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SUPPLEMENTARY NOTE 1. THEORETICAL MODEL

We describe the Superconductor/Ferromagnetic Insulator/Superconductor (S/FI/S) junction using a two-dimensional (2D)
lattice model, as shown in Figure 1 of the main text, that we report in Supplementary Figure1.

The Hamiltonian of the junction in the Nambu⊗spin space is given by [1–3]

Ȟ = ∑
r,r′

Ψ
†(r)

[
Ĥ(r,r′) ∆̂(r,r′)
−∆̂∗(r,r′) −Ĥ∗(r,r′)

]
Ψ(r′), (1)

with Ψ(r) =
[
ψ↑(r),ψ↓(r),ψ†

↑ (r),ψ
†
↓ (r)

]T
. Here, ψ

†
µ(r) and ψµ(r) are the field operators creating/destructing an electron with

spin µ at the lattice point r = jx+my, with j = 0,1, . . . ,L,L+1 and m = 1, . . . ,W .
Here and in the followings, the symbols .̂ and .̌ describe the 2× 2 and 4× 4 matrices, in spin and Nambu⊗spin spaces

respectively.
In Equation 1, Ĥ is the normal-state Hamiltonian of the junction while ∆̂ describes the superconducting pairing potential. The

former can be written as Ĥ = ĤS + ĤFI, with ĤS and ĤFI referring to the S leads and FI barrier, respectively.
In Supplementary Figure(1), the S regions extend for j < 1 and j > L. ĤS consists in a kinetic energy term that reads:

ĤS(r,r′) =
[
−ts
(
δr,r′+x +δr+x,r′ +δr,r′+y +δr+y,r′

)
− (4ts−µs)δr,r′

]
σ̂0 (2)

× [Θ(− j+1)+Θ( j−L)] ,

where ts and µs are the hopping parameter and the chemical potential, respectively, and Θ is the Heaviside step-function. Here
and in the followings, we indicate with σ̂0 and σ̂ν (ν = 1,2,3) the unit and the Pauli matrices in the spin space, respectively.

In this work, we take the pairing potential ∆ different from zero only in the S leads, which, thus, vanishes inside the FI barrier.
Here, ∆ is of spin singlet s-wave symmetry and is expressed as

∆̂(r,r′) = ∆δr,r′ i σ̂2
[
Θ(− j+1)eiφL +Θ( j−L)eiφR

]
, (3)

where φ = φL−φR is the phase difference across the junction and φL (φR) is the phase in the left (right)-hand side superconductor.
In our model, the order parameter ∆ is constant in the leads and it is not derived from self-consistent calculations. Further, we

assume that there is no disorder in the superconductors.
The FI extends from j = 1 to j = L, its normal-state Hamiltonian HFI consists of four terms

ĤFI = Ĥk + Ĥsoc + Ĥex + Ĥi. (4)

Ĥk is the kinetic energy,
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Ĥk(r,r′) =
[
−t
(
δr,r′+x +δr+x,r′ +δr,r′+y +δr+y,r′

)
− (4t−µFI)δr,r′

]
σ̂0 (5)

×Θ( j)Θ(L+1− j) .

The spin-orbit coupling (SOC) Hamiltonian is

Ĥsoc(r,r′) = iα
[{

δr,r′+x−δr+x,r′
}

σ̂2 −
{

δr,r′+y−δr+y,r′
}

σ̂1
]

Θ( j)Θ(L+1− j) . (6)

The exchange potential is

Ĥex(r,r′) =−h′ ·σσσδr,r′Θ( j)Θ(L+1− j) , (7)

where σσσ is the vector of the Pauli matrices (σ̂1, σ̂2, σ̂3).
The on-site random impurity potential is

Ĥi(r,r′) = vr σ̂0 δr,r′Θ( j)Θ(L+1− j) . (8)

Here, we indicate with t the hopping integral among nearest-neighbor lattice sites, µFI the Fermi energy, α the amplitude
of the spin-orbit interaction, vr the on-site random impurity potential strength uniformly distributed in the range −Vimp/2 ≤
vr ≤Vimp/2. The exchange field is assumed to be slightly disordered and is modeled as h

′
= h+δh, where δh are small on-site

fluctuations given randomly in the range −h/10≤ δh ≤ h/10 (along the h-direction).
In order to calculate the Josephson current flowing through the junction, we have to evaluate the barrier Green’s function (GF)

connecting two lattice sites located at r and r′:

Ǧωn(r,r
′) =

[
Ĝωn(r,r′) F̂ωn(r,r′)
−F̂∗ωn(r,r

′) −Ĝ∗ωn(r,r
′)

]
, (9)

where, as before, Ĝ and Ǧ are matrices in the spin and Nambu⊗spin space respectively. Ǧ solves the following Gor’kov
equation [1–3]

[
iωnτ̂0σ̂0−∑

r1

(
Ĥ(r,r1) ∆̂(r,r1)
−∆̂∗(r,r1) −Ĥ∗(r,r1)

)]
× Ǧωn(r1,r′) = τ̂0σ̂0δ (r− r′), (10)

where ωn = (2n+1)πT is the fermionic Matsubara frequency and T is a temperature. Here and in the followings, we indicate
with τ̂0 and τ̂ν (ν = 1,2,3) the analogous of the unit and Pauli matrices in the Nambu space, respectively.

In this work, we use the Recursive Green’s Function (RGF) technique [1–3] to solve the Gor’kov Equation 10 and obtain the
Josephson current from the GFs connecting two adjacent sites along the x-direction (namely Ǧωn(r,r+ x) and Ǧωn(r+ x,r)),
that we can write as

J =− i e
2

T ∑
ωn

W

∑
m=1

Tr
[
τ̂3Ť+Ǧωn(r,r+x)− τ̂3Ť−Ǧωn(r+x,r)

]
, (11)

where Tr stands for the trace over the Nambu⊗spin space. Here, Ť± matrices describe the hopping and the SOC along the
propagation direction (x-direction) [3], and read:

Ť± =

(
−tσ̂0∓ iασ̂2 0

0 tσ̂0± iασ̂2

)
. (12)
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In Equation 11, in order to consider the contribution of all the lattice sites along the y-direction, the summation ∑
W
m=1 is

performed. Furthermore, the summation over the Matsubara frequencies is made until the convergence condition is reached.
Then, we calculate the current-phase relation (CPR) from Equation 11 at fixed temperature T by varying the phase difference φ

between the S leads from 0 to π . Finally, we compute the Ic(T ) curves from the maximum of the CPRs at temperature T ranging
from 0 to the critical temperature Tc.

The off-diagonal terms of the matrix in the right-hand side of Equation 9 are the so-called anomalous Green’s functions F̂ωn .
From these latter, taking the elements with r′ = r = jx+my, we can derive the four pairing components with s-wave symmetry
at each position j along the x-direction [3]:

1
W ∑

ωn

W

∑
m=1

F̂ωn(r,r) =
3

∑
ν=0

fν σ̂ν i σ̂2 , (13)

where f0 is the spin singlet component and fν with ν = 1,2,3 are the spin-triplet components. Here, similarly to Equation 11,
the summation ∑

W
m=1 is performed to take into account all the lattice sites with the same longitudinal coordinate j and different

index m in the transverse direction.
Analogous considerations can be applied to the GFs connecting the sites at the position r with their neighbors in r−x and r+x,
from which we can calculate the odd-parity p-wave pairing functions. Thus, the p-wave correlations inside the barrier, at the
position j along x-direction (r = jx+my), can be expressed as:

1
4W ∑

ωn

W

∑
m=1

[
F̂ωn (r+x,r)+ F̂ωn (r,r−x)− F̂ωn (r,r+x)− F̂ωn (r−x,r)

]
= (14)

3

∑
ν=0

fν σ̂ν i σ̂2.

Making explicit the second term in Equation 13 (Equation 14), we can rewrite the s-wave (p-wave) pairing components as



f0 =
f↑↓− f↓↑

2

f3 =
f↑↓+ f↓↑

2

f1 =
f↓↓− f↑↑

2

f2 =
f↑↑+ f↓↓

2 i
,

(15)

from which we extract the standard spin correlation functions, f0, f3, f↑ (that is f↑↑) and f↓ (that is f↓↓).

SUPPLEMENTARY NOTE 2. SIMULATION PARAMETERS

In the following, we report the choice of the model parameters used in the paper. Henceforth, we adopt units with h̄ = c =
kB = 1, where c is the speed of light, kB is the Boltzmann constant and h̄ is the reduced Planck constant.
The junction plane coincides with the xy-plane whereas the exchange field h′ is always in the perpendicular direction h′ = h′z
(along the z-direction).
All the energy parameters are expressed in dimensionless units where the energy scale is the hopping t in the FI. The α is scaled
by ta (with a lattice constant), while the Josephson current is calculated in units of J0 = e∆.

In our simulations, we fix several parameters as t = 1, µFI = 0, µs = 3, ∆ = 0.005, h = 0.25. Further, we note that NbN (S
leads) and GdN (FI barrier) are characterized by almost equal hopping parameters [4–6], which are, thus, set equal ts = t for the
sake of simplicity. As a matter of fact, in order to have a good agreement with experimental data, we model these devices as
tunnel junctions with GdN barrier in the ferromagnetic half metal regime [7–9]. Thus, we choose to assume different chemical
potentials for the S and FI regions. The estimate for the exchange energy h = |h| is chosen in agreement to the exchange field
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measured in several works for the bulk GdN [5, 6, 10–12], given that t ≈ 3eV [4–6] and the experimental constant lattice of
GdN is aGdN = 4.974Å.

When modeling the experiments, we use α as a measure of the spin-mixing and it is chosen to be α = 0.04, unless otherwise
indicated. Although we choose a small spin-orbit field so that α � h, it breaks the spin symmetry at interfaces and is sufficient
to cause the generation of long-range equal-spin triplet correlations with total spin projection Sz =±1.

Finally, we take Vimp in the range 0.05− 0.50. The chosen values of Vimp will be reported below where we will specify our
considerations to the different analyses carried out in the main text. Due to the presence of disorder, we perform ensemble
averages over several samples to obtain the final Ic(T ) curves and correlations. In particular, we use NS = 50−100 samples to
compute the average Ic(T ) and NS = 200−300 samples for the average correlation functions, depending on the strength of Vimp.

For the Ic(T ) curves in Figure(2) in the main text (as for the corresponding correlation functions in Figure(3)), we choose
systems with dimensions in the x and y directions, respectively: (a) L = 8, W = 24, (b) L = 8, W = 28, (c) L = 8,W = 32,
expressed in units of lattice sites.

Tunnel junctions experience an exponential suppression of the critical current when increasing the barrier thickness. In our
model, this implies dealing with systems of few lattice sites, hence, we choose L = 8 and keep it fixed in all the numerical
simulations, in agreement with the short-junction limit.

However, the main effect of increasing the experimental sample thickness (and so the magnetic area of the FI) consists in
enhancing the magnetic activity of the junction [13].

In our model, we manage to mimic this effect by changing the flux of the exchange field Φ(h) = LWh through the JJ (by the
means of the width of the barrier W ) and by tuning the impurity potential strength Vimp (thus, changing the influence of disorder
effects in the system).

In particular, by varying the width of the barrier W , we change the JJ effective area. In this way, we are able to control the
exchange field flux Φ(h) = LWh, without modifying the value of h, which is kept fixed to that of the bulk GdN [5, 6, 10–12].

In Figure(2), we set Vimp = 0.3 for the simulation in (a), Vimp = 0.37 in (b), and Vimp = 0.23 in (c), thus, tuning the disorder
effects in each simulated device.

Therefore, we use Φ(h) and Vimp as effective control parameters to model the peculiar Ic(T ) behavior of different junctions.
We notice that the Hamiltonian parameters, as well as the lattice size, have no microscopic origin and are chosen to describe the

main mechanisms that are expected to occur in the experimental devices. Even though the lattice size is scaled down compared
to the experimental system, we think that our theoretical model should give qualitatively an accordance with the experimental
results as long as the model parameters are adjusted accordingly.

In Figure(5) in the main text, we consider the L = 8,W = 32 junction. Here, we take different impurity potential values for
each computed Ic(T ) curve (along with the corresponding spin-correlation functions); Vimp = 0.3, Vimp = 0.23 and Vimp = 0.05.

To investigate on the role of spin-orbit coupling and impurities in a more general framework, in Figure(6) the L = 8,W = 32
junction is also analyzed for different values of SOC and of impurity potential (α and Vimp, respectively). To accomplish the
Ic(T ) diagram, we select the following values for the α and Vimp - axes: α = 0.04, 0.07, 0.1, 0.2 and Vimp = 0.05, 0.23, 0.3, 0.5.
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SUPPLEMENTARY FIGURE 1

Supplementary Figure 1: Two-dimensional lattice model scheme. Picture of the Superconductor/Ferromagnetic
Insulator/Superconductor two-dimensional lattice model. The barrier (blue sites) has a total thickness L along x and the
junction width is W along y. The spin-rotation mechanism due to the spin-orbit coupling is depicted by the spin-flipping

process highlighted at the interface between the superconducting boundaries (red sites) and the barrier. The impurities, with
random strength depicted by the height of the yellow potential peak, are represented on each site of the lattice. The exchange

field h is parallel to the z axis, while the hopping t between nearest-neighbour sites is here represented by pink arrows.
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SUPPLEMENTARY FIGURE 2

Supplementary Figure 2: Fraunhofer pattern curves. In (a), Fraunhofer pattern curves measured at 0.3K (black triangles), at
3K (blue circles) and at 7K (red squares) for the Josephson junction with dF = 3.0nm. Straight lines are only a guide for the

eye. The magnetic field H is normalized to the magnetic field periodicity H0. As shown in Figure 4 (b) of the main manuscript,
3K and 7K correspond to minimum and maximum, respectively, of the critical current vs. temperature Ic(T ) curve for a

magnetic field H/H0 = 75%. The shift of the Fraunhofer pattern curve due to the magnetic hysteresis of the barrier has been
removed in post-processing in order to ensure the comparison between the different Fraunhofer curves. The dashed line in (a)

refers to the magnetic field corresponding to 75%H0. The I(V ) curves measured at H = 75%H0 at the same temperatures
reported in (a) are reported as a reference: (b) at 0.3K, (c) at 3K and (d) at 7K.
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SUPPLEMENTARY FIGURE 3

Supplementary Figure 3: Tuning of the temperature dependence of the critical current in presence of an external
magnetic field for a non spin-filter Josephson junction. In (a), normalized critical current Ic(T,H/H0)/Ic(0.3K,H/H0)

density plot as a function of the percentage of periodicity H/H0 and the temperature T , for a non spin-filter Josephson junction
with GdN thickness dF = 1.5nm. Straight lines in (a) refer to the cross sections reported in (b): blue and square symbols for
H/H0 = 0%, red and circle symbols for H/H0 = 65% and green and triangle symbols for H/H0 = 75%. In non spin-filter

Josephson junctions the Ambegaokar-Baratoff [14] trend is preserved for any applied magnetic field, indicating the important
role of the magnetic activity in the system.
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