Rearchitecting Kubernetes for the Edge

Andrew Jeffery
University of Cambridge

Heidi Howard
University of Cambridge

Richard Mortier
University of Cambridge

Department of Computer Science and Department of Computer Science and Department of Computer Science and

Technology
Cambridge, United Kingdom
andrew.jeffery@cl.cam.ac.uk

ABSTRACT

Recent years have seen Kubernetes emerge as a primary choice
for container orchestration. Kubernetes largely targets the cloud
environment but new use cases require performant, available and
scalable orchestration at the edge. Kubernetes stores all cluster state
in etcd, a strongly consistent key-value store. We find that at larger
etcd cluster sizes, offering higher availability, write request latency
significantly increases and throughput decreases similarly. Coupled
with approximately 30% of Kubernetes requests being writes, this
directly impacts the request latency and availability of Kubernetes,
reducing its suitability for the edge. We revisit the requirement of
strong consistency and propose an eventually consistent approach
instead. This enables higher performance, availability and scalabil-
ity whilst still supporting the broad needs of Kubernetes. This aims
to make Kubernetes much more suitable for performance-critical,
dynamically-scaled edge solutions.

CCS CONCEPTS

« Computing methodologies — Distributed computing method-

ologies.

KEYWORDS

edge, orchestration, Kubernetes, eventual consistency, CRDTs

ACM Reference Format:

Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting
Kubernetes for the Edge. In 4th International Workshop on Edge Systems, An-
alytics and Networking (EdgeSys "21), April 26, 2021, Online, United Kingdom.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3434770.3459730

1 INTRODUCTION

Recent years have seen containerisation and the associated orches-
tration become widespread in industry. Kubernetes [12], a container
orchestration platform, has emerged as a prominent solution in
datacenters. Edge use cases, with many thousands of nodes with
limited CPU cores and RAM, are now becoming more prevalent,
presenting the need for performant, available and reliable orches-
tration at the edge.

This work is licensed under a Creative Commons Atribution-NonCommercial-
ShareAlike International 4.0 License.

EdgeSys 21, April 26, 2021, Online, United Kingdom

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8291-5/21/04.

https://doi.org/10.1145/3434770.3459730

Technology
Cambridge, United Kingdom
heidi.howard@cl.cam.ac.uk

Technology
Cambridge, United Kingdom
richard.mortier@cl.cam.ac.uk

Kubernetes has been largely adopted across industry, with 59%
of large organisations using it in production [15]. Kubernetes’ flex-
ibility can enable Functions as a Service, storage orchestration [13]
and public-cloud integrations [7], and more. This adoption and
flexibility make Kubernetes an attractive platform for edge deploy-
ments. Kubernetes uses etcd [8], a strongly consistent distributed
key-value store, as a source of truth for all control-plane compo-
nents. This makes etcd a key factor in the path of all requests. A
background on Kubernetes and etcd is provided in §2.

While attractive, deploying Kubernetes at the edge still poses
some challenges. Both Kubernetes and etcd can be resource inten-
sive [9, 11], leading to dedicated efforts to target Kubernetes towards
the edge [3, 4, 10]. Edge environments typically have lower band-
width, higher latency network connections, especially to non-local
services than cloud datacenters. Contrastingly these environments
may be spread over much vaster scales and are expected to be more
responsive to user interactions due to proximity whilst tolerating
multiple failure classes. With these harsh conditions performant,
reliable and scalable orchestration is key. We investigate the per-
formance limitations of etcd, their impact on scalability and on
Kubernetes in §3.

Kubernetes’ reliance on etcd and its limited scalability lead to
both availability issues as well as efficiency issues at the edge. Ulti-
mately Kubernetes is limited by a fundamental design decision: the
reliance on strong consistency in the datastore. By revisiting this
design decision in §4 we aim to enable more performant, available
and scalable orchestration at the edge.

Without a reliance on strong consistency architectural changes
can become easier, especially with a focus on performance, avail-
ability and scalability. The implications along with related work
are discussed in §5 and §6.

The key contributions of this paper are:

(1) an explanation of how etcd can be a bottleneck in a Kuber-
netes cluster, §2

(2) a benchmark of etcd’s performance at scale and discussion
of the impact on availability, §3

(3) revisiting the design decision of strong consistency and
proposing to use eventual consistency, §4

2 KUBERNETES AND ETCD

Kubernetes organises containers into groups called Pods. Pods are
assigned to worker nodes where a local daemon (the Kubelet) man-
ages their lifecycle. Higher level resources are used to implement
concepts such as replicated Pods and services in the control-plane.
This control-plane is composed of Pods which reside on leader
nodes, implementing core functionality such as the scheduler and

https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://creativecommons.org/licenses/by-nc-sa/4.0/

EdgeSys "21, April 26, 2021, Online, United Kingdom

Table 1: Etcd request counts. Range requests are all linearis-
able. Requests with negligible count are omitted.

Request type Count Percentage

Range 1542 52.3
Txn Range 476 16.1
Txn Put 866 29.3
Watch create 67 2.3
Total 2951 100

API server. These control-plane components are stateless and scale
horizontally to aid performance and redundancy. The desired cluster
state and current status of applications, nodes and other resources
is stored in an etcd cluster.

Kubernetes is typically deployed in datacenter environments,
typified by high bandwidth, low latency network connections. Ide-
ally, deployments should be spread across multiple datacenters
for high availability [9]. This requires that leader nodes run in
each datacenter along with efcd nodes to tolerate limited failures.
However, deploying etcd across datacenters highlights the trade-off
between availability and consistency etcd faces as it scales. This
arises from the CAP theorem [24], with etcd sacrificing availability
during network partitions to retain strong consistency.

2.1 Etcd

Etcd is a strongly consistent, distributed, key-value store which uses
the Raft consensus protocol [33] to maintain consistency, requiring
amajority quorum. As a component of the Kubernetes control-plane
it can be deployed on standalone machines or hosted inside the
Kubernetes cluster like any other control-plane service. However,
etcd is not horizontally scalable due to overheads of maintaining
strong consistency with more nodes. Deployment recommenda-
tions suggest etcd clusters should be set up with 3 or 5 nodes to
attain high availability while avoiding these overheads [14].

Table 1 contains a breakdown of the Kubernetes requests to
a single node etcd cluster for some basic Kubernetes operations,
including setup, averaged over 10 runs. The operations carried out
were creating a deployment of 3 Pods, scaling it up to 10, back down
to 5 and then deleting the deployment. This provides a very simple
trace of requests for scaling service deployments in Kubernetes.
Range requests are gets over multiple keys, puts are writes to a single
key, these requests can also be contained within a transaction (txn).
A watch create request tells etcd to notify the requester of changes to
any keys in the provided range. From this table we can see that puts
make up approximately 30% of the total requests. Put requests may
increase in proportion over the cluster lifetime as changes become
more frequent and components rely on watches for updates rather
than polling with range requests. Etcd’s efficient handling of writes
is therefore an important factor for Kubernetes.

2.2 Scheduling walkthrough

This section walks through the steps required to schedule a new
Pod as part of a ReplicaSet. The steps are visualised in Figure 1.
Scheduling a new Pod can be a typical part of the process of reacting

Andrew Jeffery, Heidi Howard, and Richard Mortier

Custom controllers / Container
Deployment controller registry
Replicaset
controller ‘ Scheduler ‘ | Kubelet |

API server

]1,6,11,*\]4,9,15,*\

Etcd node 1
(leader)

4 AN
[5,10,16, % | |5,10,16, x|

Figure 1: Flow of requests to schedule a Pod. Control-plane
components are in red, efcd nodes in green, node-local com-
ponents in blue and cluster-external components in yellow.

to a change of the replicas field on a ReplicaSet resource. This change
of value could originate from a failed node, an autoscaler or a
manual scaling.

Step 1 and 2 see the updated ReplicaSet resource being sent to
the ReplicaSet controller due to its existing watch. This controller
then determines the necessary actions, creating a new Pod resource
in this case. Steps 3 and 4 see this Pod resource being written back
to etcd. Due to the strong consistency of etcd, step 5 is required to
reach a majority quorum for the write.

Steps 6 and 7 see the new Pod resource get passed to the scheduler.
This is also from a registered watch, but this time on Pod resources.
The Pod resource does not currently specify the node to run on. The
scheduler filters suitable nodes down and selects an appropriate one
to run the Pod. The scheduler then writes the updated Pod resource,
with an assigned node, back to etcd in steps 8 and 9. Again, this
write needs to be propagated to a majority quorum in step 10.

With an updated Pod resource which has an associated node the
Kubelet gets notified of the update in steps 11 and 12. With this
complete Pod description the Kubelet begins the setup process for
the containers. This includes pulling the container images from a
container registry in step 13. During the setup process of the Pod,
events will be written to the resource in etcd. This occurs in steps
14 and 15 with the associated etcd majority quorum writes in step
16.

After these steps the Pod should be set up and running on the
node, managed by the Kubelet. More events will continue to hap-
pen such as the ReplicaSet resource being updated with the new
replica count. It is also worth noting that a ReplicaSet resource is
typically controlled by a Deployment resource, adding extra layers
of communication and latency. These added layers can be extended
further due to Kubernetes custom controllers and resources, leading
to significantly increased communication and scheduling latency

Rearchitecting Kubernetes for the Edge

along with a later initialisation of the Pod. These are represented
by a % in Figure 1.

As can be seen, there are lots of steps, each requiring separate
writes to etcd and thus quorum of the cluster. Each of these in-
creases the latency for scheduling a Pod and becomes a part of
the dependency chain impacting reliability and availability. While
quorum writes within the etcd cluster are sent in parallel the overall
latency is dictated by the slowest node in the quorum. In particular,
this situation is exacerbated with a large cluster due to more load
on the leader for communication and nodes being less likely to all
operate within the same bounds.

3 ETCD PERFORMANCE

Operating etcd for performance and availability in challenging large
environments, such as the edge, requires it to scale efficiently while
retaining performance. This section outlines some initial results of
testing etcd’s scalability.

The tests used the official etcd benchmarking tool! with two
different operations: put and linearisable range requests. In etcd,
linearisable reads must return the value reflecting the consensus of
the cluster. Each run used only a single request type.

For each run a number of etcd nodes, at version 3.4.13, were
instantiated in Docker containers and arranged into a cluster with
secure communication over a Docker network. Each container was
limited to 2 CPUs and 1GB RAM, using an SSD for data storage. The
host machine was running Linux, kernel 4.15.0, on an Intel Xeon
4112, 16 core CPU with 196GB of RAM. Each test configuration was
repeated 10 times and medians of these repeats are presented. The
benchmark targeted all nodes, not just the leader, using 1,000 clients,
each with 100 connections, performing 100,000 operations in total
in each run. This aims to provide a best case scenario for etcd’s
performance and scalability in an idealised setting without network
latency. Network interactions would add further variability and
instability to the system, enabling more failure scenarios such as
partial partitions [1, 17].

Figure 2a shows that the strong consistency of writes certainly
comes at a cost in terms of latency, having to write the value to
a majority of nodes each time. Meanwhile, the read latency stays
comparatively low, avoiding the latency impact of flushing writes
to disk. As the cluster size increases the amount of synchronisation
work done by aleader node increases, causing the observed decrease
in performance. With an eventually consistent datastore the latency
of both reads and writes would be expected to remain similar to
each other and decrease as the cluster scales by spreading the load
more efficiently.

Figure 2b shows the effect of increasing node counts on through-
put. For both scenarios, large etcd cluster sizes lead to a severe
degradation of throughput, regardless of request type. The requests
require a majority quorum leading to lots of inter-node requests,
ultimately being a bottleneck and lowering throughput. Running
an eventually consistent datastore would lead to throughput in-
creasing with scale as there is no coordination during the request,
similar to the results observed in Anna [41].

!https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/
performance.md#benchmarks

EdgeSys "21, April 26, 2021, Online, United Kingdom

500 1
+ put
range
400 A
=
2300 1
g
£ 2001
g
=1
100 4
01— : : : : : : : : :
3 5 7 9 11 13 15 17 19 21
Cluster node count
(a) Median latency, error bars at p10 and p90.
+ put
301 range
25 1

Requests per second (thousands)

S-M

3 5 7 9 11 13 15 17 19 21
Cluster node count

(b) Median throughput, error bars at p10 and p90.

Figure 2: Results of scalability testing with etcd.

Due to this limited performance at scale, etcd imposes a trade-off
of performance or availability. This limit on availability can leave
Kubernetes clusters unable to make progress in the event of failures
or scale services to cope with demand. These results, coupled with
puts forming a significant proportion of Kubernetes requests, show
that etcd and such strongly consistent datastores are not going to
be sufficient in the harsher conditions of the edge environment.

4 EVENTUALLY CONSISTENT DATASTORE

This section outlines the planned work to replace etcd with an
eventually consistent datastore and some implementation consid-
erations.

4.1 The etcd API

Due to the coupling between the API server and etcd cluster the
proposed work will need to implement and expose the same API,
though the inner workings and guarantees will differ. This ensures
that no changes to Kubernetes components would be required.
Some behaviours of the API exposed by the proposed work will
not correspond to that of etcd due to the difference in architecture.

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md#benchmarks
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md#benchmarks

EdgeSys "21, April 26, 2021, Online, United Kingdom

Custom controllers / Container
Deployment controller registry
Replicaset
controller ‘ Scheduler ‘ | Kubelet |

T
|

API server

]1,5,9,*\]4,8,13,*\

Datastore
node 1
b4 A
lazy syncing ' | lazy syncing
3 LN
Datastore E] Datastore
node 2 node 3

Figure 3: Flow of requests to schedule a Pod with the pro-
posed datastore. Syncing between datastore nodes is now
lazy, not interfering with the critical path of the request.

For instance, reporting which node is the leader is non-sensical
in the proposed work, instead it will likely report each node as a
leader.

4.2 Lazy syncing

To implement the functionality of this API and attain low latency,
the proposed datastore needs to allow reads and writes to a single
node to be performed without immediate communication with
other nodes. This enables the possibility of concurrent writes to
different nodes, introducing conflicts in the stored data. Conflict-
free replicated datatypes [37] (CRDTs) enable these conflicts to
be resolved upon syncing with other nodes in a lazy, rather than
eager, manner. This will enable fast responses to the API server
even at large scales, as demonstrated in Figure 3, due to no requests
between the datastore nodes in the critical path.

CRDTs come in two main varieties: state-based and operation-
based. To synchronise two replicas state-based CRDTs transfer the
entire local state for combination with the remote state. In contrast,
operation-based CRDTs transfer operations to be applied on the
remote state. Operation-based CRDTs have minimal bandwidth
requirements compared to state-based CRDTs though recent work
has helped to close this gap [18, 23, 40].

Kubernetes uses protobuf schema files to declare the format of
resources to be stored in etcd, resembling JSON. These resources are
not already CRDTs so this translation will be within the datastore.
This may require calculating the change between the new and
stored values, extracting the operations to apply to the CRDT. With
these operations and the knowledge of the data format we can use
a JSON CRDT [27] to provide eventual consistency for Kubernetes
resource objects. Recent work [28] has also introduced low latency,
single round trip syncing of operations between nodes in untrusted

10

Andrew Jeffery, Heidi Howard, and Richard Mortier

environments. This can be applied to CRDTs providing an efficient
method of synchronisation for the edge.

4.3 Impact on Kubernetes

From Table 1 we saw that transactions make up a large component
of the requests to etcd. Due to a lack of consensus, transactions for
the proposed datastore would only operate on data in the targeted
store at the execution time. This means that they could act on
stale data with respect to other nodes. However, probabilistically
bounded staleness [19] shows that an eventually consistent system
can often still present the latest updates to data. Additionally, due to
the control loop employed by Kubernetes components, any errors
should be rectified quickly. For instance, if two separate nodes
increase the count on a ReplicaSet resource concurrently, two new
Pods may be scheduled. When these datastore nodes synchronise,
these changes may get combined into a total increase of 2 replicas.
The Kubernetes controllers can then observe this new value and
decide whether this can remain or it should be decreased.

5 IMPLICATIONS FOR ARCHITECTURES

Due to the improved scalability and lack of consensus in the pro-
posed datastore it would be possible to use autoscaling. This would
enable more optimal resource usage, reacting to demand. If the
datastore is hosted inside the Kubernetes cluster then the native
horizonal autoscaler could be employed as a low complexity solu-
tion. This is currently not practical with etcd due to scaling limi-
tations coupled with the more static nature of strongly consistent
systems.

The proposed datastore, while enabling higher availability de-
ployments through scalability, also enables a partitioned datacenter
to remain operational. Remaining able to respond to failures or
changes in demand is a key operational benefit as system failures
often cause complex problems [1].

In an edge environment, the proposed datastore could be spread
across the Kubernetes cluster at greater scale. This enables utilising
the horizontal scalability of the stateless control-plane to lower
latencies, in particular for scheduling. Etcd cannot be scaled to this
extent, imposing a lower limit on request latencies.

With this scalability it could be feasible to deploy control-plane
components with a datastore on each worker node, making Kuber-
netes decentralised. The current Kubernetes scheduler could then
be replaced with a local-first distributed scheduler, leveraging the
vast literature surrounding distributed scheduling [34, 38, 39, 42].
This rearchitecting would mean that the scheduling process would
not require any requests to leave the originating node, drastically
reducing scheduling latency. This could enable efficient reactive
autoscaling and potentially native Functions as a Service.

6 RELATED WORK

New use cases for edge environments include 5G networking [20],
in-network computing [30] and elastic CDNs [31]. These all re-
quire orchestrating lots of machines at the edge with emphasis
on low latency and reliability. Recent work has seen Kubernetes
already become popular for this orchestration at the edge [21, 22].
Kubernetes, with a more performant and available core, can fit the
orchestration frameworks required for these use cases to offload

Rearchitecting Kubernetes for the Edge

work from the cloud, improve latency for requests and provide
service-level adaptability.

Federated Kubernetes [5] distributes work between clusters, con-
sisting of a host cluster that is responsible for distributing the work
between member clusters. This centralised approach has a similar
downside to a large single cluster, leading to new research into a
decentralised model of federation using CRDTs [32]. This separates
cluster-local state from federation state, focusing on just the feder-
ation state. Our work instead tackles the problem of cluster-local
state.

DOCMA [26] is a new orchestrator for container based microser-
vices. This achieves a decentralised architecture enabling deploy-
ments with several thousands of nodes. However, this lacks a sig-
nificant number of features Kubernetes provides. DOCMA shows
that decentralised orchestration is highly scalable and provides
significant redundancy.

Proposed Kubernetes architectures for edge environments vary
but are all constrained by the centralised state in etcd. Some propose
hosting the leader nodes and etcd in a datacenter and only worker
nodes at the edge [3]. However, connections to the cloud can have
high latencies and be unreliable meaning further engineering is
required to have a robust edge [2, 6]. Others propose deploying
everything to the edge, including the datastore [4], though resource
limitations can make this less viable.

Software defined networking has seen lots of research around
consistency of control-plane state [25, 29, 36]. Concepts such as
adaptive consistency [36] and data-partitioning based on consis-
tency requirements [29] may prove useful to augment our datastore.
Alternatively, strongly consistent systems can avoid the need for
strict majority quorums, leading to more scalable systems [16, 35].
However, these all inherit the trade-off of latency and consistency.
Instead, we focus on minimising latency to offer performance and
availability in the challenging edge environment.

7 CONCLUSION

This paper has highlighted the extensive reliance of Kubernetes
on etcd and the factors leading to lower availability and a delay in
scheduling. We observed that etcd poses a bottleneck in cluster scal-
ability, with an impact on scheduling latency and availability of the
whole system due to its limited performance at scale. Our results
support our key observation that reliance on strong consistency
in the datastore limits the performance, availability and scalabil-
ity of Kubernetes. We propose to build a decentralised, eventually
consistent store specialised to Kubernetes in order to combat these
issues. This redesign also leads to the opportunity to rearchitect
Kubernetes for edge environments, offering increased performance,
availability and scalability. These improvements could lead to lower
latency, larger scale deployments at the edge and hope to inform
the future of orchestration platforms, targeting decentralised ap-
proaches for availability and performance.

ACKNOWLEDGEMENTS

This work is funded in part by EPSRC EP/R03351X/1, EP/M02315X/1
and EP/T022493/1.

11

EdgeSys "21, April 26, 2021, Online, United Kingdom

REFERENCES

[1] 2020. A Byzantine failure in the real world. Retrieved January 13, 2021 from
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/

[2] 2020. An open platform that extends upstream Kubernetes to Edge. Retrieved
January 13, 2021 from https://openyurt.io/en-us/index.html

[3] 2020. K3s: The certified Kubernetes distribution built for IoT & Edge computing.
Retrieved January 13, 2021 from https://k3s.io/

[4] 2020. KubeEdge An open platform to enable Edge computing. Retrieved January
13, 2021 from https://kubeedge.io/en/

[5] 2020. KubeFed: Kubernetes Cluster Federation. Retrieved January 13, 2021 from
https://github.com/kubernetes-sigs/kubefed

[6] 2020. SuperEdge: An edge-native container management system for edge computing.
Retrieved January 13, 2021 from https://github.com/superedge/superedge

[7] 2021. Cloud Controller Manager. Retrieved February 09, 2021 from https://
kubernetes.io/docs/concepts/architecture/cloud-controller/

[8] 2021. Etcd: A distributed, reliable key-value store for the most critical data of a
distributed system. Retrieved February 09, 2021 from https://etcd.io/

[9] 2021. Etcd: Hardware recommendations. Retrieved February 09, 2021 from

https://etcd.io/docs/v3.4.0/op-guide/hardware

2021. K0s: The Simple, Solid & Certified Kubernetes Distribution. Retrieved January

13, 2021 from https://kOsproject.io/

2021. Kubernetes kubeadm resource requirements. Retrieved February 16, 2021

from https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/

create-cluster-kubeadm/

2021. Kubernetes: Production-Grade Container Orchestration. Retrieved February

09, 2021 from https://kubernetes.io/

2021. Rook: Open-Source, Cloud-Native Storage for Kubernetes. Retrieved February

09, 2021 from https://rook.io/

2021. Scaling up etcd clusters. Retrieved February 09, 2021 from

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-

etcd/#scaling-up-etcd-clusters

2021. Why Large Organizations Trust Kubernetes. Retrieved March 31, 2021

from https://tanzu.vmware.com/content/blog/why-large- organizations- trust-

kubernetes

Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2020.

WPaxos: Wide Area Network Flexible Consensus. IEEE Transactions on Parallel

and Distributed Systems 31, 1 (2020), 211-223. https://doi.org/10.1109/TPDS.2019.

2929793

Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.

2020. Toward a Generic Fault Tolerance Technique for Partial Network Partition-

ing. In Operating Systems Design and Implementation (OSDI) 2020.

Paulo Sergio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient state-based

CRDTs by delta-mutation. https://doi.org/10.1007/978-3-319-26850-7_5

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,

and Ion Stoica. 2012. Probabilistically Bounded Staleness for Practical Partial

Quorums. Proceedings of the VLDB Endowment 5, 8 (April 2012), 776-787. https:

//doi.org/10.14778/2212351.2212359

Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tommaso

Melodia. 2020. Open, Programmable, and Virtualized 5G Networks: State-of-

the-Art and the Road Ahead. Computer Networks 182 (2020), 107516. https:

//doi.org/10.1016/j.comnet.2020.107516

Hung-Li Chen and Fuchun J. Lin. 2019. Scalable IoT/M2M Platforms Based on

Kubernetes-Enabled NFV MANO Architecture. In International Conference on

Internet of Things (iThings) 2019. https://doi.org/10.1109/iThings/GreenCom/

CPSCom/SmartData.2019.00188

Corentin Dupont, Raffaele Giaffreda, and Luca Capra. 2017. Edge computing in

IoT context: Horizontal and vertical Linux container migration. In Global Internet

of Things Summit (GIoTS) 2017. https://doi.org/10.1109/GIOTS.2017.8016218

Vitor Enes, Paulo S. Almeida, Carlos Baquero, and Jodo Leitdo. 2019. Efficient

Synchronization of State-Based CRDTs. In IEEE International Conference on Data

Engineering (ICDE) 2019. https://doi.org/10.1109/ICDE.2019.00022

Armando Fox and Eric A. Brewer. 1999. Harvest, yield, and scalable tolerant

systems. In Hot Topics in Operating Systems (HotOS) 1999. https://doi.org/10.

1109/HOTOS.1999.798396

Soheil Hassas Yeganeh and Yashar Ganjali. 2012. Kandoo: A Framework for

Efficient and Scalable Offloading of Control Applications. In Hot Topics in Software

Defined Networks (HotSDN) 2012. https://doi.org/10.1145/2342441.2342446

Lara L. Jiménez and Olov Schelén. 2019. DOCMA: A Decentralized Orchestrator

for Containerized Microservice Applications. In 2019 IEEE Cloud Summit. https:

//doi.org/10.1109/CloudSummit47114.2019.00014

Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free Replicated

JSON Datatype. IEEE Transactions on Parallel and Distributed Systems 28, 10

(2017), 2733-2746. https://doi.org/10.1109/TPDS.2017.2697382

Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual Consistency

and the Fundamental Limits of Peer-to-Peer Databases. arXiv:2012.00472 [cs.DC]

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,

Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama,

=
2

oy
)

=
&

[20

[21

[22

~
=

[24

[25]

[26]

&
=

[28

[29

https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://openyurt.io/en-us/index.html
https://k3s.io/
https://kubeedge.io/en/
https://github.com/kubernetes-sigs/kubefed
https://github.com/superedge/superedge
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://etcd.io/
https://etcd.io/docs/v3.4.0/op-guide/hardware
https://k0sproject.io/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/
https://rook.io/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#scaling-up-etcd-clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#scaling-up-etcd-clusters
https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes
https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes
https://doi.org/10.1109/TPDS.2019.2929793
https://doi.org/10.1109/TPDS.2019.2929793
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.14778/2212351.2212359
https://doi.org/10.14778/2212351.2212359
https://doi.org/10.1016/j.comnet.2020.107516
https://doi.org/10.1016/j.comnet.2020.107516
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00188
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00188
https://doi.org/10.1109/GIOTS.2017.8016218
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1109/HOTOS.1999.798396
https://doi.org/10.1109/HOTOS.1999.798396
https://doi.org/10.1145/2342441.2342446
https://doi.org/10.1109/CloudSummit47114.2019.00014
https://doi.org/10.1109/CloudSummit47114.2019.00014
https://doi.org/10.1109/TPDS.2017.2697382
https://arxiv.org/abs/2012.00472

EdgeSys "21, April 26, 2021, Online, United Kingdom

and Scott Shenker. 2010. Onix: A Distributed Control Platform for Large-Scale
Production Networks. In Operating Systems Design and Implementation (OSDI)
2010.

Michat Krol, Spyridon Mastorakis, David Oran, and Dirk Kutscher. 2019. Compute
First Networking: Distributed Computing Meets ICN. In Information-Centric
Networking (ICN) 2019. https://doi.org/10.1145/3357150.3357395

Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri Volchkov, Florian
Schmidt, Kenichi Yasukata, Michio Honda, and Felipe Huici. 2017. Unikernels
Everywhere: The Case for Elastic CDNs. In Virtual Execution Environments (VEE)
2017. https://doi.org/10.1145/3050748.3050757

Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth. 2020. Decen-
tralized Kubernetes Federation Control Plane. In Utility and Cloud Computing
(UCC) 2020. https://doi.org/10.1109/UCC48980.2020.00056

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In USENIX Annual Technical Conference (USENIX ATC)
2014.

Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. 2015.
Hopper: Decentralized Speculation-Aware Cluster Scheduling at Scale. In Special
Interest Group on Data Communication (SSGCOMM) 2015. https://doi.org/10.1145/

Andrew Jeffery, Heidi Howard, and Richard Mortier

[36] Ermin Sakic, Fragkiskos Sardis, Jochen W. Guck, and Wolfgang Kellerer. 2017.

Towards adaptive state consistency in distributed SDN control plane. In IEEE
International Conference on Communications (ICC) 2017. https://doi.org/10.1109/
ICC.2017.7997164

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of
Distributed Systems.

John A Stankovic. 1984. Simulations of three adaptive, decentralized controlled,
job scheduling algorithms. Computer Networks (1976) 8, 3 (1984), 199-217. https:
//doi.org/10.1016/0376-5075(84)90048-5

[39] John A. Stankovic. 1985. Stability and Distributed Scheduling Algorithms. IEEE

Transactions on Software Engineering SE-11, 10 (1985), 1141-1152. https://doi.
org/10.1109/TSE.1985.231862

Albert van der Linde, Joao Leitdo, and Nuno Preguica. 2016. A-CRDTs: Making
5-CRDTs Delta-Based. In Principles and Practice of Consistency for Distributed
Data (PaPoC) 2016. https://doi.org/10.1145/2911151.2911163

Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. 2018. Anna: A
KVS for Any Scale. In IEEE 34th International Conference on Data Engineering
(ICDE) 2018. https://doi.org/10.1109/ICDE.2018.00044

2785956.2787481 (42
[35] Denis Rystsov. 2018. CASPaxos: Replicated State Machines without logs.
arXiv:1802.07000 [cs.DC]

Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple Technique for Achiev-
ing Locality and Fairness in Cluster Scheduling. In European Conference on Com-
puter Systems (EuroSys) 2010. https://doi.org/10.1145/1755913.1755940

12

https://doi.org/10.1145/3357150.3357395
https://doi.org/10.1145/3050748.3050757
https://doi.org/10.1109/UCC48980.2020.00056
https://doi.org/10.1145/2785956.2787481
https://doi.org/10.1145/2785956.2787481
https://arxiv.org/abs/1802.07000
https://doi.org/10.1109/ICC.2017.7997164
https://doi.org/10.1109/ICC.2017.7997164
https://doi.org/10.1016/0376-5075(84)90048-5
https://doi.org/10.1016/0376-5075(84)90048-5
https://doi.org/10.1109/TSE.1985.231862
https://doi.org/10.1109/TSE.1985.231862
https://doi.org/10.1145/2911151.2911163
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1145/1755913.1755940

	Abstract
	1 Introduction
	2 Kubernetes and etcd
	2.1 Etcd
	2.2 Scheduling walkthrough

	3 Etcd performance
	4 Eventually consistent datastore
	4.1 The etcd API
	4.2 Lazy syncing
	4.3 Impact on Kubernetes

	5 Implications for architectures
	6 Related work
	7 Conclusion
	References

