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The conserved process of centriole duplication requires Plk4 kinase to recruit

and promote interactions between Sas6 and Sas5/Ana2/STIL (respective

nomenclature of worms/flies/humans). Plk4-mediated phosphorylation of

Ana2/STIL in its conserved STAN motif has been shown to promote its

interaction with Sas6. However, STAN motif phosphorylation is not required

for recruitment of Ana2 to the centriole. Here we show that in Drosophila,

Ana2 loads onto the site of procentriole formation ahead of Sas6 in a process

that also requires Plk4. However, whereas Plk4 is first recruited to multiple

sites around the ring of zone II at the periphery of the centriole, Ana2 is

recruited to a single site in telophase before Plk4 becomes finally restricted

to this same single site. When we over-ride the auto-destruction of Plk4, it

remains localized to multiple sites in the outer ring of the centriole and, if

catalytically active, recruits Ana2 to these sites. Thus, it is the active form

of Plk4 that promotes Ana2’s recruitment to the centriole. We now show

that Plk4 phosphorylates Ana2 at a site other than the STAN motif, which

lies in a conserved region we term the ANST (ANa2-STil) motif. Mutation

of this site, S38, to a non-phosphorylatable residue prevents the procentriole

loading of Ana2 and blocks centriole duplication. Thus the initiation of pro-

centriole formation requires Plk4 to first phosphorylate a single serine

residue in the ANST motif to promote Ana2’s recruitment and, secondly,

to phosphorylate four residues in the STAN motif enabling Ana2 to recruit

Sas6. We discuss these findings in light of the multiple Plk4 phosphorylation

sites on Ana2.
1. Introduction
Centrioles are the core components of centrosomes and their regulated dupli-

cation is critical to ensure cells have a single centrosome at each of their

spindle poles during the cell division cycle [1–3]. Centrioles also become the

basal bodies of cilia, which are required for many aspects of cell signalling

and motility [1,4]. Thus, the dysregulation of centriole function or duplication

is associated with a wide range of inherited diseases and with oncogenic trans-

formation [1,5–7]. Plk4 is a master regulator of centriole duplication; loss of

Plk4 leads to loss of centrioles [8,9] (and its overexpression can lead to their

de novo formation and over-duplication [10–12]). Plk4 is targeted to the centro-

some through its interaction with either or both Spd2/Cep192 and Asl/Cep152

depending upon the species [13–17]. The kinase is known to auto-
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phosphorylate a degron sequence to direct its SCF-mediated

self-destruction [18–23]. Failure of this process leads to exces-

sive Plk4 and centriole over-duplication.

Centriole duplication is initiated through an interaction

between two conserved proteins first identified in Caenorhab-
ditis elegans, Sas5 and Sas6 [13,14]. Dimers of Sas6’s

counterparts are known in other species to assemble into

ninefold symmetrical structures that form the structural

basis of the cartwheel that is assembled upon the initiation

of procentriole formation [24,25]. Sas6 is recruited to the pro-

centriole in Drosophila and human cells in a process that

requires Plk4 to phosphorylate several residues in the con-

served STAN motif in the C-terminal part of the respective

counterparts of Sas5, Drosophila Ana2 and human STIL

[26–28]. In Drosophila, this acts as a binary switch to control

Sas6 recruitment to the procentriole as soon as mother and

daughter centrioles disengage in late telophase [26]. Mutation

of four phosphorylation sites in the STAN motif of Drosophila
Ana2 into alanine residues prevents recruitment of Sas6 to

the site of procentriole formation while still permitting the

centriolar recruitment of this mutant variant of Ana2. The

process governing the recruitment of Ana2 independently

of Sas6 is thus unclear. In human cells, it has been shown

that continued activity of Plk4 is required for the recruitment

of STIL to the centriole but the molecular basis for this is not

understood [28]. Here, we show that the recruitment of Ana2

to the nascent procentriole also requires the presence and

activity of Plk4 and occurs in response to the phosphorylation

of Ana2 at a conserved serine residue in its N-terminal

domain. Our results indicate a two-step mechanism whereby

phosphorylation of Ana2 in its N-terminal part promotes its

recruitment to the site of procentriole formation and its phos-

phorylation in the STAN motif leads to the subsequent

recruitment of Sas6.
2. Material and methods
2.1. DNA constructs
All cDNA and expression constructs and cloning methods

were previously described [15,26].

2.2. Cell culture, DNA and dsRNA transfections
D.Mel-2 cells (originally from Thermo Fisher Scientific) were

cultured and treated with dsRNA as described previously

[15]. Transfections of DNA constructs were performed as

described previously [26]. Stable cell lines were established

as reported [29]. Primers for generating dsRNA were all

reported elsewhere [15,18,26,30], except for the following:

Sas4-F: 50-GAATTAATACGACTCACTATAGGGAGAATGCA

GGAGGCTGGCGAAAGTCC -30

Sas4-R: 50-GAATTAATACGACTCACTATAGGGAGAGGAGG

CTTCATCATCGGCATGAG -30

2.3. Site-directed mutagenesis
Generation of Ana2 point-mutations was either as already

reported [26], or by using the QuikChange II XL Site-Directed

Mutagenesis Kit (Agilent) on cDNA or entry clones as
template and the oligonucleotide primers given in the elec-

tronic supplementary material, table S1.

2.4. Recombinant protein expression and purification
All recombinant proteins in this study together with the

methodology for their expression and purification from

Escherichia coli have been described elsewhere [26].

2.5. In vitro Plk4 phosphorylations
In vitro phosphorylation of 35S-methionine-labelled Ana2

produced by coupled in vitro transcription–translation

(IVTT) and of GST-Ana2 proteins on beads were carried

out as previously described [26].

2.6. Lambda phosphatase treatment
D.Mel-2 cells were co-transfected with pAct5-Ana2-FLAG

and either pAct5-Plk4-NDKD (kinase-dead) or pAct5-Plk4-

ND (active) in a 12-well plate. Approximately 1 � 106 cells

were collected from each well 24 h post-transfection and

briefly rinsed in PBS. Cells were then lysed in RIPA buffer

(50 mM Tris–HCl pH 7.4; 150 mM NaCl; 1% NP-40; 0.5%

Na deoxycholate; 0.1% SDS; 1� Complete EDTA-free protease

inhibitor cocktail tablets from Roche) on ice for 15 min.

Lysates were cleared by centrifugation and supplemented

with 1� Lambda-phosphatase buffer and 1� MnCl2 solution

provided along with Lambda phosphatase (New England

Biolabs, catalogue number P0753S). Two samples (one of

Ana2-FLAG þ Plk4-NDKD and one of Ana2-FLAG þ Plk4-

ND) were mock-treated (no phosphatase added), while one

sample (Ana2-FLAG þ Plk4-ND) was treated with 200 U

(0.5 ml) Lambda phosphatase for 30 min at 308C. All samples

were then boiled in Laemmli sample buffer and analysed by

immunoblotting.

2.7. Mass-spectrometry and phospho-peptide mapping
Phospho-peptide identification by mass spectrometry was car-

ried out as previously explained [26]. Briefly, Ana2 (tagged

with GST and pre-phosphorylated by Plk4 in vitro, or tagged

with GFP-, FLAG- or Protein-A and purified from either

D.Mel-2 cells or 0–3 h syncytial stage embryos) was digested

with trypsin directly on the affinity resin. Twenty per cent

(v/v) of the resulting peptide mixture was directly analysed

by LC/MS and the remaining 80% enriched for phosphatides

using titanium dioxide. Samples were analysed using an Orbi-

trap-LTQ mass spectrometer (Thermo Fisher Scientific)

coupled to a UPLC system (Waters Corporation). Acquired

data were searched using the Mascot Search Engine (Matrix

Science) against the Drosophila melanogaster database. Phos-

phorylated peptides identified by Mascot were individually

verified by manually inspecting the relevant spectra.

2.8. Antibodies
The following primary antibodies were used for immuno-flu-

orescence (IF) or western blotting (WB): rabbit-anti-Ana2 [26]

(IF 1 : 1000); rat-anti-Sas6 [26] (IF 1 : 1000); chicken-anti-D-

Plp [10] (IF 1 : 1000); mouse-anti-FLAG (clone M2, Sigma,

WB 1 : 20 000); mouse-anti-Myc (clone 9E10, Abcam, WB 1 :

5000). Affinity-purified rabbit-anti-Plk4 (IF 1 : 100) was a
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kind gift from Dr Monica Bettencourt-Dias (Instituto Gulben-

kian de Ciencia, Oeiras, Portugal).

2.9. Immunostaining and structured illumination
microscopy

This was carried out as previously described [15,26]. In brief,

D.Mel-2 cells were grown for 2–4 h on concanavalin A-

coated coverslips and then fixed in cold methanol. Fixed

cells were blocked in PBS, supplemented with 0.1% Triton

X-100 and 10% fetal calf serum, incubated first with primary

antibodies, washed in PBS, and then incubated with second-

ary antibodies. After several final washes in PBS

supplemented with 0.1% Triton X-100, specimens were

mounted in Vectashield containing DAPI (Vector labora-

tories). Super-resolution microscopy and image-analysis

was performed on an OMX-V3 system using a 63�/1.4NA

oil Olympus lens. Images (512 � 512 ppi) were reconstructed

and registered using the SoftWorx Linux package. Images

were further processed to obtain maximum intensity projec-

tions. These were cropped and assembled in PHOTOSHOP v6.

Stages of the cell cycle were assessed from the staining of

chromosomes. We assigned stages to telophase from the pos-

itions of the centrosomes in relation to the long axis of the

dividing cells immobilized on concanavalin A. We observed

that in early telophase, centrosomes are positioned on the

distal side of the nucleus to the spindle microtubules. As telo-

phase progresses, the centrosomes appear to begin to migrate

(mid-telophase) relative to the spindle such that they move

towards the spindle-proximal side of the nucleus at the time

of the first indication of cytokinetic furrow formation (late telo-

phase). Owing to the adhesion of cells onto the concanavalin

A-coated coverslips, the abscission stage of cytokinesis cannot

be completed. Thus cells having a long cytokinetic bridge can

also be in G1 phase. We classify such cells as in cytokinesis/G1.

To deplete centriole components from D.Mel-2 cells for

structured illumination microscopy, we carried out RNAi

for 5 days (except for 3 days in the case of Plk4 RNAi), as a

result of which 30–60% of cells had no centrosomes. Our

analysis was then carried out upon cells in which a single

centrosome persists showing the defects we document.
3. Results
3.1. Ana2 loads ahead of Sas6 at the pre-procentriole
In our previous study, we followed the centriolar recruitment

of both Sas6 and Ana2 relative to the conversion of daughter

centrioles to centrosomes monitored by the extension of D-

Plp around the periphery of the daughter centriole during pro-

gression through mitosis [26]. This revealed the ring of D-Plp

around the daughter to be completed by late anaphase where-

upon mother and daughter centrioles disengaged in anaphase/

early telophase. We observed that following centriole disen-

gagement both Sas6 and Ana2 were recruited to the site of

procentriole formation. Our earlier study also showed that

replacing endogenous Ana2 with a variant in which the four

Plk4 phosphorylation sites in the STAN motif were replaced

with alanine residues would prevent Sas6 from being recruited

to the procentriole. Nevertheless this four-alanine STAN motif

mutant could still itself be loaded indicating that phosphoryl-

ation of the STAN motif is not required for Ana2 loading.
The above finding led us to ask whether in the normal

course of centriole duplication, Ana2 could recruit to the pro-

centriole ahead of Sas6 or whether, alternatively, Ana2 and

Sas6 load together. To address this, we co-stained cells to

reveal D-Plp, Sas6 and Ana2 and re-examined their relative

loading focusing upon cells at the very late stages of ana-

phase/early telophase using structured-illumination (SIM),

super-resolution microscopy. At the earliest stages of cen-

triole disengagement, we were only able to observe single

dots of Sas6 staining at the core of mother and daughter cen-

trioles (Zone I [31]),while at this stage two dots of Ana2

staining were visible, one at the centriole core and the other

at the site of the nascent procentriole (figure 1). From late tel-

ophase onwards, we could see two dots corresponding to

Sas6 and Ana2 at both the core of the mother and daughter

and at the site of the procentriole formation upon each of

these disengaged centrioles. Thus, Ana2 is loaded onto the

procentriole ahead of Sas6.

3.2. Loading of Ana2 onto the procentriole requires Asl
and Plk4

Our previous findings that the STAN-phospho-site mutant

Ana2 can still load onto the procentriole site and that this

occurs independently of Sas6 binding [26] led us to ask

which centriolar proteins might be required for Ana2 load-

ing. To address this question, we depleted cultured

Drosophila cells of various centriole components by RNAi

and used SIM to assess whether Ana2 was present at a

single parental site encircled by D-Plp or also at the pre-pro-

centriole site on the periphery of the D-Plp ring. We scored a

minimum of 30 centrioles in cells that were in cytokinesis or

very early G1, that is at a cell cycle stage at which procen-

trioles should have been established (figure 2). This

revealed that 93% of control cells (28/30) had Ana2 recruited

to the pre-procentriole site at this stage. A similar proportion

(88%; 28/32) also had Ana2 at the site of the procentriole fol-

lowing RNAi treatment to deplete Sas6, in accord with our

previous study [26]. The proportion of Ana2 at the procen-

triole site was somewhat reduced following depletion of

Ana1 or Sas4 (70%; 21/30 and 63%; 19/30) although the

greater proportion of centrioles still had Ana2 at the single

peripheral, pre-procentriolar site. We cannot exclude the

possibility that failure to recruit Ana2 in these circumstances

is a secondary consequence of the known effects of these

treatments upon centriole to centrosome conversion [30] or

building the microtubule wall [14,32,33]. By contrast,

depletion of either Plk4 or its loading factor, Asl, dramatically

reduced loading of Ana2 to the procentriole to 13% (4/30)

and 17% (5/30) of cells, respectively. Thus, we conclude

that Plk4 is essential for the loading of Ana2 onto the site

of procentriole formation and that this is independent of a

second requirement for Plk4 to phosphorylate Ana2 in the

STAN motif in order to bind and recruit Sas6.

3.3. Centriolar distribution of Plk4 does not define the
single site of Ana2-loading

The requirement for Plk4 for the loading of Ana2 at the cen-

triole led us to examine the relative positions of the two

proteins on the centriole at the time of procentriole formation.

It has been described that in mammalian cells, Plk4
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accumulates in a ring around parental centrioles that resolves

into a single dot, reportedly around the time when STIL and

Sas6 are recruited for cartwheel formation [17,27]. We

observed that in Drosophila cells, Plk4 also accumulated in

progression through mitosis as a ring around the mother

and daughter centrioles as the latter underwent conversion

into a centrosome (figure 3a). During progression through
telophase, the ring of Plk4 around the mother and daughter

gradually broke down such that by cytokinesis/the following

G1, it had resolved into a dot. To relate the distribution of

Plk4 to recruitment of Ana2, we assessed the localization of

the two proteins with respect to D-Plp in those centrioles in

which Ana2 could be observed both at the centriole core/

Zone I and at the nascent procentriole (figure 3b). We
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found that at the earlier stages of telophase, centrioles had

Plk4 located in a variable number of beads arranged in a

ring around the parental centriole, one of which coincided

with newly loaded Ana2. Later, in cytokinesis/G1, centrioles

had a single Plk4 bead colocalized with Ana2. Thus, Ana2

becomes localized to a single procentriole site ahead of the

resolution of Plk4 from its ring-like to dot-like distribution.

3.4. Plk4 activity is critical for Ana2 loading
Normally, the levels of Plk4 are limited during interphase in

both fly and mammalian cells by the SCF ubiquitin-protein-

ligase that targets the proteasome-mediated destruction of
the kinase by binding to its auto-phosphorylated degron

[18–23]. This can be over-ridden in several ways: by over-

expressing Plk4; by expressing a non-degradable (ND) Plk4

variant with a mutated degron; or by disrupting the SCF com-

plex, which targets Plk4. This led us to ask whether Ana2

would be recruited to multiple sites if the levels of active

Plk4 were increased. To this end, we first depleted the Plk4-tar-

geting F-box protein of the SCF complex, which in Drosophila is

encoded by slimb [18,34]. We found that, as a consequence,

Plk4 accumulated in rings together with D-Plp in Zone III of

interphase centrioles and that Ana2 was indeed recruited to

multiple sites on these Plk4-positive rings (figure 4a). We

then investigated the effects of over-expressing either kinase
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active or inactive mutant forms of Plk4-ND. We found that

both forms of the ND kinase accumulated ectopically in

rings in Zone III of the centrioles in interphase. However,

only the active Plk4-ND was able to induce loading of Ana2

to multiple sites, while conversely the kinase dead Plk4-

NDKD not only did not induce these ‘rosettes’ but even

suppressed the normal loading of Ana2 as a single dot
(figure 4b). Thus it seems that when Plk4 is continually present

as a result of over-riding its auto-destruction, it can accumulate

on the entire outer ring of the centriole and, if it is catalytically

active, it can recruit Ana2 to multiple sites. Together, these

results suggest that there is only one sufficiently active focus

of Plk4 that exceeds a threshold for Ana2 loading.
3.5. Plk4 phosphorylates Ana2 at the conserved
serine 38

Together, the above observations suggested that the Plk4-

dependent recruitment of Ana2 to initiate procentriole for-

mation might reflect an ability of Plk4 to phosphorylate

Ana2. We have previously described four sites in the STAN

motif of Drosophila Ana2 that when phosphorylated by Plk4

enable the binding and consequent centriole recruitment of

Sas6. However, failure to phosphorylate Ana2 at these sites

does not prevent its loading to centrioles [26]. As our above

findings indicated that active Plk4 is required to recruit

Ana2 to the centriole prior to Sas6 binding, we argued that

other Plk4 sites within Ana2 must be responsible for this

recruitment and wished to identify such sites.

We had noticed that Ana2 undergoes a profound shift

in its electrophoretic mobility following phosphoryla-

tion by Plk4 (figure 5a; electronic supplementary material,

figure S1a). This mobility shift was seen when either FLAG-

tagged-Ana2 was introduced into cultured Drosophila cells

together with active Plk4 in transient transfections or when

Ana2 synthesized in vitro by coupled transcription and trans-

lation (Ana2-IVTT) was phosphorylated by Plk4 in vitro
(figure 5a). The mobility shift was reversed by Lambda phos-

phatase treatment indicating that it is a consequence of

Ana2’s phosphorylation (electronic supplementary material,

figure S1B). Moreover, the mobility shift was still observed

when the four Plk4-phospho-sites in the STAN motif were

mutated to alanine residues indicating that it occurred inde-

pendently of the mechanism required to recruit Sas6

(electronic supplementary material, figure S1C). We argued

that such a dramatic mobility shift should reflect a significant

conformational change in Ana2 and hypothesized that this

might be required to recruit Ana2 to the centriole. We there-

fore sought to identify the phosphorylation site(s) responsible

for the mobility shift.

The strategy we adopted to identify the site is prima-

rily presented in the electronic supplementary material,

figure S1. Briefly, we first subjected bacterially expressed

GST-Ana2 to phosphorylation by recombinant Plk4 in vitro
and identified 21 phosphorylated serine or threonine residues

by mass spectrometry including the four STAN motif sites

(residues highlighted in blue; electronic supplementary

material, figure S1D). When we mutated all 21 sites to alanine

residues, Ana2 continued to undergo a band shift following

phosphorylation by Plk4 (figure 5b) indicating that none

were responsible for this conformational change. We then

used mass spectrometry to identify 12 phospho-sites in

Protein-A- or FLAG-tagged Ana2, affinity purified from cul-

tured cells, or in GFP-Ana2, affinity purified from Drosophila
embryos (residues highlighted in yellow; electronic sup-

plementary material, figure S1D). Having mapped the

region undergoing the band shift to the N-terminal 280 resi-

dues (electronic supplementary material, figure S1E), we

mutated the 12 sites to alanine residues and repeated the
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kinase assay, but none of the changes abolished the band

shift (electronic supplementary material, figure S1F). We

further narrowed down the region of Ana2 undergoing the

band shift to within residues 1 and 140 (figure 5c) and then

systematically mutated each individual remaining serine or

threonine residue within this segment to alanine prior to

phosphorylation of the corresponding IVTT peptide by Plk4

(figure 5d ). This revealed that phosphorylation on serine 38

was responsible for the mobility shift (figure 5d,e). Suspecting

that we had originally failed to detect this modification in our

mass spectrometric analysis because it lay within a poorly

ionized peptide, we then searched for low abundance ionized

fragments within this region following phosphorylation of

Ana2 by Plk4. The fragmentation pattern of a peptide extend-

ing from residue 13 to 65, which had a phospho-serine

residue at position 38 (electronic supplementary material,

figure S2), allowed us to confirm that Ana2 is phosphorylated

by Plk4 on serine 38 to change its electrophoretic mobility.

Strikingly, this residue lies within a 10-residue motif that

is highly conserved from insects to vertebrates (figure 5f ),
which we refer to as the ANST motif.

Finally, we wished to determine whether phosphoryl-

ation of Ana2 on S38 was required for its subsequent

interaction with Sas6 that we have previously shown to

require Plk4-mediated phosphorylation of its STAN motif

[26]. To this end, we produced GST-tagged forms of

wild-type and S38A Ana2 in E. coli and immobilized the

recombinant proteins on beads for treatment with active or

kinase-dead Plk4. We then asked whether S35-labelled Sas6,

generated by coupled IVTT, could then bind to the beads.

This revealed that Sas6 was able to bind to both wild-type

and S38A Ana2 but only after phosphorylation by Plk4 (elec-

tronic supplementary material, figure S3). Thus mutation of

S38 in the ANST motif to an amino acid that cannot be phos-

phorylated does not affect the Plk4-dependent binding of

Ana2 to Sas6.
3.6. Phosphorylation of Ana2 at S38 is required to load
Ana2 for centriole duplication

To test our hypothesis that the phosphorylation event that

induced the mobility shift of Ana2 would be important for

the biological function of the protein, we mutated this residue

to alanine (Ana2-S38A) and first tested the consequences for

centriole duplication. To this end, we used three rounds of

RNAi directed against the 30 UTR of the Ana2 mRNA to

deplete the endogenous Ana2 protein and block centriole

duplication (figures 6a). We found that the loss of centro-

somes resulting from this treatment could be rescued in

cells expressing wild-type Ana2 lacking the endogenous

UTR but not in cells expressing Ana2-S38A. Therefore, phos-

phorylation of Ana2 at S38 by Plk4 is required for centriole

duplication.

We then asked whether S38 phosphorylation was

required for the loading of Ana2 onto centrioles. Once

again, we used three rounds of RNAi directed against the

UTR of Ana2 to downregulate the endogenous protein and

found that the proportion of centrioles in which Ana2 was

loaded onto the procentriole site on the D-Plp ring was

reduced from 89% (33/37) to 46% (14/30) (figure 6b).

Stable expression of Myc-tagged wild-type Ana2 was able

to rescue loading following this treatment to 90% (28/31).
By contrast, Myc-tagged Ana2-S38A failed to rescue loading

(9%; 3/32) of Ana2. Moreover, it also had a dominant-

negative effect on loading: compare 64% (18/28) loading in

control RNAi-treated cells expressing Ana2-S38A to 89%

(33/37) loading in control-depleted untransfected cells

indicating that Ana2-S38A is a stable protein as confirmed

by western blotting (electronic supplementary material,

figure S4). Thus, we conclude that phosphorylation of Ana2

at S38 is required for the loading of Ana2 to permit centriole

duplication.
4. Discussion
Our study shows that Plk4 phosphorylates Drosophila Ana2 at

a single serine residue, S38, in what we term the ANST motif

in its N-terminal part to enable Ana2 to be recruited to the

site of procentriole formation. This occurs ahead of the

known requirement of Plk4 to phosphorylate Ana2 upon

four residues in the conserved STAN motif in its C-terminal

part in order to bind and recruit Sas6 to the pre-procentriole

site [26]. Phosphorylation of the STAN motif is also required

for Ana2’s human counterpart, STIL, to bind and recruit Sas6

[27,28], where it also increases the efficiency of STIL’s cen-

triole targeting [28,35]. However, in neither human nor

Drosophila cells is the phosphorylation of the STAN motif

absolutely essential for STIL/Ana2 recruitment [26,27].

These findings led Holland and colleagues to suggest that

Plk4 had a two-step function in initiating centriole duplication

[28] although whether STIL had itself to be phosphorylated by

Plk4 for its recruitment was unclear. Here we show that in

Drosophila cells, the initiation of procentriole formation is,

indeed, a two-step process requiring Plk4 to phosphorylate

Ana2 at distinct sites (figure 7). Although the sites in the

ANST and STAN motifs appear key for centriolar recruitment

of Ana2 and binding to Sas6, respectively, it is noteworthy

that Ana2 has numerous other Plk4 target sites. The functions,

if any, of these additional sites are not yet clear but, at present,

we cannot exclude the possibility of their importance to sub-

stantiate Ana2 recruitment or Sas6 binding, or to facilitate

interactions with other centriole components.

Our findings have implications for the mechanisms that

regulate the activation of Plk4 and that ultimately restrict it

to a single site in normal cell cycle progression. The activation

of Plk4 has consequences for its stability as well as for its abil-

ity to mediate its cellular functions including centriole

duplication. This is because Plk4’s destruction is brought

about through the auto-phosphorylation of a degron render-

ing the kinase susceptible to SCF-mediated ubiquitylation

and subsequent degradation by the proteasome [18–23].

But how is this balance between activation and destruction

regulated on the centriole? Increased activity of the kinase

has been proposed to occur as a consequence of its trans-

autoactivation in response to its localized accumulation

[36]. It has also been hypothesized that STIL might itself be

an activator of Plk4 [28,35]. Indeed, overexpression of STIL

was shown to trigger auto-phosphorylation of the activating

T170 residue in Plk4’s T-loop [28]. Our findings indicate

that Plk4 is first recruited to multiple sites around mother

and daughter centrioles before being restricted to a single

procentriolar site. Although we demonstrate that recruit-

ment to these multiple sites does not require the kinase to

be catalytically active, its activity is required to trigger its
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autophosphorylation and SCF-mediated self-destruction

from all but the single site to which Ana2 has been loaded.

Our finding that Plk4 is still in the process of being eliminated

from multiple sites in the periphery of the centriole, when

Ana2 is already recruited to a single site would argue against

a global requirement for STIL/Ana2 to trigger Plk4 activation

[28,35] and more in favour of an auto-activation mechanism

at sites from which it is subsequently eliminated.

Our results also suggest that a threshold level of Plk4

activity might be required to permit Ana2 loading. How

this threshold becomes exceeded only at the single Ana2

loading site remains to be determined. Single-site loading

of Ana2 could be related to the protection of Plk4 from
destruction at the pre-procentriole site. It is possible that

Plk4’s binding to STIL/Ana2 might protect it from the SCF.

This notion finds support from the finding that overexpres-

sion of wild-type STIL or a variant lacking the STAN motif

can stabilize Plk4 in a ring around the centriole [27,35].

There is a growing consensus that the binding of STIL to

Plk4 requires an interaction between a short coiled-coil

motif in STIL and the L1 linker region and Polo-box 3 of

Plk4 [27,35]. Indeed, a regulated interaction between Plk4

and STIL would seem to be important in regulating the

timing of centriole formation by the finding that such an

interaction is blocked until the metaphase-to-anaphase tran-

sition by Cdk1-mediated phosphorylation of STIL [37].
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However, this exact same binding interface between Ana2

and Plk4 is reported to be absent in flies [38].

If Ana2 is recruited solely through binding to Plk4, then

there must be a mechanism that restricts this interaction

only to a single site. This could be achieved through a confor-

mational change in one or both partners that could both

reinforce and restrict the interaction. In this light, we note

that Plk4 appears normally to exist in an autoinhibited state

that is relieved through some property of Polo-box 3

suggested to reflect a conformational change resulting from

binding a partner protein [39]. The shift in electrophoretic

mobility we now show to be associated with phosphorylation

of Ana2 on a site essential for its recruitment is likely to be

important to lock the molecule into a conformation that is

required for its recruitment. It remains a future challenge to

determine whether phosphorylation of Ana2 on S38 and

the associated change in its conformation enable Ana2

to associate with Plk4 or, as this has been questioned in

Drosophila, whether it interacts with a different centriole com-

ponent to allow it to dock and initiate procentriole formation.
The conservation of the ANST motif is intriguing as it

suggests the possibility, which will be of future interest to

test, that Ana2 loading onto the procentriole site might be

mediated by a conserved mechanism.
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