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Abstract

Nonzero temperatures and emergent disorder in spin liquids

OLIVER COLIN MALLINSON HART

At absolute zero temperature, spin liquids are known to exhibit a fascinating array of phenomena
including topological order, emergent gauge fields, and the existence of exotic quasiparticles with
fractional statistics. Meanwhile, at temperatures that are high compared to all characteristic inter-
action energy scales in the system, they often behave as trivial, uncorrelated paramagnets. This
thesis aims to better understand the behaviour of spin liquids at temperatures that are intermediate,
lying between these two extremes. At such intermediate temperatures, a finite density of defects
are thermally excited, which inherit the peculiar properties of the proximate, zero temperature spin
liquid state. Although the two limits are in most cases continuously connected via a crossover,
these exotic defects have the potential to drastically alter the properties of the system. In spite
of half a century of progress since the original ideas of Pauling and Anderson, quantum spin
liquids have evaded unambiguous experimental detection. Therefore any precursor diagnostics in
this temperature regime would be greatly beneficial before attempting to reach challengingly low
temperatures where the effect of thermally excited defects is altogether negligible.

The thesis begins by considering the evolution of quantum mechanical entanglement with
temperature in the toric code, utilising concepts borrowed from the field of quantum information
theory. This highlights the importance of an intermediate temperature regime in which the ground
state manifold does not have well-developed quantum coherence, but excitations out of the ground
state sector are exponentially suppressed with temperature by their gap. The focus then moves to
understanding how high-energy quasiparticles in the toric code propagate through a background of
incoherent, thermally-generated gauge field excitations within this intermediate temperature regime.
Analytical progress is made by making use of a mapping to the Bethe lattice, allowing predictions
to be made about the experimentally measurable finite temperature dynamical structure factor. I
then look at the propagation of quasiparticles in a different context: Classical spin ice. When spin
ice is subjected to rapid cooling, the density of excitations (monopoles) form long-lived metastable
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plateaux as a result of the formation of noncontractible pairs. I develop a thorough understanding of
the origin of these plateaux by formulating the problem in terms of reaction–diffusion processes and
performing large-scale simulations, which both suggest that the long-range nature of the interactions
between monopoles is the linchpin of the plateaux. Finally, I consider the nonequilibrium dynamics
of quantum spin liquids in closed systems at finite energy density. In this context, the emergent
(self-generated) nature of the disorder plays a crucial role, allowing the system to generically exist
in a superposition of different disorder realisations. I show that this property gives rise to power law
decay of the dynamical structure factor and unbounded logarithmic growth of entanglement in time,
just as for many-body localised systems, despite the existence of a mapping to free fermions.
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1 Introduction

The development of quantum mechanics in the early years of the 20th century created a paradigm
shift in the way that we describe the world around us. In a system described by classical physics,
it is possible, at least in principle, to specify simultaneously the positions and momenta of all
constituent particles with arbitrarily high precision. The quantum mechanical description of the
same system is profoundly different; the positions and momenta fundamentally cannot be specified
with absolute precision, and must, instead, be described probabilistically. The system as a whole is
characterised by its wave function, which encodes the probability distributions for the outcomes of
all measurements that could be performed on the system. In addition to its important philosophical
implications, the description of a physical system in terms of a probabilistic wave function gives
rise to a plethora of intriguing and often counter-intuitive phenomena.

The evolution of the system’s wave function in time is governed by Schrödinger’s equation,
which formally resembles a wave equation. This means that a particle described within quantum
mechanics exhibits phenomena that were previously associated with classical waves, such as water
or sound waves, the most prominent of which is arguably interference. For instance, Young’s
famous double slit experiment, in which waves are permitted to pass through two thin slits separated
by a distance comparable to the wavelength, leads to a similar interference pattern whether the
experiment is performed using water waves or single electrons [1] (at vastly different length and
time scales). In the context of condensed matter, interference is responsible for the celebrated
Aharonov–Bohm effect, and Anderson localisation, both of which will feature prominently in this
thesis.

Another surprising prediction of quantum mechanics is the notion of entanglement, which
has no classical analogue. As Schrödinger put it in his 1935 paper discussing entanglement, “I
would not call that one but rather the characteristic trait of quantum mechanics” [2]. Quantum
entanglement corresponds to a unique type of interdependency amongst a system’s constituents,
whereby a subsystem and its complement cannot be described independently from one another.
Consequently, it is possible for the state of one subsystem to depend upon the measurement
outcome of its complementary subsystem. As quantified by Bell’s theorem [3], this special type
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of correlation is stronger than any correlations that could be produced classically. In the field of
quantum information, entanglement is now considered as a resource (“as real as energy” [4]) with
utility in performing nonclassical tasks such as quantum cryptography and teleportation.

The above phenomena are contingent on the system being described by a pure state or wave
function, which is appropriate when the system is isolated from any environmental influence.
However, this is only ever an approximation, and some coupling to the environment is assuredly
inevitable. When the environment is included quantum mechanically, the combined system plus
environment should be described by a pure state. Even if the system and its environment are
initially prepared in a separable (i.e., unentangled) state, entanglement between them will be
generated irreversibly, establishing an arrow of time, however weak the coupling. The system
and its surroundings are therefore generically entangled with one another. If the system and
its surroundings have mutually equilibrated, then the reduced state of the system alone will be
described by an impure, or mixed, quantum state (density matrix) corresponding to one of the
standard ensembles from statistical mechanics, with the system inheriting the temperature of the
environment�. As the temperature of the system’s surroundings is increased, the so-called purity of
the density matrix is reduced, and the system becomes increasingly classical in nature as its various
degrees of freedom become progressively incoherent.

In this thesis, we are primarily interested in the impact of nonzero temperatures on spin liquids –
both classical and quantum – and related models. Spin liquids are an example of systems that do not
develop conventional order as they are cooled down, arising naturally in the context of frustrated
magnetism. Typically, the fundamental constituents in such systems are spinful degrees of freedom
that interact antiferromagnetically on lattices that frustrate these interactions, i.e., the way that the
spins are arranged in space prevents all local energies from being satisfied simultaneously, resulting
in a macroscopically large number of equally favourable states at low energies. Canonical examples
of such frustrated lattices are the triangular and kagome lattices in two dimensions, or the pyrochlore
lattice in three dimensions. The large number of low-energy states means that, at low temperatures,
the system is neither completely disordered like a gas, nor does it possess long-range order like a
solid; instead, a spin liquid is interposed between the two, with partially developed order at low
temperatures. As a result, classical spin liquids exhibit a host of intriguing collective phenomena,
such as a macroscopic residual ground state entropy at low temperatures, emergent gauge fields,
and fractionalised excitations that in some cases interact via an emergent long-ranged Coulomb
interaction.

A quantum spin liquid may be obtained from a classical spin liquid by adding extra ‘transverse’
(noncommuting) terms to the system’s Hamiltonian. In this way, the transverse terms select particu-
lar superpositions of the classical spin configurations from the macroscopically degenerate space

�This assumes that the system is connected to a heat bath containing many more degrees of freedom than the
system alone, such that the effect of the system on the state of the bath is negligible.
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of ground states. These superpositions can have vastly different properties from the underlying
classical spin configurations, including emergent lattice gauge theory descriptions and “topological
order”, wherein the ground state(s) exhibits long-ranged entanglement and the system’s fraction-
alised quasiparticles can obey statistics intermediate between bosonic and fermionic, amongst other
phenomena.

The motivation for the introduction of nonzero temperatures in these systems is often introduced
as being entirely practical; as we have argued, the presence of nonzero temperature is generally
unavoidable in experiment, and it is therefore pertinent to ask what features survive at finite
temperature. However, as we will see, this viewpoint is perhaps too pessimistic. Due to energy
exchange with the environment, nonzero temperature implies a finite density of defects will be
excited within the system. In quantum spin liquids, although the spin liquid “phase” is only strictly
defined at zero temperature (often they are continuously connected, via a crossover, to the infinite
temperature paramagnet�), the thermally excited defects inherit exotic properties from the proximate
spin liquid state. These exotic defects have the ability to drastically alter the properties of the system
– thermodynamic, spectroscopic, transport or otherwise – in a qualitative and distinctive manner, that
should be accessible in the relevant experiments. This falls under the general paradigm of treating
defects and disorder (in this case induced by thermal fluctuations) as a potential probe of exotic
behaviour, as opposed to being a hindrance. As part of the quest to obtain reliable experimental
signatures of quantum spin liquid behaviour, any precursor diagnostics at intermediate temperatures
would be greatly beneficial before attempting to reach challengingly low temperatures where the
effects of defects can be altogether neglected. In this thesis, we explore some of the consequences
of these thermally excited defects on a case-by-case basis in a variety of settings.

1.1 Thesis outline

In the remainder of this chapter, we will introduce the core concepts that underpin many of the main
results presented in this thesis. Specifically, we begin by introducing entanglement in the setting of
condensed matter systems, and its generalisation to mixed quantum states. We then explain how
an open quantum system reaches thermal equilibrium when connected to a large heat bath, with a
focus on the relevant time scales. In this context, we also introduce the eigenstate thermalisation
hypothesis (ETH) in order to explain how the predictions of statistical mechanics emerge in a closed,
strongly interacting quantum system. In Sec. 1.4, we introduce some of the prototypical models of
spin liquids, both classical and quantum, using them to outline the central phenomenology. Finally,
we introduce localisation phenomena in Sec. 1.5, which play an important role in finite temperature
states possessing a finite density of defects, beginning with Anderson localisation in free fermion

�One notable exception to this statement is the toric code in three spatial dimensions [5], which exhibits a
continuous, topological phase transition at T > 0 [6].
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systems (and non-interacting spin chains that map to free fermions). Its generalisation to interacting
systems, many-body localisation, which provides a robust mechanism for violating the ETH, is then
discussed in Sec. 1.5.2. We close this chapter with a brief overview of how localisation phenomena
can arise, at least over some appreciable time scale, in systems possessing translational invariance
through the mechanism of disorder-free localisation.

In Chapter 2, we study the evolution of entanglement with temperature in a particular (exactly
solvable) Z2 spin liquid, the toric code. We present the first exact calculation of the entanglement
negativity – a measure of mixed state entanglement that is notoriously difficult to calculate in a
many-body setting – at finite temperature in a two-dimensional lattice system. We show that the
entanglement content of the system exhibits the phenomenon of ‘sudden death’: above a critical
temperature the entanglement vanishes discontinuously, signalling that the system’s correlations
can be entirely reproduced by a classical system at and above this temperature. This sudden death
temperature depends on the length of the boundary between the two subsystems under consideration.
These features are summarised by constructing an entanglement phase diagram for the system.

In Chapter 3, we focus on models where quantum spin liquid behaviour is facilitated by pertur-
bative ring-exchange processes. In such models there exists a natural separation of energy scales
between the different species of quasiparticle excitation. This permits an intermediate temperature
regime in which the ground state manifold does not have well-developed quantum coherence, but
excitations out of the ground state sector are exponentially suppressed with temperature by their gap.
Via the mechanism of disorder-free localisation, the system generates its own disorder and maps
onto a tight-binding model subject to a fluctuating emergent Z2 gauge field; a direct consequence of
the anyonic statistics of the excitations. Using the approximation of self-retracing paths, we are
able to study analytically how the high-energy quasiparticles propagate through the background of
incoherent gauge field excitations, which manifests in experimentally-measurable quantities such as
the finite-temperature dynamical structure factor.

In Chapter 4, we shift gear and look instead at some of the intriguing phenomena that can happen
at finite temperature in classical spin liquids. Specifically, we look at thermal quenches in the
context of classical spin ice. Classical spin ice hosts excitations known as magnetic monopoles that
are born out of the underlying spins. These excitations behave in many respects as emergent particles
that interact via an effective long-ranged Coulomb interaction. The monopoles do however differ
from free particles in that they are able to form noncontractible pairs – a pair of oppositely-charged
monopoles separated by a spin whose reversal does not lead to their annihilation. Such pairs of
monopoles are metastable, requiring energy to separate the constituent quasiparticles and annihilate
them elsewhere on the lattice. At low temperatures, and in the absence of stray monopoles, these
noncontractible pairs are long-lived and hence it is favourable to treat them as a distinct species
of quasiparticle. Phrasing the problem in terms of reaction-diffusion processes, we are able to
understand more quantitatively the origin of the metastable plateaux in monopole density that
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develop after cooling classical spin ice rapidly. We find that the long-range nature of the interactions
between monopoles is fundamental in driving the formation of the plateaux, which is confirmed by
employing large-scale Monte Carlo simulations.

Chapter 5 is again concerned with the behaviour of systems where quantum coherence plays a
significant role. We look in particular at a one-dimensional spin ladder known as the compass model,
relevant to the description of transition metal oxides, which hosts an extensive number of local, Z2
valued conserved quantities. As in Chapter 3, these conservation laws allow the system to generate
its own quenched disorder through the mechanism of disorder-free localisation. Consequently,
the system is Anderson localised in a typical symmetry sector at finite energy density above the
ground state, and behaves in many respects as though it were subjected to quenched disorder.
However, certain quantities are acutely sensitive to the emergent character of the disorder, and
will be our primary focus. We show that starting from generic initial states, entanglement grows
logarithmically; in addition, equilibrium dynamical correlation functions decay with an exponent
that varies continuously with temperature and model parameters. These features are commonly
attributed to the phenomenon of many-body localisation. We elucidate how such features arise from
a common origin – the self-generated nature of the disorder – and how single particle localisation
can give rise to the same phenomenology as many-body localisation.
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1.2 Quantum mechanical entanglement

In a classical closed many-body system of interacting particles, the positions and momenta of all
particles can be specified simultaneously with arbitrary precision. This implies that if the system is
partitioned into multiple, disjoint subsystems, the positions and momenta in one subsystem can be
specified independently from the other complementary subsystems. The same is not necessarily
true in isolated quantum mechanical systems, which permit a new type of interdependency between
the constituent degrees of freedom known as quantum mechanical entanglement.

An isolated quantum mechanical system is described by a pure state j‰i, which specifies the
probability distribution of outcomes of all measurements that can in principle be made on the
system. When the system is partitioned into two disjoint subsystems, the probability distributions
pertaining to the two individual subsystems are not necessarily independent from one another in the
statistical sense. The system is quantum mechanically entangled if the two probability distributions
are interconnected, i.e., if the probability distribution of measurement outcomes for the second
subsystem depends on the outcome of the measurement performed on the first subsystem.

This feature is most crisply illustrated in a minimal system composed of two spin-1=2 degrees
of freedom, each considered as its own subsystem. One famous example of a maximally entangled
state of the two spins is one of the four Bell states

jˆCi D 1p
2
.j"i1 ˝ j"i2 C j#i1 ˝ j#i2/ ; (1.2.1)

where j"i (“spin up”) and j#i (“spin down”) are eigenstates of O�´ with eigenvalues C1 and �1,
respectively. If spin one is measured first, one will observe the measurement outcomes “up” and
“down” with equal probability. If spin two is measured immediately after the first, the outcome of
the second measurement will always be equal to the outcome of the first measurement (i.e., with
unit probability). This behaviour is to be contrasted with the separable state

j‰i D 1p
2
.j"i1 C j#i1/˝ .j"i2 C j#i2/ ; (1.2.2)

which possesses no quantum mechanical entanglement. Now, if spin one is measured first, one
again observes the measurement outcomes “up” and “down” with equal probability. However, the
measurement of the second spin will also lead to measurement outcomes “up” and “down” with
equal probability, irrespective of the outcome of the first measurement.
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1.2.1 Entanglement and the Schmidt decomposition

More generally, in a system S D A1 [ A2, a state j i 2 HA1 ˝HA2 is known as separable (i.e.,
not entangled) if it can be written as a product state over the tensor product Hilbert space

j i D j�i1 ˝ j�i2 ; (1.2.3)

where j�i1 2 HA1 and j�i2 2 HA2 [7]. Physically, this property of j i means that any measure-
ments made on the composite system A1 [ A2 separates into the product of the expectation values
on the two subsystems individually: h OA˝ OBi D h OA˝ 1i h1˝ OBi, and measurements on one
subsystem do not affect the quantum state that describes the other subsystem.

An entangled state is one that cannot be written in the form (1.2.3), i.e., one cannot attribute
a single quantum mechanical state to each of the two subsystems [7]. For entangled states, the
outcomes of measurements made on the composite system are correlated so that h OA˝ OBi ¤
h OA˝ 1i h1˝ OBi. The entanglement properties of a given state j i can be examined using its
Schmidt (singular value) decomposition [8] into states f j ii1g and f j ii2g on subsystems A1 and
A2, respectively

j i D
X
i

p
pi j ii1 ˝ j ii2 : (1.2.4)

The real, positive coefficients
p
pi are known as the Schmidt coefficients. Normalisation of the state

j i implies that
P
i pi D 1. The decomposition is unique up to “rotations” within any degenerate

subspaces that the Schmidt spectrum may contain [7]. Separability corresponds to the case that
exactly one of the Schmidt coefficients is nonzero, in which case we reobtain (1.2.3). Conversely,
for a maximally entangled state, all Schmidt coefficients are equal.

The reduced density matrices of subsystems A1 and A2 are found by tracing out the degrees of
freedom belonging to the complementary subsystem. One may show from (1.2.4) that

O�A1 D TrA2 O� D
X
i

pi j ii1 h i j1 ; (1.2.5)

O�A2 D TrA1 O� D
X
i

pi j ii2 h i j2 : (1.2.6)

The two reduced density matrices have the same spectrum fpig. When the state j i is separable,
the reduced density matrices O�A1 and O�A2 are pure, Tr O�2Ai D 1. A natural measure of the separability
of j i is the von Neumann entropy of the reduced state O�A1 [8, 9]

S. / D �Tr f O�A1 ln O�A1g D �
X
i

pi lnpi : (1.2.7)
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A pure state has S. / D 0, while a maximally entangled state has S. / D lnD, where D D
min.D1;D2/ and Di D dimHAi . Supposing that both A1 and A2 both contain N spin-1/2 degrees
of freedom, a maximally entangled state has S. / D N ln 2.

1.2.2 Entanglement in condensed matter systems

Up to this point, the discussion has been completely general, and applies to any pure quantum
state. However, in the context of condensed matter, we are often interested in the low temperature
properties of a given physical system. We are therefore seldom concerned with the behaviour of
arbitrary pure states; rather, the ground state(s) of the system’s Hamiltonian typically take centre
stage. Such Hamiltonians are often local, and this locality is reflected in the behaviour of the
entanglement entropy content of the ground state. Focusing on one spatial dimension, for systems
with a finite correlation length (i.e., excluding, for now, critical systems) the ground state obeys the
so-called area law

S.`/ / `d�1 D const. ; (1.2.8)

independent of `�, the volume (i.e., length for d D 1) of the subregion under consideration. This
result was first observed by Calabrese and Cardy in Ref. [10], and later proven by Hastings [11]. In
1D critical systems, the area law is replaced by a logarithmic increase of the entanglement entropy
with subsystem size

S.`/ D c

3
log

`

a
C : : : ; (1.2.9)

where c is the central charge, which characterises the universality class of the conformal field theory
that describes the critical point, and a is an ultraviolet (i.e., lattice scale) cutoff. The dots corresponds
to nonuniversal corrections. In higher dimensions, d > 1, the situation is more intricate, and we
have fewer exact techniques at our disposal to study such systems rigorously. For the ground states
of gapped systems comprised of free fermions or free bosons, one can show that the entanglement
entropy satisfies an area law [12], whilst for free fermions possessing a well-defined Fermi surface,
the area law is weakly violated by means of a logarithmic enhancement, S.`/ � `d�1 ln ` [13].

The entanglement entropy is also of fundamental practical importance for characterising the
feasibility of simulating one dimensional systems numerically. This stems from a link between
low-entanglement, area law ground states and so-called matrix product states (MPS) [14–16],
wherein the wave function coefficients are compactly and efficiently parametrised in terms of a
product of finite-dimensional matrices. It is possible to show that a one dimensional quantum state
can be efficiently represented by an MPS if it satisfies an area law [12]. This result underlies the
success of the density matrix renormalisation group (DMRG) [17], and other tensor network based

�This result is only independent of subsystem size as long as the size of both subsystems significantly exceeds the
correlation length. The value of the constant is set approximately by the correlation length �, with S � log �.

– 22 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

techniques, in one spatial dimension.

1.2.3 Mixed state entanglement

At finite temperature (as we will discuss later), or when considering partitions of the system into
more than two disjoint components, it becomes necessary to describe the system using a mixed
state O�. For example, in the case of a tripartition of the system S D A1 [ A2 [ A3, the subsystems
A1 and A2 are described by the (in general) mixed state O�12 D Tr3 j ih j, if the system as a whole
is described by the pure state j i. Separability over the two subsystems A1 and A2 is then defined
in the following way: a mixed state O� is separable if it can be written in the form [8]

O� D
X
i

pi O�.1/i ˝ O�.2/i : (1.2.10)

The weights pi are real, positive and normalised
P
i pi D 1, i.e., they represent probabilities. The

two subsystems A1 and A2 are no longer uncorrelated, but the correlations are “classical” in nature,
in the sense that expectation values of factorisable operators OA˝ OB assume the form

h OA˝ OBi D
X
i

pi h OAii h OBii ; (1.2.11)

where h OAii D TrŒ O�.1/i OA�, and similarly for h OBii . Such states satisfy Bell’s inequality [18, 19], and
can easily be created using only local operations and classical communication [8]. Analogously to
the case of pure states, an entangled mixed state is defined in the negative sense as any state that
cannot be written in the form (1.2.10).
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1.3 Temperature in quantum mechanical systems

1.3.1 Relaxation and thermalisation in open quantum systems

In any realistic experimental setting, a quantum system is never truly isolated from its surroundings
(which we will interchangeably refer to as its environment). This nonzero coupling between a
system and its environment will generically lead to decoherence and the creation or decay of
excitations in the system (dissipation). If the system and the environment are coupled only weakly,
then the state of the system can remain approximately pure for a long time (we will quantify
how long this time scale can be later). Eventually, however weak the coupling, the system and
the environment will asymptotically become entangled and the state of the system will become
mixed. For sufficiently weak system–environment couplings, the asymptotic, steady-state density
matrix is diagonal in the eigenbasis of the system [20]. If the environment is in equilibrium at
temperature T D ˇ�1 (kB D ~ D 1 throughout this thesis), and certain ergodicity requirements are
satisfied [21–23], then the steady-state density matrix corresponds to the canonical ensemble from
statistical mechanics, O� / e�ˇ OHS , where OHS is the system Hamiltonian�.

Suppose that we are interested in the properties of a system S described by the Hamiltonian OHS,
which is weakly coupled to a reservoir B with Hamiltonian OHB. The Hamiltonian of the combined
system is of the general form

OH D OHS C OHB C OHI ; (1.3.1)

where OHI describes the system–reservoir interaction. In the Schrödinger picture, the time evolution
of the combined system’s density matrix O�.t/ is determined by the Liouville–von Neumann equation

d O�.t/
dt
D �i Œ OH; O�.t/� ; (1.3.2)

In general, we would like to know how the state of the system S evolves in time. This is quantified
by its reduced density matrix O�S.t/ D TrB O�.t/, obtained by tracing out the environment from the
full density matrix O�.t/. An initially uncorrelated state of the total system, O�.0/ D O�S.0/˝ O�B.0/,
will then evolve in time according to the dynamical map Vt [24]

O�S.t/ D Vt O�S.0/ � TrB

n
OU.t/Œ O�S.0/˝ O�B.0/� OU �.t/

o
; (1.3.3)

where OU.t/ is the time evolution operator in the Schrödinger picture. Assuming weak coupling
between the system and the environment of the form OHI D

P
˛
OA˛ ˝ OB˛, and further assuming that

�In general, in the presence of stronger system–environment interactions, the system’s steady state – if such a state
exists – will depend nontrivially on the interaction and bath Hamiltonians. Hereafter, we will consider only the case in
which the system and its environment are coupled weakly.
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memory effects in the bath can be neglected (the Markov approximation), it is possible to obtain
a microscopic expression for (1.3.3), leading to the so-called quantum master equation (see, e.g.,
Refs. [7, 23, 24], which inspired this discussion, for a complete derivation)

d O%S.t/

dt
D
X
!;!0

X
˛;ˇ

ei.!
0�!/t�˛ˇ .!/

�
OA˛.!/ O%S.t/ OA�ˇ .!0/ � OA�˛.!0/ OAˇ .!/ O%S.t/

�
C H.c. (1.3.4)

where O%S.t/ D ei. OHSC OHB/t O�S.t/e
�i. OHSC OHB/t is the system’s reduced density matrix in the interaction

picture. The coefficients �˛ˇ .!/ are related to the Fourier transform of the bath correlation functions

�˛ˇ .!/ D
ˆ 1
0

d� ei!�h OB�˛.t/ OBˇ .t � �/i O�B ; (1.3.5)

while the operators OA˛.!/ are related to the Fourier decomposition of OA˛.t/, where the time
dependence is again in the interaction picture:

OA˛.t/ D ei OHSt OA˛e�i OHSt D
X
!

e�i!t
X

�n��mD!
jmi hmj OA˛ jni hnj �

X
!

e�i!t OA˛.!/ : (1.3.6)

The states jmi and jni in the above expression are eigenstates of OHS with eigenvalues �m and �n,
respectively. If one additionally applies the rotating wave approximation�, then equation (1.3.4)
can be written as a dynamical map�,

d O%S.t/

dt
D �i Œ OHL; O%S�C

X
!

X
˛;ˇ

˛ˇ .!/

�
OAˇ .!/ O%S OA�˛.!/ �

1

2

n
OA�˛.!/ OAˇ .!/; O%S

o�
; (1.3.7)

where the so-called Lamb-shift Hamiltonian

OHL D
X
!

X
˛;ˇ

S˛ˇ .!/ OA�˛.!/ OAˇ .!/ ; (1.3.8)

leads to a renormalisation of the system energy levels due to interactions with the environment, and
�˛ˇ .!/ D 1

2
˛ˇ .!/C iS˛ˇ .!/, such that (S˛ˇ ) ˛ˇ is (anti-) Hermitian. If the bath is in a Gibbs

state O�B D e�ˇ OHB=ZB, where the partition function ZB ensures normalisation of O�B, then it can be

�This approximation is not generically satisfied in condensed matter systems. In order for the rotating wave
approximation to provide an accurate description of the dynamics (over coarse-grained time scales) the system
should have a discrete spectrum, and the relaxation time scale of the system S, denoted �r, should satisfy �r �
j! �!0j�1 [23, 24]. One can however derive an analogous master equation in the so-called singular coupling limit [23],
in which the rotating wave approximation is not necessary.

�A dynamical map must satisfy the conditions of complete positivity, convex linearity and trace preservation [24].
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shown that for any initial state the system will relax towards the Gibbs ensemble

O�S.t/
t!1�! 1

ZS
e�ˇ OHS ; (1.3.9)

as long as certain ergodicity requirements� are satisfied [21–23]. The (positive) eigenvalues n.!/
of the Hermitian matrix ˛ˇ .!/ have dimensions of inverse time (if the operators OB˛ are chosen
to be dimensionless), and can be interpreted as decoherence rates, which dictate how quickly the
system approaches its stationary state given by (1.3.9).

We have therefore shown that a quantum system weakly coupled to a large heat bath, under a
number of assumptions, relaxes towards the Gibbs state (or canonical ensemble) O�S / e�ˇ OHS in
accordance with the principle of maximum entropy, where the system inherits the temperature T of
the heat bath.

1.3.2 Thermalisation of closed quantum systems

In the above, we have shown that thermalisation occurs under rather general conditions if the system
of interest is connected to an external reservoir. However, we have implicitly assumed that the heat
bath is itself prepared in a (mixed) thermal Gibbs state O�B / e�ˇ OHB . In order to describe how the
bath reaches thermal equilibrium, we are led to consider the apparent paradox of thermalisation in
closed quantum systems, and the recent drive to understand it (see, e.g., Refs. [25–29] for reviews).
That is, understanding the mechanism by which an isolated quantum system is able to reach an
equilibrium state, determined by only a small number of parameters such as temperature, chemical
potential, etc., irrespective of the (pure) state in which the system was prepared. This statement
appears to be at odds with the unitarity of quantum mechanics, since the unitary time evolution of
the wave function does not “remove” any of the information about the system’s initial conditions.
In the following, we will explain the resolution of this apparent paradox with a powerful conjecture
about the properties of individual eigenstates known as the eigenstate thermalisation hypothesis
(ETH) [30–32]. Conversely, systems that do not obey the ETH retain memory of their initial
conditions. Localisation, which we will introduce later in Sec. 1.5, appears to be the only robust

way in which a system is able to evade thermalisation�.

In order to discuss the thermalisation of a closed quantum system, it is necessary to introduce the
concept of a quantum quench. The system is initially prepared in some state j .0/i, which is often

�Specifically, the operators OA˛ must connect all of the energy levels of the system Hamiltonian. This condition
is ensured if there exist no operators acting on S that simultaneously commute with all the OA˛ and OHS [21, 22]. If
the converse is true and such an operator does exist, then the Hilbert space of the system can be partitioned into
disconnected sectors.

�Integrable systems, which possess an extensive number of conserved quantities, and undergo relaxation towards a
so-called generalised Gibbs ensemble [33–35], are excluded from this statement as their integrability is not preserved
upon addition of generic perturbations to the Hamiltonian.
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the ground state of some preparation Hamiltonian OH0. For times t > 0, the state j .0/i is evolved
under unitary dynamics with respect to a different Hamiltonian OH , i.e., j .t/i D e�i OHt j .0/i. If
the state j .0/i is not an eigenstate of OH , then its dynamics will be nontrivial. Expanding the initial
state in the eigenbasis f j‰nig of OH , j .0/i DPn h‰nj .0/i j‰ni �

P
n cn j‰ni, the long-time

average of any observable OO , defined by O � limt!1 1
t

´ t
0
d� O.�/, may be written as

h OOi D
X
n

jcnj2Onn ; (1.3.10)

where Onn are the matrix elements of the operator OO in the eigenbasis of OH , and the spectrum is
assumed to be free of any degeneracy. The off-diagonal matrix elements oscillate in time and, hence,
are removed by the time average. The time-averaged expectation value (1.3.10) can alternatively
be viewed as an average with respect to a density matrix known as the “diagonal ensemble”,
h OOi D Tr

� OO O�diag
�
, where O�diag D

P
n jcnj2j‰nih‰nj [33, 36, 37]. Evidently, the state O�diag, which

describes the time-average of a completely generic observable, depends explicitly on the system’s
initial conditions, and is therefore incompatible with the notion that the system’s density matrix
should relax towards the appropriate equilibrium ensemble from statistical mechanics. Instead,
as was realised in 1929 by von Neumann [38], one should focus not on the equilibration of the
state of the system as a whole, but on the behaviour of a suitable set of “physical” observables that
are accessible in experiment. Equivalence between the diagonal ensemble and the prediction of
statistical mechanics is then established if the (time-averaged) expectation values in the two cases
coincide for this privileged set of physical observables�. Operators such as the projector j‰ni h‰nj,
whose expectation value never relaxes, are disregarded on the basis that such operators are typically
non-local, and, hence, eminently unphysical�.

In the 1990s, Srednicki introduced a generalisation of the random matrix theory prediction for
the matrix elements of local operators in a series of pioneering papers [30–32]. The ansatz is known
as the eigenstate thermalisation hypothesis, which takes the form [32]

Omn D O.E/ımn C e�S.E/=2fO.E; !/Rmn ; (1.3.11)

where E D .Em C En/=2 is the mean energy of the two eigenstates m and n, and ! D Em �
En is their energy difference. The first term, which describes the behaviour of the diagonal
matrix elements, consists of a smooth function O.E/ of the average energy. The second piece
determines the decay of off-diagonal matrix elements. Specifically, S.E/ DP

nEı.E � En/ is
the thermodynamic entropy, fO.E; !/ is a smooth function of E and !, and the Rmn are random

�One also requires that the temporal fluctuations of the observable should vanish in the thermodynamic limit.
�Many-body localised systems, in which the l-bits (emergent conserved quantities that may be constructed from

projectors onto eigenstates [39]) are local, are an exception to this intuition.

– 27 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

numbers with vanishing mean and unit variance. The characteristic scale of the entropy is set by the
mean level spacing ı at energy E, i.e., ı � Ee�S . Since the level spacing is typically exponentially
small in the volume of the system, this implies, in turn, that the off-diagonal elements of OO are
exponentially small in the system’s volume with respect to the diagonal elements.

Using the ETH anstaz (1.3.11), we can now calculate the time-averaged expectation value of
any “physical” observable

h OOi D
X
n

jcnj2Onn ' O.E/ ; (1.3.12)

where we have neglected terms proportional to the second derivative of O.E/ that arise due to
finite energy fluctuations in the initial state (which are often subextensive in volume for local
Hamiltonians [28, 36]). Remarkably, the smooth nature of the function O.E/ ensures that the
result (1.3.12) is independent of the initial conditions, encoded by the cn, as long as they are only
nonzero over a sufficiently narrow energy window. This means that the time-averaged expectation
value agrees with the prediction of statistical mechanics for sufficiently well-behaved initial states.
Moreover, the exponential decay of the off-diagonal matrix elements with volume means that
equilibration to the value O.E/ can occur on time scales much shorter than the inverse level
spacing [28]. Equilibration to the value O.E/ is not just established in the time-averaged sense;
instead, h OO.t/i relaxes to its equilibrium value and then remains nearby thereafter (save for quantum
revivals in systems of finite size). In fact, the temporal fluctuations of h OO.t/i about its average
value can be shown to be exponentially suppressed in the volume of the system

�2O � lim
t!1

1

t

ˆ t

0

d� Œh OOi2� � .O/2 D
X
m¤n
jcmj2jcnj2jOmnj2 � max

m¤n
jOmnj2 � e�S.E/ ; (1.3.13)

since the entropy is an extensive quantity. In contrast, the time-averaged quantum fluctuations of OO
also decay with the size of the system, but algebraically in the volume [28].

The eigenstate thermalisation hypothesis addresses the apparent paradox of thermalisation in
closed quantum systems in a particularly simple and elegant manner. Thermalisation under the
dynamics of an ergodic Hamiltonian is encoded in the structure of the individual eigenstates, with
each and every eigenstate being thermal. All of the information about the initial state of the system
is never erased by the unitary time evolution, but (typically) becomes accessible only through highly
nonlocal, unphysical operators. The ETH prediction for the matrix elements of physical observables
has been verified numerically in a number of low-dimensional quantum systems including 2D
hard-core bosons [36], interacting spin chains [40], the two dimensional transverse field Ising
model [41], and many others (see, e.g., the references contained within Ref. [28]).

Recently, there has been a significant amount of interest in systems that (weakly) violate the
ETH through the mechanism of quantum many body scarring (for a recent review see Ref. [42]).
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In such systems, there exist a small number (typically measure zero) of mid-spectrum area law
entangled states, which are decoupled from the rest of the spectrum. Since these atypical states are
so few in number compared to the complementary thermal eigenstates, one might imagine that they
are irrelevant to the equilibration properties of the models in question. However, in some cases such
as the so-called PXP model [43], these atypical, area law entangled states have an anomalously large
overlap with translationally invariant, experimentally accessible initial states. Indeed, the interest
in weak ergodicity breaking was triggered by a surprising experiment in 2018 on a Rydberg-atom
quantum simulator, which unveiled persistent, periodic revivals for some initial states [44]. In this
way, systems possessing many body scars violate the ETH in the weak sense, since a typical infinite
temperature state will still thermalise. During my PhD I have contributed to this field, showing that
quantum many-body scarring can occur in certain random and periodic comb-like structures that
host interacting fermionic degrees of freedom [45].
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1.4 A brief introduction to spin liquids

In the following, we will discuss some of the defining features of spin liquids, both classical and
quantum, by introducing some of the prototypical theoretical models, each of which has played a
unique role in aiding our understanding of these fascinating phases of matter.

1.4.1 Kitaev’s toric code model

We will begin with arguably the simplest model of a gapped, Z2 quantum spin liquid: Kitaev’s toric
code [46]. Despite appearing highly artificial at first sight, the toric code Hamiltonian appears as
a natural limiting case of Kitaev’s honeycomb model [47] (introduced later in Sec. 1.4.5), which
contains only nearest-neighbour interactions between spin degrees of freedom, and is approximately
realised in certain iridates [48, 49] and other compounds with strong spin orbit coupling (see,
e.g., Refs. [50, 51] for reviews). Recently, it was also realised that the toric code Hamiltonian
emerges perturbatively through the mechanism of combinatorial gauge symmetry [52] in some
nearest-neighbour spin models, allowing Z2 spin liquids to be embedded and studied on quantum
annealers [53]. Notwithstanding its simplicity, the toric code exhibits many of the striking phenom-
ena associated with quantum spin liquids in general, and therefore offers a natural setting in which
to explore their consequences.

Hamiltonian

The toric code model is conventionally defined on a 2D square lattice composed of N sites with
periodic boundary conditions (i.e., on a torus). Spin-1

2
degrees of freedom are located on each of

the 2N bonds of the lattice and interact via the Hamiltonian

OHTC D �Je
X
s

OAs � Jm
X
p

OBp � �Je OS � Jm OP ; (1.4.1)

where the labels s and p denote the “stars” (sites) and “plaquettes” of the lattice (see Fig. 1.1),
respectively, and OAs �

Q
i2s O�xi , OBp �

Q
i2p O�´i [46]. Je; Jm > 0 are the two coupling constants

of the model. The subscripts e and m derive from a correspondence with Z2 lattice gauge theory,
explored at the end of this section. As usual, O� i D . O�xi ; O�yi ; O�´i / denote the Pauli matrices, which
describe the spin on bond i .

Ground states and topological degeneracy

All operators OAs, OBp in the Hamiltonian commute and so can be diagonalised simultaneously. The
property OA2s D 1 D OB2p implies that the operators OAs and OBp have eigenvalues˙1, and the states
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OBp

OAs

e

e

m

m

Lv

Lh

Figure 1.1: Left: Illustration of the “star” and “plaquette” operators, OAs and OBp , respectively, that appear in
the toric code Hamiltonian (1.4.1). Right: Two possible noncontractible loops Lh;v, and two
open strings generating electric (e) and magnetic (m) defects at their ends. Recall that periodic
boundary conditions are imposed. Electric (magnetic) defects inhabit the stars (plaquettes) of the
square lattice, and cost an energy 2Je (2Jm), so that each open string costs 4Je (4Jm).

for which all OAs, OBp have eigenvalue C1 are the ground states. On a torus, the model has four
ground states belonging to different “topological sectors,” which are classified according to the
eigenvalues of non-local (system-spanning) operators. Such operators can be defined for instance as
O�x
h;v
DQi2Lh;v O�xi [54], where Lh;v are two noncontractible loops on the dual lattice that span the

torus in the horizontal (h) and vertical (v) directions, respectively (see Fig. 1.1). It is not possible
to distinguish between the four different topological sectors using any local operators. Similarly,
no local operator can lead to a transition between the various ground states, which makes the toric
code desirable from the perspective of encoding quantum information [46]. When the model is
defined on a surface of genus g (g D 1 for the torus), the topological degeneracy is generalised to
4g [55]. This dependence of the degeneracy on the topology of the underlying lattice is one of the
many characteristic features of topologically ordered phases.

In order to write down an explicit expression for the ground state(s) of the model (1.4.1), it is
convenient to introduce the group G generated by products of star operators OAs�. The ground state
of the model is then given by

j 0i D 1

jGj 1=2
X
g2G

g j0i : (1.4.2)

The state j0i is an eigenstate of˝i O�´i belonging to the appropriate topological sector (i.e., it is also
an eigenstate of the operators O�´

h;v
), and jGj D 2N�1. The state (1.4.2) is trivially an eigenstate of

all OBp since all group elements commute with OBp, Œ OBp; g� D 0, 8g 2 G, and OBp j0i D j0i. That

�The group elements g 2 G must be defined modulo the identity for the inverse elements g�1 to be unique, sinceQ
s
OAs D 1. That is, g DQs

OA�ss D
Q
s
OA1��ss with �s D 0; 1. One must choose one of the two equivalent tilings of

the OAs operators for the mapping between g and f�sg to be one-to-one.
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C
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OAs
C : : :

Figure 1.2: Schematic depiction of how every string `0 with the same endpoints is generated when acting
with a given string ` of operators on the ground state.

(1.4.2) is an eigenstate of all OAs follows from the fact that OAs 2 G, giving OAsg D g0, using the
group properties of G. Since the ground state corresponds to a sum over all group elements, we can
relabel the mute index g0 ! g to give OAs j 0i D j 0i, as required. Hence, the state (1.4.2) is an
eigenstate of the Hamiltonian with energy E0 D �N.Je C Jm/.

Consider the expression for a given group element g 2 G, given as a product of star operators
over some (possibly disconnected) region R: g D Q

s2R OAs. Since all internal spins are flipped
twice, the action of the group element g on the reference state j0i is to flip the spins on the boundary

of R, denoted @R, so that we may write g DQi2@R O�xi . Therefore, when expressed in the O�´i tensor
product basis, as in (1.4.2), one observes that the ground state corresponds to an equal-weight
superposition of closed loops of flipped spins. Note that it would be completely equivalent to
formulate the ground state (1.4.2) in terms of the O�xi tensor product basis.

Fractionalisation and deconfinement of excitations

The toric code hosts two types of elementary excitations known as electric charges and magnetic

vortices. These excitations are generated by open strings of Pauli matrices, OS˛.`/ DQi2` O�˛i with
˛ D ´; x, respectively [55] (see Fig. 1.1). OS˛.`/ flips the eigenvalues of the two stars (plaquettes) at
the ends of the path `, which lives on the direct (dual) lattice, costing an energy 4Je (4Jm). When
periodic boundary conditions are imposed, it is not possible to change the eigenvalue of just one
star or plaquette operator as a result of the condition

Q
s
OAs D

Q
p
OBp D 1. Physically, flipping a

spin changes the eigenvalue of the two adjacent stars (plaquettes)�.
Note that only the endpoints of the string matter; the choice of path ` is immaterial. Acting on

the ground state (1.4.2) with, say, OSx.`/, one obtains

OSx.`/ j 0i D 1

jGj 1=2
X
g2G
OSx.`/g j0i D 1

jGj 1=2
X
`0

OSx.`0/ j0i ; (1.4.3)

where the second summation is over all possible paths `0 with the same endpoints as the original

�This and the inability to change the eigenvalue of just one star/plaquette are in fact two separate statements. With
open boundary conditions, it is not possible to locally create an unpaired excitation in the bulk, but the boundary can act
as a source/sink of unpaired excitations.
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path `. This result is shown schematically in Fig. 1.2. Since the energy of a pair of defects is
independent of their separation, the defects are deconfined, which is another characteristic feature
of quantum spin liquids [51, 56].

At nonzero temperature T D 1=ˇ, there is a finite probability of exciting defects given by the
Boltzmann distribution P.E/ / e�ˇE . The exact density of species X D e;m is

%X D e�2ˇJX .1C e
�2ˇJX /N�1 � .1 � e�2ˇJX /N�1

.1C e�2ˇJX /N C .1 � e�2ˇJX /N : (1.4.4)

In the limit of large N , the constraint that defects must be created in pairs becomes immaterial and
the density is given approximately by the Fermi-Dirac distribution nF.2JX/ � .e2ˇJX C 1/�1, for
each species independently X D e;m.

Mutually semionic statistics

The excitations introduced in Sec. 1.4.1 obey mutually semionic statistics. This feature of topologi-
cally ordered phases is arguably the most important, and will play a prominent role in Chapter 3.
As shown in Fig. 1.3, when one species encircles a quasiparticle of the opposite species, the wave
function picks up a phase of � . Figure 1.3b differs from 1.3a by a closed loop of O�xi operators.
When this loop contains an electric charge,

j bi D
 Y
i2@R
O�xi
!
j ai D

 Y
s2R
OAs
!
j ai D � j ai : (1.4.5)

Since this operation can be interpreted as two successive particle exchanges, one may attribute
a phase � D �=2 to exchanging electric charges and magnetic vortices [57]. In this way, the
excitations are mutually semionic, but individually bosonic in the sense that interchanging two
particles of the same species does not result in sign change of the wave function.

Entanglement entropy and stability

So far, we have seen that gapped Z2 quantum spin liquids (which by definition possess topological
order) host deconfined excitations satisfying mutually semionic statistics, and admit a topological
ground state degeneracy on a torus�. These interrelated features are also intimately connected to the
entanglement properties of the ground state(s). As shown previously, the ground states of the toric
code are an equal weight superposition of loops in either the �´i or �xi tensor product basis. The
ground state entanglement, as measured by the von Neumann entanglement entropy S , takes the
form of an area law with a subleading correction: S � s0L�  , where s0 is a constant, and L is the

�In fact the mutually semionic statistics of the two quasiparticle species, e and m, can be shown to imply a
topological degeneracy [57, 58].
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(a) Two nonintersecting strings of �xi and �´i
Pauli matrices.

e e

mm

(b) Two intersecting strings: the magnetic vortex
encircles the electric charge.

Figure 1.3: When a magnetic vortex encircles an electric charge, as in (b), the wavefunction picks up a phase
of ei� D �1 relative to configuration (a).

length of the (smooth [59, 60]) boundary separating two regions of the lattice (which are in direct
contact). The universal correction term  D ln 2 is only nonzero in a system possessing topological
order�, and thus can be used to identify topologically ordered phases of matter [51, 56].

The QSL phase of the toric code is robust to all sufficiently weak perturbations [63]. However,
for sufficiently large perturbations, e.g., the application of a large magnetic field [64–67], the
system undergoes a phase transition into a phase in which the excitations are confined. In the
presence of a very large magnetic field h, say along ´, the ground state is approximately the product
state j�´i D 1i. Separating two charges in this state by flipping a string of spins costs an energy
proportional to their separation and the strength of the field (each spin flip costs � 2h), implying
confinement of the pair [56]. The confinement transition that occurs at some critical value of the
applied field will be discussed in further detail in Sec. 1.4.2 in the context of Wegner’s Ising gauge
theory.

Mapping to Z2 lattice gauge theory

The mapping to (Ising) lattice gauge theory (LGT) language can be formulated as follows [56].
The O�´i operator, which lives on the link ab, is written in terms of a vector potential O�´i D ei OAab ,
which has eigenvalues Aab D 0; � . Similarly, the O�xi operators are written in terms of electric
fields OEab, canonically conjugate to vector potential OAab, as O�xi D ei� OEab . In this way, ei OAab acts
as a raising operator for the corresponding electric field, which assumes the values Eab D 0; 1.
The field variables are defined to be antisymmetric with respect to site indices, OAab D � OAba and

�Note that there are other mechanisms that also give rise to subleading corrections to S , such as corner contributions.
Indeed, an intricate subtraction scheme is in general necessary to isolate  on a lattice [61, 62].
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OEab D � OEba. With these definitions in place, the Hamiltonian (1.4.1) can be written in the form

OH D �Je
X
s

ei�.r� OE/s � Jm
X
p

cos
�
r � OA

�
p
: (1.4.6)

The “lattice divergence,” .r � OE/s, and “lattice curl,” .r � OA/p, are given by the expressions

.r � OE/s �
X
s02hss0i

OEss0 ; and .r � OA/p �
X
b2p
OAb;bC1 ; (1.4.7)

where the curl is evaluated in the clockwise direction. We identify .r � OE/s with the charge on site s,
and .r � OA/p with the magnetic flux through the plaquette p, by analogy with Maxwell’s equations.
The ground states are free of both electric charge and magnetic flux. The ground state sector for the
electric charges is selected by the Gauss law constraint .r � OE/s j‰i D 0. This mapping justifies the
terminology “electric charges” and “magnetic vortices” used earlier in this section. The Hamiltonian
is invariant under the unitary transformation

OU Œf�sg� D ei�
P
s �s.r� OE/s D

Y
s

OA�ss ; (1.4.8)

generated by Gauss’ law, where �s D 0; 1, under which the O�´i operators transform according to

O�´ss0 D ei OAss0 ! eiŒ
OAss0C�.�s��s0/� : (1.4.9)

Evidently, the operators OAab transform like a gauge potential under a discrete gauge transformation,
i.e., the analogue of A! ACr� in classical electromagnetism. Note that the toric code exhibits
a duality between its electric charges and magnetic vortices, and the above arguments could have
equivalently been formulated with the roles of the electric field and vector potential swapped.

1.4.2 Ising Z2 lattice gauge theory

Here we consider a close relative of the toric code studied in the previous section: Wegner’s Z2
Ising lattice gauge theory [68], one of the simplest models that exhibits a phase transition between
confining and topological (deconfined) phases. The Hamiltonian consists of the same term acting
on the “stars” and a perturbing transverse magnetic field [68, 69]:

OHZ2 D �J
X
s

OAs � h
X
i

O�´i : (1.4.10)
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J=h

confined deconfined
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Figure 1.4: Schematic illustration of the confinement–deconfinement transition that occurs in the Z2 lattice
gauge theory. When the magnetic field h is strong, the defects (violating the Gauss law constraint)
are confined; the energy per unit length of separating the defects (the string tension), � , is finite.
This gives rise to finite confinement length scale �. Near the critical point, the string tension
vanishes as � � .J � Jc/2� , while the confinement length diverges, � � .J � Jc/�� . Since
the transition belongs to the classical 3D Ising universality class, the critical exponents are well
known, and � ' 0:63 [71, 72].

The OAs operators are no longer conserved quantities, but the operators OBp D
Q
i2p O�´i are; they

commute with each other, Œ OBp; OBp0� D 0, and with the Hamiltonian, Œ OHZ2;
OBp� D 0. The conserved

operators OGp � OBp generate a local (Z2) gauge transformation satisfying OG�1p D OGp. The action of
the OGp on the spins is [similarly to Eq. (1.4.9)]

O�xqk ! OGp O�xqk OGp D ei�.ıqpCıkp/ O�xqk ; (1.4.11)

where we have indexed the spins using the sites of the dual lattice ( O�qk lies on the link that bisects
the line joining the centres of plaquettes q and k). That is, OGp anticommutes with O�x

qk
if the support

of the two operators overlaps. The gauge-invariant states satisfy a Gauss law constraint of the form
OGp j‰i D j‰i for all plaquettes p. If the Hilbert space upon which (1.4.10) acts is restricted to such

gauge-invariant states then we obtain the Ising gauge theory [68–70] (i.e., Gauss’ law is understood
to be imposed on the states implicitly). It is then possible to introduce new gauge-invariant operators
(Pauli matrices) O�xs and O�´s living on the sites of the lattice

O�´s D OAs ; O�´ss0 D O�xs O�xs0 ; (1.4.12)

in terms of which the Hamiltonian (1.4.10) becomes a two dimensional transverse field Ising model

OHZ2 D �h
X
hs;s0i
O�xs O�xs0 � J

X
s

O�´s : (1.4.13)

Note that the duality relies on the implicit Gauss law constraint: When the transformation is written
in the form O�xs D

Q
i2.s/ O�´i , the path .s/ is only immaterial in the gauge-invariant subspace

OBp j‰i D j‰i.
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The two dimensional Ising model (1.4.13) (whose Hilbert space is no longer restricted by a
Gauss law constraint) exhibits two phases. For h � J , the Ising model is in its ferromagnetic
phase� and h O�xs i > 0. In the original O�˛i degrees of freedom, setting J D 0, the ground state isQ
j j�´j D 1i (which is explicitly gauge invariant). Excitations above this ground state correspond

to flipping spins in the O�´j basis, with each spin flip costing an energy 2h. Gauss’ law enforces that
these flipped spins must form closed loops on the lattice (since any endpoints would violate the
constraint). This phase is confining in the sense that the energy required to separate two violations
of the Gauss law constraint (i.e., plaquettes with Bp D �1) grows linearly with their separation
relative to the ground state with no violations.

In the opposite limit, J � h, the Ising model is in its paramagnetic phase. If we were to ignore
the Gauss law constraint, the ground state of the model would be

Q
j j�xj D 1i, which is clearly

not gauge invariant. To obtain the gauge invariant ground state in this perturbative limit, one can
project into the physical Hilbert space using the projection operator OP D Q

p
1
2
.1C OGp/, which

symmetrises over different gauge transformations�. Performing this projection leads us directly to
the ground state of Kitaev’s toric code model from the previous section, i.e., an equal-amplitude
superposition of all possible closed loops of flipped spins generated by the OGp. At the fine-tuned
point h D 0, it costs strictly zero energy to separate two defects that violate the Gauss law constraint.
For finite (but still sufficiently small) h, the defects interact via a screened potential of the form
V.`/ � e�`=�s , where ` is the separation of the defects [73], and the strength of the interaction and
the screening length �s depend on h and J . Deconfinement generally means that it costs a finite

amount of energy to separate the defects by an infinite distance. At the critical value of h=J , the
system undergoes a confinement–deconfinement phase transition; as the critical point is approached
from the confining side, the string tension vanishes, and the corresponding confinement length
diverges as shown schematically in Fig. 1.4.

1.4.3 Classical spin ice

Having introduced some of the central phenomenology relating to quantum spin liquids in the
context of gapped Z2 theories, we now turn to looking at a robust mechanism that can produce spin
liquid behaviour, both classical and quantum, in experiment. Namely, in the following, we will
demonstrate how classical Ising frustration can give rise to classical spin liquid behaviour at low
temperatures in dipolar spin ice. This discussion will set the stage for the introduction of quantum

spin ice, where off-diagonal terms induce quantum fluctuations within the classical ground state

�Note that the ‘physical’ magnetic field acting on the O�˛i degrees of freedom maps onto the nearest-neighbour
coupling in the dual Ising model.

�With periodic boundary conditions,
Q
p
OGp D 1, i.e., there are only 2N�1 independent gauge transformations.

This allows the projector OP to be written in the form OP D 1
2
OS.1CQp OGp/ D OS , where OS symmetrises over independent

gauge transformations.
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O

H

Figure 1.5: Arrangement of oxygen ions O2� (white circles) and protons HC (smaller blue circles) satisfying
the Bernal Fowler ice rules.

manifold, thereby generating a U.1/ quantum spin liquid.

Water ice

One of the hallmarks of frustrated magnetic systems is a ground state degeneracy that is expo-
nentially large in the volume of the system. An important experimental consequence thereof is
an extensive residual entropy as temperature is lowered to zero�. Historically, however, the first
system that was shown in experiment to have a nonzero residual entropy was not a frustrated magnet.
Instead, in the work of W. Giauque and collaborators [74, 75], it was shown that the much more
familiar water ice (spin ice’s namesake) possesses such a residual entropy. In 1935, the origin of this
result was explained quantitatively by Linus Pauling [76], who gave a simple counting argument for
the residual entropy value that had been observed in experiment.

In the hexagonal phase of water ice, the O2� ions form a tetrahedral structure, while the protons,
HC, are located on the O–O bonds. The stability of the H2O molecular structure leads to the
so-called Bernal and Fowler ice rules [77], which describe where the protons should be placed
within this tetrahedral structure of O2� ions:

1. There should exist one proton per O–O bond,

2. In two of four bonds that emanate from each O2� ion, the proton should be “close”, and in
the remaining two it should be “far” from the Oxygen ion.

The second of these rules derives from the fact that the O–O bond length in hexagonal water ice
significantly exceeds the short, covalent O–H bond in an H2O molecule. A minimal structure
that satisfies the above ice rules is shown in Fig. 1.5. Pauling argued in Ref. [76] that there are�
4

2

� D 6 ways of locally arranging the protons around each O2� ion. However, each tetrahedron is
not independent from its neighbours. If we consider a system that comprises N O2� ions, then the
structure contains Nb D 2N O–O bonds. If the matching constraint (that each bond must contain

�The residual entropy appears experimentally when the system is cooled gradually to low temperatures. Ordering
at low temperatures is generally expected, but the relaxation time scales at such low temperatures can be astronomically
large, rendering the release of the residual entropy inaccessible.
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Figure 1.6: One cubic unit cell of the pyrochlore lattice. In spin ice, Ising spins live at the centres of the
black spheres, between two corner-sharing tetrahedra, and are constrained to point along the
local h111i direction (i.e., “in” or “out” of a given tetrahedron). The centres of the tetrahedra
form a diamond lattice, which consists of two sublattices; “upwards” facing tetrahedra live on
one sublattice, while “downwards” facing tetrahedra inhabit the complementary sublattice. The
thin solid lines denote the conventional cubic unit cell.

one proton) is imposed on average, then one obtains W D 6N .1=2/Nb D .3=2/N configurations of
the protons that are compatible with the Bernal Fowler ice rules. This value leads to a residual
entropy S D kB lnW D 0:806 cal= deg =mol, which is in close agreement with the experiments of
Giauque [74] and more accurate analytical estimates that treat the constraints more carefully [78].

Spin ice

Spin ice compounds are part of the pyrochlore oxide family, which take the general form A2B2O7.
In such compounds, A is a rare-earth element such as Dy, Ho, while B is a non-magnetic ion such
as Ti, Sn, Mo, Mn, etc. The ions A3C and B4C live on two interpenetrating pyrochlore sublattices.
The corner-sharing tetrahedra that make up the pyrochlore lattice are shown in Fig. 1.6. The
two canonical spin ice materials Dy2Ti2O7 and Ho2Ti2O7 are electronic insulators [79], and their
magnetic ions Dy3C and Ho3C have total angular momentum J D 15=2 and J D 8, respectively.
Strong crystal field effects in these materials lead to a ground state doublet that is separated from
the first excited state by a gap of order 300 K. Within the ground state doublet, the total angular
momentum J is constrained to point along the local h111i direction, either “into” or “out” of the
tetrahedra. In most cases� it is appropriate to project the full Hamiltonian into the ground space
of the crystal field Hamiltonian (i.e., the ground state doublet on each site), and we are left with a

�The projection is appropriate as long as other energy scales in the problem do not become comparable to the
crystal field splitting. Specifically, one requires temperatures T . 10 K and magnetic fields B . 20 T [80].
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(a) two in two out (b) three out one in (c) all out

Figure 1.7: Symmetry-inequivalent configurations of the tetrahedra that make up the pyrochlore lattice. The
two-in-two-out configuration in (a) does not host a charge, and corresponds to the ground state
of an isolated tetrahedron. The configuration in (b) is an excited state that hosts a single charge
(a monopole), Q D 1, while in the configuration in (c) the tetrahedron hosts a double charge,
Q D 2.

model of effective, classical Ising spins �i D �1;C1 living on the sites of the pyrochlore lattice:

HDSI D �
X
hi;j i

Jij .ei � ej /�i�j CD
X
i<j

ei � ej � 3.ei � rij /.rij � ej /
.rij=rnn/3

�i�j : (1.4.14)

The vectors ei point along the local h111i directions. The first term corresponds to the exchange
interaction, and the second to long-ranged dipole–dipole interactions between the magnetic moments.
Note that the sign of the effective interaction between the Ising spins �i is reversed, since ei � ej < 0
for i ¤ j .

Nearest neighbour spin ice

Nearest neighbour spin ice corresponds to the first term only in the Hamiltonian (1.4.14) (i.e.,
neglecting the dipolar contribution to the energy). Using the fact that ei � ej D �1=3, we obtain

HNN D Jeff

X
hi;j i

�i�j ; (1.4.15)

where Jeff D J=3�. The model (1.4.15) with antiferromagnetic Jeff > 0 on the pyrochlore lattice
was first studied in the work of Anderson [82] in 1956 on cation ordering and antiferromagnetism
in spinels. To find the ground state of the nearest neighbour spin ice Hamiltonian, we will begin by
locally minimising the energy on a single tetrahedron. For an isolated tetrahedron, there are 24 D 16
possible spin configurations, which may be classified, as in Fig. 1.7, according to the number
of spins pointing “out” of the tetrahedron, and the number of spins pointing “in”. Specifically,

�In dipolar spin ice, the exchange interaction is antiferromagnetic. However, once the nearest neighbour contribution
from the dipolar interaction is included, the sign of the effective nearest neighbour interaction between vector spins is
made ferromagnetic. The J > 0 in this expression encompasses both the exchange interaction and the short-ranged
contribution from the dipolar interaction. In real materials, Jeff ' J

3
C 5D

3
, where D > 0 prevails over J < 0 in

making Jeff > 0 [81].
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Figure 1.8: Pinch point structure in the static (equal time) structure factor h�.�q/�.q/i of classical spin ice
in the long-wavelength limit. The structure factor is plotted in the Œhhk� plane using the results
of Ref. [83].

tetrahedra can be two-in-two-out (�6), three-in-one-out (�4), all out (�1), plus their spin-reversed
counterparts. These different configurations of Ising spins can be conveniently parametrised by
the “charge” on tetrahedron a as Qa D ˙1

2

P
i2a �i . The sign depends on the sublattice that the

tetrahedron belongs to, and ensures that, for example, a three-out-one-in tetrahedron (known as
a magnetic monopole) will always obey Qa D 1, irrespective of which sublattice it resides on.
Similarly, a two-in-two-out tetrahedron will always be charge neutral, Qa D 0. We may then note
that the nearest neighbour Hamiltonian can be written solely in terms of the tetrahedral charges as

HNN D 2Jeff

X
a

Q2
a �NsJeff ; (1.4.16)

from which we deduce that HNN is both locally and globally minimised by Qa D 0 on every
tetrahedron. Although this constraint is trivial in the charge language, it is nontrivial when imposed
on the underlying Ising spin degrees of freedom. Indeed, Qa D 0 is equivalent to requiring that
all tetrahedra satisfy the two-in-two-out constraint. The equivalence with water ice is now clear:
If in water ice we associate an Ising variable that labels whether the proton is in the “near” or the
“far” position, then the Bernal and Fowler ice rules are equivalent to the two-in-two-out constraint in
spin ice. The nearest neighbour Ising Hamiltonian (1.4.16) therefore gives rise to a finite zero point
entropy given approximately by the Pauling [76] result S0=kBNs ' .1=2/ log.3=2/.

Writing the monopole-free constraint in terms of the original vector spin degrees of freedom,
Si D �iei , we find that the two-in-two-out constraint is equivalent to

P
i2a Si D 0 on each

tetrahedron a. This constraint on the vector spins can be viewed as a lattice regularisation of the
divergence:

P
i2a Si � .r � S/a D 0. Therefore, upon coarse graining, the spin vector field S.r/,
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which is proportional to the physical magnetisation, satisfies the solenoidal constraint r � S D 0,
analogous to the Maxwell equation r � B D 0 for the magnetic field in classical electromagnetism.
The divergence-free condition can be satisfied by introducing an emergent gauge field A.r/, such
that S.r/ D r � A.r/. Endowing the continuum theory with a Gaussian weight functional�,
�ŒA.r/� / exp

��K
2

´
dr .r � A/2

�
[83], leads to a Maxwell-like action, with dipolar correlations

between spins

h�i.r/�j .0/i / 3rirj � r
2ıij

r5
: (1.4.17)

In reciprocal space, these correlations give rise to pinch point singularities (as depicted in Fig. 1.8),
which have been observed in neutron scattering experiments on spin ice compounds [85, 86], and
constitute compelling experimental evidence for the existence of emergent gauge fields and the
associated Gauss law constraint.

Including the dipolar interaction

Although many of the properties of spin ice, such as the extensive zero temperature entropy and
the lack of any finite temperature phase transition, are explained by the simple nearest neighbour
model (1.4.16), the full Hamiltonian includes also the long-ranged dipolar interaction, whose
magnitude is comparable to the exchange interaction. By virtue of projective equivalence [87], the
dipolar interactions can be accounted for effectively by a long-range, pairwise interaction between
the tetrahedral charges Q˛

Hc D 2Jeff

X
a

Q2
a CEnn

X
a<b

QaQb

rab
; (1.4.18)

where rab D jra � rbj=rnn is the distance between the centres of the tetrahedra a and b in units of
the distance between neighbouring tetrahedra, and Enn is the Coulomb energy of two adjacent unit
charges. Such a description can also be justified by writing each dipole as the sum of two fictitious
monopoles [88], in which case (1.4.18) is known as the dumbbell model. The first term accounts
for both the exchange interaction and a short-ranged contribution from the dipolar term. The
latter accounts for the long-ranged nature of the dipole interaction. Projective equivalence ensures
that (1.4.18) is quantitatively accurate up to quadrupolar corrections. When Enn is nonzero, the
ground state(s) are determined by a competition between an ordered arrangement of charges on the
diamond lattice and the charge vacuum. ForEnn sufficiently small, the self-energy cost of the charges
prevails, and the Q˛ D 0 configurations remain exact ground states of the approximate (1.4.18).

The monopole description (1.4.18) provides an excellent approximation to both the equilibrium
behaviour [89, 90] and dynamics [91, 92] of classical spin ice. However, one area where the

�Entropically, the system favours spin configurations that form lots of short loops, which upon coarse graining map
to small values of S.r/ [83, 84].
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dumbbell model (at least in theory) falls short is the absence of a low temperature phase transition.
Equation (1.4.18) predicts that the nearest-neighbour spin ice ground states, characterised by
Qa D 0, are exactly degenerate. Reinstating the full dipolar interaction splits the degeneracy of
such states, which leads to a first order phase transition at low temperatures [93, 94] (approximately
180 mK for Dy2Ti2O7 [80]), selecting a particular ordered spin state from the ground state manifold.
In order to observe such a transition numerically (using the Monte Carlo methods introduced later
in Sec. 4.2), one must implement loop updates [94], allowing the system to efficiently pass between
states that satisfy the ice rules at low temperatures. However, the dynamics of classical spin ice,
both in and out of equilibrium, is described quantitatively by “single spin flip” dynamics [84]. The
equilibration time scale under such dynamics diverges exponentially at low temperatures [91, 92],
rendering the ordering transition experimentally inaccessible in practice [95–97].

1.4.4 Quantum spin ice and U(1) lattice gauge theory

The canonical model of quantum spin ice consists of the nearest-neighbour classical spin ice
Hamiltonian and transverse (exchange) terms, which induce quantum fluctuations. Specifically, one
typically considers a local XXZ model on the pyrochlore lattice [98]:

OHQSI D J´
X
hij i
OS´i OS´j � J?

X
hi;j i

�
OSCi OS�j C OS�i OSCj

�
; (1.4.19)

where the transverse term / J? is assumed small, jJ?j � J´. As discussed in the previous section,
if we neglect the transverse terms entirely, the ground states of the model are OS´i tensor product
states that satisfy the ice rules, with

P
i2t S

´
i D 0 on each tetrahedron t . Turning on the transverse

terms perturbatively, one may then use degenerate perturbation theory to study how the extensive
degeneracy of the ground state sector is split. The degeneracy is first split at third order� in J?,
where ring exchange processes give rise to the effective Hamiltonian [100]

OHring /
J 3?
J 2´

X
h2f7g

OSC
h;1
OS�h;2 OSCh;3 OS�h;4 OSCh;5 OS�h;6 C H.c. ; (1.4.20)

which acts on the Hilbert space spanned by the ground states of classical spin ice. Equivalently,
we can view this from the perspective of a Gauss law constraint that selects the physical Hilbert
space:

P
i2t OS´i j‰i D 0. The Gauss law constraint acts as the generator of infinitesimal gauge

transformations of the form ei
P
t ˛t.

P
i2t
OS´
i /, i.e., rotations about the local ´ axis of all spins

belonging to each tetrahedron. The Hilbert space corresponding to the ground state sector is then
spanned by gauge invariant states, which satisfy ei

P
t ˛t.

P
i2t
OS´
i / j‰i D j‰i.

�At second order in J?, creation and annihilation of virtual, constraint-violating defects leads to a constant shift in
all energy levels [99].
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To write the ring exchange Hamiltonian (1.4.20) in terms of a U.1/ lattice gauge theory, the
spin degrees of freedom can be written in terms of canonically conjugate rotor variables, Oni and O�i ,
where OS´i D Oni � 1

2
and OS˙i act as raising/lowering operators OS˙i D e˙i O�i [99]. The hard constraint

ni D 0; 1 can be implemented at the level of the Hamiltonian by ensuring that the system incurs
a finite cost if the constraint is violated. In the rotor variables, the ring exchange Hamiltonian
becomes

OH D U

2

X
hrr0i

�
. Onrr0 � 1

2
/2 � 1

4

� �K X
h2f7g

cos
�
O�h;1 � O�h;2 C O�h;3 � O�h;4 C O�h;5 � O�h;6

�
;

(1.4.21)
where the vector indices r label the sites of the diamond lattice (i.e., the centres of the tetrahedra).
States with nrr0 ¤ 0; 1 are penalised by an energy cost / U ; only in the limit U=K ! 1
is the hard constraint ni D 0; 1 enforced exactly. The introduction of (directed) link variables
Oerr0 D ˙. Onrr0 � 1

2
/ and Oarr0 D ˙ O�rr0 (where the sign is positive for r belonging to the A sublattice,

which we take to be composed of “upwards” facing tetrahedra) makes the correspondence with
compact U.1/ lattice gauge theory explicit�

OH D U

2

X
hrr0i
Oe2rr0 �K

X
h2f7g

cos

 X
rr02h
Oarr0

!
; (1.4.22)

with the lattice curl .r � Oa/h �
P

rr02h Oarr0 . The canonically conjugate variables Oarr0 and Oerr0 play
the role of the vector and electric potentials, respectively. Violations of Gauss’ law correspond
to electric charges, and in the ground state sector .r � Oe/r �

P
r0 Oerr0 D 0. In d D 3 spatial

dimensions, the unfrustrated analogue of (1.4.22) exhibits two phases [101]; for U=K � 1 the
theory exhibits a deconfined phase, while in the opposite limit the theory is confining. In the
deconfined phase�, the compact nature of the gauge theory is not important, the cosine can be
expanded to quadratic order, and one arrives at the familiar Maxwell Hamiltonian of (noncompact)
U.1/ quantum electrodynamics (QED)

OH D U

2

X
hrr0i
Oe2rr0 C

K

2

X
h2f7g

.r � Oa/2h : (1.4.23)

By analogy with QED, the Hamiltonian (1.4.23) exhibits gapless, linearly dispersing degrees of
freedom at low energies: the photon. Gauge invariance implies that the photon has two polarisations,
both of which are transverse to its momentum. Electric charges (otherwise known as spinons),

�In the limit U=K !1, the Hamiltonian enforces half-integer values of the electric field, err0 D ˙12 . The gauge
theory is therefore referred to as frustrated [99] or odd [73, 98], in contrast to unfrustrated gauge theories in which the
strong coupling limit U=K !1 enforces the trivial vacuum err0 D 0.

�Monte Carlo simulations suggest that, in the frustrated/odd gauge theory, the deconfined phase survives all the
way to U=K !1 [102, 103].
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Figure 1.9: Left: Illustration of the anisotropic interactions and the conserved plaquette operator OWp in
the Kitaev model. Along the blue (green, red) bonds, the spins interact via interactions O�i O�j
with  D x (y, ´). Right: Phase diagram of the Kitaev model in the plane Jx C Jy C J´ D 1
(perpendicular to Œ111�).

which correspond to violations of the Gauss law constraint, .r � Oe/r D 0, have an energy gap of
order J´, and interact via an emergent Coulomb interaction [99, 104], mediated by the photon. In
addition to the energetically costly spinons and the gapless “photon”, the noncompact nature of the
U.1/ gauge theory permits quantised magnetic charge. These magnetic charges (otherwise known
as visons) are constructed from states belonging to the spin ice manifold, and possess a finite gap set
by J 3?=J

2
´ [99], intermediate between the energies of the photon and the spinon excitations. Pairs

of vison excitations also interact via a long-ranged 1=r Coulomb potential.

1.4.5 Kitaev’s honeycomb model

In the last twenty years, two exactly solvable models stand out as being particularly influential in
aiding our understanding of quantum spin liquids and their associated phenomena, both of which
are due to Kitaev. The first is the toric code [46], introduced in Sec. 1.4.1, which illustrates the
pertinent physics associated with topological order in gapped Z2 QSLs. The second is Kitaev’s
honeycomb model [47], which, as we will present here, possesses the trinity of exact solvability,
experimental relevance, and a rich phase diagram that displays a variety of gapped and gapless
quantum spin liquid ground states.

The Kitaev Hamiltonian is exactly solvable on any tricoordinated lattice [50], but in the following
we will restrict out attention to the two dimensional honeycomb lattice (see Fig. 1.9), which was the
subject of Kitaev’s seminal work in 2006 [47]. The Hamiltonian is then

OHKitaev D �
X

Dx;y;´

X
hj;ki

J  O�j O�k ; (1.4.24)

where the spin-1/2 degrees of freedom O�j live on the sites of the honeycomb lattice, and  labels the
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bond direction. The nearest-neighbour interaction between the spins is highly anisotropic, with a
bond-direction-dependent easy axis� (the defining feature of so-called compass models [111]). This
anisotropy, which is at the core of the model’s highly unusual properties, arises in some transition
metal compounds due to strong spin-orbit coupling (for reviews of candidate spin liquid compounds,
including Kitaev materials that possess such anisotropy, see, e.g., [50, 51, 56, 112–116]). In the
vicinity of the isotropic point J x D J y D J ´, the ground state of the Hamiltonian is a gapless spin
liquid. Conversely, when one of the coupling constants is made significantly larger than the other
two, the lowest order effective Hamiltonian is precisely that of the toric code [47], and the system
is correspondingly gapped, as shown in the phase diagram in Fig. 1.9. The Hamiltonian (1.4.24)
possesses an extensive number of conserved quantities, OWp, one for each plaquette p, defined by

OWp D
Y

hi;j i2p
O�i O�j D O�x1 O�y2 O�´3 O�x4 O�y5 O�´6 ; (1.4.25)

where the numerical subscripts index the spins belonging to the plaquette p in an anti-clockwise
direction, as shown in Fig. 1.9. Since OW 2

p D 1, the eigenvalues of the plaquette operator must be
˙1. Although the number of such operators is extensive, specifying the eigenvalue of each plaquette
operator does not uniquely determine the spins. Indeed, there are two spins per plaquette, but only
one constraint, and hence there remain an extensive number of degrees of freedom unspecified.

In Kitaev’s original exact solution of the model, the spins are represented (with some redundancy)
as Majorana fermions. Specifically, one introduces four Majorana operators per site, Oa˛j (˛ D
x; y; ´) and Ocj , allowing the spins to be represented as [47, 57]

O�˛j D i Oa˛j Ocj : (1.4.26)

The spins satisfy the canonical angular momentum commutation relations as long as Oaxj Oayj Oa´j Ocj D 1.
Therefore, the physical subspace is obtained via the application of the projection operator OPj D
1
2
.1C Oaxj Oayj Oa´j Oc/ on each site j . In the Majorana language, the bond operators become O�i O�i D
�.i Oai Oaj /i Oci Ocj . Further defining Ouij D i Oa.i;j /i Oa.i;j /j , and OAij D 2J .i;j / Ouij , the Hamiltonian
reduces to

OHKitaev D i

4

X
hi;j i
OAi;j Oci Ocj : (1.4.27)

Since the bilinear Ouij commute with one another and with OHKitaev, they can be replaced by their
eigenvalues,˙1, in Eq. (1.4.27). The problem (in the enlarged Hilbert space) is hence reduced to
Majorana fermions hopping through a Z2 gauge field, as specified by the eigenvalues of the Ouij .

�In more realistic Hamiltonians, it is common to include some residual isotropic Heisenberg interactions between
nearest neighbours (the Kitaev-Heisenberg model [105]), and/or symmetric off-diagonal exchange interactions, in
which case the Hamiltonian is known as the JK� [106–108]/K-� [109, 110] model.

– 46 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

z

x

y

z

x

y

Figure 1.10: Left: The honeycomb lattice can alternatively be viewed as a “brick wall” lattice in which
the spins are arranged on the sites of a square lattice. Rows of spins are connected in the
vertical direction on either odd or even sites depending on the parity of the row. Right: The
Kitaev honeycomb model with one row of hexagons and periodic boundary conditions can,
equivalently, be viewed as a model that resides on a square lattice two-leg ladder with a unit
cell of length two.

Choosing uij D ˙1 is equivalent to “gauge fixing” [50], while projection into the physical subspace
OPj j‰i D j‰i (analogous to Gauss’ law in conventional electromagnetism) may be considered as

symmetrisation over different gauges. Fortunately, a theorem due to Lieb [117] can be used to prove
that, from the exponentially large number of flux sectors, the one containing the ground state of
the model is the one that contains no Z2 flux, i.e., Wp D 1 for all plaquettes p. After gauge fixing,
the Hamiltonian (1.4.27) in the flux free sector can be written using uij D 1 (�1) if i belongs to
the A (B) sublattice. The fermionic Hamiltonian can then be explicitly diagonalised to obtain the
dispersion relation �k D 2jJ xeik�n1 C J yeik�n2 C J ´j [with n1;2 D .˙

p
3=2; 3=2/], which, in the

gapless phase, hosts two zero-energy Dirac points [47, 57].

Once again we observe that the system harbours an emergent gauge field. Here, outside of
the ground state sector, the Z2 valued gauge field acts as a static source of � flux (i.e., half of the
flux quantum) for the Majorana fermions. That is, when a fermion encircles an odd number of
hexagonal plaquettes with Wp D �1, it acquires an Aharonov–Bohm phase of ei� D �1. The
other defining features of quantum spin liquids introduced previously are also present in the Kitaev
model. For instance, it follows from (1.4.26) that spins fractionalise into a pair of nearest neighbour,
static � fluxes and a Majorana fermion [118]. Moreover, in both the gapped and gapless phases, the
ground state exhibits long-range entanglement, generating a subleading, topological contribution to
the entanglement entropy [119], and the ground state degeneracy depends on the topology of the
manifold on which the model resides [120–122].

From honeycomb to ladders

The Kitaev Hamiltonian (1.4.24) can alternatively be defined on a two-leg spin ladder [67, 123, 124].
We will introduce this model briefly here, since it possesses a number of key conceptual similarities
with compass model that we will present later in Chapter 5. The conclusions that we draw in
Chapter 5 can then be applied mutatis mutandis to the Kitaev ladder model. The honeycomb
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lattice can equivalently be viewed as “brick wall” lattice, as shown in Fig. 1.10. The spins are then
labelled according to their column (j ) and row (`) indices, and the Kitaev Hamiltonian (1.4.24)
becomes [123]

OHKitaev D �
X

jC`Deven

�
Jx O�xj;` O�xjC1;` C Jy O�yj�1;` O�yj;` C J´ O�´j;` O�´j;`C1

�
(1.4.28)

Putting the Kiatev Hamiltonian on a single “row of bricks” (with periodic boundary conditions)
leads to the ladder generalisation of the Kitaev model, which is shown schematically in Fig. 1.10.
Following Ref. [123], the spins in (1.4.28) can then be fermionised via a Jordan–Wigner transfor-
mation along the rows of the lattice to complex fermionic operators Oaj;`; Oa�j;`, defined explicitly by
the relations

O�C
j;`
D Oa�

j;`
exp

0
@i� X

i;k<`

Oni;k C i�
X
i<j

Oni;`

1
A : (1.4.29)

Unlike Kitaev’s original solution, this fermionic representation involves no redundancy, i.e., there is
no Gauss law constraint that selects physical (gauge invariant) states from an enlarged Hilbert space.
In addition, this mapping offers additional utility in that it may be used to define a string order
parameter, which becomes local within a dual description, allowing the phase transition between
the gapped and gapless phases to be characterised within Landau’s theory of continuous phase
transitions [123, 125]. The complex fermions . Oa; Oa�/ can then be transformed to Majorana fermions
. Oc; Od/ with the convention [123]

Odj` D
8<
:
Oa�
j`
C Oaj` if j C ` D even;

i. Oa�
j`
� Oaj`/ if j C ` D odd;

(1.4.30)

Ocj` D
8<
:
i. Oa�

j`
� Oaj`/ if j C ` D even;

Oa�
j`
C Oaj` if j C ` D odd:

(1.4.31)

These transformations lead to a representation in which the conserved quantities of the Kitaev
Hamiltonian are explicit�

OHKitaev D i
X

jC`Deven

�
Jx Ocj;` OcjC1;` � Jy Ocj�1;` Ocj;` C J´.i Odj;` Odj;`C1/ Ocj;` Ocj;`C1

�
: (1.4.32)

�Note that periodic boundary conditions are imposed in the row index ` such that `C 1 is understood to mean
`C 1 mod 2.
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Specifically, the operators O�j` D i Odj;` Odj;`C1 (of which there are L) commute with the Hamiltonian
and one another. Hence, they correspond to good quantum numbers, �j` D ˙1, and the Hamiltonian
can be block diagonalised using a basis in which the O�j` are simultaneously diagonalised. The
conserved quantities are analogous to the Z2 fluxes OWp in the honeycomb model [see Eq. (1.4.25)].
While the ground state is given by a configuration of conserved quantities that are translationally
invariant with respect to the unit cell [67, 117, 123, 124], within a typical block, the dynamics is that
of Majorana fermions in the presence of a binary random field,˙J´. To describe the behaviour of
the fermions in the presence of such emergent randomness, we are led to consider the phenomenon
of Anderson localisation.
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1.5 Localisation phenomena

1.5.1 Anderson localisation

Anderson localisation is a surprising and inherently quantum mechanical phenomenon that arises in
random media owing to the wavelike nature of particles at microscopic scales. To illustrate some of
the main counter-intuitive implications, imagine a single particle of massm in one spatial dimension
subjected to the Hamiltonian

H D p2

2m
C V.x/ ; (1.5.1)

where V.x/ is a random potential (the details of which will remain unspecified for now). If we
first think classically, there are two relevant regimes. First, if the kinetic energy of the particle
significantly exceeds the typical fluctuations of the potential, the particle is free to move above the
potential landscape essentially unimpeded. On the other hand, if the kinetic energy of the particle is
small compared to the typical fluctuations of the potential, it will remain stuck and oscillate back
and forth, i.e., classically localised, within some region of space set by energy conservation.

When treating the problem quantum mechanically, it is well known that a change in the potential
leads to reflection and transmission of the wave function. The relative magnitude of reflection
and transmission depends on the height of the barrier, but some probability will be transmitted
through the barrier, even when the barrier’s height exceeds the kinetic energy of the particle, i.e.,
quantum tunnelling. Naïvely one may therefore expect that if each ‘bump’ in the potential leads
to reflection and transmission, the probability density should be governed by a random walk and
therefore exhibit diffusive propagation characterised by hx2i � t . This intuition turns out to be
incorrect, at least in spatial dimensions d � 2, or in the presence of sufficiently strong disorder.

In Anderson’s seminal work [126], it was shown that – contrary to the heuristic arguments above
– the role of interference between the various incident and reflected waves cannot be disregarded
and causes the particle to remain stuck in the vicinity of its initial position. At long times, if all
eigenstates are localised, the average dynamics of the particle ceases, hx2i � const., and the wave
function of the particle (asymptotically) decays exponentially in space

j .r/j2 � exp
�
�jrj
�

�
; (1.5.2)

where the position r is measured with respect to the initial position of the particle. The length
scale � that controls the exponential decay is the localisation length. Since interference lies at the
heart of localisation phenomena, localisation effects are also relevant in other disordered systems
described by (classical) wave equations. For instance, Anderson localisation can occur in the
random scattering of light [127, 128], matter waves [129, 130], and even sound waves [131]. In
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Figure 1.11: Left: Schematic depiction of the density of states and mobility edges in the three-dimensional
Anderson model. The states in the centre of the band, with energies jEj < Ec , are extended,
while those in the band edges, jEj > Ec , are localised. Centre: In the vicinity of Ec we plot
the localisation length � and the conductivity � resolved by energy. On the metallic side of the
transition, jEj < Ec , the conductivity vanishes as �.E/ � .E �Ec/s , while on the insulating
side, jEj > Ec , the localisation length diverges as �.E/ � .Ec � E/�� . Right: Mobility
edges as a function of disorder for the simple cubic lattice, inspired by Ref. [132]. As disorder
is increased from zero, the mobility edges initially move outwards, before they eventually
turn around and move towards the centre of the band. Above a critical disorder strength, Wc ,
denoted by the white circle, all eigenstates become exponentially localised.

the following, we will discuss some of the most common characterisations of localisation that
complement the intuitive “absence of diffusion” definition given above.

If the particle is initially located on a single lattice site, an alternative but related notion of
localisation is to think about the probability that the particle returns to its initial position (the return
probability). If the initial state has nonzero overlap with localised states then some fraction of
the initial particle density will not diffuse away from its initial position. Introducing the Green’s
function

G.r; r0I t / D
X
˛

 ˛.r/ N ˛.r0/e�iE˛t ; (1.5.3)

where  ˛.r/ D hrj˛i are the eigenfunctions of the system in real space, the return probability is
given by jG00.t/j2. One can then show that for sufficiently large times [133]

lim
t!1 jG00.t/j

2 D
X
˛

jh0j˛ij4 : (1.5.4)

If the right hand side does not vanish, then some fraction of the probability will remain stuck in
the vicinity of the origin, defined by the particle’s initial position. This expression also leads us to
another important quantity when considering localised systems: the (inverse) participation ratio
(IPR). The IPR also allows for the definition of so-called multifractal states, which are extended
but non-ergodic. Such multifractal states, which are characterised by rare peaks and algebraic tails,
occur in a variety of contexts, perhaps most notably at the Anderson and quantum Hall plateau
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Figure 1.12: Left: Typical mid-spectrum state from the one-dimensional Anderson model on a lattice. The
state is localised over a region of size � �. Right: The logarithm of the same mid-spectrum
state, highlighting the state’s exponential tails.

transitions [134–137] and in hierarchical structures [138, 139]. The IPR is defined as

IPR˛q D
NX
iD1
jhi j˛ij2q ; (1.5.5)

where we have assumed the normalisation IPR˛1 D 1. One common way to distinguish between
extended and localised states is to look at the fourth power (q D 2) of the wave function. In the
case of perfect extended Bloch waves, IPR˛2 D 1=N . For random extended states, the prefactor
is modified, but one generally expects the / N�1 scaling to hold [133]. On the contrary, for
perfectly localised states, the wave functions are Kronecker delta functions  ˛i D ı

i˛
i , and the

summation gives IPR˛2 D 1. Generalising to exponentially localised states with appreciable support
over a region � �, the IPR does not scale with the volume of the system and assumes the value
IPR˛2 � ��d . Thence, in the thermodynamic limit, whether IPR2 vanishes or not indicates whether
the system possess localised or extended states at the energy being examined. More generally, for
a system of volume V , IPRq � V ��q , where the overline corresponds to disorder averaging. The
moments f�qg are commonly written in terms of the so-called multifractal exponents fDqg

�q D Dq.q � 1/ : (1.5.6)

Localised systems have Dq D 0, extended systems have Dq D 1, while for multifractal states Dq

depends nontrivially on the power q.

One dimensional systems

After the original work of Anderson [126], it was conjectured in the early 1960s that in one
dimensional systems, all single particle wave functions are exponentially localised in the presence
of spatially uncorrelated disorder, irrespective of its strength [140]. This conjecture was later given
a more mathematically rigorous footing by Goldshtein and collaborators [141]. In 1979, the “gang
of four”, E. Abrahams, P. W. Anderson, D. C. Liccardello, and T. V. Ramakrishnan, published their
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one parameter scaling theory of Anderson localisation [142], which we will soon discuss. Although
the approach is not rigorous, it has played a significant role in the field. In particular, it was the first
time that the role of dimensionality was elucidated, establishing that the critical dimension for the
existence of transport is d D 2, providing further evidence that all states in d D 1 are localised.

In one dimensional and quasi-one dimensional systems, the localisation length can also be
defined through the Lyapunov exponents of products of random matrices. This definition is
particularly convenient for the purposes of numerical calculations. Consider, for example, a strictly
one-dimensional tight binding model

OHAnderson D �t
L�1X
nD1

�
c�ncnC1 C c�nC1cn

�
C

LX
nD1

Vnc
�
ncn ; (1.5.7)

where we impose open boundary conditions. When the chain is clean, P.Vn/ D ı.Vn � V /, the
solutions are standing waves satisfying IPR2 / L�1. Neglecting finite size effects, a particle
initially localised on a single site will spread ballistically from its initial position such that the return
probability jG00.t/j2 / t�1. For random Vn, drawn from a nontrivial probability distribution, the
wave function at energy E satisfies the discrete Schrödinger equation

�t Œ nC1.E/ �  n�1.E/�C Vn n.E/ D E n.E/ : (1.5.8)

Setting t D 1 for notational simplicity, the Schrödinger equation may be cast as a recursion relation

 
 nC1
 n

!
D
 
Vn �E �1
1 0

! 
 n

 n�1

!
: (1.5.9)

The matrix that appears in the above equation is known as the ‘transfer matrix’ and will be denoted
Tn.E/. The recursion relation (1.5.9) can then be iterated to find the wave function on a given site
(given the appropriate boundary conditions,  1.E/ and  0.E/, at the end of the chain)

 
 nC1
 n

!
D TnTn�1 � � �T2T1

 
 1

 0

!
: (1.5.10)

For almost any choice of boundary conditions, the state  n.E/ will diverge as  n � en=� . Equiva-
lently, we may write the following expression for the localisation length

��1.E/ D lim
L!1

1

L
log jjTLTL�1 � � �T2T1jj > 0 : (1.5.11)

Oseledec’s theorem [143, 144] ensures that the limiting matrix � D limL!1.QLQ�
L/
1=.2L/ exists,

where QL D
QL
nD1 Tn. The eigenvalues of � correspond to the Lyapunov exponents of QL. The
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smallest of these exponents corresponds to the largest length scale, and hence can be identified as
the inverse localisation length�. It is worth stressing here that the localisation length � corresponds
to the asymptotic decay of  ˛.x/. This decay need not apply all the way up to maximal value
of the wave function, and the “bulk” of the wave function may, in principle, have drastically
different properties from its “tails”. It should also be noted that (1.5.11) essentially corresponds to
hln jt j2i, the average value of the logarithm of the transmission coefficient jt j2 associated with the
transmission of probability from one end of the chain to the other. It may be shown that ln jt j2 is
approximately normally distributed� and therefore self-averaging, implying that the distribution
of jt j2 is approximately log-normal [147]. Conversely, the fat tails of the log normal distribution
give rise to peculiar averaging properties for functions of jt j2; whilst the localisation length is
self-averaging, the conductance and resistance discussed later on are not.

The above discussion shows that in one dimension, any amount of spatially uncorrelated disorder
will eventually lead to localisation. In the limit of weak disorder W � t , perturbation theory� gives
the Thouless expression [145, 149] for the energy-dependent Lyapunov exponent

.E/ D W 2

24.4t2 �E2/ for E2 < 4t2 : (1.5.12)

This expression contains two important features: the band centre, E D 0, is the least strongly
localised (� D �1 is maximal), and for small disorder the localisation length scales as � � W �2.
Conversely, for very strong disorder, the localisation length can be shown to vanish like ��1 '
ln W

2
� 1 [150], although more accurate expressions exist [148].

Diagonal versus off-diagonal disorder

“Off diagonal” disorder corresponds to disorder in the hopping amplitudes, rather than in the on-
site energies, and can lead to some important differences with respect to conventional Anderson
localisation. We will discuss here some of the important differences that arise in one dimension.
The one-dimensional tight binding model with pure off-diagonal disorder is

OH D �
X
n

tn;nC1
�
c�ncnC1 C c�nC1cn

�
: (1.5.13)

�While the discussion thus far has been restricted to strictly one dimensional systems, which possess just one
Lyapunov exponent for each energy, analogous arguments apply to quasi-one-dimensional systems, whose transfer
matrix has multiple Lyapunov exponents [145].

�Technically, one must account for the fact that the transmittance is upper bounded by unity, which gives rise to a
truncated log-normal distribution [135, 146].

�An anomaly in the centre of the band leads to a breakdown of second order perturbation theory. The correct
coefficient is consistent with .0/ D W 2=105t2, as observed numerically [145, 148].
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Figure 1.13: A comparison of diagonal (left) versus off-diagonal (right) disorder in a one dimensional
Anderson model. The localisation length is always maximal at the centre of the band, E D 0.
However, in the case of off-diagonal disorder, the localisation length diverges with system size
at the centre of the band, �.0/ � pL. The curves are calculated using the transfer matrix
technique in a system of size L D 2 � 105. For the diagonal case, the on-site potentials are
drawn from a rectangular distribution between Œ�W;W � with W=t D 6. In the off-diagonal
case the hopping parameters are drawn from the same rectangular distribution.

In transfer matrix form, the discrete Schrödinger equation corresponding to (1.5.13) is

 
 nC1
 n

!
D
 
�E=tn;nC1 �tn�1;n=tn;nC1

1 0

! 
 n

 n�1

!
: (1.5.14)

In the centre of the band, E D 0, the matrix simplifies substantially, and one finds that

TnTn�1 D
 
�tn�1;n=tn;nC1 0

0 �tn�2;n�1=tn�1;n

!
: (1.5.15)

Therefore,  2m D .�1/m.t2m�2;2m�1=t2m�1;2m/ � � � .t0;1=t1;2/. The first hint that systems with
purely off-diagonal disorder can behave in a drastically different manner to the case of conventional,
diagonal disorder is to consider the case of binary hopping with random signs: tn;nC1 D ei�knt ,
with kn a random integer. In this special case, the state in the centre of the band (if it exists) is truly
extended with a randomly fluctuating sign. Similarly, (ii) when the chain is dimerised (the Dyson
II model), t2n�1;2n D t2n�1;2n�1, the state at the centre of the band (if it exists) is extended [151].
Since the system possesses chiral symmetry, states with energies˙E are paired. This means that
only chains with odd L can host a zero mode.

More generally, in the presence of continuously distributed hopping amplitudes, one obtains
a divergence of both the density of states, �.E/ � jE.ln3E/j [152], and the localisation length,
�.E/ � j lnE2j [153, 154], in the vicinity ofE D 0. Indeed these two quantities are related through
the Herbert-Jones-Thouless formulae [155, 156] for one dimensional systems. Although these for-
mulae appear to suggest that there should exist a delocalised state at the centre of the band (indeed, it
was believed for some time that this was the case [148]), we must remember that the thermodynamic
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limit L!1 has been taken implicitly. In fact, the state in the centre of the band is localised (the
transmittance vanishes for sufficiently long systems), but not in the manner described previously.
The average that would normally define the localisation length, log j L= 0j=L, vanishes, implying
that one must look instead at the fluctuations (which in most cases provide a subleading correction).
It can be shown that the fluctuations grow with system size as � pL, giving a localisation length
�.0/ � pL [148, 157]. Consequently, the transmittance behaves as hln jt j2i � �pL [147]. In
Fig. 1.13, we plot the localisation length of a one dimensional Anderson model in the presence of
diagonal and off-diagonal disorder, which illustrate the anomalous behaviour of �.E/ at the centre
of the band.

The scaling hypothesis

In the one dimensional systems we have been considering above, the conductivity is equal to [147,
158]

� D e2L

�~
1

e2L=� � 1 ; (1.5.16)

where we have temporarily reinstated e and ~. When we speak of the conductivity � , we are
referring to its geometric average or, equivalently, its typical value. For sufficiently small L� �,
the weak localisation regime, Eq. (1.5.16) corresponds to Ohm’s law: � ' �0 is approximately
independent of L and the resistance grows linearly with the length of the system. However, for
larger lengths L & �, multiple scattering events become important. In the strongly localised
regime, � � L, the wavelike nature of the particles becomes apparent and the resistance grows
exponentially with the length of the sample�.

The fundamental assumption that underlies the scaling approach is that there is a single parameter
that characterises entirely the localisation properties of the system for each dimensionality d . This
parameter is the dimensionless DC conductance [149, 159]

g D ~
e2
�Ld�2 ; (1.5.17)

where �Ld�2 is the conductance per unit cell. Once this parameter has been identified, the ˇ-
function, which is assumed to be exclusively a function of g,

d lng
d lnL

D ˇ.g/ ; (1.5.18)

encapsulates the localisation properties. If ˇ.g/ is positive, then the conductance increases with
L to a finite value. Conversely, if ˇ.g/ is negative, then the conductance “flows” to zero: the

�Here, and in the remainder of this section, we are neglecting any environmental coupling, which will generically
lead to a finite coherence time.
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ˇ.g/

lng

Figure 1.14: Schematic renormalisation group flow diagram for the (dimensionless) conductance, g, ˇ.g/ D
d lng=d lnL. For spatial dimensions d D 1; 2 the system is always localised; the conductivity
flows to zero with system size as g � e�L=� . In d D 3, there exists a critical conductance gc
above which the system flows towards an L-independent conductivity.

eigenstates of the system are localised. For sufficiently weak disorder, it is reasonable to assume
that the system is essentially metallic, i.e., Ohm’s law holds and, consequently, g � Ld�2, giving
ˇ.g/ ' d � 2. On the other hand, when disorder is very strong, the conductance should decay
exponentially with L, giving ˇ.g/ ' lng. The qualitative behaviour of the ˇ-function is shown
in 1.14, where we have plotted a monotonic function that smoothly interpolates between the two
limits. For d � 2, ˇ.g/ < 0 and the system always flows towards localisation. For d D 3, there
exists a critical value of the conductance, above which the system is metallic. As we have discussed
previously, a finite conductivity does not preclude the existence of localised states, one merely
requires that there exists a finite density of extended states for the system to exhibit transport (see
Fig. 1.11).
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1.5.2 Many-body localisation

The question of whether the phenomenon of Anderson (i.e., single particle) localisation survives the
addition of interactions between the constituent degrees of freedom is an old question, prompted
by the seminal work of Anderson [126] and coauthors [160]. As discussed in the previous section,
one of the defining features of an Anderson insulator is the absence of transport; particles remain
exponentially localised in the vicinity of their initial positions. Put alternatively, the state of the
system at asymptotically long times is not featureless, but bears some semblance of the system’s
initial state. This behaviour is at odds with the notion of thermalisation introduced in Sec. 1.3.2,
whereby the asymptotic behaviour of a small subsystem is described by a thermal density matrix
that depends only on a small number of global conserved quantities [25]. Only recently has the
extension to interacting systems been answered definitively: In one dimensional systems subject to
strong, quenched randomness, the existence of many-body localisation (MBL) can be proven under
minimal assumptions [161]. Just like the Anderson insulator, the MBL phase is characterised by
the absence of transport [162–166] and evades thermalisation [167–169], retaining some memory
of its initial conditions, which can be probed using local observables. Many body localisation is
however much more generic than Anderson localisation; the MBL phase can truly be considered
a phase of matter, surviving the addition of generic (albeit sufficiently small) perturbations. In
the following, we will describe some of the salient features of the MBL phase, starting with the
emergent conserved quantities known as l-bits that allow MBL systems to evade thermalisation.

Local integrals of motion: l-bits

The canonical model of many body localisation is the spin-1/2 XXZ model in the presence of
uncorrelated disorder in the magnetic field in the ´ direction:

OHXXZ D J
L�1X
iD1
. OSxi OSxiC1 C OSyi OSyiC1/C V

L�1X
iD1
OS´i OS´iC1 C

LX
iD1

hi OS´i ; (1.5.19)

where OS˛i D 1
2
O�˛i are spin-1/2 degrees of freedom, and hi is the magnetic field on site i , which

is conventionally assumed to be uniformly distributed on the interval Œ�W;W �, independently
of its neighbours. Upon performing a standard Jordan–Wigner transformation, the spin Hamilto-
nian (1.5.19) is mapped onto a number-conserving fermionic Hamiltonian with nearest neighbour
interactions

OHXXZ D J

2

L�1X
iD1

�
Oc�i OciC1 C H.c.

�
C V

L�1X
iD1
. Oni � 1

2
/. Oni � 1

2
/C

LX
iD1

hi. Oni � 1
2
/ ; (1.5.20)
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with Oni D Oc�i Oci the number of fermions on site i . The anisotropy V maps onto the strength of the
nearest neighbour interactions in the fermionic language, while the random magnetic field maps to
a random chemical potential. The conservation of fermion number derives from the conservation of
the magnetisation in the ´ direction,

P
i
OS´i , in the spin language.

In the special case V D 0, the Hamiltonian (1.5.20) (the fermionised XY model) exhibits
Anderson localisation of the single-particle wave functions, as explained in Sec. 1.5.1. Alternatively,
we can look at the limit J D 0, where the Hamiltonian is trivially diagonalised by eigenstates of
the Oni operators, i.e., local tensor product states jf�´i gi in the spin language. As J is increased
from zero, different jf�´i gi states hybridise to form eigenstates of (1.5.19). As long as J remains
sufficiently small, so that the system remains in the fully many-body localised regime, it is possible
to write the Hamiltonian in the form [27, 170]

OHXXZ D
X
i

hi O�´i C
X
i;j

Jij O�´i O�´j C
X
i;j;k

Jijk O�´i �´j O�´k C : : : (1.5.21)

where we have ignored a constant energy shift. The L spin-1/2 operators O�´i commute with one
another, Œ O�´i ; O�´j � D 0, are conserved quantities, Œ O�´i ; OH� D 0, and, crucially, are related to the
physical spins O�˛i by a quasi-local transformation [170–172]. The operators O�´i are known as l-bits,
and the Hamiltonian (1.5.21) is able to describe intuitively much of the phenomenology that defines
the MBL phase. Formally, the expansion in (1.5.21) is always possible (even in the thermalising
phase, for example) [39], but the utility of the l-bit representation stems from the quasi-local nature
of the transformation between the physical spins and the l-bits. In the thermal phase, the conserved
quantities are highly nonlocal, and any physical observable will not have appreciable overlap with
them [see however the discussion about quantum many body scars at the end of Sec. 1.3.2, which
provide a (fragile) counterexample]. Specifically, the l-bits can be written as [173]

O�´i D O�´i C
X
j;k

X
˛;ˇ2fx;y;´g

f
˛ˇ

i Ijk O�˛j O�ˇk C : : : ; (1.5.22)

where the coefficients that define the transformation decay exponentially with the distance from site
i , i.e., f ˛ˇ

i Ijk � e�max.ji�j j;ji�kj/=� . The length scale � may be thought of as a generalisation of the
single-particle localisation length [170]. The interactions between the l-bits in (1.5.21) (which are
generically absent for Anderson localised systems, which by definition map to free fermions) also
decay exponentially in space [170]

Jij � J0e�ji�j j=Q� ; (1.5.23)

with similar relations holding for multi-l-bit interactions. Note that the dephasing length scale Q�
and the length scale � controlling the decay of coefficients in the transformation between physical-
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Figure 1.15: Schematic depiction of the growth of the von Neumann entanglement entropy after a quench
from a low-entanglement state in the XXZ model (1.5.19). In both cases, there is some initial
dynamics that rapidly entangles degrees of freedom separated by� � . In the Anderson localised
system, there is no further entanglement growth and the asymptotic state of the system is area
law entangled, S.1/ / const. Conversely, in the MBL case, after a certain time (set by the
strength of the interactions V ) there is an onset of logarithmic entanglement growth. Eventually,
the logarithmic growth is truncated by the finite size of the system, and the asymptotic state of
the system is volume law entangled, S.1/ / L.

and l-bits in (1.5.22) are not necessarily equivalent. Indeed, the two length scales are expected to
become increasingly disparate as the MBL transition is approached [174].

Entanglement growth

One characteristic that is able to distinguish between an Anderson insulator and an MBL system
is the growth of entanglement following a quench [170, 171, 175–178]. In order to define the
entanglement, as we discussed in Sec. 1.2, we must first partition our system into (at least) two
distinct subsystems, A and B . In order to observe the slow dephasing generated by nonzero
interactions, one must partition the system in such a way that the ‘bulk’ of A and the ‘bulk’ of B
are spatially separated�. A particularly convenient choice is to split the system into two equal (and
contiguous) halves. The system is then initialised in a low-entanglement (e.g., product) state that
is not an eigenstate of the Hamiltonian. The subsequent time evolution leads to the generation of
entanglement between the two subsystems.

In both Anderson localised and MBL systems, there is some initial dynamics that entangles
degrees of freedom separated by � �, the single particle localisation length or the support of the l-
bits, respectively. In an Anderson localised system, there is no further dynamics of the entanglement,
and one observes a plateau that scales with the length of the boundary separating the two subsystems,
Ld�1 D const in one dimension. However, in an MBL system, the presence of interactions Jij

�More precisely, the spatial separation of the two subsystems A and B must be large with respect to the length
scale � . Similarly, by ‘bulk’ we mean the lattice sites that are situated at distances much greater than � from the cut(s)
between A and B .
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between the l-bits in Eq. (1.5.22) leads to entanglement between spins that are separated by
distances greater than Q�. Specifically, the interaction energy scale Jij / J0e�ji�j j=Q� between two
distant spins at sites i and j , with ji � j j D `, sets a timescale t .`/ D J�10 e`=

Q� over which
entanglement is able to build up between the two spins [178]. Therefore, there exists a logarithmic
light cone, `.t/ � Q� log.J0t /, inside of which the physical spins are able to become appreciably
entangled. Consequently, one observes a logarithmic-in-time growth of the entanglement entropy
S.t/ � Q� log.J0t / [170, 171, 175–178]. Eventually, this logarithmic growth is cut off by system
size L, implying volume law scaling at long times. The asymptotic value of the entanglement
entropy in the plateau is however typically significantly smaller than would be expected in a typical
mid-spectrum state of an ergodic system [173, 178] (i.e., the Page value [179] for random pure
states). The difference in behaviour between Anderson and many-body localised systems is shown
schematically in Fig. 1.15.

1.5.3 Disorder-free localisation

One of the hallmarks of (many-body) localised phases of matter is the absence of transport. As
we have noted previously in Sec. 1.5.1, localisation (both single particle and many-body) is most
prevalent in low-dimensional systems, and occurs in the presence of sufficiently strong quenched
disorder provided by external potentials or fields. Whether the presence of quenched disorder is not
just sufficient but a necessary prerequisite for the absence of thermalisation has been a long-standing
question. An alternative mechanism by which an isolated, translationally invariant quantum system
fails to reach local equilibrium starting from generic initial conditions has been dubbed disorder
free localisation [180, 181]. In such systems, there exist an extensive number of local conserved
quantities (or, more generally, approximately conserved quantities). These conserved quantities, at
least within a typical sector, act as an emergent localising potential for the remaining degrees of
freedom.

Historically, one of the first models where it was argued that localisation may be induced
by interactions alone was put forward by Kagan and Maksimov [182] to describe 3He defects
in solid 4He. More recently, as part of the broader drive to better understand the thermalisation
of closed quantum systems and its absence in many-body localised systems, a number of works
have investigated whether localisation can occur in translationally invariant systems [183–190]. A
common theme amongst these proposals is the existence of two distinct species of particle, with
one much “heavier” than the other� (named heavy-light mixtures). Their larger effective mass
endows the heavier particles with slow dynamics, and hence they may intuitively be treated within

�In tight binding models, the larger effective mass of the heavy species of particle manifests as a much smaller
tunneling amplitude than the light species. A limiting case is the Falicov–Kimbal model, in which one species has no
dynamics [191].
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a Born–Oppenheimer-like approximation. If the two species interact with one another, the heavy
particles can act as a qausi-static disordered background, which localises the light species. A similar
phenomenon occurs in (unconstrained [192]) lattice gauge theories [193–199], where static, local
conserved charges assume the role of the heavy particles.

It appears that the absence of thermalisation in such translationally invariant systems only
persists asymptotically in fine tuned limits where the heavy particles remain precisely static. In the
presence of generic perturbations that break the conservation laws (making the heavy particles, in
principle, mobile), one expects eventual thermalisation [186, 200]. However, if the perturbations
are sufficiently small, memory of the system’s initial conditions can persist over a wide range of
intermediate time scales, a phenomenon dubbed quasi-MBL [190].
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2 Entanglement negativity in the toric
code

2.1 Motivation

With the modern surge of interest in harvesting the capabilities of quantum mechanical systems to
develop new technologies, it has become ever so important to quantify and characterise quantum
correlations in physical systems. While this remains a tall order in real systems, substantial
progress has been made in recent years at the theoretical level. Several measures of quantum
correlations (including, but not limited to, “entanglement”) have been proposed and studied (see,
e.g., Refs. [8, 201, 202] for reviews). One of the most successful is the von Neumann entanglement
entropy. Similarly to other measures, the entanglement entropy works remarkably well when a
system is prepared in a pure state—namely, when the density matrix is a projector onto a single
quantum mechanical state. However, it becomes less descriptive once we deal with mixed states, as
is the case for systems at finite temperature. Under these circumstances, the von Neumann entropy
becomes dominated by classical correlations [203] and it is difficult to distil quantum from classical
contributions.

A promising way to address this issue has come of late from a newly introduced measure
of entanglement, the so-called logarithmic entanglement negativity E [204, 205] and variants
thereof [206, 207]. The negativity uses Peres’ positive partial transpose criterion [208] to de-
tect the separability of a system’s density matrix, and as such it is a proper measure of purely
quantum correlations—although it is in general only a necessary but not sufficient condition for
separability [206, 209].

Unfortunately, calculating E in many-body quantum systems is notoriously difficult and analytic
results are few. At zero temperature, the negativity has been evaluated for a limited number of
sufficiently simple lattice models in one [210–212] and two [213, 214] dimensions, suggesting
universality at quantum critical points and unveiling leading area law behaviour respectively. That
the negativity is fully universal and scale invariant at quantum critical points has subsequently
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been proven rigorously using conformal field theory (CFT) [215, 216]. When temperature is
raised from zero, one expects that thermal mixing of eigenstates (“thermal fluctuations”) will
lead to a reduction in the entanglement. This intuition has been verified for a large number of
two-spin systems�, initially using the concurrence [217–228] (for a review, see Ref. [201]) and more
recently using the negativity [229–231]. Generically, there exists a well-defined temperature Tc ,
dubbed the “sudden death temperature,” above which the negativity vanishes identically. Beyond
two-spin systems, in particular considering the entanglement between two blocks of spins, far
less is known. At quantum critical points, CFT results have been extended into the regime of
finite temperature [232, 233], while on the numerical side a linked cluster expansion has been
employed, alongside exact diagonalisation, to study the negativity at finite temperature in one- and
two-dimensional bipartite spin systems [203]. Even though the negativity does not capture all

quantum correlations, sudden death is nevertheless an intriguing phenomenon that requires further
investigation. Further results in d > 1 systems, and in particular exact expressions for the negativity
at finite temperature, would be highly beneficial to gain a better understanding about the fate of
quantum correlations and the origin of the sudden death behaviour.

The goal of this chapter is to present the first exact calculation of the negativity in a 2D
lattice system in thermal equilibrium at finite temperature. We choose to work with the toric code
model [46] whose exact solubility has allowed the negativity at T D 0 [213, 214] and the von
Neumann entropy at finite temperature [234] to be calculated exactly. We consider the entanglement
between two subsystems that share a boundary of finite length, which allows us to discern the fate
of the zero-temperature area law, and how the sudden death temperature Tc depends on boundary
length.

2.2 Mixed state separability

2.2.1 PPT criterion

In general, there does not exist a readily computable measure of entanglement whose vanishing
is both a necessary and sufficient condition for separability as defined in (1.2.10). Instead, we
must rely on approximate tests such as the Peres positive partial transpose (PPT) criterion [208],
which is only a necessary condition for separability (equivalently, it is only a sufficient condition
for entanglement).

Suppose that we would like to test the separability between two disjoint subsystems A1, A2
of a composite system S . We allow for the possibility that A1 and A2 may not necessarily cover

�In fact, these studies show that entanglement is not always a monotonic function of temperature. Particularly
in the presence of a large magnetic field, it is possible for entanglement, as measured by the concurrence, to initially
increase with increasing temperature before eventually vanishing at Tc , see e.g. Refs. [217, 218].
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the whole of S by introducing the complementary subsystem B (which could be the empty set),
such that S D A1 [ A2 [ B . Measurements on subsystem A D A1 [ A2 are described by the – in
general mixed – reduced density matrix O�A D TrB O�. Given an (arbitrary) orthonormal basis for the
tensor product Hilbert space of subsystem A, j i�j i � j ii ˝ j�j i 2 HA1 ˝HA2 , we define the
operation of partial transposition over subsystem A2 in terms of matrix elements as [205, 208]

h i�j j O�T2A j k�li D h i�l j O�Aj k�j i : (2.2.1)

Given a separable density matrix O�A, its partial transpose is given by

O�T2A D
X
i

pi O�.1/i ˝
�
O�.2/i
�T

; (2.2.2)

where T refers to full transposition. Since . O�.2/i /T is also a valid density matrix, it follows that O�T2A
is also a separable state, which therefore implies that all of its eigenvalues are nonnegative. Hence,
a state whose partial transpose O�T2A has negative eigenvalues must be entangled.

2.2.2 The entanglement negativity

Given a tripartite system S D A1 [ A2 [ B , the logarithmic negativity is defined in terms of the
reduced state O�A D TrB O� as

E D ln
 O�T2A


1
; (2.2.3)

where T2 denotes partial transposition over the A2 subsystem and k � k1 D Tr j � j is the trace
norm [205]. The logarithmic negativity quantifies the entanglement between the subsystems A1 and
A2. One can verify that it is symmetric in A1 $ A2 as a good measure of entanglement must be, so
that we can equally compute the transpose over the A1 subsystem:

 O�T1A

1
.

Supposing that the partially transposed density O�T2A has eigenvalues �i , the trace norm is
equivalent to

 O�T1A

1
DPi j�i j , which may alternatively be written as

 O�T1A

1
D
X
�i>0

�i �
X
�i<0

�i D 1C 2
X
�i<0

j�i j : (2.2.4)

It is in this way that the logarithmic negativity quantifies the number of negative eigenvalues �i .
If all eigenvalues are positive then

 O�T2A

1
D 1, and consequently E D 0, while the existence of

any negative eigenvalues implies a nonzero negativity E > 0. Hence, the logarithmic negativity
quantifies PPT entanglement.

Since the PPT criterion is only a sufficient condition for the presence of entanglement, there
exist states which are entangled but nevertheless give a vanishing negativity. However, the negativity
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has operational meaning in that it represents an upper bound on the distillable entanglement present
in a given state [8, 235]. As a result, any entanglement may be present in a state with vanishing
negativity E D 0 cannot be distilled, and is therefore referred to as bound [235].

2.2.3 The replica method

In order to evaluate the negativity analytically, we employ the replica method, introduced by the
authors of Ref. [215] in the context of conformally invariant field theories. The method has since
been used to calculate the negativity in a wide variety of models [213, 215, 216, 233, 236, 237, 237].
If we denote the eigenvalues of the partially transposed density matrix O�T2A by �i , then

Tr
� O�T2A

�ne D
X
�i�0
j�i j ne C

X
�i<0

j�i j ne ; (2.2.5)

Tr
� O�T2A

�no D
X
�i�0
j�i j no �

X
�i<0

j�i j no ; (2.2.6)

where ne .no/ is an even (odd) positive integer. In order to obtain the sum of the absolute values of
the �i , i.e., the trace norm, the replica method consists of following the even series and taking the
analytic continuation ne ! 1

E D lim
ne!1

ln Tr
� O�T2A

�ne
: (2.2.7)

If one were to follow instead the odd n series, one would simply obtain the sum of the eigenvaluesP
i �i D Tr O�T2A D Tr O�A D 1. This property can often serve as a useful check of expressions for

Tr
� O�T2A

�n. The second equality follows because partial transposition leaves the diagonal elements
of the operator (in real space) unchanged.

2.3 Calculations

We consider a system of 2N spins in thermodynamic equilibrium with a thermal reservoir at
temperature T D 1=ˇ (the Boltzmann constant kB D 1 throughout). The system is therefore
described by the canonical density matrix O� D e�ˇ OH=Z, where OH is the toric code Hamiltonian
introduced in Sec. 1.4.1

OHTC D �Je
X
s

OAs � Jm
X
p

OBp � �Je OS � Jm OP ; (2.3.1)

and Z D Tr e�ˇ OH is the partition function (to ensure proper normalisation, Tr O� D 1). The density
matrix can be written in terms of its matrix elements with respect to complete bases f j˛ig and f jig
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as
O� D 1

Z

X
˛;

h˛je�ˇ OH ji j˛i h j : (2.3.2)

Following the work in Refs. [213, 234, 238–240], we always choose to work with the tensor
product basis of eigenstates of the operator ˝i O�´i . The operators OBp �

Q
i2p O�´i are diagonal in

this basis: OP j˛i D M.˛/ j˛i, where one can interpret the eigenvalue M.˛/ of OP DP
p
OBp as a

“plaquette magnetisation” equal to the sum of all local magnetisations Mp � h˛j OBpj˛i. We then
introduce the group G generated by products of star operators OAs, introduced in Sec. 1.4.1 in the
construction of the toric code’s ground state(s). Only states that differ by the action of a group
element g 2 G give nonvanishing matrix elements in (2.3.2), which allows us to write ji D g j˛i.
Hence [213, 234, 238–240],

O� D 1

Z

X
˛

X
g2G

eˇJmM.˛/ h˛jeˇ OSgj˛i j˛i h˛jg : (2.3.3)

Following similar considerations, the partition function Z can be written as

Z D .coshˇJe/N Œ1C .tanhˇJe/N � �
X
˛

eˇJmM.˛/ (2.3.4)

� Ze �Zm : (2.3.5)

Notice that the system as a whole is symmetric upon exchanging star and plaquette operators, and
Je $ Jm. Therefore, it would be completely equivalent to choose the tensor product basis of the
operator˝i O�xi , and so we must have Ze.ˇJ / / Zm.ˇJ /.

To evaluate the matrix elements in (2.3.3), it is helpful to expand the exponential in terms of its
constituent star operators. Remembering that OS DPs

OAs and that OA2s D 1,

eˇJe OS D
Y
s

h
cosh.ˇJe/C sinh.ˇJe/ OAs

i
; (2.3.6)

and we thus obtain
1

Ze
eˇJe OS D

X
Qg2G

�T . Qg/ Qg : (2.3.7)

Here we introduced for convenience of notation the weighting factor for each group element

�T .g/ D e�Ken.g/ C e�KeŒN�n.g/�

1C e�KeN
; (2.3.8)

where Ke � � ln tanhˇJe and n.g/ is the number of star operators OAs that appear in the de-
composition of the group element g. Note that �T .g/ is invariant under n.g/ ! N � n.g/, and
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therefore the ambiguity in the definition of the group elements of G modulo the identity is immate-
rial [213, 234, 238–240]. Making use of (2.3.7), we arrive at the following compact expression for
the density matrix of the composite system

O� D 1

Zm

X
˛

X
g2G

eˇJmM.˛/�T .g/ j˛i h˛jg : (2.3.9)

If we are interested only in a subsystem A of the total system S , then we should trace out the
complementary subsystem B to form the reduced density matrix O�A D TrB O�. To achieve this, we
decompose j˛i D j˛Ai ˝ j˛Bi and g D gA ˝ gB ,

O�A D 1

Zm

X
˛

X
g2G

eˇJmM.˛/�T .g/ h˛B jgB j˛Bi j˛Ai h˛AjgA : (2.3.10)

Now, the matrix element equals unity if g acts trivially on the B subsystem, and zero otherwise. The
resulting constraint on g is implemented by restricting the summation to group elements belonging
to the subgroup fg 2 G j gB D IBg � GA � G.

Finally, we recall that A is further partitioned into two subsystems (A D A1 [ A2), and that we
want to take the partial transpose over one of them (say, A2). This is effected by splitting up the
states j˛Ai D j˛A1i ˝ j˛A2i, and similarly for the group elements gA D gA1 ˝ gA2

O�T2A D
1

Zm

X
˛

X
g2GA

eˇJmM.˛/�T .g/ . j˛A1i h˛A1jgA1/˝ .gA2 j˛A2i h˛A2j/ : (2.3.11)

2.3.1 Star plaquette pair

Up to this point, the manipulations have been completely general. Let us begin by considering the
smallest possible subsystem, the star plaquette pair (SPP), depicted in Fig. 2.1. This allows us to
gain some intuition about the behaviour of the negativity at nonzero temperatures without any of
the complications introduced by considering more elaborate partition schemes. The fact that it is
not possible to consider smaller subsystems is a direct consequence of the four-body interactions in
the system’s Hamiltonian (1.4.1). The SPP system offers a number of technical advantages. Firstly,
the negativity is both a necessary and sufficient condition for separability�. This allows us to study
the entanglement properties of the system exactly. Also, the SPP is symmetric under interchange of
stars with plaquettes, implying that the negativity must be symmetric under interchange of Je $ Jm.
Finally, one can diagonalise the partially transposed density matrix explicitly without having to
resort to the replica trick.

�Details of this result are given in our paper Ref. [241]. The result holds because the negativity is both a necessary
and sufficient condition for entanglement when the Hilbert space H D C2 ˝ C2 [242].
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A2

A1

B

Figure 2.1: Illustration of the star plaquette pair (SPP) subsystem, the smallest subsystem that exhibits a
nonvanishing negativity.

For the SPP subsystem, Eq. (2.3.11) simplifies substantially since there exists only one star
operator that acts simultaneously onA1 andA2. Therefore, the group GA contains only one nontrivial
element: the boundary star operator OAs. The spins belonging to subsystem B in (2.3.11) can then be
“integrated out” by introducing the factors �T .M@/ D

P
˛B
eˇJmMN@.˛/=Zm, and by splitting the total

plaquette magnetisation into a boundary component M@ �
P
p2@ hBpi, the sum of all boundary

plaquettes straddling the A1-A2 boundary, and its complement, so that M.˛/ DM@.˛A/CMN@.˛/.
Note that the boundary magnetisation depends only on spins contained within subsystem A, while
MN@ depends on all spins. With the introduction of the �T factors, the partially transposed density
matrix becomes

O�T2A D
X
˛A

X
g2GA

eˇJmM@.˛A/�T .M@/�T .g/ . j˛A1i h˛A1jgA1/˝ .gA2 j˛A2i h˛A2j/ : (2.3.12)

Decomposing the one nontrivial group element into components that act separately on subsystems
A1 and A2, OAs D OA.1/s ˝ OA.2/s , Eq. (2.3.12) can be written as

O�T2A D
X
˛A

eˇJmM@.˛A/�T .M@/
�
j˛Ai h˛Aj C �e j˛A1 ˝ OA.2/s ˛A2i h OA.1/s ˛A1 ˝ ˛A2j

�
; (2.3.13)

where �e � �. OAs/, i.e., n.g/ D 1 in (2.3.8). Relabelling the states ˛ in the second term, the density
matrix may be written more compactly as

O�T2A D
X
˛A

eˇJmM@.˛A/�T .M@/ j˛Ai h˛Aj C �ee�ˇJmM@.˛A/�T .�M@/ j˛Ai h˛Aj OAs : (2.3.14)

Each state j˛Ai of the subsystem A is coupled only to itself and its counterpart with the spins i 2 s
flipped. The expression (2.3.14) implies that O�T2A can be written as a block diagonal matrix with
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respect to the eigenstates of˝i2A O�´i , with the 2 � 2 matrices

�˙ D
 
„ṁ �e„

�
m

�e„
�
m „ṁ

!
(2.3.15)

along the diagonal (note that these are not density matrices). For convenience, we introduced
the shorthand „ṁ to represent �T .M@/eˇJmM@ evaluated with boundary magnetisation M@ D ˙1.
Since the number of spin configurations ˛A withM@ D C1 equals the number withM@ D �1, there
exist an equal number of �C and �� blocks along the diagonal of O�T2A . Therefore the normalisation
condition Tr O�T2A D 1 gives „Cm C„�m D 21�NA , where NA � 6 equals the number of spins i 2 A.

After calculating the eigenvalues of �˙, invoking the symmetry E.Je; Jm/ D E.Jm; Je/ allows
us to conjecture that „Cm �„�m D 21�NA�m. This implies that „ṁ D .1˙ �m/=2NA , which leads
to the final result for the negativity of the SPP subsystem

eE.T / D 1C 1
2

max.�e C �m C �e�m � 1; 0/ ; (2.3.16)

plotted in Fig. 2.4. By construction, this expression is symmetric under interchange of Je $ Jm.
This expression can also be derived without resorting to symmetry using the techniques described
in Sec. 2.3.2.

The result (2.3.16) allows for the following physical interpretation. When temperature is finite,
but small in comparison to Je, the densities of both species are exponentially suppressed. The
bath is unable to provide sufficient thermal energy to excite either species of defect with any
significant probability. As a result, the negativity remains essentially undegraded from its zero
temperature value, E.T / ' E.0/, over this temperature range. Namely, a density of order one
defect per site of the least energetically costly defects is required to start affecting the quantum
correlations between A1 and A2. Above the temperature threshold T � Je, electric charge defects
proliferate in the system and the negativity correspondingly decays like E � Je=T . This decay is
cut off at a temperature Tc � Jm (up to logarithmic factors discussed below), where the negativity
exhibits sudden death. This temperature corresponds to the excitation of an O.1/ density of the
most energetically costly defects. The precise expression for the sudden death temperature is found
by solving �e C �m C �e�m D 1, which, in the thermodynamic limit N !1, reduces to

nh.2Je/nh.2Jm/ D 1

2
: (2.3.17)

We have introduced the density of holes nh.2JX/ D 1 � nF.2JX/, i.e., the density of nondefective
stars (plaquettes) for X D e .m/. At Tc the geometric mean of the hole densities must equal 1=

p
2.

When the coupling constants are well separated, we can obtain an approximate explicit expression
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1 2 3

N∂ 1 2 3

A2

A1

B

Figure 2.2: Illustration of the noncontractible “strip” partition considered when calculating the dependence
of the negativity on the length of the A1-A2 boundary.

for the sudden death temperature

Tc D 2J

W.J /
� 2J

lnJ
for J � 1 ; (2.3.18)

where where J � Jm=Je and W.x/ is the product-log function. Using the duality Je $ Jm, we
can also use (2.3.18) to deduce that Tc vanishes logarithmically as Je ! 0.

2.3.2 Extended boundary

The results for the SPP are simple and intuitive, but do not address the question of how the negativity,
and in particular the sudden death temperature Tc , depend on the length of the A1-A2 boundary.
We devote this section to answering this question.

We focus on the partition scheme depicted in Fig. 2.2, i.e., a “strip” that spans the torus in one
direction. This is the simplest choice of subsystem that allows one to study the effect of increasing
the length of the A1-A2 boundary. One can imagine constructing the strip partition by tiling
neighbouring SPP subsystems. Choosing a noncontractible subsystem makes the calculation simpler
than for a contractible strip by eliminating its endpoints, and therefore the associated boundary
effects. In the interests of brevity, we will only present the results for the noncontractible strip, but
it can be shown that the results for the contractible strip are both qualitatively and quantitatively
similar in the limit of large boundaries. The one substantial difference between considering a
noncontractible versus a contractible subsystem is the presence of subleading corrections to the
zero-temperature area law in the former case, i.e., E.0/ / N@ � 1, which indicates the presence of
topological order [213].
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The replica calculation begins by taking the trace of the nth power of (2.3.11):

Tr
� O�T2A

�n D 1

Znm

X
˛1;:::;˛n

X
g1;:::;gn2GA

 
nY
`D1

eˇJmM.˛`/�T .g`/

!

h˛1A1jg1A1j˛2A1i � � � h˛.n�1/A1jg.n�1/A1j˛nA1i h˛nA1jgnA1j˛1A1i
h˛1A2jg2A2j˛2A2i � � � h˛.n�1/A2jgnA2j˛nA2i h˛nA2jg1A2j˛1A2i :

(2.3.19)
It is helpful to notice that the subgroup GA can in general be decomposed as GA D GA1GA2GA1A2 .
The subgroups GAi are defined as GAi � fg 2 GA j g NAi D I NAi g with NA1 D A2 and vice
versa, while GA1A2 � GA=.GA1GA2/ is the quotient group. Any element g 2 GA can therefore be
uniquely decomposed into the product of three group elements: one that acts exclusively on A1,
one exclusively on A2, and one that acts simultaneously (and exclusively) on A1 and A2. Namely,
g D Ng NNg� , with Ng 2 GA1 , NNg 2 GA2 , and � 2 GA1A2 [213].

Using this decomposition, we make the following relabelling of the states j˛ki, for all k > 1:

j˛0ki D
 
k�1Y
`D1
Ng`
! 

kY
`D2
NNg`
!
j˛ki ! j˛ki : (2.3.20)

Note that this redefinition does not affect the plaquette magnetisation, since the group elements
Ng 2 GA1 and NNg 2 GA2 flip only closed loops of spins on the dual lattice. This removes all dependence
on Ng` and NNg` from the matrix elements, and we obtain a more compact expression:

Tr
� O�T2A

�n D 1

Znm

X
˛1;:::;˛n

X
Ng1;:::; Ngn2GA1

X
NNg1;:::; NNgn2GA2

X
�1;:::;�n2GA1A2

h0j
nY
`D1
Ng` NNg`j0i

 
nY
`D1

eˇJmM.˛`/�T . Ng` NNg`�`/ h˛`Aj�`A1 ˝ �.`C1/A2j˛.`C1/Ai
!
; (2.3.21)

where �nC1 � �1 and similarly ˛nC1 � ˛1. Notice that the matrix elements in Eq. (2.3.21)
impose constraints on which terms Ng` and NNg` in the summation give a nonvanishing contribution.
Furthermore, they implicitly impose the constraint

Q
` �` D I. This is because, given ˛1 (say),

it takes only n � 1 of the n matrix elements to uniquely determine all other ˛`; the final matrix
element then evaluates to h˛1j

Q
` �`j˛1i, which indeed is nonvanishing only if the aforementioned

constraint is satisfied.

The strip partition scheme (Fig. 2.2) offers various simplifications. Both A1 and A2 span
the torus in one direction and share one edge. The subsystem A � A1 [ A2 consists only of
boundary stars (f OAs j s 2 @g) and boundary plaquettes (f OBp jp 2 @g) which act simultaneously (and
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„ ƒ‚ …
n copies

limn!1� -spinsTr
� O�T2A

�n

„ ƒ‚ …
n copies

Figure 2.3: A graphical map of the replica approach. Taking the trace of the nth power of O�T2A creates n
copies of the system. Introducing classical spin variables � that live on each boundary star maps
the system onto n one-dimensional Ising chains. In the limit n! 1, we arrive at the final result,
which is related to the partition function of a single one-dimensional, classical Ising chain.

exclusively) on both the A1 and A2 subsystems. We therefore deduce that the groups GA1 and GA2
become trivial (f1g), removing the summations over group elements Ng` and NNg`. In addition, A is
symmetric under interchange of stars and plaquettes so, as for the SPP system, the final result must
obey the symmetry E.Je; Jm/ D E.Jm; Je/.

The magnetisation can be decomposed into a boundary component M@, equal to the sum of
the magnetisations of all boundary plaquettes straddling A1 and A2, and its complement: M.˛/ D
M@.˛A/CMN@.˛/. Similarly to the SPP, tracing over subsystem B is then entirely contained within
a factor �T .˛A/ � 1

Zm

P
˛B

eˇJmMN@.˛/, whose explicit calculation is left until later. After making
these simplifications, (2.3.21) becomes

Tr
� O�T2A

�n D X
˛1A;:::;˛nA

X
�1;:::;�n2GA1A2

h0j
nY
`D1

�`j0i eˇJm
P
`M@.˛`A/

nY
`D1

�T .˛`A/�T .�`/ h˛`Aj�`A1 ˝ �.`C1/A2j˛.`C1/Ai : (2.3.22)

In order to apply the replica trick, we must make all dependence of the expression (2.3.22) on n
explicit, which will allow us to take the limit n! 1. This approach is depicted schematically in
Fig. 2.3. To this end, we introduce the classical variables � .`/s that take the value 0 (1) if the star
OAs is present (not present) in the decomposition of the boundary group element �`. Therefore, by

definition, we have the relationship
�` D

Y
s

OA�.`/ss : (2.3.23)
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This implies that the boundary matrix element in (2.3.22) can be written as

h0j
nY
`D1

�`j0i D h0j
Y
s2@
OA
P
` �

.`/
s

s j0i D
Y
s2@
ı

 
nX
`D1

� .`/s mod 2

!
: (2.3.24)

The second equality holds because the matrix element equals unity if and only if an even number of
OAs act on each star. It is more convenient to work with the following representation of the Kronecker

delta

ı .y mod 2/ D 1

2

1X
�D0

ei��y : (2.3.25)

The benefit of introducing this alternative representation becomes evident when we take the product
over boundary stars s 2 @

h0j
Y
`

�`j0i D 1

2N@

X
f�sg

ei�
P
`

P
s �s�

.`/
s : (2.3.26)

At the expense of introducing a further N@ variables f�sg, we have been able to write the con-
straint (2.3.24) in a form that is separable into a product over the different replicas (similar in spirit to
a Hubbard–Stratonovich transformation). In order to represent the weighting factor �T .�`/ in terms
of the new variables, we need an expression for the number of stars present in the decomposition
of the boundary group element �`. This has a particularly simple representation in terms of � .`/s
variables: n.�`/ D

P
s �

.`/
s , which allows us to write �T .�`/ explicitly as

�T .�`/ D 1

2 cosh
�
NKe
2

� X
J`D˙1

eJ`Ke.N=2�
P
s �
.`/
s / ; (2.3.27)

where we recall that Ke D � ln tanhˇJe.

To evaluate the �T weighting factor for the magnetic vortex configurations, it is more convenient
to work with configurations of the plaquette magnetisations Mp, the eigenvalues of OBp in the state
˛, rather than the physical spin configurations. This is possible because �T .˛A/ D �T .˛

0
A/ if all

boundary plaquette magnetisations fMp jp 2 @g of ˛A and ˛0A are the same. The magnetisations
can then be treated as Ising spins that live at the centres of the plaquettes p, subject to the constraintQ
pMp D 1, which follows from the operator relation

Q
p
OBp D 1. Hence, the only effect of the

boundary magnetisation configuration on the bulk magnetisation is an even-odd effect: if an even
(odd) number of boundary plaquette magnetisations are negative, there must be a compensating even
(odd) number of negative plaquette magnetisations in the bulk. This is an artefact of the periodic
boundary conditions, which are the source of the constraint

Q
pMp D 1.

Summing over bulk magnetisation configurations fMp…@g, keeping the boundary configuration
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fMp2@g fixed, we arrive at

�T .M@/ D 1

23N@

cosh.ˇJm/
N�N@ C �Qp2@Mp

�
sinh.ˇJm/

N�N@

cosh.ˇJm/
N C sinh.ˇJm/

N
: (2.3.28)

In accordance with the arguments made earlier, only the sign of
Q
p2@Mp enters into the expression

for �T . In the thermodynamic limit, the even-odd effect is removed and one obtains the simplified
result

�T .M@/ D 1

23N@
sech.ˇJm/

N@ : (2.3.29)

Since each boundary star is adjacent to two boundary plaquettes, the parity of the number of
negative Mp2@ (i.e., the sign of

Q
p2@Mp) is conserved between replicas so that

Q
` �T .M@.˛`// D

�nT .M@.˛1//. This simplification is only possible for the noncontractible strip partition, since open
ends allow for a parity change between adjacent replicas.

The final step in the conversion to classical spin variables is to find the boundary plaque-
tte magnetisation for each replica, M@ D

P
p2@Mp. Given ˛1A, say, then all ˛`A for ` > 1

are uniquely determined by (2.3.22). Introducing Ising spins � .`/s D 2�
.`/
s � 1 2 f�1; 1g, the

recursion relation between boundary magnetisations Ms, s D p 2 @, of adjacent replicas is
Ms.˛`/ D Ms.˛`�1/� .`/s �

.`/
sC1�

.`�1/
s �

.`�1/
sC1 . Alternatively, iterating this recursion relation down to

the magnetisation of the spin configuration ˛1,

Ms.˛`/ DMs.˛1/�
.1/
s �

.1/
sC1�

.`/
s �

.`/
sC1 : (2.3.30)

The notation Ms is interpreted as the magnetisation of the plaquette with the same index as the star
s, as depicted in Fig. 2.2. Periodic boundary conditions are imposed on the �-spins in real space
(i.e., �1 D �N@C1, separately for each replica `). The description in terms of classical spin variables
is now complete and we are in a position to substitute back into (2.3.22). Relabelling ˛1 ! ˛, we
obtain

Tr
� O�T2A

�n D 1

2N@

1�
2 cosh

�
NKe
2

��n
X
˛A

�nT .M@.˛A//

X
f�sgN@sD1

X
fJ`gn`D1

nY
`D1

X
f�.`/s gN@sD1

e
�PN@sD1

h
s�

.`/
s �

.`/
sC1
Ch.`/s �

.`/
s

i
C 1
2
NJ`Ke ; (2.3.31)

where h.`/s � J`Ke C i��s and s � �ˇJmMs. Notice that we have performed a relabelling
of the physical spin configurations ˛A, for each classical spin configuration f� .1/s g, such that
Ms�

.1/
s �

.1/
sC1 !Ms [the parity is conserved by this transformation since

Q
sMs�

.1/
s �

.1/
sC1 D

Q
sMs,

thus leaving �nT .M@/ unchanged]. This puts all replicas on an equal footing, making the trace
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separable into a product over replicas. The problem has therefore been reduced to evaluating the
classical partition function

Z.fsg; f�sg; J`Ke/ D
X
f�sD˙1g

e
�PN@sD1

h
s�s�sC1C 12h.`/s .�sC1/

i
(2.3.32)

of a 1D Ising model that lives on the boundary between the regions A1 and A2, with reduced
couplings fsg in a complex reduced magnetic field fhsg. Note that because the magnetic field is
complex, the partition function is not necessarily positive. Using the expression

lim
n!1

nX
mD0

 
n

m

!
xmyn�m D jx C yj ; (2.3.33)

having followed the even n series, one can then evaluate the sum over configurations fJ`g

X
fJ`gn`D1

nY
`D1

e
1
2
NJ`KeZ.J`Ke/ D

ˇ̌
ˇe 12NKeZ.Ke/C e� 12NKeZ.�Ke/

ˇ̌
ˇ ; (2.3.34)

where we have suppressed the dependence of the partition function Z on fsg and f�sg to simplify
the notation.

At this stage we take the thermodynamic limit N ! 1. The partition function Z.�Ke/
is suppressed by a factor e�NKe , and the even-odd effect is removed from the weighting factor
�T . Absorbing �T into the partition function as an energy shift and trading the sum over spin
configurations ˛A for one over magnetisations fMsg, we obtain

 O�T2A

1
D 1

22N@

X
fsgN@sD1

X
f�sgN@sD1

jZ.fsg; f�sg/j ; (2.3.35)

where we have redefined

Z D
X
f�sg

exp

(
�

N@X
sD1

�
s�s�sC1 C 1

4
hs.�s C �sC1 C 2/C ln coshˇJm

�)
: (2.3.36)

The sums over configurations fsg �  and f�sg � � can be physically interpreted as performing a
disorder average over the reduced couplings and the reduced magnetic field, respectively. Therefore,
we arrive at the following final expression for the negativity of the strip partition scheme in the
thermodynamic limit

E.Je; Jm/ D ln hjZ.; �/ji ; (2.3.37)

where the angled brackets refer to a disorder average over  and �. In the limit T ! 0, this
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Figure 2.4: Negativity for a contractible strip partition, as discussed in the text, with boundary length N open
@

and Je D Jm. As the boundary between A1 and A2 is made longer, E develops an increasing
number of discontinuities (at temperatures Ti ) in its first derivative whose effect is to “smooth”
the function E.T / and push Tc to higher temperatures. In the background is plotted the “density
of discontinuities”

P
i ı.T �Ti / forN open

@
D 7. The vertical lines indicate the positions of Tc for

the SPP and for an infinite boundary. The zoomed inset shows the negativity for N open
@
D 1; 2; 3,

highlighting the rapidly increasing number of discontinuities.

expression reduces to E.0/ D .N@ � 1/ ln 2, in agreement with the results of Ref. [213, 214]. The
result is plotted as a function of temperature in Fig. 2.4. The expression (2.3.34) has been shown to
agree precisely with exact diagonalisation results. As temperature is increased from zero, similarly
to the SPP, the negativity remains undegraded, E.T / ' E.0/, until the density of thermally excited
electric defects becomes ofO.1/. It then vanishes identically above some temperature Tc , discussed
in more depth below. The SPP and extended cases however differ in that the latter exhibits a large
number of discontinuities. These discontinuities correspond to the (Lee-Yang [243, 244]) zeros of
the complex partition functions in (2.3.35), whose effect is to “smooth out” E.T /, and to push Tc to
higher temperatures. The number of discontinuities grows rapidly (exponentially for N@ � 1) with
increasing boundary length, e.g., 1; 19; 78; : : : for N@ D 2; 3; 4; : : : and Je D Jm.

One can show that performing the disorder average without taking the absolute value first
results in hZi D 1. Therefore, if all disorder realisations produce a positive partition function,
then hjZji D hZi, and the negativity vanishes identically E D 0. This is the case at infinite
temperature where Z.; �/ ! 1 for all disorder realisations. If at least one disorder realisation
becomes negative, then the average satisfies hjZj i > 1, and consequently the negativity becomes
nonvanishing E > 0. For each disorder realisation, there exists some temperature, which we will
refer to as T�, above which Z.; �/ > 0. The sudden death temperature Tc corresponds to the
maximum of the temperatures T� over all disorder realisations.

The disorder realisation that maximises T� corresponds to a special ordered configuration of
the parameters  , �. In particular, we find that s D ˇJm and �s D 1; 8 s give rise to the partition
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function with the largest zero. Because the resulting Ising chain is translationally invariant, one can
use a transfer matrix approach to calculate the partition function analytically. The partition function
is written as a trace over a product of transfer matrices T`

Z.; �/ D Tr

"
N@Y
`D1

T`

#
: (2.3.38)

Because the couplings and magnetic field are spatially homogeneous, all transfer matrices are
identical, T` D T; 8 `, which can be chosen� to assume the symmetric form

T D e�h=2
 
e��h=2 e

e e�Ch=2

!
: (2.3.39)

In order to find the sudden death temperature, we must solve the equation Z D 0. This equation
has multiple solutions as the partition function oscillates with temperature. The highest of these
temperatures corresponds to the sudden death temperature Tc , above which the negativity vanishes
identically. Substituting h D Ke C i� , the matrix T has eigenvalues

�˙ D i

2
e�

h
eKe � 1˙ i

p
eKe.4e4 � eKe � e�Ke � 2/

i
: (2.3.40)

In terms of these eigenvalues, the condition for sudden death becomes

�
N@C C �N@� D 0 : (2.3.41)

Rearranging this expression,

�
�C
��

�N@
�
�
1C ix
1 � ix

�N@
D �1 : (2.3.42)

This equation admits the following solutions for x, which are parameterised by the odd integer m

x D tan
�
m�

2N@

�
: (2.3.43)

The solutions of this equation that occur at temperatures lower than the sudden death temperature
correspond to the locations of further discontinuities in the derivative of E.T /. Using the expressions
for the eigenvalues (2.3.40), the explicit form of x in terms of the coupling constants Je and Jm is

x D
p
e4ˇ.JeCJm/ � e4ˇJm � e4ˇJe : (2.3.44)

�There is some freedom in how one writes the linear term,
P
i hi�i , which corresponds to the fictitious magnetic

field. The most symmetric choice is to write this term as
P
i .hi�i C hiC1�iC1/=2, as we have done in (2.3.36).
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The integer m which gives rise to the largest (real) temperature solution corresponds to the smallest
positive x. Therefore, the condition for sudden death may be written explicitly as

e4ˇ.JeCJm/ � e4ˇJm � e4ˇJe D tan2
�
�

2N@

�
: (2.3.45)

The expression obeys the symmetry Je $ Jm, as it must.

In a similar manner to the SPP, the sudden death criterion may be written in terms of the defect
densities as

nF.2Je/nF.2Jm/

Œ1 � 2nF.2J2/�Œ1 � 2nF.2Jm/�
D cos2

�
�

2N@

�
: (2.3.46)

The geometric mean of the defect densities of the two species, each weighted by coth.ˇJX/, must
equal a constant. In the limit of large boundaries, and when the two coupling constants are well
separated, we find that

Tc D 4J

W.J /
� 4J

lnJ
for J � 1 ; (2.3.47)

where J � Jm=Je. We see that, in the limit of large boundaries, the sudden death temperature
remains finite. Moreover, Tc for the extended strip partition is approximately twice that of the SPP,
as given by (2.3.18). We deduce that multi-particle entanglement is more robust to the effects of
thermal fluctuations, but is still killed by an O.1/ density of defects.

The corresponding results for the contractible (“open”) strip partition are found using the
effective partition function

Z D
X
f�sg

exp

(
�N@�N@ �

N@�1X
sD1

s�s�sC1 �
N@X
sD1

�
1
4
hs.�s C �sC1 C 2/C ln coshˇJm

�)
:

(2.3.48)
This Hamiltonian embodies the fact that the plaquette p D s D N@ at the end of the boundary is
adjacent to only one star. As required, (2.3.48) reduces to the SPP result of Sec. 2.3.1 in the special
case N@ � 1.

2.4 Discussion

The main results of this chapter can be summarised by the complete entanglement “phase diagram”
for the two-dimensional toric code, which is presented in Fig. 2.5. At sufficiently low temperatures,
T < Je (recall that, without loss of generality, Je � Jm), the density of defects in the system is
exponentially suppressed, and the negativity remains undegraded from its zero temperature value.
As temperature is increased, we eventually reach Tspp � Jm corresponding to the excitation of the
higher-energy magnetic vortices, which lead to the sudden death of entanglement between adjacent
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Figure 2.5: The complete entanglement “phase diagram” for the toric code. In the blue region, i.e., T < Tspp,
all subsystems are entangled with one another (as long as the boundary contains at least one star).
In the orange region, Tspp < T < T1, whether or not two subsystems are entangled depends on
their size; the smallest subsystems become separable, while macroscopic regions of the lattice
remain entangled. Finally, in the white region, T > T1, all subsystems exhibit a vanishing
negativity, indicative of separability, irrespective of their size.

stars and plaquettes in the lattice. Just above this temperature, SPP subsystems become separable,
while subsystems composed of multiple stars and plaquettes remain entangled. When temperature
is increased further still, larger subsystems also begin to become separable until, finally, for all
temperatures T > T1 ' 2Tspp, all subsystems, irrespective of their size, are separable.

The interpretation of the sudden death temperature for subsystems larger than the SPP is less
clear-cut, as a vanishing negativity is only a necessary condition for separability. It represents a
lower bound for the temperature above which all entanglement vanishes, including any quantum
correlations not picked up by the negativity. Any entanglement that may be present in the system
above Tc is, however, not able to be distilled, and as a result is often referred to as bound entan-

glement [245]. We would welcome the introduction of an entanglement monotone that is both
necessary and sufficient for separability, but expect on physical grounds that our conclusions would
remain unchanged up to O.1/ factors.

When one of the two coupling constants in the model is infinite, Jm ! 1, the formation
of magnetic vortices is rendered energetically impossible for any finite temperature. Conversely,
electric charges are present in the system. This hard constraint means that the subspace of ther-
mally accessible states is substantially smaller than the full Hilbert space, and the calculation is
significantly simplified. The hard-constrained model has a substantially simpler expression for the
negativity

eE.T / D cosh
�
1
2
.N �N@/Ke

�
cosh

�
1
2
NKe

�
�
2 cosh

�
Ke

2

��N@
: (2.4.1)
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In this limit, the negativity does not exhibit any discontinuities. Taking the thermodynamic limit
N ! 1 while keeping the length of the boundary N@ finite, the expression (2.4.1) simplifies
further, and its extensivity in the number of boundary stars becomes apparent. Introducing the
number of non-defective stars nh D 1 � nF.2Je/, we find that the negativity becomes

E.T / D N@ ln.2nh/ : (2.4.2)

In the thermodynamic limit, the hard-constrained model satisfies an exact area law for all temper-
atures. Numerical results in the regime Jm <1 for (2.3.35) show that the area law behaviour is
present more generally.

The 1=T decay of the negativity above T � Je that was observed for the SPP subsystem is no
longer cut off at high temperatures. Sending Jm !1 prevents the thermal excitation of magnetic
defects, thereby locking in the zero temperature magnetic loop structure. As a result, thermal
fluctuations are never sufficient to completely rid the system of all quantum entanglement, which
suffers only a slow – power law – demise. This provides a potentially physical example of how a
hard constraint applied to a system with a macroscopically degenerate projected manifold can result
in thermally robust entanglement. This is likely to be the case for instance in other spin liquids and
frustrated magnetic systems in general, when projected down to their low-energy states.
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3 Dynamics of spinons at finite
temperature

3.1 Motivation

In the previous chapter, we saw how an O.1/ density of thermally excited defects was required to
start disrupting the entanglement between two subsystems in direct contact in the toric code. Here,
we are interested in the impact of the thermally excited defects on the system’s dynamics, where the
nontrivial statistical angle between the two species of quasiparticle plays an important role.

Experimentally, quantum spin liquid (QSL) candidate materials (for a review, see Refs. [51, 246])
exhibit broad continua in inelastic neutron scattering, indicative of fractionalisation of the emergent
quasiparticles (spinons) [247–249]. Although suggestive, such diffuse features are not specific
to QSLs, and it is desirable to have more concrete experimental signatures of QSL behaviour.
In the following, we will focus on gapped QSLs possessing topological order, characterised by,
e.g., subleading corrections to the ground state entanglement entropy [61, 62], and a ground state
degeneracy that depends on the genus of the space on which the system resides [250]. While
concrete and unambiguous experimental evidence for these unusual ground state properties remains
in general unavailable, the exchange statistics of the quasiparticles and their fractional quantum
numbers arguably offer some of the most promising routes to unique and experimentally accessible
signatures of topological order. We take the stance that, rather than being a hindrance, finite
temperature behaviour can in fact offer a number of signatures of fractionalisation and anyonic
statistics, and thence of quantum spin liquid behaviour [251–255].

Specifically, we are interested in understanding the role of fractional statistics on the interplay
between quasiparticle excitations, in the intermediate temperature range where one species of
quasiparticle (visons) is thermally excited and acts as a stochastic background for another species
(spinons), which are conversely sparse and hop coherently across the lattice. This is indeed a
situation relevant to several realistic Hamiltonians for quantum spin liquids, where there is a large
separation between the energy costs of different species of quasiparticle (one can think for example
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of quantum spin ice [98], Kitaev materials [50] and valence bond systems [256]). This temperature
regime is analogous to the hard constrained limit Jm ! 1 from the previous chapter, in which
magnetic defects are forbidden and the zero temperature magnetic loop structure remains unbroken,
while electric charges are excited with a nonzero density.

In this chapter, we derive an effective Hamiltonian for the energetically costly spinons, wherein
the visons enter as pointlike sources of magnetic flux, a direct consequence of their mutually
semionic statistics. Within a typical vison sector, the effective Hamiltonian therefore maps onto a
random flux model, where temperature controls the effective strength of the disorder. The central
result of this chapter is an analytical solution within the self-retracing path approximation, in which
the effect of the visons is to constrain the worldlines of the spinons to live on a Bethe lattice.
Specifically, we derive analytical expressions for the spinon density profile as a function of space
and time, which capture the short-time ballistic propagation, the crossover to quantum diffusive
behaviour and the non-Gaussian nature of the density profile.

3.2 Hopping Hamiltonian and perturbation theory

In the following, we will consider the behaviour of the Z2 lattice gauge theory Hamiltonian
introduced in Sec. 1.4.2

OHZ2 D �J
X
s

OAs � h
X
i

O�´i ; (3.2.1)

where s label the sites of the square lattice, while i indexes the bonds, and OAs D
Q
i2s O�xi . The

model may however also be defined on other two-dimensional lattices, and we will later discuss
the case where the spins live instead on a kagome lattice (see Appendix A). However, in contrast
to Sec. 1.4.2, the Hilbert space upon which (3.2.1) acts is now the full tensor product space
H D ŒC2�˝N over all spins, rather than restricting the physical Hilbert space with a Gauss law
constraint. That is, the states jf�xi gi and

Q
j2p O�´j jf�xi gi are regarded as physically distinct states

(as opposed to being equivalent once projected into the gauge-invariant subspace). Correspondingly,
we consider all charge sectors of the theory. When the magnetic field is weak, h� J , we may treat
it as a perturbation. In the limiting case where the magnetic field is absent, h D 0, the Hamiltonian
is classical in the sense that all terms mutually commute, Œ OAs; OAs0� D 0. This classical Hamiltonian
can then be diagonalised by tensor product states in the O�xi basis, jf�xi gi. Each level is however
macroscopically degenerate, and so one can equally choose superpositions of such product states,
including the eigenstates of the toric code Hamiltonian with well-defined electric and magnetic
charges. Up to a constant, the classical Hamiltonian may be written

OH c
Z2 D 2J OQ ; (3.2.2)
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where OQ DPs
OQs D 1

2

P
s.1� OAs/ counts the total number of defective stars. Each defective star

therefore costs an energy 2J .

Aside: A note on naming conventions and the Gauss law constraint. Suppose that we have a lattice

gauge theory in which the Gauss law constraint OQs j‰i D 0 selects the physical Hilbert space. The operators
OQs are mutually commuting, Œ OQs; OQr � D 0, and are conserved Œ OH; OQs� D 0 under dynamics generated by
OH . Violations of the Gauss law constraint, i.e., OQs j‰i D � j‰i ¤ 0 are then referred to as electric charges,

by analogy with quantum electrodynamics, where electric charges correspond to violations of the familiar

solenoidal constraint on the electric field r � E D 0.

In our effective Hamiltonian, we are interested in the limit where magnetic field h is perturbatively small,

h� J , since the model is in its deconfined phase. In the strict limit J !1, the term �J Ps
OQs can be

regarded as a hard constraint which enforces that the physically permissible (finite energy) states j‰i in the

Hilbert space satisfy OQs j‰i D 0. If J is instead large but finite, then states satisfying OQs j‰i D � j‰i ¤ 0
are permitted, but energetically costly. We refer to violations of this constraint as electric charges or spinons.

Note that this terminology is the opposite of that used in Sec. 1.4.2, where violations of the constraint
OBp j‰i D j‰i were referred to as electric charges.

Our choice of terminology comes from the parallels between our Hamiltonian and quantum spin ice.

There, as shown in Sec. 1.4.4, the large classical spin ice term in the Hamiltonian selects the ground state

sector, which is spanned by the states that contain no monopoles, i.e., OQt j‰i D 0 for each tetrahedron t . The

effective Hamiltonian within the degenerate ground state manifold can then be described using an emergent

compact U.1/ lattice gauge theory. Violations of the Gauss law constraint (the “electric charges”) are now the

monopoles of classical spin ice, which are also commonly referred to as spinons. Therefore, in both cases,

we will consistently refer to violations of the large, macroscopically degenerate, classical Hamiltonian as

spinons. Similarly, we will refer to excitations within the ground state sector (i.e., the spinon vacuum) as

visons. The gapless photon has no analogue in gapped Z2 lattice gauge theories.

Recall that the operators OBp D
Q
i2p O�´i , where p labels the plaquettes, are exact conserved

quantities for the Hamiltonian (3.2.1), Œ OBp; OHZ2� D 0. It is therefore convenient to work with a
basis of states that diagonalise the OBp operators. Defective plaquettes satisfy OBp j‰i D � j‰i, and
will be referred to as visons (see the note above regarding our choice of naming conventions). In
this basis, the Hamiltonian becomes block diagonal, which allows us to treat each sector containing
a distinct configuration of visons separately. Their status as conserved quantities ensures that vison
configurations remain precisely static under time evolution generated by (3.2.1), i.e., they behave as
quasiparticles with infinite mass. Unlike the toric code Hamiltonian, the OAs operators are however
not good quantum numbers, Œ OAs; OHZ2� ¤ 0. Instead, a nonzero magnetic field endows the spinons
with dynamics.

To make this picture more quantitative, the magnetic field term in (3.2.1) can alternatively be
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written in terms of operators OTn that modify a given configuration of spinons

OHZ2 D 2J OQ � h
h
OT0 C OT2 C OT�2

i
: (3.2.3)

Specifically, the operators OTn increment the number of spinons by n, i.e., Œ OQ; OTn� D n OTn. If
we are working with periodic boundary conditions, then spinons can only be created in pairs
since

Q
s
OAs D 1. In the presence of open boundary conditions, this condition is relaxed, since

the boundary can become a source or sink for single spinons, but this does not modify the bulk
Hamiltonian (3.2.3), where spinons are locally created or removed in pairs. These operators can be
written out explicitly in terms of the spins as

OT0 D
X
hss0i

�
1

2
.1 � OAs/ O�´ss0

1

2
.1 � OAs0/C 1

2
.1C OAs/ O�´ss0

1

2
.1C OAs0/

�
(3.2.4)

OT2 D
X
hss0i

1

2
.1 � OAs/ O�´ss0

1

2
.1C OAs0/ (3.2.5)

OT�2 D
X
hss0i

1

2
.1C OAs/ O�´ss0

1

2
.1 � OAs0/ ; (3.2.6)

where O�´ss0 corresponds to the spin on the bond between adjacent sites s and s0 ( O�´ss0 is not a directed
variable in the sense that O�´ss0 D O�´s0s), and we have used f OAs; O�´ss0g D f OAs0; O�ss0g D 0. The
action of these operators on eigenstates of the toric code is shown schematically in Fig. 3.1. OT0
conserves the number of spinons, hopping the quasiparticle to each of the four adjacent sites that
are unoccupied. Meanwhile, OT˙2 creates (destroys) two spinons residing on adjacent sites, if both
sites are unoccupied (occupied). We are now in a position to construct effective Hamiltonians that
conserve the number of spinons up to a particular order in the magnetic field.

3.2.1 Perturbation theory and effective Hamiltonians

In order to construct spinon-conserving effective Hamiltonians, we make use of a Schrieffer–Wolff
transformation [257, 258], parametrised in terms of a Hermitian operator OS D OS�

OH 0 D ei OS OHe�i OS D OH C Œi OS; OH�C 1

2Š
Œi OS; Œi OS; OH��C : : : (3.2.7)

While the bare Hamiltonian OH does not conserve the number of spinons, we are able to construct
the operator OS to be of the form OS DP

k
OS .k/, where S .k/ is chosen such that OH 0 conserves the

number of spinon quasiparticles up to order .h=J /k. The benefit of proceeding in this manner
is that the number of basis states that are connected by H 0 does not proliferate with successive
applications of the Hamiltonian. Equivalently, since the number of quasiparticles is conserved,
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we can work in a restricted subspace spanned by states with equal quasiparticle number. This
process of eliminating terms that violate spinon number conservation order by order is equivalent to
performing standard (degenerate) Rayleigh–Schrödinger perturbation theory in the magnetic field.
Since the two Hamiltonians OH 0 and OH are related via a unitary transformation, they are spectrally
equivalent. Meanwhile, the eigenstates j ki of OH are related to those of OH 0 by j ki D e�i OS j 0ki.
The operator e�i OS can be thought of as “dressing” the eigenstates j 0

k
i of the number-conserving

Hamiltonian. For example, at first order in the magnetic field,

i OS D i OS .1/ D � h

4J
. OT2 � OT�2/ : (3.2.8)

Since OT �n D OT�n, the operator i OS is anti-Hermitian, as it must be. We therefore observe that e�i OS

dresses the eigenstates of OH 0 with quasiparticle pairs. Substituting this expression into the BCH
expansion (3.2.7), we deduce that ŒiS .1/;HZ2� D h.T2 C T�2/, which by construction cancels the
first order terms in OH that do not conserve particle number. This allows us to deduce the second

order contribution to the transformed Hamiltonian

OH 0 D 2J OQ � h OT0 C h2

4J
Œ OT2; OT�2�C : : : (3.2.9)

The term / h describes hopping of the spinons to adjacent lattice sites. The second term / h2
encapsulates two processes: virtual creation and annihilation of spinon pairs, and next-nearest
neighbour hopping of spinons. This process can, in principle, be carried out to arbitrarily high
orders in the magnetic field h. Methods such as perturbative continuous unitary transformations
(pCUT) can be used to efficiently carry out such high order expansions [259–261]. Indeed, this
method has been used to calculate the quasiparticle gap and dispersion in the toric code perturbed
by a uniform field, from which one can infer the boundaries of the deconfined phase [65, 66]. In
this thesis we will not go beyond fourth order in the magnetic field, as the effective Hamiltonian at
this order already contains the relevant physics. For concreteness, at third order in the applied field,

OH 0 D 2J OQ � h OT0 C h2

4J
Œ OT2; OT�2� � h3

32J 2

n
Œ OT2; Œ OT0; OT�2��C Œ OT�2; Œ OT0; OT2��

o
C : : : (3.2.10)

3.2.2 Spinon vacuum

The spinon vacuum (spanned by the classical ground states that contain strictly zero spinons) is a
special case since there are no spinons that the operator OT0 can hop, i.e., all states j‰i belonging
to the spinon vacuum satisfy OT0 j‰i D 0. The first contribution therefore comes at second order,
where the term OT�2 OT2 leads to the creation and annihilation of neighbouring spinon pairs. Such a
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T̂0 O� zi O� zi O� zi
O� zi

Figure 3.1: The action of the number-conserving operator OT0 on an isolated spinon. The operator OT0 hops
the spinon to each of the adjacent four sites. This process is only possible if the adjacent sites
are unoccupied.

term however does not distinguish between different vison configurations, shifting all states with
the same vison configuration identically. In the effective Hamiltonian, this leads to a trivial energy
offset. The first order at which the macroscopic degeneracy of the spinon vacuum is lifted is at
fourth order in the magnetic field due to “ring exchange” processes. Extending Eq. (3.2.9) to fourth
order, the effective Hamiltonian within the spinon vacuum is

OH .0/
eff D �J

X
s

OAs � 5

16

h4

J 3

X
p

OBp C const. ; (3.2.11)

where the constant energy offset arises from the virtual creation and annihilation of spinon pairs.
We recognise (3.2.11) as the toric code Hamiltonian from Chapter 2. Higher order corrections to
the above Hamiltonian do not change the eigenstates of the effective Hamiltonian, jfBpgi, but will
modify their energies, with short-ranged interactions between the OBp operators being generated at
8th order and above in the magnetic field.

3.2.3 Effective Hamiltonian for an isolated spinon

In order to derive an effective Hamiltonian for the spinons, we make a “gauge choice” by fixing the
string OS.i/ associated with a spinon residing on site i . We imagine taking the other end of the string
to infinity, which may end on a defect or the boundary of the system, for example. In the absence
of boundaries or defects, the other end of the string must correspond to another quasiparticle. The
string OS.i/ D

Q
hss0i2i O�´ss0 depends on the path i , which terminates on site i . Having made this

choice, we can calculate the matrix elements of the effective Hamiltonian (3.2.9). For neighbouring
sites s and s0

tss0 � �h hfBpg; s0j O�´ss0 jfBpg; si D �h hfBpgj OS.s0/ O�´ss0 OS.s/ jfBpgi : (3.2.12)

Now, the product OS.s0/ O�´ss0 OS.s/ forms a closed loop Css0 , whose boundary is given by s [ s0
and the bond connecting s and s0. The product of spins on the loop can be extended to the product
of OBp operators on the interior of the region bounded by Css0:

Q
i2Css0 O�

´
i D

Q
p2Rss0

OBp, where

– 88 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

@Rss0 D Css0 . Therefore Eq. (3.2.12) reduces to

tss0 D �h
Y

p2Rss0
Bp : (3.2.13)

Clearly the hopping amplitudes depend explicitly on the choice of the string operators (equivalently,
the paths i ). Note that choosing a different string OS. 0i / does not change the state, only its phase,
since j hfBpgj OS.i/ OS. 0i / jfBpgi j2 D 1. Moving the spinon around a plaquette p in a closed loop,
we find that Y

hss0i2p
tss0 D h4Bp ; (3.2.14)

independent of the choice of string. This result follows from the fact that OS.i/2 D 1. Therefore
the visons act as sources of emergent magnetic flux for the spinons; a consequence of their mutually
semionic statistics. The eigenvaluesBp may be written in the formBp D ei�p , with �p 2 f0; �g, i.e.,
the visons act as point-like sources of flux, with a magnitude equal to half the flux quantum. Since
only gauge-invariant quantities are accessible in experiment, the choice of string i is essentially
immaterial.

Therefore, at first order in the magnetic field, the effective Hamiltonian in a typical vison sector
corresponds to a tight-binding model with “disorder” in the hopping amplitudes

OHeff D �h
X
hss0i

� Ob�s ei�ss0 Obs0 C H.c.
�
; (3.2.15)

where the Peierls phases �ss0 are determined by the location of the visons, and the operators Obs ,
Ob�s represent hardcore bosons. In principle, this process can be extended to arbitrary order in the
magnetic field. A particularly convenient gauge choice when using open boundary conditions is one
in which all vertical bonds have �ss0 D 0, while in the horizontal direction the hopping amplitudes
change sign whenever a � flux is encountered.

The motion of spinons in our model is therefore equivalent to a quantum particle propagating
through a background of randomly-placed, static� Z2 fluxes. We also briefly consider for comparison
the generic cases of other values of the threaded fluxes, 2�=n, n D 3; 4; : : :, and, in particular, the
limiting case of the so-called continuous flux model in which the fluxes � threading the plaquettes
are drawn from the uniform distribution over � 2 Œ0; 2�/. Analogously to the random Z2 flux
model, the model with random 2�=n fluxes arises from a Zn lattice gauge theory in a similar finite
temperature regime where the flux excitations are thermally populated whilst the elementary charge

�Introducing a nonzero projection of the magnetic field onto the x axis, hx , gives rise to vison dynamics on a
timescale h�1x . However, provided that hx � h, over the intermediate timescales of interest to the motion of the
spinons, h�1 � h�1x , the visons may be treated as static and our results apply.
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excitations remain coherent. Likewise, the continuous flux model describes the motion of a charged
particle through an incoherent U.1/ gauge field.

At this point, we take a step back and look at what we have accomplished by performing the
Schrieffer–Wolff transformation. The number of bare spinons is not conserved by OHZ2 , but it is
possible to transform into a basis in which spinon quasiparticles are conserved up to a particular
order in the small parameter h=J . In the spinon vacuum sector, the effective Hamiltonian has
the same eigenstates as the toric code (to all orders in perturbation theory), while in the first
excited sector, containing a single spinon, the model reduces to a tight binding model of bosonic
spinons hopping in an emergent magnetic field. The visons act as sources of � flux for the spinons,
just as the plaquette operators OWp acted as sources of � flux for the Majorana fermions in the
honeycomb model in Sec. 1.4.5. One should however keep in mind that (3.2.15) is obtained within
perturbation theory, and its eigenstates are related to those of the original Hamiltonian OHZ2 by the
unitary dressing operator e�i OS [given to lowest order in Eq. (3.2.8)], which decorates the states with
quasiparticle pairs.

Since the lattice is bipartite, the first order effective Hamiltonian exhibits a chiral symmetry.
That is, if we refer to the two sublattices as A and B , then A is connected only to B and vice versa.
Further, the hopping amplitudes can be chosen to be entirely real; a consequence of time reversal
symmetry. This implies that the Hamiltonian may be written (after a suitable ordering of basis
states) as

H D
 
0 HAB

HT
AB 0

!
: (3.2.16)

These features place the Hamiltonian (3.2.15) in a different universality class to “conventional”
Anderson localisation in two dimensions, falling instead under the heading of bipartite random
hopping models [262–264]. As discussed in Sec. 1.5.1, the pure off-diagonal nature of the disorder
leads to a strongly divergent density of states near zero energy. It must be remembered however that
the chiral symmetry is not an exact symmetry, neither of the bare Hamiltonian, nor of full effective
Hamiltonian. Already at second order in the magnetic field the A sublattice is connected to itself,
and similarly for B . Although the chiral symmetry is not exact, it is approximate for sufficiently
small magnetic fields and will dominate the behaviour of the system over some time scale (the effect
of chiral symmetry breaking terms modify substantially the low-energy properties of the system
over some small energy window around E D 0, which manifest at correspondingly long times).

3.2.4 Finite temperature

At zero temperature, the ground state of the system is determined by the lowest energy state in the
spinon vacuum sector, i.e., the ground state of (3.2.11). As temperature is raised from zero, there
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are a number of different regimes to consider. First, at temperatures

T � h4

J 3
� h� J ; (3.2.17)

both spinons and visons are exponentially suppressed in temperature by their gaps, and the equi-
librium behaviour of the system is not qualitatively distinct from zero temperature. If a spinon is
artificially injected into the system, then the effective Hamiltonian corresponds to a clean (flux free)
tight binding model�. As temperature is raised further,

h4

J 3
� T � h� J ; (3.2.18)

visons are excited with a finite density, and the coherence of the spinon vacuum is partially degraded.
The finite vison density manifests in the effective Hamiltonian of an isolated spinon as off-diagonal
disorder, i.e., disorder in hopping amplitudes. As temperature is raised further still

h4

J 3
� T � h� J ; (3.2.19)

the density of visons nv ' 1=2, and the quantum coherence of the spinon vacuum is now completely
disrupted. The density matrix of the system within this temperature regime may be approximated
by an incoherent mixture of all states belonging to the spinon vacuum

O� D
X
fBpg
jfBpgihfBpgj D

X
f�x
i
g WAsD1

jf�xi gihf�xi gj : (3.2.20)

The density matrix now behaves as a projector into the spinon vacuum and subjects spinons to
disordered flux configurations drawn from an infinite temperature distribution. Since T � J , the
equilibrium density of spinon quasiparticles is still exponentially suppressed�.

�As we will show later, the limits of zero temperature and infinite time do not commute. The behaviour is not
qualitatively distinct from zero temperature up to a time scale set by the characteristic separation of visons, t . n�1v .

�We refer to the eigenstates of the effective Hamiltonian OH 0 as spinon quasiparticles. The number of bare spinons
is set not only by the ratio of T=J , but also by h=J , since even the ground state contains a finite density of bare spinons
set by O.h2=J 2/.
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3.3 Lattice walks

3.3.1 Single-particle Green’s function

One quantity of interest is the single-spinon� on-site Green’s function for the effective Hamilto-
nian (3.2.15), defined by

Gi i.t/ D hh Obi.t/ Ob�i .0/ii ; (3.3.1)

where the double angled brackets hh � � � ii refer to both the quantum expectation value and thermal
averaging, which manifests as an average over vison (flux) configurations. The on-site Green’s
function gives us access to the finite-temperature single-particle density of states �.!/ for spinons.
The form of Gi i.!/ within the self-retracing path approximation is well known in the context of
the t-J´ model [265–268]. We include its derivation using the method of generating functions for
the sake of completeness. Our methodology may then be generalised to determine the off-diagonal
elements of the Green’s function, Gij .t/, with i ¤ j . These quantities are not on their own gauge
invariant and must be multiplied by the phases corresponding to a given lattice path connecting sites
i and j in order to construct a gauge invariant quantity [269].

Formally expanding e�i OHt governing the time evolution in (3.3.1) as a power series in time�,
we are able to convert the problem into a summation over discrete lattice paths  , where the particle
moves one lattice spacing per step. Integrating out the vison configurations, we arrive at

Gi i.t/ D
1X
`D0

.iht/`

`Š

X
2�.`/

e�A=�
2.T / (3.3.2)

D
1X
`D0

.iht/`

`Š
j�.`/j

D
e�A=�

2.T /
E
2�.`/

; (3.3.3)

where �.`/ is the set of all paths of length ` that begin and end at the site i , and A D
P
p Ap./

is the “area” enclosed by  : each plaquette p contributes an area Ap./ D Œ1 � .�1/wp./�=2 if it
is encircled a total of wp./ times by the path  . In the continuous flux model, a given plaquette
contributes only if wp./ D 0. In the second line, we have written the `th term as an average over
all random walks that return to their starting point after ` steps.

The length scale �.T / appearing in the exponential,

�2.T / D 1

� ln tanhŒ5ˇh4=.16J 3/�
; (3.3.4)

�On account of their fractionalised nature, spinons are created in pairs. The single-particle properties are relevant if
treating the two spinons as independent.

�One may alternatively calculate Gi i .!/ as a power series in 1=! using similar methods, as in Ref. [265].
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r

s(c)

(b)

Figure 3.2: Mapping from the square lattice, (a), to the Bethe lattice with coordination number ´ D 4, (b),
used for the calculation of the spinon density profile. Each site on the square lattice is mapped
onto multiple sites on the Bethe lattice, as indicated by the coloured circles. An example of
a perfectly self-retracing round trip (r ! s ! r) on the square lattice is shown in (c). The
nonreversing base path connecting r and s is represented by the thick black line, while the self-
retracing excursions that decorate the base path on the outward (return) trip are shown as thick
blue (red) lines. Such a walk encloses precisely zero area and contributes to the high-temperature
expansion of the transition probability Pr!s.t/.

corresponds approximately to the average distance between visons, � n�1=2v , in the dilute-vison
limit, where nv � e�10ˇh4=16J 3 . Note that � ! 0C for high temperatures, corresponding to the
vison-dense limit, nv ! 1=2. At any nonzero temperature, paths that enclose a large area with
respect to �2 are exponentially suppressed�, a manifestation of the Aharonov–Bohm effect. Recall
that the zero-temperature (nv D 0) dynamics of the spinon is equivalent to a free quantum particle
at all times t . The limits of infinite time and zero temperature therefore do not commute.

Aside: Ordinary versus exponential. Given an ordinary generating function

f .x/ D
X
n

fnx
n ; (3.3.5)

we would like to be able to derive the corresponding exponential generating function, defined by the expression

F.x/ D
X
n

fn
xn

nŠ
: (3.3.6)

This can be accomplished most neatly using complex contour integration with the formula

xn

nŠ
D 1

2�i

ˆ
C

d´
ex´

´nC1
; (3.3.7)

�This may be viewed as an analogue of the high-temperature area law for loop correlation functions
hQ`2C �´.`/i�exp.�A/ in lattice gauge theory [270].
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where the contour C encircles the origin. In fact, the contour cannot be chosen arbitrarily since f .x/ may

have a finite radius of convergence. Substituting (3.3.7) into the expression for the exponential generating

function, we observe that

F.x/ D 1

2�i

X
n

fn

ˆ
C

d´
ex´

´nC1
D 1

2�i

ˆ
C

d´
ex´

´
f

�
1

´

�
: (3.3.8)

We therefore deduce that C must be chosen such that 1=´ lies within the radius of convergence. Equation

(3.3.8) provides us with a relationship between the ordinary and exponential generating functions.

From the ordinary generating function g.xI a/ DPn;m gnmx
nam for walks  2 �.`/, where

the generating variables x and a are associated with path length n and area enclosedm, respectively,
one can observe thatGi i.t/ is equal to the corresponding exponential generating function Qg.xI a/ �P
n;m gnmx

nam=nŠ via
Gi i.t/ D Qg.iht I e�1=�2/ : (3.3.9)

The effect of changing temperature is to alter the relative weight of the different lattice walks,
classified according to the area that they enclose. At zero temperature, all paths of a given length
contribute with equal weight, while at infinite temperature only those paths that enclose precisely
zero area contribute. We expect that the latter result describes the limiting behaviour for high
temperatures, T � h4=J 3.

3.3.2 Density evolution

Motivated by the study of finite temperature dynamical spin–spin correlators, we would like to
quantify the propagation of a pair of spinons after being created locally on adjacent sites. As a first
approximation, we solve the single-particle problem, which we are able to treat analytically. In
particular, we calculate (i) the site-resolved density profile for short times, ht D O.1/, accessible for
instance in ultracold atomic experiments, and (ii) the asymptotic moments of the density distribution,
hr2k.t/i, which characterise the behaviour of the spinon profile over a large range of intermediate
time scales.

The (gauge invariant) probability for the spinon to move from site 0 to site s in a time t in the
presence of a given vison (flux) configuration f�pg is given by

Ps.f�pgI t / D hf�pgj Ob0.0/ Ob�s .t/ Obs .t/ Ob�0.0/jf�pgi (3.3.10)

D
ˇ̌
ˇ hf�pgj Obse�i OHt Ob�0jf�pgi

ˇ̌
ˇ2 : (3.3.11)

In a similar manner to Gi i.t/, we are able to write the transition probability Ps.t/ in terms of
summation over outward () and return ( 0) lattice paths. After integrating over the possible flux
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configurations f�pg with the appropriate Boltzmann weight, the probability reads

Ps.t/ D
1X

`;`0D0
.�1/` .iht/

`C`0

`Š`0Š

X
2�s.`/
 02�s.`0/

e�A[0=�
2

; (3.3.12)

where �s.`/ is the set of all paths of length ` that connect the sites 0 and s, and A[ 0 is the area
enclosed by the closed path  [ 0. Knowledge of Ps.t/ for all sites s gives us complete information
about the density distribution �.r; t / as a function of time.

3.3.3 Interpretation

We have shown that in both instances the problem of determining single-spinon motion in a sea of
thermally excited visons may be mapped onto the combinatorial problem of enumerating discrete
lattice walks. At precisely zero temperature, the system is free of vison excitations, � D 1, and
all paths of a given length contribute with equal weight�. In this limit, the effective Hamiltonian
is simply a two-dimensional tight-binding model with nearest neighbour hopping, and the spinon
propagates ballistically. Conversely, at temperatures which are high with respect to the energy cost
for vison creation, T > h4=J 3, the hopping amplitudes are maximally disordered, and only walks
that enclose exactly “zero area” (as defined previously) contribute. (Note that the notion of zero
enclosed area trivially extends to the case of fluxes of magnitude 2�m=n, with m; n 2 N, threading
the plaquettes.) We focus primarily on this high-temperature limit in order to contrast with the
known behaviour at T D 0.

Exact enumeration of all such zero-area paths on a generic lattice with coordination number ´ is
a very tall order. To tackle this problem, we discuss a limit where the problem becomes analytically
tractable. Namely, we consider perfectly self-retracing paths [265], which necessarily satisfy
A D 0. As we shall see, this is a particularly relevant subset of walks the smaller the threaded
fluxes are, and particularly for the continuous U.1/ flux case. For comparison, in Sec. 3.6, we also
solve numerically for the time evolution generated by effective Hamiltonians of the form (3.2.15)
using a high order Suzuki–Trotter decomposition [271]. We will also discuss the lower temperature
regime T . h4=J 3 in the context of these simulations.

3.4 Self-retracing paths: Generating functions

A perfectly self-retracing path corresponds to a lattice walk with no closed cycles in which every
link on the ‘outwards’ path is retraced in the opposite direction on the ‘return’ path. More precisely,

�Since the limits of infinite time and zero temperature do not commute. We are here referring to taking T ! 0

before t !1.
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(a) (b) (c)

Figure 3.3: Three examples of closed lattice walks,  , which begin and end on the black circle. A perfectly
self-retracing path – the only type of path included in the Bethe lattice mapping – is shown
in (a). In (b) and (c) the walk includes closed cycles, which have the potential to be non-self-
retracing. In general, a walk  contributes to the lattice path expansion at high temperatures
if hexp.i

P
hij i2 �ij /if�ij g D 1. In the case of �-fluxes threading the plaquettes, a walk

in which the loop (b) is traversed an even number of times in the same direction leads to a
nonzero contribution, he2ni�iZ2 D 1. Such a path with winding number w D 2n (n 2 Z¤0)
is not self-retracing, and so is not captured by the Bethe lattice mapping. For continuous
fluxes, however, such non-self-retracing paths of the form (b) with nonzero winding number
w D 2n are not present in the lattice path expansion after averaging over flux configurations,
since he2ni�iU(1) D 0. Paths that self-intersect multiple times, as in (c), can be traversed in
multiple ways in the reverse direction, only one of which is self-retracing. All other paths
are not accounted for by the Bethe lattice mapping, whereas they do however contribute to
the continuous flux case. For these reasons, we expect the Bethe lattice mapping to better
approximate the continuous flux model where a significantly larger fraction of permitted lattice
walks are correctly enumerated.

there is a one-to-one mapping between self-retracing paths on a lattice, L´, with coordination
number ´, and closed walks on a Bethe lattice, B´, with branching ratio ´ � 1, as shown for the
case ´ D 4 in Fig. 3.2.

Fractal lattices in general are a useful tool for obtaining exact solutions, and have recently been
used in a similar context to calculate the spectrum of itinerant excitations in quantum spin ice
at zero temperature [272, 273], where gauge field effects lead to a configuration space which is
well-approximated by the Husimi cactus graph. Examples of perfectly self-retracing walks, and
classes of walks which are not captured by the self-retracing path approximation are shown in
Fig. 3.3. The latter are analogous in spirit to the Trugman path [274] in the context of single hole
propagation in the t-J model. Since the paths that are not accounted for only become relevant at
long times, one may expect that this approximation works well for the dynamics of the system at
the intermediate timescales of interest, at least for the continuous flux model.

In this section we will derive the generating functions for walks on a Bethe lattice with branching
ratio ´ � 1, which are necessary to describe analytically the form of the density profile in the limit
of high temperature (high flux density).
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3.4.1 Closed walks

We first consider the ordinary generating function T .´/0 .x/ DPn t
.´/
n xn for closed walks on a Bethe

lattice B´ with branching ratio ´ � 1, where, by definition, t .´/n is the number of closed walks that
begin and end at the same site, which may be used to define the root node (or origin) of the Bethe
lattice. This generating function is directly related to the single-particle density of states. Note
that the lack of closed cycles implies that all closed walks on B´ are necessarily self-retracing, and
further permits the following decomposition of the generating function

T
.´/
0 .x/ D 1C ´x2T .´/0 .x/T

.´/
1 .x/ ; (3.4.1)

where T .´/
k
.x/ is the generating function for walks beginning and ending at a depth of k on the lattice

(always remaining at a depth � k). This is because any (self-retracing) path can be decomposed as

(i) the trivial walk,

(ii) (a) hopping to one of the ´ nearest neighbours,

(b) performing a self-retracing walk that begins and ends at depth k D 1,

(c) hopping back to the origin,

(d) performing a self-retracing walk that begins and ends at the origin.

A similar argument can be made for all subsequent depths with k � 1, such that the generating
functions decompose as

T
.´/

k
.x/ D 1C .´ � 1/x2T .´/

k
.x/T

.´/

kC1.x/ : (3.4.2)

One can therefore express the original generating function T .´/0 , for paths beginning and ending at
the origin, as an infinite continued fraction

T
.´/
0 .x/ D

1

1 �
´x2

1 �
.´ � 1/x2

1 �
.´ � 1/x2

1 � : : :

: (3.4.3)

The self-similar nature of B´ implies that T .´/
k
.x/ D T .´/

kC1.x/ for k � 1 (on an infinite lattice), and
the continued fraction can be written in closed form (choosing the sign in front of the square root

– 97 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

� � �r s

Figure 3.4: Example of a path from r to s on the Bethe lattice B4, which maps to a nonreversing walk of
length ` on the square lattice. For any given two sites on the square lattice, there are multiple
nonreversing walks that connect the two sites, enumerated by the generating function Cs.x/.

such that T .´/0 .x/! 1 as x ! 0)

T
.´/
0 .x/ D 2.´ � 1/

´ � 2C ´
p
1 � 4.´ � 1/x2

; (3.4.4)

consistent with, e.g., the results of Ref. [275]. For ´ D 4 (corresponding to the square lattice at high
temperatures), this expression evaluates to

T
.4/
0 .x/ D 3

1C 2
p
1 � 12x2

D 1C 4x2 C 28x4 C : : : (3.4.5)

D C .4 /x2 C .16 C 12 /x4 C : : : (3.4.6)

where the diagrams denote the types of self-retracing walk that contribute at each order.

3.4.2 Open walks

We now generalise this result to include open walks. Consider a walk that begins at site r and ends
at site s on B´, where r and s are separated by a total of ` bonds on the Bethe lattice. We denote
the corresponding generating function as Trs.x/ [by symmetry, Trs.x/ D Tsr.x/]. We will for
convenience draw the Bethe lattice as in Fig. 3.4, the links between r and s (inclusive) forming a
backbone, and refer to s as being to the right of r , such that s D r C `. The walk from r ! s may
then be decomposed in the following way:

(i) (a) hopping to one of the ´ � 1 nearest neighbours of r not equal to r C 1,

(b) performing a self-retracing walk that begins and ends at depth k D 1,

(c) hopping back to r ,

(d) performing a walk from r to s.
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(ii) (a) hopping to the ‘right’ of r to site r C 1,

(b) performing a walk from r C 1 to s.

The walk from r C 1 to s is then decomposed in a similar fashion. Therefore, in terms of the
individual generating functions,

T .´/rs .x/ D .´ � 1/x2R.´/.x/T .´/rs .x/„ ƒ‚ …
(i)

C xT .´/rC1 s.x/„ ƒ‚ …
(ii)

; (3.4.7)

where R.´/.x/ is the generating function for self-retracing walks that begin and end at a depth of
k � 1. The labels (i) and (ii) refer to the corresponding steps in the above physical decomposition.
From our previous analysis of T .´/0 .x/, we know that

R.´/.x/ D
1

1 �
.´ � 1/x2

1 �
.´ � 1/x2

1 � : : :

D 1 �
p
1 � 4.´ � 1/x2
2.´ � 1/x2 ; (3.4.8)

where again the sign of the square root is chosen to give R.´/.x/ ! 1 in the limit x ! 0. The
recursion relation (3.4.7) can then be solved to find an expression for T .´/rs .x/ in closed form:

T .´/rs .x/ D
h
xR.´/.x/

i`
T .´/ss .x/ : (3.4.9)

The function T .´/ss .x/ which terminates the recurrence relation is simply T .´/0 .x/ derived in the
previous section, i.e., enumerating the number of perfectly self-retracing paths that begin and end at
the same point on the Bethe lattice. We therefore arrive at the final result:

T .´/rs .x/ D
 
1 �

p
1 � 4.´ � 1/x2
2.´ � 1/x

!`
2.´ � 1/

´ � 2C ´
p
1 � 4.´ � 1/x2

(3.4.10)

� S .´/.x/` T .´/.x/ : (3.4.11)

By virtue of the symmetry of the Bethe lattice, T .´/rs .x/ depends only on the length ` of the path
separating the sites r and s, not on the specific choice of path.

3.4.3 Constrained closed walks

We now further generalise to the case of closed, self-retracing walks on the original lattice L´ on
which the spinon hops in real space. In order to calculate Ps.t/, we are required to enumerate the
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number of perfectly self-retracing paths that visit the sites 0 ! s ! 0. Any such path can be
decomposed as follows:

(i) a nonreversing base path connecting 0 and s on L´,

(ii) self-retracing excursions which decorate the base path.

The base path must be common to both outward (0 ! s) and return (s ! 0) paths, while the
self-retracing excursions can differ between the two paths. In this way, the return path completely
“erases” the outwards path, and the path is overall perfectly self-retracing, therefore enclosing
precisely zero area. The base paths must be nonreversing, since immediate reversal of the base path
corresponds to a self-retracing excursion, which would lead to double counting of such a path. An
example of a self-retracing round trip between two sites is shown in Fig. 3.2.

The connection between the Bethe lattice and the original lattice comes from the number of
base paths that the particle may take to get between the origin and the site s. Suppose that we know
the generating function for the number of nonreversing paths that connect the origin (0), and some
other site s on the original lattice L´, which we denote by

Cs.x/ D
1X
`D0

c
.s/

`
x` : (3.4.12)

The generating function for fully self-retracing paths that connect 0 ! s ! 0 can then be
constructed in the following way from the three elementary generating functions S .´/.x/, T .´/.x/
and Cs.x/, defined in (3.4.11) and (3.4.12). We will henceforth drop the explicit dependence
of these generating functions on the coordination number ´ for notational convenience. Using
generating variables x and y to count the number of steps taken on the outwards and return trips,
respectively,

Ps.x; y/ D
1X
`D0

c
.s/

`
S.x/`T .x/S.y/`T .y/ D T .x/T .y/Cs ŒS.x/S.y/� ; (3.4.13)

i.e., for each base path, and at each step, a self-retracing excursion may take place, enumerated by
the functions S.x/ and T .x/. As required, the generating function Ps.x; y/ is symmetric under
exchange of forwards and backwards walks (i.e., x $ y).

3.4.4 Nonreversing walks

Equation (3.4.13) shows that the number of nonreversing base paths on the original lattice, enumer-
ated by Cs.x/, is a crucial ingredient in determining the transition probability Ps.t/. Our final task
therefore is to determine explicitly the generating function Cs.x/ (for an arbitrary site s), a general
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method for which is presented here. We will introduce the strategy for the square lattice, with the
generalisation to the triangular and honeycomb lattices (relating to the quasiparticle excitations on
the kagome lattice) deferred to Appendix A.

Since the nonreversing constraint only depends on the previous step in the lattice walk, it may
be enforced using ´ � ´ matrices [276]. Let us introduce the generating variables x, ı and � which
count the length of the walk, and the number of steps taken in the direction of the (for the square
lattice, orthonormal) lattice vectors e1 and e2, respectively. At each step, there are four possible
directions that the particle may choose from: ı, �, ��1 and ı�1. However, for all but the initial step
of the walk, the direction which immediately reverses the previous step is forbidden. This may be
enforced using the matrix

N D x

0
BBBB@

ı � ��1 0

ı � 0 ı�1

ı 0 ��1 ı�1

0 � ��1 ı�1

1
CCCCA ; (3.4.14)

and the initial condition N0 D x diag.ı; �; ��1; ı�1/. The row index corresponds to the previous
step, and the column index to the current step. At each step, the length of the path is advanced by
one, and matrix multiplication ensures that all possible combinations of steps are accounted for. The
zero entries enforce the nonreversing constraint—any path that immediately reverses its direction
is given a coefficient of zero. The initial matrix N0 imposes that the initial step is unconstrained.
Thence the elements of the matrix N0N `�1 give the paths of length ` that are consistent with the
nonreversing constraint. The full generating function N .xI ı; �/ for nonreversing paths is therefore
given by the sum over all matrix elements and all possible path lengths ` (including also the trivial
walk of zero length):

N .xI ı; �/ D 1C
X
i;j

1X
`D1

h
N0N

`�1
i
ij
D 1C

X
i;j

�
N0.1´ �N/�1

�
ij
; (3.4.15)

where 1´ is the ´ � ´ identity matrix. Evaluating the inverse of the matrix 1´ � N , we arrive at
the following explicit expression for the generating function for nonreversing walks on the square
lattice

N .xI ı; �/ D 1 � x2
1C 3x2 � x.ı C ı�1 C � C ��1/ ; (3.4.16)

consistent with Ref. [276]. This generating function and its counterparts for the other two-
dimensional lattices considered in Appendix A represent a central object in this work since they
give access to the family of generating functions Cs.x/ for all sites s, and hence contain complete
information about the spinon density profile after a quench in the magnetic field strength.
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Noting that
N .xI ı; �/ D

X
s2L´

ıs1�s2Cs.x/ ; (3.4.17)

the function Cs.x/, with s DPi siei , may be extracted from N by singling out the terms in (3.4.17)
proportional to ıs1�s2 . This may be accomplished using the transformation

Cs.x/ D
ˆ �

��
d�
2�

ˆ �

��
d�
2�

N .xI ei� ; ei�/e�is1��is2� : (3.4.18)

Substituting in for the generating function N .xI ı; �/, we arrive at the following simplified expres-
sion

Cs.x/ D .1 � x2/
2�2x

ˆ �

0

d�
ˆ �

0

d�
cos.s1�/ cos.s2�/
t � cos � � cos�

; (3.4.19)

where we have defined t D .1 C 3x2/=2x. This integral may be evaluated by exploiting an
equivalence with the Green’s function of two dimensional tight-binding models with Hamiltonian
OH . Consider

OG.w/ D
X

k

jki hkj
w �E.k/ ; (3.4.20)

which satisfies .w � OH/ OG D 1. The states jki are eigenstates of OH with energies E.k/. Taking
matrix elements of OG.w/ with respect to sites jli, jmi,

G.wI l;m/ � hljG.w/jmi D 1

�2

¨ �

0

Q
i dki cosŒki.li �mi/�

w �E.k/ : (3.4.21)

Hence, when OH corresponds to a two-dimensional tight-binding model on the square lattice with
E.k/ D cos kx C cos ky , we observe the equivalence of (3.4.19) and (3.4.21) up to prefactors,
making the identifications .k1; k2/$ .�; �/, w $ t and si $ li �mi .

As shown in, e.g., Refs. [147, 277], the Green’s function G.wI 0; 0/, which is related to the
spinon return probability P0.t/, is given exactly by

G.wI 0; 0/ D 2

�w
K

�
2

w

�
; (3.4.22)

where K is the complete elliptic integral of the first kind. This result gives rise to the generating
function

C0.x/ D 2

�

�
1 � x2
1C 3x2

�
K

�
4x

1C 3x2
�
: (3.4.23)

The Green’s functions for general sites l, m (and therefore Cs for a general site s) can also be
obtained explicitly using the recursion relations presented in Refs. [147, 277]. This procedure is
used later in Sec. 3.5.3 to construct the spatially-resolved spinon density profile.
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3.5 Analytical results

Now that we have presented all of the preliminary results, we focus on understanding the high-
temperature limits of the physical quantities introduced in Sec. 3.3 that may be inferred from the
generating functions for self-retracing walks.

3.5.1 Single spinon density of states

As noted in Sec. 3.3.1, the single-spinon Green’s function Gi i.t/ may at high temperatures be
expressed in terms of the exponential generating function QT .´/.x/ corresponding to closed walks on
the Bethe lattice B´ which, by construction, enclose zero area. The exponential generating function
can be constructed from the ordinary generating function T .´/.x/ derived in Sec. 3.4.1 using the
transformation [see the note on page 93]

QT .´/.x/ D
˛
C

dw
2�i

exw

w
T .´/

�
1

w

�
: (3.5.1)

The contour C can be shrunk around the branch cut in .1=w/T .´/.1=w/ that lies along the real axis
between �2p´ � 1 < Re.w/ < 2

p
´ � 1 �, which gives rise to the expression

G
.´/
i i .t/ D

ˆ 2
p
´�1

�2p´�1
du
2�
eihtu

´
p
4.´ � 1/ � u2
´2 � u2 ; (3.5.2)

or, equivalently, to the Brinkman and Rice [265] density of states

�.!/ D

8̂
<
:̂

´

2�h

p
4.´ � 1/ � !2=h2
´2 � !2=h2 for j!j < 2p´ � 1h ;

0 otherwise ;
(3.5.3)

for single particle excitations.

In the case of the square lattice, for example, this result predicts that the support of �.!/ is
narrowed by 13% from j!j < 4h at zero temperature to j!j < 2

p
3h at “infinite temperature”,

and that �.!/ vanishes like j2p3h � !j1=2 at the positive/negative band edge as opposed to a
step-like singularity typical for massive, free quantum particles in two dimensions. The Bethe
lattice mapping does not account for the Lifshitz tails, nor any singular behaviour near ! D 0 that
has been predicted theoretically [262, 278, 279] and observed numerically [280] in similar models.
These differences arise from the neglect of loop diagrams as shown in Fig. 3.3—when a lattice path
includes a closed loop, there are two ways in which the loop can be traversed, whereas the Bethe

�The function T .w�1/=w does not exhibit a pole at w D 0.
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Figure 3.5: Two spinon density of states. The Bethe lattice result corresponds to the autoconvolution of
the Brinkman–Rice result (3.5.3), shown in the inset, while the numerical results are calculated
using exact diagonalisation (ED) of the effective tight binding Hamiltonian on a system of size
L D 13 containing two hardcore bosons, satisfying open boundary conditions, averaged over 35
realisations of disorder.

lattice approximation leads to a coefficient of one. Nevertheless, the mapping does capture many
of the salient features of the high-temperature density of states over the full spinon bandwidth, as
shown in Fig. 3.5. For example, one may use (3.5.3) to understand the behaviour of the density of
states with increasing temperature for Majorana fermions in the Kitaev honeycomb model [281].

3.5.2 Single spinon Green’s function

Analogous to the on-site Green’s function, the generating function Tij .x/ is related (for i ¤ j ) to
the off-diagonal matrix elements of the Green’s function Gij D hh Obi .t/ Ob�j .0/ii at high temperature.
As noted previously, such a quantity is not on its own gauge invariant and must be multiplied by the
phases corresponding to a given lattice path  connecting the sites i and j , i.e.,

G
.´/
ij .t j / �

DD
ei
P
h˛ˇi2 �˛ˇ Obi .t/ Ob�j .0/

EE
: (3.5.4)

Converting to the corresponding exponential generating function using (3.5.1), the contour can
again be shrunk around the branch cut on the real axis between �2p´ � 1 < Re.w/ < 2

p
´ � 1

and we arrive at the expression

G
.´/
ij .t j / D Œ4.´ � 1/�1�`=2

ˆ �

0

d�
2�
eiht2

p
´�1 cos� Im

�
ei`� sin�

.´ � 2/ cos� � i´ sin�

�
; (3.5.5)

where ` is the length of the path  from i to j �.

�Note that the independence of Gij .t j / on the precise choice of path  , other than its length `, is a consequence
of the self-retracing path approximation.
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We note that this quantity also equals the projection of the wave function j .t/i of a particle
initially localised at the origin of the Bethe lattice B´ onto a site at depth `, i.e.,  `.t/ D h`j .t/i,
at zero temperature (where the time evolution is generated by a nearest neighbour tight-binding
Hamiltonian).

3.5.3 Spinon density profile

We now turn to our main result: characterising the density profile of a spinon initially localised
at the origin of the original lattice. The transition probability Ps.t/ can be constructed from the
generating function Ps.x; y/ in (3.4.13) via conversion to the corresponding exponential generating
function using complex contour integration:

Ps.t/ D
‹

dw1
2�i

dw2
2�i

eiht.w1�w2/

w1w2
Ps
�
1

w1
;
1

w2

�
; (3.5.6)

over sufficiently large circles in both the w1 and w2 complex planes, for example. The moments
of the probability distribution Ps.t/ can then be constructed using the generating functions T .x/,
S.x/ and Cs.x/ from Sec. 3.4:

hr2k.t/i D
‹

dw1
2�i

dw2
2�i

eiht.w1�w2/

w1w2
T

�
1

w1

�
T

�
1

w2

�
R2k

�
S

�
1

w1

�
S

�
1

w2

��
; (3.5.7)

where we have defined the function

R2k.x/ D
X
s2L´

dist.0; s/2kCs.x/ ; (3.5.8)

with dist.0; s/ D
q
s2x C s2y on the square lattice. Using the relationship (3.4.17) between the

generating function for nonreversing walks, N .xI ı; �/, and Cs.x/, we deduce that the function
R2k may be expressed in terms of appropriate derivatives of N :

R2k.x/ �
X
s2L´

�
s2x C s2y

�k
Cs.x/ (3.5.9)

D
n�
.ı@ı/

2 C .�@�/2
�kN .xI ı; �/

o ˇ̌ˇ̌
ıD�D1

; (3.5.10)

which we will write symbolically as R2k D Œr2kN �.xI 1; 1/. The expression (3.5.9) and hence (3.5.10)
must be generalised to include cross-terms between ı and � if the two basis vectors ei are not
orthonormal, as is the case for the triangular and honeycomb lattices (see Appendix A for further
details).
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Figure 3.6: At short times, the transition probabilities Ps.t/ exhibit coherent oscillatory behaviour. We
plot the spinon density profile at times (a) ht D 0:9 and (b) ht D 1:8, which correspond
approximately to a minimum and a maximum of the return probability P0.t/, as predicted
by (3.5.6), respectively. From left to right, the profiles correspond to the Bethe lattice analytical
result, the continuous flux model, and the �-flux model, labelled B, U.1/, and Z2, respectively.
The Bethe lattice mapping provides an essentially exact description of the full density profile for
the continuous flux model, and a very good approximation to the �-flux model, at times on the
order of the hopping timescale. Notably, discrepancies first become manifest in the �-flux model
at the origin due to the stronger localisation. The numerical data for the Z2 and U.1/ cases are
averaged over 25 000 infinite temperature flux configurations.

Short-time dynamics

At sufficiently short times, ht . dist.0; s/, the transition probabilities Ps.t/ exhibit complex
oscillatory behaviour arising from the interference of lattice walks of varying lengths, and one must
use the full expression (3.5.6) in order to accurately capture the density profile in this regime.

Take for example the return probability P0.t/ obtained using the generating function C0.x/
in (3.4.23). The probability decays with time asymptotically as P0.t/� 1=t , suggesting that the
spinon asymptotically exhibits diffusive behaviour, which we study in more detail in the next
section. However, there also exist superimposed, subleading oscillations due to interference effects
that decay as cos

�
4
p
3t
�
=t2, which may be revealed by applying the method of stationary phase

to (3.5.6).

In Fig. 3.6 we plot the spinon density profile predicted by (3.5.6) at ht D 0:9 and ht D 1:8

[corresponding approximately to extrema of the return probability P0.t/, i.e., ht ' n�=.4
p
3/,

for integer n], making use of the family of generating functions fCs.x/g, and we compare it with
numerical simulations of the disordered tight-binding model (3.2.15) for the case of (i) �-fluxes,
and (ii) continuous fluxes, � 2 Œ0; 2�/. We observe almost perfect agreement between the analytical
results and the numerics at the shortest of the two times, whereas the quantitative agreement survives
at the later time for the continuous flux model only.
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Asymptotic second moment

We now focus on the asymptotic behaviour of the density profile, once the transient, oscillatory
behaviour of the distribution has subsided. Let us restrict our attention briefly to the second moment
of the density distribution, hr2.t/i. For the case of the square lattice, evaluating the derivatives in
(3.5.10), one arrives at

R2.x/ D 4x.1C x/
.1 � 3x/2.1 � x/ : (3.5.11)

Crucially, the function R2.x/ has a second order pole at x D .´ � 1/�1. This feature is shared by
the other lattices considered in Appendix A, and dominates the long-time behaviour of the root
mean square (RMS) displacement. In particular, a second order pole in the function R2 gives rise
to a linear, i.e., diffusive, t-dependence of hr2.t/i ' 2D´ht , for sufficiently large times. The
full time-dependence of hr2.t/i described by (3.5.7) corresponds to a crossover from ballistic to
diffusive behaviour at a time ht � 1 (the characteristic time taken for the spinon to hop one lattice
spacing). This is because for sufficiently short times the particle has not moved far enough to enclose
any flux, and so interference effects do not play a significant role. The linear time dependence at
long times is a direct consequence of the result

Res
wD0 f .w/

eitw

w2
D i tf .0/C f 0.0/ t�1� i tf .0/ ; (3.5.12)

if the function f .w/ is analytic at w D 0. Note that in fact there exists a line of poles along the real
axis in (3.5.7) since S.uC i0C/S.u � i0C/ D .´ � 1/ for u 2 R and juj < 2p´ � 1. Expanding
the integrand for general ´ about this singular line, we must integrate over the relevant residues
between �2p´ � 1 < u < 2p´ � 1 (where the integrand is singular), which defines the function

F.´/ � .´ � 1/
ˆ 2
p
´�1

�2p´�1
du
4.´ � 1/ � u2
´2 � u2 (3.5.13)

D .´ � 1/
"
4
p
´ � 1 � ´

�
´ � 2
´

�2
ln

 
´C 2p´ � 1
´ � 2p´ � 1

!#
: (3.5.14)

Comparing the large-t asymptotic expansion of Eq. (3.5.7) with the expected late time behaviour of
hr2.t/i � 2D´ht , one therefore obtains the following exact expression for the diffusion constant on
a lattice with coordination number ´

2D´ D 1

2�
F.´/ lim

w!.´�1/�1

�
1 � w

´ � 1
�2

R.´/
2 .w/ : (3.5.15)
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Lattice Coordination number, ´ D´

Triangular 6 2.72968
Square 4 2.73383
Honeycomb 3 3.20977

Table 3.1: Values of the diffusion constants D´ obtained by the Bethe lattice mapping corresponding to the
long-time behaviour (ht � 1) of spinons propagating in the high temperature limit (T > h4=J 3).

Using the expression for R2 in (3.5.11), we finally deduce that

D4 D 4

�

h
2
p
3 � ln

�
2C
p
3
�i
' 2:73383 ; (3.5.16)

for the square lattice. This expression gives the exact value of the diffusion constant observed
in, e.g., Ref. [282], which was previously obtained only numerically. The values of the diffusion
constant for the triangular and honeycomb lattices are given in Tab. 3.1.

In fact, the following expression for D´ is valid for all three lattices

D´

hd 2i D
´2

4�.´ � 2/

"
4
p
´ � 1 � ´

�
´ � 2
´

�2
ln

 
´C 2p´ � 1
´ � 2p´ � 1

!#
; (3.5.17)

normalised by the arithmetic mean of the squared distances, hd 2i, corresponding to the possible
moves at each step�. A plot of this function in Fig. 3.7 shows that D´ exhibits a minimum at
´ ' 4:833—this is due to the competition between (i) reduced destructive interference at low
coordination numbers (vanishing destructive interference as ´! 2C, since there are no loops for
´ D 2), and (ii) a greater number of paths between any two points on the lattice for large ´, the
effect of which dominates at large ´. This result shows that it is a fortuitous coincidence that the
square and triangular lattices exhibit such similar diffusion constants.

We stress that (3.5.17) corresponds to quantum diffusion, which results from the complex
interference pattern produced by the multitude of lattice walks, and is faster than the corresponding
classical diffusion� (random walk), Dcl D ´=2, for coordination number ´ � 5. For ´ > 5,
interference effects dominate, leading to slower propagation. The difference between classical and
quantum diffusion is further reflected in the non-Gaussian nature of the asymptotic density profile.
The calculations presented in this section can be extended to calculate arbitrary moments of the
spinon density profile, as shown in Appendix B, from which one can demonstrate explicitly that

�This normalisation allows us to apply Eq. (3.5.17) to lattices such as the double triangular lattice (´ D 8), which
include steps of different lengths.

�We compare our quantum diffusive behaviour with the classical random walk in which the particle hops to one
of its neighbours in a time .´h/�1. The operators bi .t/ and the classical probabilites then obey the same equations of
motion (the latter in imaginary time). This normalisation is consistent with that used in Ref. [282].
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Figure 3.7: A plot of the diffusion constant D´ against the coordination number ´ from (3.5.17), having set
the nearest neighbour distance between lattice sites equal to unity. The corresponding classical
diffusion constant Dcl

´ D ´=2 is also shown for comparison. The markers denote the values of
D´ for some common lattices: the honeycomb, square, triangular, and double triangular lattices,
from left to right.

higher order cumulants do not vanish.

3.6 Numerical results

The Bethe lattice result is compared to Trotterised time evolution [271] generated by the single-
particle Hamiltonian (3.2.15) on a 1999�1999 square lattice. The method of Trotterised time
evolution was chosen for its ability to simulate system sizes significantly larger than those accessible
to exact diagonalisation. The results, which are shown in Fig. 3.8, are averaged over infinite
temperature disorder realisations, both for random discrete fluxes (2�=n, for n D 2; 3; 4), as well
as for the continuous random flux model, where the flux threading each plaquette is chosen from a
uniform distribution � 2 Œ0; 2�/. We see that, over numerically accessible, intermediate timescales,
the Bethe lattice result provides an excellent quantitative description of the density profile for the
continuous flux model, and qualitative agreement with the Z2 model. The results for discrete fluxes
with n > 2 can be seen to rapidly converge to the continuous flux result. Note that the case n D 2,
corresponding to Z2 fluxes, is special, being the only case in which the effective tight-binding
Hamiltonian exhibits time reversal symmetry (i.e., H D H �).

In the �-flux model, encircling a flux an even number of times gives rise to constructive
interference. The difference in behaviour between this model and the continuum case means that
the loop diagrams depicted in Fig. 3.3b, which are missed by the Bethe lattice, play an important
role. These diagrams lead to an increased weight near the origin, which results in a reduced RMS
displacement. These observations are consistent with the idea that all single-particle eigenstates of
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Figure 3.8: (a) Comparison of Bethe lattice result for the mean square deviation, hr2.t/i ' 2D´ht , with
numerics for (i) the discrete flux model with fluxes 2�=n, for n D 2; 3; 4, and (ii) the continuous
random flux model. Time evolution is performed using a high order Suzuki–Trotter decomposi-
tion on a square lattice with 1999� 1999 sites and averaged over 128 random flux configurations
at infinite temperature. All models exhibit the same ballistic behaviour for sufficiently short
times. The lines 4t2 and 2D´t are shown in light grey as a guide to the eye to indicate the
ballistic and diffusive regimes. The �-flux model shows the most pronounced deviation from
the Bethe lattice approximation at longer times as a result of being most strongly localised. The
density profile at ht D 40 for the Bethe lattice is compared with the continuous and �-flux
models in (b) and (c), respectively. The profiles �.x/ are averaged over 105 flux configurations
on a lattice of size 249 � 249 sites. The error bars are in all cases too small to be visible.

the effective disordered tight-binding model are localised, but with a diverging localisation length
near E D 0 arising from the presence of purely off-diagonal disorder in the Hamiltonian.

The subdiffusive form of the second moment observed in the numerics may be explained in
the following way: a wave packet composed of states in the vicinity of energy E will diffuse
with diffusion constant D.E/ up to (approximately) their localisation length �.E/ [283], at which
point such states give rise to a fixed, time-independent contribution to hr2.t/i � �.E/2. As time
progresses, a reduced fraction of states have not yet reached their localisation length and are still
diffusing, explaining the negative curvature observed in Fig. 3.8. The Bethe lattice result can
therefore be thought of as giving the behaviour of hr2.t/i before any of the states have reached
their localisation length. Since the localisation length of the continuous flux model increases
exponentially with energy away from the band edge [280], we observe very close agreement up to
ht D 103 with the Bethe lattice result. The difference in behaviour between the continuous and
�-flux models may be attributed to the fact that the latter is more strongly localised [284], implying
a smaller fraction of diffusing states at any given time, and hence a more pronounced departure
from the pure diffusion predicted by the Bethe lattice.
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Figure 3.9: Comparison of the mean square displacement hr2.t/i of a spinon initially localised at the
origin for various temperatures. Over the simulated timescales, the dominant effect of reducing
temperature is to shift the crossover from ballistic to (sub-) diffusive behaviour to larger times,
namely at a time ht � �2 indicated by the circular markers as a guide to the eye. In the Z2 case,
� is set by the distance between visons. In the U.1/ case, �2 is given by the area whose enclosed
flux has an O.1/ variance, which we regularise at large temperatures using �4c D 1C 4ˇ2�2v.
Time evolution is performed using a high order Suzuki–Trotter decomposition on a 1999 � 1999
square lattice, and the data are averaged over 128 disorder realisations for each temperature. The
statistical error in the data is smaller than the line width.

3.6.1 Finite temperature

In the case of discrete �-fluxes with a gap�v�h4=J 3, at intermediate temperatures or, equivalently,
finite vison separation � � ��1=2� e�v=2T , the crossover from ballistic to subdiffusive behavior
is shifted to later times. We expect that the particle should propagate ballistically until it has
encountered a sufficient number of visons so as to impede its motion: .ht/2=�2 � ht . Hence,
for ht � �2 we expect to see free-particle behaviour, and for ht � �2 we expect to observe
approximately the infinite temperature (sub-) diffusive behaviour (with a renormalised diffusion
constant). The crossover between the two regimes is therefore set by the time taken to diffuse to the
nearest vison. This behaviour is indeed seen in Fig. 3.9.

In the continuous flux model, one may attribute an energy cost E.�/ D ��v cos� to threading
a given plaquette with a flux �. At sufficiently low temperatures, ˇ�v � 1, the corresponding
probability density p.�/ / e�ˇE.�/ is approximately Gaussian, and the relevant length scale
�c becomes �2c .T / D 2=T [cf. Eq. (3.3.4)]. This characteristic area is defined via the relation
hei

P
h˛ˇi2 �˛ˇi � e�A=�2c , and may be understood as the area such that typical fluctuations of

the enclosed flux have a magnitude that is O.1/. As in the discrete flux case, the effect of finite
temperature is to shift the crossover from ballistic to (sub-)diffusive behaviour to a time ht � �2c , as
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shown in Fig. 3.9.

3.7 Conclusions

In this chapter, we studied the effects of nontrivial mutual statistics on the propagation of quasiparti-
cles in gapped topological systems at finite temperature. Specifically, we considered a temperature
regime where one species of quasiparticle is thermally excited and provides a static (à la Born–
Oppenheimer) stochastic background for the other species, which are sparse and hop coherently
across the lattice. This is a regime of experimental interest in topological quantum spin liquids,
where a large separation of energy scales between different species of quasiparticle arises naturally
in many realistic model Hamiltonians.

We used a combination of numerical and analytical approaches to investigate toric-code-inspired
toy models, where the excitations (dubbed spinons and visons) have anyonic mutual statistics. The
effect of nonzero temperature in our model is to populate a finite density of static visons. Due
to the mutual statistics of the quasiparticles, visons act as Aharonov–Bohm half flux quanta for
the spinons. Within perturbation theory, our model permits an effective description in which the
spinons evolve in time according to a two-dimensional tight-binding Hamiltonian in the presence
of randomly placed fluxes. Changing temperature alters the density of the fluxes, which, in turn,
changes the strength of off-diagonal disorder in the tight-binding Hamiltonian. We also considered
models in which the flux threading each plaquette is a multiple of 1=3 or 1=4 of the flux quantum,
and the case in which the flux is distributed continuously.

Various time-dependent observables for lattice systems, including the spinon density profile
in our effective tight-binding description, may be computed by counting discrete lattice paths. In
order to make analytical progress, we considered the self-retracing path approximation. Such
paths are expected to dominate at intermediate times due to interference effects by virtue of the
Aharonov–Bohm effect. To this end, we map the self-retracing paths to walks on an auxiliary Bethe
lattice and enumerate such walks exactly. This gives us access to analytical expressions for the
spinon density profile as a function of space and time.

For sufficiently short times, namely on the order of the hopping timescale, � , the density
exhibits oscillatory behaviour due to coherent interference effects. On these timescales, the self-
retracing path approximation is essentially exact and our results are almost indistinguishable
from numerical simulations. At times much greater than the hopping timescale, t � � , the self-
retracing path approximation predicts asymptotic quantum diffusive behaviour of the spinon, i.e.,
hr2.t/i ' 2D´t=� . We obtained an exact expression for the corresponding diffusion constant D´,
which depends on the coordination number of the underlying lattice. The function D´ exhibits a
minimum at ´ ' 5, where the effects of (i) reduced destructive interference at low coordination
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numbers, and (ii) an increasing number of paths connecting any two sites at larger coordination
numbers, balance one another. The higher moments of the density distribution in the large-time limit
exhibit non-Gaussian behaviour, which highlights the difference between quantum and classical
diffusion.

Comparison with numerical simulations reveals excellent agreement with the continuous flux
model up to O.103/ hopping times, while for the �-flux model discrepancies become apparent at
much shorter times. This difference is understood as arising from the distinct localisation properties
of the two models. When considering hr2.t/i, states with a given energy will diffuse with some
characteristic diffusion constant until the corresponding localisation length is reached. The �-flux
model is more strongly localised and so at any given time a larger fraction of states have reached
their localisation length, and give rise thereafter to a time-independent contribution to hr2.t/i.

The results that we have presented provide us with a quantitative understanding of the crossover
from ballistic to quantum (sub-) diffusive motion of spinons through a sea of thermally-excited
visons, which is a direct consequence of their nontrivial mutual statistics. More generally, our
work represents a step forward in understanding the dynamics of quantum spin liquids at finite
temperature, which is essential to interpret both the relevant experiments and numerical data. Our
results demonstrate another way in which the mutual semionic statistics of spinons and visons
manifests itself in the dynamical properties of spinons; this paves the way for the possible study
of such dynamics as an experimentally viable diagnostic tool for anyonic statistics in many-body
systems that exhibit topological order.

We expect that our results may be relevant to several interlaced but distinct contexts of many-
body physics. On the condensed matter physics front, while realistic Hamiltonians require including
further effects, such as possible interactions between quasiparticles and correlations in the spin
background, it is nonetheless tempting to point at the recent experimental advances in the study of
Kitaev-model-like candidate materials at finite temperature as a possible context where the physics
discussed in our work may be relevant and observable [285]. However, to make such connections,
some modification of our present framework is necessary in that the spinon dispersion in the Kitaev
model [46] is massless and relativistic, as opposed to the massive and non-relativistic dispersion
considered in the present work.

In the context of quantum information and quantum computing, the recent proposal that the
toric code and similar Z2 spin liquid Hamiltonians may be realised using quantum annealers [286],
indeed in the limit explored in our work of a large star constraint and a perturbative transverse field,
promises to provide further avenues to benchmark and explore the type of phenomena that we have
uncovered, in a convenient and highly tunable setting.

Seen from the ultracold atomic physics perspective, our results also describe quantitatively the
motion of holes in real space in the large-U , large-S limit of the Hubbard model [265, 282, 287, 288].
As the hole moves throughout the spin environment, it permutes the spins. This “interaction” with
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the spin environment leads to dissipationless decoherence [289, 290]—the propagation of the hole
is significantly slowed despite there being no transfer of energy between the hole and the spins.
Owing to recent developments in quantum gas microscopy [291–296], our analytical expressions
for the site-resolved density profile may thus be probed directly in ultracold atomic experiments.
Our calculation extends the self-retracing path approximation used in Ref. [287], showing that it in
fact holds to much larger times and distances.

Our work also points at a couple of potentially interesting future directions. Extending the
analysis in the present work to string-net models [297] may offer access to richer varieties of
topological order and anyonic statistics, and an opportunity to classify more generally the resulting
dynamics. Perhaps more interesting is the spinons’ back action on the visons, which we have so
far neglected. In a similar spirit to Ref. [282], it is plausible that the quantum coherent hopping of
spinons may lead to nontrivial correlations in the positions of the visons, which may have other
important implications at finite temperature, indicative of quantum spin liquid behaviour. Indeed,
in Ref. [298], I showed how spinons can become localised on temperature-dependent patches of
expelled visons, in a manner analogous to the Nagaoka effect [282, 299, 300], with significant
consequences for the thermodynamic and transport properties of the system.
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4 Thermal quenches in classical spin ice

4.1 Motivation

In previous chapters, we have focused on models of quantum spin liquids, where nonzero tempera-
tures lead to the thermal excitation of point-like quasiparticles with exotic properties. These defects
were shown to drastically alter the properties of the models in question with respect to their zero
temperature behaviour, both in equilibrium and dynamically. Here, we change tack and address the
nonequilibrium dynamics of classical spin ice materials [301]. The nonequilibrium behaviour of
these systems is particularly rich and exciting and they can exhibit remarkably long relaxation and
response time scales at low temperatures. While a number of attempts have been made to model
and understand the origin of the dynamical behaviour in spin ice materials, the complete picture
arguably remains beyond our grasp.

In this chapter, we make progress by investigating the specific setting of thermal quenches in
classical spin ice [302], where these systems have been shown to enter long-lived metastable states
in which the monopole excitations form so-called noncontractible pairs� (see Fig. 4.3). While the
nature of these states is well understood, the dynamical mechanisms underpinning their formation
remain hitherto unexplored and are the subject of this work. Using a combination of numerical
simulations and analytical mean field theory, we are able to provide a complete understanding of
the phenomenon. We find that the emergence of the plateau is rooted in two key ingredients: (i)
the long-range nature of the Coulomb interaction between the monopoles; and (ii) the fact that low
temperature thermal quenches in spin ice can give rise to a non-hydrodynamic regime that increases
the decay rate of the free monopole density in the system. The latter feature is notably reminiscent
of jamming and some instances of glassiness. A change in the short-time dynamics of the system
allows it to enter a metastable state, which would have been otherwise avoided and whose lifetime
can easily become exceptionally long at (experimentally relevant) low temperatures.

Our results further demonstrate that the plateau reduces to a finite size effect when considering a

�A noncontractible pair corresponds to a pair of oppositely charged monopoles residing on adjacent tetrahedra
which are unable to annihilate by flipping the intervening spin.
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model with solely finite-range interactions between monopoles. Hence, the experimental observation
of a metastable plateau corresponding to a finite density of noncontractible pairs in spin ice is
direct evidence of the long-range nature of the interactions between the monopoles. This adds
one important experimental avenue to study these interactions, whose range has thus far been
probed only via the field-dependence of unbinding of monopole pairs [303], and indirectly via the
appearance of a liquid-gas phase diagram [88].

Our findings are particularly timely thanks to the recent experimental claim that a state rich in
noncontractible pairs can be generated in classical spin ice materials Dy2Ti2O7 and Ho2Ti2O7 [303]
using a so-called avalanche quench protocol [304].

The chapter is structured as follows. We begin by providing a broad introduction to Monte Carlo
methods, how they may be used to describe quantitatively the dynamics of classical spin ice, and how
continuous time Monte Carlo algorithms provide access to long times at low temperatures when the
the system’s dynamics slow down. We then review the background on thermal quenches in classical
spin ice and summarise the main results obtained in this chapter in Sec. 4.3. We provide an overview
of the models we consider in Sec. 4.4, and present our Monte Carlo results in Sec. 4.5, including
a finite size scaling analysis of the density of noncontractible pairs in the metastable plateau.
Section 4.6 is devoted to the use of mean field population dynamics to understand the differences
in behaviour between the various models and types of interaction. We draw our conclusions and
highlight the relevance of our results to experiments in Sec. 4.7.

4.2 Monte Carlo methods

Suppose that we are interested in describing the (for now) equilibrium properties of a classical
system with Hamiltonian H . In a non-driven setting, the Hamiltonian simply assigns an energy
to each state of the system. Let us assume that our system is described by a discrete set of states,
labelled by the index �, with energies E�. The dynamics of the system as it makes transitions
between the various energy levels is described by the master equation

dw�

dt
D
X
�

�
w�.t/R�!� � w�.t/R�!�

�
; (4.2.1)

where w�.t/ is the probability that the system occupies the state � at time t [305, 306]. The real and
non-negative quantities R�!� describe the rates at which the system makes transitions between the
different discrete states. Normalisation of the probability distribution implies that

P
�w�.t/ D 1

at all times. When the system is in equilibrium, the left hand side of (4.2.1) vanishes, and the
probability distribution w� is stationary in time. For a system in contact with a thermal reservoir at
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temperature T D ˇ�1, the stationary distribution is the Boltzmann distribution�

lim
t!1w�.t/ D

1

Z
exp

��ˇE�� ; (4.2.2)

whereZ DP� e
�ˇE� is the partition function. The equilibrium expectation value of some quantity

A, denoted hAi, is equal to

hAi D 1

Z

X
�

A�e
�ˇE� ; (4.2.3)

where the quantity A assumes the value A� in the state �. Physically, the expectation value can
be interpreted either as (i) an ensemble average over many statistically independent copies of the
system, or (ii) a time average of A.t/ in a single copy of the system (as one would have in an
experimental setting). The equivalence of these two interpretations only holds when the time average
is taken over a sufficiently long period of time so as to sample many “independent” configurations
of the system. If, conversely, the time average is taken over a period of time that is too short,
the system may not have explored a representative sample of the states that are available at the
temperature of the system [305].

The above recipe, provided to us by statistical mechanics, tells us how to compute the average
value of an observable A in thermodynamic equilibrium. However, the total number of states that
the system may occupy is typically intractably large. Take, for example, the particularly simple
example of a d -dimensional classical Ising model. The spin on each lattice site may point up or
down, implying that the total number of states scales as D D 2Ld in a system with linear dimension
L. In a three dimensional system with just L D 3 this number is already D D 134 217 728. In the
numerical evaluation of expressions like (4.2.3), it is therefore numerically infeasible to perform
the summation by exact enumeration of all states for all but the smallest system sizes. Instead, we
would like to approximate hAi by taking a finite number of states, say M � D, from a uniform
probability distribution over �. In this case,

hAi ‹�
PM
`D1A�`e

�ˇE�`PM
`D1 e

�ˇE�`
: (4.2.4)

However, this approximation is, in general, rather insufficient to capture the behaviour of the system.
This becomes particularly apparent at low temperature (large ˇ), where only the lowest energy states
are sampled. Such states correspond to an exponentially small region of state space, and so the
uniform sampling in (4.2.4) correspondingly requires an exponentially large M in order to sample
the atypical, low energy states. If, instead, we are able to sample directly from the Boltzmann

�Indeed, it is possible to show that the quantum master equation from Sec. 1.3.1 maps onto an equation of the same
form as (4.2.1), where the probabilities w� correspond to the diagonal elements of the system’s density matrix in the
eigenbasis of the system’s Hamiltonian [23].
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distribution (4.2.2), the expectation value reduces to

hAi � 1

M

MX
`D1

A�` : (4.2.5)

This expression corresponds to a particular example of importance sampling. Unlike Eq. (4.2.4), a
prohibitively large number of states M are no longer required since we are most likely to pick the
states in which the system spends most of its time at a given temperature.

In order to sample directly from the Boltzmann distribution, we make use of Markov processes.
A Markov process consists of a set of time independent transition probabilities P�!� from state �
to states �. These probabilities depend only on the current state of the system, not on its history
(the system has no memory of the states that it has passed through to get to the state �). In order to
reproduce the Boltzmann distribution, the Markov process must be ergodic. This means that no
state of the system should be inaccessible. Equivalently, the system will eventually visit every state,
given sufficient time (although, in practice, this time may be astronomically large). Conservation of
probability requires that the rate of transitions out of the state � must equal the rate of transitions
back into it:

p� D
X
�

p�P�!� : (4.2.6)

However, this condition alone is insufficient to guarantee that the Boltzmann distribution will
be the only equilibrium state for the Markov process. To mitigate the possibility of obtaining
limit cycles, one applies a more stringent constraint on the dynamics than merely conservation
of probability. This condition is known as detailed balance, which requires that the transition
probabilities satisfy [305–307]

p�P�!� D p�P�!� : (4.2.7)

Although the above condition is now sufficient to reach equilibrium, it is not strictly necessary,
and in some cases equilibrium can be reached more rapidly by violating detailed balance (see, e.g.,
Refs. [308, 309] and references therein). Often, one further decomposes the transition probability as
P�!� D g�!�A�!� , into a selection probability, g�!� � 1, and an acceptance ratio, A�!� � 1.
As long as ergodicity is satisfied, the transition probabilities can be chosen in any way that one
desires, while the acceptance ratios then ensure that detailed balance is satisfied

e�ˇ.E��E�/ D P�!�
P�!�

D g�!�
g�!�

A�!�
A�!�

: (4.2.8)

Expectation values of the form (4.2.3) may then be evaluated by following the time evolution of
the Markov process and (once it has reached equilibrium) taking “measurements” separated by
appropriate time intervals.
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As well as being an indispensable numerical tool for calculating the properties of systems in
thermal equilibrium, the Monte Carlo methods described above can also be used to simulate the
finite temperature dynamics of classical systems. Indeed, in order to sample from the Boltzmann
distribution, we have constructed a discrete-time version of the master equation (4.2.1) with the
same stationary distribution. If the proposed updates, specified by the g�!� , are in some sense local,
then the evolution of the Markov process can provide a good description of the true equilibrium
dynamics of the system (once one finds an appropriate way of converting between real time and
Monte Carlo time). This is the case in spin ice, whose dynamics is well approximated at low
temperatures (T . 5 K) by incoherent spin reversals [92], which is mimicked in Monte Carlo
simulations by single spin flip dynamics.

Nonlocal cluster updates, whilst beneficial in the context of speeding up the approach to
equilibrium, are not appropriate for describing the real-time evolution of classical spin systems. In
the setting of the two-dimensional Ising model, for example, the critical slowing down [310] that
occurs in the vicinity of the critical point, which cluster updates (e.g., the Wolff algorithm [311])
are able to efficiently bypass, is a physical divergence of the time scale relevant to the system’s
dynamics.

4.2.1 Single spin flip dynamics

In classical spin ice, the relevant degrees of freedom are classical Ising spins Si 2 f�1;C1g, as
explained in Sec. 1.4.3. In a single spin flip update, there areNs possible spin flips, and the selection
probability g�!� D N�1s , independent of the initial state � and the final states �. Detailed balance
is encoded in the acceptance ratio, A�!� . The Metropolis algorithm corresponds to the choice

A�!� D
8<
:
e�ˇ.E��E�/ if E� �E� > 0
1 otherwise.

(4.2.9)

That is, we always accept the move if it lowers the energy of the system, and if the move increases
the energy of the system by E�� D E� � E� > 0, then the move is accepted with probability
e�ˇE�� . One Monte Carlo sweep of the system equals Ns independent single spin flip updates.
The prescription for converting between real time and Monte Carlo time is determined by AC
susceptibility measurements [312], which suggest that one Monte Carlo sweep corresponds to
approximately 1 ms.

4.2.2 Waiting time Monte Carlo

The dynamics of classical systems at low temperatures, especially those that exhibit glassy behaviour,
can become very slow. In our simulations, slow dynamics arises in part due to the formation of
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metastable noncontractible pairs of monopoles. This manifests as an acceptance rate that becomes
undesirably low from a practical point of view. As an extreme example, consider an Ising model
HIsing D �J

P
hi;j i SiSj at a temperature T � J in its ferromagnetic ground state. On a lattice

with coordination number ´, a spin flip costs an energy 2´J � T , and thence the acceptance ratio
A0!1 D e�2ˇ´J � 1, where the subscripts correspond to the number of flipped spins relative to
fully magnetised background. One therefore has to reject an exponentially large number of proposed
updates in order to change the state of the system. For a three-dimensional cubic Ising model
with T=J D 2, A�10!1 � 163 000. Whilst this slowing down is eminently physical, it presents a
challenge to the numerical simulation of such systems.

One way to circumvent this “problem” is to use a rejectionless algorithm. In the above example,
rather than attempting O.105/ spin flips, we can simply perform the spin flip, and update the “time”
of the simulation by the length of time it would have taken were we to use the Metropolis algorithm.
This is the idea behind the waiting time method [313, 314] (and, more generally, continuous time
Monte Carlo algorithms [315]).

Here we summarise the necessary details of the waiting time method, as outlined in Ref. [313].
In the waiting time method, for each spin Si there exists an associated time variable ti , which equals
the time at which the spin would flip, given its instantaneous local field. The global time is denoted
tg . The flipping times are initially drawn from an exponential distribution

P.ti/ D 1

�i
e�ti=�i ; (4.2.10)

with mean �i D max.1; eˇ�i /, where �i equals the energy required to flip the spin Si . Once the
system has been initialised, one repeats the following steps:

1. flip the spin Sj whose flipping time tj is the smallest: tj D mini ti ,

2. update the global time of the simulation according to tg D tj ,

3. generate new waiting times ıi for the flipped spin and those that interact with it, and update
their flipping times ti ! tg C ıi .

The above algorithm satisfies detailed balance, and also exhibits a dynamical equivalence with
the Metropolis algorithm. In the waiting time algorithm, the probability that the system makes a
transition from state � to �, which differ by a single spin flip at site j , is equivalent to the probability
that tj is the smallest of all ftig. Therefore,

pj .�/ D
ˆ 1
0

dtj

0
@Y
k¤j

ˆ 1
tj

dtk

1
A e�

P
i ti=�i .�/Q
i �i.�/

D ��1j .�/P
i �
�1
i .�/

: (4.2.11)
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For the Metropolis algorithm, the probability that the system transitions from state � to state �,
given that a spin flip has occurred, is

pj .�/ D P�!�P
�¤� P�!�

: (4.2.12)

Since P�!� D min.1; e�ˇ.E��E�//=Ns D ��1j .�/=Ns for � ¤ �, we observe that (4.2.11) and
(4.2.12) are equivalent. The quantities pj .�/ and P�!� differ in the exclusion (inclusion) of P�!�
in the denominator. The average time taken for a spin flip in the waiting time method is

D
min
i
ti

E
D
 X

i

��1i .�/

!�1
: (4.2.13)

This result is to be contrasted with the survival probability with Metropolis dynamics after a time t
(that is, t sweeps of the system, or n D tNs single spin flip updates)

P n�!� D etNs logP�!� : (4.2.14)

The characteristic time scale of the exponential decay is

�.�/ D � 1

Ns logP�!�
' 1

Ns
P
�¤� P�!�

; (4.2.15)

where the second equality is approximate, and holds when
P
�¤� P�!� � 1. That is, the two

timescales (4.2.13) and (4.2.15) coincide when the system remains “stuck”, and �.�/� N�1s .

One disadvantage of the waiting time method is the requirement to know the waiting time for
all states that are connected to the current state of the system at any given time. However, this
increase in computational complexity is outweighed by the aforementioned benefits at sufficiently
low temperatures. When the interactions between the constituent spins are strictly short ranged, the
number of waiting times that need to generated in the third step does not scale with system size, and
the computational complexity per step is significantly reduced.

4.3 Background and summary of results

Dipolar spin ice systems have been predicted to exhibit dynamically-arrested, monopole-rich,
metastable states following appropriate thermal and field quenches [302, 316]. Reference [302]
recognised that at the heart of the dynamical arrest lies the formation of so-called noncontractible
pairs: a monopole and an antimonopole sitting next to one another, separated by a spin whose
reversal does not lead to their annihilation. As a result, the two defects become bound to one another
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Figure 4.1: Schematic depiction of a noncontractible monopole–antimonopole pair, responsible for the
metastable plateau in monopole density observed following a thermal quench to low temperatures
in classical spin ice. The activated decay of the pair requires separating its members up to third-
neighbour distance, as shown in the central figure, costing an energy � (in isolation) due to their
mutual Coulombic attraction. The pair is then able to annihilate elsewhere on the lattice, as
shown for example in the rightmost figure.

and are unable to move throughout the lattice without separating—a process that costs Coulomb
energy due to the mutual attraction between the two opposite charges�. This activation energy
barrier explains why a noncontractible pair per se is metastable.

In general, two decay channels are available to noncontractible pairs. Firstly, they can separate
and annihilate somewhere else on the lattice at the cost of paying an activation energy barrier; the
smallest barrier associated with such activated decay processes requires separating the pair up to
third-neighbour distance, as shown in Fig. 4.1. Alternatively, pairs can undergo monopole-assisted
decay: When the pair is hit by a stray (free) monopole, this causes the annihilation of the oppositely
charged member of the pair, thus freeing up its partner [302], as in Fig. 4.2. This second process
does not incur an energy barrier and does not change the density of free monopoles.

In equilibrium, a useful quasiparticle description for spin ice is in terms of deconfined mag-
netic charges [88]. Conversely, the long (intrinsic) lifetime of noncontractible pairs justifies their
introduction as an effectively distinct “species” of quasiparticle when studying classical spin ice
in the strongly nonequilibrium setting of thermal and field quenches, as demonstrated already in
Refs. [302, 316].

The mere existence of noncontractible pairs in the system however does not warrant the appear-
ance of a macroscopic metastable state. Indeed, when free monopoles are abundant, non-activated
(fast) monopole-assisted decay is the leading relaxation channel with respect to thermally-activated
(slow) decay of noncontractible pairs, and one does not expect any metastable plateau to appear. It
is only when the system undergoes a “population inversion” (in contrast to thermodynamic equilib-

�Noncontractible pairs cannot move from the site upon which they form without separating to third neighbour
distance. Otherwise, movement of the pair would require motion of a monopole along a blocked direction. Indeed, the
caterpillar-like motion of separating and rejoining, trailing one another, is prevented by the intervening spin being a
blocked direction for the trailing monopole.
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Figure 4.2: Schematic depiction of monopole-assisted decay of a noncontractible pair. A free monopole
annihilates with the oppositely charged member of the stationary noncontractible pair, thereby
freeing up its partner. All moves shown lower the energy of the system and hence monopole-
assisted decay is the dominant decay avenue for noncontractible pairs with respect to thermally
activated decay when free monopoles are abundant in the system.

rium), where noncontractible pairs become the dominant species with respect to free monopoles, that
the activation energy barrier to decay can induce a long-lived metastable plateau at low temperatures.
This is indeed what one observes in numerical simulations of dipolar spin ice, following appropriate
thermal quenches [302].

The aforementioned population inversion is key to the metastable plateau. Its origin however
was not investigated in Ref. [302] and is the subject of the present work. We find that it ultimately
rests on the long-range tail of the Coulomb interaction between monopoles. This can be qualitatively
understood as being due to the energetic bias in the motion of monopoles in the far field. Monopole–
antimonopole collision events are subject to a Coulombic charge–charge attraction (/r�2), whereas
collisions between a free monopole and a noncontractible pair are subject to weaker charge–dipole
interactions (/r�3). This leads to a bias that increases the likelihood of free monopoles annihilating
(or forming new noncontractible pairs) over their chance of annihilating existing noncontractible
pairs via monopole-assisted decay. Further, since the final temperature in the thermal quenches
is much less than all other energy scales in the problem, the system enters a non-hydrodynamic
regime where the monopoles move at terminal velocity in the direction of the local force acting
on them. This allows the system to violate the law of formal kinetics [317] and to exhibit a decay
of the free monopole density faster than inverse time. The combination of the long-range bias and
‘terminal velocity’ motion of free charges leads to a rapid decay of the free monopole density in the
system, leaving behind an excess of noncontractible pairs. This is ultimately the linchpin of the
finite-density metastable plateau observed in numerical simulations.

This behaviour is most remarkable. By altering the dynamics of what is ultimately a transient
regime, spin ice is able to enter a metastable state whose lifetime for experimentally relevant
temperatures and system sizes may well exceed any realistically accessible timescales (of order one
year in Fig. 4.3 when expressed in physical units).

We verify this scenario through extensive numerical Monte Carlo simulations of thermal
quenches in spin ice systems with nearest-neighbour spin–spin interactions and long-range Ewald-
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summed magnetic Coulomb interactions between defective tetrahedra [92]. Upon truncating the
Coulomb interactions to finite range, the long-range bias is removed. We find that the finite-density
metastable plateau correspondingly disappears in the thermodynamic limit. These findings are
corroborated (in Sec. 4.5.2) by directly simulating mutually interacting magnetic charges hopping
on a diamond lattice (with no Dirac strings), for which we observe qualitatively similar behaviour.

To supplement the numerics, we provide an analytical understanding of both the value of the
plateau in the thermodynamic limit and its finite size scaling using mean field population dynamics,
treating the system as a Coulomb liquid of magnetic charges. We show how the ratio of the rate of
monopole-assisted decay to the rate of charge–charge annihilation underpins both the finite size
scaling exponent in the case of truncated interactions, and the density at which the plateau occurs in
the long-range case.

4.4 Models

In this work, we contrast the effect of truncating the Coulomb interactions between monopoles in
spin ice with the same truncation in a system of magnetic charges hopping on a diamond lattice.
The latter model is defined without reference to any underlying spin configuration, i.e., without
Dirac strings connecting opposite charges, which allows us further clarity in ascertaining their role
in thermal quenches and the formation of the metastable plateau.

4.4.1 Classical spin ice

As discussed in Sec. 1.4.3, at sufficiently low temperatures, classical spin ice (CSI) is well described
by effective Ising spins Si D Siei , with Si 2 f�1;C1g, which live on the sites of the pyrochlore
lattice. These spin degrees of freedom interact through the dipolar spin ice Hamiltonian

Hd .fSig/ D J

3

X
hij i

SiSj CD
X
.ij /

�
ei �ej
jrij j3 �

3.ei �rij /.ej �rij /
jrij j5

�
SiSj ;

where, in the first line, we used the fact that ei � ej D �1=3 for any nearest neighbour pair of sites,
hij i.

For the majority of this work, we use the effective Hamiltonian (1.4.18) in which the exchange
and dipolar interactions between the spins are retained only at nearest-neighbour level, and farther
range couplings are accounted for effectively by a pairwise Coulomb interaction V.fQag/ between
tetrahedral charges Qa,

Hc.fSig/ D Jeff

X
hij i

SiSj CEnn

X
a<b

QaQb

rab
; (4.4.1)
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where i; j index the sites of the pyrochlore lattice, a; b index the tetrahedra and rab D jra�rbj=rnn is
the distance between the centres of tetrahedra a and b in units of the distance between neighbouring
tetrahedra. The charge on tetrahedron a is Qa D ˙

P
i2a Si=2, where the sign depends on the

sublattice that a belongs to. The charges Qa therefore assume the values Qa 2 f0;˙1;˙2g, where
Qa D ˙1 are dubbed monopoles and Qa D ˙2 double monopoles. We use the convention that
a positive charge corresponds to a majority of spins pointing out of a given tetrahedron. Two
equally charged monopoles on neighbouring sites have a Coulomb energy Enn (in an infinite
system). Throughout the chapter we use an effective exchange coupling Jeff D 1:463 K� and
nearest-neighbour Coulomb energy Enn D

p
128=27D D 3:06 K, appropriate for the classical

spin ice compound Dy2Ti2O7. Such an effective description (4.4.1) is quantitatively accurate, up
to quadrupolar corrections, by virtue of projective equivalence [87] (and this is indeed the case
also in thermal quenches, as illustrated in Fig. 4.5). With these parameters, the macroscopically
degenerate ground state manifold corresponds to the charge vacuum, Qa D 0, 8a, i.e., a 2 in-2 out
configuration of spins on each tetrahedron.

We note that the nearest-neighbour exchange interaction between spins can be viewed as a
chemical potential of size 2Jeff for the monopoles (namely, the charges Qa D ˙1):

Jeff

X
hij i

SiSj D 2Jeff

X
a

Q2
a �NsJeff : (4.4.2)

This interpretation however no longer holds straightforwardly in the presence of double monopoles.

To test the role of the long-range tail of the Coulomb interaction in the appearance of the
population inversion, we also consider a similar model where the interactions V.fQag/ between
monopoles are truncated at nearest-neighbour distance:

Ht.fSig/ D Jeff

X
hij i

SiSj C�
X
habi

QaQb : (4.4.3)

This model will be referred to as classical spin ice with truncated interactions. Such a nearest-
neighbour interaction between monopoles allows for the formation of noncontractible pairs without
inducing any long-range energetic bias in the motion of the monopoles.

Separating an isolated pair of nearest-neighbour monopoles with charge Q D ˙1 in this
model costs an energy �. To preserve the behaviour of the system (primarily its ground state), the
truncation of the interactions must be done with care. We choose the value of� such that the energy
barrier to separating a noncontractible pair around a hexagonal plaquette (as depicted in Fig. 4.1) is

�This value of the effective exchange coupling was obtained using the chemical potential � D �8:92 K in Ref. [81].
In particular, we use � D �4Jeff � Enn to define Jeff, i.e., (minus) the energy required to create a pair of oppositely
charged monopoles and separate them to infinity. The dynamics of the system is however not particularly sensitive to
the precise value of Jeff, as long as the ground state remains unchanged.
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equal in the cases of truncated (4.4.3) and long-ranged (4.4.1) interactions�:

� D Enn

 
1 �

r
3

11

!
' 1:46 K : (4.4.4)

Such a choice preserves the charge vacuum ground state, and since the energy barrier for the
activated decay of noncontractible pairs is equal for both types of interaction, the demise of a
possible metastable plateau will occur at similar times in the two cases.

The difference between the single spin flip dynamics of the two Hamiltonians, Hc and Ht ,
therefore rests solely in the long-range energetic bias in the motion of monopoles across the system.
In a finite system containing L3 cubic unit cells, the total number of spins is Ns D 16L3, and the
number of tetrahedra is Nt D 8L3. In our simulations, we use periodic boundary conditions and
we deal with long-ranged interactions (dipolar as well as Coulomb) using the method of Ewald
summation [318, 319].

We note that there also exists a long-range Coulomb interaction between monopoles of entropic
origin [320]. As we are unable to alter the range of the entropic interactions, we introduce in the
following section a family of charge models that live on the diamond lattice in which the charges are
not born out of underlying spin configurations. This will allow us to observe that the role of entropic
interactions in thermal quenches is in fact negligible and hence they will not be discussed further in
our work. This is shown most directly by the good quantitative agreement between the classical
spin ice and charge model simulations, and the mean field analytics, for truncated interactions.

4.4.2 Charges on diamond lattice

To identify the role of the spin configuration underlying each monopole configuration, we also
consider two further effective models of chargesQa hopping on a diamond lattice, thereby removing
any entropic effects and blocked directions associated with the spins (in particular, by removing
the underlying spin network, there are no Dirac strings associated with the magnetic charges in
the following models). We restrict our simulations to the relevant charge values Qa 2 f0;˙1;˙2g
only. These charge models (CM) also allow for a more direct comparison with our analytical mean
field modelling (see Sec. 4.6), which largely neglects the aforementioned complications associated
with the spinful description of the system dynamics.

In the case of long-range interactions between the charges, we use the Hamiltonian

HCM
c .fQag/ D 2Jeff

X
a

Q2
a CEnn

X
a<b

QaQb

rab
; (4.4.5)

�This energy barrier is equal to the Coulomb energy required to separate the pair to third neighbour distance, r3n,
i.e., � D Enn.1 � rnn=r3n/.
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subject to the hard constraint that each site may not be occupied by more than two charges. This
model will be referred to as the long-range interacting charge model.

The Hamiltonian (4.4.5) must be further supplemented by rules which govern the dynamics of
the charges. Namely, in order to take into account the effect of noncontractible pairs, when two
opposite (single) charges come into nearest-neighbour contact, there exists some finite probability,
pnc, of forming a noncontractible pair. If a noncontractible pair is formed, it is then not possible for
the charges to annihilate along their common bond. At finite temperature, their activated decay can
be accounted for by associating an energy barrier � with this process.

The probability pnc can be estimated by counting the number of spin configurations compatible
with two oppositely charged monopoles on adjacent tetrahedra, and taking the fraction thereof that
corresponds to a noncontractible pair. Considering the minimal cluster of two tetrahedra only (7
spins in total), one finds that the relevant fraction is pnc D 1=10 [302]. Extending the calculation
to larger clusters does not lead to significant variation in this value; for example, considering
a full hexagon of tetrahedra involving the two monopoles gives pnc D 41=406. Further, small
perturbations in pnc do not appreciably modify the dynamics of the system.

For the case of truncated interactions between the tetrahedral charges, the Hamiltonian becomes

HCM
t .fQag/ D 2Jeff

X
a

Q2
a C�

X
habi

QaQb ; (4.4.6)

referred to as the charge model with truncated interactions. The model is again subjected to the
same constraints on charge values and dynamics. The difference between the two charge models,
HCM
c and HCM

t , lies only in the long-range energetic bias associated with the Coulomb interaction.

4.5 Monte Carlo Simulations

4.5.1 Classical spin ice

Long-range Coulomb interactions

In Fig. 4.3 we show the monopole density evolution following a thermal quench, as in Ref. [302],
simulated using the modified Monte Carlo code, corresponding to (4.4.1), instead of the conventional
dipolar Monte Carlo (for a direct comparison, see Fig. 4.5). We use single spin flip dynamics and
the waiting time method [313, 314] introduced in Sec. 4.2.2 to access long simulation times at low
temperatures. The system is initially prepared in the paramagnetic phase at infinite temperature,
then at t D 0 the temperature is set to its target value, T � Jeff, and we start measuring various
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Figure 4.3: Left: Monte Carlo simulations of a thermal quench in spin ice subject to Ewald-summed
Coulomb interactions between monopoles [Hamiltonian (4.4.1), system size L D 22, i.e.,
170 368 spins] from infinite temperature down to T D 0:06 K. The curves show the evolution
of the averaged total density of monopoles �t (blue), the free monopole density �f (red), the
density of monopoles forming noncontractible pairs � (green) and the double charge density �d
(orange). Right: Total density of monopoles, �t , after analogous quenches to final temperatures
T D 0:05–0:07 K for a system of size L D 8, i.e., 8192 spins. Inset: the same curves plotted
after rescaling the time axis by a factor exp.�=T /, where � ' 1:46 K is the Coulomb energy
barrier incurred by separating two monopoles around a hexagonal plaquette. In both panels, the
densities are averaged over 4096 histories.

monopole densities as a function of time�. These densities are then averaged over many histories
with different random initial conditions sampled from the infinite temperature ensemble. We find
good agreement with the dynamical arrest observed in Ref. [302]: Rather than rapidly equilibrating
to a monopole-sparse state, we observe instead the emergence of a metastable plateau in the
monopole density due to noncontractible monopole–antimonopole pairs.

Specifically, we measure the total monopole density (monopoles per tetrahedron) in the system,
�t , counting all-in and all-out tetrahedra as doubly occupied sites; the fraction of such doubly
occupied sites, �d ; the density of monopoles forming noncontractible pairs, �; and the ‘free’
monopole density� �f � �t � �, i.e., the density of monopoles that do not form noncontractible
pairs. A noncontractible pair is defined as a pair of adjacent, oppositely-charged monopoles for
which the reversal of the intervening spin shared by the two tetrahedra does not lead to annihilation
of the pair.

In isolation, the barrier to activated decay of a noncontractible pair is � ' 1:46 K. In the
presence of a finite density � of other noncontractible pairs, the distribution of energy barriers is
broadened around a mean value of � due to dipole–dipole interactions between the pairs. Given

�In Dy2Ti2O7 these initial conditions are experimentally relevant to initial temperatures T � 1 K, and the quench
in temperature should occur over timescales less than � 1 ms, the characteristic single spin flip timescale [312].

�Note that there are many possible definitions of the ‘free’ monopole density due to ambiguities that arise in
defining pairs of monopoles in the monopole-dense (short-time) limit. However, all definitions agree once the typical
separation of monopoles is greater than rnn.
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Figure 4.4: Left: Monte Carlo simulations of a thermal quench in spin ice where the interactions between
monopoles are truncated to nearest-neighbour distance [Hamiltonian (4.4.3), system sizeL D 16,
i.e., 65 536 spins] from infinite temperature down to T D 0:06 K. The metastable plateau due
to noncontractible pairs of monopoles remains present, but occurs at lower densities and at
later times than in the case of long-range interactions (cf. Fig. 4.3). Right: The total density of
monopoles, �t , after analogous quenches from infinite temperature down to final temperatures
T D 0:05–0:075 K for a system of size L D 16, i.e., 65 536 spins. Inset: the same curves
plotted after rescaling the time axis by a factor exp.�=T /, showing an excellent collapse of the
long-time decay. In both panels time is expressed in units of Monte Carlo steps per site, and the
densities are averaged over 4096 histories.

that the Coulombic approximation to the monopole–monopole interaction neglects quadrupolar
corrections, we expect the distribution of such energy barriers to be more sharply peaked than
in the dipolar case. This is indeed confirmed by the excellent collapse of the long-time decay
of the total monopole density for various temperatures upon rescaling the time axis by a factor
exp.�=T /, as illustrated in the right panel of Fig. 4.3 (see also Fig. 4.5, where the dipolar case
shows a correspondingly broader decay of the metastable plateau).

Truncated interactions

In Fig. 4.4 we plot the various monopole densities for an identical thermal quench for the case
of truncated interactions between monopoles in classical spin ice [i.e., Eq. (4.4.3)]. A metastable
plateau remains present in the dynamics of the system, and once again the behaviour of the
monopole densities tells us that it is clearly due to noncontractible pairs. The plateau however
occurs at substantially lower densities and the onset occurs at later times when compared with the
corresponding long-range interacting system, Eq. (4.4.1), in Fig. 4.3.

The decay of the monopole density at long times collapses for a range of temperatures upon
rescaling the time axis by a Boltzmann factor exp.�=T /, as illustrated in the right panel of Fig. 4.4,
confirming that the thermally activated decay of noncontractible pairs is again responsible for the
eventual demise of the plateau at a time �nc � exp.�=T /. Once a given pair has separated, the
two constituent monopoles may find each other and annihilate by performing a random walk, the
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Figure 4.5: Comparison of noncontractible pair densities �.t/ for the three types of interaction for a thermal
quench from infinite temperature down to T D 0:06 K (system size L D 16, i.e., 65 536 spins)
in classical spin ice. Time is expressed in units of Monte Carlo steps per site, and the densities
are averaged over 4096 histories. The markers labelled a, b, c, and d identify the boundaries
between the four dynamical regimes discussed in the main text. At (a), nearly all doubly
occupied sites have been removed from the system. Points (b) and (c) mark the onset of the
metastable plateau for the cases of long-range and truncated interactions, respectively. At (d ),
the noncontractible pairs decay via thermal activation.

shortest of which is around a single hexagonal plaquette. Since the noncontractible pairs do not
interact beyond a fixed, finite separation, the energy barriers are ı-distributed about �.

Comparison and finite size scaling

In Fig. 4.5 we plot the noncontractible pair density as a function of time, �.t/, for all three types
of interaction introduced in Sec. 4.4.1 for classical spin ice: Ewald-summed dipolar interactions
between spins, Ewald-summed Coulomb interactions between monopoles, and truncated (nearest-
neighbour) interactions between monopoles.

In each of the three cases, the time evolution of �.t/ can be decomposed into four dynamical
regimes. The crossovers between these regimes are identified by the markers (a)–(d) in Fig. 4.5.

1. At times before (a), the large exchange energy cost associated with double occupancy of a
tetrahedron (8Jeff) and the ability of such configurations to decay spontaneously ensures that
doubly occupied sites are removed rapidly during this regime (exponentially fast in time, see
Appendix D for further details).

2. Between (a)–(b) and (a)–(c) the differences between the three interaction types become
manifest. In all cases we observe a much slower decay of the noncontractible pair density
once the double monopoles have been removed from the system. However, the rate of decay
and the timescales over which this decay occurs are vastly different for the truncated [(a)–
(c)] versus long-range interacting [(a)–(b)] models. In the Coulomb and dipolar cases, the
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Figure 4.6: Finite size scaling of the plateau in noncontractible monopole density �p.L/ for long-range
Coulomb and truncated (nearest-neighbour) interactions between monopoles, and long-range
dipolar interactions between spins in classical spin ice. The data are averaged over at least
4096 histories. The lines are fits to the scaling ansatz �p.L/ � �p.1/ � L�� , while the
symbols represent the Monte Carlo data. The corresponding error bars are smaller than the
width of the fit lines. In the truncated case (system sizes L D 6–100 inclusive), the data are
consistent with a plateau that vanishes in the thermodynamic limit. This is verified using a
log–log plot of the plateau density against system size L in the inset. Conversely, the long-range
Coulomb (L D 3–22 inclusive) and dipolar (L D 3–18 inclusive) cases appear to exhibit a
nonvanishing noncontractible pair density in the metastable plateau in the thermodynamic limit:
�p.1/ D 4:7.9/ � 10�3 and �p.1/ D 4:1.5/ � 10�3, respectively.

long-range nature of the interactions leads to an energetic bias which favours monopole–
antimonopole (charge–charge) annihilation over monopole-assisted decay of noncontractible
pairs (charge–dipole). This means that (i) the free monopoles in the system vanish more
quickly, and, correspondingly, (ii) noncontractible pairs are removed more slowly than in the
case of truncated interactions. Since the plateau forms when there are no free monopoles left
in the system, point (i) gives rise to the earlier onset of the plateau, while point (ii) implies
that the plateau forms at a higher density.

3. The metastable plateau occurs between (b)–(d) and (c)–(d). This regime, in which the system
contains essentially only noncontractible pairs, spans many orders of magnitude in time at the
low final quench temperatures considered in this chapter.

4. At times after (d), noncontractible pairs are able to decay via thermal activation, leading to
the demise of the metastable plateau. This occurs at a time �nc � exp.�=T /.

By construction, the decay of the plateau occurs at similar times for the models with truncated and
long-range Coulomb interactions between monopoles. The difference in the decay times between
the Coulomb and dipolar models is due to the larger variance in energy barriers for activated
decay of the pairs in the latter. Indeed, one may model the decay of the plateau by assuming a
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Gaussian distribution of energy barriers, P.�/, with mean � and width � . The activated decay of
the noncontractible pair density �.t/ is then approximated as �.t/ D ´ d� P.�/e�t=�.�/, where the
decay time �.�/ / e�=T . The values �d ' 0:1 K [302], �c ' 0:03 K and �t ' 0, lead to the best fit
of the Monte Carlo data (not shown).

Notice that, in systems of finite size, the appearance of a noncontractible plateau in the averaged
monopole density is, in fact, unavoidable. On the one hand, the probability that all free monopoles
annihilate before all noncontractible pairs have decayed is finite; and, if this happens, the only
decay process left for the noncontractible pairs is activated decay. On the other hand, even when
the last two monopoles in the system are free, there exists a finite probability of forming a new
noncontractible pair, rather than annihilation, when the two monopoles come into nearest-neighbour
contact. The latter process places a hard, nonzero lower bound on the density of the noncontractible
plateau of O.1=L3/, which is purely a finite size effect.

In order to understand the origin of the plateau and the difference in behaviour between the
truncated and long-range interacting models, we ought therefore to look at the finite size scaling
behaviour of the plateau density. Figure 4.6 shows the noncontractible monopole density in
the plateau, �p.L/, for systems of different sizes (parameterised by the linear system size L)
and the same final quench temperature T D 0:06 K. We perform a fit to the scaling ansatz
�p.L/ � �p.1/ � L�� , to extract the exponent �, the value of the plateau in the thermodynamic
limit, �p.1/, and the constant of proportionality. The form of this scaling ansatz is justified
later in Sec. 4.6, where we show that a power law decay of the free monopole density with time
implies power law scaling of the metastable plateau density with system size. Hence, the scaling
ansatz only applies once any transient (non-power law) behaviour of �f .t/ at short times has
subsided. For dipolar interactions between spins, it is not numerically feasible to access system
sizes sufficiently large to observe an asymptotic power law decay regime of the free monopole
density. We nevertheless provide a fit to the data in this case, but it should be noted that the resulting
parameters are subject to some degree of systematic error. In the case of Coulomb interactions
between the monopoles, such asymptotic power law decay of �f .t/ is observed in systems of size
L � 14 (i.e., 43 904 spins), and correspondingly only these data are included in the scaling analysis.

The inset of Fig. 4.6 demonstrates that the metastable plateau in the truncated case is indeed a
finite size effect: The number of noncontractible pairs in the plateau increases subextensively with
the size of the system, � ' 2:46, and the density �p.1/ is consistent with a vanishing value in
the thermodynamic limit. By contrast, in the case of long-range interactions, the number of non-
contractible pairs in the plateau scales extensively with system size, with subleading, subextensive
contributions. Hence, the density of the plateau in the long-range case tends asymptotically towards
a finite value, also shown in Fig. 4.6. The subextensive corrections give rise to the L-dependence of
the plateau density. The finite size scaling exponent in this case is � D 0:9.3/.

We shall summarise these results and attempt to understand the origin of the different behaviours
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Figure 4.7: Left: Monte Carlo simulations of charges hopping on the diamond lattice subject to long-range
Coulomb interactions [Hamiltonian (4.4.5), system sizeL D 22, i.e., 170 368 spins] from infinite
temperature down to zero temperature. The analytic solution to the mean field equations for
the charge densities is shown in the inset for comparison. Right: Monte Carlo simulations of
charges hopping on the diamond lattice subject to truncated (nearest-neighbour) interactions
[Hamiltonian (4.4.6), system size L D 16, i.e., 65 536 spins] from infinite temperature down
to zero temperature. The analytic solution, (4.6.6), to the mean field equations for the charge
densities is shown in the inset for comparison. The dashed lines indicate the threshold density
corresponding to the disappearance of free charges in a system of finite size, �� D 1=Nt . In
both panels time is expressed in units of Monte Carlo steps per site, and the data are averaged
over 4096 histories.

and exponents by modelling the time evolution of the system using mean field population dynamics
in Sec. 4.6.

4.5.2 Charges on diamond lattice

Long-range Coulomb interactions

Moving to the charge description, characterised by the long-range charge model Hamiltonian (4.4.5),
HCM
c .fQag/, we obtain the results shown in Fig. 4.7 for a thermal quench down to zero temperature.

As long as the final quench temperature satisfies T . Enn=L
2, the dominant effect of changing

temperature is to modify the long-time activated decay of the plateau. We therefore focus on the
limit of zero temperature for simplicity.

The initial distribution of the charges is set using an infinite temperature distribution of spins
on the bonds of the diamond lattice, i.e., using the same initial conditions as in Sec. 4.5.1. After
initialisation of the system, all reference to an underlying spin configuration is removed, and the time
evolution is determined by the dynamical rules laid out in Sec. 4.4.2. The most significant difference
therefore between the charge model and spin ice systems is the blocked directions imposed by the
spins in the latter. As in the case of the spinful simulations, we measure the various monopole
densities as functions of time after the thermal quench and average over histories.
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In this case, we observe a plateau that occurs at finite density and which persists indefinitely
since the noncontractible pairs cannot undergo activated decay at zero temperature. However,
contrasting Figs. 4.3 and 4.7, there are some quantitative differences between the dynamics of the
charge and the spin models. In particular, the decay of free monopoles occurs much more quickly
in the charge model given the same type of interactions. This implies that the onset of the plateau
occurs significantly earlier in time than the corresponding model in CSI (cf. Fig. 4.3).

Truncated interactions

As shown in the right panel of Fig. 4.7, in the case of truncated interactions between charges,
Eq. (4.4.6), we again observe a plateau that occurs at later times and at lower densities than in the
long-range interacting charge model (Fig. 4.7). The free charge density decays approximately as 1=t
in the long-time limit, i.e., after the double charges have been removed from the system, while the
noncontractible pair density also decays as a power law in time, but with a smaller exponent. The
power law decay of these quantities is cut off when the free monopoles drop belowO.1=L3/ density,
as indicated by the dashed line in Fig. 4.7. The noncontractible pairs that remain in the system can
only further decay by thermal activation and the noncontractible plateau is thus established when
the free monopole density crosses this threshold.

Comparison and finite size scaling

The finite size scaling of the plateau in the case of charges hopping on the diamond lattice, con-
trasting the behaviour of Eqs. (4.4.5) and (4.4.6), is presented in Fig. 4.8. We again observe that the
long-range interacting case tends towards a finite plateau density in the thermodynamic limit, while
the plateau is merely a finite size effect in the case of truncated interactions between the charges,
i.e., limL!1 �p.L/ D 0 with � ' 2:28.

These findings corroborate the conclusions of Sec. 4.5.1 pertaining to classical spin ice. In
particular, that the plateau is not a finite size effect in the case of long-range Coulomb interactions
between charges. Since the subleading corrections decay more quickly in the charge description,
� D 1:8.4/, we are able to make this claim on even stronger terms.

The fact that the finite size scaling of the plateau, i.e., the exponent �, differs significantly
between the spinful and charge descriptions for the long-range case, while it is very similar between
the spinful and charge descriptions for truncated interactions, is a puzzle that we shall attempt to
understand in Section 4.6. Indeed, we will see that one can achieve a great deal of analytical insight
into the observed behaviour by means of appropriate mean field modelling.
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Figure 4.8: Finite size scaling of the noncontractible plateau density �p.L/ for the case of charges hopping
on the diamond lattice subject to long-range Coulomb and truncated interactions. The data are
averaged over at least 4096 histories. The lines are fits to the scaling ansatz �p.L/ � �p.1/ �
L�� , while the symbols represent the Monte Carlo data. The corresponding error bars are
smaller than the width of the fit lines. As in CSI, the case of truncated interactions (L D 6–72
inclusive) is consistent with a vanishing plateau density in the thermodynamic limit, verified
by the log–log plot of plateau density against linear system size in the inset. Conversely, the
long-range Coulomb case (L D 4–22 inclusive) exhibits a nonvanishing plateau density in the
thermodynamic limit: �p.1/ D 6:24.2/ � 10�3.

4.6 Summary and mean field modelling

From our simulations we see that the behaviour of the four models in question is visibly similar.
The key differences are: (i) the finite size scaling of the plateau is consistent with a finite versus a
vanishing value in the thermodynamic limit in the case of long-range versus truncated interactions,
respectively, both in CSI and the CM; moreover, in the case of long-range interactions, (ii) the decay
of �f .t/ is notably faster, and the variation with system size L is stronger (i.e., � is significantly
larger), in the charge simulations than in the spin ice simulations.

Regarding the discrepancy in the decay of the free monopole density, highlighted in point (ii)
above, the most significant difference between the dynamics of the two models in the regime where
monopoles are sparse is the existence of blocked directions in classical spin ice�. That is, for a given
(isolated) free monopole, there always exists one of four directions (corresponding to the minority
spin) along which the monopole cannot hop, as shown schematically in Fig. 4.9. Assuming that the
direction of the local Coulomb field is distributed randomly over the unit sphere, the fraction of
charges which are unable to lower their energy due to blocking is �b=4� , where �b is the solid
angle for which there is a positive projection onto exactly one of the local basis vectors feig. This

�One may also wonder whether the differences in the short-time dynamics affect significantly the asymptotic decay
of the free monopole density. This has been ruled out by changing between the dynamics generated by long-range
classical spin ice and the long-range charge model at some later time, say t D 10MC steps (data not shown).
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Figure 4.9: Schematic depiction of a blocked direction for a free monopole. The isolated monopole is unable
to move along the bond containing the minority spin (shown in red), since its reversal would
lead to the creation of a double charge on the central tetrahedron. Blocked directions have a
significant quantitative impact on the dynamics of monopoles subject to long-range interactions
by instantaneously pinning some finite fraction of free monopoles. The local magnetic field B
determines which direction(s) lower the energy of the system; if this direction is unique and
coincides with the blocked direction (as in the figure), then the monopole is pinned and cannot
move along any direction without overcoming a finite energy barrier.

leads to a probability

pb D �b

4�
D 3

2�

h�
3
� arctan

p
2
i
' 4:4% ; (4.6.1)

for a given free monopole to be pinned (at zero temperature) due to blocking. In addition, even
when the monopole is not pinned, the available phase space for motion is reduced by blocking.
Notice that (4.6.1) underestimates the effect of pinning, because at the lattice scale the direction
of the Coulomb interaction is correlated with the bond directions, which violates the assumption
of uniformity over the unit sphere. Hence, we conclude that a finite fraction of monopoles, lower-
bounded by (4.6.1), are instantaneously� pinned in the spinful description due to the interplay of
interactions and blocked directions. It is then reasonable to expect that the free monopole density
decays more slowly in the presence of such pinned charges. While this is an interesting aspect
of stochastic processes in spin ice that warrants further investigation (maybe by including some
effective disorder in the relevant equations governing the dynamics of the charges), it is beyond the
scope of the present work. We shall nonetheless see below that this effect plays a key quantitative
role in the difference between long-range CSI and CM results.

The scaling fits to the Monte Carlo data �p.L/ � �p.1/ � L�� give the values summarised
in Tab. 4.1. In the following, we show how one can understand this behaviour qualitatively and

�Since the spatial distribution of monopoles changes with each Monte Carlo step, the effect of pinning is transient—
those monopoles which are pinned at one time may later become unpinned depending on the distribution of free
monopoles. Estimating the relevant timescale is generally difficult, but one may expect that changing the angle of the
local force acting on a given monopole requires a rearrangement of the spatial distribution of free monopoles on the
order of their typical separation, which takes a characteristic time � ��1=3.
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Model Interactions
Plateau value,
�p.1/

Scaling exponent,
�

CSI
truncated 0 2:46.1/

long-range 4:7.9/ � 10�3 0:9.3/

CM
truncated 0 2:28.2/

long-range 6:24.2/ � 10�3 1:8.4/

Table 4.1: Summary of finite size scaling results for both systems and both types of interaction between the
tetrahedral charges. The scaling ansatz �p.L/ � �p.1/ � L�� was used to obtain the values
shown in the table.

sometimes even quantitatively using mean field population dynamics of reaction diffusion processes.
This allows us to model the time evolution of the monopole/charge densities and to obtain estimates
of the finite size scaling exponents to compare with our numerical results.

4.6.1 Short-time dynamics

If we want to describe the simulations in terms of reaction-diffusion processes between (effective)
particles, we ought to consider in principle five different species in addition to the charge vacuum:
positive and negative single and double charges, and noncontractible pairs. The noncontractible
pairs are immobile, pinned to the bond on which they form, and can undergo the activated and
monopole-assisted decay processes discussed previously. Single charges are able to move freely
throughout the lattice (neglecting the effects of spin blocking/pinning). The double charges can
either decay spontaneously into two single charges of the same sign, if adjacent to an empty site,
or they can be hit by a single charge of the opposite sign and decrease their charge by one, thus
producing a single (mobile) charge. Finally, two adjacent double charges of opposite sign can
decay to form a noncontractible pair by flipping the intervening spin. All decay processes involving
double charges reduce the energy of the system, and thence are able to occur spontaneously, even at
zero temperature.

The rate of decay of double monopoles does depend on the free monopole density; however it is
easy to convince oneself that the ‘phase space’ for decay (either spontaneous or monopole-assisted)
is always larger than that for processes which preserve the number of double charges, and it becomes
progressively more so as the free monopoles decay in time. Their evolution thus rapidly decouples
from the other species and becomes exponentially fast in time: asymptotically �d .t/ / e�7t=2, as
argued in Appendix D, which appears to fit well all simulations.

The single charges that are produced in the decay of double charges merely become a known
time-dependent source term in the corresponding equation governing their density; as we see from
the simulations, this contribution becomes irrelevantly small for t & 1. When looking at the total or
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Figure 4.10: Schematic illustration of the processes that enter the reaction–diffusion equations. From top
to bottom: (i) oppositely charged free monopoles may annihilate to give the vacuum, (ii) two
oppositely charged free monopoles may combine to form a noncontractible pair, and (iii) a free
monopole and a noncontractible pair can undergo monopole-assisted decay.

free monopole/charge densities, the double charges contribute towards the ‘hump’ observed at short
times, before the onset of the asymptotic power-law behaviour. It can be shown that the double
charge contribution indeed does not affect the asymptotic scaling behaviour we are interested in
understanding, affecting only the density of the noncontractible plateau.

For these reasons, in the following, we shall ignore the double charges altogether and focus on
the three remaining species of particle: positively and negatively charged free monopoles living on
the sites of a diamond lattice, with densities �q.t/ (charge q D ˙); and immobile noncontractible
pairs living on the bonds, with density �.t/. The equations determining their dynamics are presented
and analysed in the following sections.

4.6.2 Truncated interactions

The mean field equations (i.e., neglecting spatial fluctuations) describing the time evolution of the
monopole densities in the case of truncated interactions between monopoles are (for q D ˙)

d�q
dt
D �K�C�� ; (4.6.2)

d�
dt
D �R

2
.�C C ��/�CK0�C�� : (4.6.3)

The three processes that contribute towards these coupled equations are shown schematically in
Fig. 4.10. Equation (4.6.2) describes the annihilation of oppositely charged free monopoles, which
occurs with rate K. The first term in Eq. (4.6.3), with rate R, describes the monopole-assisted decay
of noncontractible pairs—a free monopole annihilates the member of a noncontractible pair with
the opposite sign. Such a process removes two monopoles previously forming a noncontractible
pair, but preserves the number of free monopoles in the system, and therefore does not appear
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in (4.6.2). Finally, the second term in (4.6.3) describes the probabilistic formation of noncontractible
pairs when two oppositely charged monopoles come into nearest-neighbour contact. As we want
to understand the origin and scaling behaviour of the noncontractible pair plateau, we are not
interested in the very long-time behaviour of the system. We have therefore disregarded the terms
corresponding to the activated decay of the noncontractible pairs. Equivalently, (4.6.2) and (4.6.3)
describe the zero-temperature dynamics of the system.

Charge neutrality ensures that �C.t/ D ��.t/ for all times, allowing us to solve (4.6.2) for the
time evolution of the free monopole densities �q.t/:

�q.t/ D
�0q

1CK�0qt
; (4.6.4)

where �0q � �q.0/. This solution may then be substituted into (4.6.3) describing the noncontractible
monopole density �.t/

d�
dt
CR�q.t/� D K0�2q.t/ ; (4.6.5)

which can also be solved exactly to give

�.t/ D .K0=K/�0q
.R=K � 1/.1CK�0qt /

C
"
�0 �

.K0=K/�0q
R=K � 1

#
1

.1CK�0qt /R=K
: (4.6.6)

Evidently, the long-time behaviour of the noncontractible monopole density �.t/ depends
crucially on the ratio of rate constants R=K. If R=K < 1, then the second term in (4.6.6) dominates
at long times and the noncontractible pairs decay more slowly than the free monopoles, as is
observed in the numerics, illustrated in particular in Fig. 4.4 (this is also consistent with the analytic
estimates of R=K that we present below).

In the thermodynamic limit, these equations predict that there is no plateau in the noncontractible
pair density since both �q.t/ and �.t/ may become arbitrarily small. However, in a system of finite
size containing 8L3 tetrahedra, the decay of �q.t/ is cut off when the free monopole density
reaches O.1=L3/: �q.t�/ � L�3, i.e., at a time t� � L3 corresponding to the removal of all free
monopoles in a finite system. If the noncontractible pair density decays more slowly, as is the case
for R=K < 1, there is still a finite density of noncontractible pairs present in the system at t�, and
they can further decay only via thermal activation. The value of this density scales as �.t�/ � t�R=K�
for sufficiently large t� � .K�0q/�1, allowing us to deduce the leading order term in the dependence
of the noncontractible plateau on system size:

�.t�/ � L�3R=K ; (4.6.7)

and therefore extract the exponent � D 3R=K.
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We can estimate the ratio R=K from the microscopic details of our system as the product of
two contributions,

R
2K D

NR

NK
� �K
�R
' 3

4
� 1
2
: (4.6.8)

The first factor in (4.6.8), NR=NK, comes from the fact that a free monopole has 4 adjacent free
legs along which another free monopole may approach, while a noncontractible pair has only 3
(one of the four total legs being blocked by the other member of the pair)�. Therefore the factor
3=4 encodes the relative sizes of the basins of attraction in the two cases. The second factor �K=�R
derives from the ratio of timescales—in the case where two free monopoles are approaching one
another, both are mobile, while in the case of a free monopole approaching a noncontractible pair,
the noncontractible pair is pinned and only the free monopole is mobile. This leads to a factor
of 2 difference in the (random walk) timescales for the two processes. The factor of 1=2 on the
left hand side of (4.6.8) originates from the definition of R in (4.6.3). We therefore estimate that
R=K ' 3=4, and correspondingly the noncontractible plateau scales approximately as

�.t�/ D �p.L/ � L�9=4 ; (4.6.9)

in the case of truncated interactions between charges.

This estimate can be improved upon by examining larger clusters. Indeed, including next-nearest
neighbours in the cluster, the presence of blocked directions leads to a small correction to the finite
size scaling exponent in the case of CSI, as shown in Appendix C, while it remains unchanged for
the CM:

�CSI ' 90

37
' 2:43 ; �CM ' 9

4
D 2:25 : (4.6.10)

These approximate exponents are consistent with the values � D 2:46.1/ and � D 2:28.2/ obtained
from the Monte Carlo data in Figs. 4.6 and 4.8, respectively. Note that the absolute values of R
and K differ substantially between CSI and the CM due to the presence of blocked directions in the
former, but their ratio remains essentially the same.

We are now able to understand why the spinful and charge descriptions exhibit quantitatively
similar behaviour. In both cases, the charges exhibit diffusive motion (until they become nearest
neighbours, at which point they deterministically annihilate). The numerical results suggest that the
annealed (random) blocked directions do not significantly affect the diffusive motion of the charges,
and therefore do not alter the form of the decay of the free monopole density. This is because the
motion of monopoles across the system (i.e., beyond nearest-neighbour separation) is not subject
to any energetic bias controlling the direction of their motion. Hence, the insertion of blocked
directions at random has little effect on the purely random motion of charges when averaged over

�We note that in the spinful description, the rate constant K includes the formation of noncontractible pairs in
addition to annihilation events, and so blocked directions do not alter this argument to leading order.
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histories—no monopoles are instantaneously pinned due to blocking. This is also evidence of the
fact that entropic interactions in CSI due to the underlying spins do not play a significant role in
the evolution of the monopole density following a thermal quench. The free monopole density
decays as 1=t in both CSI and the CM with truncated interactions, and we consequently obtain a
vanishing plateau in the thermodynamic limit. Further, the value of � is set by the ratio of the rates
of monopole-assisted decay to free monopole annihilation, which is common to both descriptions,
up to small corrections which result from the impact of blocked directions on the microscopic
annihilation process.

4.6.3 Long-range Coulomb interactions

In Sec. 4.6.2 we were able to develop a rather complete understanding of the case of truncated
interactions, which largely hinged on the 1=t scaling of the free monopole density. We would now
like to study how the behaviour changes in the presence of long-range interactions. One could
naïvely try to introduce them at the level of the reaction diffusion equations; however, this is known
to recover the law of formal kinetics at long times, i.e., 1=t behaviour of �f .t/, which leads to
the same conclusion of a vanishing plateau value in the thermodynamic limit. This is however in
contradiction with the observation that �f .t/ decays faster than 1=t in our Monte Carlo simulations
of long-range interacting systems (and with the observation of a finite value for the metastable
plateau).

As is often the case, the devil lies in the details. In order to observe a long-lived metastable
plateau, we need to quench to very low temperatures, T � Jeff. In a discrete system with long-range
interactions and finite lattice spacing, the hydrodynamic description of Refs. [317] and [321] does
not always apply to the Monte Carlo time evolution of our simulations. Take for example the
limiting case of a quench to zero temperature. The quasiparticles move only downwards or across
in energy, ıE � 0, and they move at ‘terminal velocity’ (i.e., one lattice spacing per unit time)
irrespective of the strength of the force acting upon them. On the contrary, the hydrodynamic
description applies when the Monte Carlo process is a (lightly) biased random walk, jıEj � T ,
and the equations of motion approximately take the familiar overdamped form where the velocity
of the particles is proportional to the force acting on them. This is how our simulations violate the
law of formal kinetics (at intermediate times) and achieve a decay of free monopole density which
is faster than 1=t at the low temperatures studied in this chapter.

Modelling the strictly-biased motion at terminal velocity is a tall order. However, at mean field
level, one can put forward the following approximate argument: the free monopole density decays
with a time constant given by the time taken to travel at terminal velocity to the next free monopole,
some characteristic distance ��1=d away, namely �tv � ��1=d , where d is the dimensionality of the
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system. Then we have
d�
dt
/ � �

�tv
) �.t/ � 1=td : (4.6.11)

This behaviour is in very good agreement with the �f .t/ decay observed in the CM with long-range
interactions if one neglects the formation of noncontractible pairs. We shall delay the discussion of
the CSI case to later in this section.

In the absence of long-range interactions, there are no forces beyond a fixed finite separation
between monopoles and they perform an unbiased random walk, even at zero temperature. It then
takes a characteristic time, ��1, corresponding to the time taken for a monopole to explore its
characteristic volume in three dimensions, to come in contact and annihilate with another monopole.
In this case, �tv should be replaced by �rw � ��1 and one recovers the 1=t scaling obtained more
rigorously in Sec. 4.6.2.

In order to express all these considerations more formally, and to take into account explicitly the
noncontractible pair density �.t/, which has been ignored thus far, it is convenient to introduce the
following phenomenological reaction diffusion equations

d�q
dt
D �KŒ�C.t/��.t/�.1Cˇ/=2 ; (4.6.12)

d�
dt
D �R

2
.�C C ��/� � K0

K
d�q
dt

; (4.6.13)

with the parameter ˇ � 1 (with ˇ D 1 corresponding to the truncated case, and ˇ D 1=3

corresponding to the terminal velocity argument given above, neglecting the effect of nonzero �)�.

Using charge neutrality �C.t/ D ��.t/, the first of these equations gives rise to a free monopole
density

�q.t/ D
�0q

.1C ˇK0�0qt /1=ˇ
; (4.6.14)

where we have defined for convenience K0 � K.�0q/ˇ�1. The parameter ˇ sets the asymptotic rate
of decay of the free monopole density in the system: �q.t/ � t�1=ˇ . This decay is faster than the
truncated case (�q � 1=t ) when ˇ < 1. Defining

‚.t/ D
ˆ t

0

dt 0 �q.t 0/ (4.6.15)

D 1

1 � ˇ
1

K0

h
1 � .1C ˇK0�0qt /.ˇ�1/=ˇ

i
; (4.6.16)

�We have defined ˇ in this way in order to make the formulae that follow neater and more compact.
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the solution for the noncontractible monopole density may be written as

�.t/ D e�R‚.t/
�
�0 C

ˆ t

0

dt 0eR‚.t
0/K0Œ�C.t 0/��.t 0/�.1Cˇ/=2

�
: (4.6.17)

It is possible to obtain an analytic expression for �.t/ by expressing the integral in (4.6.17) in terms
of the incomplete Gamma function. Since, for ˇ < 1, ‚.t/ tends towards a constant at large times,
the solution for �.t/ exhibits a plateau at finite density, �.t/ ! �1, as t ! 1. The density at
which this plateau occurs is

�1 D e�˛R=K0
�
�0 C �0q

˛K0
K e˛R=K0

�
˛R
K0

��˛


�
˛;
˛R
K0

��
; (4.6.18)

where ˛ � 1=.1� ˇ/, and .s; x/ is the lower incomplete gamma function. Hence, the value of the
plateau is exponentially sensitive to the ratio of rate constants R=K0, and vanishes as ˇ ! 1� (i.e.,
˛ !1).

At sufficiently large times,

�.t/ ' �1
�
1C ˛R

K0
.ˇK0�0qt /.ˇ�1/=ˇ

�
: (4.6.19)

The finite size scaling of the noncontractible plateau then follows from the fact that the free
monopole decay is cut off at a time t�, defined by �q.t�/ � L�3. As before, t� equals the time at
which free monopoles are completely removed from a system of finite size. This gives t� � L3ˇ
and correspondingly the finite size scaling of the plateau satisfies

�.t�/ � �1 � t�.1�ˇ/=ˇ� � L�3.1�ˇ/ : (4.6.20)

The scaling exponent of the plateau, �, can therefore be directly related to the exponent ˇ which
quantifies the asymptotic rate of decay of the free monopole density,

� D 3.1 � ˇ/ : (4.6.21)

This relationship is consistent with the discrepancy between the finite size scaling exponents in the
long-range interacting CSI and CM cases: The rapid decay of the free monopole density permitted
by the lack of blocked directions in the CM case implies a larger ˇ�1 and, hence, a larger �. Indeed,
numerically fitting the exponent of the asymptotic free monopole decay, we obtain ˇ�1 ' 1:4 and
ˇ�1 ' 2:3 corresponding, through (4.6.21), to scaling exponents � ' 0:86 and � ' 1:7 for the
cases of long-range CSI and the CM, respectively. These values are in reasonable agreement with
those obtained from the numerical finite size scaling analysis: � D 0:9.3/ and � D 1:8.4/.
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Notice that the mean field equations (4.6.12) and (4.6.13) can only be expected to hold at
asymptotically long times for zero-temperature quenches. For any finite T , as the monopoles become
sparser, the forces between them become weaker and eventually one reaches the hydrodynamic
regime, jıEj � T , discussed earlier, and a 1=t decay of �f .t/ ensues. The typical Coulomb
interaction felt by a given monopole through the separation �.t/�1=d is (in d D 3 for concreteness)

hEc.t/i � �Enn�.t/
1=3 : (4.6.22)

The corresponding change in Coulomb energy when moving a free monopole to an adjacent site
then scales as

hıEc.t/i � Enn�.t/
2=3 : (4.6.23)

Assuming �.t/ � 1=t1=ˇ , the time threshold hıEc.t/i � T corresponding to the crossover to 1=t
decay of �f can then be estimated to scale with temperature as tT � .Enn=T /

3ˇ=2�. The crossover
can be observed in our Monte Carlo simulations at sufficiently high temperatures; however it is
barely visible within the accessible system sizes and the corresponding plots are not very informative,
and we refrain from showing them here. From (4.6.13), we deduce that the noncontractible plateau
therefore begins to decay at times t & tT . The rate of decay however vanishes as temperature is
lowered, i.e., ln � � �T �=2 ln t . The zero-temperature limit therefore does not commute with the
limit of infinite time. If the latter is taken first, the plateau decays to a vanishing thermodynamic
value at large times. If the former is taken first, then a finite plateau survives. Since the timescale for
activated decay of the plateau scales exponentially with temperature, while tT scales algebraically
[at least for a power law decay of �f .t/], it will be the case that tT < exp.�=T / at the low but
nonzero quench temperatures that we considered in this chapter. For systems of finite size, the
relevant question then becomes whether tT is larger or smaller than the time t� that it takes for the
free monopole density to become less than O.1=L3/.

We finally note that even at zero temperature the mean field equations will eventually break
down at a time corresponding to single charge densities �q at which free charges become so dilute
that the bias for free charge–charge annihilation over monopole-assisted decay is removed. We
term such a time td , which may be obtained by comparing hıEc.t/i with the typical energy due to
charge–dipole interactions with the noncontractible pairs present in the metastable plateau regime.
Once this bias disappears, monopole-assisted decay may once again become favourable and the
plateau is able to gradually decay.

The phenomenological model that we have presented illustrates in a simple manner the mecha-

�Taking the terminal velocity limit, ˇ D 1=3, and using the parameters for Dy2Ti2O7, the thermal crossover occurs
at tT � 0:1 s. This allows the system to enter a metastable state dominated by noncontractible pairs, which then live for
a time set by thermal activation, e�=T � 1 year. The crossover to the hydrodynamic regime for t � tT occurs only for
sufficiently large system sizes (namely, if the system can access sufficiently low monopole densities), which correspond
to samples of linear dimension much larger than 10 nm
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nisms at play, but we note that the precise functional form or even the asymptotic power law decay
of the free monopole density implied by the model are not a requirement in order to observe a
noncontractible plateau in the thermodynamic limit. Indeed, at the mean field level, any decay of
�f .t/ faster than 1=t will give rise to a plateau in the density of monopoles forming noncontractible
pairs. Even if �f .t/ does exhibit a crossover to 1=t behaviour at long times, the plateau will still be
present in the thermodynamic limit, but will only exist for a finite period of time before it starts to
decay.

4.7 Conclusions

Using a combination of Monte Carlo simulations and detailed mean field modelling, we investigated
the origin of the metastable plateau that is observed in thermal quenches to low temperatures
in classical spin ice [302]. Our results show that it is a consequence of the long-range nature
of the Coulomb-like interactions between monopoles, combined with the system entering a non-
hydrodynamic regime which is controlled by nonuniversal lattice physics. The claim that such a
plateau may have been observed in recent experiments [303] therefore provides further compelling
evidence for the long-range nature of the interactions between the emergent monopoles in these
systems.

In particular, we have shown that when the interactions between the monopoles are truncated to
finite range, the plateau reduces to a finite size effect. This is because the free monopoles in the
system perform independent random walks (when their density is sufficiently low) leading to a 1=t
decay of their density with time t . Although this is sufficient to create the “population inversion”
(in which noncontractible pairs become the dominant species in the total monopole density), the
slow decay of free monopoles implies that monopole-assisted decay remains effective and continues
to remove noncontractible pairs from the plateau indefinitely. On the contrary, in the presence
of long-range Coulomb interactions between monopoles, there exists an energetic bias in their
motion across the system. At sufficiently low temperatures, which are relevant for the formation of
a thermodynamic noncontractible plateau, the system enters a non-hydrodynamic regime in which
the monopoles move at terminal velocity in the direction of the local force acting on them. This
combination of long-range interactions and non-hydrodynamic behaviour leads to a rapid decay of
the free monopole density, faster than 1=t and violating the law of formal kinetics. The decay of
free monopoles is then sufficiently rapid to stop the monopole-assisted decay of noncontractible
pairs at long times, and therefore one observes a plateau of finite density in the thermodynamic
limit.

In this chapter we studied the case of sudden quenches to the target temperature. Spin ice
systems and materials are well-known to exhibit long relaxation timescales at low temperatures
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and a relevant and interesting question would be to investigate how much of the phenomenology
observed in the present work survives in the case of ramps, where the temperature is lowered
continuously to its target value, a question that is indeed of experimental importance. It would be
particularly interesting to see if there is a threshold in the ramp speed beyond which the behaviour
changes qualitatively. We note however that such studies, which are beyond the scope of the present
work, will likely require accessing significantly lower monopole densities and therefore simulating
larger system sizes, possibly beyond the current numerical capability.

Our numerical results are in quantitatively good agreement with analytics from mean field
modelling. This may come as a surprise if one thinks that fluctuations in the charge density ought
to bring about corrections that are not captured by mean field theory. However, emergent charges
in spin ice systems are subject to a hard-core, hyperuniform constraint in their spatial distribution:
The charges are born out of the underlying spins and one can easily verify that the maximal net
charge that can be accumulated in a volume `3 scales as `2 (as opposed to free charge systems,
where the latter can scale as `3). As a result, long-wavelength fluctuations are suppressed, and one
can expect mean field calculations to be in fact rather accurate in describing spin ice behaviour. We
note that the charge model introduced in this chapter is not in general subject to the same constraint.
However, we impose the same initial conditions as in the spin ice system, which are therefore
hyperuniform. The good agreement with mean field theory suggests that this seeding is sufficient to
maintain hyperuniformity throughout the time evolution following the quench (at least within the
system sizes and time scales accessible in our simulations).

Given the importance of including exchange interactions between spins beyond nearest-neighbour
separation in describing the equilibrium (and out-of-equilibrium) properties of spin ice [322–325],
it is pertinent to ask what the effect of such farther-ranged interactions might be on the thermal
quenches discussed in the present work. Consider the inclusion of second- and third-neighbour
interactions J2 and J3. The latter is subdivided into J3a and J3b.In the special case J2 D �3J3a
and J3b D 0, these interactions can be summed to give exactly the truncated (nearest-neighbour)
interactions between charges: / J2

P
habiQaQb (in addition to a shift of Jeff). The inclusion of

such farther-ranged interactions hence modifies the short-distance physics of monopoles and leads,
for example, to a modification of the barrier to activated decay of noncontractible pairs. When the
interactions do not satisfy this condition, we expect nonetheless that the behaviour of the system
will remain qualitatively similar provided that the long-range bias for monopole motion across the
system is active during the transient (terminal velocity) regime in which the plateau is established.

Direct observation of the behaviour studied in this work requires experimental probes that
measure the monopole density in spin ice materials. One could envisage using the width of the pinch
points in the neutron scattering structure factor [85, 320] (with a caveat on the contribution from
nearest-neighbour pairs, such as the noncontractible pairs, as discussed in Ref. [326]). Alternatively,
small quenches in the magnetic field, and a measurement of the magnetisation M.t/ that ensues,
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give access to the time evolution of the free monopole density, since dM=dt / �f [327]. Further
experimental probes of monopole density in spin ice would be very much welcome in this respect.

The potential departure of long-range interacting lattice systems from a hydrodynamic de-
scription, and thence from the law of formal kinetics, is somewhat expected: At sufficiently low
temperatures, the change in energy incurred by a microscopic discrete update in the system becomes
larger than the thermal energy. However, one generally expects this phenomenon to affect only the
short-time dynamics, and that at long times the universal hydrodynamic behaviour is recovered.
Thermal quenches in spin ice demonstrate that, while this expectation must ultimately be satis-
fied, the altered nonuniversal, transient dynamics during times t . 1 s can induce very long-lived
metastable states that change the behaviour of the system over a large range of ‘intermediate’ times
spanning many orders of magnitude (easily growing to be of the order of 1 year or longer for
experimentally relevant parameters and temperatures).

This phenomenon may play a role in other aspects of the behaviour of spin ice models and
materials at low temperature (for example, a departure from hydrodynamic behaviour could be a
contributing factor to the deviation from the so-called ‘quasiparticle kinetics’ in Ref. [303]). It may
also be relevant to other long-range interacting natural and artificial lattice systems of interest.
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5 Logarithmic growth of entanglement
in a two-leg ladder

5.1 Motivation

A key theme in Chapter 3 was the emergent disorder, generated by the thermal excitation of visons,
that arose in the effective description of spinons. There, our interest was in the dynamics of spinons
propagating through a thermally excited but static vison background. In this chapter, we study the
behaviour of a related family of quasi-one-dimensional models that host an extensive number of
Z2 valued conserved charges, analogous to the visons. In contrast to Chapter 3, we are primarily
interested in the case that the system is well isolated from its environment. In this context, the
notion of temperature – inherently an equilibrium concept – is replaced by finite energy density,
and a pure state takes the place of the canonical density matrix. This allows the system to coexist in
different vison configurations simultaneously, since a generic low entanglement pure state typically
has a finite projection onto (exponentially) many vison sectors. In the following, we will explore
the impact of the visons on the nonequilibrium dynamics of the quasi-1D models.

The far-from-equilibrium dynamics of isolated many-body quantum systems has been a very
active topic of research in multiple fields of contemporary physics, ranging from decoherence in
quantum information theory to the black hole information paradox [25, 328, 329]. A central topic
in this field has been the phenomenon of “many-body localisation” (MBL), by which an isolated
quantum system fails to reach a local equilibrium state starting from generic initial conditions [27,
174, 330, 331]. In systems subject to strong quenched randomness, the existence of MBL can be
proven under minimal assumptions [161]. Whether MBL can happen in systems with (discrete)
translation invariance is a relatively subtle question [185, 190, 332–335]: in fully generic systems
of this kind, it seems likely that strict MBL (i.e., a regime where a system never approaches
equilibrium) is impossible [186, 200], at least in the conventional thermodynamic limit [336].
However, in many specific (albeit fine-tuned) models, disorder-free localisation can be established;
near these fine-tuned limits, one expects the phenomenon to persist to long times, though perhaps
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not asymptotically [193–199, 337].

Experimental studies of MBL have hitherto been conducted mostly on cold-atom systems and
other forms of synthetic quantum matter [187, 338–343] (apart from a few studies on disordered
semiconductors and superconductors [344–347], and a very recent study on phonons [348]). The
key condition for disorder-free localisation—namely the presence of local conserved charges that
generate intrinsic randomness at finite temperature—can also be satisfied in strongly correlated
electronic systems. However, studies of disorder-free localisation in this setting have so far focused
on somewhat fine-tuned models that are of limited experimental relevance, and on operators that are
diagonal in the conserved charges.

Here we study specific spin ladder models that are relevant to the description of transition
metal oxides [349], with an emphasis on quantities that can be measured in experiment, such as
the dynamical structure factor. The models under consideration may be mapped to free fermions
coupled to emergent disorder provided by local Z2 conserved charges. In contrast to previous studies,
we are primarily interested in the behaviour of operators or quantities that modify the emergent
disorder realisation. Such sector-changing operators are unique to systems in which the disorder
is emergent, and thus the phenomenology that we consider goes beyond that of systems where
the disorder is quenched. Specifically, we explore the growth of entanglement and the dynamical
response of these models by relating them to Loschmidt echoes in free-fermion systems [197].
These free-fermion methods give us access to much larger system sizes than are usual in the
study of MBL. The main result of this chapter is that both the entanglement dynamics and the
experimentally relevant response properties of these models follow the predictions for generic
many-body localisation: entanglement grows logarithmically in time [170, 171, 175–178] and
certain dynamical correlation functions decay with anomalous power laws [350–354]. Given that
the model is essentially noninteracting, this behaviour is surprising. Beyond being experimentally
relevant in the study of strongly correlated materials [349], our models afford us a level of analytical
understanding that allows us to elucidate why disorder-free single particle localisation due to
emergent randomness can give rise to the same phenomenology as MBL.

We focus our attention on the square lattice compass model [111, 349, 355], which may be
viewed as a quasi-one-dimensional analogue of the Kitaev honeycomb model [47] introduced in
Sec. 1.4.5. This model is dual to the plaquette Ising model [356, 357], which has been explored
as a prototypical model with “fracton”-like excitations, i.e., excitations whose motion is confined
to reduced dimensions [358]. The relation between fractons and disorder-free MBL also remains
largely unexplored in the literature (but see Ref. [359]).
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Figure 5.1: Schematic depiction of the model and its mapping to a disordered transverse field Ising model.
A Kramers–Wannier duality of the compass model (5.2.1) along the rungs isolates the conserved
charges Oq´i D OZ1;i OZ2;i . Within each charge sector fqj g the Hamiltonian of the O� spins OH.fqj g/
corresponds to an Ising model with nearest neighbour coupling Ji;iC1 D �1 C �2qiqiC1.
The compass model (5.2.1) is also dual to the plaquette-Ising model (5.2.3) via a standard
Kramers-Wannier transformation.

5.2 Models and mappings

We begin by introducing the compass model on a two-leg ladder [349], as illustrated in Fig. 5.1:

OHcompass D ��
LX
jD1
OX1;j OX2;j �

L�1X
jD1

2X
˛D1

�˛ OZ˛;j OZ˛;jC1 ; (5.2.1)

where . OX˛;j ; OZ˛;j / are the usual Pauli matrices on leg ˛ D 1; 2 and rung j D 1; : : : ; L. Introducing
the operators Oq´j D OZ1;j OZ2;j on each rung, Œ OH; Oq´j � D 0 since the operators Oq´j and OX1;j OX2;j
share either zero or two sites. This leads to an extensive number of conserved charges fqj g,
one for each rung of the ladder; since . Oq´j /2 D 1, the conserved c-numbers are qj D ˙1. The
conserved charges Oq´j are analogous to the Z2 gauge field in the Kitaev model [47] and its ladder
generalisations [123, 124], introduced in Secs. 1.4.5 and 1.4.5, respectively. The presence of such
local conserved charges is the hallmark of disorder-free localisation [193–199, 337].

We may then perform a 2-site version of the Kramers–Wannier duality along the rungs of
the ladder to dual spin-1/2 degrees of freedom O�j and Oqj : OX1;j OX2;j ! O�xj , OZ1;j ! O�´j , and
OZ1;j OZ2;j ! Oq´j . In this language, the Hamiltonian (5.2.1) becomes

OHIsing D ��
LX
jD1
O�xj �

L�1X
jD1

�
�1 C �2 Oq´j Oq´jC1

� O�´j O�´jC1 : (5.2.2)

There are three further equivalences to keep in mind. First, the transverse field Ising model
(TFIM) (5.2.2) can be transformed, via a standard (leg-direction) Kramers–Wannier duality, to one
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in which the transverse field and interaction terms are interchanged. Second, either Ising model
can be mapped to free fermions via a Jordan–Wigner transformation. Third, one can undo the
(rung-direction) Kramers–Wannier duality to arrive at a plaquette-Ising model with the Hamiltonian

OH� D ��
X
j

O�´1;j O�´2;j O�´1;jC1 O�´2;jC1 �
X
j;˛

�˛ O�x˛;j : (5.2.3)

Note that the spins live on the sites of the square lattice here, not on the links as in the Z2 lattice
gauge theory in previous chapters. Instead, it is analogous to the Xu–Moore model [360, 361]
introduced in the context of p C ip superconducting arrays [360–362] (which, incidentally, also
appears in a dual description of the toric code in a transverse magnetic field [66]). For a discussion of
boundary effects, see Appendix E. In this chapter we will treat the disorder-free spin models (5.2.1),
(5.2.3) as fundamental (for the purpose of identifying local physical observables). The full set of
equivalent models is captured by Fig. 5.1.

5.2.1 Exact solution

Working with tensor product states of the form jfqj gi˝ jˆi, the Hamiltonian (5.2.2) becomes block
diagonal. Within each block, the Hamiltonian is equivalent to a standard transverse field Ising model,
where the transverse magnetic field � is uniform, while the nearest neighbour interactions take
two values Jj 2 fJC; J�g, with J˙ � �1 ˙ �2, depending on the configuration of the conserved
charges fq´j g. After performing a standard Jordan–Wigner transformation, the Hamiltonian (5.2.2)
may be written in terms of fermionic degrees of freedom

OHTFIM D �
L�1X
iD1

Ji

�
Oc�i OciC1 C Oc�iC1 Oci C Oc�i Oc�iC1 C OciC1 Oci

�
�

LX
iD1

hi

�
1 � 2 Oc�i Oci

�
: (5.2.4)

We have written the Hamiltonian in its most general form, allowing for the possibility of disorder
in the magnetic fields fhig and the nearest neighbour couplings fJig simultaneously, since the
same analysis may then be applied directly to the Kramers–Wannier dual model (5.2.3) in which
the magnetic field and exchange terms are interchanged. The Hamiltonian may equivalently be
written in the Majorana basis, which will prove to be particularly convenient when calculating
nonequilibrium quantities. One defines 2L Hermitian Majorana operators Oai D Oa�i in place of the L
complex fermions:

Oa2j D i. Oc�j � Ocj / ; Oa2j�1 D Oc�j C Ocj : (5.2.5)
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With the chosen normalisation, one finds that f Oai ; Oaj g D 2ıij (i.e., Oa2i D 1). In this basis, the
Hamiltonian is written as

OHTFIM D
L�1X
jD1

iJj Oa2j Oa2jC1 C
LX
jD1

ihj Oa2j�1 Oa2j �
2L�1X
kD1

iJk Oak OakC1 ; (5.2.6)

where, after the second equality, we have defined J2i D Ji and J2i�1 D hi . Finally, we can
write (5.2.6) in terms of a real, skew-symmetric matrix W D �W T by antisymmetrising the matrix
Jij D Jiıi;j�1, where OHTFIM D i

4

P
m;n OamWmn Oan. Such real skew symmetric matrices can be

block-diagonalised in terms of an orthogonal matrix Q 2 O.2L/

W D Q†QT ; with † D

0
BBBBBBB@

0 �1

��1 0

0 �2

��2 0
: : :

1
CCCCCCCA
; (5.2.7)

where �n � 0, a particular instance of the Schur decomposition [363]. The eigenvalues of the
matrix † are pure imaginary,˙i�n. This block diagonal representation allows the Hamiltonian to
be written in the canonical form

OH D i

2

LX
nD1

�n Ob2n�1 Ob2n D
LX
nD1

�n
� O�n On � 1

2

�
; (5.2.8)

where the complex fermions On, which diagonalise the Hamiltonian, are related to the Majorana op-
erators Obn via relations analogous to Eq. (5.2.5). One may alternatively diagonalise the Hamiltonian
without reference to the Majorana basis by means of a Bogoliubov transformation, as described in
Appendix F.

5.2.2 Anderson localisation

The spectrum of Hamiltonian (5.2.2) can then straightforwardly be constructed for any sector of
the conserved charges fqj g using the methods described in the previous section. For random fqj g
(e.g., in high-temperature states), the dynamics is that of Majorana fermions with random binary
hopping. The Hamiltonian (5.2.2) has an eigenstate phase transition [364–366] in a given sector of
fqj g when ˝

log
ˇ̌
�1 C �2 qjqjC1

ˇ̌˛ D log j�j ; (5.2.9)
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Figure 5.2: Left: Phase diagram of the two leg compass ladder at infinite temperature. The boundaries
between the two phases, paramagnet (PM, blue) and spin glass (SG, orange), occur at j�21��22 j D
�2. This condition coincides with the vanishing of the zero-energy Lyapunov exponent, .0/.
The blue dotted lines, �1 D ˙�2 indicate where the localisation length vanishes, and the black
dashed line indicates the parameter range that we focus on. Right: Single particle localisation
length, �loc.E/, as a function of energy E along the black dashed line on the phase diagram.
The system has a vanishing localisation length for equal couplings on the two legs of the ladder
�1 D �2, where the chain is split into multiple disconnected sections. The localisation length was
determined using standard transfer matrix techniques [145] for a ladder of length L D 2 � 105.

where the average is over space. At infinite temperature this transition point is at
ˇ̌
�21 � �22

ˇ̌ D
�2. It separates a random paramagnet with localised excitations—for which the order parameter
autocorrelation function, h O�´i .t/ O�´i .0/i D h OZ1;i.t/ OZ1;i.0/i, vanishes—from a “spin glass” phase,
in which it does not. Note that at the special value �1 D �2 the system is always paramagnetic,
according to the criterion above. This follows because bonds for which qiqiC1 D �1 are cut, and a
finite segment of a system cannot undergo a phase transition. See Fig. 5.2 for the complete phase
diagram. The phase transition separating these two dynamical phases is in the infinite-randomness
universality class; at the transition point, the system is marginally localised with a localisation
length that diverges as the single particle energy vanishes E ! 0 [367].

The single-particle localisation properties can be analysed more thoroughly throughout the
entire spectrum using the system’s transfer matrix

Ti D
 
�E=� �Ji=�
1 0

! 
�E=Ji ��=Ji
1 0

!
(5.2.10)

D
 
E2=�Ji � Ji=� E=Ji

�E=Ji ��=Ji

!
; (5.2.11)

where the energy E parametrises the eigenvalues of the single particle Hamiltonian, defined by
writing (5.2.6) in terms of complex fermions. The corresponding energy-dependent localisation
length is shown in shown in Fig. 5.2, calculated using the transfer matrix methods described in
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Sec. 1.5.1. Since the transfer matrix becomes diagonal at zero energy, the corresponding Lyapunov
exponent .0/ may easily be evaluated analytically using the central limit theorem. One finds that
.0/ D ˇ̌ln jJn=�jˇ̌, which evaluates to

.0/ D 1

2
abs ln

ˇ̌
�21 � �22

ˇ̌
�2

: (5.2.12)

As alluded to previously, .0/ vanishes at the phase boundaries� defined by
ˇ̌
�21 � �22

ˇ̌ D �2, as
shown in Fig. 5.2.

As one lowers the temperature, the Oq´j become increasingly likely to align with their neighbours,
so the localisation length grows. At zero temperature, there is no randomness, and the system
undergoes a ground-state phase transition that is in the Ising universality class. However, the system
is localised at any finite energy density above the ground state.

5.3 Entanglement growth

Since the model (5.2.2) has free-fermion dynamics in any fixed sector, one can deduce that a general
low-entanglement (e.g., product) initial state that is an eigenstate of all the Oq´j will quickly saturate
to area law entanglement—at least away from the critical point for that sector. If we start instead
from a superposition of Oq´j eigenstates, the entanglement exhibits unbounded slow logarithmic
growth that is characteristic of MBL systems. This is the first main result of this chapter, and in
what follows we explain intuitively why this happens, and then explain how one can exploit the
free-fermion character of the dynamics in each sector to efficiently compute the entanglement for
relatively large systems.

One can imagine “integrating out” the free fermions to arrive at an effective classical spin model
with Hamiltonian OHeff. Oq´j /. This Hamiltonian has diagonal interactions that decay exponentially in
space with the characteristic fermionic localisation length. Starting from an initial superposition,
these interactions will cause slow dephasing, and thence slow entanglement growth, exactly as in
Refs. [170, 171, 178]. One can illustrate this by considering a minimal example involving a 2 � 2
ladder. The Hamiltonian is OHtoy D �.�1 C �2 Oq´1 Oq´2/. Oc�1 Oc2 C Oc�1 Oc�2 C H.c./ � �Pj .1 � 2 Oc�j Ocj /.
Considering for simplicity the sector with odd fermion parity (i.e., one fermion), the eigenstates
have energies˙.�1 C �2q1q2/. Thus, if the initial state is a superposition of different Oq´j states, it
will dephase on a time scale� 1=�2�. The dephasing rate between pairs of Oqj falls off exponentially
with distance, so at time t each Oqj is entangled with � � log.t=�/ others [178].

�As discussed in Sec. 1.5.1, in a system of finite size, one must look instead at the fluctuations, and it can be shown
that the localisation length diverges as � pL.

�Dephasing occurs on a different time scale in the even parity sector where the eigenstates have energies
˙
p
.�1 C q1q2�2/2 C 4�2.
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Figure 5.3: Schematic illustration of the relation between different disorder configurations in the calculation
of the second Rényi entropy S2. The colours correspond to different disorder realisations of the
charges fqj g in the A and B subsystems. There are four replicas of the system corresponding
to two forwards (left to right) and two backwards (right to left) time evolutions. Adjacent
forwards and backwards time evolutions share the same disorder configuration of either the A or
B subsystem, depending on their parity, as represented by boxes of the same colour.

We now consider, more generally, an initial product state of the compass spins j‰i D OZ1;j j‰i D
OX2;j j‰i, 8 j . It can be written in terms of the Ising spins as

j‰i D jˆi ˝ 1

2L=2

X
qjD˙1

ˇ̌fqj g˛ ; (5.3.1)

where O�´j jˆi D jˆi ;8 j . As a result, the product state (5.3.1) has an equal-weight projection onto
every charge sector.

We bipartition the system leg-wise, into two ladders A and B , each of length LA D LB D L=2.
Since the reduced density matrix O�A.t/ describes all correlations within the subsystem A, we are
able to decompose it in terms of Pauli strings:

O�A.t/ D 1

2LA

X
f�j g

Tr

"
O�.t/

Y
j2A
O��jj
#Y
j2A
O��jj ; (5.3.2)

where �j D 0; 1; 2; 3, O�0j is the identity and O�1;2;3j D O�x;y;´j . The form of the Jordan–Wigner
transformation maps the Hilbert space of the first LA spins onto the first LA (Majorana) fermions
and thus the density matrix of the spins and of the fermions is the same [368]. Further, the
transformation that maps O� to compass spins does not mix the A and B subsystems and hence the
reduced density matrices of the O� and compass spins are unitarily equivalent.

We find that in terms of the O�-spins

Tr O�2A D
1

22L

X
fq1g;fq2g

TrA
h

TrB OU.qA1 ; qB1 / OPˆ OU �.qA2 ; q
B
1 /TrB OU.qA2 ; qB2 / OPˆ OU �.qA1 ; q

B
2 /
i
;

(5.3.3)
where OPˆ D jˆi hˆj is the projector onto the initial state of the O�-spins, and OU.qA; qB/ is the time
evolution operator with a disorder configuration specified by fqg D fqAg[fqBg. The exponentiated
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Figure 5.4: Entanglement entropy S2.t/ after beginning in the translationally-invariant initial state (5.3.1)
for a cut through the legs of the ladder that splits the system into two equal halves. Left panel:
After some initial transient dynamics, S2.t/ grows logarithmically in time, until it eventually
saturates due to finite size. The saturation value is consistent with volume-law growth, as shown
in the inset. Systems of size L � 12 (N � 24 spins) are calculated using exact diagonalisation,
while larger system sizes are evaluated using random sampling of Eq. (5.3.3). All curves are
calculated using parameters �2 D � D 1, and �1 D 1=2. Right panel: Scaling collapse of the
data for a fixed system size L D 22 for various values of �1, shown prior to rescaling in the
inset, confirming the scaling S2.t/ � � log.t=�/ that one may obtain within perturbation theory.

Rényi entropy e�S2.t/ / Tr O�2A may be regarded as a disorder average over two independent charge
configurations fq1g and fq2g. The expression includes two forwards time evolutions OU.qA; qB/, and
two backwards time evolutions OU �.qA; qB/, each containing a different Hamiltonian. However, the
trace enforces that the disorder configurations appearing in these Hamiltonians are not independent.
For the entropy S˛.t/ with (integer) ˛ > 2 there exist 2˛ replicas of the system with different
disorder configurations correlated in the manner shown schematically in Fig. 5.3.

The expression (5.3.3) is evaluated numerically for ˛ D 2 using the free-fermion techniques
described in the aside below. and plotted in Fig. 5.4 for �2 D � D 1, and �1 D 1=2 (with an average
localisation length � ' 5:32). After some initial transient dynamics, the growth of the entanglement
entropy is seen to be logarithmic in time for sufficiently large systems, S2.t/ � � log.t=�/, before
finite size effects become relevant and the entropy saturates�. As shown in the inset, the late-time
behaviour of S2 is volume law: S2.1/ / L.

We emphasize that the logarithmic entanglement growth is a consequence of the mixing between
different q-sectors in the Ising model; in a fixed q-sector, the dynamics is described by an Ising
model with binary disorder, for which entanglement growth saturates (away from the critical point).

�We focus for simplicity on the second Rényi entropy, S2.t/, but we expect the von Neumann entanglement entropy
to exhibit similar logarithmic growth.
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Aside: Free fermion techniques In free fermion systems that do not conserve particle number, only its

parity, the method of Gaussian density matrix composition [368] provides a convenient way of calculating

the system’s properties, both in and out of equilibrium. We make extensive use of the composition rule when

calculating the entanglement entropy [Eq. (5.3.3)] and the dynamical structure factor [Eq. (5.4.1)], and will

briefly review the necessary details here.

Gaussian density matrix composition. Given two normalised fermionic density matrices O�1, O�2 of the

form

O�i D 1

Z
exp

�
1

4
OaTWi Oa

�
; (5.3.4)

where the matrices Wi D �W T
i are skew-symmetric (not necessarily Hermitian), and Oa is a vector of

Majorana operators. As shown in Ref. [368], the product O�1 O�2 is also a Gaussian density matrix. The matrix

W12 that defines this state can be shown to satisfy eW12 D eW1eW2 using the Baker–Campbell–Hausdorff

(BCH) identity. However, the correlations implied by states of the form (5.3.4) are completely determined by

the corresponding correlation matrix

L
nm D TrŒ Oan O� Oam� � ınm : (5.3.5)

The correlation matrix
L

should not be confused with the parameters �1 and �2 that appear in the Hamiltonian.

It can then be shown that, for density matrices specified by correlation matrices
L
1 and

L
2, O�ŒL1� and O�ŒL2�,

respectively, their product satisfies the following composition rule

O�ŒL1� O�ŒL2� D fL1;L2g O�ŒL1 � L2� ; (5.3.6)

where fL1;L2g � Tr O�ŒL1� O�ŒL2�, and
L
1 � L2 is the correlation matrix of the composite density matrix. As

shown in Ref. [368] the composition “�” of correlation matrices is defined as

L
1 � L2 D 1 � .1 � L2/ 1

1C L1L2
.1 � L1/ : (5.3.7)

The normalisation factor fL1;L2g appearing in (5.3.6) may be written in terms of the spectrum of the product

matrix
L
1
L
2 (whose eigenvalues are doubly degenerate)

fL1;L2g D
Y

�j2Spec.
L
1
L
2/=2

1C �j
2

(5.3.8)

D ˙ 1

2L

p
det j1C L1L2j ; (5.3.9)

where the product is over half of the doubly degenerate spectrum. The unspecified sign in terms of the square

root of the determinant may be resolved by writing the result in terms of Pfaffians. In particular, we find that
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the normalisation factor may be written explicitly as

fL1;L2g D Pf.
L�1
1 C

L
2/

2L Pf.
L�1
1 /

D 1

.�2/L Pf.
L
1/Pf.

L�1
1 C

L
2/ : (5.3.10)

We now turn to expressing projectors OPˆ D jˆi hˆj, appearing in a number of expressions throughout

this chapter, as a Gaussian density matrix. If the state jˆi has a well-defined number of Jordan–Wigner

fermions on each site in real space, then the relevant projector is

jˆi hˆj D
LY
jD1

OP .nj /j ; (5.3.11)

where OP .0/j D 1 � Oc�j Ocj and OP .1/j D Oc�j Ocj project onto states with nj D 0; 1 fermions on site j , respectively.

Now, each of these projectors may be written as a Gaussian density matrix. In particular,

1 � ˛ Oc�j Ocj D e Oc
�

j
ln.1�˛/ Oc

j ; (5.3.12)

where OP .0/j is recovered in the limit ˛ ! 1�. Conversely, for the orthogonal projector

˛�1.1C ˛ Oc�j Ocj / D ˛�1e Oc
�

j
ln.1C˛/ Oc

j ; (5.3.13)

where now OP .1/j is recovered in the limit ˛ !1. We now proceed by writing the density matrix in terms of

Majorana fermions Oan using the relationship

Oc�j Ocj D
1

2
.1C i Oa2j�1 Oa2j / : (5.3.14)

Therefore, writing O� D 1
Z
e
1
4

P
mn OamWmn Oan , the skew-symmetric matrix W decomposes into 2 � 2 blocks

along the diagonal:

ln.1� ˛/
�
Oa2`�1 Oa2`

� 0 i

�i 0

! 
Oa2`�1
Oa2`

!
: (5.3.15)

Taking the matrix hyperbolic tangent to obtain the correlation matrix,
L D tanh.W=2/, we arrive at

L
˛ D

 
0 i tanh

�
1
2

ln.1� ˛/�
�i tanh

�
1
2

ln.1� ˛/� 0

!
(5.3.16)

L D
 
0 �i
˙i 0

!˝N
D Œ˙�y �˝N ; (5.3.17)

where in the second line we have taken the appropriate limit for ˛. Here �y corresponds to the second Pauli

matrix. Hence, time-dependent expressions involving the projector onto the initial state OPˆ may be computed

using the composition rule (5.3.6) and the correlation matrix (5.3.17).
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Green’s function approach. When the required expectation value can be written as a product of time-

evolved Majorana operators, as in Eq. (5.4.2), we can use the ‘Pfaffian trick’ to map the desired correlator

onto a single Pfaffian. In particular, given an ordered list of (linear combinations of) Majorana operators
O�1; O�2; : : : ; O�2m, the expectation value of this list with respect to a Gaussian state ˆ is given by

hˆj O�1 O�2 � � � O�2mjˆi D Pf.G/ ; (5.3.18)

where the antisymmetric matrix G is defined by Gij D hˆj O�i O�j jˆi for i < j . Applied to a time-ordered

product of Majorana operators, we arrive at

hˆjT Oa1.t1/ Oa2.t2/ � � � Oa2m.t2m/jˆi D Pf.G/ ; (5.3.19)

where Gij D hˆjT Oai .ti / Oaj .tj /jˆi for i < j . For t > 0,

G>ij D Tr
� Oai .t/ Oaj .0/ jˆi hˆj� : (5.3.20)

Writing the time evolution of the Majoranas in terms of the unitary matrix U.t/, Oa.t/ D U.t/Oa.0/, the Green’s

functions may be written as G>ij D ŒU.t/.1C
L
/�ij , where

L
is the correlation matrix of the initial state ˆ.

5.4 Dynamical structure factor

Logarithmic entanglement growth, while central to the phenomenology of MBL systems, is not
realistically measurable in most experiments. In what follows we consider an observable that is

straightforward to measure in solid-state experiments, which we argue also exhibits signatures of
MBL that are related to the logarithmic growth. Let us consider the dynamical structure factor
in the basis of the compass spins O†˛;j , where O† D OX; OZ. In particular, we are interested in the
time dependence of

˝ O†˛;i.t/ O†0ˇ;j .0/
˛
, where the angled brackets correspond to a finite temperature

average with respect to the canonical ensemble [although analogous results are obtained using the
translationally invariant initial state (5.3.1)]. The trace over charge configurations fqj g implies that
each Oq�j operator that projects out of a given sector must appear an even number of times for the
expectation value to be nonvanishing. As a consequence, the mixed elements XZ and ZX must
vanish identically.

In the high-temperature limit, the nonzero components of the structure factor may be written as

h OX1;i.t/ OX1;j .0/i / ıijTr
h
ei OH.fqg/te�i OHx

i
.fqgI�qi /t

i
; (5.4.1)

h OZ1;i.t/ OZ1;j .0/i / ıijTr
h
ei OH.fqg/te�i OH

´
i
.fqg/t

i
; (5.4.2)

where the overline corresponds to an infinite-temperature average over the various charge sectors,
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OH�
i D O��i OH O��i , and OH.fqgI �qi/ denotes that the sign of the spin qi on site i , has been flipped

with respect to the configuration fqg�. In both cases the forwards and backwards Hamiltonians
differ by some local perturbation in the real space spin basis, and may be evaluated efficiently using
free-fermion techniques.

Despite the apparent similarity between the two expressions, the behaviour of the two com-
ponents is markedly different. The reason for this difference is the absence (presence) of sector
changing operators Oqxj in the ZZ (XX) correlator. The ZZ correlator, being diagonal in the conserved
charges, maps directly onto the order parameter correlator of the Ising Hamiltonian in Eq. (5.2.2),
h O�´i .t/ O�´j .0/i, for which only the autocorrelation function i D j is nonzero at infinite tempera-
ture [369, 370]. In the presence of emergent randomness, the behaviour of this correlator can be
understood in the excited-state real-space renormalization-group (RSRG-X) framework [365]. In
the paramagnetic phase, this correlator decays to zero, while in the ferromagnet it saturates to
a nonzero value. (In a finite system, the correlator eventually vanishes, but on a time scale that
diverges with system size.) This plateau is shown in Fig. 5.5. The ZZ correlator is therefore not
sensitive to the emergent nature of the disorder, and behaves identically to a TFIM in the presence
of quenched disorder. That such behaviour can occur in translationally invariant models is worthy
of note, but has been observed before in a variety of contexts (see, e.g., Refs. [124, 193–199, 337]).

Conversely, the XX correlator involves both flipping Ising spins and changing q-sector. Since the
forwards and backwards time evolutions involve different disorder realisations, the XX component is
aware of the emergent character of the disorder. The XX correlator therefore exhibits phenomenology
beyond that of conventional disordered systems, and by extension beyond that of operators that
are diagonal in the local conserved charges (distinguishing our results from, e.g., Ref. [124]).
The differing forwards and backwards time evolutions imply that Eq. (5.4.1) is analogous to a
Loschmidt echo after a local quench. Treating the difference between the forwards and backwards
time evolutions as a perturbation � �. O�´i�1 O�´i C O�´i O�´iC1/ [371], we find that, in a typical q sector,

h OX1;i.t/ OX1;i.0/i �
LY
nD1

cos
�
�t Œ ni�1�

n
i C  ni �niC1�

� �
�
�t

�

��c�
; (5.4.3)

where the matrices  nj and �nj diagonalise the fermionic Hamiltonian�, and c > 0 is an O.1/
number. This correlation function is essentially the exponentiated entanglement, and represents the
second main result of the chapter. We see in Fig. 5.5 that this power law decay is indeed seen in the
numerics, with an exponent that is consistent with Eq. (5.4.3) (away from the critical point).

�The combined effect of commuting O�xi and Oqxi through the Hamiltonian is to change J˙ D �1 ˙ �2 ! �J� on
bonds i and i � 1.

�Specifically, the Majorana operators that diagonalise the fermionic Hamiltonian, OH D i
2

P
n �n
O�2n�1 O�2n, are

related to the real-space Majoranas via the transformations Oa2i D
P
n  

n
i
O�2n and Oa2i�1 D

P
n �

n
i
O�2n�1.
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Figure 5.5: Time dependence of the diagonal elements of the infinite-temperature dynamical structure factor
in the compass spins, OX˛;j and OZ˛;j , for L D 48 (N D 96 spins), and �2 D � D 1. (a) The
XX correlator exhibits a decay consistent with Eq. (5.4.3): Power law � t� , with an exponent
proportional to the localisation length �, as shown in panel (b). Conversely, the ZZ correlator
(c) is diagonal in the conserved charges f Oq´j g, and hence maps directly onto the corresponding
spin correlation function of the disordered TFIM (5.2.2). The inset shows the divergence of the
time scale over which the plateau decays with system size in the ferromagnetic phase (shown for
L D 8; 16; 24; 32; 40).

5.5 Exponentially weak dephasing

In order to connect the decay of the XX component of the structure factor and the logarithmic growth
of the second Rényi entropy, we can frame the latter in the language of exponentially weak dephasing,
as in Eq. (5.4.3). The following arguments elucidate the correspondence between the two quantities,
and provide a justification for the universal S2.t/ � � log.t=�/ scaling observed in the numerics
(Fig. 5.4). We begin by expanding the time evolution operators appearing in Eq. (5.3.3) in their
eigenbases. Since the eigenstates within a typical sector at infinite temperature are exponentially
localised (away from the critical point), we make the assumption that the eigenstates factorise over
the two regions A and B , i.e., a given eigenstate j˛i of the composite system may be written as

j˛i D j˛Ai ˝ j˛Bi. In particular, we imagine cutting the bond between the central sites of the
ladder, and take the eigenstates of each half separately. We will then reintroduce the coupling
between the two halves perturbatively. The approximation of factorising the eigenstates in this way
clearly breaks down at the boundary, but holds in the bulk at distances significantly greater than
the localisation length �. It is the bulk contribution that gives rise to the logarithmic growth, and
so we are not concerned with such boundary effects, which only appreciably affect the short-time
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dynamics. Explicitly, each time evolution operator is written in the form

OU.qA; qB/ '
X
˛A;˛B

e�iEqA;qB .˛A;˛B/t j˛Ai ˝ j˛Bi h˛Aj ˝ h˛B j : (5.5.1)

Note that although we have assumed the eigenstates remain unchanged upon recoupling the two
halves back together, we have not assumed that the same is true of the energies. In what follows
we will omit the tensor product symbols for brevity. Substituting this ansatz into (5.3.3), and
performing the appropriate traces over the A and B subsystems, we arrive at the expression

Tr O�2A '
1

22L

X
fq1g;fq2g

X
˛;ˇ

X
;ı

e�iE11.˛A;ˇB/tCiE21.A;ˇB/t�iE22.A;ıB/tCiE12.˛A;ıB/t

h˛Aj hˇB j OPˆ jAi jˇBi hAj hıB j OPˆ j˛Ai jıBi ; (5.5.2)

where ˛A, A label the eigenstates of the A subsystem in the presence of disorder configurations
qA1 and qA2 , and ˇB , ıB label the eigenstates of the B subsystem for configurations qB1 and qB2 ,
respectively. The notation Eab is shorthand for the energy EqAa ;qBb , i.e., in the presence of disorder
configuration specified by fqAa g [ fqBb g. Since the initial state dependence of Eq. (5.5.2) is very
weak, it is reasonable to assume that the projectors onto the initial state behave as a random matrices
in the eigenbases. This allows each of the matrix elements above to be replaced by 1=2L (this step
can equivalently be viewed as averaging over initial states). In this way, the above expression can
be written purely in terms of the eigenenergies in a manifestly positive way

Tr O�2A '
1

24L

X
fqA1 g;fqA2 g

X
˛A;A

ˇ̌
ˇ̌
ˇ̌
X
fqB1 g

X
ˇB

exp
n
� i ŒE11.˛A; ˇB/ �E21.A; ˇB/�t

oˇ̌ˇ̌
ˇ̌
2

: (5.5.3)

We are now able to add back the connecting bond between the two halves of the system to see
how the energies of the system as a whole are affected. Within second order perturbation theory,
controlled by the parameter � � 1, one arrives at the following expression for the energy of the
connected system

Eab.f�ig/ D E.0/ab .f�ig/C �
X
i

hiab�i C �2
X
i¤j

J
ij

ab
�i�j C : : : (5.5.4)

where the classical Ising variables �i D 1;�1 parametrise the occupation numbers ni of the
eigenstates, �i D 2ni � 1. The local fields hi

ab
and the interactions J ij

ab
can be written explicitly in

terms of the wave functions  nj and �nj and the single particle energies, as shown in Appendix G.
While the index i runs over the single particle energy levels, we are effectively able to treat
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it as a spatial index since the eigenstates are localised. Crucially, the first order terms cancel,
and the interactions typically decay with the characteristic fermionic localisation length, J ij

ab
�

e�2ji�j j=�=�2 (if the two Ising spins are situated on opposite sides of the cut). Substituting this
expression into (5.5.3), we find that (up to a time-dependent phase)

1

2L=2

X
ˇB

exp
n
� i ŒE11.˛A; ˇB/ �E21.A; ˇB/�t

o
/
Y
j2B

cos

"
2�2t

X
i2A

�
J
j i
11�i � J j i21�i

�#
;

(5.5.5)
where f�ig and f�ig parametrise the occupation numbers of the states ˛A and A, respectively.
The correspondence with the XX component of the dynamical structure factor (5.4.3) is now
clear. For a given set of occupation numbers f�ig and f�ig, the summation typically behaves
as
P
i2A

�
J
j i
11�i � J j i21�i

�
� e�2j=�=�, and thence Tr O�2A D e�S2.t/ � .t=�/�c� , justifying the

statement that (5.4.3) is essentially the exponentiated entanglement. Taking the logarithm, we arrive
at the scaling behaviour S2.t/ � � log.t=�/ observed in the right panel of Fig. 5.4. While the
arguments presented here have been formulated perturbatively, exponentially weak dephasing will
take place more generally as long as the effective two-body interactions decay exponentially. That
is, the higher order interaction terms between the eigenstate occupation numbers of the form

1X
nD1

X
i;j;fkg

K
.n/

ifkgj�i�k1 � � � �kn�j ; (5.5.6)

which give rise to an effective two body interaction of the form

J eff
ij .f�ig/ D Jij C

1X
nD1

X
fkg
K
.n/

ifkgj�k1 � � � �kn ; (5.5.7)

should decay with separation as J eff
ij � e�ji�j j=�=�2. These expressions are analogous to those that

arise in the l-bit description of the MBL phase [27, 170].

5.6 Discussion

The central result of this chapter is that quasi-1D compass and plaquette Ising models, which arise
naturally in various experimental settings [349], exhibit a form of single particle disorder-free
localisation that bears many of the distinctive features of MBL. In particular, we have shown
that the emergent character of the disorder – which permits superpositions of different disorder
realisations, and operators that modify the disorder configuration – can lead to the unbounded
logarithmic growth of entanglement and anomalous power-law decay of correlation functions in
spite of the noninteracting nature of the Hamiltonian. This considerably broadens the scope of
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candidate materials for studying the dynamical signatures of MBL.
We established our results in a model that was solvable using free-fermion techniques; remark-

ably, the slow growth of entanglement, despite being inherently an interaction effect, is present in
these free-fermion models because (as we explained here) integrating out the fermions gives rise
to diagonal interactions and thus exponentially slow dephasing between distinct configurations of
conserved variables. (Related phenomena had previously been found in out-of-time-order correla-
tors [197, 372].) As we argued, this slow dephasing also manifests itself in more experimentally
accessible variables, such as the XX component of the dynamical structure factor. Note that, while
logarithmic growth of entanglement is also seen in some other models with divergent localisation
lengths [373] or strong zero modes [372], the compass model in its paramagnetic phase exhibits
neither of these features. Given the close parallels between the entanglement growth here and the
physics of Loschmidt echoes for free fermions, the present model raises the prospect of deriving
exact expressions for the asymptotics of entanglement and correlation functions, via solving a
Riemann–Hilbert problem [374]; this is an interesting topic for future work.

A natural question our results raise is what happens for ladders with more than two legs. These
systems still have one local conserved charge per rung (i.e., the product of OX operators along the
rung), which can generate emergent disorder, as in the two-leg case. They are in general strongly
interacting and do not admit free-fermion solutions, and are thus beyond the scope of this work. For
parameters where these models have an MBL phase, their phenomenology should resemble that
studied here. However, such generic interacting models will also exhibit a delocalised thermal phase.
How sector-changing operators like the XX correlator behave at the many-body delocalisation
transition remains an open question worthy of future consideration.
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6 Conclusions and outlook

6.1 Summary

In this thesis, we have explored the interplay between nonzero temperatures and some of the
characteristic emergent phenomena that occur in spin liquids.

In Chapter 2, we studied the evolution of the entanglement content in thermal states – as quanti-
fied by the logarithmic negativity – for the toric code by means of exact calculations. Intuitively, as
temperature is increased, thermal fluctuations diminish the entanglement content of the system’s
state as the correlations become progressively classical. However, this does not occur in a smooth
manner; above a certain temperature, the negativity vanishes abruptly, a phenomenon known as
sudden death. Above this temperature, the vanishing negativity indicates that the correlations in
the system can be reproduced classically. The simplicity of the toric code’s spectrum allows for
a transparent physical interpretation of this result: An O.1/ density of the lower energy defects
(visons) is required to degrade the zero-temperature entanglement between two subsystems in
contact with one another. However, one type of excitation alone is not sufficient to eliminate all
quantum correlations, and an O.1/ density of the higher energy defects (spinons) is required to
cause sudden death. Consequently, if the spinons are forbidden by way of a hard energetic constraint,
locking in the zero temperature loop structure, quantum correlations survive up to arbitrarily high
temperatures, manifesting as a slow, algebraic decay of the negativity.

In Chapter 3, we studied the effects of nontrivial mutual statistics on the propagation of
quasiparticles in gapped spin liquids at finite temperature. We studied an unconstrained Z2 lattice
gauge theory in the presence of a weak perpendicular magnetic field, where ring exchange leads
to the emergence of the toric code Hamiltonian, and thence topological order, in the ground state
sector. However, at intermediate temperatures that are comparable to the vison gap, the quantum
coherence of the ground state manifold is disrupted, and the thermal state of the system corresponds
to an incoherent, statistical mixture of classical ground states containing unbroken electric loops.
The magnetic field also causes the spinons to acquire a nontrivial dispersion. We showed how the
spinons’ dynamics may be understood in terms of a tight binding model wherein the visons act

– 167 –



OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

as sources of emergent � flux. In spite of the (discrete) translational invariance of the underlying
Hamiltonian, nonzero temperatures give rise to an incoherent disorder average over the emergent
Z2 gauge field. Combining the approximation of self-retracing paths with numerical simulations,
we were able to characterise the transport properties of spinons, showing that the system exhibits a
crossover from ballistic to (sub-)diffusive behaviour at the time taken to diffuse to the nearest vison.

In Chapter 4, we looked at the nonequilibrium dynamics of monopoles in classical spin ice. The
system is brought out of equilibrium using a thermal quench, where the temperature is suddenly
lowered from its initial value, much larger than the monopole gap, to a value comparable to or
lower than the gap. When brought out of equilibrium in this way, spin ice exhibits metastable states
in its dynamics, which manifest as plateaux in the density of monopoles. We established that the
existence of metastable plateaux in spin ice is not guaranteed; instead, its origin is dynamical in
nature. Introducing noncontractible pairs as a species of quasiparticle, we formulated the emergence
of the plateaux in terms of reaction–diffusion processes. Within mean field theory, we demonstrated
that a plateau emerges if free monopoles are removed from the system sufficiently quickly to leave
behind a profusion of noncontractible pairs. This condition is not satisfied when the interactions
between the monopoles are truncated at some finite distance, in which case the plateau reduces
to a finite size effect. When the monopoles interact via a long-ranged Coulomb interaction, as is
expected in dipolar spin ice, the free monopoles are energetically drawn towards one another at
terminal velocity, and the plateau persists in the thermodynamic limit.

We showed in Chapter 3 that the presence of an extensive number of conserved quantities can
give rise to an emergent disorder average at nonzero temperature. In Chapter 5 we scrutinised
the emergent character of the disorder in an analogous quasi-one-dimensional model that hosts
Z2 valued conserved charges coupled to fermionic degrees of freedom. When the disorder is
self-generated, a generic local operator will not only act on the fermions, but will also modify the
configuration of conserved charges. Additionally, different conserved charge arrangements can be
superposed. We showed that, starting from a generic low-entanglement initial state, entanglement
grows logarithmically in time, just as for many body localised systems, despite the system mapping
to free fermions within each charge sector. The origin of this logarithmic growth was shown
to arise from exponentially weak dephasing between different configurations of the conserved
charges, which inherit an effective, exponentially decaying interaction from the localised fermionic
degrees of freedom. Exponentially weak dephasing also plays a prominent role in the system’s
high temperature correlation functions, where it gives rise to power law decay with a continuously
varying exponent.
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6.2 Outlook and future directions

One of the defining traits of spin liquids is the exotic behaviour of their excitations, which inherit
their properties from the proximate T D 0 spin liquid state. As we have shown, and as it is well
known in the literature, it is often beneficial to think about these excitations as free quasiparticles
hopping on a lattice (although this lattice is sometimes unrelated to the real space lattice [273]). This
is certainly the case in Kitaev’s honeycomb model (see Sec. 1.4.5) and within the unconstrained
lattice gauge theory from Chapter 3, where the mapping can be established exactly or within
perturbation theory, respectively. This mapping renders the problem amenable to analytical and
numerical approaches, and many of the thermodynamic, spectroscopic, and transport properties
can be explained within linear response theory. However, in other lattice models – notably in spin
ice – the excitations are inextricably linked to the spin background from which they emerge, and as
a result their behaviour can be significantly more complex. Our results in Chapter 4 are a case in
point, since the spin background allows for the formation of noncontractible pairs of excitations,
wherein the two oppositely charged constituents are separated by a spin whose reversal does not
lead to annihilation of the pair. Similar considerations apply in the context of quantum spin ice,
where the spin background leads to blocked directions� and a bimodal distribution of hopping time
scales [375]. In this case, the free particle description assumes the form of a hopping problem
in configuration space [376], which may be approximated by a random regular graph. However,
the real space system sizes that one can access with this method are limited, and in general an
efficient description of quasiparticle motion in quantum spin ice remains an open question. A more
complete theoretical description would allow us to better understand recent thermal conductivity
measurements performed on quantum spin ice candidate materials [377].

Another striking conclusion of Chapter 4 is the importance of the short-time, nonuniversal
dynamics. Indeed, we showed that, when subjected to thermal quenches, the behaviour of spin ice
at long times and low temperature is determined not by hydrodynamics, but by its initial dynamics,
where ultraviolet physics is important. At short times, performing a microscopic discrete update,
such as a spin flip, can produce a change in energy comparable to or greater than temperature. One
generally expects that this behaviour will manifest as a short, transient contribution to the dynamics,
followed by the onset of universal behaviour. However, we showed that the initial, nonuniversal
dynamics allows the system to enter a metastable state that persists for many orders of magnitude in
time. This result highlights the necessity of including ultraviolet physics if we are to provide an
accurate description of experiments, both numerical and in the laboratory.

Over the last few decades, we have witnessed a vast improvement in experimental capabilities,
allowing us to probe electronic systems at ultrafast time scales with unprecedented spatial resolution

�In the presence of blocked directions alone, the motion of monopoles is quantum diffusive, and the Bethe lattice
mapping in Chapter 3 may be used to obtain the diffusion constant.
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(see, for instance, Refs. [378–381]). In addition, there has been a proliferation of experimental
platforms (so-called quantum simulators) possessing a high degree of control over their constituent
degrees of freedom, which are protected to a large degree from environmental influence, leading
to long coherence times. Experimental platforms including ultracold atoms [382–386], trapped
ions [387–389], Rydberg atoms [390], superconducting qubits [391, 392], and others [393, 394],
have profoundly altered the relationship between theory and experiment, allowing us to follow the
real time dynamics of quantum many body systems with single lattice site resolution.

The implications of these recent advances for the field of spin liquids are twofold. Firstly, these
new quantum simulators provide an alternative avenue to study the behaviour of quantum spin
liquids with an unprecedented level of control (and allowing access to nonlocal observables, which
remain invisible to local experimental probes). Very recently, there have been a number of attempts
to realise topological spin liquids using superconducting circuits [395], Rydberg atoms [396], and
quantum annealers [53], following earlier attempts on significantly smaller systems [397–405]. The
finite coherences times and high spatial resolution of these platforms further motivates the need to
focus on characterising and quantifying the behaviour of many body systems on short time scales
and over short distances. Secondly, the development of new experimental techniques allows for
condensed matter systems to be probed in novel ways. For example, one very promising endeavour
is to use two-dimensional coherent spectroscopy (2DCS) [380, 406–408] to identify new signatures
of spin liquid behaviour from a system’s nonlinear response properties [407, 409–411]. In contrast
to linear response, 2DCS is able to distinguish between a continuum of sharp modes and broadening
due to a finite lifetime, thereby offering a unique fingerprint of fractionalisation [407]. Whilst the
seed work has been completed, there is still much to be learnt, in particular regarding the effects of
including interactions, disorder, and nonzero temperature (see however Refs. [411–413]).

We are particularly excited about the possibility of observing our results in the commercially
available D-Wave quantum annealers [414, 415], which are based on an array of superconducting
qubits. These machines realise a transverse field Ising model of the form OHTFIM D

P
i;j Jij O�xi O�xj C

h
P
i O�´i �. To make contact with the results in Chapter 3, we need to obtain a four-spin interaction of

the form OAs D
Q
i2s O�xi from the two-body spin interactions that are present in OHTFIM. Fortunately,

this can be achieved by means of combinatorial gauge symmetry, as shown in Ref. [52]. When the
transverse magnetic field is weak, the emergent vison gap is suppressed by factors of h=J , and since
the machines operate at nonzero temperature (of order 10 mK [414]), the experiments are performed
in approximately the temperature regime studied in Chapter 3, wherein the visons (spinons) behave
incoherently (coherently). The short time behaviour of the spinon density profile will be particularly
important here, not least in relation to the finite decoherence time, but also to distinguish between
classical and quantum diffusion, which at sufficiently long times give rise to similar behaviour.

�The couplings Jij are local and can only couple spins that are connected by an edge on the so-called Chimera
graph on the D-Wave 2000Q machines [416].
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An additional question that arises in this context is the role of dephasing and dissipation. In this
thesis, the role of environmental coupling is present only in the system’s initial conditions. The
system is assumed to be weakly coupled to a thermal heat bath such that the initial state of the
system corresponds to one of the standard equilibrium ensembles from statistical mechanics. Time
evolution thereafter is generated by the system Hamiltonian alone. However, in order to describe
quantitatively the aforementioned experiments on quantum annealers, it will be necessary to treat
the problem within the framework of open quantum systems. This is another context in which
the spin background from which the quasiparticles emerge plays an important role: The trail of
flipped spin left behind as a quasiparticle moves influences its dephasing rate. This question was
partially addressed in one dimension in Ref. [417], but its extension to higher dimensions remains
unresolved.

In this thesis, we have looked at a number of phenomena that arise at finite temperature in
(quantum) spin liquids. A unifying theme amongst the different chapters is the presence of a finite
density of thermally excited quasiparticles, inheriting their properties from the T D 0 spin liquid
state, which have a dramatic impact on the behaviour of the system with respect to zero temperature.
We have highlighted that understanding this behaviour is important not only from a practical point
of view, but also as a means to uncover new fingerprints of quantum spin liquid behaviour.
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A Diffusion on other lattices

A.1 Toric code on the kagome lattice

In this appendix we calculate explicitly the generating functions for nonreversing walks on the
triangular and honeycomb lattices. Both lattices appear naturally in the context of frustrated
magnetism. However, as a concrete example, consider the toric code defined on the kagome lattice,
as in Fig. A.1:

OH D ��A
X
7
OA7 � �B

X
4
OB4 ; (A.1.1)

where OA7 D
Q
i27 O�xi , OB4 D

Q
i24 O�´i , corresponding to the hexagonal (7) and triangular (4, both

‘up’ and ‘down’) plaquettes of the lattice, respectively. �A.B/ > 0 are the two coupling constants
of the model. The operators are all mutually commuting, Œ OA7; OB4� D 0, since each hexagonal
plaquette shares an even number of spins with any overlapping triangular plaquette.

As in the case of the square lattice, the cases �A � �B (�B � �A/ can be generated pertur-
batively in the ground state sector by applying a small magnetic field in the x (´) direction to a
system with �A.B/ D 0. We will use the terminology that the lower-energy excitations, generated
perturbatively via ring exchange, correspond to the visons. If the visons reside on the triangular
plaquettes, then the spinons, which live on the hexagonal plaquettes, hop on a triangular lattice.
Conversely, in the opposite limiting case, if the visons live on the hexagonal plaquettes, then the
spinons hop on a hexagonal lattice.

A.2 Triangular lattice

For the triangular lattice the coordination number ´ D 6 and there are thus six possible moves
at each step, enumerated by the generating variables ı and �: ı, �, ��1, ı�1, �ı�1 and ı��1. The
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≡ B4

≡ A7

Figure A.1: A kagome lattice of spins, depicted by the white circles, and the corresponding plaquette
operators, OA7 and OB4, which comprise the toric code Hamiltonian (A.1.1). The centres of the
hexagonal plaquettes, OA7, form a triangular lattice, while the centres of the triangular plaquettes,
OB4, form a hexagonal lattice.

matrix which governs transitions between these various allowed moves between adjacent sites is

N D x

0
BBBBBBBBB@

� ı ��1ı 0 ı�1 �ı�1

� ı ��1ı ��1 0 �ı�1

� ı ��1ı ��1 ı�1 0

0 ı ��1ı ��1 ı�1 �ı�1

� 0 ��1ı ��1 ı�1 �ı�1

� ı 0 ��1 ı�1 �ı�1

1
CCCCCCCCCA
; (A.2.1)

where the zeros enforce the nonreversing constraint imposed on the lattice walk. The initial condition

N0 D x diag.�; ı; ��1ı; ��1; ı�1; �ı�1/ ; (A.2.2)

represents the unconstrained first step. Using the general expression (3.4.15) presented in the main
text, the generating function for nonreversing walks is therefore

N .xI ı; �/ D 1 � x2
1 � x.� C ��1 C ı C ı�1 C �ı�1 C ı��1/C 5x2 : (A.2.3)

The expression for R2.x/ presented in the main text in (3.5.10) must be generalised to allow for
the two basis vectors to be non-orthonormal, i.e., when ei � ej D a2ıij C a2.1 � ıij / cos � , the
expression for R2 becomes

R2.x/ D a2
˚�
.ı@ı/

2 C 2 cos � .ı@ı/ .�@�/C .�@�/2
�
N
	 ˇ̌ˇ̌
ıD�D1

: (A.2.4)
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By symmetry, ı@ı and �@� commute when acting on N .xI ı; �/. Evaluating the appropriate deriva-
tives of N .xI ı; �/ we arrive at

R2.x/ D 4x.1C x/
.1 � 5x/2.1 � x/.2 � cos �/ : (A.2.5)

This leads to the final expression for the diffusion constant

D6 D 3

�

"
3
p
5 � 2 ln

 
3Cp5
3 �p5

!#
(A.2.6)

D 2:72968 : : : (A.2.7)

A.3 Honeycomb lattice

The case of the honeycomb lattice (´ D 3) is complicated slightly by its two-sublattice structure.
We proceed by constructing two generating functions Naa and Nab, corresponding to walks that
begin and end on the same sublattice, and walks that begin and end on complementary sublattices,
respectively. Beginning with Naa, we divide each walk into segments of length two. Taking into
account the nonreversing constraint, there are six possible transitions for each length-two segment:
ı, �, ��1, ı�1, �ı�1 and ı��1, corresponding to moves on the underlying triangular (Bravais) lattice.
At each step following the initial one, two of these moves are disallowed by the nonreversing
constraint leading to the transition matrix

N D x2

0
BBBBBBBBB@

� ı 0 0 ı�1 �ı�1

� ı ��1ı ��1 0 0

0 0 ��1ı ��1 ı�1 �ı�1

� ı ��1ı ��1 0 0

0 0 ��1ı ��1 ı�1 �ı�1

� ı 0 0 ı�1 �ı�1

1
CCCCCCCCCA
; (A.3.1)

with the initial condition

N0 D x2 diag.�; ı; ��1ı; ��1; ı�1; �ı�1/ : (A.3.2)

These matrices lead to the generating function

Naa.xI ı; �/ D 1C
x2
�
� C ��1 C ı C ı�1 C �ı�1 C ı��1� � 6x2

1 � x2 .� C ��1 C ı C ı�1 C �ı�1 C ı��1 � 1/C 4x4 : (A.3.3)
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For the generating functionNab, we write a walk from a! b as (i) the first step takes the walker
from the a to the b sublattice, and (ii) the walker then performs a walk amongst sites belonging to
the b sublattice only. This walk is implemented using the matrix

N D x2

0
BBBBBBBBB@

� ı 0 ��1 0 �ı�1

� ı 0 ��1 0 �ı�1

0 ı ��1ı ��1 ı�1 0

0 ı ��1ı ��1 ı�1 0

� 0 ��1ı 0 ı�1 �ı�1

� 0 ��1ı 0 ı�1 �ı�1

1
CCCCCCCCCA
; (A.3.4)

and the initial condition
N0 D xN1 C x��1N2 C xı�1N3 ; (A.3.5)

which represents the three possible moves in the unconstrained first step, where Ni D e2i ˝ e2i ,
and e� (� D 1; : : : ; 6) are the orthonormal basis vectors with respect to which (A.3.4) is expressed.
These matrices lead to

Nab.xI ı; �/ D x.1 � x2/.1C ı�1 C ��1/
1 � x2 .� C ��1 C ı C ı�1 C �ı�1 C ı��1 � 1/C 4x4 : (A.3.6)

The full generating function is then given by N D Naa CNab. However, in order to calculate
R2, one should in principle account for the fact that the b sublattice is translated by one lattice
constant with respect to the a sublattice. This detail is only relevant for short times, and hence does
not need to be taken into account for the calculation of the diffusion constant, which depends only
on the asymptotic behaviour of hr2.t/i.

Combining all of the above results gives us the generating function R2.x/:

R2.x/ D 2a2

.1 � 4x2/2 .1 � x2/
n

4x2.1C 2x2/C x.1C 7x2 C 4x4/ � cos �
�
2x2.1C 2x2/C 6x3�

o
; (A.3.7)

where a D p3 and � D �=3. Inserting these values simplifies the expression to

R2.x/ D
6x
�
1C 2x2�

.1 � 2x/2.1 � x/.1C 2x/ : (A.3.8)
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Hence, we arrive at the expression

D3 D 3

2�

"
12
p
2 � ln

 
3C 2p2
3 � 2p2

!#
D 3:20977 : : : : (A.3.9)
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B Higher order moments

Here we evaluate arbitrary moments of the density distribution in order to give a better characterisa-
tion of the spinon density profile from Chapter 3. We specialise to the case of the square lattice (i.e.,
´ D 4) for convenience. The function R2k.x/ in general has a pole of order kC 1 at x D .´� 1/�1.
This implies that, in the long-time limit, the 2kth moment behaves as � tk, consistent with the
diffusive behaviour exhibited by the second moment. This is because, analogous to Eq. (3.5.12) in
the main text, at long times

Res
wD0

f .w/eitw

wkC1
D 1

kŠ
.i t/kf .0/C : : : ; (B.1)

if f .w/ is analytic at w D 0. The dots correspond to lower powers of t , which contribute to the
transient oscillatory behaviour at short times.

We start by considering the expression for R2k.x/ derived in the main text in Eq. (3.5.10)

R2k.x/ D Œr2kN �.xI 1; 1/ (B.2)

D
"

kX
`D0

 
k

`

!
.ı@ı/

2`.�@�/
2.k�`/N

#
.xI 1; 1/ : (B.3)

One can show that the term .ı@ı/
2`.�@�/

2.k�`/N gives rise to a contribution

 
k

`

!
Œ2`�ŠŒ2.k � `/�Š xk.1C x/

.1 � 3x/kC1.1 � x/k C : : : (B.4)

to the highest order pole �.1 � 3x/�k�1. The dots correspond to poles of lower order that give rise
to lower powers of time. Performing the summation over `, we obtain

kX
`D0

 
k

`

!2
Œ2`�ŠŒ2.k � `/�Š D 4k.kŠ/2 : (B.5)
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Hence, sufficiently close to the pole at x D 1=3, the function R2k behaves as

R2k.x/ � 22Ck

3

�.k C 1/2
.1 � 3x/kC1 ; (B.6)

where �.x/ is the Gamma function. The final ingredient therefore is the integral over residues,
which generalises the expression (3.5.13)

ˆ 2
p
3

�2p3
du
.12 � u2/kC12
16 � u2 D p�2k�23.kC2/=2�

�
3Ck
2

�
�
�
4Ck
2

�2F1
 

1
2
; 1

2C 1
2
k
I 3
4

!
; (B.7)

in terms of the Gauss hypergeometric function 2F1.a; b; cI ´/. Combining the multiplicity of the
highest order pole and the integral over residues, we arrive at the final exact expression for the 2kth
moment of the density distribution in the long-time limit, for fixed k:

�2k � lim
t!1

hr2k.t/i
.ht/k

D 22k�13k=2C1p
�

�.k C 1/�.3Ck
2
/

�.4Ck
2
/

2F1

 
1
2
; 1

2C 1
2
k
I 3
4

!
: (B.8)

These moments have been checked against numerics (data not shown). As required, the special case
k D 1 simply reduces to 2D4 derived in the main text. The density distribution is, however, not

Gaussian, as evidenced by nonzero higher order cumulants. This is not an artefact of the Bethe
lattice mapping, and indeed is reflected in our numerical simulations, as seen in Fig. 3.8. This
feature further distinguishes the interference-driven quantum diffusion from its classical counterpart.

One can similarly compute the moments of the marginal distribution �.rxI t / D
´

dry�.rI t /.
One must in this case replace R2k.x/ by the function

QR2k.x/ D Œ.ı@ı/2kN �.xI 1; 1/ : (B.9)

A similar calculation of the residues and multiplicities (now simplified by the removal of cross
terms between the generating variables ı and �) gives

�x2k � lim
t!1

hr2kx .t/i
.ht/k

D 3k=2C1

2
p
�

�.2k C 1/�.3Ck
2
/

�.k C 1/�.4Ck
2
/
2F1

 
1
2
; 1

2C 1
2
k
I 3
4

!
: (B.10)

As one would expect, �x2 D D´. The first two of these exact moments were used to construct the
analytical estimate of the marginal density profile in Fig. 3.8.
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C Corrections to finite size scaling
exponent

Here we show how the finite size scaling exponent �, which determines the finite size scaling
behaviour of the plateau in classical spin ice with truncated interactions between the monopoles
(Section 4.6.2), �p.L/ � L�� , is affected by the inclusion of blocked directions.

As shown in Sec. 4.6, the expression for the exponent � is given in terms of the ratio of the
rate of monopole-assisted decay, R, to the rate of monopole–antimonopole collision events, K
(during which the two monopoles either annihilate or form a new noncontractible pair); specifically,
� D 3R=K. In order to estimate the ratio R=K microscopically, we consider a symmetrical cluster
consisting of a central tetrahedron, and its first and second neighbouring tetrahedra (considering
only the first nearest neighbours reproduces R=K D 3=4, i.e., blocked directions have no effect at
this level). For concreteness, suppose that the central tetrahedron hosts a single, positively charged
monopole. This positively charged monopole is either (1) isolated, corresponding to the calculation
of the rate constant K, or (2) one half of a noncontractible pair, with its negatively charged partner
sitting on one of the first nearest-neighbour tetrahedra, corresponding to the calculation of R.
Assuming that there is an equal probability of finding the negatively charged monopole on any of
the second-neighbour sites, we then deduce that the ratio of rates equals

R
K D

P2

P1
; (C.1)

where Pn (n D 1; 2) is the probability that a negatively charged monopole situated at second-
neighbour distance is able to reach the positively charged monopole at the central site and annihilate
(for n D 2) or either annihilate or form a new noncontractible pair (for n D 1).
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(a) f D 6=7 (b) f D 3=5 (c) f D 0

Figure C.1: Fraction f of spin configurations in which the positively and negatively charged monopoles are
able to annihilate (or form a new noncontractible pair), for different configurations of spins on
the central tetrahedron (which hosts the positively charged monopole).

The probabilities Pn may then be computed by enumerating the possible spin configurations:

P1 D 1

N

NX
iD1

fi D 1

4

�
3 � 6

7
C 3

5

�
D 111

140
(C.2)

P2 D 1

N

NX
iD1

fi D 1

4

�
3 � 6

7
C 0

�
D 9

14
; (C.3)

where N � 12 is the number of second neighbours, and fi is the fraction of paths starting on site i
that can reach the central tetrahedron. In both expressions, the factor 6=7 corresponds to the fraction
of paths that are not blocked when the negatively charged monopole is approaching a vertex on
the central tetrahedron that hosts a majority spin (Fig. C.1a). Conversely, 3=5 of the paths are not
blocked when approaching the minority spin (Fig. C.1b), unless the first-neighbour site is occupied
by the negatively charged member of a noncontractible pair (Fig. C.1c), in which case the fraction
is zero. Using these probabilities, we obtain the ratio of rates

R
K D

30

37
: (C.4)

Finally, the finite size scaling exponent is therefore � D 90=37.
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D Double charge contribution

In this appendix we show that the presence of double monopoles does not significantly alter the
conclusions of our mean field modelling in Sec. 4.6 of the main text. In particular, we show by
explicitly solving the mean field equations governing the density of monopoles subject to truncated
interactions in the presence of double charges that, although the value of the plateau (in a finite
system) is altered, the finite size scaling exponent � remains unchanged. We argue that this feature
is true more generally—further modifications of the mean field equations may change the short-time
dynamics of the free monopole density, but leave its asymptotic decay (/ 1=t) unchanged. This
implies that the exponents derived in Sec. 4.6 are in some sense universal, while the precise value
of the plateau is not (by universal we mean that the exponents are independent of how precisely the
system is prepared, and are robust to the addition of terms in the mean field equations that lead to
modifications of the short-time dynamics).

In addition to the species considered in Sec. 4.6, we introduce two new densities, dq.t/ (where
q D ˙), which equal the fraction of sites that host a charge Q D ˙2, respectively. Notice that a
double charge can always decay by reacting with any of its neighbouring tetrahedra (be them empty,
occupied by a single or by a double charge), with the only exception being when it neighbours
a single charge of the same sign, in which case flipping the intervening spin merely swaps the
single and double charge without annihilating either of them. In principle the time evolution of
the double charges depends therefore on the evolution of the single monopole density. Indeed, the
average number of bonds surrounding an isolated double charge 2q along which it is able to decay
is 4.1 � �q/ at the mean field level, i.e., assuming that each site is independent. The asymptotic

decay of the double monopole density is however determined by neighbouring double charges of
opposite sign since the number of bonds along which the pair may decay is 7=2� 3.�q C � Nq/=2 per
site. Therefore, for all but the shortest times where the effect of nonzero �q cannot be neglected,
we expect the double charge density to decouple from the other monopole densities and to decay
exponentially with a rate constant Kd ' 7=2, i.e.,

ddq
dt
D �Kddq : (D.1)
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Figure D.1: Decay of the various monopole densities for a thermal quench from infinite temperature down
to T D 0:06 K in spin ice (system size L D 20, i.e., 128 000 spins). The double charge density
�d .t/ is consistent with exponential decay in time with rate constant Kd D 7=2. At very short
times, t . 1, the effect of a nonzero free monopole density cannot be neglected, and the rate of
double charge decay is reduced due to obstructed decay channels.

Adding the two equations for q D ˙, we obtain �d .t/ D �0
d
e�Kd t . This expectation is indeed

confirmed by our Monte Carlo simulations of CSI, where we observe asymptotic exponential decay
of the total double charge density �d .t/ D dC.t/C d�.t/ with time (see Fig. D.1), consistent with
the prediction Kd D 7=2.

The equation governing the free charge density �q must also be modified to include the effect of
double monopole decay:

d�q
dt
D �K�C�� C 2K0ddq.t/ : (D.2)

The rate constant K0
d

corresponds to the spontaneous decay channel into adjacent empty sites only,
implying that K0

d
< Kd . Hence, the effect of including a nonzero density of double charges on

the free monopole density is to add an exponentially decaying source term that corresponds to the
production of free monopoles when double charges decay spontaneously. If we took into account
spatial fluctuations, then we would also need to include a term / .dq� Nq � d Nq�q/ in this equation,
but at the mean field level, charge neutrality of the single and double charges separately implies
perfect cancellation of such a term. That is, when a single free charge q meets a double charge 2 Nq,
a free charge q is removed and a free charge Nq is created. However, the rate at which this process
occurs is identical for q D ˙. Substituting the exponential decay of �d .t/ into this equation, we
must solve the nonlinear equation

d�q
dt
CK�2q D K0d�0de�Kd t ; (D.3)

for �q.t/, in which we have made use of charge neutrality, �C.t/ D ��.t/. This equation has the
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exact solution
�q.t/ D yKd

2K
K1.y/ � cI1.y/
K0.y/C cI0.y/

; (D.4)

where we have written, for convenience of notation, y.t/ � 2
q
KK0

d
�0
d
=K2

d
e�Kd t=2. The constant

c is determined by the initial conditions �q.0/ D �0q, and In.x/ and Kn.x/ are modified Bessel
functions of the first and second kind, respectively.

Finally, the expression for �.t/ must also be modified for direct comparison with our numerical
results. When two double charges (of opposite sign) are adjacent to one another, the bond nec-
essarily hosts one contractible pair and one noncontractible pair. The number of adjacent doubly
occupied sites is simply proportional to �d .t/ at long times, and the corresponding contribution
to �.t/ contributes towards the kink in the noncontractible pair density observed in our numerical
simulations at the characteristic decay time t � K�1

d
of the double charges. At later times, the

equation for �.t/ remains unchanged�

d�
dt
D �1

2
R.�C C ��/�CK0�C�� : (D.5)

The form of the solution is

�.t/ D e�R‚.t/
�
�.0/ � K0

K

ˆ t

0

dt 0eR‚.t
0/ P�q.t 0/

�
; (D.6)

where we recall that ‚.t/ � ´ t
0

dt 0 �q.t 0/. Hence, the asymptotic behaviour of �.t/ is directly
determined by the asymptotic behaviour of �q.t/. In order to derive this behaviour, we require the
expansions of In.x/ and Kn.x/ for small values of the argument x [418]:

I0.x/ D 1CO.x2/ ; (D.7)

I1.x/ D 1

2
x CO.x3/ ; (D.8)

K0.x/ D � ln
e

2
x CO.x2 ln x/ ; (D.9)

K1.x/ D 1

x
C 1

2
x ln x CO.x/ ; (D.10)

�Including terms that correspond to the decay of neighbouring double charges into free monopoles gives rise to an
exponentially decaying contribution to �.t/.
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where  ' 0:5772 is the Euler–Mascheroni constant. These expansions allow us to deduce that

�q.t/ D Kd
2Ky

1=y C .y=2/ lny CO.y/
ln 2 � ln ey C c CO.y2 lny/

(D.11)

D 1

Kt CO
�
t�2
�
; (D.12)

independent of the initial conditions and independent of the initial rapid decay of double monopoles.
The subleading term / 1=t2 depends on the short-time dynamics through logy0 and through c.
Correspondingly, for sufficiently large times,

�.t/ / 1

.K�0qt /R=K
: (D.13)

The constant of proportionality is slightly renormalised in the presence of double charges since the
asymptotic expansion of the second term in (D.6) depends on

´1
0

dt eR‚ P�q, which in turn depends
on the full time-dependence of �q.t/, including its short-time dynamics. However, the exponent

� is insensitive to such details [being determined by the exponents of the leading terms in (D.12)
and (D.13)], and the scaling arguments presented in the main text remain robust to the addition of
doubly occupied sites. That is, the precise value of the plateau is sensitive to the addition of double
monopoles into the model, but the finite size scaling exponent � D 3R=K remains unchanged.

Similarly, when the charges are subject to mutual Coulombic interactions, if the leading term in
the asymptotic expansion of �q.t/ remains proportional to t�ˇ�1 , then the leading, time-independent
term in‚.t/ D const.CO.t�.1�ˇ/=ˇ / will be sensitive to the presence of double charges. Therefore,
since this term contributes to the value of the plateau in the thermodynamic limit, �1 from (4.6.18)
will be modified slightly in the presence of doubly occupied sites. However, the subleading
contribution (� t�.1�ˇ/=ˇ ), which determines the finite size scaling exponent �, will again be robust
to the addition of doubly occupied sites, and the relation � D 3.1�ˇ/, which relates the asymptotic
decay of �q to the finite size scaling behaviour, also remains unchanged.

More generally, adding further terms to our mean field equations (which depend on higher
powers of the various densities) will indeed modify the short-time dynamics of �q.t/. The precise
density at which the plateau occurs in a system of finite size in the case of truncated interactions, and
the value of the plateau in the thermodynamic limit in the case of long-range interactions depend –
through (D.6) – on the full history of �q.t/, and therefore will be modified. However, the asymptotic

behaviour of �q.t/, which directly determines the finite size scaling exponent � for both types of
interaction, is insensitive to such details.
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E Compass model dualities

In this appendix we describe in further detail the dualities that the compass Hamiltonian, studied in
Chapter 5, possesses. As exploited in the main text, the original compass model can be transformed
into a bond-disordered transverse field Ising model through the transformation (a two site version
of the standard Kramers–Wannier duality)

Oq´j D OZ1;j OZ2;j O�´j D OZ1;j (E.1)

Oqxj D OX2;j O�xj D OX1;j OX2;j (E.2)

Oqyj D OZ1;j OY2;j O�yj D OY1;j OX2;j : (E.3)

The new spin-1/2 degrees of freedom O�j and Oqj commute with one another and individually satisfy
the canonical angular momentum commutation relations. In these new variables, the compass
Hamiltonian [i.e., Eq. (5.2.1) in the main text] becomes

OH D �
L�1X
jD1

.�1 C �2 Oq´j Oq´jC1/ O�´j O�´jC1 ��
LX
jD1
O�xj : (E.4)

In this language, the local operators Oq´j are conserved quantities. Interchanging 1 $ 2 in the
mapping (E.1)–(E.3) swaps the role of �1 and �2 in (E.4).

Alternatively, one can perform a Kramers–Wannier duality along the two legs of the ladder of
the form OZ˛;j OZ˛;jC1 ! O�x˛;j , and OX˛;j ! O�´˛;j�1 O�´˛;j . This transformation gives rise to a square
plaquette Ising model in the presence of a transverse field:

OH D ��
X
p

Y
i2p
O�´i �

X
i

�i O�xi (E.5)

D ��
X
j

O�´1;j O�´2;j O�´1;jC1 O�´2;jC1 �
X
j;˛

�˛ O�x˛;j ; (E.6)

where the index i labels all the spins on both legs. The second line in the equation above uses a
different labelling scheme where j indexes the rungs of the ladder, and ˛ D 1; 2 identifies the legs,
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Figure E.1: Comparison of entanglement entropy for both the square plaquette ( OH�) and compass ( OHcompass)
models. The two models are dual to one another via the Kramers–Wannier transformation, up to
boundary effects. This leads to an O.L0/ discrepancy between the two models, but does not
affect the slow, logarithmic-in-time growth discussed in the main text. The curves are computed
using exact diagonalisation. Taking advantage of all symmetries of the models allows us to
reach 2L D 24 spins. Parameters �2 D � D 1, �1 D 1=2.

which are subjected to effective magnetic fields �1 and �2, respectively. The conserved quantities
are still products of two neighbouring spins belonging to the same rung: O�xj D O�x1;j O�x2;j , dual
to plaquette operators in the original compass model, Oq´j Oq´jC1 D OZ1;j OZ2;j OZ1;jC1 OZ2;jC1. If we
then perform a further Kramers–Wannier transformation along the rungs, we arrive at the Ising
model, which is leg-KW dual to (E.4), i.e., where the disorder is now in the on-site magnetic field.
Explicitly, implementing the transformation

OS´ D O�´1 O�´2 O�´ D O�´2 (E.7)

OSx D O�x1 O�x D O�x1 O�x2 (E.8)

OSy D O�y1 O�´2 O�y D O�x1 O�y2 ; (E.9)

we arrive at the field-disordered TFIM Hamiltonian

OH D ��
X
j

OS´j OS´jC1 �
X
j

.�1 C �2 O�xj / OSxj : (E.10)

If open boundary conditions are imposed on the compass spins, then this translates into fixed
boundary conditions for the O� spin variables (and, in turn, the OS and O� spins). The full KW
transformation may be written as

O�x˛;i D OZ˛;i OZ˛;iC1 .i < L/; O�x˛;L D OZ˛;L (E.11)

O�´˛;i D
Y
j�i
OX˛;j 8i ; (E.12)
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which translates into the following Hamiltonian including boundary effects:

OH D ��
LX
jD1
OS´j�1 OS´j �

L�1X
jD1

.�1 C �2 O�xj / OSxj ; (E.13)

where OS´0 D 1. The global Z2 symmetry of the original Ising Hamiltonian,
QL
jD1 O�xj , maps onto the

conserved boundary spin OS´L in the dual description.
To summarise, the compass ladder is leg Kramers–Wannier dual to the square plaquette model.

If open boundary conditions are imposed on the former, they manifest as fixed boundary conditions
in the latter. One may equivalently impose open boundary conditions on the plaquette Ising model,
leading to fixed boundary conditions imposed on the compass model. By virtue of the the local
duality between these models, the bulk (volume-law) contribution to the entanglement entropy is
equal in the two cases, and therefore we expect to see identical unbounded logarithmic growth
of entanglement in both models, up to O.L0/ differences due to the boundary effects discussed
above. This expectation is borne out in the numerics, as one may observe in Fig. E.1. The curves
are calculated using exact diagonalisation, taking advantage of the full Z2 � ZL2 symmetry of the
models. This allowed us to fully diagonalise systems of size up to and including 2L D 24 spins
(with Hilbert space dimension� 1:68 � 107).
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F Bogoliubov solution to TFIM

One may also diagonalise the 1D transverse field Ising Hamiltonian encountered in Chapter 5
without reference to the Majorana basis by making use of a Bogoliubov transformation. We describe
this process here. Bogoliubov fermions On are introduced via

Oci D
LX
nD1

�
uni On C vni O�n

�
; Oc�i D

LX
nD1

�
uni O�n C vni On

�
: (F.1)

Since the Bogoliubov single particle Hamiltonian is real and symmetric, the matrices uni and vni
may be chosen to be real. It is convenient to further introduce the quantities �ni D uni C vni and
 ni D uni � vni . In order to satisfy the canonical fermionic commutation relations, the matrices
must be orthogonal, �; 2 O.L/. Explicitly,

�Tin�nj D ıij D  Tin nj ; (F.2)

where repeated indices are summed over. We then proceed by writing the fermionised transverse
field Ising Hamiltonian [Eq. (5.2.4) in the main text] in the form

OH D
LX

i;jD1
Oc�i Aij Ocj C

1

2

�
Oc�i Bij Oc�j � OciBij Ocj

�
; (F.3)

where A is real and symmetric, A D AT , while B is real and skew-symmetric, B D �BT . In terms
of the matrices A and B , the single particle Hamiltonian takes a particularly convenient form

OH D 1

2

�
Oc� Oc

� A B

�B �A

! 
Oc
Oc�
!
: (F.4)

The real symmetric matrix appearing in (F.4) defines the single particle Hamiltonian hab 2 S2L.R/.
The matrix h is unitarily (and hence spectrally) equivalent to its negative, which means that its
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eigenvalues come in pairs˙�n
 
0 1

1 0

!
h

 
0 1

1 0

!
D �h : (F.5)

Once the single particle Hamiltonian has been diagonalised, and the single particle energies �n
found, the Hamiltonian can be brought into the canonical form OH D P

n �n. O�n On � 1
2
/, as in

Eq. (5.2.8) in the main text. In practice, one can make use of the symmetry (F.5) to diagonalise a
smaller L � L matrix:

LX
jD1

Œ.A � B/.AC B/�ij �nj D �2n�ni ; (F.6)

LX
jD1

Œ.AC B/.A � B/�ij  nj D �2n ni : (F.7)

Finally, it is useful for the calculation of Lyapunov exponents to rewrite the single particle Hamilto-
nian by reordering the operators such that Oci and Oc�i appear next to one another. The single particle
Hamiltonian then becomes the banded matrix

h D

0
BBBBB@

2h1�3 �J1S
�J1ST 2h2�3 �J2S

�J2ST 2h3�3
: : :

: : :
: : :

1
CCCCCA
; (F.8)

where �3 is the third Pauli matrix, and S D � 1 1�1 �1
�
. One again, we can make use of an expedient

unitary transformation, which in this case brings the Hamiltonian into tridiagonal form. Specifically,
we perform the local unitary transformation

Uj D 1p
2

 
1 1

1 �1

!
(F.9)

on each site, U DLL
jD1 Uj , which leads to the following tridiagonal matrix:

h D 2

0
BBBBBBB@

0 h1

h1 0 �J2
�J2 0 h2

h2 0
: : :

: : :
: : :

1
CCCCCCCA
: (F.10)
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G Dephasing perturbation theory

Here we present the second order perturbation theory expressions for the effective interactions
between eigenstate occupation numbers, which were used to explain the logarithmic growth of
entanglement observed in Chapter 5. The perturbation theory is most easily performed in the OSi
language, which are the Ising spins rung Kramers–Wannier dual to the plaquette Ising model (5.2.3)
(introduced in further detail in Appendix E). In this basis, the perturbation takes the form OH 0 �
� OS´i OS´iC1, where the bond between sites i and i C 1 corresponds to the centre of the chain. In the
Majorana language this perturbation may be written as OH 0 D i� Oa2i Oa2iC1. Alternatively, OH 0 can be
written in terms of the eigenbasis of the unperturbed system, OH D i

2

P
k �k
O�2k�1 O�2k, where the

two halves are independent

OH 0 D i�
X
k;p

 ki�p;iC1 O�2k O�2p�1 ; (G.1)

or, in terms of the corresponding Bogoliubov fermions,

OH 0 D �
X
k;p

 ki�p;iC1. Ok � O�k /. Op C O�p / : (G.2)

Perturbation theory can now be applied using the basis jfnkgi of unperturbed eigenstates. We are
not concerned with the first order contribution, since it does not contribute to the logarithmic growth.
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At second order, each of the four terms in OH 0 give rise to a contribution

O�
k
O�p W �2

X
k¤p

�1
��p � �k

. p;i�k;iC1 �  k;i�p;iC1/ k;i�p;iC1.1 � nk/.1 � np/ (G.3)

Ok Op W �2
X
k¤p

C1
C�k C �p . p;i�k;iC1 �  k;i�p;iC1/ k;i�p;iC1nknp (G.4)

O�
k
Op W �2

X
k¤p

C1
C�k � �p . p;i�k;iC1 C  k;i�p;iC1/ k;i�p;iC1.1 � np/nk (G.5)

Ok O�p W �2
X
k¤p

�1
C�p � �k . p;i�k;iC1 C  k;i�p;iC1/ k;i�p;iC1np.1 � nk/ : (G.6)

The above terms can then be combined to arrive at the energy of a state specified by occupation
numbers, nk D 0; 1, of the Bogoliubov fermions

E.fnkg/ D E0.fnkg/C �E1.fnkg/C �2
X
k¤p

�
Fkpınk ;np CGkpınk ;1�np

�
: (G.7)

where the functions Fkp and Gkp may be read off from above. Alternatively, the energy can be
written in terms of Ising variables f�kg defined by �k D 2nk � 1, which allows second order
contribution to be written as

X
k¤p

�
Fk;pınk ;np CGk;pınk ;1�np

� D 1

2

X
k¤p

.Fkp CGkp/C 1

2

X
k¤p

.Fkp �Gkp/�k�p : (G.8)

The spin-independent term can be absorbed into E0, and the interaction Jkp between the Ising spins
can be defined without loss of generality as the symmetric part of 1

2
.Fkp �Gkp/. The exponential

decay of the interactions follows directly from the localised nature of the wave functions  p;i and
�p;i . Specifically, the (normalised) wave functions typically behave as  p;i � e�ji�rp j=�=

p
� (and

similarly for �p;i , although it should be noted that the two are not independent from one another),
where rp is the centre of localisation of the pth eigenstate. Therefore, the interactions behave
qualitatively as

Jkp � 1

�2
e�2ji�rk j=��2ji�rp j=� D 1

�2
e�2jrk�rp j=� ; (G.9)

if i is situated between the two eigenfunctions, rk < i < rp.
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[351] Maksym Serbyn, Z. Papić, and D. A. Abanin, Quantum quenches in the many-body localized
phase, Phys. Rev. B 90, 174302 (2014).

[352] Dong-Ling Deng, Xiaopeng Li, J. H. Pixley, Yang-Le Wu, and S. Das Sarma, Logarithmic
entanglement lightcone in many-body localized systems, Phys. Rev. B 95, 024202 (2017).

[353] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Quantum revivals and many-body
localization, Phys. Rev. B 91, 140202 (2015).

[354] Sarang Gopalakrishnan, Markus Müller, Vedika Khemani, Michael Knap, Eugene Demler,
and David A. Huse, Low-frequency conductivity in many-body localized systems, Phys. Rev.
B 92, 104202 (2015).

[355] Elbio Dagotto, Experiments on ladders reveal a complex interplay between a spin-gapped
normal state and superconductivity, Reports on Progress in Physics 62, 1525–1571 (1999).

– 221 –

http://dx.doi.org/10.1103/PhysRevLett.102.176802
http://dx.doi.org/ 10.1103/PhysRevLett.108.156602
http://dx.doi.org/ 10.1103/PhysRevB.91.035113
http://dx.doi.org/ 10.1103/PhysRevB.91.035113
http://dx.doi.org/10.1038/srep13503
http://dx.doi.org/10.1103/PhysRevB.80.014405
http://arxiv.org/abs/1403.0693
http://dx.doi.org/10.1103/PhysRevB.90.174302
http://dx.doi.org/10.1103/PhysRevB.95.024202
http://dx.doi.org/ 10.1103/PhysRevB.91.140202
http://dx.doi.org/10.1103/PhysRevB.92.104202
http://dx.doi.org/10.1103/PhysRevB.92.104202
http://dx.doi.org/10.1088/0034-4885/62/11/202


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[356] Loredana M. Vasiloiu, Federico Carollo, Matteo Marcuzzi, and Juan P. Garrahan, Strong
zero modes in a class of generalized ising spin ladders with plaquette interactions, Phys. Rev.
B 100, 024309 (2019).

[357] Desmond A Johnston and Ranasinghe PKCM Ranasinghe, (four) dual plaquette 3d ising
models, Entropy 22, 633 (2020).

[358] Rahul M. Nandkishore and Michael Hermele, Fractons, Annual Review of Condensed Matter
Physics 10, 295–313 (2019).

[359] Abhinav Prem, Jeongwan Haah, and Rahul Nandkishore, Glassy quantum dynamics in
translation invariant fracton models, Phys. Rev. B 95, 155133 (2017).

[360] Cenke Xu and J. E. Moore, Strong-weak coupling self-duality in the two-dimensional
quantum phase transition of p C ip superconducting arrays, Phys. Rev. Lett. 93, 047003
(2004).

[361] Cenke Xu and J.E. Moore, Reduction of effective dimensionality in lattice models of super-
conducting arrays and frustrated magnets, Nuclear Physics B 716, 487–508 (2005).

[362] Zohar Nussinov and Eduardo Fradkin, Discrete sliding symmetries, dualities, and self-
dualities of quantum orbital compass models and p C ip superconducting arrays, Phys. Rev.
B 71, 195120 (2005).

[363] Roger A. Horn and Charles R. Johnson, Matrix Analysis (Cambridge University Press, 1985).

[364] David A. Huse, Rahul Nandkishore, Vadim Oganesyan, Arijeet Pal, and S. L. Sondhi,
Localization-protected quantum order, Phys. Rev. B 88, 014206 (2013).

[365] David Pekker, Gil Refael, Ehud Altman, Eugene Demler, and Vadim Oganesyan, Hilbert-
glass transition: New universality of temperature-tuned many-body dynamical quantum
criticality, Phys. Rev. X 4, 011052 (2014).

[366] Jonas A. Kjäll, Jens H. Bardarson, and Frank Pollmann, Many-body localization in a
disordered quantum ising chain, Phys. Rev. Lett. 113, 107204 (2014).

[367] Daniel S. Fisher, Critical behavior of random transverse-field ising spin chains, Phys. Rev. B
51, 6411–6461 (1995).

[368] Maurizio Fagotti and Pasquale Calabrese, Entanglement entropy of two disjoint blocks
inXYchains, Journal of Statistical Mechanics: Theory and Experiment 2010, P04016 (2010).

– 222 –

http://dx.doi.org/10.1103/PhysRevB.100.024309
http://dx.doi.org/10.1103/PhysRevB.100.024309
http://dx.doi.org/ 10.3390/e22060633
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://dx.doi.org/10.1103/PhysRevB.95.155133
http://dx.doi.org/10.1103/PhysRevLett.93.047003
http://dx.doi.org/10.1103/PhysRevLett.93.047003
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysb.2005.04.003
http://dx.doi.org/ 10.1103/PhysRevB.71.195120
http://dx.doi.org/ 10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1017/CBO9780511810817
http://dx.doi.org/10.1103/PhysRevB.88.014206
http://dx.doi.org/ 10.1103/PhysRevX.4.011052
http://dx.doi.org/ 10.1103/PhysRevLett.113.107204
http://dx.doi.org/ 10.1103/PhysRevB.51.6411
http://dx.doi.org/ 10.1103/PhysRevB.51.6411
http://dx.doi.org/ 10.1088/1742-5468/2010/04/p04016


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[369] Elliott Lieb, Theodore Schultz, and Daniel Mattis, Two soluble models of an antiferromag-
netic chain, Annals of Physics 16, 407 – 466 (1961).

[370] J.H.H. Perk, H.W. Capel, G.R.W. Quispel, and F.W. Nijhoff, Finite-temperature correlations
for the ising chain in a transverse field, Physica A: Statistical Mechanics and its Applications
123, 1 – 49 (1984).

[371] Shreya Vardhan, Giuseppe De Tomasi, Markus Heyl, Eric J. Heller, and Frank Pollmann,
Characterizing time irreversibility in disordered fermionic systems by the effect of local
perturbations, Phys. Rev. Lett. 119, 016802 (2017).

[372] Max McGinley, Andreas Nunnenkamp, and Johannes Knolle, Slow growth of out-of-time-
order correlators and entanglement entropy in integrable disordered systems, Phys. Rev. Lett.
122, 020603 (2019).

[373] Giuseppe De Tomasi, Sthitadhi Roy, and Soumya Bera, Generalized dyson model: Nature
of the zero mode and its implication in dynamics, Phys. Rev. B 94, 144202 (2016).

[374] Bernd Braunecker, Response of a fermi gas to time-dependent perturbations: Riemann-hilbert
approach at nonzero temperatures, Phys. Rev. B 73, 075122 (2006).

[375] Bruno Tomasello, Claudio Castelnovo, Roderich Moessner, and Jorge Quintanilla, Correlated
quantum tunneling of monopoles in spin ice, Phys. Rev. Lett. 123, 067204 (2019).

[376] Matthew Stern, Claudio Castelnovo, Roderich Moessner, Vadim Oganesyan, and Sarang
Gopalakrishnan, Quantum percolation of monopole paths and the response of quantum spin
ice, (2019), arXiv:1911.05742 [cond-mat.stat-mech] .

[377] Yoshifumi Tokiwa, Takuya Yamashita, Daiki Terazawa, Kenta Kimura, Yuichi Kasahara,
Takafumi Onishi, Yasuyuki Kato, Mario Halim, Philipp Gegenwart, Takasada Shibauchi,
Satoru Nakatsuji, Eun-Gook Moon, and Yuji Matsuda, Discovery of emergent photon and
monopoles in a quantum spin liquid, Journal of the Physical Society of Japan 87, 064702
(2018).

[378] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, L. Rettig, M. Krenz, J.-H. Chu,
N. Ru, L. Perfetti, D. H. Lu, M. Wolf, I. R. Fisher, and Z.-X. Shen, Transient Electronic
Structure and Melting of a Charge Density Wave in TbTe3, Science 321, 1649–1652 (2008).

[379] W Kuehn, K Reimann, M Woerner, T Elsaesser, and R Hey, Two-dimensional terahertz
correlation spectra of electronic excitations in semiconductor quantum wells, The Journal of
Physical Chemistry B 115, 5448–5455 (2011).

– 223 –

http://dx.doi.org/ https://doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/ https://doi.org/10.1016/0378-4371(84)90102-X
http://dx.doi.org/ https://doi.org/10.1016/0378-4371(84)90102-X
http://dx.doi.org/10.1103/PhysRevLett.119.016802
http://dx.doi.org/10.1103/PhysRevLett.122.020603
http://dx.doi.org/10.1103/PhysRevLett.122.020603
http://dx.doi.org/10.1103/PhysRevB.94.144202
http://dx.doi.org/10.1103/PhysRevB.73.075122
http://dx.doi.org/ 10.1103/PhysRevLett.123.067204
http://arxiv.org/abs/1911.05742
http://dx.doi.org/ 10.7566/JPSJ.87.064702
http://dx.doi.org/ 10.7566/JPSJ.87.064702
http://dx.doi.org/ 10.1126/science.1160778
http://dx.doi.org/ 10.1021/jp1099046
http://dx.doi.org/ 10.1021/jp1099046


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[380] Michael Woerner, Wilhelm Kuehn, Pamela Bowlan, Klaus Reimann, and Thomas Elsaesser,
Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids, New
Journal of Physics 15, 025039 (2013).

[381] Margherita Maiuri, Marco Garavelli, and Giulio Cerullo, Ultrafast spectroscopy: State of
the art and open challenges, Journal of the American Chemical Society 142, 3–15 (2019).

[382] D. Jaksch and P. Zoller, The cold atom hubbard toolbox, Annals of Physics 315, 52–79
(2005), special Issue.

[383] Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De), and
Ujjwal Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics
and beyond, Advances in Physics 56, 243–379 (2007).

[384] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger, Many-body physics with ultracold
gases, Rev. Mod. Phys. 80, 885–964 (2008).

[385] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbene, Quantum simulations with
ultracold quantum gases, Nature Physics 8, 267–276 (2012).

[386] Christian Gross and Immanuel Bloch, Quantum simulations with ultracold atoms in optical
lattices, Science 357, 995–1001 (2017).

[387] Rainer Blatt and Christian F Roos, Quantum simulations with trapped ions, Nature Physics 8,
277–284 (2012).

[388] Ch Schneider, Diego Porras, and Tobias Schaetz, Experimental quantum simulations of
many-body physics with trapped ions, Reports on Progress in Physics 75, 024401 (2012).

[389] Jiehang Zhang, Guido Pagano, Paul W Hess, Antonis Kyprianidis, Patrick Becker, Harvey
Kaplan, Alexey V Gorshkov, Z-X Gong, and Christopher Monroe, Observation of a many-
body dynamical phase transition with a 53-qubit quantum simulator, Nature 551, 601–604
(2017).

[390] Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, and Hans Peter Büchler, A
rydberg quantum simulator, Nature Physics 6, 382–388 (2010).

[391] Andrew A Houck, Hakan E Türeci, and Jens Koch, On-chip quantum simulation with
superconducting circuits, Nature Physics 8, 292–299 (2012).

[392] Gheorghe-Sorin Paraoanu, Recent progress in quantum simulation using superconducting
circuits, Journal of Low Temperature Physics 175, 633–654 (2014).

– 224 –

http://dx.doi.org/ 10.1088/1367-2630/15/2/025039
http://dx.doi.org/ 10.1088/1367-2630/15/2/025039
http://dx.doi.org/ 10.1021/jacs.9b10533
http://dx.doi.org/https://doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/https://doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/ 10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/ 10.1126/science.aal3837
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/ 10.1088/0034-4885/75/2/024401
http://dx.doi.org/10.1038/nature24654
http://dx.doi.org/10.1038/nature24654
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/ 10.1038/nphys2251
http://dx.doi.org/10.1007/s10909-014-1175-8


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[393] Iulia Buluta and Franco Nori, Quantum simulators, Science 326, 108–111 (2009).

[394] I. M. Georgescu, S. Ashhab, and Franco Nori, Quantum simulation, Rev. Mod. Phys. 86,
153–185 (2014).

[395] K. J. Satzinger et al., Realizing topologically ordered states on a quantum processor, (2021),
arXiv:2104.01180 [quant-ph] .

[396] Giulia Semeghini et al., Probing topological spin liquids on a programmable quantum
simulator, (2021), arXiv:2104.04119 [quant-ph] .

[397] Chao-Yang Lu, Wei-Bo Gao, Otfried Gühne, Xiao-Qi Zhou, Zeng-Bing Chen, and Jian-Wei
Pan, Demonstrating anyonic fractional statistics with a six-qubit quantum simulator, Phys.
Rev. Lett. 102, 030502 (2009).

[398] J K Pachos, W Wieczorek, C Schmid, N Kiesel, R Pohlner, and H Weinfurter, Revealing
anyonic features in a toric code quantum simulation, New J. Phys. 11, 083010 (2009).

[399] Annie Jihyun Park, Emma McKay, Dawei Lu, and Raymond Laflamme, Simulation of any-
onic statistics and its topological path independence using a seven-qubit quantum simulator,
New Journal of Physics 18, 043043 (2016).

[400] Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia, C.-Y. Lu,
Siyuan Han, Jian-Wei Pan, and H. Wang, Emulating anyonic fractional statistical behavior
in a superconducting quantum circuit, Phys. Rev. Lett. 117, 110501 (2016).

[401] Han-Ning Dai, Bing Yang, Andreas Reingruber, Hui Sun, Xiao-Fan Xu, Yu-Ao Chen, Zhen-
Sheng Yuan, and Jian-Wei Pan, Four-body ring-exchange interactions and anyonic statistics
within a minimal toric-code hamiltonian, Nature Physics 13, 1195–1200 (2017).

[402] Zhihuang Luo, Jun Li, Zhaokai Li, Ling-Yan Hung, Yidun Wan, Xinhua Peng, and Jiangfeng
Du, Experimentally probing topological order and its breakdown through modular matrices,
Nature Physics 14, 160–165 (2018).

[403] Chao Song, Da Xu, Pengfei Zhang, Jianwen Wang, Qiujiang Guo, Wuxin Liu, Kai Xu, Hui
Deng, Keqiang Huang, Dongning Zheng, Shi-Biao Zheng, H. Wang, Xiaobo Zhu, Chao-Yang
Lu, and Jian-Wei Pan, Demonstration of topological robustness of anyonic braiding statistics
with a superconducting quantum circuit, Phys. Rev. Lett. 121, 030502 (2018).

[404] Christian Kraglund Andersen, Ants Remm, Stefania Lazar, Sebastian Krinner, Nathan
Lacroix, Graham J Norris, Mihai Gabureac, Christopher Eichler, and Andreas Wallraff,
Repeated quantum error detection in a surface code, Nature Physics 16, 875–880 (2020).

– 225 –

http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/ 10.1103/RevModPhys.86.153
http://dx.doi.org/ 10.1103/RevModPhys.86.153
http://arxiv.org/abs/2104.01180
http://arxiv.org/abs/2104.04119
http://dx.doi.org/ 10.1103/PhysRevLett.102.030502
http://dx.doi.org/ 10.1103/PhysRevLett.102.030502
http://stacks.iop.org/1367-2630/11/i=8/a=083010
http://dx.doi.org/10.1088/1367-2630/18/4/043043
http://dx.doi.org/ 10.1103/PhysRevLett.117.110501
http://dx.doi.org/ 10.1038/nphys4243
http://dx.doi.org/10.1038/nphys4281
http://dx.doi.org/10.1103/PhysRevLett.121.030502
http://dx.doi.org/ 10.1038/s41567-020-0920-y


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[405] Alexander Erhard, Hendrik Poulsen Nautrup, Michael Meth, Lukas Postler, Roman Stricker,
Martin Stadler, Vlad Negnevitsky, Martin Ringbauer, Philipp Schindler, Hans J Briegel, et al.,
Entangling logical qubits with lattice surgery, Nature 589, 220–224 (2021).

[406] Jian Lu, Xian Li, Harold Y. Hwang, Benjamin K. Ofori-Okai, Takayuki Kurihara, Tohru
Suemoto, and Keith A. Nelson, Coherent two-dimensional terahertz magnetic resonance
spectroscopy of collective spin waves, Phys. Rev. Lett. 118, 207204 (2017).

[407] Yuan Wan and N. P. Armitage, Resolving continua of fractional excitations by spinon echo
in thz 2d coherent spectroscopy, Phys. Rev. Lett. 122, 257401 (2019).

[408] Fahad Mahmood, Dipanjan Chaudhuri, Sarang Gopalakrishnan, Rahul Nandkishore, and
NP Armitage, Observation of a marginal fermi glass, Nature Physics , 1–5 (2021).

[409] Wonjune Choi, Ki Hoon Lee, and Yong Baek Kim, Theory of two-dimensional nonlinear
spectroscopy for the kitaev spin liquid, Phys. Rev. Lett. 124, 117205 (2020).

[410] Rahul M. Nandkishore, Wonjune Choi, and Yong Baek Kim, Spectroscopic fingerprints
of gapped quantum spin liquids, both conventional and fractonic, Phys. Rev. Research 3,
013254 (2021).

[411] Zi-Long Li, Masaki Oshikawa, and Yuan Wan, Photon echo from lensing of fractional
excitations in tomonaga-luttinger spin liquid, (2021), arXiv:2103.08122 [cond-mat.str-el] .

[412] S. A. Parameswaran and S. Gopalakrishnan, Asymptotically exact theory for nonlinear
spectroscopy of random quantum magnets, Phys. Rev. Lett. 125, 237601 (2020).

[413] Michele Fava, Sounak Biswas, Sarang Gopalakrishnan, Romain Vasseur, and S. A.
Parameswaran, Hydrodynamic non-linear response of interacting integrable systems, (2021),
arXiv:2103.06899 [cond-mat.str-el] .

[414] Andrew D King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew
Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al., Observation
of topological phenomena in a programmable lattice of 1,800 qubits, Nature 560, 456–460
(2018).

[415] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk,
C. Deng, C. Enderud, S. Huang, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky,
T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-
Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, and J. Yao,
Phase transitions in a programmable quantum spin glass simulator, Science 361, 162–165
(2018).

– 226 –

http://dx.doi.org/ 10.1038/s41586-020-03079-6
http://dx.doi.org/ 10.1103/PhysRevLett.118.207204
http://dx.doi.org/10.1103/PhysRevLett.122.257401
http://dx.doi.org/10.1038/s41567-020-01149-0
http://dx.doi.org/ 10.1103/PhysRevLett.124.117205
http://dx.doi.org/10.1103/PhysRevResearch.3.013254
http://dx.doi.org/10.1103/PhysRevResearch.3.013254
http://arxiv.org/abs/2103.08122
http://dx.doi.org/10.1103/PhysRevLett.125.237601
http://arxiv.org/abs/2103.06899
http://dx.doi.org/ 10.1038/s41586-018-0410-x
http://dx.doi.org/ 10.1038/s41586-018-0410-x
http://dx.doi.org/10.1126/science.aat2025
http://dx.doi.org/10.1126/science.aat2025


OLIVER HART NONZERO TEMPERATURES AND EMERGENT DISORDER. . .

[416] D wave Systems Inc, D-wave system documentation, https://docs.dwavesys.com/
docs/latest/index.html.

[417] Claudio Castelnovo, Mark I. Dykman, Vadim N. Smelyanskiy, Roderich Moessner, and
Leonid P. Pryadko, Dephasing with strings attached, Phys. Rev. B 97, 085121 (2018).

[418] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas,

Graphs, and Mathematical Tables, Applied mathematics series (Dover Publications, 1965).

– 227 –

https://docs.dwavesys.com/docs/latest/index.html
https://docs.dwavesys.com/docs/latest/index.html
http://dx.doi.org/10.1103/PhysRevB.97.085121

	Introduction
	Thesis outline
	Quantum mechanical entanglement
	Entanglement and the Schmidt decomposition
	Entanglement in condensed matter systems
	Mixed state entanglement

	Temperature in quantum mechanical systems
	Relaxation and thermalisation in open quantum systems
	Thermalisation of closed quantum systems

	A brief introduction to spin liquids
	Kitaev's toric code model
	Ising Z_2 lattice gauge theory
	Classical spin ice
	Quantum spin ice and U(1) lattice gauge theory
	Kitaev's honeycomb model

	Localisation phenomena
	Anderson localisation
	Many-body localisation
	Disorder-free localisation


	Entanglement negativity in the toric code
	Motivation
	Mixed state separability
	PPT criterion
	The entanglement negativity
	The replica method

	Calculations
	Star plaquette pair
	Extended boundary

	Discussion

	Dynamics of spinons at finite temperature
	Motivation
	 Hopping Hamiltonian and perturbation theory
	Perturbation theory and effective Hamiltonians
	Spinon vacuum
	Effective Hamiltonian for an isolated spinon
	Finite temperature

	Lattice walks
	Single-particle Green's function
	Density evolution
	Interpretation

	Self-retracing paths: Generating functions
	Closed walks
	Open walks
	Constrained closed walks
	Nonreversing walks

	Analytical results
	Single spinon density of states
	Single spinon Green's function
	Spinon density profile

	Numerical results
	Finite temperature

	Conclusions

	Thermal quenches in classical spin ice
	 Motivation 
	Monte Carlo methods
	Single spin flip dynamics
	Waiting time Monte Carlo

	 Background and summary of results 
	 Models
	 Classical spin ice
	 Charges on diamond lattice

	 Monte Carlo Simulations
	Classical spin ice
	Charges on diamond lattice

	 Summary and mean field modelling
	 Short-time dynamics 
	 Truncated interactions 
	Long-range Coulomb interactions

	 Conclusions 

	Logarithmic growth of entanglement in a two-leg ladder
	Motivation
	Models and mappings
	Exact solution
	Anderson localisation

	Entanglement growth
	Dynamical structure factor
	Exponentially weak dephasing
	Discussion

	Conclusions and outlook
	Summary
	Outlook and future directions

	Diffusion on other lattices
	Toric code on the kagome lattice
	Triangular lattice
	Honeycomb lattice

	Higher order moments
	Corrections to finite size scaling exponent
	Double charge contribution
	Compass model dualities
	Bogoliubov solution to TFIM
	Dephasing perturbation theory

