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Abstract: A new metric that analytically approximates the maximum a posteriori (MAP) solution 

is presented. Used with a decision-directed carrier phase estimation algorithm, the linewidth 

tolerance exceeds the limits achieved when using the conventional Euclidean distance.  
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1. Introduction 

Digital coherent receivers have become the preferred solution for current and next generation optical systems, 

including access networks [1], due to its ability to map the optical field onto the electrical domain and perform 

impairment compensation by means of digital signal processing techniques. A key algorithm in the DSP chain is the 

carrier phase estimation (CPE) which aims to overcome the transmitter and receiver lasers’ phase noise. 

There are two types of CPE algorithms: decision directed (DD) and non-decision directed (NDD). The most popular 

NDD algorithm is the Viterbi & Viterbi algorithm [2] which uses the power-law to obtain the phase estimation and 

has become widely used with M-PSK constellations. For higher order QAM constellations there are two principal 

decision directed algorithms which are relevant to the scope of this paper: the maximum a posteriori (MAP) [3] and 

the blind phase search (BPS) [4] algorithms. In one hand, the MAP estimation is optimum in terms that it takes into 

account the parameters for both ASE and phase noise sources but solving it requires a computationally expensive 

iterative joint minimization process. In the other hand, BPS provides a hardware-efficient implementation and is 

considered the de facto benchmarking algorithm for CPE comparison with higher order quadrature amplitude 

modulation (QAM) systems. However, the decision mechanism in BPS relies on Euclidean distance, which lacks of 

rotational sensitivity.  

In this paper, we propose a polar-based metric that finds the MAP estimate between two points in the plane in a 

closed-form solution. It will be shown that replacing the Euclidean distance with the proposed one in the BPS 

algorithm, the achievable linewidth tolerance limits can be improved significantly. 

2. Background 

The performance of CPE algorithms is usually evaluated across the figure combined linewidth-symbol period product 

(Δ𝜈𝑇𝑠) and assuming that the signal arriving to the block input has been perfectly equalized, and the frequency offset 

successfully removed. Thus, the incoming samples 𝑦(𝑘) can be expressed as follows: 

𝑦(𝑘) = 𝑥(𝑘)𝑒𝑗𝜑(𝑘) + 𝑛(𝑘),     (1) 

where 𝑥(𝑘) are the data symbols, 𝑛(𝑘) is the amplified spontaneous emission (ASE) noise described by a Gaussian 

process with variance 𝜎𝑛
2 and 𝜑(𝑘) is the combined transmitter and receiver phase noise which is modeled as a Wiener 

process with variance 𝜎𝑝
2 = 2𝜋Δ𝜈𝑇𝑠. 

The MAP estimation obtains the maximum sequence probability by minimizing the log-probability function [3]:  

log(𝑃) = ∑
|𝑦(𝑘)−𝑥(𝑘)exp(𝑗𝜑(𝑘))|

2

2𝜎𝑛
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2𝑘 .    (2) 

3.  Proposed metric definition: a polar based MAP approximation (pMAP) 

Since Eq. (2) does not yield a closed form solution, the proposed method consists of calculating the squared Euclidean 

distance following the cosine rule by which the squared of the distance 𝐷 shown in Fig. 1(a) can be calculated as 

𝐷2 = |𝑥|2 + |𝑦|2 − 2|𝑥| ⋅ |𝑦| cos(𝛼),     (3) 

and it can be simplified approximating the cosine function with its Taylor expansion up to the second term, such that 

cos(𝛼) ≈ 1 − 𝛼2 2⁄ . After few simple algebraic operations, the now approximated 𝐷2 can be expressed as follows: 

𝐷2 = (|𝑦| − |𝑥|)2 + |𝑥| ⋅ |𝑦| ⋅ 𝛼2.      (4) 

 



 
Fig 1. (a) Triangle formed by 2 points and the origin. (b) Composition of ASE and phase noise (c) Example set of equidistant curves in a 16QAM 

Replacing Eq. (4) into Eq. (3) and assuming the sample-by-sample approach (i.e. 𝜑(𝑘 − 1) = 0), the log-probability 

function to be minimized becomes as follows 

log(𝑃) =
(|𝑦|−|𝑥|)2+|𝑥|⋅|𝑦|⋅𝛼2

2𝜎𝑛
2 +

(arg⁡(𝑦)−arg⁡(𝑥)−𝛼)2

2𝜎𝑝
2  .    (5) 

Note that in Eq. (5) the phase noise component is implicitly denoted as 𝜑 = arg⁡(𝑦) − arg⁡(𝑥) − 𝛼 (see Fig. 1(b)). 

After differentiating Eq. (5) w.r.t. 𝛼 and equaling to zero, the angle 𝛼 that minimizes Eq. (5) is found to be 

𝛼 =
arg⁡(𝑦)−arg⁡(𝑥)

𝑘|𝑥||𝑦|+1
 ,      (6) 

where 𝑘 = 𝜎𝑝
2 𝜎𝑛

2⁄ . Finally, replacing the solved angle 𝛼 in Eq. (4), it is possible to write the proposed pMAP distance 

(squared) as follows:  

𝐷2(𝑥, 𝑦, 𝑘) = (|𝑦| − |𝑥|)2 + (
|𝑥||𝑦|

(𝑘|𝑥||𝑦|+1)2
) (arg⁡(𝑦) − arg⁡(𝑥))2.   (7) 

Fig. 1(c) shows an example of equidistant curves for three values of k using Eq. (7) for a 16QAM constellation. 

4.  Simulation Investigations 

Simulation setup 

To verify the effectiveness of the new metric in CPE, the performance of BPS algorithm is evaluated with the proposed 

pMAP metric and compared against the conventional Euclidean distance through extensive simulations. The tested 

modulation formats are 4-, 16-, 64-, and 256-QAM with differential encoding/decoding as described in [4]. Data is 

generated according to Eq. (1) for different values of signal-to-noise ratio (SNR) and Δ𝜈𝑇𝑠, and fed into BPS unit 

which is implemented as in [4] where for each symbol the decision 𝑥̂(𝑘) is made by finding the minimum sum: 

𝑠(𝑘, 𝑏) = ⁡∑ 𝐷2(𝑘 − 𝑛, 𝑏)𝑁
𝑛=−𝑁 ,     (8) 

where 𝐷 is either Euclidean or pMAP distance as in Eq. (7), 2𝑁 + 1 is the filter length and 𝑏 ∈ {0, 1.⋯ , 𝐵 − 1} , 𝐵 

being the number of test angles. In this work, we use 2 × 105 symbols for all data points, 𝑁 = 5, and 𝐵 = 32. 

Results and discussion 

To evaluate the performance, SNR penalty from theoretically achievable sensitivity with differential coding is 

calculated. Fig. 2 shows the measured SNR penalty at bit error ratio (BER) of 10-3 and it can be observed, except for 

QPSK –where due to symmetry both metrics make no difference- the linewidth tolerance limits exceed those achieved 

when using Euclidean distance. The linewidth enhancement achieved by using the proposed pMAP metric increases 

also for higher SNR penalties.  

Also the measured SNR penalty at a lower BER of 10-2 is shown in Fig. 3. Again, with the exception of QPSK, 

the pMAP metric is shown to improve the achievable linewidth tolerance for higher-order QAM constellations.  

Table I summarizes the achievable limits for Δ𝜈𝑇𝑠 and the equivalent maximum combined laser linewidth figures 

corresponding to a system operating at 32 Gbaud, for 1dB SNR penalty at BER values of 10-3 and 10-2. 
 

 



 
Fig 2. SNR penalty for QPSK, 16QAM, 64QAM, 256QAM at a BER of 10-3 

 
Fig 3. SNR penalty for QPSK, 16QAM, 64QAM, 256QAM at a BER of 10-2

 

 

TABLE I. SUMMARY OF MAXIMUM TOLERABLE LINEWIDTHS  

Modulation 

format 

1dB SNR penalty @ BER = 10-3 1dB SNR penalty @ BER = 10-2 

max tolerable Δ𝜈𝑇𝑠 max Δ𝜈 @ 32 GBaud max tolerable Δ𝜈𝑇𝑠 max Δ𝜈 @ 32 GBaud 

 Euclidean pMAP Euclidean pMAP Euclidean pMAP Euclidean pMAP 

4-QAM 1.7 × 10−3 54.4 MHz 2.5 × 10−4 8 MHz 

16-QAM 3.3 × 10−4 3.8 × 10−4 10.6 MHz  12.2 MHz 5 × 10−4 6 × 10−4 16 MHz 19.2 MHz 

64-QAM 0.8 × 10−4 1 × 10−4 2.56 MHz 3.2 MHz 1.5 × 10−4 1.7 × 10−4 4.8 MHz 5.44 MHz 

256-QAM 2.3 × 10−5 3 × 10−5 736 kHz 960 kHz 3.9 × 10−5 5 × 10−5 1.25 MHz 1.6 MHz 

5.  Conclusions  

A new polar-based metric to analytically solve the sample-by-sample MAP estimate in presence of both ASE and 

phase noise has been presented. Through simulations it has been shown that replacing the Euclidean distance with the 

presented pMAP metric in the BPS algorithm, it is possible to enhance the linewidth tolerance for high-order QAM 

modulation formats. 
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