∣∣ in a descending manner. Denote the largest value of ∣∣ρ̂ij∣∣ over all i 6= j, by∣∣ρ̂(1)∣∣, the second largest value by ∣∣ρ̂(2)∣∣, and so on, to obtain the ordered sequence ∣∣ρ̂(s)∣∣,
for s = 1, 2, ..., n. Then the (i, j) pair associated with

∣∣ρ̂(s)∣∣ are connected (i.e. wij 6= 0) if∣∣ρ̂(s)∣∣ > T−1/2Φ−1
(

1− p/2
m−s+1

)
, otherwise disconnected (i.e. wij = 0), for s = 1, 2, ..., n .

The resultant connection matrix will be denoted by Ŵ = (ŵij), where ŵij = 1 if the (i, j)
pair are connected according to the Holm procedure, otherwise ŵij = 0. Connections can
also be classified as positive ( ŵ+ij) if ρ̂ij > 0, and negative (ŵ−ij) if ρ̂ij < 0.

7Other multiple testing procedures can also be considered such as Hochberg (1988), Hommel (1988)
and Hommel (1989) among others - we thank an anonymous referee for drawing our attention to these
contributions to the multiple testing literature. Efron (2010) also provides a recent review. But most of
these procedures tend to place undue prior restrictions on the dependence of the underlying test statistics
while the Holm method is not subject to such restrictions.
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3.2 A heterogeneous spatio-temporal model

Almost all spatial econometric models estimated in the literature assume that the spatial
parameters do not vary across the units. For example, in the case of the SAR(1) model
defined by (1), the parameter ψ is restricted to be the same across i = 1, 2, ..., N . Such
parameter homogeneity assumptions are unavoidable when T is very small, but need
not be imposed in the case of large panels where T is suffi ciently large. The evidence
of parameter heterogeneity in panel data models is quite prevalent particularly in the
case of cross county or country data sets. In such cases and when T is suffi ciently large,
reducing the spatial effects into a single parameter appears rather restrictive. Instead,
Aquaro, Bailey and Pesaran (2014, ABP) allow the spatial effects to differ across the
units, and derive the conditions needed for identification and consistent estimation under
parameter heterogeneity.8 ABP consider the following heterogeneous version of (1)

xit = ψix
∗
it + uit, for i = 1, 2, ..., N ; t = 1, 2, ..., T,

where x∗it = w′ix◦t, w′i denotes the i
th row of the N ×N row-standardised spatial matrix,

W, which is taken as given. In the spatial econometrics literature it is assumed that all
units have at least one neighbour (or connection), which ensures that w′iτ = 1 for all i,
when W is row-standardised. But as we shall see, particularly when using correlation-
based weights, it is possible for some units not to have any connections. In such cases
x∗it = 0, and the associated coeffi cient, ψi, is unidentified, and to resolve the identification
problem, and without of loss of generality, we set ψi = 0. Notice that since for such units
x∗it = 0, the choice of ψi will not impact the results.
In matrix notation we have

x◦t = ΨWx◦t + u◦t, t = 1, 2, . . . , T, (16)

where Ψ = diag (ψ), and ψ = (ψ1, ψ2, . . . , ψN)′. An extension of (16), that incorporates
richer temporal and spatial dynamics and accommodates negative as well as positive
connections, is given by

x◦t =

hλ∑
j=1

Λjx◦t−j +

h+ψ∑
j=0

Ψ+
j W+x◦t−j +

h−ψ∑
j=0

Ψ−j W−x◦t−j + u◦t, (17)

where hλ = max(hλ1, hλ2, ..., hλN), h+ψ = max(h+ψ1, h
+
ψ2, ..., h

+
ψN), h−ψ = max(h−ψ1, h

−
ψ2, ..., h

−
ψN),

Λj, Ψ+
j and Ψ−j are N ×N diagonal matrices with λij, ψ

+
ij and ψ

−
ij over i as their diago-

nal elements. Also, W+ and W− are N ×N network matrices for positive and negative
connections, respectively such that W = W++W−. In this model the slope coeffi cients,
λij, ψ

+
ij and ψ

−
ij, and the error variances, σ

2
ui

= var(uit) are allowed to differ across i. In
what follows for expositional simplicity we set hλ = h+ψ = h−ψ = 1.
For consistent estimation of the parameters ABP propose a QML procedure, and

suggest using the following concentrated log-likelihood function to simplify the computa-
tions:

`
(
ψ+0 ,ψ

−
0

)
∝ T ln

∣∣IN −Ψ+
0 W+ −Ψ−0 W−∣∣− T

2

N∑
i=1

ln

(
1

T
x̃′iMix̃i

)
, (18)

8The literature on panel data models with heterogeneous slopes is reviewed in Hsiao and Pesaran
(2008).
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where x̃i = xi − ψ+i0x
+
i − ψ−i0x

−
i , Mi = IT − Zi (Z

′
iZi)

−1 Z′i, Zi =
(
xi,−1,x

+
i,−1,x

−
i,−1
)
,

ψ+0 = (ψ+10, ψ
+
20, . . . , ψ

+
N0)
′ and ψ−0 = (ψ−10, ψ

−
20, . . . , ψ

−
N0)
′. The parameters of the lagged

variables, λ1,ψ
+
1 and ψ

−
1 , can be estimated by least squares applied to the equations

for individual units conditional on ψ+i0 and ψ
−
i0. Inference on individual coeffi cients are

then carried out using second cross derivatives of the full likelihood function of (17), with
respect to θ = (θ′1,θ

′
2, ...,θ

′
N)
′, where θi =

(
ψ+i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, λi1, σ

2
ui

)′
. The variance-

covariance matrix of θ̂ML is computed as

Σ̂θML
=

− 1

T

∂2`
(
θ̂ML

)
∂θ̂ML∂θ̂

′
ML

−1 . (19)

Further details regarding the econometric analysis of this model are provided in Aquaro,
Bailey and Pesaran (2014).

4 Application: US house prices

The two-step procedure developed in this paper can be applied to different types of
panel data sets so long as the time series dimension of the panel is reasonably large such
that reliable estimates of pair-wise correlations, ρij, can be obtained. There are many
such panels, covering regions or countries, that can be considered. Regional data in the
United States have been studied by many including Cromwell (1992), Pollakowski and
Ray (1997), Carlino and DeFina (1998, 2004), Carlino and Sill (2001), Del Negro (2002),
Owyang, Piger and Wall (2005), and Partridge and Rickman (2005). The cross country
data sets used in global modelling provide another example.
Here we opt to study house price changes at the level of Metropolitan Statistical Areas

in the US.9 Metropolitan Statistical Areas (MSAs) are geographic entities delineated by
the Offi ce of Management and Budget and are used by Federal statistical agencies when
collecting, tabulating, and publishing Federal statistics for spatial units in the USA.
The MSA is defined by a core area with a large population concentration, together with
adjacent areas that have a high degree of economic and social integration with that core
through commuting and transport links. They range in size, as measured by population
in 2008, from the smallest - Carson City - with a population of 55,000, to New York
and its environs with a population of 18.97 million. Moreover, there can be considerable
distances between MSAs. The pair-wise average distance is 1,156 miles, though of course
this is exaggerated by the relative sparseness of the distribution of MSAs in the Midwest.
Indeed, by comparison, the study of regional house prices in the UK by Holly, Pesaran
and Yamagata (2011b) deals with distances of a much smaller magnitude. Distance is,
therefore, likely to be an important factor for the spatial distribution of house prices,
though size could play a role as well.

9There already exists a large literature on the spatial dimension of house price changes, partly because
of the availability of spatially disaggregated data, but also because of the role that housing plays in
household wealth and in the transmission of monetary policy shocks, and more recently as a conduit for
transmission of global shocks. Recent contributions include Rapach and Strauss (2007, 2009), Kadiyala
and Bhattacharya (2009), Gupta and Das (2010), Gupta, Kabundi and Miller (2011a,b), Kuethe and
Pede (2011), and Gupta and Miller (2012). These papers apply a number of models to house price data
without prior assessment of their degree of cross-sectional dependence.
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Our choice of house prices is also motivated by the role that housing plays in spatial
equilibrium models (Glaeser, Gyourko and Saiz (2008), Glaeser and Gottlieb (2009)).
The standard approach in urban and regional economics is to assume a spatial equilib-
rium. At the margin firms and households have to be indifferent between alternative
locations. Firms employ labour up to the point at which the wage is equal to marginal
product; construction companies supply housing up to the point at which marginal cost
is equal to marginal product. Finally, households have to be indifferent about where they
are located, taking into account wages, the price of houses and the local availability of
amenities (proximity to schools, sea, mountains, temperature, etc.). The combination
of the labour supply curve, the supply curve for housing and the labour demand deter-
mines simultaneously the population of say a locality, wages and the price of housing.
Idiosyncratic differences in space in terms of productivity, particular characteristics of an
area and the construction sector determine differences across space in population density,
household incomes and the house prices. There are a number of equilibrating processes
at work. Households tend to move across geographical areas in response to differences in
wages, house prices and area characteristics. There can also be agglomeration effects due
to economies of scale in relation to size and population density of cities. But, it should
be clear that such equilibrating tendencies are likely to operate fully only in the long run,
over a number of years rather than quarters. It takes time for households to relocate in
response to changing economic circumstances. It also takes time for construction compa-
nies to increase the supply of housing. Any model of house price diffusion across MSAs
must also adequately deal with dynamics, both within and across MSAs.
We consider 363 MSAs in total, excluding three MSAs located in Alaska and Hawaii,10

over the period 1975Q1 to 2010Q4 (T = 144). We denote the level of house prices in MSA
i , located in State s, in quarter t, by Pist, for i = 1, ..., Ns, s = 1, ..., S, and t = 1, ..., T,
where

∑S
s=1Ns = N = 363, S = 49 (comprised of 48 contiguous States and the district

of Columbia), and T = 144 quarters. Then we compute real house prices as:

pist = ln

(
Pist
CPIst

)
, for i = 1, 2, ..., Ns; s = 1, 2, ..., S; t = 1, 2, ..., T,

where CPIst is the Consumer Price Index of State s in quarter t. Details on the sources
of these data can be found in Appendix I. We ordered the MSAs by State, starting at the
East Coast and moving towards the West Coast, following the list provided in Table A
of Appendix II. Finally, we obtain seasonally adjusted changes in real house prices, πist,
as residuals from regressing pist− pis,t−1, the seasonally unadjusted rate of change in real
house prices, on an intercept and three quarterly seasonal dummies. Before modelling
the spatial dimension of the price changes, πist, we first need to examine the extent to
which these price changes are cross-sectionally strongly correlated and then de-factor such
effects if necessary. (see sub-section 2.4)

4.1 Cross-sectional dependence in house price changes and de-
factoring of observations

To examine the degree of cross-sectional dependence in house price changes, we computed
the CD statistic of Pesaran (2004, 2014) for price changes, πist, without any de-factoring.

10Note that the District of Columbia is treated as a single MSA.
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(See (12) and (13)). We obtained CDπ = 640.46
(̂̄ρπ = 0.209

)
as compared to a critical

value of 1.96 at the 5% significance level. The test outcome is statistically highly sig-
nificant and suggests a high degree of cross-sectional dependence in house price changes,
which could be due to common national and regional effects. Applying the method pro-
posed by BKP we calculate the exponent of cross-sectional dependence (standard error in
parenthesis) for house price changes and obtain α̊π = 0.989 (0.03), which is very close to
unity and suggests that house price changes are strongly correlated across MSAs. Clearly,
it would be inappropriate to apply standard spatial modelling techniques directly to πist,
as noted earlier since the maintained assumption of spatial econometric models is weak
cross-sectional dependence as shown in sub-section 2.1.

4.1.1 De-factoring using cross-sectional averages

The strong cross-sectional dependence in house price changes can be modelled using
observed (national/regional income, unemployment and interest rates), or unobserved
common factors (using principal components). Alternatively, one can use cross-sectional
averages at the national and regional levels, which corresponds to assuming the existence
of a national factor together with a number of region-specific factors.11 The correspon-
dence of cross-sectional averages and the national and regional factors can be established
using arguments similar to the ones advanced in Pesaran (2006). In what follows we
employ the Bureau of Economic Analysis classification and consider a total of R = 8
regions in the US containing an average of approximately 45 MSAs each. These are: (i)
New England, (ii) Mid East, (iii) South East, (iv) Great Lakes, (v) Plains, (vi) South
West, (vii) Rocky Mountains, and (viii) Far West. See Table A of Appendix II for more
details.
Accordingly, let πirt denote the rate of change of real house prices (after seasonal

adjustments) in the ith MSA located in region r = 1, 2, ..., R, at time t, and consider the
following hierarchical model

πirt = air + βirπ̄rt + γirπ̄t + ξirt, (20)

i = 1, 2, ..., Nr; r = 1, 2, ..., R; t = 2, 3, ..., T,

where , π̄rt = N−1r
∑Nr

i=1 πirt, and π̄t = N−1
∑R

r=1

∑Nr
i=1 πirt, with N =

∑R
r=1Nr. Write

the above model more compactly as

πt = a + BQNπt + ΓPNπt + ξt, (21)

where πt is an N × 1 vector of house price changes partitioned by regions, namely

πt = (π11t, π21t, ...πN11t; π12t, π22t, ....πN22t; ......; π1Rt, π2Rt, ...., πNRRt)
′.

Similarly
a = (a11, a21, ...aN11; a12, a22, ....aN22; ......; a1R, a2R, ...., aNRR)′.

B and Γ are N ×N diagonal matrices with their ordered elements given by

β11, β21, ...βN11; β12, β22, ....βN22; ......; β1R, β2R, ...., βNRR,

11We also considered using State level averages, but there were only a few MSAs in some States.
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and
γ11, γ21, ...γN11; γ12, γ22, ....γN22; ......; γ1R, γ2R, ...., γNRR,

respectively. Finally, QN and PN are N × N projection matrices such that QNπt give
the regional means and PNπt the national mean of the local feature. More specifically,
let τNr be an Nr × 1 vector of ones, and τN an N × 1 vector of ones, then

PN = τN(τ ′NτN)−1τ ′N ,

and

QN =


PN1 0 . . . 0 0
0 PN2 . . . 0 0
...

...
...

...
...

0 0 . . . PNR−1 0
0 0 . . . 0 PNR

 ,

where PNr = τNr(τ
′
Nr
τNr)

−1τ ′Nr . It is assumed that R is fixed, and for each r, Nr/N
tends to a non-zero constant as N → ∞. PNrπt, for r = 1, 2, ..., R, and PNπt can be
viewed as regional and national factors that are consistently estimated by simple averages.
They also represent the strong form of cross-sectional dependence in the real house price
changes across MSAs.
The de-factored real house price changes are then given by residuals from (21), namely

ξ̂t = πt − â− B̂QNπt − Γ̂PNπt, t = 2, ..., T. (22)

To check if de-factoring has been successful (step 1(b) in sub-section 2.4), we apply the CD
test to the residuals, ξ̂t. The resulting CD statistic is much reduced, falling from 640.45
to −6.05, giving a very small estimate for the average pair-wise correlations, ̂̄ρξ̂ = −0.002.
Therefore, the simple hierarchical de-factoring procedure has managed to eliminate almost
all of the strong cross-sectional dependence that had existed in house price changes, and
what remains could be due to the local dependencies that need to be modelled using
spatial techniques. Also, the estimate of the exponent of cross-sectional dependence, α,
which stood at α̊π = 0.989 (0.03) is now reduced to α̊ξ̂ = 0.637 (0.03) which is close to
the borderline value of 1/2, representing weak cross-sectional dependence.

4.1.2 De-factoring using Principal Components

For comparison we repeat the de-factoring analysis by applying the method of principal
components developed for large panels in Bai (2003) to price changes, to begin with
without a regional classification. Consider the following m-factor model for πit

πit = ai + γ ′ift + ξf,it, i = 1, 2, ..., N ; t = 2, 3, ..., T, (23)

where f t is an m × 1 vector of unobserved factors. For the time being suppose that
m is known. Then the factors can be estimated by the first m principal components
(PC) of real house price changes, and the de-factored observations can be obtained as
residuals from regressions of πit on the m largest PCs. To select m we applied the six
information criteria (IC) proposed in Bai and Ng (2002), specifying 8 as the maximum
number of factors to match the number of cross-sectional averages used in the hierarchical
specification of the previous sub-section. All six IC ended up selecting 8 as the optimal
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number of factors. We increased the maximum number of factors in the procedure, but
still ended up selecting the maximum as the optimal. In view of the failure of the IC to
lead to any meaningful outcome, we decided to conduct the de-factoring analysis using
m = 2, 3, ..., 8 principal components. We then computed CD statistics for the de-factored
residuals for all 7 choices of m, and obtained the values of 53.39, 10.21, 2.73, 3.27, 2.31,
−1.96 and −4.42 respectively, for m = 2, 3, ..., 8. The corresponding estimates of the
exponent of cross-sectional dependence were α̊2pc = 0.932 (0.04), α̊3pc = 0.799 (0.04) ,
α̊4pc = 0.793 (0.03) , α̊5pc = 0.785 (0.03) , α̊6pc = 0.831 (0.02) , α̊7pc = 0.718 (0.02) , and
α̊8pc = 0.622 (0.02) , respectively. It is evident that as more factors are added the strength
of cross-sectional dependence of the resulting residuals diminishes progressively.
However since the testing procedure for the determination of m appears inconclu-

sive, and following a suggestion by an anonymous referee, we considered a hierarchical
PCA, similar to the specification in (21), where the national factor is represented by the
strongest principal component extracted from the full data set and the regional factor(s)
are expressed as the strongest principal component(s) extracted from each of the eight
regions separately. Such a hierarchical factor model can be written as

πirt = air + β′irfrt + γirfgt + ξirt, (24)

i = 1, 2, ..., Nr; r = 1, 2, ..., R; t = 2, 3, ..., T,

where f rt is anmr×1 vector of regional factors for r = 1, 2, ..., R, and fgt is the ‘global’or
‘national’factor. βir =

(
βi1, βi2, ..., βimr

)′
and γir are associated factor loadings. Again

to select the number of PCs, mr, in each region we applied the six information criteria of
Bai and Ng (2002). The results using as the maximum number of factors of 4 and 8 in
their procedure, are shown in Table 1 below:

Table 1: Number of factors selected at national and regional levels using the Bai and Ng
information criteria

National New Engl. Mid East South East Gr. Lakes Plains South West Rock. Mount. Far West
Maximum number of factors assumed = 8

PC1 8 8 7 8 7 7 6 7 8
PC2 8 8 6 8 7 6 5 7 7
PC3 8 8 8 8 8 8 8 8 8
IC1 8 8 4 8 7 4 2 2 8
IC2 8 8 4 6 3 2 2 2 4
IC3 8 8 8 8 8 6 5 7 8

Maximum number of factors assumed = 4
PC1 4 4 4 4 4 4 4 4 4
PC2 4 4 4 4 4 4 3 3 4
PC3 4 4 4 4 4 4 4 4 4
IC1 4 4 4 4 4 4 2 2 4
IC2 4 4 4 4 3 2 2 2 4
IC3 4 4 4 4 4 4 4 4 4
Notes: The Bai ad Ng (2002) information criteria are set out in what follows: PC1 (mr) = Vmr +mrσ̂

2 (T+Nr)
(TNr)

ln
(

TNr
(T+Nr)

)
,

PC2 (mr) = Vmr +mrσ̂
2 (T+Nr)
(TNr)

lnC2NT , PC3 (mr) = Vmr +mrσ̂
2

(
lnC2TNr
C2
NrT

)
, IC1 (mr) = ln (Vmr ) +mr

(
(T+Nr)
TNr

)
ln
(

TNr
(T+Nr)

)
,

IC2 (mr) = ln (Vmr ) +mr
(
(T+Nr)
TNr

)
lnC2NrT and IC3 (mr) = ln (Vmr ) +mr

(
lnC2NrT
C2
NrT

)
. Here σ̂2 is a consistent estimate of

(NrT )
−1∑N

i=1

∑T
t=1 E (ξ

′
irt) from πirt = β

′
irf̂rt + ξ′irt, i = 1, 2, ..., Nr; r = 1, 2, ..., R; t = 2, ..., T,

and C2NrT = T ∧Nr := min (T,Nr). Also, Vmr = (NrT )
−1∑Nr

i=1

∑T
t=1

(
πirt −

∑mr
j=1 β̂j,if̂j,t

)2
, for r = 1, ..., R.

In the global and eight regional cases all six IC selected more than one PC though some
variation in the number of PCs is evident across regions. Again given the lack of clear
guidance as to the number of principal components to use in (24), and in order to strike
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a balance between purging the house price changes of common effects and still leaving
a suffi cient degree of spatial dependence in the de-factored observations we decided to
opt for one PC as the ‘national’factor and mr = 2 for all regions considered. As before
we computed the CD statistic of the de-factored residuals from regressions (24) which

amounted to a value of 3.320
(̂̄ρξ̂pc = 0.001

)
, which is comparable to the results obtained

using the national and regional cross-sectional averages. The estimate of the exponent
of cross-sectional dependence in this case turned out to be α̊pc = 0.773 (0.03), which is
somewhat larger than the estimate α̊ξ̂ = 0.637 (0.03) obtained using the cross-sectional
averages as factors.
It is clear that both de-factoring methods (cross-sectional averages and PC) do reason-

ably well in purging price changes of common effects, although the hierarchical version
of the PC seems preferable to the standard application of PC to house price changes
without any regional classification.

4.2 Estimation of spatial connections

Having computed de-factored price changes, ξ̂it - from (22), and ξ̂it,pc - from (24), we are
now in a position to apply the methodology developed in sub-section 3.1 to estimate the
matrix of connections, Ŵ, using pair-wise correlations of de-factored price changes.

4.2.1 Spatial weights matrices based on distance

We start our analysis with a standard specification of W based on contiguity measures,
which we also use as a benchmark to examine the estimates of W that are based on
pair-wise correlations, ρ̂ij. As noted above, MSAs are deliberately defined as one or more
large cities with their core having a substantial influence over the surrounding region,
with a high degree of economic and social integration through commuting or transport
links. Hence, it can be argued that geographical distance can play an important role
in the determination of connections across different MSAs. We consider the same 363
MSAs as before. We denote a weights matrix based on physical distance by Wd, and
make use of data for geodesic distance (d) by applying the Haversine formula to data on
the Latitude-Longitude of zip codes, cross referenced to each of the N = 363 MSAs.12 We
regard Wd (of dimension N × N) to be symmetric. We identify as neighbours for each
MSA, i (i = 1, ..., N), all MSAs that lie within a radius of d miles. This pattern translates
into a value of 1 for elements (i, j) and (j, i) of Wd if MSA i is a neighbour (falling within
the given radius) of MSA j, or a value of 0 otherwise. Diagonal entries (i, i) take a value of
0, indicating that MSA i cannot be a neighbour of itself. Also under this specification all
non-zero elements of Wd are viewed as representing a positive connection, which should
be contrasted with connections that are based on economic factors that could lead to
negative as well as positive connections.
We study three cases: (i) MSAs within a radius of d = 50 miles, (ii) MSAs within

a radius of d = 100 miles, and (iii) MSAs within a radius of d = 200 miles. These give
rise to three Wd matrices, namely (i) W50m, (ii) W100m, and (iii) W200m, which are
sparse by nature, but of different degree depending on the cut-off point set by the radius,
d. We compare the degree of sparseness of W50m, W100m, and W200m in terms of their
percentage of non-zero elements (excluding the diagonal elements). This percentage is

12See Appendix III for details of this formula.
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0.35% for W50m, 1.55% for W100m, and 5.39% for W200m. As expected, the number of
non-zero elements increases when the radius within which MSAs are considered to be
neighbours rises. Figure 1 displays all three Wd matrices. In this figure we have ordered
the MSAs by States starting at the East Coast as before and following the list provided
in Table A of Appendix II, from top to bottom and from left to right. The sparseness of
the Wd matrices is captured by white areas in the graph when the relevant entries are
equal to zero. As is to be expected there is considerable clustering along the diagonal,
but because we are using a line to depict a plane, sometimes an MSA may lie at the edge
of a State (or region) and fall within the radius of another State or region. Clearly, as
the radius is increased from 50 to 200 miles the degree of leaching increases.

Figure 1: Spatial weights matrices specified by distance

Radius=50 miles Radius=100 miles Radius=200 miles

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 462
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 2040
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 7084

4.2.2 Spatial weights matrices based on pair-wise correlations

Next we make use of the de-factored price changes, ξ̂it and ξ̂it,pc, to estimate the matrix of
connections. Focussing on ξ̂it, first we obtain the sample correlation matrix of ξ̂t = (ξ̂it),

R̂ξ = (ρ̂ξ̂,ij) from the residuals of regression (21), where ρ̂ξ̂,ij = ρ̂ξ̂,ji = σ̂ξ̂,ij/
√
σ̂ξ̂,iiσ̂ξ̂,jj,

and σ̂ξ̂,ij = T−1
∑T

t=1 ξ̂itξ̂jt. Next, we apply Holm’s multiple testing to the N (N − 1) /2
pair-wise correlation coeffi cients, ρ̂ξ̂,ij, for i = 1, 2, ..., N − 1, j = i+ 1, ..., N , as described

in sub-section 3.1. We denote the resultant connection matrix by Ŵcs =
(
ŵcsij

)
. Here

cs stands for multiple testing applied to residuals extracted from de-factoring using the
cross-sectional averages approach.
As in sub-section 4.2.1, measuring the degree of sparseness of Ŵcs by the percentage

of its non-zero elements we obtain the figure of 1.08% which is comparable to the 1.55%
we obtained for W 100m, although as can be see from Figure 2 the pattern of sparseness
of the two matrices, W100m and Ŵcs, are quite different. In fact it is best to view the
non-zero elements of Ŵcs as connections rather than as neighbours (in a physical sense).
According to Ŵcs, the connections extend well beyond geographical boundaries, though
distinct clusters are evident especially in the West Coast and parts of the East Coast
regions.13 Divisions of the connections into the East, the Middle and West of the country
are also visible.

13Recall that in these graphs MSAs are ordered by State, moving from East to West, from top to
bottom and left to right.
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Figure 2: Spatial weights matrix using multiple testing and W100m
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4.2.3 Positive and negative connections

Unlike the distance based Wd weights matrices, the connections identified by the corre-
lation based approach can be readily distinguished into positive and negative ones. This
can be done by associating positive connections with statistically significant evidence of a
positive correlation, and the negative connections with the evidence of statistically signif-
icant pair-wise negative correlations. Accordingly, we can now define the positively and
negatively connected weights matrices, Ŵ+

cs = ( ŵ+
ij,cs

) and Ŵ−
cs =

(
ŵ−
ij,cs

)
, respectively,

by
ŵ+
ij,cs

= ŵ
ij,cs

I
(
ρ̂ξ̂,ij > 0

)
, and ŵ−

ij,cs
= ŵ

ij,cs
I
(
ρ̂ξ̂,ij ≤ 0

)
.

Clearly, Ŵcs = Ŵ+
cs +Ŵ−

cs. Comparing these with the distance based weights matrix,
W100m, in Figure 3, at first glance we notice that Ŵ+

cs is more closely related to W100m

than is Ŵ−
cs. Further, it is evident that geographical proximity is not the only factor

driving spatial connections between MSAs. There are significant correlations (positive or
negative) well away from the diagonal, with a number of clusters suggesting connections
at considerable distances.

Figure 3: Spatial weights matrices - distance and correlation-based connections (CS)
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We also applied the multiple testing procedure to the de-factored house price changes
using the hierarchical factor model, (24), and obtained the weights matrix Ŵpc. The
degree of sparseness of this matrix, as measured by the percentage of their non-zero
elements, is 0.60%. Comparing Ŵpc with the distance-based matrices W50m, W100m,
and W200m, it appears that using the hierarchical principal components approach the
degree of sparseness of Ŵpc is mid-way between W50m and W100m. We also constructed
Ŵ+

pc and Ŵ−
pc in line with the procedure described earlier. Ŵ+

pc, Ŵ−
pc and W100m are

plotted in Figure 4 below. As with the cross-sectional averages approach, the PC method
suggests that positively correlated connections match more closely the distance-based
connections than do the negatively correlated connections.

Figure 4: Spatial weights matrices - distance and correlation-based connections (PCs)
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4.2.4 Statistical associations of different connection weights matrices

We assess the closeness of the correlation-based estimates, Ŵ+ and Ŵ− (using either
cs or pc regressions for de-factoring) with the distance-based weight matrix, Wd, more
formally by quantifying the statistical association of the two types of weights matrices.
The analysis is complicated by the fact that these matrices are by nature sparse, and
hence the probability of a zero realisation in both adjacency matrices Ŵ+ (or Ŵ−)
and Wd is higher than obtaining a common entry of 1.14 Given the symmetry of the
weights matrices in our application, we focus on the upper triangular elements. We
create contingency tables from these upper-triangular elements of the form(

n11 n10
n01 n00

)
,

where:

• n11 equals the number of times Ŵ+ (or Ŵ−) displays entry of 1 when Wd displays
1.

• n00 equals the number of times Ŵ+ (or Ŵ−) displays entry of 0 when Wd displays
0.

14For more details regarding testing the dependence among multicategory variables see Pesaran and
Timmermann (2009).
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• n01 equals the number of times Ŵ+ (or Ŵ−) displays entry of 0 when Wd displays
1.

• n10 equals the number of times Ŵ+ (or Ŵ−) displays entry of 1 when Wd displays
0.

Then, n11 + n00 + n01 + n10 = N (N − 1) /2, and Pearson’s chi-squared statistic -
Pearson (1900) - is given by

χ2 =
1

2
N (N − 1)

[
1∑

i,j=0

n2ij
(ni. + n.j)

− 1

]
.

We set the significance level at 5%. We compare Ŵ+ (or Ŵ−) with the three versions
of Wd, namely W50m, W100m, and W200m. For brevity of exposition we present the
contingency tables for Ŵ+

cs and Ŵ−
cs versus W100 only:

Table 2: Contingency tables - Ŵ+
cs and Ŵ−

cs versus W100m spatial weights matrices

W100m

1 0
∑

rows

1 54 357 411

Ŵ
+ cs

0 966 64326 65292∑
cols 1020 64683 65703

W100m

1 0
∑

rows

1 8 288 296

Ŵ
− cs

0 1012 64395 65407∑
cols 1020 64683 65703

It is clear that Ŵ+
cs has more elements in common with Wd than does Ŵ−

cs. The χ
2
5%

statistics for Ŵ+
cs and Ŵ−

cs versus W50m, W100m, and W200m respectively are shown in
Table 3 below (to be compared with a critical value of 3.84):

Table 3: Pearson’s χ25% test statistics
Ŵ+

cs and Ŵ
−
cs versus Wd, d = 50, 100, 200m

W50m W100m W200m

Ŵ+
cs 267.24 363.27 298.41

Ŵ−
cs 0.89 2.57 4.30

The chi squared test statistics are highly significant especially when Ŵ+
cs is considered.

Elements of Ŵ+
cs are much more closely associated with the spatial weights, Wd, than

the elements of Ŵ−
cs. The association between Ŵ+

cs and Wd is the largest when d = 100.
Finally, we repeat these comparisons with weights based on de-factored price changes

using the hierarchical PCs, and obtain similar results. See Tables 3 and 4 where Ŵ+
pc

and Ŵ−
pc are compared with Wd, Ŵ+

cs and Ŵ−
cs. The association between Ŵ+

cs and Ŵ+
pc

is particularly high, and gives a chi-squared statistic of 9673.7 (compared with a critical
value of 3.84).
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Table 4: Pearson’s χ25% test statistics
Ŵ+

pc and Ŵ
−
pc versus Wd, d = 50, 100, 200m

W50m W100m W200m

Ŵ+
pc 86.70 149.55 84.66

Ŵ−
pc 0.61 0.17 3.75

Table 5: Contingency tables - Ŵ
+/−
cs versus Ŵ

+/−
pc spatial weights matrices

Ŵ+
pc

1 0
∑

rows

1 117 106 223

Ŵ
+ cs

0 294 65186 65480∑
cols 411 65292 65703

Ŵ−
pc

1 0
∑

rows

1 71 101 172

Ŵ
− cs

0 225 65306 65531∑
cols 296 65407 65703

4.3 A heterogeneous spatio-temporal model of US house price
changes

Finally, we are in a position to illustrate the utility of the separate identification of positive
and negative connections for the spatial analysis of house price changes. We model the
de-factored house price changes, ξ̂it, using the spatio-temporal model given by (17), with
W+ and W− replaced by their estimates Ŵ+ and Ŵ− using de-factored residuals. The
estimation results are similar for both approaches to de-factoring, and to save space we
focus on the de-factored observations and W estimates using cross-sectional averages as
factors (see (20)). We also restrict the lag orders, hλ, h+ψ and h

−
ψ , to unity (as they seem

adequate for capturing the temporal dynamics), and row-standardise the weight matrices
to identify the spatial effects across the MSAs. This yields

ξ̂t = aξ + Λ1ξ̂t−1 + Ψ+
0 W̃+

csξ̂t + Ψ−0 W̃−
csξ̂t + Ψ+

1 W̃+
csξ̂t−1 + Ψ−1 W̃−

csξ̂t−1 + ζt, (25)

where W̃+
cs and W̃−

cs are the scaled (row-standardised when applicable) versions of Ŵ+
cs

and Ŵ−
cs, and aξ = (α1ξ, α2ξ, ..., αNξ)

′ is the N × 1 vector of intercepts. Λ = diag (λ) ,
Ψ+
0 = diag

(
ψ+0
)
, Ψ−0 = diag

(
ψ−0
)
, Ψ+

1 = diag
(
ψ+1
)
, and Ψ−1 = diag

(
ψ−1
)
, where

λ1 = (λ11, λ21, ..., λN1)
′, ψ+s = (ψ+1s, ψ

+
2s, ..., ψ

+
Ns)
′, ψ−s = (ψ−1s, ψ

−
2s, ..., ψ

−
Ns)
′, for s = 0 and

1, and ζt = (ζ1t, ζ2t, ..., ζNt)
′ are the error terms. For quasi-maximum likelihood (QML)

estimation of the parameters we assume that ζ it ∼ IIDN
(
0, σ2ςi

)
, for i = 1, 2, ..., N .

Notice that we continue to have W̃+
cs + W̃−

cs = W̃cs where W̃cs is the row-standardized
version of Ŵcs, and (25) reduces to the more familiar specification

ξ̂t = aξ + Λ1ξ̂t−1 + Ψ0W̃csξ̂t + Ψ1W̃csξ̂t−1 + ζt, (26)

under the restrictions Ψ+
j = Ψ−j = Ψj, for all j = 0 and 1, a restriction that can be

tested within our framework.
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The model specification in (25) allows for a high degree of heterogeneity in dynamics
and spatial dependence across the 363 MSAs. By comparison, the traditional spatial
model assumes that the dynamic and spatial coeffi cients are homogeneous, namely λ1i =
λ1, ψ

+
is = ψ+s , ψ

−
is = ψ−s , for s = 0 and 1, and for all i. The only forms of heterogeneity

allowed in the literature are intercept and error variance heterogeneity. Furthermore,
the existing spatial literature assumes that all units in Wd have at least one (positive)
neighbour - see Kelejian and Prucha (1999, 2010) among others. This need not always
hold. When applying the multiple testing procedure to the de-factored observations we
find a relatively small number of units, N0 = 76 (out of 363), that are not connected to
the remaining MSAs. There are also a number of MSAs with only negative connections,
N− = 34, and a number with only positive connections, N+ = 90, with the remaining
N+/− = 163 MSAs having both positive and negative connections, so that N = N+/− +
N− + N+ + N0 = 363. The distribution of connections by the eight regions are given in
Table 6.

Table 6: Distribution of MSAs by connections across 8 regions in the US

Region\No. of MSAs N+/− N− N+ N0
∑

row

New England 9 1 1 4 15
Mid East 17 2 9 8 36
South East 63 10 25 16 114
Great Lakes 28 8 13 12 61
Plains 16 5 8 3 32
South West 14 3 7 14 38
Rocky Mountains 7 3 3 9 22
Far West 9 2 24 10 45∑

col 163 34 90 76 363
Proportional to total no. of MSAs per region

New England 60.0% 6.7% 6.7% 26.7% 100.0%
Mid East 47.2% 5.6% 25.0% 22.2% 100.0%
South East 55.3% 8.8% 21.9% 14.0% 100.0%
Great Lakes 45.9% 13.1% 21.3% 19.7% 100.0%
Plains 50.0% 15.6% 25.0% 9.4% 100.0%
South West 36.8% 7.9% 18.4% 36.8% 100.0%
Rocky Mountains 31.8% 13.6% 13.6% 40.9% 100.0%
Far West 20.0% 4.4% 53.3% 22.2% 100.0%
N+/− denotes the number of MSAs with both positive and negative connections; N−
the no. of MSAs with only negative connections; N+ the no. of MSAs with only
positive connections; finally N0 the no. of MSAs with no connections.

It is clear that, for the most part, MSAs in all regions have both positive and negative
connections. Also, more MSAs have exclusively positive connections than only negative
connections across all regions, the most polarised regions being the South East and the
Far West. On the other hand, a more balanced distribution of MSAs across N− and N+
can be seen for the Plains, South West and Rocky Mountains regions, with the latter two
also having a proportionately larger number of MSAs with no connections at all.
To estimate ψ+i0 and ψ

−
i0, for i = 1, 2, ..., N, we use the concentrated log-likelihood

function (18), in which x̃i is replaced by
˜̂
ξi, and Zi is augmented by a T × 1 vector

of ones, τ T . The intercepts, aiξ, and the parameters of the lagged values, λi1, ψ
+
i1 and
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ψ−i1 can be estimated via least squares applied to the equations for individual MSAs
conditional on the ML estimates of ψ+i0 and ψ

−
i0, for i = 1, 2, ...., N . We also note that for

the N0 units with no connections, we set ψ
+
i0 = ψ−i0 = ψ+i1 = ψ−i1 = 0, and estimate the

remaining parameters, intercepts and λi1 by least squares. For MSAs with only negative
or positive connections we impose the restriction that the corresponding ψ+i0, ψ

+
i1, ψ

−
i1,

and ψ−i0 coeffi cients are set to zero. This restriction is needed for identification purposes
due to the simultaneity problem that arises in this case. Clearly these coeffi cients can be
set to other values as well, such as the average of each coeffi cient within the region they
belong to or even to the national average of each coeffi cient.
For the purpose of inference, the variance-covariance matrix of the estimates is com-

puted as in (19), again using the full log-likelihood with respect to the vector of parameters
θ = (θ′1,θ

′
2, ...,θ

′
N)
′, where θi =

(
ψ+i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, αiξ, λi1, σ

2
ςi

)′
. For further details, see

Aquaro, Bailey and Pesaran (2014).
QML estimates for individual MSAs are available on request. In what follows we give

median and mean estimates, and the proportion of MSAs with statistically significant
parameters (at the 5% level). The results are summarized in Table 7, and give the median
and the mean group (MG) estimates of λ̂i1, ψ̂

+

i0, ψ̂
−
i0, ψ̂

+

i1, ψ̂
−
i1 and σ̂ςi . The standard errors

of the MG estimates are given in parenthesis.15

A number of general conclusions readily emerge from an examination of the results
in Table 7. The mean and median estimates are very close suggesting that the estimates
across the MSAs are approximately symmetrically distributed. All the mean estimates are
statistically significant at the 5% level, with the mean lagged spatial effects (ψ̂

+

1,MGE and

ψ̂
−
1,MGE) being less precisely estimated as compared to the other mean effects, namely

λ̂1,MGE, ψ̂
+

0,MGE and ψ̂
−
0,MGE. The size of the mean temporal effect, λ̂1,MGE, at 0.392

(0.009) is reasonably large considering that de-factoring is likely to have removed some of
the common dynamics in house price changes. With regard to the cross section dynamics,
contemporaneous positive spill-over effects have a larger magnitude than their equivalent
negative effects with the MG estimates of ψ+i0 and ψ

−
i0 given by ψ̂

+

0,MGE = 0.345 (0.017) and

ψ̂
−
0,MGE = −0.2763 (0.021) , respectively. The estimates in both cases are correctly signed
and clearly reject the hypothesis that Ψ+

j = Ψ−j , for j = 0 (and for j = 1 as discussed

below). Also, the MG estimates of the lagged spatial effects, ψ̂
+

1,MGE = −0.040 (0.015)

and ψ̂
−
1,MGE = 0.071 (0.016), are opposite in sign to the respective contemporaneous

effects, suggesting a certain degree of reversal of the effects. We also note that the mean
spatial effects of positive connections at 0.345 is somewhat higher than the mean effects
of negative connections at 0.276 (in absolute terms).
With regard to the statistical significance of the estimates for individual MSAs (ab-

stracting from multiple testing issues) we note that λ̂i1 is statistically significant in 90%
of the MSAs, whilst the contemporaneous spatial effects is significant in 65% of MSAs
with positive connections, and significant in 62% of MSAs with negative connections. In

15The MG estimator is defined as the simple average of the estimates across the MSAs with non-

zero coeffi cients. For example, the MGE of E
(
ψ+i0
)
= ψ+0 , is given by ψ̂

+

0,MGE = (1/N∗
+)
∑N∗

+

i=1 ψ̂
+

i0,

where N∗
+ denotes the number of MSAs with positive connections (N

∗
+ = N+/− + N+), and ψ̂

+

i0 is the

QMLE of ψ+i0. The non-parametric estimator of the variance of ψ̂
+

0,MGE is given by: V̂ ar
(
ψ̂
+

0,MGE

)
=

1

N∗
+(N∗

+−1)

∑N∗
+

i=1

(
ψ̂
+

i0 − ψ̂
+

0,MGE

)2
. For more details see Pesaran and Smith (1995).
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contrast, the lagged spatial effects turned out to be much weaker, with only 28 present
of positive connections and 26% of negative connections being statistically significant.
Overall, the estimates suggest there exists a reasonably rich temporal and cross-sectional
dependence in US house price changes even after stripping them of strong, pervasive
national and regional factors.

Table 7: Quasi-ML estimates of spatio-temporal model (25)
Applied to de-factored house price changes given by (21)

λ1 ψ+0 ψ−0 ψ+1 ψ−1 σζ
Computed over non-zero parameter coeffi cients

Median 0.3986 0.3124 -0.2493 -0.0430 0.0608 1.2416
Mean Group Estimates 0.3921 0.3454 -0.2763 -0.0398 0.0706 1.3056

(0.0086) (0.0168) (0.0209) (0.0147) (0.0156) (0.0181)
% significant (at 5% level) 89.8% 64.8% 61.9% 28.1% 26.4% -
Number of non-zero coef. 363 253 197 253 197 363
1Restricted parameter coeffi cients are set to zero. ψ̂

+
i0 = 0 and ψ̂

+
i1 = 0 if MSA i has no positive connections;

ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no negative connections; ψ̂

+
i0 = 0, ψ̂

+
i1 = 0, ψ̂

−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i

has no positive or negative connections, for i = 1, 2, ..., 363.
2MGE standard errors are in brackets.

To give an idea of the extent of parameter heterogeneity across MSAs, in Table 8 we
provide median and mean estimates by regions. Interestingly enough the regional differ-
ences are not very pronounced, particularly if we focus on the more precisely estimated
parameters. The regional estimates of λ1 range from the low value of 0.316 (0.021) for
the Great Lakes to a high value of 0.458 (0.025) for the Rocky Mountains. The regional
differences in the mean estimates of ψ+0 are even slightly lower and range from 0.264
(0.082) in the South West to 0.374 (0.042) for the Plains. In contrast, the estimates of
the negative connections, ψ−0 are less precisely estimated and range from −0.078 (0.099)
for New England to −0.370 (0.053) in the South West. But one should consider such
comparisons with care since in the case of some regions the number of non-zero estimates
was quite small. Nevertheless, one of our main conclusions that positive and negative
connections have opposite effects seems to be robust to the regional disaggregation. The
estimates of ψ+0 and ψ

−
0 are respectively positive and negative across all regions. The

results in Table 8 also support our conclusion that lagged spatial effects are generally not
that important and tend to be statistically insignificant in a number of regions. But once
again we need to bear in mind that some of the regional estimates are based on a rather
small number of non-zero estimates.
Finally, to assess the importance of de-factoring of house price changes we also esti-

mated the connection matrices Ŵ+ and Ŵ− without de-factoring, using the hierarchical
factor model (20). Not surprisingly we found Ŵ+ to be much denser as compared to the
estimates obtained based on de-factored price changes, and Ŵ− to be less dense. The
many more connections that we are finding when using price changes without de-factoring
reflect the presence of common factors rather than genuine spatial effects. In line with
this result we also find an estimate of spatial effects, ψ+0 , which is very close to unity
when we use a estimated Ŵ+ based on non-defactored price changes. Details of these
results are available upon request.
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Table 8: Quasi-ML estimates of spatio-temporal model (25) summarised by region
Applied to de-factored house price changes given by (21)

Computed over non-zero parameter coeffi cients

λ1 ψ+0 ψ−0 ψ+1 ψ−1 σζ
New England

Median 0.4064 0.2762 -0.0843 -0.0514 0.0209 1.1684
Mean Group Estimates 0.3944 0.3563 -0.0781 -0.0050 -0.0412 1.2704

(0.0303) (0.0996) (0.0991) (0.0430) (0.0784) (0.0966)
% significant (5% level) 86.7% 60.0% 50.0% 0.0% 30.0% -
Number of non-zero coef. 15 10 10 10 10 10

Mid East
Median 0.4278 0.3439 -0.1904 -0.0096 0.0625 1.3977
Mean Group Estimates 0.3990 0.3603 -0.1938 -0.0755 0.1129 1.4368

(0.0319) (0.0465) (0.1163) (0.0487) (0.0747) (0.0634)
% significant (5% level) 91.7% 65.4% 68.4% 30.8% 26.3% -
Number of non-zero coef. 36 26 19 26 19 36

South East
Median 0.4013 0.3242 -0.2686 -0.0538 0.0847 1.2384
Mean Group Estimates 0.4001 0.3563 -0.3062 -0.0596 0.0977 1.3469

(0.0162) (0.0262) (0.0326) (0.0234) (0.0242) (0.0427)
% significant (5% level) 90.4% 64.8% 61.6% 27.3% 31.5% -
Number of non-zero coef. 114 88 73 88 73 114

Great Lakes
Median 0.3176 0.2660 -0.2227 0.0149 0.0361 1.2492
Mean Group Estimates 0.3160 0.3304 -0.2846 0.0229 0.0407 1.3142

(0.0209) (0.0463) (0.0383) (0.0435) (0.0351) (0.0392)
% significant (5% level) 78.7% 63.4% 50.0% 31.7% 13.9% -
Number of non-zero coef. 61 41 36 41 36 61

Plains
Median 0.3808 0.3015 -0.2491 -0.1573 0.0597 1.1128
Mean Group Estimates 0.3751 0.3744 -0.2409 -0.1280 0.0825 1.1254

(0.0243) (0.0427) (0.0540) (0.0290) (0.0421) (0.0324)
% significant (5% level) 93.8% 75.0% 57.1% 29.2% 28.6% -
Number of non-zero coef. 32 24 21 24 21 32

South West
Median 0.3935 0.2944 -0.3053 -0.1023 0.0077 1.2877
Mean Group Estimates 0.4024 0.2642 -0.3695 -0.0576 0.0377 1.3385

(0.0209) (0.0823) (0.0525) (0.0630) (0.0560) (0.0301)
% significant (5% level) 94.7% 57.1% 82.4% 38.1% 23.5% -
Number of non-zero coef. 38 21 17 21 17 38

Rocky Mountains
Median 0.4435 0.3486 -0.2756 0.0155 0.1396 1.1618
Mean Group Estimates 0.4581 0.3177 -0.3086 0.0083 0.1033 1.2096

(0.0253) (0.0667) (0.0542) (0.0430) (0.0557) (0.0409)
% significant (5% level) 100.0% 70.0% 80.0% 10.0% 40.0% -
Number of non-zero coef. 22 10 10 10 10 22

Far West
Median 0.4672 0.3667 -0.2438 0.0330 0.0480 1.2158
Mean Group Estimates 0.4400 0.3591 -0.2673 0.0137 0.0155 1.2437

(0.0237) (0.0488) (0.0898) (0.0428) (0.0293) (0.0336)
% significant (5% level) 91.1% 63.6% 63.6% 30.3% 18.2% -
Number of non-zero coef. 45 33 11 33 11 45
1Restricted parameter coeffi cients are set to zero. ψ̂

+
i0 = 0 and ψ̂

+
i1 = 0 if MSA i has no positive

connections; ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no negative connections; ψ̂

+
i0 = 0, ψ̂

+
i1 = 0,

ψ̂
−
i0 = 0 and ψ̂

−
i1 = 0 if MSA i has no positive or negative connections, for i = 1, 2, ..., 363.

2MGE standard errors are in brackets below their respective Mean Group Estimates.
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5 Conclusions

An understanding of the spatial dimension of economic and social activity requires meth-
ods that can separate out the relationship between spatial units that is due to the effect
of common factors from that which is purely spatial. We are able to distinguish between
cross-sectional strong dependence and weak or spatial dependence. Strong dependence
in turn suggests that there are common factors. We have proposed the use of cross unit
averages to extract common factors and contrast this to a principal components approach
widely used in the literature. We then use multiple testing to determine significant bi-
lateral correlations (signifying connections) between spatial units and compare this to an
approach that just uses distance to determine units that are neighbours. In a very data
rich environment with observations on many spatial units over long periods of time a
way of filtering the data to uncover spatial connections is crucial. We have applied these
methods to real house price changes in the US at the level of the Metropolitan Statistical
Area. Although there is considerable overlap between neighbours determined by distance
and those by multiple testing, there is also considerable correlation between MSAs across
the United States that suggests that other forces are at work.
We also find that our analysis of connections based on pair-wise correlations of de-

factored house price changes clearly points to the existence of negative as well as positive
connections. This feature is absent if we base the spatial analysis exclusively on contiguity.
It is common in the literature to think of spatial relationships as involving spillover from
one area to another with the (implicit) assumption that the spillover effects are positive.
But this need not be the case. Migration across space could raise/lower wages or house
prices in one locality and lower/raise them into another locality.
Furthermore, we verify that basing the spatial analysis on house price changes without

de-factoring ignores the possibility that there may be common national and regional
factors and failing to condition on the common factors may bias the inferences that
can be drawn. Our analysis strips out such common effects and allows us to focus on
estimation of spillover effects (positive or negative) which is of primary interest in spatial
analysis. Although proximity measured by distance is a useful metric for constructing
the weights matrix, our analysis suggests that correlation analysis, once applied to de-
factored price changes with appropriate application of multiple testing techniques can
lead to important new insights as to the nature of spatial connections.

Appendices

Appendix I: Data sources

Monthly data for US house prices from January 1975 to December 2010 are taken from
Freddie Mac. These data are available at:
http://www.freddiemac.com/finance/fmhpi

The quarterly figures are arithmetic averages of monthly figures.
Annual CPI data at State level are obtained from the Bureau of Labor Statistics:
http://www.bls.gov/cpi/

The quarterly figures are interpolated using the interpolation technique described in the
appendix of GVAR toolbox 1.1 user guide.
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The annual population data at MSA level are obtained from the Regional Economic
Information System, Bureau of Economic Analysis, U.S. Department of Commerce:
http://www.bea.gov/regional/docs/footnotes.cfm?tablename=CA1-3

Appendix II: Geographical classification of the United States

Table A provides the geographical breakdown of the eight regions used in our analysis
of US house price changes which is based on the Bureau of Economic Analysis classifi-
cation (http://www.bea.gov/regional/docs/regions.cfm). Each region covers an average
of 6 States, each of which contains 45 Metropolitan Statistical Areas on average. The
classifications are shown in Table A together with the number of MSAs included in each
State. Details of the MSAs by region are available upon request.

Appendix III: Calculation of distance

The original data used were Latitude-Longitude of zip codes, cross referenced with each
of the 366 Metropolitan Statistical Areas (MSAs). Any missing Latitude-Longitude co-
ordinates were coded manually from Google searches. The geodesic distance between a
pair of latitude/longitude coordinates was then calculated using the Haversine formula:

a = sin2
(

∆lat

2

)
+ cos (lat1) cos (lat2) sin2

(
∆long

2

)
,

c = 2a tan 2
(√

a,
√

1− a
)
,

d = Rc,

where R is the radius of the earth in miles and d is the distance. ∆lat = lat2− lat1, and
∆long = long2− long1.
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