
Addressing hysteresis and slow equilibration issues in cavity-based calculation of

chemical potentials

C. R. Wand,1 T. S. Totton,2 and D. Frenkel1

1)Department of Chemistry, University of Cambridge, Cambridgeshire, CB2 1EW,

United Kingdom a)

2)BP Exploration Operating Co. Ltd., Sunbury-on-Thames, TW16 7LN,

United Kingdom

(Dated: 5 June 2018)

In this paper we explore the strengths and weaknesses of a cavity-based method

to calculate the excess chemical potential of a large molecular solute in a dense

liquid solvent. Use of the cavity alleviates some technical problems associated with

appearance of (integrable) divergences in the integrand during alchemical particle

growth. The excess chemical potential calculated using the cavity-based method

should be independent of the cavity attributes. However, the performance of the

method (equilibration time and the robustness) does depend on the cavity attributes.

To illustrate the importance of a suitable choice of the cavity attributes, we calculate

the partition coefficient of pyrene in toluene and heptane using a coarse-grained

model. We find that a poor choice for the functional form of the cavity may lead to

hysteresis between growth and shrinkage of the cavity. Somewhat unexpectedly, we

find that, by allowing the cavity to move as a pseudo-particle within the simulation

box, the decay time of fluctuations in the integrand of the thermodynamic integration

can be reduced by an order of magnitude, thereby increasing the statistical accuracy

of the calculation.
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I. INTRODUCTION

Predicting the solubility of substances is of great importance across many scientific dis-

ciplines. In view of the importance of the topic, it is not surprising that many different

methodologies to compute solubilities have been reported in the literature1–9. However, us-

ing molecular simulations to predict solubility, in particular for sparingly soluble substances,

remains non-trivial. Examples of the importance of accurate solubility calculations include

drug solubility in the pharmaceutical industry10–13, and the solubility of sugars, food ad-

ditives and unwanted contaminants in the food industry14,15. Not only aqueous solubility

is of industrial importance: in the oil and gas industry crude oil fractions may be defined

by their relative solubilities in hydrocarbon solvents. For example an asphaltene fraction

is defined as soluble in toluene and insoluble in n-heptane16. Asphaltene phases typically

consist of a mixture of different molecular species with a mean molecular weight of around

700u17. Asphaltenes are prone to aggregation that is driven by changes in condition, such

as pressure, temperature or compositional changes by blending/incorporating with other

elements such as other incompatible oils or gases.16–21.

To explore some of the issues that may arise when computing the solubility of larger

molecules, such as asphaltenes, we consider the relative solubility of pyrene (fig 2c) between

toluene and heptane. Pyrene, which may be viewed as a mini-asphaltene, is a polycyclic

aromatic hydrocarbon (PAH) formed of four fused rings. It is commonly found as a com-

bustion product for a wide range of conditions22. There are a number of ways to calculate

the absolute solubility via simulations, one of the simplest to understand is a ‘brute force’

simulation of the two coexisting phases, i.e. solid and solution or gas and solution. How-

ever, these brute force simulations require large simulations and long timescales to reach

equilibrium which can be on the order of ns for even highly soluble solutes6,9,23. Other

theoretical techniques employ standard thermodynamic relations to calculate the solubility,

equating the chemical potentials of the solid and solution phases7,24,25. Such calculations

require the direct calculation of the chemical potentials of the relevant species in the two

phases or by employing the osmotic ensemble method/OEMD/OEMC1,4,8,26. The osmotic

ensemble method calculates the composition of the saturated solution phase by imposing

the chemical potential of the corresponding solid phase in a grand canonical approach. The

osmotic ensemble has typically been applied to small solutes, both in solution and metal-
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organic frameworks27–29, as the initial and final states need to be similar. Moving away from

particle-based methods, analytical models have been developed to investigate the solubility

of large solutes in non-aqueous solvents and can accurately predict the solubility of PAHs

in a range of solvents30–32. However, these analytical models do not provide insight into the

molecular-level driving force for the solubility.

The relative solubility can be quantified by the partition coefficient, PI/II , or solubility

ratio33, which gives the relative solubility of a substance A, between solvents I and II and

is simply defined as

PI/II =
[A]I
[A]II

(1)

and is often reported as a logarithmic value, logPI/II . In principle, logPI/II for two im-

miscible solvents (e.g. water and octanol) can be obtained from experiment by using a

shake-flask. However this approach is less attractive when considering sparingly soluble

solutes34,35. Moreover, the method cannot be applied to solvents that are miscible, e.g.

toluene and heptane. Computer simulation based techniques allow us to estimate the par-

tition coefficient of a solute between two miscible liquids. The advantage of considering

relative solubilities, as opposed to absolute solubilities, is that the solid phase need not be

considered. There are several advantages associated with bypassing the solid phase. Firstly,

the structure of the solid phase may be unknown, particularly in the case of amorphous

or polymorphic materials. Additionally, the same force field should be employed for both

the solid and solution phases. Many pre-existing universal force fields are state specific,

primarily developed for the solution36,37. Thus the force field may not be an adequate rep-

resentation of the solute in the solid phase. By calculating the relative solubilities using the

partition coefficient, we avoid these complications.

In this paper we show that the partition coefficient can be calculated using the cavity-

based method previously employed by Li et al25 with a coarse-grained model of pyrene

between toluene and heptane as an example. The methodology employed is simple and

can readily be implemented in available open-source software or in-house programs with

a variety of force fields. We show that, although in principle the attributes of the softly

repulsive cavity should not influence the calculation, in practice the cavity attributes may

affect both the accuracy and efficiency of the calculation.

The remainder of the paper is organised as follows. In Section II we discuss the theoretical

background of the partition coefficient and the cavity-based method for calculating the excess

3



chemical potential before discussing the model and simulation details. In Section III we

present and discuss our findings.

II. METHODOLOGY

A. Theoretical background

1. Partition coefficient

We calculate the partition coefficient
(
logPI/II

)
of pyrene between toluene and heptane as

an example of the cavity-based method previously employed by Li et al25, which is detailed

below. The partition coefficient is defined as the ratio of solubilities of the solute of interest,

in this case pyrene, between solvents I and II, equation (1). The derivation of the partition

coefficient from the excess chemical potentials is given in Appendix A. However for the sake

of clarity we briefly discuss it here.

At equilibrium the (total) chemical potential, µ (T, p), at a given temperature, T, and

pressure, p, of the solute in both the solvents is equal;

µI (T, p) = µII (T, p) (2)

where the superscript denotes the solvent of interest and the chemical potential is given by

µ (T, p) = µideal (T, p) + kBT ln ρ− kBT ln〈exp [−βUsolute−solvent (Rsolute)]〉0 (3)

where µideal (T, p) is the ideal gas contribution to the chemical potential, kB is the Boltzmann

constant, ρ is the density (analogous to the concentration), β = 1/kBT and Usolute−solvent (Rsolute)

is the interaction energy of the solute with the rest of the rest of the system. The final term

in equation (3) is defined as the excess chemical potential, µexcess. Given equations (2) and

(3), it follows that when the two phases are at equilibrium

kBT ln ρI − µIexcess = kBT ln ρII − µIIexcess (4)

where the µideal (T, p) contributions have cancelled as they are independent of the solvent.

Rearranging equation (4) leads to an expression for the partition coefficient,

lnPI/II = ln

(
ρI

ρII

)
= β

(
µIIexcess − µIexcess

)
, (5)
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which can then be converted to logPI/II , the usual format for reporting the partition coef-

ficient.

2. Excess Chemical potential calculation via the cavity method

The excess chemical potential, µexcess, is defined as the change in Gibbs free energy, associ-

ated with adding a single solute into the system at constant T, p,Nsolvent, Nsolute, ∆Gsolvation,

where Nsolvent and Nsolute are the number of solvent and solute molecules respectively. In the

present case we deal with a system at infinite dilution inserting a single solute molecule into

a pure solvent system, i.e. Nsolute = 0. However, the methodology is equally applicable to

concentrated solutions. ∆Gsolvation can be calculated from simulations utilising a variety of

methods including test particle insertion38, and growing the solute of interest directly into a

solvent39,40. However, the former method fails at high densities and the latter method suffers

from an (integrable) “end-point”singularity which can lead to inaccuracies due to particle-

particle overlaps. This problem has previously been addressed by a variety of approaches

including non-linear coupling schemes39 and soft-core potentials41,42. In the systems that

we study, the large size of the solute of interest and the high density of the solvent phase

imply that such overlaps are highly likely in any methodology that relies on direct insertion.

To eliminate the possibility of overlaps occurring when introducing the solute molecule, we

initially grow a soft repulsive cavity within the solvent before inserting the solute into the

cavity and finally shrinking the cavity. Thus

∆Gsolvation = ∆Ggrow + ∆Ginsert + ∆Gshrink (6)

and is shown schematically in fig 1 .

An additional advantage of the use of a cavity to calculate ∆Gsolvation is that the initial

calculation for growing the cavity, ∆Ggrow is independent of solute identity: thus it only has

to be calculated once for each set of conditions, i.e. T, p, solvent and cavity size.
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FIG. 1. A schematic showing the alchemical thermodynamic cycle employed to calculate µexcess.

B. Model

We employed a coarse-grained model based on the SAFT-VR Mie potential43,44 to model

both pyrene and the solvents. The Mie potential has the form

UMie (rij) = Cε

[( σ
rij

)λr
−
( σ
rij

)λa]
(7)

C =
λr

λr − λa

(λr
λa

) λa
λr−λa

(8)

where rij is the distance between the centre of beads i and j, σ is the bead diameter, ε the

potential depth and λa and λr are the attractive and repulsive exponents respectively. In

all cases λa = 6.00 with the remaining model parameters listed in table I. Cross parameters

are given by the Kong combining rules45, that is

σij =
(σii + σjj)

2
(9)

εij = (1− kij)

√
σ3
iiσ

3
jj

σ3
ij

√
εiiεjj (10)

(λij − 3) =
√

(λii − 3) (λjj − 3) (11)

where the subscripts denote the interactions between particles i and/or j. In all cases we

take kij = 0.
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TABLE I. Model parameters

Bead type σ [Å] ε/kB [K] λr

Heptane 4.770 436.13 23.81

Toluene 3.685 268.24 11.80

Pyrene 4.135 436.13 14.79

FIG. 2. A schematic showing coarse-grained representation of the three molecules present in the

solvent. a) shows heptane represented as a dimer, b) toluene as an equilateral triangle trimer and

c) the arrangement of four beads for pyrene.

A heptane molecule is represented by a dimer, whilst toluene is represented by an equi-

lateral triangle and pyrene is comprised of four beads. All molecules have rigid bonds with

length (σi + σj) /2. In molecules comprising three or more beads, the rigid-bond constraint

also leads to fixed angles and dihedral angles with no additional constraints (fig 2). Prelim-

inary bulk simulations of N = 1950 solvent molecules give densities of 682.92 kg m−3 and

869.63 kg m−3 for heptane and toluene respectively, both within 1.0% of the experimental

values46 of 679.60 kg m−3 and 862.24 kg m−3 .

As far as the choice of the cavity potential is concerned: any functional form that produces

a soft cavity large enough for the solute to be inserted into without particle overlaps with

the solvent molecules may be employed. For example, in the literature atomistic studies by
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Li et al25 employ a cavity potential in the form of

U cavity
(1) (r, λ) = A exp (−r/B + λ) (12)

to investigate the solubility of sparingly soluble solutes such as naphthalene, whilst Postma

et al47 employ a cavity potential in the form of U cavity (r, λ) = λ (B/r)12 to study the

formation of cavities in liquid water. Here we investigate two functional forms for the cavity

potential: the exponential form employed by Li et al25 given by equation (12) and referred

to as U cavity
(1) , and a second cavity potential modelled as a generalised soft Weeks-Chandler-

Andersen (WCA) potential48

U cavity
(2) (r) =

4εc

[(
σc
r

)2n −
(
σc
r

)n]
+ εc, if r < 21/nσc

0, otherwise
(13)

where σc and εc are the cavity radius and interaction strength respectively. In all cases we

have taken a value of n = 2, however preliminary simulations have shown that the cavity

produced is insensitive to the value of n used with n = 6 giving very similar results.

C. Simulation details

All simulations were run in the isobaric-isothermal (N, p, T ) ensemble using an in-house,

but standard, MC program. Systems were run for at least 9.6 × 105 MC cycles (where we

define a MC cycle as N trial moves and, on average, one volume trial move) in the case of a

fixed cavity and 3.2×105 MC cycles in the case of a moving cavity after an initial equilibration

period. Trial MC moves consisted of centre of mass translations and/or a rotation around

the centre of mass. Trial volume varying moves were attempted on average once per MC

cycle. In the case of the moving cavity/solute simulations, a cavity/solute translation was

attempted on average once per cycle. In the case of Stages 2 and 3 (inserting the solute

and shrinking the cavity respectively), the solute molecule was also rotated about the centre

of mass on cavity moves. An acceptance ratio of between 40% to 60% was maintained.

Simulations were performed at 298.15K and 1bar using 1950 solvent molecules in a cubic

box with sides l and periodic boundary conditions in three dimensions.

The change in free energy was calculated by standard thermodynamic integration (TI)

where

∆G =

∫ 〈
∂U

∂λ

〉
λ

dλ (14)
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and the integral computed numerically using either Gaussian Quadrature with six points,

TI(GQ), or trapezium rule fitting, TI(Trap). For ∆Ggrow and ∆Gshrink the cavity potential

for U cavity
(1) is given explicitly by equation (12), whilst U cavity

(2) given in equation (13) is modified

to avoid the end-point singularity by the introduction of an alchemical thermodynamic

coupling parameter, λ, leading to

U cavity
(2) (r, λ) =


4εcλ

{[
α (1− λ) +

(
r
σc

)n]−2

−
[
α (1− λ) +

(
r
σc

)n]−1
}

+ εcλ,

if r < [2− α (1− λ)]1/n σc

0, otherwise

(15)

where α is a constant that we take to be 0.5. This coupling λ is analogous to the soft-core

potentials utilised for inserting Lennard-Jones centres41,42. It acts to smooth the end-point

singularity, gradually increasing the interaction potential from U cavity (r, λ) = 0 at λ = 0 to

the full cavity potential given in equation (13) at λ = 1. Note that for ∆Gshrink the λ and

(1− λ) terms in equation (15) are exchanged, leading to the full cavity potential at λ = 0

and 0 at λ = 1.

∆Ginsert was calculated using a linear alchemical potential regardless of the form of cavity

potential, namely

U insert (λ) = λU1 + (1− λ)U0 (16)

where U0 and U1 are the solute-solvent interactions before and after insertion respectively.

The change in free energy associated with steps 1 to 3 was also calculated using free

energy perturbation (FEP) method with

∆G (0→ 1) = −kBT ln
〈
e−β∆U

〉
0

(17)

where β = 1
kBT

and ∆U = U1 − U0. The 〈. . .〉0 indicates the ensemble average at state 0.

The efficiency of the simulations can be estimated using the standard block average based

method49,50 to calculate the correlation time, tc, that is, the average number of MC cycles

required to produce an independent configuration, see Appendix B.
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III. RESULTS AND DISCUSSIONS

A. Exponential cavity results, U cavity
(1)

Simulations were run using U cavity
(1) previously utilised by Li et al25, given by equation

(12), with A = 300kJ mol-1, B = 1.0nm. U cavity
(1) has the advantage that ∂U

∂λ
= U cavity

(1) ,

needed for the TI procedure outlined in equation (14) making it trivial to implement within

pre-existing software. In these simulations the cavity is fixed at the centre of the simulation

cell. The integrand, 〈∂U
∂λ
〉λ, for growing the cavity in heptane is shown in fig 3a). Note

that the same trend in behaviour is seen for both solvents and the corresponding graph

for toluene can be found in the supplementary information (SI Figure 1). There is a clear

discontinuity in 〈∂U
∂λ
〉λ at a threshold λ, λt. To investigate the cause of this sudden change

of behaviour in 〈∂U
∂λ
〉λ we calculated the solvent radial density which allows for the cavity

radius to be calculated. This was achieved by splitting the simulation cell into M concentric

spherical shells of width dhist = 0.01nm from the centre of the cavity. The number density,

ρhist = Nhist/Vhist where Nhist is the number of solvent molecules whose centre of mass is

found in the shell and Vhist is the volume of the shell. ρhist is calculated and averaged over

5000 MC cycles. The resulting histograms show a steep increase to a uniform density outside

the cavity and the cavity radius can be estimated using a threshold ρhist, shown in fig 3b

for λ = −2.40,−2.50 and −2.60. The cavity radius is not sensitive to the threshold value of

ρhist used as long as it is significantly below the uniform density.

The cavity radius versus r is shown in fig 3b for three λ values, whilst the cavity radius

versus λ is shown in 3c. From these plots it is clear that below λt there is no cavity is present

in the system with the intermolecular attractions overcoming the repulsive cavity potential.

At λt, the repulsive cavity-solvent interactions overcomes these intermolecular interactions

and a cavity irreversibly nucleates, as evidenced by a sudden jump in the cavity radius from

approximately 0.0nm to 1.2nm at λt before continuing to grow much more slowly, see figure

3a. Values of λt are given in table II. The coarse-grained nature of the model employed in

these simulations is much softer than that of the atomistic SPC water51 utilised by Li et al25

previously. It is likely that the deeper potential well of the coarse-grained model employed

here means that the attractive intermolecular interactions are much harder to overcome than

for the smaller, atomistic model. Whilst the same behaviour is observed in both growing
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FIG. 3. Results for growing a cavity in heptane for U cavity(1) . a)
〈
∂U
∂λ

〉
λ

for showing the discontinuity

at λt ≈ −2.50, b) for λ = −2.40,−2.50 and −2.60 which correspond to red crosses, blue circles and

green triangles respectively. Below λ = −2.50 no cavity is observed. c) shows how the estimated

cavity radius varies with λ when growing a cavity in heptane. d) shows the
〈
∂U
∂λ

〉
λ

against U cavity(1)

and the change in behaviour at λ = λt, with a linear fit applied to λ ≤ λt. Whilst e) shows
〈
∂U
∂λ

〉
λ

against pV +A which shows a linear dependence for λ > λt confirming that above λt
〈
∂U
∂λ

〉
λ

grows

as a pV + A term. f) shows the hysteresis present between the growth and annihilation of the

cavity.

and shrinking the cavity, λt differs and there is a hysteresis in the integrand, see in both

table II and figure 3f. For thermodynamic integration to accurately calculate the change

in free energy the work undergone must be reversible, i.e.
〈
∂U
∂λ

〉
λ

must be continuous and

well-defined at all values of λ.

Below λt, the integrand is proportional to U cavity
(1) which can be seen in 3d) that shows

〈∂U
∂λ
〉λ against U cavity

(1) for growing a cavity in heptane. The constant of proportionality for

λ ≤ λt is very similar for both growing and shrinking, approximately 65.15 and 64.73 for

growing and shrinking the cavity respectively in heptane, whilst for toluene values of 130.29
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TABLE II. Estimated values of λt for U cavity(1)

Solvent λt (grow) λt (shrink)

Heptane -2.50 -2.56

Toluene -2.95 -3.05

and 129.25 were obtained. Above λt 〈∂U∂λ 〉λ grows much more slowly, although it appears

to continue to be proportional to U cavity
(1) . Figure 3e) shows 〈∂U

∂λ
〉λ against pV + A where

pV is a pressure-volume term due to expansion work, whilst A is the surface area of the

cavity calculated using the cavity radius shown in Figure 3c). From this, it can be seen that

below λt there is no clear dependence on pV + A due to the lack of a cavity, however with

the presence of a cavity above λt this term contributes to the integrand which continues to

grow at a much slower pace as this term is much larger than that of U cavity
(1) . Unfortunately,

for U cavity
(1) is clearly not in this case, thus U cavity

(1) it is not an appropriate choice of cavity

potential for this system. This demonstrates that although in principle the cavity potential

can take any functional form, the choice is highly important and dependent on the system

on interest.

B. Fixed WCA cavity results,U cavity
(2)

To overcome the issues experienced with U cavity
(1) , a harder potential based on a generalised

WCA potential, U cavity
(2) shown in equation (13) was employed. As in section III A previously,

the cavity/solute is fixed in the centre of the simulation box. Unlike U cavity
(1) , the cavity radius

is defined within the potential (σc), therefore the size of the cavity must be specified a priori

for each case. We have used σc = 1.0, 1.3 and 1.5nm, all of which are large enough to avoid

particle-particle overlaps between the inserted pyrene molecule and the solvent molecules.

With U cavity
(2) the integrand,

〈
∂U
∂λ

〉
λ

is continuous over the entire λ range when either growing

or shrinking the cavity (fig 4a). Note that the overall shape of 〈∂U
∂λ
〉λ is unimportant in the

calculation of ∆G. As with the previous cavity potential, U cavity
(1) , we calculated the radial

solvent density to monitor the cavity radius. ∆Ginsert was calculated using equation (16)

and found to be approximately independent of λ at all cavity sizes (figure 4b). The lack of

discontinuity evident in ∆Ginsert at λ → 0.0 indicates that all the cavities investigated are
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FIG. 4.
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λ

for U cavity(2) for pyrene in heptane with σc = 1.0nm showing a)-c) show stages 1-3

respectively. In all cases the standard error is smaller than the points.

large enough to overcome the end-point singularity due to particle-particle overlaps. The

corresponding graphs for σc = 1.3, 1.5nm for heptane and all three values of σc for toluene

are shown in the Supplementary information (SI Figures 2 and 3).

The µexcess calculated for pyrene in heptane and toluene are given in table III and show

a good agreement across the cavity sizes, as well as with experimental results which found

logPTOL/HEP = 0.7930, indicating that pyrene is slightly more soluble in toluene as ex-

pected due to their similar aromatic natures. The deviation observed from the experimental

value is likely to be due to the coarse-grained nature of the model employed which, as with

all coarse-grained potentials, sacrifices atomistic detail for computational tractability. The

good agreement of the calculated logP with the experimental value is particularly impressive

given the model did not take into account ∆Gsolvation upon parameterization44,52,53. Table

III includes the values calculated using TI(GQ) for ∆Ggrow and ∆Gshrink and the simple

trapezium rule to calculate ∆Ginsert along with the calculated value of the partition coef-

ficient. The calculated values using TI(Trap) and FEP are within statistical error of those

calculated using TI(GQ) and are shown in fig 7.

The correlation time, tc was estimated using the standard block average method49,50
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TABLE III. Calculated µexcess for pyrene in heptane and toluene at T = 298.15K, p = 1bar using

a fixed position WCA potential cavity calculated using TI(GQ)

Cavity radius, σc /nm µHEPexcess/kJmol−1 µTOLexcesskJmol−1 logPTOL/HEP

1.0 −45.12± 0.17 −48.10± 0.21 0.52± 0.05

1.3 −44.96± 0.26 −47.74± 0.36 0.48± 0.08

1.5 −44.72± 0.33 −50.21± 0.52 0.96± 0.11
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FIG. 5. Estimated tc for ∆Ginsert (Stage 2) with heptane as the solvent for a) U/N and b)
〈
∂U
∂λ

〉
λ
.

The red circles, blue crosses and green triangles correspond to σc = 1.0, 1.3 and 1.5nm respectively.

(detailed in Appendix B) for each stage for 〈U
N
〉 and 〈∂U

∂λ
〉λ for λ = 0.0 to 1.0 in 0.1 intervals.

It was found that for all stages tc for 〈U
N
〉 is independent of λ, cavity size and solvent identity,

for example, tc for
〈
U
N

〉
for Stage 2 (insertion) in heptane is shown in figure 5a for all σc

investigated. Calculated values for tc averaged over all λ values are shown in table IV with

a mean value of tc ≈ 110. However, it was found that the estimated tc for 〈∂U
∂λ
〉λ shows a

dependence on λ for Stages 1 and 3 in which the cavity size varies. For the linear alchemical

coupling employed in the thermodynamic integration undertaken in Stage 2 to calculate

∆Ginsert, tc is independent of λ, as shown in fig 5b for inserting pyrene into heptane and in

the SI for toluene. The overall trends observed for ∆Ggrow and ∆Gshrink mirror one another

due to the interchange of λ and (1− λ) in equation (15), with the maximum tc found for
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FIG. 6. Histograms showing the instantaneous number density of solvent from the centre of the

cavity with σc = 1.3nm and λ = 0.4. The figures show that the cavity size at intermediate λ

fluctuates from approximately 0.4nm to 0.9nm.

intermediate values of λ and a minimum when there is no cavity present (λ = 0 for ∆Ggrow

and λ = 1 for ∆Gshrink respectively). In all cases there is a maximum in tc at intermediate

λ (although the location of this maxima varies). This is due to a smaller energy difference

between different cavity sizes due to the cavity functional form. For example, fig 6 shows

the radial solvent density from the centre of the cavity for two configurations for growing a

cavity in heptane with σc = 1.3nm, λ = 0.4, showing a cavity radius of approximately 0.4nm

in a, and a much larger cavity radius of approximately 0.9nm in b for the same system. Note

that these the histograms are not averaged over multiple configurations as previously shown

in figure 3 for U cavity
(1) . The estimated values of tc for the different cavity radii investigated

qualitatively suggest that tc increases with increasing σc, particularly between σc = 1.0 and

1.3nm. However, it is not possible to quantify the effect of σc.

C. Moving WCA cavity results, U cavity
(2)

The simulations were repeated with U cavity
(2) allowing the cavity/solute to undergo cen-

tre of mass displacement and rotation around the centre of mass. Note that due to the
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FIG. 7. Calculated values of µexcess for pyrene in heptane (black symbols) and toluene (red sym-

bols). The open symbols donate fixed cavity simulations whilst filled symbols donate moving cavity

simulations. TI(GQ), TI(Trap) and FEP are denoted by squars, circles and triangles respectively.

The graph shows that µexcess is independent of cavity radius, σc.

spherical symmetry of the cavity rotational moves were only performed on the solute. The

maximum displacement of the cavity, ∆cavity, is distinct from that of the solvent molecules

and constrained so that 0 < ∆cavity ≤ l
2
, where l is the simulation box length.

The calculated values for µexcess using a moving cavity are consistent with those found

for the fixed cavity, with only a small deviation occurring for µexcess of pyrene in toluene

with σc = 1.5nm, and are shown in fig 7 for TI(Trap), TI(GQ) and FEP for both a

moving and fixed WCA cavity. Plots comparing the integrand for σc = 1.0nm can be

found in the SI for both solvents and show excellent agreement, with an overall differ-

ence of 0.63kJ/mol (heptane) and 1.76kJ/mol (toluene). Overall, this leads to a calculated

value of logPTOL/HEP = 0.67, again in good agreement with the experimental value of

logPTOL/HEP = 0.7930. As previously discussed in section III B, the deviation from the

experimental value is likely to be due to the approximations made in the coarse-grained

model. As in section III B for the case of the fixed WCA cavity, tc was calculated for each

stage with respect to 〈U
N
〉 and 〈∂U

∂λ
〉λ for λ = 0.0 to 1.0 in 0.1 intervals. The estimated value

of tc for 〈U
N
〉 was comparable to that of the fixed cavity, as shown in table IV for all three

stages.

The estimated tc values for
〈
∂U
∂λ

〉
λ

for ∆Ggrow (Stage 1) are approximately constant in all

cases with λ ≥ 0.3, and do not show the maximum at intermediate λ observed with the fixed

16



TABLE IV. Calculated tc values for
〈
U
N

〉
for pyrene in heptane or toluene using a fixed or moving

WCA cavity averaged over all λ

tc

σ/nm Heptane Toluene

Fixed Cavity Moving Cavity Fixed Cavity Moving Cavity

∆Ggrow

1.0 130 119 99 96

1.3 110 123 111 102

1.5 115 115 104 101

∆Ginsert

1.0 119 107 111 103

1.3 120 109 111 95

1.5 102 113 97 99

∆Gshrink

1.0 118 124 111 107

1.3 107 115 98 106

1.5 117 133 100 93

cavity. At small λ the estimated value is much smaller, for example tc ≈ 2 when λ = 0.0 in

all cases, in comparison to tc ≈ 300 − 600 for the case of the fixed cavity. The significant

decrease in tc at λ→ 0.0 is due to the large value of ∆cavity possible with small λ that allows

the cavity to explore the entire simulation box in a fashion analogous to a random insertion.

When λ = 0.0 there is no energy penalty associated with moving the cavity and so all cavity

moves are accepted, leading to ∆cavity = l
2
. For λ ≥ 0.3 the estimated values of tc are on the

order of half to a third of that for the fixed cavity, with the largest decrease demonstrated

for growing a cavity in heptane with σc = 1.5nm which decreases from tc = 1619 to tc = 424

upon allowing the cavity to move. The mean estimated values of tc for λ ≥ 0.3 for ∆Ggrow

are shown in table V.

The marked decrease in tc is down to the removal of the slowest relaxation mode within

the simulation, that of the solvent relaxation around the cavity. For a fixed cavity, the

periodic boundaries lead to a periodic array of fixed cavities with nanoscale channels between

17



TABLE V. Mean tc values for
〈
∂U
∂λ

〉
λ

for ∆Ggrow in heptane or toluene using a fixed or moving

WCA cavity for λ ≥ 0.3

tc

Heptane Toluene

σ/nm Fixed Cavity Moving Cavity Fixed Cavity Moving Cavity

1.0 915 233 635 257

1.3 1155 389 1170 469

1.5 1619 424 1330 420

them. It has been shown previously that nanoscale confinement of a fluid can dramatically

increase the velocity autocorrelation function and thus the relaxation time54–57. A significant

reduction in tc is also observed for ∆Ginsert in Stage 2. As observed for the fixed cavity,

∆Ginsert, tc is independent of λ with the linear alchemical thermodynamic integration scheme

(equation (16)) and the mean tc is shown in table VI below and graphs of tc vs. λ are shown

in the SI. Unlike Stage 1 there is an additional degree of freedom in Stages 2 and 3 with

the possibility of the solute undergoing rotational moves around its centre of mass. In order

to investigate the importance of this rotation and centre of mass displacements simulations

were performed where the solute can either rotate around the centre of mass but remains

fixed in space or with the solute orientation fixed and only centre of mass displacement

moves (i.e. translational motion) is possible. In all cases the cavity was centred on the

centre of mass of the solute. In the case of ∆Ginsert this led to the rotation of the pyrene

solute to being the equivalent of a new random orientation being generated as all rotations

are accepted as none lead to an extremely high energy configuration with particle-particle

overlaps due to the large size of the cavity.

The results indicate that for tc for
〈
∂U
∂λ

〉
λ

for ∆Ginsert increases with cavity size. This is

observed in the majority of cases with the largest increase observed between σc = 1.0 and

1.3nm. Both the case of only translational or rotational motion of the solute (and cavity)

show a significant decrease from that of a fixed solute, and in all cases the simulations with

rotational only moves showed a slightly greater reduction in tc than those with translation

only moves for ∆Ginsert. The greater decrease in tc observed for with rotational moves

can be explained as due to the large cavity size in comparison to the solute, all solute
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TABLE VI. Mean tc values for
〈
∂U
∂λ

〉
λ

for ∆Ginsert in heptane or toluene using a fixed or moving

WCA cavity and solute for λ > 0.0. Also included are the cases where only solute translation or

rotation are allowed.

tc

Heptane Toluene

σ/nm Fixed Moving Translation only Rotation only Fixed Moving Translation only Rotation only

1.0 482 71 163 81 867 83 303 98

1.3 1071 140 390 211 1299 192 577 358

1.5 1616 275 401 348 1218 288 627 508

rotational moves are accepted, and essentially a new random orientation is generated in each

cavity/solute trial move. As
〈
∂U
∂λ

〉
λ

for ∆Ginsert depends only on the interaction between the

solvent and solute, the new orientation for the solute overcomes the slow relaxation time of

the solvent around the fixed cavity. In all cases the calculated ∆Ginsert was within statistical

error of that calculated for the original fixed cavity case.

The correlation time for ∆Gshrink (Stage 3) was also estimated in the cases of fixed

solute/cavity with no rotational or translational moves, centre of mass displacement moves

only, rotation around the centre of mass only and both rotation displacement of the centre

of mass moves. Similar trends were again observed for both heptane and toluene as a solvent

(see SI). It was found that for λ → 1.0 where there is no cavity tc tends to the same value

in all cases (i.e. fixed or moving solute), with tc = 255 and tc = 260 for pyrene in heptane

and toluene at λ = 1.0 respectively. In the cases where the solute/cavity is able to undergo

translational motion, with or without rotational motion, the estimated tc is approximately

constant for all values of σc and λ investigated see fig 8 for a representative case. Results

for the other systems are shown in the SI.

In the case of rotational trial moves only there still a strong dependence on λ and σc,

indicating that it is the centre of mass displacement that significantly increases the efficiency

of the simulation. Indeed, it is the centre of mass translational moves not the rotational

trial moves that remove the slow relaxation between nanoscale channels that is responsible

for the large relaxation times. At λ → 0.0 (i.e. a cavity much larger than the solute), for

rotation about the centre of mass only, the estimated tc is slightly below that of the fixed
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FIG. 8. Estimated tc for ∆Gshrink for pyrene in heptane with σc = 1.0nm with a fixed (red circle) or

moving cavity/solute (blue plus). Also shown are the case with cavity/solute translational (green

cross) or rotational (orange triangle) moves only. Note in both these cases the solvent is free to

undergo both translational and rotational trial moves.

solute. This slight decrease is due to the solute the large size of the cavity that means

all rotational moves are accepted and in effect a new orientation is generated each time,

reducing tc as observed in the case of ∆Ginsert. As λ increases, the size of the cavity shrinks

the estimated value of tc increases, becoming comparable to that of the fixed solute/cavity

simulations. This is because the large rotations that increase the efficiency at low λ lead

to particle-particle overlaps with the smaller cavity and are thus rejected. These results

for ∆Gshrink clearly show that, whilst rotational moves around the centre of mass help to

decrease tc at low λ when there is a cavity large enough to accept all rotational trial moves,

it is the centre of mass translational moves that drastically increase the efficiency of the

simulations.

IV. CONCLUSION

The partition coefficient, logPTOL/HEP , of pyrene between toluene and heptane has been

calculated using a novel cavity-based method previously employed by Li et al25, thus avoid-

ing particle-particle overlaps that can reduce the accuracy of free energy calculations. Good

agreement was found with experimental results. The cavity-based technique provides an

elegant methodology for free energy and excess chemical potential calculations that have

applications in a wide range of scientific problems, notably in the area of solubility calcula-
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tions. Here we have demonstrated that the cavity-based method is independent of model and

underlying molecular simulation technique, having previously been employed using atom-

istic molecular dynamics simulations25. In addition, it can easily be integrated into both

pre-existing software and bespoke programs. Here we have investigated the influence of the

cavity attributes on the accuracy and efficiency of the calculation. We have shown that,

although in principle, the cavity attributes play little role in the calculation of ∆Gsolvation

as the cavity is both created and destroyed, providing the cavity is large enough for the

solute to fit inside and thus avoid any overlaps with the solvent molecules, in practice that

is not the case with the accuracy and efficiency of the calculation affected by the cavity

attributes. The choice of cavity potential is important on the accuracy of the calculation.

We have shown that a poor choice of cavity functional form can lead to a hysteresis and

discontinuity in the 〈∂U
∂λ
〉λ due to a nucleation event. Previously utilised exponential cavity

potentials employed in atomistic simulations have been found to be unsuccessful with the

coarse-grained model employed here. The hysteresis is overcome by the use of a harder

cavity potential based on the WCA potential. We found that by allowing the cavity/solute

molecule to move can greatly increase the efficiency of the simulations by removing the slow

relaxation mode of the solvent confined in nanoscale channels bounded by an infinite fixed

array of cavities. The reduction in tc was most striking for ∆Ggrow, which demonstrated up

to an order of magnitude decrease in tc.

V. SUPPLEMENTARY MATERIAL

See supplementary material for a complete set of results for all cavity sizes and potentials

investigated in both solvents.
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Appendix A: Excess chemical potential and partition coefficient

In the thermodynamic the chemical potential of a solute in solution is given by the change

in free energy upon the addition of a solute molecule38,58, that is,

µsolution = Gsolution (T, p,Nsolute + 1, Nsolvent)−Gsolution (T, p,Nsolute, Nsolvent) (A1)

Whilst the free energy, G is given by

G (T, p,Nsolute, Nsolvent) = −kBT ln (∆0) (A2)

where ∆0 is the isobaric-isothermalNpT partition function for state 0 where T, p,Nsolute, Nsolvent

∆0 =
qNsolutesolute q

Nsolvent
solvent

Λ3Nsolute
solute Λ3Nsolvent

solvent Nsolvent!Nsolute!

∫
exp (−βpV ) dV

×
∫

exp [−βU (Nsolute, Nsolvent)] dR (Nsolute, Nsolvent)

(A3)

where q is the intramolecular (vibrational and electronic) partition function and Λ the de

Broglie wavelength for the solute or solvent as indicated by the subscript. The free energy

for state 1, T, p,Nsolute + 1, Nsolvent, is given by an analogous expression to that shown in

((A3)) with

U (Nsolute + 1, Nsolvent) = U (Nsolute, Nsolvent) + Usolute−solvent (Rsolute) (A4)

where Rsolute is the fixed position of the extra solute and Usolute−solvent (Rsolute) is the inter-

action energy of the extra solute with the rest of the solution. Following equation (A1) and

(A2),we can express µsolution as

µsolution = −kBT ln (∆1/∆0) = −kBT ln
{
qsolute/

[
Λ3
solute (Nsolute + 1)

]}
− kBT ln

{∫
exp (−βpV ) dV

∫
exp [−βU (Nsolvent, Nsolute + 1)] dR (Nsolvent, Nsolute + 1)∫

exp (−βpV ) dV
∫

exp [−βU (Nsolvent, Nsolute)] dR (Nsolvent, Nsolute)

}
= −kBT ln

{
qsolute/

[
Λ3
solute (Nsolute + 1)

]}
− kBT ln 〈V exp [−βUsolute−solution (Rsolute)]〉0

(A5)
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The first term in equation (A5) is the ideal gas contribution to the chemical potential, µideal.

The second term is a free energy perturbation (FEP) expression to compute the free energy

difference between the solution with and without the extra solute with 〈. . .〉0 indicating an

ensemble average at state 0. Away from the critical points the correlation between insertion

energy and volume is weak,59,60 thus

µsolution = µideal + kBT ln (ρsolute)− kBT ln 〈exp [−βU (Rsolute)]〉0 (A6)

where ρsolute = (Nsolute + 1) /V ≈ Nsolute/V and is the number density concentration

and equation (A6) is equivalent to equation (3). The derivation of the partition coefficient,

lnPI/II follows as detailed in section II in the main paper by noting the equivalence of (total)

chemical potentials of the solute in the two phases at equilibrium.

Appendix B: Correlation time

When computing ensemble averages from simulations the statistical accuracy of the value

obtained from the is important. Here we employ a method to calculate the correlation time,

tc, based on block averages49,50,61. There are, however, many alternative ways to estimate the

statistical error, including the explicit calculation of correlation functions49,50,62. We have

chosen to employ the block average approach as it can be applied directly to the results

obtained from Monte Carlo simulations without the need to calculate additional quantities.

Assuming that A (t) is a Gaussian process, the ensemble average of the run 〈A〉run and

variance in the mean of the run, σ2 (A), are given by

〈A〉run =
1

trun

∫ trun

0

A (t) dt (B1)

σ2 (〈A〉run) =
1

trun

(〈
A2
〉
run
− 〈A〉2run

)
=

1

t2run

∫∫ trun

0

〈[A (t)− 〈A〉] [A (t′)− 〈A〉]〉 dtdt′ (B2)

where the integrand in (B2) is simply the time correlation function, CA (t− t′). Note that

the Gaussian assumption holds for both the potential energy, U , and ∂U
∂λ

considered here.

By normalizing CA (t) and noting that tc is the integral from −∞ to +∞ (otherwise known

as the characteristic decay time of CA or, in our case, the correlation time) in (B2), in the
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case where trun is much larger than tc we can rewrite (B2) as

σ2 (〈A〉run) ≈ tc
trun

(〈
A2
〉
run
− 〈A〉2run

)
(B3)

where σ2 (A) is the estimated error and tc is currently unknown. To calculate tc we split

the simulation into nb blocks of size b such that nbtb = trun. For each block we calculate the

mean, 〈A〉b and estimate the variance, σ2 (〈A〉b) by

〈A〉b =
1

tb

tb∑
t=1

A (t) (B4)

σ2 (〈A〉b) ≈
1

nb

nb∑
b=1

(〈A〉b − 〈A〉run)2 (B5)

By comparing (B3) and (B5) we can estimate tc by computing the function

P (tb) =
tbσ

2 (〈A〉b)
〈A2〉run − 〈A〉

2
run

(B6)

which approaches tc in the limit tb � tc.
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I. EXPONENTIAL CAVITY RESULTS FOR TOLUENE, U cavity
(1)

This section shows the results obtained when using toluene as a solvent for U cavity
(1) . As

discussed in the main manuscript, the trend observed is consistent with that shown in Figure

3 for heptane.
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FIG. 1. Results for growing a cavity in toluene for U cavity(1) . a)
〈
∂U
∂λ

〉
λ

for showing the discontinuity

at λt ≈ −2.95, b) shows how the estimated cavity radius varies with λ. Below λ = −2.95 no cavity

is observed. c) shows the
〈
∂U
∂λ

〉
λ

against U cavity(1) and the change in behaviour at λ = λt, with a

linear fit applied to λ ≤ λt. d) shows the hysteresis present between the growth and annihilation

of the cavity.
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II. WCA FIXED CAVITY RESULTS FOR HEPTANE, U cavity
(2)

This section shows the results obtained when using toluene as a solvent for U cavity
(1) . As

discussed in the main manuscript, the trend observed is consistent with that shown in Figure

4 for σc = 1.0nm.
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FIG. 2.
〈
∂U
∂λ

〉
λ

for U cavity(2) growing a cavity in heptane (top row), inserting pyrene into heptane

(middle row) and shrinking the cavity (bottom row). For a)-c) σc = 1.3nm whilst σc = 1.5nm for

d)-f).In all cases the standard error is smaller than the points.

3



III. WCA FIXED CAVITY RESULTS FOR TOLUENE, U cavity
(2)

This section shows the results obtained when using toluene as a solvent for U cavity
(1) . As

discussed in the main manuscript, the trend observed is consistent with that shown in Figure

4 for heptane σc = 1.0nm and in the previous supporting information section for heptane at

other σc values.
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FIG. 3.
〈
∂U
∂λ

〉
λ

for U cavity(2) growing a cavity in toluene (top row), inserting pyrene into heptane

(middle row) and shrinking the cavity (bottom row). For a)-c) σc = 1.0nm whilst σc = 1.3nm for

d)-f) and σc = 1.5nm for g)-i). In all cases the standard error is smaller than the points.
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IV. COMPARISON OF FIXED AND MOVING CAVITY RESULTS FOR

WCA CAVITY POTENTIAL, U cavity
(2)

This section shows a comparison between results obtained using a fixed or moving cavity

for σc = 1.0nm for both heptane and toluene.
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FIG. 4.
〈
∂U
∂λ

〉
λ

for U cavity(2) growing a cavity (top row), inserting pyrene into heptane (middle row)

and shrinking the cavity (bottom row) for σc = 1.0nm. In each case the results obtained from a

fixed cavity are shown in black, and in red for a moving cavity. a)-c) are for heptane as a solvent,

whilst d)-f) are for toluene as a solvent.In all cases the standard error is smaller than the points.
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V. CORRELATION TIME, tc FOR FIXED AND MOVING WCA CAVITY

POTENTIAL,U cavity
(2)

This section shows the estimated correlation times, tc for fixed and moving cavities. Also

shown for stages 2 and 3 are solute translational moves only and rotational moves only.
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FIG. 5. The correlation time, tc, for
〈
∂U
∂λ

〉
λ

for U cavity(2) for growing a cavity (Stage 1)in heptane

(a-c) and toluene (d-f). The top row (a,d) have σc = 1.0nm, middle (b,e) have σc = 1.3nm and

bottom (c,f) have σc = 1.5nm respectively. The results for a fixed cavity are shown by red circles,

whilst those for a moving cavity are shown by blue pluses.
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FIG. 6. The correlation time, tc, for
〈
∂U
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〉
λ

for U cavity(2) for inserting pyrene (Stage 2) in heptane (a-c)

and toluene (d-f). The top row (a,d) have σc = 1.0nm, middle (b,e) have σc = 1.3nm and bottom

(c,f) have σc = 1.5nm respectively. The results for a fixed cavity are shown by red circles, whilst

those for a moving cavity are shown by blue pluses. Also shown are the results for translational

moves only (green squares) and rotational moves only (orange triangles).
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FIG. 7. The correlation time, tc, for
〈
∂U
∂λ

〉
λ

for U cavity(2) for shrinking a cavity (Stage 3) for pyrene in

heptane (a-c) and toluene (d-f). The top row (a,d) have σc = 1.0nm, middle (b,e) have σc = 1.3nm

and bottom (c,f) have σc = 1.5nm respectively. The results for a fixed cavity are shown by red

circles, whilst those for a moving cavity are shown by blue pluses. Also shown are the results for

translational moves only (green squares) and rotational moves only (orange triangles).
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