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Abstract  

This paper presents a paradigm shift with respect to the current direction of bi-phasic 

reactions in surfactant-free emulsions: herein, the contact area between both phases is simply 

sustained by the reactor design (i.e. diameter of the tubular reactor) compared to the current 

trend of using reversible/switchable emulsions where the addition of an external agent (e.g. 

bi-stable surfactant, magnetic particles, etc.) is required. In this way, temporally stable phase 

dispersions using micro-tubular reactors facilitate the integration of reaction and separation 

steps in bi-phasic systems without the need for energy-intensive downstream separation steps. 

In this study, we demonstrate this innovative tool in the epoxidation reaction of sunflower oil 

with hydrogen peroxide. Using a combination of mechanistic and kinetic studies, we 

demonstrate that the poor solubility of the catalytic species in the oil phase may be used 

advantageously, allowing ready recyclability of catalyst (and oxidant) in consecutive runs. 
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Introduction 

The design of chemical processes with a focus on the minimisation of energy 

consumption and use of materials during the separation steps is an attractive way of 

moderating the environmental impact in an economically beneficial manner. Thus, this 

strategy is defined as one of the principles of green engineering,
1
. In this context, the 

poor miscibility of bio-derived oily feedstocks with water presents an attractive 

opportunity for the integration of reaction and separation steps to facilitate catalyst 

recyclability and product purification. It is easy to envisage a solvent-free multi-phasic 

system where the reactants and/or products are immiscible in the catalytic solution in 

the absence of organic solvents. A classic example of this type of system is the green 

oxidation of organic substrates using hydrogen peroxide as green oxidant, where 

homogeneous tungsten-based catalysts act as oxygen mediators between phases.
2
 In 

order to avoid mass transfer limitations, a number of phase transfer agents have been 

developed to ease the transfer of the catalytic species between aqueous and organic 

phases. Different strategies have ranged from the introduction of specific counterions 

to the active catalytic species
3, 4

 to the incorporation of ligands to promote the phase 

transfer.
5
 However, despite providing satisfactory rate of reactions, these strategies 

have a detrimental effect on the catalyst recyclability.  

An alternative approach is the promotion of the reaction by increasing the liquid-liquid 

contact area by dispersion of one phase into the other, forming emulsified reaction 

systems, as demonstrated in a number of examples.
6, 7

 In the majority of these cases, 

amphiphilic compounds, usually surfactants with hydrophilic head groups and 
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lipophilic tails, are used to support the phase dispersion and consequently increase the 

interface area. However, the presence of surfactants in the interface can retard the 

transfer of specific compounds between phases. Although the stabilisation of a liquid-

liquid interface is often a primary goal for many formulation scientists in the 

pharmaceutical, food and consumer products industries, it introduces an energy 

requirement for the post-reaction separation of phases in reactive systems. Obvious 

disadvantages raise when one of the phases has to be potentially recycle.  

The use of solid particles such as nanocrystallites, colloidosomes and microgels are 

also able to stabilise phase dispersions as Pickering emulsions,
8
 providing tri-phasic 

liquid-solid-liquid reaction systems with easy separation by the removal of the 

particles using classical filtration or centrifugation. Alternative approaches to facilitate 

the integration of the reaction and the separation steps include the use of responsive 

surfactants with controllable stabilities sensitive to temperature,
9, 10

 pH of the 

solution,
11

 electrical potential,
12, 13

 light
14, 15

 or presence of CO2.
16

 However, despite the 

impressive progress in the field, the use of such amphiphilic compounds (surfactants or 

solid particles) usually increases the carbon footprint of the overall process by 

increasing the energy required on downstream separation units with its obvious 

economic implications. 

 

A more elegant way is the promotion of the liquid-liquid contact area by means of 

reactor design. Indeed, microreactors have been successfully used to produce 

dispersions with uniform droplet sizes by careful control of the sheer forces in different 

channel configurations.
17, 18

 In this paper, we present the combination of mechanistic 

and kinetic studies for the integration of the epoxidation reaction and the catalyst 

separation steps using micro-volumetric reactors where phase dispersion is temporally 
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sustained by the reactor dimensions in the absence of surfactants. At the exit of the 

reactor, phase separation takes place spontaneously, without any added energy input, 

due to the difference of densities of the phases, allowing the catalyst and/or reactants to 

be easily recycled in consecutive runs. 

 

Experimental procedures 

Sodium tungstate dihydrate (>99.0% purity), glacial acetic acid, hydrogen peroxide (35 

wt.% aqueous solution) and sorbitan monolaurate, SPAN®20, were purchased from 

Sigma Aldrich and used without further purification. Sunflower seed oil (density 918 g 

L
-1

) was purchased from J. Sainsbury plc. The fatty acid profile of the sunflower oil 

was characterised using 
1
H NMR spectroscopic, following the methods described by 

Knothe and Kenar
19

. The oil consisted of a mixture of C18:2 (57.3%), C18:1 (35%) and 

C18:0 (7.7%), with no C18:3 detected. The average degree of unsaturated sites per 

molecule as nalkene / ntriglyceride was calculated as 1.496, and the concentration of double 

bonds in the oil as 1.55 mol L
-1

.  

 

Bi-phasic epoxidation reactions were carried out in a 46’ (14 m) long tubular 

HALAR® reactor with a 0.03” (0.76 mm) internal diameter and a total volume of 6.36 

mL. The aqueous and oil phases were introduced in the reactor using two Harvard 

Apparatus 11 plus syringe pumps. A T- junction injection was used to disperse the 

aqueous phase into the oil phase by varying their relative flowrates. The aqueous phase 

consisted of a 3 M H2O2 solution with Na2WO4 catalyst concentrations varying 

between 0.1 and 0.4 M. In all cases, the Na2WO4:acetic acid molar ratio was constant 

at 0.05. Negligible epoxidation conversion was observed in the absence of Na2WO4 

catalyst, confirming that the potential in-situ formation of peracetic acid in the system 
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is not the primary oxidant specie in the reactions shown herein.  The oil phase 

consisted of pure sunflower seed oil, except in the reactions in the presence of 

surfactant, SPAN®20, where the corresponding amount of surfactant (10 vol.%) was 

pre-dissolved in the oil. Although in the presence of surfactant the oil to aqueous 

volume ratio is the same than in its absence, the tryglycerides to aqueous ratio slightly 

lowers. However, this variation has been considered when calculating the rate of 

reaction. The reaction temperature was controlled by immersing the reactor in a heated 

paraffin bath. At the exit of the reactor, the reaction mixture was cooled in an ice/water 

bath where both phases spontaneously separated due to the difference in densities.  

Aliquots of the reaction mixture were characterised using 
1
H NMR spectroscopic 

analysis of samples of the oil phase extracted into CDCl3 and dried using magnesium 

sulphate. The conversion of alkene to epoxide was followed by comparison of the 

integrated area of the alkene signals at 5.25-5.50 ppm with that of the triplet 

corresponding to the epoxide signal at 2.96 ppm, using the glycerol CH signal (4.4-4.0 

ppm) as an internal standard. As the important quantity here is the number of double 

bonds converted to epoxides, we do not convert these values to concentration of 

epoxidised oil. No epoxide opening was detected under the conditions of the 

experiment, as verified by the absence of signals due to HC-OH in the region δ = 3.5-3.7 

ppm (as ring opened diols are readily extracted into CDCl3 and this region of the spectrum is 

uncluttered by signals due to other protons, ring opening would be readily detected at levels 

above ca 1 %). 

 

The overall rate of reaction was calculated using equation (1) where C=,initial is the 

initial concentration of double bonds in the oil phase (1.55 mol L
-1

), X is the 
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conversion, Voil is the volume of the oil phase, tR is the residence time and Vreactor is the 

volume of the reactor. 

rate (
𝑚𝑜𝑙𝑎𝑙𝑘𝑒𝑛𝑒

𝐿 ∙ 𝑚𝑖𝑛
) =  

𝐶=,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ 𝑋 ∙ 𝑉𝑜𝑖𝑙

𝑡𝑅 ∙ 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟
 

(1) 

 

In the recycle studies, the oil and aqueous phases were repeatedly recycled in 

consecutive runs. To avoid artefacts due to the parallel decomposition of hydrogen 

peroxide during and between runs, the hydrogen peroxide, catalyst and acetic acid 

concentrations in the aqueous phase was adjusted back to its original values prior each 

recycle run. 

 

The contact area between the aqueous and oil phases was measured by imaging the 

dispersions using a digital microcapture camera. A minimum of ten images were taken 

every 30 seconds, to gain an even spread at steady state operation and ensure the 

regularity of the dispersion. In the case of the slugs, only the front and back distorted 

hemispheres of the slugs were included in the contact area calculations. 

 

 

Results and discussion 

Continuous epoxidation of sunflower oil with hydrogen peroxide in the absence of 

surfactant was carried out using a tubular HALAR® flow reactor with a 0.03” internal 

diameter. A conventional T-junction was used to disperse the aqueous and the oil 

phases. The oil phase consisted of pure sunflower oil, while the aqueous solution 

contained the catalyst, Na2WO4, oxidant, H2O2, and acetic acid as additive to i) prevent 

the parallel decomposition of H2O2 and ii) facilitate the transfer of the active catalytic 
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species to the oil phase.
20

 Slugs of one phase in the other were formed without 

development of individual droplets (i.e. diameter smaller than the internal diameter of 

the tube) under the conditions studied. By comparison, the presence of surfactant 

(SPAN20, 10 vol.% oil) led to formation of individual droplets as shown in Figure 1. 

 

 

Figure 1: Formation of A. aqueous slugs in the absence of surfactant and B. individual droplets in 

the presence of SPAN20. 

 

In order to provide further insight into the kinetic aspects of the system, two sets of 

reactions were conducted (Table 1). Initially, the concentration of catalyst (between 0.1 

and 0.4 M) was varied, keeping the Na2WO4:acetic acid ratio equal to 0.05. We have 

recently demonstrated that increasing the Na2WO4:acetic acid ratio above 0.05 is 

detrimental, allowing the non-productive decomposition of hydrogen peroxide in the 

absence of phase-transfer catalysts.
20

 

 

Table 1: Bi-phasic epoxidation of sunflower oil with hydrogen peroxide in continuous flow 

Aqueous 

flowrate 

mL min
-1

 

Oil 

flowrate 

mL min
-1

 

Surfactant 
[Na2WO4]aqueous 

/ M 

[Na2WO4]total 

/ M 

Rate of 

reaction 

/ 

mmolalkene 

L
-1

 min
-1

 

Average 

contact 

area 

/ cm
2
 cm

-3
 

0.30 0.30 - 0.4 0.20 3.7 2.35 

0.30 0.30 - 0.2 0.10 1.2 2.35 

0.30 0.30 - 0.1 0.05 0.5 2.35 

0.30 0.20 - 0.4 0.24 4.1 2.48 

0.30 0.10 - 0.4 0.30 3.7 2.97 

0.30 0.05 - 0.4 0.34 3.3 3.42 
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0.30 0.40 - 0.4 0.17 3.5 0.17 

0.30 0.30 
10 vol.% 

SPAN20 
0.4 0.20 4.1 23.75 

Reaction conditions: Na2WO4:acetic acid ratio equal to 0.05, 3 M H2O2, 60 C. 

Contact area between phases calculated by quantification of the average number of slugs/droplets per 

reactor volume 

 

Figure 2A shows the linear relationship between the rate of reaction and the 

concentration of catalyst under constant conditions of flowrate, temperature and 

concentration of hydrogen peroxide. Interestingly, a similar rate of reaction is observed 

in the presence of SPAN20 under comparable conditions.  

 

 

Figure 2: A. Relationship between rate of reaction and concentration of catalyst. Flowrate: 0.3 mL 

min
-1

 aqueous phase, 0.3 mL min
-1

 sunflower oil, Na2WO4:acetic acid ratio equal to 0.05, 60 C, ♦ 

in the absence of surfactant and ■ with 10 vol.% SPAN20 in the oil phase and B. Relationship 

between rate of reaction and phase contact area 0.4 M Na2WO4, 8 M acetic acid, 3 M H2O2, 60 C • 

0.3 mL min
-1

 aqueous phase and variable sunflower oil flowrate (between 0.05 – 0.4 mL min
-1

) in 

the absence of surfactant ■ 0.3 mL min
-1

 aqueous phase, 0.3 mL min
-1

 sunflower oil in addition to 

10 vol.% SPAN20 in the oil phase. (The small differences of rate of reaction values is due to the 

differences in overall catalyst concentration at different aqueous/oil flowrate ratios despite the 

constant catalyst concentration in the aqueous phase). 

 

In the second set of experiments, the contact area between both phases was varied by 

modifying the oil phase flowrate (between 0.05 and 0.4 mL min
-1

) while keeping the 

aqueous phase flowrate constant at 0.3 mL min-1. As expected, the length of the oil 

slugs increased when the oil flowrate increased, thus varying the number of slugs per 

volume of reactor (oil/aqueous phase contact area). The rate of reaction seems to be 
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independent of the contact area between the oil and aqueous phases, as shown in 

Figure 2B. A comparable rate of reaction is observed in the presence of surfactant (10 

vol.% SPAN20) under the same reaction conditions, where the contact area is an order 

of magnitude higher than in the absence of surfactant, emphasising the independence 

of rate of reaction with respect to phase contact area. The rate of reaction in bi-phasic 

systems is independent of the contact area when any of the chemical (reaction) steps 

taking place either in the oil or in the aqueous phase is kinetically slower than the 

diffusion steps, including bulk diffusion of molecules in the oil and aqueous phase or 

across the phases. 

 

Careful consideration of the different chemical and physical steps taking place in the 

bi-phasic system and modelling of the observed reactivity using a pseudophase kinetic 

model previously applied to emulsion systems
21, 22

 provides some insight into the 

system. The different steps taking place in the bi-phasic epoxidation of sunflower oil 

using Na2WO4 as catalyst are schematically represented in Figure 3. Initially, the 

actual catalytic species are formed by in-situ oxidation of Na2WO4 by hydrogen 

peroxide. Acetic acid is believed to bind to the tungstate centre of the active catalytic 

species increasing the electrophilicity of the peroxo moiety
23

, facilitating its physical 

transfer of this active catalytic species into the oil phase which allows the epoxidation 

reaction of sunflower oil to proceed in the oil phase. Finally, the reduced catalyst is 

transferred back into the aqueous phase to complete the catalytic cycle. (Parallel 

decomposition of hydrogen peroxide can take place in the aqueous phase although its 

rate is negligible under the Na2WO4: acetic acid ratios used in this study.
20

) 
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Figure 3 Schematic representation of the epoxidation of alkenes (e.g. sunflower seed oil) with hydrogen 

peroxide, sodium tungstate catalyst and carboxylic acids (e.g. acetic acid). The parallel decomposition of 

H2O2 is also shown. The representation of the active catalytic species follows Noyori and co-workers.
2
 

 

The lack of surfactant in the unstabilised bi-phasic system allows simplification of the 

pseudophase kinetic model; only two phases (oil and aqueous) need to be considered 

as interface volume reduces to zero. If the overall concentration (mol L
-1

) of active 

catalytic species is [catal]T and [catal]w and [cata]o are the concentrations (mol L
-1

) of 

the active species in the aqueous and oil phases respectively,  the partition coefficient 

of the active catalytic species is defined as: 

𝑃𝑜
𝑤 =  

[𝑐𝑎𝑡𝑎𝑙]𝑤

[𝑐𝑎𝑡𝑎𝑙]𝑜
 

(2) 

Under mass transfer control, the rate determining step is the transfer of active catalytic species 

across the phase boundary according to Fick’s law, where the overall rate of reaction is 

directly proportional to the contact area between phases, as expressed in Equation (3). 

However, as illustrated in Figure 2B the bi-phasic system under the current conditions is not 

mass transfer limited, even at oil/water phase contact area values as low as 0.17 cm
2
 cm

-3
 

𝑟𝑎𝑡𝑒 = 𝐷𝑤𝑜𝐴𝑤𝑜[[𝑐𝑎𝑡𝑎𝑙]𝑤 − [𝑐𝑎𝑡𝑎𝑙]𝑜] = 𝐷𝑤𝑜𝐴𝑤𝑜[𝑃𝑜
𝑤 − 1] (3) 

 

Under chemical control, the overall rate of reaction can be assumed to be pseudo-first 

order due to the excess of hydrogen peroxide in the system, defined by equation (4). 
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𝑟𝑎𝑡𝑒 = 𝑘𝑜𝑏𝑠
′ [𝑐𝑎𝑡𝑎𝑙]𝑇 = 𝑘𝑜𝑖𝑙[𝑐𝑎𝑡𝑎𝑙]𝑜 𝜑𝑜 = 𝑘𝑤[𝑐𝑎𝑡𝑎𝑙]𝑤𝜑𝑤 (4) 

Where k’obs is the pseudo-first order rate constant, koil and kw are the rate constants in 

the oil and aqueous phases and φo and φw are the oil and aqueous volume fractions 

respectively. 

 

Equation (5) can be derived in terms of measurable parameters by combining equation 

(4) with the overall mass balance equation: 

𝑘𝑜𝑏𝑠
′ =

𝑘𝑜𝑖𝑙[𝑐𝑎𝑡𝑎𝑙]𝑜 𝜑𝑜

[𝑐𝑎𝑡𝑎𝑙]𝑇
=

𝑘𝑜𝑖𝑙𝜑𝑜

𝜑𝑜 + 𝑃𝑜
𝑤𝜑𝑤

 
(5) 

And linear expression of equation (5) is shown in equation (6): 

1

𝑘𝑜𝑏𝑠
′ =

1

𝑘𝑜𝑖𝑙
+

𝑃𝑜
𝑤

𝑘𝑜𝑖𝑙

𝜑𝑤

𝜑𝑜
 

(6) 

 

The linear relationship between 1/k’obs and the water/oil volume ratio, shown in Figure 

4, demonstrates that the kinetics of the chemical steps control the overall rate of 

reaction in the system. This is in agreement with the conclusions by McClements et 

al.
24

 who estimated that the diffusion of molecules is not rate limiting unless there is 

some substantial kinetic barrier restricting their motion. Additionally, the kinetic model 

allows the quantification of the epoxidation first-order rate constant in the oil phase 

(koil = 0.086 min) and the estimation of the partition coefficient of the active catalytic 

species in the water and oil phases (𝑃𝑜
𝑤= 3.59). This coefficient value, within the 

standard range,
21

 suggests that the active catalytic species formed in-situ by oxidation 

of Na2WO4 by hydrogen peroxide are preferentially dissolved in the aqueous phase 

under steady state conditions. 
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Figure 4: Linear relationship between 1/k’obs and the water and oil volume ratio. Reaction 

conditions: 0.4 M Na2WO4, 8 M acetic acid, 3 M H2O2, 60C • 0.3 mL min
-1

 aqueous phase and 

variable sunflower oil flowrate (between 0.05 – 0.4 mL min
-1

) in the absence of surfactant ■ 0.3 mL 

min
-1

 aqueous phase, 0.3 mL min
-1

 sunflower oil in addition to 10 vol.% SPAN20 in oil phase 

 

 

The absence of surfactants in the system facilitates the phase separation at the exit of the 

reactor by a simple difference of densities, without any energy input. This allows the recycle 

of each of the phases in consecutive runs in order to reach the desired levels of conversion, 

greatly increasing the turn-over number (TON) of the catalyst. In this case, however, a fresh 

aliquot of the aqueous solution (Na2WO4, acetic acid and H2O2) is used in each recycle run in 

order to diminish the effect of hydrogen peroxide decomposition between runs. A linear 

increase of overall conversion to epoxide is observed (Figure 5) and the rate of reaction does 

not vary significantly (secondary y-axis, Figure 5), which is in agreement with the preferential 

partitioning of the active catalytic species into the aqueous phase. This avoids the increase of 

catalytic species in the system in consecutive runs due to their accumulation in the recycled 

oil phase. In this way, the lack of solubility of the catalytic species in the reaction phase (oil) 
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is used in an advantageous manner, allowing spontaneous separation of the catalyst, so 

avoiding the need for downstream purification steps of the epoxidised oil. The potential mass 

transfer limitations are overcome by sustaining the phase dispersion by the reactor itself (e.g. 

tube dimension). The proposed methodology for the integration of reaction and separation 

steps in bi-phasic systems using unstable dispersions is applicable to (almost) any bi-phasic 

system, providing an attractive alternative to stable emulsions systems and 

reversible/switchable emulsions, negating the input of energy needed for the separation step. 

 

Figure 5: Sunflower oil epoxidation conversion (bars) as a function of the recycle run. • represents the rate 

of reaction (secondary y-axis). Reaction conditions: 0.3 mL min
-1

 aqueous phase (0.4 M Na2WO4, 8 M 

Acetic acid 3 M H2O2), 0.3 mL min
-1

 sunflower oil, 60 ⁰C, residence time: 10.6 min 

 

 

Conclusions 

 

The epoxidation reaction of sunflower oil with an homogeneous tungsten-based catalyst, 

using hydrogen peroxide as green oxidant, was carried out in unstable emulsions in the 

absence of surfactants. The reaction and separation steps were integrated by using the reactor 

configuration to sustain the phase dispersion for a short period of time while the reaction take 

place, followed by the phase separation without any energy input. Mechanistic considerations, 
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combined with a pseudo-phase kinetic model reveal the poor solubility of the catalytic species 

in the oil phase, facilitating its recyclability in consecutive runs until the desired conversion is 

achieved. Additionally, it also enables optimisation of hydrogen peroxide use (supporting the 

economic feasibility of this type of system in large-scale applications) and modulation of the 

degree of epoxidation of vegetable oils. The latter is important as it is seldom desirable to 

achieve high levels of conversion, instead these must be modulated for different applications 

and this system provides the flexibility to achieve this 
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