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Abstract

This PhD thesis proposes a direct and unified method for generating global static equilibrium
for 2D and 3D reciprocal form and force diagrams based on reciprocal discrete stress
functions. This research combines and reinterprets knowledge from Maxwell’s 19th century
graphic statics, projective geometry and rigidity theory to provide an interactive design and
analysis framework through which information about designed structural performance can be
geometrically encoded in the form of the characteristics of the stress function. This method
results in novel, intuitive design and analysis freedoms.

In contrast to contemporary computational frameworks, this method is direct and ana-
lytical. In this way, there is no need for iteration, the designer operates by default within
the equilibrium space and the mathematically elegant nature of this framework results in its
wide applicability as well as in added educational value. Moreover, it provides the designers
with the agility to start from any one of the four interlinked reciprocal objects (form diagram,
force diagram, corresponding stress functions).

This method has the potential to be applied in a wide range of case studies and fields.
Specifically, it leads to the design, analysis and load-path optimisation of tension-and-
compression 2D and 3D trusses, tensegrities, the exoskeletons of towers, and in conjunction
with force density, to tension-and-compression grid-shells, shells and vaults. Moreover, the
abstract nature of this method leads to wide cross-disciplinary applicability, such as 2D and
3D discrete stress fields in structural concrete and to a geometrical interpretation of yield line
theory.
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Chapter 1

Introduction

Graphic statics is a 19th century design and analysis methodology for structures in static
equilibrium. After a 20th century decline, they are back largely due to great advances in
Computer Aided Design (CAD). They hold the promise of bridging the increasingly large
gap between structural and architectural design, between architects and engineers, through
the universal language of geometry. As a result, they contribute to a shift towards materially
efficient structures where the structural performance informs the early conceptual design
stages. Graphic statics is often praised for the intrinsic visual and intuitive nature, specifically,
with regard to the output – reciprocal form and force diagrams where geometrical elements
represent structural members or their internal forces.

CAD developments have opened the door to the revival of graphic statics, to their gener-
alisation in the 3rd dimension and to their development as computational design and analysis
frameworks for a wide range of case studies. At the same time, this computational power
has also affected the way in which graphic statics is being developed, viz., through iterative
optimisation algorithms which converge towards the wanted output rather than analytical and
direct methods. This can limit the potential of graphic statics in terms of their applicability
and educational value. This is not to say that contemporary computational frameworks
are not useful – they are valuable form-finding design and analysis tools. However, cur-
rent advancements in CAD, computational power and visualisation provide us with the
valuable opportunity to develop rigorous theoretical frameworks in conjunction with their
computational implementation. Thus, it is possible to combine the best of both worlds, ana-
lytical, direct and mathematically elegant theory within interactive, visual and computational
environments. This holds promise for:

• Increasing the educational value of graphic statics where the geometrical, visual and
intuitive nature holds both about the output and the method.
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• Increasing the applicability of graphic statics where the users (architects, engineers
and designers) are able to understand and reproduce the methods while interacting
with them throughout the process.

• Introducing profound design and analysis freedoms with regards to the structure and
its performance.

• Some limitations of iterative algorithms can be lifted and their applicability can be
enhanced and expanded to other fields of engineering.

This PhD research started with Maxwell’s papers (Maxwell, 1864a, 1870). As a result,
explanations, references and visualisations are provided that relate to Maxwell’s original
ideas which influenced this thesis.

1.1 Research statement

The contemporary built environment industry is characterised by a lack of effective com-
munication between those who design forms and those who analyse them and by a need
for material efficiency in how we build our structures. As a result, there is a need to shift
towards interactive design and analysis tools which can inform conceptual design stages with
structural performance while talking a language common to a wide range of researchers and
practitioners.

This PhD research aims to develop geometry-based, direct -as opposed to iterative-
analytical and unified design and analysis tools for compression-and-tension 2D and 3D pin-
jointed structures while introducing design and analysis freedoms in an interactive framework.
In particular, this will be achieved by using reciprocal stress functions which embed in an
explicit way the structural behaviour of the structure while ensuring the form exploration is
within equilibrium space.

1.2 Objectives

The objectives of this thesis can be divided into four categories:

• Historical research: this thesis seeks to explain, visualise and discuss Maxwell’s
approach in relation to the contemporary graphic statics research. This will be achieved
by highlighting Maxwell’s contribution to the field within the scientific context of
his time, and moreover, by discussing the central role of projective geometry in his
methods and how these can benefit designers today.
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• Development of new theory: based on Maxwell’s abstract and fundamentally geomet-
rical approach, a direct and unified method will be developed for generating global
static equilibrium for 2D as well as 3D reciprocal form and force diagrams based on
reciprocal stress functions.

• Application thereof in design and analysis tools: based on this theory an interactive
design and analysis framework will be developed where geometrical observations
with regards to the form and force diagrams and their corresponding stress functions
constitute intuitive design and analysis freedoms. In particular, this will be applied to
tension-and-compression 2D and 3D trusses, tensegrities, exoskeletons of towers and
in conjunction to force density, to grid-shells, shells and vaults.

• Impact on other disciplines: this research seeks to provide designers with a geometrical
and intuitive language for a wide range of structural analysis and design notions.
Applications include truss design via reciprocal stress functions, load-path optimisation
and grid-shell design, as well as uses in representing discrete stress fields for 2D and
3D reinforced concrete structures and yield line patterns.

This thesis aims to contribute towards a new design paradigm where the space of forces
can be explicitly ‘sculpted’ using stress functions, resulting in structures in static equilibrium.
In other words, instead of freely designing the form and then analysing the resulting structural
behaviour, the designer can freely design the stress function - hence the wanted structural
performance - and then see the form emerging in a bi-directional interactive framework.

1.3 Methodology

The methodology developed here is based on the introduction of reciprocal stress functions.
These exist one dimension up from the reciprocal diagrams, namely, in 3-dimensional space
for 2-dimensional form and force diagrams and in 4-dimensional space for 3-dimensional
reciprocals. This approach provides agility to the designer to start from any one of the
reciprocal objects (form, force, or stress functions) while designing within equilibrium space.

The main idea is that reciprocal stress functions can be derived from one another and
can be subsequently projected one dimension down to produce reciprocal form and force
diagrams. Thus, a direct way to obtain global static equilibrium can be introduced. This
results in a mathematically elegant method which has no need for iterative convergence to
derive form and force diagrams. Moreover, the geometry of stress functions holds all the
information of the structural behaviour of the corresponding truss: which members are in
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tension, which are in compression, by how much, and how many are the states of self-stress
and thus of possible design and analysis freedoms.

This method is applicable to any 2D truss geometry and to any polyhedral 3D geometry
which has plane faces, each one of which belongs to two cells. For these cases the method is
equally applicable to tension-only, compression-only, and tension-and-compression structures
of any topology and, potentially intersecting, geometry. Moreover, it is applicable both to
self-stressed and externally loaded structures.

Maxwell’s convention is followed where the role of reciprocal diagrams (form and force)
are interchangeable, and edges in a diagram can signify structural members or external forces.
As a result, a truss with external loading can be also seen as an equivalent self-stressed
geometry. This approach is fundamental and agile and makes the need for special treatment
of different geometrical objects redundant.

1.4 Outline of Chapters

The second Chapter comprises an in-depth literature review from the 19th century to today
of fundamentals such as, graphic statics, reciprocal diagrams, stress functions, N-polytopes
and Minkowski sums. Maxwell’s contribution is highlighted and discussed with regards to
today’s research scene.

The third Chapter introduces a direct, geometrical and unified graphic statics methodology
for 2D and 3D tension-and-compression trusses based on the concept of reciprocal stress
functions.

The fourth Chapter presents a geometry-based, visual, optimisation method based on the
load path theorem and volume minimisation for 2D and 3D trusses through the construction
of Minkowski sums.

The fifth Chapter introduces design by analysis methodologies for 2D and 3D trusses
in static equilibrium by using reciprocal stress functions. This method is also combined
with the force density method for the design and analysis of tension-and-compression shells,
grid-shells and vaults.

The sixth Chapter presents applications and case studies in design, analysis and transfor-
mations for a number of case studies:

• 2D and 3D (polyhedral) trusses;

• Interlinked graphic statics and kinematics study of tensegrities with infinitesimal
mechanisms and flexible polyhedra with finite mechanisms;
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• Introduction of the dynamic Minkowski sum for statically balanced tensegrity mecha-
nisms;

• Design and analysis of large infrastructure such as tensile nets, shells and tension-and-
compression grid-shells;

• Structural morphogenesis of exoskeletons and trusses of towers.

The seventh Chapter presents cross-disciplinary applications on the automatic generation
of 2D and 3D discrete stress fields as well as geometrical criteria for admissibility of yield
line patterns and geometrical representations of internal and external work.

Lastly, in the eighth and final Chapter conclusions are drawn and the applicability,
limitations, impact and possible future directions of this PhD research are discussed.





Chapter 2

Literature review

This Chapter provides an in-depth literature review of graphic statics, reciprocal diagrams and
reciprocal stress functions from the 19th century to today. Fundamental notions for this PhD
research are discussed such as N-polytopes and Minkowski sums. Maxwell’s fundamental,
but largely unknown or inaccessible, contribution is particularly highlighted as well as the
benefits of re-introducing analytical and direct graphic statics methods.

Most parts of this Chapter have been published in the International Journal of Solids and
Structures in (Konstantatou et al., 2018).

2.1 Graphic statics

Graphic statics can provide a visual, intuitive and geometrical framework both for the design
and analysis of trusses in static equilibrium and for other fields of structural engineering.
The scientific context that gave rise to the development of graphic statics is grounded on
the legacy of Da Vinci, Galilei, Newton (Zalewski and Allen, 1998), Hooke, Poleni and
Stevin (Heyman, 1995). Cremona (Cremona, 1872) traces back the foundation of graphic
statics to the 18th century, when Varignon used the funicular polygon and the polygon of
forces to calculate and visualize the equilibrium of a system of forces on a plane (Varignon,
1725) (Figure 2.1). According to Maxwell and Cremona, Rankine was the first to propose a
consistent graphical methodology for the analysis of bar frameworks in his ’A Manual of
Applied Mechanics’ (Rankine, 1858). The earliest systematisation of the theory of graphic
statics can be attributed to Cullman, in his seminal monograph ’Die Graphische Statik’
(Culmann, 1875). Rankine’s, Maxwell’s, Cremona’s and Cullman’s methods were then
further extended by various scientists and practitioners of engineering at the end of the 19th

century, such as Bow. In 1873 Bow (Bow, 1873) with his monograph ‘The economics of
construction in relation to framed structures’ categorised 2-dimensional truss geometries into
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four different types and derived their reciprocal force diagrams. In this, 136 truss geometries
and corresponding form and force diagrams were standardised (Figure 2.2) for structural
engineers and designers to use (Kurrer, 2008). However, it is Maxwell who is credited as
the originator of the notion of reciprocity between form and force diagrams (Charlton, 1982;
Kurrer, 2008; Zalewski and Allen, 1998) and who suggested a methodology to construct the
diagrams within the context of projective geometry. Relevant work in this direction was also
undertaken by Cremona (Cremona, 1872), who introduced an alternative approach to that of
Maxwell in the construction of reciprocal diagrams.

Fig. 2.1 Varignon’s introduction of the polygon of forces and funicular polygon in (Varignon,
1725).

The design and analysis procedures of graphic statics were particularly relevant in the
late 19th century, when they were regarded, along with the notions of projective geometry,
as essential elements in the education of young engineers (Charlton, 1982). At that time,
graphic statics, and more generally graphical analysis, was used as the conventional approach
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Fig. 2.2 Table of standardised 2D truss geometries and their force diagrams in Bow (Bow,
1873).
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to solving engineering problems, including safety assessment of masonry vaults, arches and
domes. However, most of the applications were largely limited to the standardised analysis
of 2-dimensional trusses and required a considerable number of hours of draughtsmanship.
In the early 20th century Wolfe (Wolfe, 1921) wrote one of the most concise textbooks
on graphical analysis and 2D reciprocal diagrams. ‘Graphical analysis: A Text Book on
Graphic Statics’ exemplifies a number of elaborate constructions based on parallel drawing
(Figure 2.3) as well as the limitations of these methods since solving complicated structures,
even 2-dimensional, requires tedious line hand drawing and draughtsmanship. At the same
time (early 20th century), the interest in and research on graphic statics went through a
rapid decline. The developments in analytical statics led engineers away from the subject,
where no significant progress was made after the late 19th century (Kurrer, 2008). By the
second quarter of 20th century, graphic statics was almost entirely replaced by the analytical
approaches of elasticity theory, which relied on the solution of equations rather than the
construction of time-consuming hand drawing. The fast advances in analytical statics and the
introduction of numerical methods such as the finite element method in the second half of the
20th century, led to the widespread situation where in the curricula of young engineers and
architects, the study of geometry, let alone projective geometry, and its relation to graphic
statics gradually declined. In the field of theoretical research, an exception is represented by
the work of the structural topology group at the University of Montreal on reciprocal diagrams
among others. There, following Maxwell’s legacy, the application of projective geometry
and higher-dimensional duality between stress functions was developed from a general and
mathematical point of view within the context of rigidity theory (Crapo, 1979; Crapo and
Whiteley, 1994). In the field of applied research, graphic statics has been proposed, within
the domain of plasticity theory, for the design of reinforced concrete structures (Muttoni
et al., 1997).

Over the last few decades, graphic statics has seen a renewed interest. This directly
reflects the increasing demand for the construction of material efficient structures, which in
turn calls for the use of synthetic and intuitive tools that allow the designers to take advantage
of the relationship between form and forces from the early stages of the design process. In
this context, there is a current trend to reintroduce graphic statics within the engineering
and architectural education (Allen and Zalewski, 2010; Muttoni, A., 2011; Zalewski and
Allen, 1998). Recent applications of graphic statics are underpinned by the computational
and visualization capabilities offered by contemporary computer aided design tools. As
a result, a lot of research, methodologies and computational frameworks have emerged
recently. These can be found, among others, in: the design of compression-only or tension-
only spatial funicular structures by means of the Thrust Network Analysis (TNA) (Block
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Fig. 2.3 Graphic statics hand drawings of elaborated 2D trusses in Wolfe (Wolfe, 1921).



12 Literature review

and Ochsendorf, 2007) which combines 2D graphic statics with the force density method
(Block and Ochsendorf, 2007); the computational framework for analysing and designing
compression-only or tension-only plane-faced polyhedral structures based on subdivisions
and manipulations of spatial force diagrams (Rankine 3D) (Akbarzadeh et al., 2015); the
extension of this method to compression and tension cases through matrix analysis (Hablicsek
et al., 2019) based on the principles of the Singular Value Decomposition (SVD) (Pellegrino,
1993). Moreover, another computational framework has been recently developed for the
analysis of spatial structures in static equilibrium which is not confined to plane-faced cases
and can input target values of the external forces (Lee et al., 2018).

Graphic statics can be also used in the context of transformations of form diagrams in
static equilibrium (Fivet, 2016). Other recent contributions in the study and generalization of
graphical analysis include publications from (Fraternali and Carpentieri, 2014; Micheletti,
2008; Zanni and Pennock, 2009). Graphic statics has also regained popularity in the engineer-
ing industry as a design and optimisation tool (Beghini et al., 2014; Mazurek et al., 2016).
Most of the current graphic statics approaches for the construction and transformation of 3D
form and force diagrams rely on the use of iterative algorithms or procedural reconstruction
techniques, such as the polyhedral one (Akbarzadeh et al., 2015; Lee et al., 2018), the
vector-based one (D’Acunto et al., 2017), and operate on a local node-by-node basis. A
direct global implementation, which is grounded on the definition of higher dimensional
reciprocal stress functions as a tool for generating pairs of reciprocal form and force diagrams,
has been also suggested (Konstantatou and McRobie, 2016; McRobie, 2016). A theoretical
framework based on Clifford Algebra has been introduced by McRobie (McRobie, 2017a)
for the analysis of the general case of plane and spatial frames in static equilibrium. This
utilizes the concept of zero-oriented area auxiliary geometrical elements and results in the
analysis of all six stress resultants (axial and shear forces, bending and torsion moments).
This method is applicable to general cases of spatial structures where faces need not lie on a
plane and are thus gauche1.

2.1.1 Maxwell’s contribution to graphic statics

Maxwell was interested in the concept of analogies in science from a very young age. He
was particularly intrigued by the relation between beautiful forms and mathematics (Harman,
2004); from how the underlying geometrical principles can act as a morphological mould.
That idea was explored conceptually in his essay ‘Analogies in Nature’, which he wrote
for the student society ‘Cambridge Apostles’ in 1856 (Harman, 1990). In this work, he

1Gauche is a term used by Maxwell to denote polygons which do not lie on a plane. Thus, the surface that
spans them is curved.
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mentioned reciprocity which would be a key idea in his seminal papers on structures and
electromagnetism (Harman, 1990). Also, a few months earlier, he published his famous paper
‘On Faraday’s lines of force’ (Maxwell, 1855) where he related magnetic forces with electric
currents through a geometrical construction of lines of force which run on a surface in an
analogous way to how incompressible fluids flow (Harman, 2004). Maxwell’s fascination
with analogies and reciprocity was heavily influenced from his contemporaries and took form
through the mathematical theories of his time.

The mathematics of late 19th century were characterized not only from projective geome-
try, the ‘modern geometry’ of the time, but also from the newly formed topology. Maxwell
was familiar with the work of Carnot, Chasles and Poncelet with respect to the former
and the work of Gauss, Listing, Euler, Riemann, Leibniz and Cayley with regards to the
latter (Harman, 1998; Maxwell, 1870). His mathematical physics framework was heavily
influenced by Gauss’ ‘Geometria Situs’ and Listing’s topology, which shaped his ‘knotted
curves’ discussion, his theory on translations and rotations of spatial motions, and fed his
electromagnetic analogies and relations between electrical circuits and lines of force (Har-
man, 1998; Maxwell, 1855). Moreover, Maxwell also used projective geometry as a tool of
geometrical analogy; in his point of view, projective geometry could express the supremacy
of the geometrical over the analytical way of thinking (Harman, 1998). This can be seen
clearly in his theory of reciprocity between geometrical elements if placed within a projective
geometry framework. Maxwell wrote on this: ‘The study of corresponding elements in two
figures has led to the establishment of a geometry of position by which results are obtained
by pure reasoning without calculation, the verification of which by the Cartesian analysis
would fill many pages with symbols’ (Harman, 1998). As a result, projective geometry and
its underlying notion of duality was the tool used by Maxwell to express the reciprocity
between not only form and force diagrams in the context of graphical analysis but also, of
‘geometrical optics, electrical circuits, and the kinetic theory of gases’ (Harman, 1998).

Maxwell’s graphical analysis of trusses (Maxwell, 1864b, 1867, 1870) was particularly
influenced by Chasles’, Monge’s and Poncelet’s pole and polar construction and duality
principle, which expressed the reciprocity between form and force diagrams. As he charac-
teristically put it in 1873: ‘[. . .] principle of duality . . . the leading idea of modern geometry’
(Harman, 1998). Maxwell combined the projective geometry duality with Euler’s work on
polyhedral counting to develop his theory of reciprocal diagrams in statics. He observed that
two-dimensional reciprocal diagrams follow the counting rules of polyhedra when it comes
to their constituent geometrical elements (points, edges, faces) and that a 2-dimensional form
diagram has a force reciprocal when it is a projection of a polyhedron (Maxwell, 1864b).
At that point, he would derive reciprocal diagrams by using geometrical constructions with
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circles, for the 2D, and spheres, for the 3D case, which would ensure that corresponding
reciprocal elements were perpendicular. However, it is not until few years later that he placed
his constructions one dimension up, and entirely in the space of the reciprocal polyhedra
following Poncelet’s and Monge’s theory of polar figures (Charlton, 1982). Maxwell was
also familiar with the work of Airy (Airy, 1862) since he was keeping a regular communi-
cation with the Astronomer Royal on all sorts of scientific matters and he was a reviewer
for some of his work. In particular, Maxwell along with Rankine were the reviewers of
Airy’s 1862 paper on structural analysis and the Airy stress function (Harman, 1990) which
he considered as a significant simplification of the already existing theories and he later
developed and applied himself in his graphical analysis of trusses. A number of his contem-
poraries, (such as Cremona, Rankine and Cullman) adopted, generalized, or standardized his
methods. However, most of them did not grasp or consider reciprocal diagrams in the deep
geometrical way Maxwell did. An exception was Cremona, who as a geometer, was also
familiar with polarities, and who discussed and applied Möbius’ null-system methods. As a
result, Maxwell is credited with making the biggest intellectual contribution in the context of
graphic statics (Kurrer, 2008).

2.2 Projective Geometry

Projective geometry is a system of geometric prepositions that does not include any of
the familiar Euclidean notions of parallelism, intermediacy, angle and length measurement
(Figure 2.4). Its origins can be traced back to Pappus of Alexandria (4th century) as well as
the French architect Desargues (16th century) and the French philosopher and mathematician
Pascal (17th century) (Coxeter, 1969; Rosenfeld, 1988). On the projective plane, two lines
always meet in a point, either an ordinary point or a point at infinity (Coxeter, 1974). The set
of all the points at infinity constitutes the line at infinity, which together with the Euclidean
plane defines the projective plane. On the projective plane, there is only one type of conic, or
conic section; it is its position with respect to the line at infinity that gives rise to the different
embeddings (circle, ellipse, parabola, hyperbola) when seen from a Euclidean point of view
(Coxeter, 1974; Rosenfeld, 1988) (Figure 2.5).
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Fig. 2.4 Projective-Affine-Euclidean geometry – primitive concepts and metrics

Following the principle of duality in 2D projective geometry any proposition that is true
on the projective plane for points and lines can be dualised to an equivalently true proposition
for lines and points as showed by Cremona (Cremona, 1885) (Figure 2.6). The principle
of duality thus works by interchanging primitive geometrical elements of the projective
plane. This can be extended to higher spatial dimensions by taking into account the primitive
elements of the specific projective space under consideration (Figure 2.7) (i.e. the point and
the line in 2D; the point, the line and the plane in 3D; the point, the line, the plane and the
hyperplane in 4D).

Fig. 2.5 Conics in relation to the line at infinity of the projective plane.
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Fig. 2.6 Dual propositions, definitions, theorems and true statements of 3D projective geome-
try can be arranged in a ‘parallel column’ configuration in Cremona’s Elements of Projective
Geometry (Cremona, 1885). Specifically, this 3D duality between points and planes is
important since it underpins the study of 2D trusses.
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Considering that a pair of n-dimensional form diagram and its reciprocal force diagram
are projections of (n+1)-dimensional stress functions, then this reciprocal pair also obeys
the counting rules and connectivity of their higher-dimensional stress functions (Figure 2.7).
The reciprocity between geometrical elements also applies to their connectivity matrices.
For example, Cp,Cl,Cpl,Ch−pl are the connectivity matrices between points, lines, planes
and hyper-planes of a form diagram, and Cp′,Cl′,Cpl′,Ch−pl′ the corresponding connectivity
matrices of its reciprocal. These matrices are symmetric and their entries are either 1, if
two elements are adjacent (for instance, two points in Cp are connected from an edge or
two planes in Cpl share an edge), or 0 if they are not. For example, a 2D truss and its 2D
force reciprocal are projections of 3D polyhedral stress functions and they thus obey the
connectivity and counting rules of these polyhedra: points map to planes, lines to lines, with
the connectivity remaining fixed; if two points of the form diagram are connected via an edge
then the corresponding faces of the force reciprocal share a common edge.

2.2.1 Pole and polar reciprocals

The concept of pole and polar reciprocals were central to 19th century projective geometry.
Pole and polar constructions or ‘polarities‘ are transformations which map geometrical
elements to each other according to the principle of duality (Figure 2.7). On the plane, a
polarity maps points to lines and dually lines to points, in 3-dimensional space a polarity
maps planes to points and vice versa. They have degree 2 since the image of transforming
an element twice is the element per se and they preserve incidence (Coxeter, 1969). In a
2-dimensional geometry the former means that a point A maps to a line a which maps back
to point A, and the latter that if three lines A, B, C on the plane are concurrent on a point d,
then after the polar transformation points a, b, c lie on the line D) (Coxeter, 1969).

Desargues was the first to come up with the concept of polar transformations in 2-
dimensional space induced by a conic (Rosenfeld, 1988) - although Brianchon is also credited
with the discovery of mapping a point to a plane through a line (Gray, 2010). Moreover,
Monge was the one to generalize Desargues’ pole and polar construction in 3-dimensional
space. Given a generic point P (pole) and a conic γ on the projective plane, in such a way
that P is outside γ , the two lines a and b incident to P and tangent to γ meet the conic in two
intersection points A and B; the chord through A and B defines the polar line p (Figure 2.8).
Equivalently, given any pole P outside of a quadric Γ in the projective 3-space, the cone
with vertex in P and tangent to Γ, intersects the quadric in a plane curve γ (a conic), which
lies in the polar plane π (Amir–Moez, 1973) (Figure 2.9). The fact that the curve γ lies
on a plane can be also deduced from a geometrical point of view. Specifically, if we apply
the above construction to a sphere it is trivial to see how γ is a circle on a plane. If we
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Fig. 2.7 Summary of duality principles between geometrical elements in projective geometry
and correspondence between n-dimensional structures and their (n+1)-dimensional stress
functions.
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now apply a projective transformation to this model we can transform the sphere to other
quadrics (ellipsoid, paraboloid of revolution, etc.) while the transformation of the polar
plane retains its planarity and thus the fact that γ lies on a plane. We should note that these
constructions readily apply on the Euclidean plane and space for any embedding of a conic
(circle, parabola, ellipse, hyperbola) and real non-degenerate quadric (sphere, paraboloid,
ellipsoid, hyperboloid), in this section we use as a 2D example an ellipse and as a 3D example
an ellipsoid. When the pole P is inside the conic γ on the projective plane, the polar line
p can be found as follows (Figure 2.10): from P take any two arbitrary lines p1, p2 which
will intersect γ in points A, B and C, D respectively; from these two pairs of points take the
corresponding pairs of tangent lines a, b and c, d with regards to γ; these two pairs of lines
will intersect in points AB and CD. These two points define the polar line p. Equivalently, in
projective 3-space for a pole P inside a quadric Γ the polar plane π can be found as follows
(Figure 2.11): from P take any three arbitrary planes π1, π2, π3, which intersect Γ in the
plane curves γ1, γ2, γ3 respectively; from these three curves take the corresponding tangent
cones which define points P1, P2, P3. These three points define the polar plane π .

Von Staudt observed that the conic and the quadric are essentially the locus of self-
conjugate points on the plane and in space respectively; that is, self-conjugate are points
which lie on their polar lines, or planes, which in turn are tangent to the conic, or quadric.
Monge applied this construction, using a paraboloid of revolution as a quadric, to derive
reciprocal polyhedra (Chasles, 1875). However, Monge’s notes on this did not survive
(Chasles, 1875) and his student Poncelet developed his theories, formally established the
principle of duality and through it polar reciprocation (Cremona, 1885; Maxwell, 1870;
Poncelet, 1822; Rosenfeld, 1988) which utilized such a pole and polar reciprocal construction
based on a paraboloid of revolution to map nodes (poles) and faces (polar planes) of a
polyhedron to the faces and nodes of its reciprocal (Konstantatou et al., 2018). Maxwell’s
construction of reciprocal polyhedra was an elegant and abstract geometrical toolkit to
produce a corresponding pair of 2D reciprocal form and force diagrams of trusses in static
equilibrium through projection. Moreover, other types of polar transformations were explored
at the time, most notably Möbius’ Null-polarity, which was not based on transformations
induced by quadrics and where all poles, and polar planes, are self-conjugate (Cremona,
1885).
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2.3 N-polytopes and planarity

The frameworks we analyse here are self-stressed, pin-jointed structures. We will denote
such a 2D framework F as a set of vertices v, edges e and faces f : F(v, e, f) and its reciprocal
to be F’(v’, e’, f ’). This pair of 2D form and force diagrams can be lifted in 3-space to a pair
of reciprocal polyhedra P(v, e, f), P’(v’, e’, f’). Equivalently, we denote 3D frameworks of
polyhedral structures P as a set of of vertices v, edges e, faces f and cells c: P(v, e, f, c) and
its reciprocal to be P’(v’, e’, f’, c’). These can also be lifted in 4-dimensional space to a pair
of reciprocal 4-polytopes. It should be noted that 4-polytopes are the equivalent of polyhedra
in the 4-dimensional space where the cells lie on hyper-planes in the same way that faces lie
on planes; hyper-planes constitute 3-dimensional subspaces in 4-dimensional space in the
same way that planes constitute 2-dimensional sub-spaces in 3-dimensional space.

A planar graph G(v, e) is a set of vertices v and edges e, which can be drawn topologically
on a 2D Euclidean plane without any edge crossing. This can be extended to spatial trusses,
which are projections of 4-polytopes and have an underlying spatial planar graph. A spatial
planar graph G(v, e, f) is a set of vertices v, edges e and faces f, which can be drawn
topologically in a 3D Euclidean space without any edges or faces crossing (Crapo, 1979).

The condition of possessing a planar graph is considered in the literature a necessary,
but not sufficient, condition for a 2D truss to have a reciprocal - although as we will see in
section 3.2.4 there are some special cases for which this is not the case. Together with the
additional requirement that the 2D truss has a state of self-stress, these conditions imply that
the 2D truss is an accurate picture on the Euclidean plane of a projection of the corresponding
polyhedron (Crapo, 1979). As a result, a 2D truss without external loading, which is a
projection of a polyhedron, is necessarily self-stressed (Micheletti, 2008). At the same time,
given a diagram of a 2D truss with a planar graph the question arises of how to assess whether
this diagram corresponds to a projection of a polyhedron. An example is (Figure 2.12)
where Maxwell’s Figure IV (Maxwell, 1864a) is not self-stressed in the general position
even though it possesses a planar graph. The special case where the truss has one state of
self-stress is when it is a projection of a polyhedron - specifically, when it is in a Desargues
configuration.
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Fig. 2.12 Maxwell’s Figure IV as a projection of a polyhedron in a Desargues configuration.
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2.4 Reciprocal diagrams and Airy stress functions

Reciprocal form and force diagrams, were used in the context of graphic statics from as
early as Hooke’s era (17th century) for the assessment of masonry structures (for a detailed
historical overview on graphic statics the reader can see (Charlton, 1982; Kurrer, 2008);
however, the formal conception of these dual figures, and the definition we will be using here,
can be largely attributed to Maxwell for the 2D case (Maxwell, 1864b, 1870) and Rankine
(Rankine, 1864) for the 3D case. In 2D reciprocal diagrams, form edges map to force edges
and form nodes to closed force polygons – thus, obeying a 3D duality (Figure 2.7). These
reciprocal diagrams are projections of polyhedral Airy stress functions which are reciprocal as
well. Maxwell (Maxwell, 1870) succinctly mentioned that this reciprocity between polyhedra
can be obtained through a polar transformation, or polarity, using a paraboloid of revolution.
The change of slope between adjacent faces of the Airy stress function defines the axial
force of the corresponding structural member of the 2D truss (McRobie et al., 2016; Mitchell
et al., 2016). In 3D reciprocal diagrams, form edges correspond this time to force faces, and
nodes to closed polyhedral cells. Thus, obeying a 4D duality. As per the 2-dimensional case,
reciprocal self-stressed 3-dimensional figures can also be seen as projections of 4-polytopes,
which Maxwell defined in equation form (Maxwell, 1870) and in contemporary nomenclature
are called Maxwell-Rankine stress functions (McRobie, 2016).

Moreover, the roles of reciprocal form and force diagrams are interchangeable and there
is no distinction between lines of action of the applied forces and structural members. This
has been explained in detail in (McRobie et al., 2016; Mitchell et al., 2016) where external
forces, which can be applied on the structural perimeter as well as on internal nodes, can be
combined with the form diagram to make a projection of a single polyhedron, possibly with
the use of an extra portion of a funicular polygon. Thus, this polyhedron can be also seen as
the Airy stress function of an equivalent self-stressed truss. As a result, there is no distinction
between these two cases (self-stressed, with external loading) since they are geometrically
equivalent.

Already in the (Maxwell, 1864a) paper, Maxwell establishes the correspondence of
geometrical elements between 2D reciprocal diagrams. In particular, for a form diagram F(v,
e, f) we have that for its reciprocal F’(v’, e’, f’): v = f’, e = e’, f = v’. Moreover, e = v +
f - 2 and e’ = v’ + f’ – 2 which is Euler’s formula for counting the geometrical elements
of polyhedra. Also, a necessary condition for the existence of two reciprocal figures is that
every e, e’ belongs only to two polygons from f, f ’.

At the same time there are exceptions to this general rule. For example, Figure 7 in
(Maxwell, 1864a) is a case of a 2D truss which does have a state of self-stress without being
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a projection of a polyhedron and thus without obeying Euler’s counting rule. This is because
the underlying graph of this truss geometry is non-planar.

There are two ways to solve this: Maxwell suggested that a corresponding force diagram
can be constructed by repeating some of its edges – consequently, the resulting pair of
form and force figures are not reciprocal since they cannot be derived from each other in
a non-ambiguous way. Alternatively, Bow (Bow, 1873) suggested that this issue can be
addressed by adding an extra node at the point of intersection of two overlapping edges
which are thus split. In this way, the resulting diagram is a projection of a polyhedron and
its constituent geometrical elements do obey Euler’s rule. The force reciprocal can be now
derived following Maxwell’s standard methods in (Maxwell, 1864a, 1870). We should note
that the extra added node will correspond to a parallelepiped quad in the force diagram
created from two pairs of duplicated force edges. These correspond to the two split form
edges. However, this construction does not apply to the 3D case. It should be noticed that
for spatial trusses, cases can be found where trusses are not projections of 4-polytopes and
nonetheless, they do possess states of self-stress. In contemporary nomenclature this is called
‘Rankine incompleteness’ and has been discussed recently in the graphic statics literature
(McRobie, 2016, 2017b).

For spatial, 3D, structures the reciprocity is between form edges e and force faces f’.
Moreover, points v are mapped to reciprocal cells c’ indicating a Poncelet 4D duality where
v = c’, e = f’, f = e’, c = v’ and thus F(v, e, f, c) maps to F’(v’, e’, f’, c’). Also, Maxwell
highlights how spatial reciprocal figures F(v, e, f, c), F’(v’, e’, f’, c’) obey the counting rules
of 4-polytopes, i.e., each face of the polyhedral diagram belongs only to two polyhedral
cells, every line is the intersection of at least three faces and there are no free edges, faces, or
points. This type of reciprocal geometrical construction was firstly described by Rankine
(Rankine, 1864).

Maxwell solved the simple case of a spatial form diagram the geometry of which is a
spoked tetrahedron (Figure 2.13) - or in mathematical terms a 4-simplex or 5-cell in two
ways:

• Firstly, since the 5-cell comprises 5 tetrahedra this is a trivial case where a sphere
construction can be applied. This is a generalisation of the circle construction used in
2D examples. In this way, it is ensured that edges are perpendicular to reciprocal faces
(Figure 2.14) and the line connecting the centres of two spheres is always perpendicular
to their common intersection plane. As a result, Rankine 3D reciprocals are derived
where for each form edge the corresponding internal forces are proportional to the
surface area of the reciprocal triangular faces.
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• Secondly, an alternative construction is also proposed, where for every point, and its
concurrent edges, a ‘local’ force diagram is created where form edges correspond force
edges which form closed spatial force polygons (Figure 2.16). In this way, the static
equilibrium of the node is guaranteed, however; in order to assemble these local force
polygons in one global force diagram, it is very likely that a number of edges should
be repeated (Figure 2.16).

Depending on their spatial dimension and the geometrical relationship between corre-
sponding members, reciprocal diagrams can be categorised as follows:

• Maxwell 2D reciprocals, where edges in the 2D form diagram correspond to perpen-
dicular edges in the reciprocal 2D force diagram.

• Cremona 2D reciprocals, where corresponding edges between 2D form and force
diagrams are parallel.

• Rankine 3D reciprocals, where form edges correspond to reciprocal perpendicular
force faces.

• Cremona 3D reciprocals, where edges in the 3D form diagram correspond to parallel
edges in the reciprocal 3D force diagram.

We should note that Maxwell 2D and Cremona 2D diagrams are identical up to a 90
degrees rotation, whereas Rankine 3D and Cremona 3D are geometrically distinct since in
the former forces are expressed by surface areas and in the latter by edge lengths.

For a given 3D form diagram with underlying 2D planar graph and a state of self-stress,
it is possible to derive a Cremona 3D reciprocal force diagram (Crapo, 1979), where spatial
form edges correspond to reciprocal parallel force edges (Figure 2.15). Contrary to the
Cremona 2D case however, these 3-dimensional reciprocal diagrams are not projections of
4D reciprocal stress functions through a null-polarity, which is not defined mathematically
in even dimensions (Baer, 1945). Cremona 3D reciprocals have been investigated in the
work of Sauer (Sauer, 1970) and more recently in Micheletti (Micheletti, 2008), Wallner and
Pottmann (Wallner and Pottman, 2008), and Tachi (Tachi, 2012).

More generally, since the 2D graphs of 3D form and force diagrams are usually non-
planar, edge-to-edge reciprocity between the 3D diagrams is not possible in such cases
(Jasienski et al., 2016). Different solutions to derive reciprocal form and force diagrams
with corresponding edges parallel and with underlying non-planar graphs can be found in
literature for these cases: Maxwell observed that the static equilibrium of a spatial structure
can be evaluated using 2D graphic statics by studying its three orthogonal 2-dimensional
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Fig. 2.13 Constituent geometrical elements of a regular K5.
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Fig. 2.14 Construction of Rankine reciprocal for a K5 through spheres.
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projections and their corresponding Airy stress functions, and more recently, Micheletti
proposed a matrix-based procedure for the construction of point-symmetric reciprocal force
diagrams for some 3D self-stressed networks (Micheletti, 2008).

Given a generic 3D form diagram in static equilibrium, various possible configurations of
3D force diagrams with corresponding edges parallel can be generated and transformed using
the vector-based approach to 3D graphic statics (D’Acunto et al., 2017, 2019), (Figure 2.16).
Unlike Rankine 3D diagrams (Figure 2.15), vector-based 3D diagrams do not obey a 4D
duality between their geometrical elements. In particular, they follow a rather 3D duality
in the sense that form edges e map to force edges e’ and form vertices v to force faces
f’; however, they generally have duplicate edges (Figure 2.16). As a result, vector-based
diagrams are in general not reciprocal.

The methodologies developed in this thesis correspond to Maxwell 2D diagrams for the
2D case and to Rankine 3D diagrams for the 3D case.

Fig. 2.15 Cremona 3D reciprocals. Left: Spatial form diagram which is topologically a cube.
Right: Reciprocal force diagram which is topologically an octahedron with corresponding
edges parallel.

A type of diagrams which is of particular importance is spiderwebs (Whiteley et al.,
2013). These derive their name from the homonymous insect’s elaborate tensile structures
which can be observed in nature. In the context of structural engineering and rigidity theory
a spiderweb can be thought of as a cable-only structure which is fixed to some points. A
spiderweb with non-slack edges has a positive self-stress (is in tension without the presence
of external forces) in all its cables and is attached on a compressive hoop. A 2D spiderweb is
self-stressed if and only if it is the orthogonal projection of a convex polyhedron (Connelly,
1993; Whiteley et al., 2013). The fact that spiderwebs comprise tensile elements fully
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Fig. 2.16 (a): 3D form diagram of a spatial truss with a 5-simplex geometry F(5, 10, 10, 5);
(b): 3D force diagram with corresponding force edges e’ parallel to the form edges e; (c, d,
e): The form vertices v map to force faces f ’ following a 3D duality, however; the resulting
force diagram F’(8, 12, 5, 0) has duplicate edges.
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enclosed in a single compressive hoop can also readily relate to the geometric construction
of Schlegel diagrams.

Schlegel diagrams are perspective projections (in Rd−1) of convex polytopes (in Rd) from
a point just outside one of their faces. For example, for a 2D Schlegel diagram the geometric
construction is as follows: for a given convex polyhedron (3-polytope) we take a point just
outside of the centroid of one of its faces and apply a perspective projection from there onto
a projection plane. The resulting 2D diagram will consist of the outer boundary – the edges
of the face picked initially – and all the internal edges which are the projections of all the
remaining polyhedral faces, edges and vertices (Loeb, 1991) (Figure 2.17). Interestingly,
we can find some Schlegel diagrams in Maxwell, 1864 – like Figure 5 (Maxwell, 1864a)
(Figure 2.17). It follows that a Schlegel diagram is a spiderweb where the outer boundary
(compressive hoop) is the projection of the face which fully contains the projections of the
remaining geometrical elements of the polyhedron. Moreover, spiderwebs have planar graphs
since topologically they have non-crossing edges for the R2 case and non-intersecting faces
for the R3 case (Crapo, 1979).

Fig. 2.17 Left: Schlegel projection of a polyhedron resulting in a 2D spiderweb structure.
Right: a 2D truss with a spiderweb geometry as found in Maxwell’s 19th century paper.

Lastly, it should be highlighted that we can talk about reciprocity and duality in very
general and topological terms, namely, two reciprocal or dual geometries need not necessarily
conform to the rules of perpendicularity outlined above (McRobie, 2017a). For instance, in
the case of a 2D pair of reciprocal diagrams, we can have reciprocal form and force edges
which are not perpendicular. The diagrams are still topologically reciprocal or dual with each
other, they just not represent structures with purely axial loads. For example, it has been
showed (Konstantatou et al., 2018) that general reciprocals can be produced by using polar
transformations based on quadrics other than the paraboloid of revolution or the sphere. The
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latter are two special cases which can directly produce through projection (orthogonal or
central) pairs of reciprocal 2D diagrams of trusses in static equilibrium with purely axial
forces – the case which is of interest in graphic statics and of the applications addressed
here. Nonetheless, general reciprocal polyhedra obtained in a general manner can still be
transformed to the special cases of interest.

2.5 Polarities as a tool for deriving reciprocal polyhedra

Since polarities are global transformations mapping every element in space to another they
are a useful tool for generating global force reciprocals of structures in static equilibrium as
well as for transforming structures from one typology to another.

As discussed in section 2.2.1, in a 3D geometry, a polyhedron can be mapped to its
reciprocal polyhedron through a polar transformation, or polarity. As a result, for every
polyhedron P the planes (polar planes) on which its faces lie on can be transformed to the
vertices (poles) of its reciprocal polyhedron. If this geometrical procedure is followed for
every plane of the faces of the given polyhedron then all the reciprocal vertices are found.
These can now be connected following the connectivity of the given faces (Cpl)to construct
the reciprocal polyhedron. More generally, planes can map to points using a range of
polarities. These transformations, or mappings between reciprocal geometrical elements, can
be achieved in several equivalent ways. These were known and used by Maxwell (Maxwell,
1870); however, they were not acknowledged or employed from most contemporary graphic
statics methods.

Considering these geometric constructions from a Euclidean perspective and reclaiming
the distinction between various non-degenerate conics and quadrics, the relations between
dual elements can be expressed in analytical form, using Cartesian coordinates (Smith, 1886).
These were already studied in Maxwell’s time in the 19th century. For the general equation
of a quadric:

ax2 +by2 + cz2 +2 f yz+2gzx+2hxy+2ux+2vy+2wz+d = 0 (2.1)

Given a pole P (x’, y’, z’), the corresponding polar plane π is described by the following
equation:

x(ax′+hy′+gz′+u)+y(hx′+by′+ f z′+v)+z(gx′+ f y′+cz′+w)+ux′+vy′+wz′+d = 0
(2.2)
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Fig. 2.18 Reciprocal 2D form and force diagrams showing the correspondence between their
geometrical elements which follows a 3D projective geometry duality.

Polarities can be thought of as pairs of transformations L, L-1 that map a plane π , defined
in equation form as Ax+By+Cz+D = 0 and described by the corresponding quadruples (A,
B, C, D), to a point P described from the triple (x’, y’, z’) and vice versa.
Using, for example, a paraboloid of revolution (Figure 2.19) with equation x2 + y2 −2cz = 0
as the quadric of the polarity, for a point P (x’, y’, z’) and its polar plane π described by the
equation z = Ax+By+D, we have that

L−1(P) = π (2.3)

L−1(x′,y′,z′) = (A,B,−1,D) (2.4)

then by using equation (2.2), we have that for this particular quadric, the plane π is given
by

x(x′)+ y(y′)+ z(−c)− cz′ = 0

which rearranges to
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z =
x′

c
x+

y′

c
y− z′ (2.5)

which, when expressed in the (A,B,-1,D) form has

A =
x′

c
, B =

y′

c
, D =−z′ (2.6)

These equations can be readily inverted to give

x′ = cA, y′ = cB, z′ =−D (2.7)

which is thus the mapping L:

L(π) = P (2.8)

L(A,B,−1,D) = (x′,y′,z′) = (cA,cB,−D) (2.9)

Fig. 2.19 Polarity in 3-space induced by a paraboloid of revolution.

Polarities and projective geometry in the context of graphic statics have not only been
explored from a geometrical point of view but also from an algebraic one; the latter following
a matrix approach (Figure 2.20). In the first case, the geometrical constructions are based
on the notion of conics, quadrics and their higher-dimensional analogues and they apply to
both 2D and 3D graphic statics, whereas in the latter case they are based on the notion of
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Fig. 2.20 Equivalent mathematical descriptions of polarities.
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null-polarity which applies only to 2D graphic statics (since it cannot be defined in even
dimensions). In (Konstantatou et al., 2018) is highlighted how the matrix approach can be
used for any polar transformation and how the geometrical approach can be used for the
null-polarity. Thus, ultimately the two approaches (projective geometry constructions and
matrix transformations) are equivalent with respect to constructing reciprocal diagrams.

A non-degenerate quadric, described in its general equation form in (Vaisman, 1997), can
be represented in matrix form (Amir–Moez, 1973) as: xtSx = 0.

where x =


x
y
z
1

 , and the symmetric matrix associated to the quadric is:

S =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


A point P= (xp, yp, zp, 1) is then mapped to its polar plane π through the polar transfor-

mation (in homogeneous coordinates) PtSx = 0.
This relation holds not only for points that lie on the quadric but mode generally for any

point in space. If the point lies on the quadric, then the polar plane is the tangent plane on
that point. As a result, the point lies on its polar plane. If the point does not lie on the quadric,
the equation for its polar plane can be obtained which this time does not include the point.

For example, considering as the quadric of the polarity a paraboloid of revolution with
canonical equation (in Cartesian coordinates):

x2 + y2 −2z = 0 (2.10)

A point P = (xp, yp, zp) is mapped to its polar plane π:

xxp + yyp − z− zp = 0 (2.11)

through the transformation (in homogeneous coordinates):

[
xp yp zp 1

]
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0




x
y
z
1

= 0
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We should note that by using a polarity induced by a paraboloid of revolution this
implies an orthographic projection of the reciprocal polyhedra. However, other polarities
and projections can be used too. In which case transformations are needed to ‘correct’ the
reciprocal form and force diagrams into a perpendicular/ or parallel configuration for trusses
in static equilibrium.

The matrices associated to non-degenerate quadrics and null-polarity can be converted
to each other through affine (reflection, scaling, shear, rotation, etc.) or more generally
projective transformations using corresponding transformations matrices T (Konstantatou
et al., 2018). For instance, in order to convert the matrix S of a real ellipsoid to the matrix S’ of
an elliptic hyperboloid, it is possible to multiply the former with the following transformation
matrix:

T =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


which corresponds to an affine transformation representing a reflection along the z-axis.

As a result, any type of quadric or null-polarity can be used as described above to obtain a
reciprocal polar plane for a given point P and then by using a suitable matrix T convert it to
any other polar construction.At the same time, these non-specific polarities could be useful
for generating topological reciprocals where reciprocal edges need not be perpendicular or
parallel. All the above apply to n-dimensional spaces and can be used for 2D, 3D and nD
graphic statics where reciprocal elements map to each other following the principle of duality
for the corresponding space.

The polarities approach followed here can be applied to any 2D self-stressed truss,
to any 3D self-stressed truss which is a projection of a 4-polytope, and to rotationally
symmetric spatial self-stressed structures (such as tensegrities) through the technique of
coning. Following this method, spatial structures which have just one cell, which would
otherwise map to just a single point, can be further subdivided to numerous cells which in
turn can produce a geometrically richer force reciprocal (McRobie, 2016).

Polarities, which are applicable in the context of graphic statics as discussed above, are
also closely related to the mathematical tool of Legendre transforms, which is widely used in
a range of contemporary scientific fields. These are interconnected from a mathematical and
historical point of view. In particular, Legendre transforms are a very useful mathematical
tool which is underpinned from the concept of duality. Like polarities a key property is that
they have period 2. They can be particularly useful in cases where thinking, measuring or
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controlling the derivative of a function with respect to a point is easier than doing so about the
point itself. Historically, polarities and Legendre transforms are also interlinked. Legendre
transforms were introduced by Andrien-Marie Legendre (1752-1833) to solve a minimal
surface problem given by Monge (Barbaresco, 2018). Moreover, ‘Chasles and Darboux
interpreted Legendre Transforms in a geometrical way using reciprocal polars with respect to
a paraboloid of revolution, a construction which was later re-used by Hadamard and Frechet
in calculus of variations’ (Barbaresco, 2018). This type of reciprocation, seen in Legendre
transforms and polarities, which is underpinned from projective geometry duality and has
period 2 is a fundamental and far reaching, in terms of applications, geometrical construction
and mathematical tool. With a starting point in the 18th century has gained popularity in
multiple and diverse fields in the 20th and 21st century.

Examples of the applicability of Legendre transforms include (Baierlein, 1999; Callen,
1985; Houlsby and Puzrin, 2007; Shell, 2015): the relation between the Lagrangian and
Hamiltonian functions in analytical mechanics; between strain energy and complementary
energy in elasticity theory; between the various potentials that occur in thermodynamics
(internal energy, Helmholtz free energy, Gibbs free energy, enthalpy); between the physical
and hodograph planes occurring in the theories of the flow of compressive fluids and perfectly
plastic solids. Moreover, they play a central role in the general theory of complementary
variational and extremum principles. These transformations have also been widely em-
ployed in rate formulations of elastic/ plastic materials to transfer between stress-rate and
deformation-rate potentials. Furthermore, Legendre transforms have been shown to play a
role to conventional plasticity as well as to the hyperplasticity approach (Houlsby and Puzrin,
2007). As a result, Legendre transforms are very closely related to polarities. In fact, they
are equivalent for mapping points to their tangent planes given a smooth and convex function
of a surface. A detailed geometrical description of the Legendre transforms which underlines
their connection to polarities can be found in Callen (Callen, 1985).

2.6 The role of polarities in structural analysis

In the context of structural engineering theory, polar transformations have not only been
used in relation to graphic statics. Tarnai (Tarnai, 1989) used polarities in the projective
2-space to establish transformations between 2D tensegrity structures and grillages2 in a
projective geometry framework that guarantees duality. These two types of structures obey a
2D duality principle with the number of joints and bars of the tensegrity corresponding to the

2Grillages in the work of Tarnai are plane beam grids with simple joints which can carry forces only
perpendicularly to the plane of the grillage.
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number of beams and joints of the grillage. As observed by Rankine (Rankine, 1864) and
Whiteley (Whiteley, 1987) the static and kinematic properties of a structure, including its
stiffness, are preserved under projective transformations. Moreover, Tarnai (Tarnai, 1989)
proved algebraically that the rank of the equilibrium matrix is preserved under a polarity
which maps tensegrities to grillages and vice versa. As a result, these types of structures can
be transformed into each other while maintaining their basic properties such as infinitesimal
rigidity (Tarnai, 1989).

In the projective 3-space, polarities can be applied for the construction of lattice (truss)
and dual plate structures (hinged sheetworks), where plates rigid in their planes are connected
through shear-resistant edges. This has been studied in detail by Wester (Wester, 1989,
2011) as well as by rigidity theorists such as Whiteley (Whiteley, 1987). Following this
3D dualism (Figure 2.7), truss nodes map to plate faces, truss bars to shear-resistant edges,
and consequently axial forces to shear forces. The two structures obey Euler’s polyhedral
formula, have the same Gaussian curvature (Wester, 1989), static and infinitesimal behaviour,
rigidity properties and degrees of freedom (Whiteley, 1987). The construction proposed by
Wester for deriving dual lattice and plate structures is essentially a polarity induced by a
sphere (Figure 2.21). In this way, the axial loads in the lattice structure regarded as force
vectors are transformed into moment vectors that produce shear forces in the edges of the
plate structure. The shear forces relate to the axial forces by a ratio rf which is calculated
as rf =l/sin(a), where l is the length of the reciprocal truss bar and a is the angle between
the position vectors of the nodes of the bar regarding the centre of the sphere as the origin
O (Wester, 1989). As a result, the structural and geometrical analysis and design of a plate
structure can be performed on the reciprocal truss and then mapped back to the original
structure and vice versa (Wester, 2011) – potentially simplifying the structural problem, when
the reciprocal structure is easier to solve.

The work of Tarnai and Wester meets and can be generalized through rigidity theory.
Whiteley (Whiteley, 1987), extended spatial trusses to become spatial tensegrities and
discusses how they can be transformed under a polarity to special cases of hinged sheetworks,
(slotted sheetworks) in which plates meeting at an edge can not only rotate but also slide
with respect to each other on one direction along the slotted hinge. This result, even though
not commonly used, generalises Tarnai’s tensegrity – grillage polar correspondence in two-
dimensions to its 3-dimensional analogue. Thus, for the same structure the dimension of the
polar transformation can give different insights; for a spatial tensegrity a 4D polarity can
give a reciprocal Rankine force diagram and a 3D polarity can transform the tensegrity to
a completely different type of structure which is also in static equilibrium. Consequently,
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polarities can provide a very elegant, useful and unified framework for applications in design,
analysis, and structural transformations (Figure 2.22).

Fig. 2.21 Reciprocal spatial truss and hinged sheetwork on the right, induced by a polar
transformation using a sphere on the left as described in the work of Wester (Wester, 1989).
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Fig. 2.22 The application of polarities in structural analysis and design.
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2.7 Minkowski sums

Reciprocal form and force diagrams can be synthesized geometrically in one object (McRobie,
2016; Zanni and Pennock, 2009), named ‘Minkowski sum’ in contemporary graphic statics
nomenclature. Thus, Minkowski sums embed visually the information for both form and
force. For two sets of vectors A and B, we define the Minkowski sum to be the set:

AAA+BBB = {aAAAi +bBBBi|AAAi ∈ AAA,BBBi ∈ BBB,a,b scalars} (2.12)

Which is a vectorial addition of the coordinates for the two sets A, B (Figure 2.23).
For example, in a pair of 2D reciprocal diagrams F(v, e, f), F’(v’, e’, f’), we can take B
to be the set of vertices v of F and A the set of faces f’ of F’. Thus, the Minkowski sum
will be an object resulting from the faces f’ being added on the vertices v and the created
parallelepipeds defined from form edges e and their reciprocal force edges e’. The inclusion
of the scalars a, b in the equation leads to different visual interpretations of the Minkowski
sum: if b = (a-1), then for a ≈ 0 the prominent geometry is the one of F, whereas for a ≈ 1
the prominent geometry is the one of F’. For values between 0 and 1 the Minkowski sum
shows the transition between the two diagrams. Equivalently, for 3D reciprocal diagrams F(v,
e, f, c), F’(v’, e’, f’, c’), B can be seen as the set of vertices v of F and A as the corresponding
set of reciprocal cells c’ of F’. For the spatial case, the parallelepipeds become volumetric
prisms created from the faces of the cells c’ extruded over the edges e. Given that the form
diagram has units of length (L) and the force diagram units of force (F), it follows that their
Minkowski sum has units of (FL). Thus, it can provide intuitive and visual information on
Maxwell’s load path theorem as well as on the volume of material required for constant stress
design of the structure (McRobie, 2016).
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Fig. 2.23 Top and middle: two 2D examples of reciprocal diagrams and their Minkowski
sums for various values of a. Bottom: Spatial example of reciprocal examples and Minkowski
sum for a 5-simplex.
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2.8 Summary

This Chapter reviewed the history of graphic statics, reciprocal diagrams and stress functions
from their infancy to today, while highlighting the influential but comparatively unknown
contribution of Maxwell. Specifically, by explaining and visualising Maxwell’s reciprocal
constructions while placing them in the scientific context of the time (late 19th century)
through an in-depth literature review. Moreover, the role of polarities was presented as a tool
for deriving 2D form and force diagrams by reciprocating their corresponding polyhedral
stress functions. The importance of this method is based on the following facts:

• It is a direct method for deriving global static equilibrium.

• All four reciprocal objects (form diagram, force diagram, corresponding stress func-
tions) are interlinked and the designer can start designing with any one of these - the
rest will be automatically updated.

• This method has a rigorous and elegant three-fold equivalent description in terms of
purely geometrical construction, matrix description and analytical expression.

• The use of the Airy stress function makes sure that any design and transformation
operations are performed within the equilibrium space.

Furthermore, the fundamental role of polarities in other fields of engineering (transfor-
mations between 2D grillages and tensegrities, transformations between 3D sheetworks
and trusses as well as 3D tensegrities to slotted sheetworks) was underlined and thus the
far-reaching and cross-disciplinary applicability of this method. Lastly, key notions that will
be used in the next Chapters were reviewed such as N-polytopes and Minkowski sums.



Chapter 3

Geometry-based structural analysis

This Chapter introduces a direct, geometrical, graphic statics methodology, which is unified
for 2D and 3D tension-and-compression trusses based on the concept of reciprocal stress
functions. This methodology has an equivalent three-fold mathematical description (geomet-
rical construction, matrix representation and analytical expression) and enables designers
to work with any one of four interlinked reciprocal objects: the form and force diagrams
and their corresponding stress functions. This introduces significant design and analysis
freedoms.

The parts of this Chapter concerning global static equilibrium (subsections 3.2.2 and
3.2.3) have been published in the International Journal of Solids and Structures (Konstantatou
et al., 2018) and presented in the Symposium for the International Association of Shell and
Spatial Structures - Tokyo, September 2016 (Konstantatou and McRobie, 2016).

3.1 Introduction

Existing computational frameworks in the contemporary graphic statics community are
valuable tools for the design and analysis of structures in static equilibrium. However, many
of these are based on iterative/ node-by-node (local)/ brute force/ matrix analysis approaches
to solve the problem and do not take into consideration the reciprocal stress functions but
solely the reciprocal form and force diagrams. As a result, they lose valuable insight as
well as design and analysis freedom capabilities. Moreover, they do not take advantage
of the underlying fundamental geometrical principles and projective geometry framework
introduced by Maxwell (Maxwell, 1870). It should also be highlighted that the method
and its output (reciprocal form and force diagrams) are distinct. The visual and intuitive
nature of the output is independent from the less intuitive and less visual computational
implementation of the method which is inaccessible to most users. Graphic statics are praised



46 Geometry-based structural analysis

for their intuitive nature but most of the times the methods to obtain them do not necessarily
follow suit.

A direct and unified methodology for 2D and 3D trusses in static equilibrium has been
developed as a result of this PhD research (Konstantatou et al., 2018) in the context of
projective geometry. This method directly generates global static equilibrium, has no need for
iterative/ reconstructive procedures, and is based on the reciprocity between stress functions –
the projections of which are reciprocal form and force diagrams. This method can be used to
derive any type of 2D (Maxwell or Cremona) and 3D (Rankine) force reciprocals for trusses
in static equilibrium when these are projections of 3D and respectively 4D plane-faced stress
functions. This approach has the following characteristics:

• The structures need not be compression-only/ tension-only.

• The structures can be either self-stressed or loaded with external forces.

• There is no distinction or special treatment between form and force diagrams.

• It works for all cases of 2D structures (with the possible addition of extra vertices in
the case of non-planar graphs1),

• and for spatial plane-faced polyhedral structures which obey the counting rules of
4-polytopes (every face belongs to two cells, every edge to at least three cells).

This framework interlinks and gives direct insight to the designer over all four reciprocal
objects: form diagram, force diagram and their corresponding stress functions. The latter
prove to be powerful design tools. They are intuitive representations of the structural
properties of the form diagram, and they have cross-disciplinary applications to other fields
of structural engineering and science.

In this Chapter a number of geometrical tools are presented for the visual and intuitive
analysis of structures in static equilibrium. Specifically it addresses the following questions:

• How global static equilibrium can be derived for 2D and 3D cases by using a direct
and unified method?

• What insight does this method add to the already existing literature?

• What is the role and what are the benefits of stress functions when used in the context
of structural analysis and design?

1If the graph of a diagram is non-planar topologically, there are special cases when this is not necessarily a
problem as we will see in section 3.2.4. In particular, this special case is of diagrams which are projections of
n-connected polyhedra with n>1 like a faceted torus.
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Moreover, a twofold structural analysis framework comprising statics and kinematics
is discussed. This reflects recent progress (McRobie et al., 2017) on extending the graphic
statics theory and applying it, in conjunction with virtual work, to derive a kinematic analysis
by geometrical manipulations of the force reciprocal.

3.2 Graphic statics

3.2.1 Counting the states of self-stress

Maxwell (Maxwell, 1864a,b, 1870) introduced counting rules which aimed to provide a
general framework for the study of the rigidity of plane and spatial trusses and the analysis
of their internal mechanisms and states of self-stress. He described sequential constructions
of stiff trusses which are essentially a forerunner of minimally rigid graphs as described by
Henneberg in 1911 (Henneberg, 1911) and formally defined by Laman almost a century later
(Laman, 1970) in the field of graph theory.

In his 1870 paper, Maxwell discusses his rigidity rules, counting rules and their relation
to the number of mechanisms and states of self-stress.

For the 2D case, Maxwell states that if 2s− e− 3 = p > 0, where s is the number of
points and e is the number of edges, then the system has p degrees of freedom (mechanisms).

For the 3D case, Maxwell observes that if 3s− e−6 = p > 0 and if that also applies for
every subsystem of points and edges, then the system has p degrees of freedom (mechanisms).
On the other hand, if 3s− e− 6 = q < 0 then there are q independent possible states of
self-stress.

Advancements in rigidity counting rules (Calladine, 1978) have improved and formalised
the above. The generalised ruled proved by Calladine states that for the 2D case: 2s−e−3 =

p−q, and for the spatial case: 3s− e−6 = p−q. Specifically, for systems which satisfy
Maxwell’s rule we have that p = q thus they can either be rigid and have no mechanisms and
self-stresses or have an equal number of mechanisms and states of self-stresses (Calladine,
1978). An example of the latter case is tensegrity structures (Figure 3.1), which obey
Maxwell’s rule on rigidity, but exhibit infinitesimal mechanisms which are stabilised from
corresponding states of self-stress.

Moreover, Maxwell assumed that all triangulated polyhedra are rigid. Specifically, in
Maxwell’s time (second half of 19th century) Cauchy had already proved, in 1831, that
all convex polyhedra are rigid and Euler conjectured that all triangulated polyhedra were
rigid (Cromwell, 1997). However, the dawn of the 20th century witnessed the first flexible
triangulated polyhedron example by Bricard. This was followed by research and counter-
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Fig. 3.1 A tensegrity structure which has 1 state of self-stress and 1 infinitesimal mechanism
even though it satisfies Maxwell’s rule.

Fig. 3.2 The Steffen flexible polyhedron: a triangulated topological sphere with 1 state of
self-stress and 1 finite mechanism.
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examples on the rigidity of polyhedra by Bruckner, Connelly, Kuiper, Deligne and Steffen
(Cromwell, 1997) who came up with a triangulated non-intersecting polyhedron of 9 vertices
and 21 edges (Figure 3.2) which has one finite mechanism and one state of self-stress as
p = q = 1. These type of flexible polyhedra are extremely rare though. In particular, they are
very specific embeddings of topologically triangulated spheres in R3 which are ‘generically
rigid’. That is, Gluck proved in 1975 that almost any geometric manifestation with such a
topology is rigid, but there are some specific geometries which are not (Cromwell, 1997).

Calladine’s counting rules give a complete algebraic description of the relation between
edges and nodes of a pin-jointed structure and the number of its states of self-stresses
and mechanisms. Moreover, by using matrix analysis and specifically Singular Value
Decomposition (Pellegrino, 1993) the designer can have a full detailed analysis of the
structural behaviour of the truss. However, there are no visual ways and guidelines with
which practitioners could assess geometrically the number of states of self-stress of a structure.
Such guidelines would be useful since they would provide an estimate of the design and
analysis freedoms available with regards to constructing the stress function and subsequently
the possible forms of a truss in static equilibrium. In this section such visual rules and
guidelines are introduced. The example used here is a self-stressed 2D tensile net structure
with numerous faces of irregular geometry. This geometry is similar to a large-scale art
installation designed by Janet Echelman and analysed structurally by Skidmore, Owings and
Merrill (SOM) (Vansice et al., 2018).

What is examined here is: given an initial 2-dimensional form diagram in static equilib-
rium how many nodes can be lifted individually in the z-direction to construct a plane-faced
polyhedron? An initial discussion on the equivalence of independent states of self-stress and
polyhedral liftings of a given form diagram was presented at the International Association for
Shell and Spatial Structures (IASS) symposium in Amsterdam (McRobie et al., 2015). There,
it was shown (Figure 3.3) that for a triangulated form diagram every internal node (apart
from the ones belonging to a bottom boundary face which remains fixed on the z-plane) can
be lifted independently and thus corresponds to an independent state of self-stress. However,
in the case of non-triangulated structures which have polygonal faces with more than three
vertices, the number of nodes that can be lifted independently can be greatly reduced. This is
because every plane, which contains a face of the resulting polyhedron, is defined solely by
three points. As a result, the remaining nodes belonging to that face are automatically fixed.
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Fig. 3.3 Reciprocal basis diagrams from local Airy polyhedra. The original supports three
independent local stress functions since it has three internal nodes (1, 2, 3) that can be lifted
independently. The linear combinations of these three lead to more general reciprocals.

Let’s take the example of an irregular, non-triangulated structure. We want to develop a
visual algorithm which identifies the minimum number of nodes that can be lifted individually.
Each one of them corresponds to an independent state of self-stress:

• Suppose that the boundary is spanned by a fixed face on the plane which includes all
the other internal faces and internal vertices Vin. In the initial flat configuration all
vertices have a z-coordinate equal to zero.

• From the faces adjacent to the boundary, we choose the face fa which has the maximum
number of vertices vai. We lift in the z-direction one of them which does not belong to
the boundary. As a result, now three vertices are fixed and thus, the plane of fa and all
the z-coordinates of the remaining vertices in vai can be calculated.

– The lifting of this face may result in more faces and vertices being fixed. Let’s
name this set of faces Fa and the corresponding set of vertices Va.

– If Va⊂ Vin continue:

For the faces adjacent to Fa which are not yet lifted pick the one fb with the
maximum number of vertices vbi.

In order to lift fb only one new non-fixed vertex is needed (we already have two
fixed vertices from the adjacency to Fa.
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* If Va∪Vb⊂Vin repeat until all vertices in Vin are fixed.

Fig. 3.4 a) The vertices in grey VB belong to the boundary and are fixed (their z-coordinate
equals zero), whereas the vertices in white Vin are free to move; b) Vin are free to move in
the z-direction.

The above construction is based exclusively on the number of vertices of each face and
the adjacency between them. However, for non-triangulated nets some of the nodes that the
algorithm indicates that they are free to move, are actually fixed due to geometrical constrains.
Let us now define two such constrains which can provide visual geometrical restrictions to
the number of independent polyhedral liftings.

Lemma.01: let’s suppose that we have two planes π1, π2. These planes intersect in a
line l3 the projection of which l3pr is given by two fixed points P1pr(x1, y1, 0), P2pr(x2, y2,
0). Given that the planes go through lines l1, l2 respectively, we seek to find the possible
solutions of the z-coordinate of the point P1(x1, y1, z1) which satisfy the fixed elements: l1,
l2, P1pr and P2pr. If the two sets of lines l1, l2, l3 and l1pr, l2pr, l3pr are not in a perspective
configuration (they do not meet at a point or they are not parallel) then point P1(x1, y1, z1)
is fixed from the particular geometry (Figure 3.5-Bottom, Appendix.01). If they are in a
perspective configuration then P1(x1, y1, z1) is not fixed and can move freely on the z-axis
(Figure 3.5-Top).
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Fig. 3.5 Top: The three sets of lines l1, l2, l3 and l1pr, l2pr, l3pr are in a perspective configura-
tion (they meet at a point) – the z-coordinate of point P1(x1, y1, z1) does not depend on the
fixed elements l1, l2, P1pr and P2pr - it can slide on the z-axis; Bottom: The two sets of lines
l1, l2, l3 and l1pr, l2pr, l3pr are not in a perspective configuration – the z-coordinate of point
P1(x1, y1, z1) depends on the fixed elements l1, l2, P1pr and P2pr.
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The above lemma concerned two adjacent faces, we now introduce a further geometrical
restriction with regards to a series of adjacent faces. Firstly, we define a cyclic polygonal
ribbon F : fi(vi,ei), i ∈ 1, . . . ,k to be a subset of faces in P(e, v, f) such that:

• fi is adjacent to fi+1. Also, f1 is adjacent to fk

• The lifting of fi in R3 results also in fi+1 being fixed in R3

Lemma.02: Given a cyclic polygonal ribbon F : fi(vi,ei), i ∈ 1, . . . ,k, the equation of
planes πi (on which fi lie on) will be defined from a line and a point (or equivalently from
three points). If we fix f1,π1 by choosing one point P1i we observe that the adjacent face
f2 in F is fixed as well. Also, fk is fixed from fk−1, which in turn is fixed from fk−2... and
ultimately from f1. Thus, the equation of πk, and hence the z-coordinate of Pki, depends on
the selection of P1i. However, we want F to be continuous for the truss to be self-stressed. As
a result, point Pki should coincide with point P1i. Thus, the z-coordinate of P1i is dependent.

In the example of Figure 3.6, we have a ribbon of four 4-gons enclosed from a fixed
boundary. If we lift point P1ipr, then face f1 will be lifted on plane π1 Then, we proceed to
face f2: point P2i has been already defined from the equation of π1 and e21 is fixed. Thus, we
can define plane π2. In the same sequential fashion, we lift all the planes up to the last plane
π4.

We observe that, since this ribbon is cyclic, the last lifted face f4 is adjacent to face f1
with which it shares a common edge and thus two common vertices - including P1ipr. If
this polygonal ribbon corresponds to a continuous closed ribbon in space (which is part of a
closed polyhedron), then we know that there is at least one z-coordinate for P1ipr such that
P1i lies on both planes π1 and π4.

In fact, by sliding P1i on the z-axis, we observe that the ribbon is generally not continuous
in space since the projections of the point P1ipr(x, y, 0) on plane π1: P1i(x,y,z) and on plane
π4: P′

1i(x,y,z
′) do not coincide anymore. As a result, we have no freedom with respect to

the polyhedral lifting of the ribbon in the general configuration and all the points, including
P1i(x,y,z), are fixed.

An alternative method to validate the findings of the geometry-based structural analysis
is through Singular Value Decomposition. In this matrix-analysis method, the rank of the
Equilibrium matrix can be found for the particular geometry and thus the exact number of
states of self-stress.
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Fig. 3.6 A polygonal ribbon with a non - plane boundary: point P1i is fixed and cannot slide
on the z-axis whilst the ribbon remains continuous.
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Let us know examine two examples: Maxwell’s (1864) Figure 3 and a tensile net similar
to Janet Echelman’s installation mentioned above.

The geometry of Maxwell’s Figure 3 (Figure 3.8) has potentially two underlying Desar-
gues configurations for a special geometrical embedding, or none for the general position.
Thus, this topology can have a number of interpretations (Figure 3.7):

1. In the general position, we have zero Desargues configurations, the boundary ABCD
is not on the plane and we have now one state of self-stress/ polyhedral lifting which
fixes all faces in space. By fixing three of the boundary vertices (in grey) we proceed
by lifting the fourth boundary vertex in the z-axis (in red). It follows from Lemma.01
that all the other vertices (in blue) and faces are then fixed. For example, if we take
quads LTQD and MBPT, and their corresponding planes π1 and π2, then if we take l1
to be D, l2 to be B, and l3 to be T, we can use the Lemma.01 to find the z-coordinates
of the vertices along T (as D, B, T do not meet at a point).

2. Moreover, there is a special position that we have one Desargues configuration. Then,
we have one state of self-stress/ polyhedral lifting from this Desargues ‘roof’. However,
the second roof, since it is not in Desargues configuration, cannot leave the plane and
we have only a partial polyhedral lifting

3. In another special position we have two Desargues configurations, a plane boundary
ABCD, and both roofs can slide independently on the z-axis. Thus, we have a full
polyhedral lifting with two independent states of self-stress.

Fig. 3.7 Table of the various possible configurations of the geometry of Maxwell Figure 3.
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Fig. 3.8 Three configurations of Maxwell Figure 3: a) Zero Desargues configurations, one
state of self-stress, non-plane boundary; b) One Desargues configuration, one state of self-
stress, plane boundary; c) Two Desargues configurations, two states of self-stress, plane
boundary; d) The two underlying Desargues configurations.
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Moving to the second example (Figure 3.9) of F(71, 133, 64), from Calladine’s rule we
have that p−q = 6. Firstly, we apply a visual algorithm based only on adjacency of faces and
the number of their vertices (Figure 3.9): We lift one initial face fa adjacent to the boundary
(shares a common edge and thus two vertices). Note that the boundary/ bottom face is fixed
and will remain flat on z=0 throughout the construction. Observe that at this step no matter
which one of the four faces, which are adjacent to the boundary, we take, the same number of
faces and vertices will be fixed. This is because the four faces adjacent to the boundary are
also adjacent to one another; if any one lifts the others will be fixed in response. Since the
boundary is fixed we need only one internal node to lift fa (first state of self-stress). Observe
that several extra faces and vertices (Fa/Va) get fixed too.

Let’s now pick a face adjacent to Fa with the maximum number of vertices - fb. Since fb
already shares an edge (and two vertices) with Fa we only need one new internal node to lift
it (second state of self-stress). Observe that several extra faces and vertices (Fb/Vb) get fixed
too. At this step we observe that there are two adjacent faces fc, fd which are not fully fixed
yet, but they each have one edge fixed: ec1, ed1 and share a common edge ecd (Figure 3.10).
We notice that lines ec1, ed1, ecd are not in a perspective configuration (they do not meet at a
point and they are not parallel). As a result, from lemma.01 we have that node vcd is fixed
and is not free to move.

By fixing vcd we observe that all the vertices are now fixed (Figure 3.9-d). The structure
has thus a maximum of two independent polyhedral liftings / states of self-stress. Let’s now
check for any other geometrical constrains which will result in reducing the number of states
of self-stress to one. Taking as a starting position (Figure 3.9-b),we observe that we can make
a cyclic polygonal ribbon which starts from an internal face f1 and ends in fk (Figure 3.11).
As a result, vertex v1k belongs both to faces f1 and fk and gets lifted from both corresponding
planes. Since we want the ribbon to be continuous we need v1k to have the same z-coordinate
both on plane π1 and πk. From Lemma.02 we thus have that the vertices of the ribbon are
fixed. Consequently, the net has only one state of self-stress.
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Thus the structure has 7 mechanisms and 1 state of self-stress.

p−q = 6

p = 1

q = 7

The result of the geometrical analysis is validated from the Singular Value Decompo-
sition (Pellegrino, 1993) or the Equilibrium matrix of the net’s geometry. As a result, this
geometrical embedding of the topology of net F(71, 133, 64) has one state of self-stress. We
should note that it is expected that in the general configuration this net will have one state
of self-stress. It will be for special geometries that can have up to three states of self-stress.
So, we could say that this net has ‘generically’ (in almost every configuration) one state of
self-stress.
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Fig. 3.9 a) The topology of the 2D net with F(71, 133, 64); b) Lifting of the first face
fa adjacent to the boundary by lifting one internal vertex; c) Lifting of face fb also fixes
several other faces and vertices; d) The lifting of face fc by fixing a third node completes the
polyhedral lifting.
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Fig. 3.10 a) Semi defined faces fc and fd fix node vcd since edges ec1, ed1 and ecd are not in
perspective/parallel; b) Edges ec1, ed1, ecd do not meet at a point and are not parallel.
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Fig. 3.11 a) A second geometrical constraint deriving from Lemma.02 results in only one
state of self-stress for the net.
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3.2.2 2D global static equilibrium

In this section, we apply the theoretical framework of polarities as discussed in Chapter 2 to
derive global static equilibrium for 2D trusses. These can be seen as form diagrams F(v, e, f)
comprising vertices, edges and faces where the edges correspond to the members of the truss
and the vertices to its nodes. When a form diagram is a projection of a plane-faced polyhedron
P(v, e, f) it is in static equilibrium and its reciprocal force diagram F’(v’, e’, f’), where the
length of the edges e’ corresponds to the axial forces of e, can be derived through the method
of polarities. As a result, the pair of reciprocal form and force diagrams are projections of
reciprocal polyhedral stress functions. As already mentioned, their role is interchangeable
- either one can be seen as the form or the force. Also, the form diagrams need not be
tension-only or compression-only and can represent structures which are either self-stressed
or under external loading. For the 2D case, reciprocal diagrams can be produced from
any polarity induced by a non-degenerate quadric or from the Null-polarity (an alternative
construction investigated by Möbius and referenced by Cremona (Cremona, 1890)). For the
examples visualised here, the simplest case is used (i.e. this of the paraboloid of revolution).
The constructions are developed using the CAD platform McNeel Rhino, together with the
plug-in the Grasshopper and customised Python codes.

The advantages of using a polar transformation through a paraboloid of revolution are:

• This is a direct method (no need for transforming or ‘correcting’ the reciprocal geome-
tries).

• With this transformation the form diagram is an orthogonal projection of the polyhedral
Airy stress function the designer can clearly inspect the latter and draw insights for the
structural performance and geometrical properties of the truss.

• Polarities have a degree-2 (transforming an element twice results to the element
itself). As a result, the designer can directly move in a bidirectional way from the one
polyhedron to its reciprocal.

For a given tetrahedral Airy stress function P(v, e, f), the planes, on which the faces f lie
on, are mapped to their reciprocal vertices v’ through a paraboloid of revolution (Figure 3.12).
Considering that the connectivity of the vertices Cv’ follows the connectivity of the faces Cf, a
reciprocal tetrahedron P’(v’, e’, f’) can be constructed. Applying an orthographic projection
of these dual tetrahedra along the axis of the paraboloid yields a reciprocal 2D form F(v, e, f)
and force F’(v’, e’, f ’) pair, where the force diagram is an instance of a Maxwell 2D diagram
with edges being perpendicular to the corresponding ones in the form diagram.
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Fig. 3.12 Left: Reciprocal polyhedral Airy stress functions (P, P’) through a polarity induced
by a paraboloid of revolution. Right: The orthographic projections of the reciprocal polyhedra
produce a pair of reciprocal form and force diagrams (F, F’).
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3.2.3 3D global static equilibrium

Maxwell did discuss about the graphical analysis of spatial trusses as well. However, not
in the great length he did for the 2D case. At the same time, he did observe (Maxwell,
1864a) that self-stressed spatial trusses obey the counting rules of, what we would call today,
4-polytopes. Nonetheless, he did not generalise and apply the reciprocal constructions of the
paragraphs discussed here for 3D trusses which are projections of 4-polytopes even though
intuitively he had grasped it. The reason for this may lie in the history of mathematics of
his time. Geometrical language and concepts were not abstracted to n-dimensions before
the 1840s (James, 1999). Even after that and until the end of the 19th century, geometry was
largely the 3-dimensional world inherited from the last two millennia. As a result, Maxwell
did not explicitly talk of 4D duality and 4D reciprocity because in a sense, 4-polytopes were
not really known at the time. He did know intuitively that self-stressed spatial structures obey
the counting rules of higher-dimensional objects, but at the time the statement ‘a 3D truss is
a projection of a 4-polytope’ could not be articulated with the ease of today, in contrast to the
statement ‘a 2D truss is a projection of a polyhedron’.

Polarities in the context of contemporary graphic statics were introduced in (Konstantatou
et al., 2018) for the design and analysis of 3D structures. It should be noted that these
constructions were mentioned in the context of rigidity theory in the 90s (Crapo and Whiteley,
1994). In the 4-dimensional space, following the duality principle, a polar hyper-plane π

defined in equation form as Ax+By+Cz+Dw+E = 0 and described by the corresponding
quadruples (A, B, C, D, E), is mapped to a point P described from the quadruple (x’, y’, z’,
w’) (and vice versa) through transformations L, L-1. Specifically, given a point P outside
a hyper-quadric Γ (i.e. a 4-dimensional generalisation of a 3-dimensional quadric), the
hyper-cone with vertex in P and tangent to Γ, intersects Γ in a quadric that lies on the
hyper-plane π . Using, for example, a hyper-paraboloid of revolution (Figure 3.13) with
equation 2cw = x2 + y2 + z2 as the quadric of the polarity, for a point P (x’, y’, z’, w’) and its
polar plane π described by the equation w = Ax+By+Cz+D, we have that

L−1(P) = π (3.1)

L−1(x′,y′,z′,w′) = (A,B,C,−1,E) (3.2)

the by following the methodology of section (2.5), we have that for this particular
hyper-quadric, the hyper-plane π is given by

x(x′)+ y(y′)+ z(z′)+w(−c)− cw′ = 0
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which rearranges to

w =
x′

c
x+

y′

c
y+

z′

c
z−w′ (3.3)

which, when expressed in the (A,B,C,-1,E) form has

A =
x′

c
, B =

y′

c
, C =

z′

c
, E =−w′ (3.4)

These equations can be readily inverted to give

x′ = cA, y′ = cB, z′ = cC, w′ =−E (3.5)

which is thus the mapping L:

L(π) = P (3.6)

L(A,B,C,−1,E) = (x′,y′,z′,w′) = (cA,cB,cC,−E) (3.7)

Fig. 3.13 Polarity in 4-space induced by a hyper-paraboloid of revolution (in a schematic
representation here).
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Following the above construction, it is possible to directly obtain force reciprocals when
the form diagrams are projections of 4D stress functions P(v, e, f, c), P’(v’, e’, f’, c’). These
are spatial polyhedral geometries with plane faces, each one of which belongs to exactly
two cells, for example the structures discussed in (Akbarzadeh et al., 2015). Essentially, the
constructions are exactly the same as with the 2D case, just one dimension up. Topologically,
this type of structures comprise internal cells enclosed by an external boundary and in 3-space
they look like cellular or polyhedral structures. In this case, vertices v of a 4-polytope map to
hyperplanes c’ which intersect to produce reciprocal force cells (in the same fashion as for 2D
trusses where the polar planes of the polyhedral Airy stress function intersect and to faces).
Thus, a reciprocal 4-polytope is created. The 3D projections of this higher-dimensional pair
will result in a pair of spatial reciprocal form and force diagrams F(v, e, f, c), F’(v’, e’, f’, c’)
where form edges (e) correspond to reciprocal perpendicular force faces (f ’)

Some spatial frameworks have a state of self-stress even though they are not projections
of 4D Maxwell-Rankine stress functions. For instance, the Steffen polyhedron and several
tensegrities comprise solely one internal space/ cell. Thus, if we were to map that cell to
obtain the Rankine reciprocal we would end up with solely one reciprocal vertex. One
geometrical construction that can be used in this case is coning (McRobie, 2016). Coning is
a technique that adds one extra vertex one dimension up (so in 4D for 3D structures) from
which we take edges to the initial set of vertices v. As a result, for an initial spatial framework
F(v, e, f, c) the coned structure Fc(vc, ec, fc, cc) will have v+1 number of vertices (vc), v+e
number of edges (ec), e+f number of edges (fc) and f+c number of cells (cc).

For the simplest case of a simply connected 4-polytope P(5, 10, 10, 5) (5-simplex), a
polarity is used to map it to its reciprocal P’(5, 10, 10, 5) (Figure 3.14). After projecting the
4-polytopes back to 3-space, the 3-dimensional form and force diagrams are obtained.

As mentioned in Chapter 2, force reciprocals for spatial trusses can be of different kinds
(Rankine 3D, Cremona 3D, Vector-based 3D). Each one of these types can be applied, and is
more suitable, to different kind of geometries. The Rankine 3D force reciprocals used here
are applicable to tension-and-compression spatial polyhedral structures; through coning to
rotationally-symmetric 1-cell structures, such as tensegrities, and are particularly useful for
constant-stress design through the application of Minkowski sums as well as for applications
such as 3D discrete stress fields (which we will develop in Chapter 7).
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Fig. 3.14 (a, b): Topology of two reciprocal 4-polytopes (P, P’), constructed through a
polarity induced by a hyper-paraboloid of revolution; (c, d): The orthographic projection of
the 4-polytopes produces a pair of reciprocal form and force diagrams (F, F’) which follow
4D duality between their geometrical elements; (e, f): form vertices v map to reciprocal cells
c; (g, h): form edges e map to reciprocal and perpendicular force faces f.
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3.2.4 N-connected reciprocal diagrams

The theory of polarities can be also applied to n-connected polyhedra. In fact, in order
to solve some complicated cases such as Figure 3.15 via polyhedral stress functions it is
necessary to do so (unless extra nodes are added). For example, Figure 3.15 can be lifted
to a polyhedron only if the central quad is assumed to be a hole (Figure 3.16). As a result,
the non-planarity does not always constitute a problem. Specifically, if a form diagram does
not have a topologically planar graph but is a projection of an n-connected, plane-faced
polyhedron then it can actually be solved in a straightforward way without the addition of
extra nodes by the polarities method.

For a n-connected (one that has n-1 number of holes though it) diagram P(v, e, f) Maxwell
(Maxwell, 1870) states that v+ f −e = 2−2(n−1) = 2n−4. We should note that n−1 = g,
with g being the genus (a sphere has genus 0, a torus genus 2, etc.). The above formula is
also known as the Euler characteristic or Poincare formula for n-connected surfaces. This
generalisation of the Euler polyhedral formula for n-connected surfaces was developed by
Lhuilier (Lhuilier, 1812). However, the full generalization of the formula for polytopes of
any dimension was proved by Poincaré (Poincare, 1895).

From Poncelet duality we have that for reciprocal polyhedra P(v, e, f), P’(v’, e’, f’)
the number of edges (e, e’) are the same, and since nodes (v, v’) go to faces (f’, f) and
vice versa, then the sum v + f is constant (v + f – e = v’ + f’ – e’). It follows that the
quantity v + f – e is the same for both diagrams P, P’. Since this equals 2n-4, where n is
the connectedness, Maxwell infers that the reciprocal of an n-connected polyhedron is an
n-connected polyhedron.

For the case of polyhedral stress functions, lets start with a polyhedron with genus 0
(topologically a sphere, n=1) for which v+ f − e = 2

Lets now make a hole by connecting two identical faces f1, f2 which have v1, v2 number of
vertices and e1, e2 number of edges. The faces f1, f2 are polygons so trivially v1 = e1,v2 = e2

The resulting geometry will have:

v− v1 + f −2− e− e1 = v+ f − e− v1 + e1 −2 = 2−2 = 0

Consequently, every new hole decreases the sum by 2 and the reciprocity retains the
genus.

We should highlight that when a polyhedron of genus g> 0 has a single flat face enclosing
a hole, that bottom face will map to only one point in the reciprocal. Consequently, the
reciprocal will not be of the same genus as the original polyhedron since the hole of the
reciprocal has been contracted to a point.
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For the case of 4-polytopic stress functions, lets start with a 4-polytope P(v,e,f,c) for
which (through the Schälfi formula)

v− e+ f − c = 0

let’s now make a hole by connecting two identical cells c1, c2, which have v1, v2 number
of faces, e1, e2 number of edges, and f1, f2, number of faces. The cells are closed polyhedra
so we have

v1 + f1 − e1 = 2

The resulting geometry will have

v−v1−e−e1+ f − f1−c−2= v−e+ f −c+2−v1+e1− f1 = v−e+ f −c+2−2= v−e+ f −c

We observe that the addition of holes does not give us information on the genus of the
4-polytope for the 4D case through the generalized Schälfi formula.
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Fig. 3.15 Reciprocal 2-connected form and force diagrams from (Maxwell, 1870).
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Fig. 3.16 Reciprocal 2-connected polyhedra.
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3.3 Graphic kinematics

3.3.1 Introduction

Graphic statics offers design and analysis methodologies for plane and spatial structures in
static equilibrium via the reciprocity between form and force diagrams. However, graphical
analysis of structures holds the promise of encompassing more fields than statics. Graphic
kinematics can be derived from graphic statics using purely geometrical manipulations of the
reciprocal form and force diagrams (McRobie et al., 2017). In this paragraph, we outline
the principles of this type of twofold graphical analysis (static and kinematic) to derive the
mechanisms and states of self-stress of both 2D and 3D structures.

3.3.2 2D and 3D graphic kinematics

McRobie et al. (McRobie et al., 2017) showed how to combine force and displacement
through visual virtual work while incorporating a material law in a Maxwell-Williot diagram
Figure 3.17. From this, it derives that if the parallelogram has zero width, it corresponds to
a bar that does not extend. As a result, in this case the displacements are that of a finite or
infinite mechanism and the force polygons (or cells for the 3D case) slide with respect to
each other while adjacent edges (or faces) remain ’glued’ together. It should be mentioned
that a similar method has been developed by (Zanni and Pennock, 2009) for the 2D case.

The simplest example on the plane is that of the 4-simplex F(4, 6, 4). This 2D truss has
one state of self-stress. As discussed, 2D reciprocals have perpendicular corresponding form
and force edges. Moreover, the tetrahedron is self-dual, i.e., the force reciprocal has the
same topology and geometry. Following the Poncelet duality approach, the vertices vi of P
will map to faces f’i in P’ (Figure 3.18). These reciprocal faces can now slide as follows:
common edges of adjacent faces should remain in contact, i.e., keep lying at the same line
while they slide. Also, the geometry of the faces and thus the distance between vertices is
fixed. We also notice that the inner three faces share edges with the outer face and should
therefore slide along those corresponding common edges. The resulting displacement vectors
ui correspond to the mechanism of the form diagram which in this case is a rigid framework
and thus we obtained a rotation on the plane which is a trivial rigid body motion (Figure 3.18)
(McRobie et al., 2017).

Equivalently, the simplest example in 3-space is that of the 5-simplex F(5, 10, 10, 5)
which can also be seen the 3D projection of 4-polytope, which is its corresponding Maxwell-
Rankine stress function. The 5-simplex is also self-dual with the 4D Poncelet duality mapping
vertices vi to cells ci and edges to perpendicular faces (Figure 3.18). Note that vertex v5 will
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Fig. 3.17 The parallelogram of virtual work joining the force and displacement polygons
from (McRobie et al., 2017).

map to the external cell c5 which encloses all the other internal tetrahedral cells. If we now
start sliding the internal force cells by retaining shared faces on the same plane and edge
lengths fixed, we obtain the nodal displacement vectors ui of the form diagram (Figure 3.18).
As expected, these also correspond to a rotation which is a rigid body motion since the
5-simplex is self-stressed but does not possess a mechanism.

More generally, for 3D trusses with Rankine reciprocals, the force cells can slide with
respect to each other revealing the mechanisms such as in the case of the spoked cube
(Figure 3.19). However, edges can also be auxiliary and have infinite flexibility. In this
case, these edges can be ignored geometrically - as they can extend infinitely - but their
initial inclusion leads to the potential of addressing a plethora of truss geometries which
were previously inaccessible (McRobie et al., 2017). For example in Figure 3.19 if the radial
edges are assumed to have infinite flexibility, and thus the corresponding adjacent faces need
not be in contact during sliding, then the mechanisms which are derived correspond to a
cubical truss rather than to a spoked cube.
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Fig. 3.18 Left: Graphic statics and kinematics for the 4-simplex in 2D, Right: Graphic
kinematics for the 5-simplex in 3D.

3.4 Summary

In this Chapter we introduced a direct, unified, visual and intuitive graphic statics framework
for global static equilibrium of 2D and 3D trusses which are projections of discrete stress
functions. This was achieved by generalising Maxwell’s reciprocal constructions in the
4th dimension. This applies to any 2D truss (resulting in Maxwell 2D/ Cremona 2D force
reciprocals) and to polyhedral spatial trusses with plane faces (resulting in Rankine 3D
force reciprocals). This works for any loading case (tension-, compression-only as well
as for tension-and-compression structures) for self-stressed structures or equivalent ones
with external loading. Within this direct and interactive framework the designer has access,
and can start from any reciprocal object - form, force, or stress functions. In particular,
the notion of stress functions guarantees that the design is performed within equilibrium
space and thus there is no need for iterative converging algorithms in every step like in
most approaches. Furthermore, the geometrical characteristics of stress functions introduce
novel design and analysis freedoms. Specifically, through the connection to the various
states of self-stress which through the lower bound theorem can equip the designers with
creative form-finding capabilities. This connection is particularly useful for 2D trusses, for
example large-scale tensile installations, and in conjunction to force density for the design
and analysis of tension-and-compression shells, grid-shells and vaults. Lastly, graphic statics
for N-connected reciprocal diagrams are presented following Maxwell’s work and a two-fold
purely geometrical static and kinematics framework is discussed.
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Fig. 3.19 a) The form diagram of a spoked cube; b) The force diagram is a spoked octahedron;
c) A mechanism of the spoked cube; d) A mechanism of the unspoked cube from (McRobie
et al., 2017).





Chapter 4

Geometry-based optimisation

This Chapter presents a geometry-based, visual method of optimisation based on the load
path theorem and volume minimisation. This is based on the construction of the Minkowski
sum of 2D and 3D trusses and their corresponding force diagram. This research has been
presented in the Symposium for the International Association of Shell and Spatial Structures
- Boston, July 2018 (Konstantatou and McRobie, 2018).

4.1 Introduction

Graphic statics can provide a framework not only for the static and kinematic analysis of plane
and spatial trusses but also for their optimisation. Specifically, graphic statics have already
been proposed as a structural optimisation framework and applied to plane truss optimisation
problems due to their comparative advantages to other methods. From this standpoint we
revisit optimal trusses and gain insights with regards to geometry-based optimisation. We
show how the objective function in a truss optimisation problem can be essentially expressed
and geometrically embedded by the geometry of the Minkowski sum: the total surface area
of its parallelepipeds, for 2D trusses; and the total volume of its prisms, for the 3D case.

4.2 Optimal trusses

Currently, there is great interest from engineers and architects alike in material-efficient
and sustainable designs, especially for large infrastructure projects. As a result, cost and
material efficiency considerations lead designers to develop frameworks where structural
performance is embedded in the early design stages. Thus, the role of geometry is of
paramount importance. Optimal geometries can be characterized by a number of advantages,
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such as least volume of material or decreased deflections. In this context, the seminal work
of Michell (Michell, 1904) of early 20th century is of great significance since it provides
benchmark solutions of trusses with least volume, and thus material cost, for a number of
cases (Figure 4.1, Figure 4.2).

Fig. 4.1 Optimum trusses: Michell torsion ball from (Michell, 1904).

Michell’s structural solutions were heavily influenced by Maxwell’s work on structural
theory and reciprocity in the context of graphic statics. In particular, Michell’s paper starts
with Maxwell’s theorem on load paths which are formulated as follows:

∑FT LT −∑ |FC|LC = ∑FFF · rrr (4.1)

with FT being the axial forces of a truss’ members in tension, LT their length, FC, LC the
corresponding values for the members in compression, F the applied external forces - includ-
ing reactions - and r the corresponding position vectors (Beghini et al., 2014). Specifically,
the dot product on the right of the equation is the value of the applied forces F, multiplied by
the position vectors r with regards to an arbitrary origin (Baker et al., 2015). This theorem
essentially states that for a given system of external applied forces the length of the total load
path in tension is related to the length of the total load path in compression. In particular,
if one of the two load paths is longer than the optimum solution then the truss will pay this
twice; once in tension and once in compression (Baker et al., 2013). Conversely, a structure
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Fig. 4.2 Optimum trusses: Michell 2D optimum truss from (Michell, 1904).
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which is optimized solely with respect to its tension (or compression) load path is automat-
ically optimized regarding its compression (or tension) load path as well. Moreover, by
dividing the load paths of tension and compression with the allowable stress σ of structural
members of the truss can be derived as follows (Hemp, 1973):

VTOT =VT +VC = ∑
FT LT

σ
+∑

|FC|LC

σ
(4.2)

with V being the volume of the structure; specifically, VTOT the total volume, VT the
volume corresponding to the tension load path and VC the volume corresponding to the
compression load path. By applying Maxwell’s theorem on load paths Michell derived
trusses which are not only of least volume and least material but also of aesthetic significance
through their regular, simple, and organic forms. As a result, these trusses, the discrete
versions of which can be derived, are the absolute optima and ‘ideal’ structures in relation to
which all other structural solutions can be compared in terms of efficiency (Hemp, 1973).
Moreover, Michell proved that, under appropriate conditions, a truss of maximum stiffness is
actually a truss of minimum weight and volume (Beghini et al., 2014). Specifically, that its
deflection will decrease when removing rather than adding structural members (Baker et al.,
2013). A remarkable result, which contributes greatly to material efficiency being analogous
to structural performance. In particular, the objective function that needs to be minimized to
obtain a solution of minimum volume is:

minxxxV = minxxx
1
σ

∑ |F |L (4.3)

where x corresponds to the vector coordinates of the structural nodes that can be altered.
It follows, that this equation is geometrically described from the Minkowski sum. Discrete
optimum trusses combined with graphic statics have proved to be important influences
on fundamental structural research (Baker et al., 2013, 2015) and important paradigms in
real-life structural design of landmark structures (Beghini et al., 2014) due to a number of
advantages(Beghini et al., 2014; Mazurek, 2012; Mazurek et al., 2010):

• They provide absolute minima benchmarks with regards to volume and total load path
for truss layouts.

• They provide visual insight in the structural behavior of the structure.

• They provide the possibility for defining geometrical characteristics and variables of
the truss in question.

• They provide the ability to study and optimize the reciprocal problem instead, in the
case that the truss is under-defined or more complicated than its dual.
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• They provide great simplification of calculations: no need for deriving and using a
stiffness matrix or analytical/ numerical optimisation techniques.

4.3 Method

For a pin-jointed structure of applicable geometry 1 in static equilibrium, we include in the
form diagram any external forces. Then, the resulting geometry can be thought of as an
equivalent self-stressed system which is thus a projection of a plane-faced polyhedral or
4-polytopic stress function. If there are no external forces to add then the structure is self-
stressed. Using polarities, as shown in Chapter 3, we map the stress function to its reciprocal.
The pair of reciprocal (n+1)-dimensional stress functions is projected orthogonally one
dimension lower to create a pair of reciprocal n-dimensional form and force diagrams. Then
both diagrams can be combined into a Minkowski sum - the parallelepipeds or prisms of
which reveal the FL terms of the structure’s load path which need to be minimized for
material efficiency. We should highlight that this approach gives insight and direct control
to any one of the reciprocal objects and as a result the designer can design with the form or
with its forces – the roles of which are interchangeable.

In the process of lifting a form diagram to its 3D stress function we identify a number
of nodes that can be independently lifted one dimension up. For example, in a triangulated
structure enclosed by a fixed boundary, these would be all the nodes apart from the ones
belonging to the boundary. For structures which are not triangulated, this number, as shown
in section 3.2.1, would decrease. This is because a plane face needs only three points to
be defined in 3-space. Consequently, if the polygonal face has more than three nodes, the
extra ones will be dependent on the three which define the plane. Similarly, in a 3D structure
comprising exclusively of tetrahedral cells enclosed by a fixed boundary, all the nodes can
be lifted - apart from the fixed ones belonging to the boundary. However, if there are cells
with more than four nodes then, the number of nodes that can be independently lifted will
decrease since each hyper-plane, on which a cell lies on, needs only four nodes to be defined
in 4-space. We should highlight that it is possible for 3D structures to have more states of
self-stress than can be revealed through this geometrical approach (what is known as Rankine
incompleteness (McRobie, 2016)). Nonetheless, if a geometry can be found for which the
structure is in static equilibrium, then, via the lower bound theorem of plasticity the particular

1These are the geometries addressed in this PhD thesis as described in section 3.1: for the 2D case, they
comprise any 2D diagram in static equilibrium - with the possible addition of extra nodes; for the 3D case, they
comprise plane-faced polyhedral structures which obey the counting rules of 4-polytopes.



82 Geometry-based optimisation

structure is safe and will not collapse - given that appropriate conditions are met 2. When
an initial stress function has been created, the nodal location of the vertices can be adjusted
iteratively until the solution converges to a minimum load path and thus minimum volume.
During that process, the imposed condition of the faces remaining plane of the stress function
will add geometrical constrains which lead to the optimisation process being performed
within equilibrium space.

We implement the above methodology for 2D and 3D cases using as a CAD platform the
McNeel Rhino software, in conjunction with the Grasshopper plug-in and custom Python
scripts. For example, in Figure 4.3 we see a 2D example in which the three internal nodes of
the structure are allowed to move. We observe the changes in all four reciprocal diagrams
(form, force, and polyhedral stress functions) and the corresponding Minkowski sums. We
highlight how the forces (in dotted lines) are incorporated in a unified geometry of an
equivalent self-stressed truss. The total surface area of the rectangles, corresponding to
structural members, readily gives the FL terms of the total load path of the structure, which
we schematically represent with bars (Figure 4.3). As a result, these bars give an intuitive
and visual representation of the objective function that needs to be minimized in a structural
optimisation problem. Consequently, a designer can easily grasp when a truss is optimized:
when geometrically the sum of the form and its forces is minimized too. Moreover, after the
structure is optimised, the graphic kinematics method described in section 3.3 can be used to
check for mechanisms.

Similarly, in 3D (Figure 4.4) a spatial truss and its external forces are combined in a single
geometrical object (forces in dotted lines) of an equivalent self-stressed spatial truss. The
form diagram is lifted to the 4th dimension and subsequently mapped to its force reciprocal.
Note how the forces are concurrent to point vf of the form diagram and map to the force cell
cf in the reciprocal force diagram which remains fixed throughout the displacement of the
internal nodes. The two geometries are then combined in a spatial Minkowski sum. We allow
for the two internal nodes to move and thus the geometry can be optimized by minimizing
the total volume of the prisms of its Minkowski sum which correspond to structural members
(in green in Figure 4.4).

2It should be noted that the the local and global buckling behaviour of the structure is not addressed here and
should always be examined in detail. This has special importance for structures with subtle buckling behaviour
such as shells and grid-shells.
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Fig. 4.3 a) Pairs of reciprocal polyhedral Airy stress functions; b) Pairs of plane form and
force diagrams resulting as a projection of stress functions, the location of the three internal
nodes in blue can change to find the optimum configuration; c) Combination of form and
force diagrams in a Minkowski sum - the surface areas correspond to the FL terms of the
structure’s load path; d) The resulting area of the rectangles is the geometrical manifestation
of the total load path and the objective function of the structural optimisation problem; e,f,g)
After the structure is optimised, graphic kinematics can be used to check for mechanisms.
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Fig. 4.4 Examples of different geometries (form diagrams), their corresponding force recip-
rocals (in Rankine 3D configuration), Minkowski sum, and total load path in visual terms
of volume (the green prisms correspond to structural members and the white ones to edges
which represent the lines of action of the forces). The moving nodes are in blue and the
diagrams are in order of reducing material efficiency from left to right.

4.4 Summary

In this Chapter we showed how a geometrical and unified (for the 2D and 3D case) graphic
statics framework can be applied not only for structural analysis (static and kinematic) and
design, but also as a visualisation method of optimisation. This results in an intuitive way of
minimising a structures volume via the application of Minkowski sums. Due to the visual
nature os this method, it is intended to be accessible and user-friendly both for engineers and
architects.



Chapter 5

Geometry-based design

This Chapter presents design-by-analysis methodologies for 2D and 3D trusses based on
the polarities graphic statics method outlined in Chapter 3. In particular, it discusses how to
design structures in static equilibrium by using reciprocal stress functions. This method is
also combined with the force density method for tension-and-compression shells, grid-shells,
and vaults. This last part, on which we will expand in Chapter 6, started as an industry
secondment at SOM Chicago in spring 2018 with Bill Baker and the structures team. Also,
the Airy stress function as a correction tool of trusses which are not in static equilibrium
is the contribution of the author to the research paper ’A 3D Airy Stress Function Tool
for Reciprocal Graphic Statics’ (Vansice et al., 2018) presented at the Symposium for the
International Association of Shell and Spatial Structures - Boston, July 2018.

5.1 Truss design by analysis

The polarities graphic statics framework which was introduced in Chapter 3 has a number
of design and analysis advantages. Since all four reciprocal objects are interlinked and
all of them can be altered while updating the rest, the designer has the option of choosing
the starting point: form, force, or reciprocal stress functions. Each one of these starting
points has different capabilities but all result in statically equilibrated structures. By starting
with the force diagram as an input the designer can essentially design with the forces and
observe interactively the form as an output of the process. Specifically, by working with
the force stress function, or by imposing the corresponding geometrical constraints on its
projection (the force diagram), a structural morphogenesis method can be obtained where the
resulting form diagram is guaranteed to be in static equilibrium. For the 2D case, the force
diagram should be a projection of a polyhedron, and for the 3D a projection of a 4-polytope.
This latter condition is essentially what is already known in the literature as plane-faced
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(non-intersecting) Rankine reciprocals which produce compression-/tension-only polyhedral
spatial structures (Akbarzadeh et al., 2015). This methodology includes subdivisions of
the force diagrams which result in different topologies of the spatial truss. By using the
polarities approach this structural morphogenesis approach can be generalised for tension
and compression structures, where the geometry of the faces (in terms of intersections, or
complexity) is not limited. This is because something wrapped and complicated in 3D can
unravel and inflate in 4D. Moreover, by controlling the curvature of the stress function the
designer can control the areas of tension and compression. It should be highlighted that form,
force diagrams and stress functions have an interchangeable character. The same applies to
truss members and the lines of action of external forces. As a result, no special treatment is
needed for any of these.

Alternatively, the designer can choose to work directly in the form space. In this case, by
following the geometrical constraints imposed by the projective interlink of the form diagram
and its corresponding stress function one can be sure that the designed form is structurally
sound and not merely a free-form design with no structural performance considerations.
What is more, even if the designer starts to draw a truss in a free-form manner then the
resulting geometry can be corrected by the ensuring it is a projection of a higher dimensional
stress function. For example, a polyhedral lifting can be performed on a 2D truss which
will check if it is a projection of a plane-faced polyhedron. In this process, the location of a
number of nodes can be corrected until the geometrical constraint is satisfied and the resulting
truss is in static equilibrium (Figure 5.1). Moreover, the fact that these geometrical objects
are interlinked through a direct transformation ensures global static equilibrium in every step
and there is no need for iterative node-by-node reconstructions and imposed approximations
between the form and force reciprocals.

5.2 Vault, shell and grid-shell design via the Airy stress
function

Contemporary computational frameworks for the design and analysis of self-supporting
surfaces are valuable tools for form explorations but they also have drawbacks. Specifically,
they work only for compression-only shells/ vaults and they do not exploit a plethora of
design and analysis freedoms that derive from graphic statics methods, most notably from
the use of the Airy stress function. As a result, these methods are case specific and cannot
solve the general case of tension-and-compression grid-shells which are self-supporting
without the application of external lateral forces. In response to this, we introduce here an
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Fig. 5.1 The Airy stress function correcting a truss towards static equilibrium from (Vansice
et al., 2018).
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interactive form-finding method for tension-and-compression structures which is based on
the reciprocity between polyhedral Airy stress functions for the generation of horizontal
equilibrium in conjunction with the force density method.

Contemporary research on the design and analysis of spatial structures acknowledges the
advantages and insights gained from bi-directional, geometry-based methodologies. These
include: a shift towards material efficient structures by incorporating structural performance
in the early conceptual design stages; an interactive approach where designers have more
leverage, design and analysis freedoms on the outcome of the model; structural morphogene-
sis opportunities by manipulating reciprocal diagrams; a new approach of free form design for
structures which are by definition in static equilibrium (as opposed to conventional free-from,
structurally-irrational design); facilitating communication between architects, engineers, and
generally specialists in design and analysis of the built environment by re-introducing the
unified language of geometry.

As summarized in Lachauer (Lachauer, 2015) contemporary structural design approaches
can be generative or interactive. The former comprises an algorithm which given a user
input, outputs a resulting form while having limited and not explicit interaction possibilities
throughout the process. The latter comprises a hybrid methodology in which modelling and
computation phases can alternate in the pursuit of a satisfying form. Thus, it provides explicit
interaction between the design and the analysis of the model. Numerous such form-finding
methods have been developed in the context of graphic statics and the force density method.

In the last two decades there are several contributions related to hybrid graphic statics
and force density methods for the design and analysis of spatial forms in static equilib-
rium. Lachauer (Lachauer and Block, 2014; Lachauer, 2015) introduced an interactive
computational framework which when applicable combines force density and optimisation
routines to produce compression-and-tension spatial structures while imposing geometrical
and force constraints. Rippmann and Block (Rippmann and Block, 2013; Rippmann et al.,
2012) introduced the computational framework of RhinoVault, based on the Thrust Network
Approach (Block and Ochsendorf, 2007), for form-finding of compression-only vaults. In
this method, the force and form diagrams can be altered interactively while optimisation
routines converge the result to an equilibrium solution. This works for diagrams consisting of
regular quad networks of curves and includes the possible addition of continuous tension ties.
Bahr (Bahr, 2017) introduced a method to generate strut-and-tie spatial networks in static
equilibrium by transforming an initial kinematic system into a structure in static equilibrium
for specific loading. This works mainly for simple arrangements by solving the non-linear
equation systems with the Newton-Raphson method given an initial guess of the unknown
parameters. Similarly, by defining a loading-bearing mechanism and a load case, Ohlbrock
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et al. (Ohlbrock et al., 2017; Ohlbrock and Schwartz, 2016) introduced an interactive com-
putational form-finding framework which employs gradient-based optimisation techniques
to converge to an equilibrium state of a spatial strut-and-tie network given user-specified
constraints.

As a result, there seems to be a shift towards geometry-based structural and architectural
design methods in which:

• Analysis and design have a bidirectional relationship.

• Geometrical language is preferred.

• Interaction between the designer and the form throughout the process is steadily
enhanced.

• The analysis can be seen as an indispensable design tool in the early conceptual design
stages rather than as an independent post-process after the form has been decided.

The above methods are valuable computational frameworks and contributions towards
this direction. However, they do not make use of the full potential given from the inherent
structural indeterminacy of the structure, and they use iterative routines and optimisation
algorithms which are opaque to the users. Specifically, by imposing/ updating geometrical
and other constraints in every step, the structure will get out of equilibrium which results
in the need to run iterative/ optimisation algorithms in every step to converge again to a
configuration of static equilibrium. As a result, there is still unexplored potential in employing
graphic statics methods for developing interactive, direct methods where structural analysis is
both an explicit design tool and part of the method per se, in a visual, intuitive, and inherently
geometrical framework. Specifically, if the analysis part does not only have a bidirectional
relationship with the design process but is an integral part of the design method, there is no
need for reconstruction or convergence in every interaction since by construction the allowed
changes result in a structure in static equilibrium.

The method presented here takes advantage of the direct generation of global equilibrium
which can be achieved through polarities between reciprocal polyhedral stress functions.
The applicable geometries are envelopes, which topologically are polyhedra. Thus, they
obey their counting rules: every edge belongs to two faces, each node to at least three faces,
as well as Euler’s polyhedral formula. As such, this method is about discrete versions of
the Airy stress function which correspond to strut-and-tie networks. We should highlight
that any horizontal reactions are incorporated in the geometry of the truss resulting in an
equivalent self-stressed truss as per Maxwell’s approach where structural members and lines
of action of external forces are not distinguished. As a result, this method can be applied to
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compression-only vaults and tension-only membranes in the same way that it can be applied
to compression-and-tension grid-shells. There is no limitation in the geometry of the faces or
a geometrical constraint on the faces being enclosed from a structural boundary.

By using the Airy stress function as the centre of the method and generator of horizontal
equilibrium, several advantages are gained:

• The structure is always in static equilibrium while the designer interacts with it.

• Local and global transformations can be made in any one of the four reciprocal objects
(form diagram, force diagram, form Airy stress function, force Airy stress function)
while the rest update automatically and directly.

• The Airy stress function is a powerful design tool. By sculpting its curvature and
carving its geometry, the designer can introduce openings, control which edges are
in tension, which in compression, by how much, and which have axial loads at
all. Moreover, all this information, which designers were mainly sourcing from
the force reciprocal, is directly and intuitively visible on the geometry of the Airy stress
function which has the same topology with the form diagram (which is its orthographic
projection).

• The Airy stress function gives insight to the states of self-stress in a more explicit and
intuitive way than the force diagram for two reasons. Firstly, it has the same topology
as the form diagram (which is its orthographic projection) so for every edge in the
form diagram the designer can have a full picture of its structural behavior just by
interrogating visually its two adjacent faces in the Airy stress function: the magnitude
of their kink corresponds to the magnitude of axial loading, their curvature (valley or
ridge) to whether it is a tie or a strut; if they lie on the same plane the particular edge
has no axial load at all. Secondly, the number of polyhedral liftings, namely, of how
many nodes can be lifted independently for the polyhedral stress function to form in
3-space, are equal to the number of self-stresses in the system. These self-stresses
are design freedoms in the sense than each one of them will output a different form.
This is particularly useful for grid-shells or discrete structures in which the tessellation
pattern needs to be exact and reconfiguration of the form diagram is not desirable.

• This method, based on the polarities framework, is direct and produces global equilib-
rium without the need for iterative node-by-node algorithms or reconstructions of the
diagrams after a change is made. Moreover, the polarities graphic statics framework
applies the same methodology both for 2D and 3D structures (by outputting Rankine
force reciprocals in the latter case). As a result, 2D graphic statics via polyhedral stress
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functions can be used to obtain a spatial strut-and-tie network in static equilibrium
and subsequently 3D graphic statics via 4-polytopic stress functions can be used to
produce spatial Minkowski sums of the structure. These prismatic structures are useful
to designers as they visually represent the size of each one of the structural members
under a constant-state design as well as the terms of Maxwell’s load path theorem
which can be used for optimisation purposes.

5.2.1 Force Density Method

The force density method (Schek, 1974), or ‘Stuttgart direct approach’ was primarily used
for form-finding and design explorations of prestressed spatial tension-only structures, such
as hanging cable nets and membranes (Linkwitz in (Adriaenssens et al., 2014)). For this
type of funicular structures, the form is interlinked to the internal forces and greatly affects
the load-bearing behavior (Linkwitz in (Adriaenssens et al., 2014)). Relating geometry and
static equilibrium results in a non-linear problem. This can be converted to a linear one by
introducing force densities, namely, the ratios of axial forces over lengths of a strut or tie. In
particular, for a given 2D self-stressed form diagram, for which the boundary heights zF are
fixed, the height of the internal nodes zN can be found:

zN = D−1
N (p−DFzF)

where p is the vertical loading, D = CT QC, with C being the directed branch-node
connectivity matrix of the form diagram and Q the diagonal matrix of force densities
(Linkwitz in (Adriaenssens et al., 2014)).

This method, which was developed in the 1970s, was used for the form-finding of some
eminent structures such as the Mannheim Multihalle and the Olympic roofs of Munich. Apart
from calculating spatial forms in static equilibrium without the need for specific material
information, it can also incorporate geometrical constrains such as boundary conditions and
equal lengths of the structural members. Moreover, it can be used for mixed compression
and tension structures by introducing positive (tension) and negative (compression) force
densities.

The input of the force density method is a 2D diagram of the topology and projected
geometry of the spatial structure, vertical point loads for every node, and the force density
values for each edge. The role of the states of self-stress as a design and analysis freedom are
implicit in the force density method as different sets of force densities will output different
geometries. The tension-only outputs of the force density method can also be seen as their
compression-only equivalents following Hooke’s analogy between a hanging chain (purely
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in tension) and an equivalent inverted chain as a purely compressive arch. This has been used
in the Thrust Network Analysis and its computational implementation (RhinoVault). In these
frameworks, the force density method is coupled with an iterative algorithm, which calculates
horizontal equilibrium in terms of a graphic statics force diagram, for the form-finding of
compression-only vaults.

Research has been done in extending the potential and robustness of this method to
the form-finding of compression-and-tension structures such as tensegrities (Miki and
Kawaguchi, 2010; Zhang and Ohsaki, 2006), suspended membranes with bars (Miki and
Kawaguchi, 2010) and spatial combinations of cables and struts (Malerba et al., 2012). Also,
there is relevant research in applying the force density method in interactive design and
analysis frameworks where the user has more active role in intermediate steps of the process
than solely defining the initial input parameters. This has been most notably developed in
the context of tensegrity structures (Tachi, 2012; Zhang and Ohsaki, 2006). The Airy stress
function has been used in the context of graphic statics for the generation of self-supporting
compression-only structures. Specifically, the discrete polyhedral stress function has been
introduced (Fraternali, 2010) for the analysis of unreinforced masonry vaults and for the
prediction of fracture-prone regions. Moreover, a continuous approach has been developed in
Miki (Miki et al., 2015) in which the geometry is represented by parametric NURBS surface
rather than discrete networks.

5.2.2 Methodology

This form-finding method for spatial tension-and-compression structures such as vaults, shells
and grid-shells, in static equilibrium uses reciprocal polyhedral Airy stress functions both
as design freedoms and for generating horizontal equilibrium which then is the input of the
force density method. As in the literature, negative force densities are used for compression
and positive for tension.

Given an initial 2D closed boundary curve of the structure, the enclosed space can be
tessellated in several ways such as a regular triangulation which is convenient for the purposes
of the method. Triangulation results in the maximum number of polyhedral liftings of the
form diagram/ states of self-stress. Thus, it highlights the potential of the Airy stress function
as a design freedom. Of course other patterns with n-gons can produce patterns that are
projections of polyhedra; however, these will require an extra layer of analysis (since then
not all the vertices can be lifted independently). Now, this tessellation is a 2D truss which is
trivially a projection of a polyhedron (since all the faces are triangular). We should note that
this type of diagram is a Schlegel diagram, viz., an outer (bottom) face which encloses all the
other (upper) ones. This type of diagram includes all the topologies found in (Rippmann et al.,
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2012). However, following the approach outlined here, we need not be constrained to this.
The structure can also have a non-trivial ‘bottom layer’ which is also a part of the structure
in static equilibrium. After the initial tessellation is decided, all the internal nodes are lifted
to create the polyhedral Airy stress function of the 2D truss. Since by construction we have
freedom to move every one of the internal nodes in the z-direction there are an infinite number
of possible polyhedra which live on top of the truss. The number of independent states of
self-stress equals the number of internal nodes. Moreover, the tessellation can also happen
directly as a discretization of the surface of an Airy stress function in 3-space so potentially
the designer does not even need the form diagram as a starting point.

The choice of the polyhedron reflects the wanted structural behaviour and is a design and
analysis freedom. For example, the choice of a strictly convex (concave) polyhedron produces
a tension (compression)-only 2D truss enclosed by a compression (tension) boundary. This
makes sense for a compression/ tension only structure such as self-supporting masonry
vaults or nets. From Heyman’s plasticity theory and the lower bound theorem, we know that
one solution suffices for our structural analysis and design purpose. However, the multiple
solutions that are readily available through the Airy stress function approach can give us
more insight. Every different choice of an Airy polyhedron will lead to a different shell/
grid-shell spatial geometry. As a result, by combining the lower bound theorem and Airy
stress functions the designer has more freedom with regards to structural design. The chosen
Airy polyhedron can now be mapped to its reciprocal using polarities and subsequently
projected on the plane to derive the force reciprocal of the initial 2D truss in a Maxwell
configuration. The two diagrams can be combined in a Minkowski sum with the aspect ratio
of each of the rectangles readily giving the value of force density for each one of the bars.
Then the vertical loads can be assigned to each one of the internal nodes. The values can just
be a constant or more generally defined by the user at will. Moreover, as an approximation
for dead load a Voronoi pattern on the internal nodes can be used for the tributary areas.
Now that we have horizontal equilibrium, force density values, and vertical loads we can lift
the 2D diagram to a spatial shell/ grid-shell in static equilibrium. We should note that the
2D truss, its Airy polyhedron, and the final spatial grid-shell/ shell have exactly the same
topology but different geometry. The 2D static equilibrium is combined with the force density
method and vertical point loading to produce 3D vaults in static equilibrium. We should note
that this method can be readily applied to n-connected polyhedra too (with n > 1).
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This methodology is implemented in the Rhino/ Grasshopper environment. The python
code which includes a matrix solver for the force density method was implemented using
the MathNet.Numerics library. Moreover, a user-friendly interface was developed through
the Human UI plug-in for Grasshopper Figure 5.2. With this, a number of important input
parameters are presented in a window where the user can define the values without the need
to delve into the code. Also, since this is written as Grasshopper code, it can be readily added
or extended within the Grasshopper environment.

Fig. 5.2 User-friendly interface of the Airy force density tool which presents to the user a
window with key parameters which can be controlled.
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Fig. 5.3 A polyhedral Airy stress function follows the tessellation of the form diagram and
provides global horizontal equilibrium. When this is combined with force density for given
vertical loads, it results in a spatial shell/ grid-shell in static equilibrium. In this case a convex
Airy stress function was used resulting in a compression-only shell. The vertical loading can
be defined by the user. For the example used here, the weight of the tributary area of the shell
is approximated from a Voronoi pattern. 2D form and force diagrams can be combined in a
Minkowski sum.
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Fig. 5.4 This method based on polarities can work both for tension-only, compression-only
and compression-and-tension structures.
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Fig. 5.5 The Airy stress function as a design freedom: different polyhedral liftings (admissible
states of self-stress) of the same form diagram result in different spatial forms in static
equilibrium.
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5.3 Summary

In this Chapter, a direct design-by-analysis framework was introduced for 2D and 3D trusses,
as well as for the development of tension-and-compression shells, grid-shells and vaults.
For the latter case, this was based on combining global horizontal static equilibrium and
the force density method. It was highlighted how the stress function is useful not only for
designing structures within static equilibrium but also as an intuitive and geometrical way to
correct form diagrams should the designer decide to start a free-form design exploration of
the geometry.

With regards to the shell, grid-shell and vault design and analysis method introduced
here, the main advantages include:

• Direct transformation (as opposed to iterative approximations).

• Elegant mathematical graphic statics framework which includes algebraic and matrix
descriptions next to the fundamental geometrical construction.

• Not only the outputs (reciprocal diagrams) but also part of the toolkit (Airy stress
function) is purely geometrical and has a physical meaning which greatly adds to its
education value.

• It is not limited to compression-only structures (it can as well analyse and design
self-supporting tension-and-compression grid-shells without external lateral loads).

• Incorporation of n-connected Airy stress functions.

• This method allows internal courtyards and openings rather than just oculus-sky lights.

• The Airy stress function approach gives control and insight in 4 reciprocal and interac-
tive objects (reciprocal diagrams and corresponding stress functions).

• As an approach it gives insight and explicitly uses the states of self-stress as design
and analysis freedoms rather than merely local/ affine transformations of the form /
force diagram. This is crucial for structural design since it enables a more fundamental
understanding of structural analysis and enables a purely geometrical design by analysis
via the lower bound plasticity theorem.

• In this approach external forces can also be introduced, via an equivalent self-stressed
structure.

• Form and force features can be introduced by sculpting, transforming, and carving
locally and globally the polyhedral Airy stress function.



Chapter 6

Applications

This Chapter presents applications of the theoretical framework presented in the previous
Chapters. In particular, it illustrates methods of design, analysis and transformations of
2D and 3D (polyhedral) trusses (Konstantatou et al., 2018) which can start either from the
form diagram, force diagram, or corresponding stress functions - highlighting the different
advantages. In particular, the case studies developed here are:

• Study of interlinked graphic statics and kinematics for tensegrities with infinitesi-
mal mechanisms and flexible polyhedra with finite mechanisms (Konstantatou and
McRobie, 2017);

• Introduction of the dynamic Minkowski sum for statically balanced tensegrity mecha-
nisms (Konstantatou and McRobie, 2017);

• Design and analysis of large infrastructure: tensile net as a stadium roof;

• Structural morphogenesis of large infrastructure - exoskeletons and trusses of towers;

• Design through analysis of large infrastructure: tension-and-compression shells, grid-
shells, and vaults.

The above case studies have been published in journal articles and conference proceedings
as indicated. The project on structural morphogenesis of towers started during an academic
secondment at the Polyhedral Structures Laboratory at the University of Pennsylvania in
spring 2018 with Dr. Masoud Akbarzadeh. The project on design through analysis of large
infrastructure - tension-and-compression shells, grid-shells, and vaults - started as an industry
secondment at SOM Chicago in spring 2018 with Bill Baker and the structures team.
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6.1 Implementation and case studies

Following the constructions described in the previous Chapters, we present several case
studies. For the 2-dimensional case, we start with the Maxwell 2D reciprocals and the
corresponding Airy stress functions for two of the figures found in Maxwell (Maxwell,
1864a) (Figure 6.1). We then show the reciprocal polyhedral Airy stress function and
the 2D projections in terms of a pair of form and force diagrams of a Pratt truss under
external loading, and the equivalent self-stressed truss (Figure 6.2). For the same case,
we then apply polar transformations for the analysis and design of the geometry and we
highlight how this framework can incorporate several transformations and their combinations,
(Figure 6.3) such as: local transformations induced by moving individual nodes; global affine
transformations (scaling, shearing, rotating, etc.); as well as local and global transformations
of the polyhedral Airy stress function. The latter can be particularly useful for cases where the
external boundaries of a structure should remain fixed and the designer wants to change only
the geometry of the internal structural members. Since in Maxwell’s approach reciprocal form
and force diagrams can interchange roles, it is important to notice that the transformations
can equivalently happen in the form or force diagram, or their corresponding stress functions
in which case the other three reciprocal objects are directly updated. As a result, the designer
can directly design and control the force diagram by changing the location of its vertices or
equivalently control the polyhedral force Airy stress function by changing its planes. These
changes correspond to altering force edge lengths for the 2D case and force face surface areas
for the 3D case. Then the designer can visually inspect and interact with the updated form.
Moreover, after transforming the force diagram or any of the polyhedral stress functions, the
result will be a new geometry under static equilibrium. In the case of local transformations and
when the geometrical objects under transformation are not triangulated, the constraint should
be imposed that the polyhedral stress functions remains plane-faced. Lastly, as a known result
in rigidity theory (Whiteley, 1982), convex Airy stress functions project to 2-dimensional
spiderweb structures (see section 2.4). As a result, by manipulating the polyhedral Airy stress
function it is possible to produce tension-only/compression-only, or tension-and-compression
structures. Furthermore, we should highlight how any boundary conditions/ external forces
can be incorporated in the initial geometry, which can be subsequently seen and analysed as
an equivalent self-stressed truss (Figure 6.4). Any external concurrent forces in equilibrium
can be applied either on the structural boundary or on internal nodes of the structure and
they result in a further subdivided equivalent self-stressed truss. In the general case of
non-concurrent external forces in equilibrium a funicular structure can be also added to
produce a diagram which is a projection of a connected stress function as explained in detail
in (McRobie et al., 2016) (Figure 6.2).
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Fig. 6.1 Reciprocal polyhedral Airy stress functions (P, P’) and resulting pairs of form and
force diagrams (F, F’) in Maxwell 2D configuration for Maxwell’s Figures IV and 4 (left)
and Figures V and 5 (right) (Maxwell, 1864a).

For the spatial case, we apply the constructions to trusses which are projections of simply
connected 4-polytopes, such as the spoked cube, and rotationally symmetric tensegrity
structures (the Jessen icosahedron and the 3-prism) for which we obtain their Rankine 3D
reciprocals (Figure 6.5) through coning (by adding an internal node and thus creating several
internal cells in these otherwise 1-cell structures). Furthermore, similar to the Pratt truss we
apply this framework to the design and analysis of spatial trusses allowing for local and global
transformations of the form or force geometries. A polyhedral spatial truss with three internal
nodes (Figure 6.5), and thus three states of self-stress, can undergo local transformations
by moving external or internal nodes. Moreover, global projective transformations can be
applied on its form diagram, force diagram, or corresponding stress functions, and can be
combined with local transformations. As in the 2D case, these transformations always result
in a new spatial geometry in static equilibrium.
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Fig. 6.2 Reciprocal polyhedral Airy stress functions (P, P’) for a Pratt truss (F) (top) and
its force reciprocal (F’) (bottom). We highlight how the same Airy stress function can
correspond to a Pratt truss with external loading (top right) and a self-stressed truss with an
equivalent geometry (top middle).

6.1.1 2D trusses

Large infrastructure: Tensile structures

Tensile nets can be useful geometries in the design of structures such as stadium roofs.
Conventional design methods start with a target geometry which is then optimised in order to
converge to a solution which is in static equilibrium. By using the graphic statics framework
presented here, the designer can directly design a form which is by definition in static
equilibrium. For example, a polyhedral Airy stress function can be defined given the
footprint of the roof, which is then projected on the plane resulting in a tensile 2D truss in
static equilibrium enclosed by a compression hoop. This stress function is then mapped to
its reciprocal which in turn results to the force diagram. In the example of Figure 6.6 the
geometry of the polyhedron, and hence of the form diagram, can be changed in terms of:
footprint curve; number of subdivisions; apex coordinates of the faceted pyramid and cutting
plane resulting in an oculus in the centre of the roof. In this example we observe that the
axial tension forces can vary considerably for the ties of the roof. A more even set of axial
forces can be achieved by altering geometrically the polyhedral stress function (Figure 6.7)
which it turn can be reciprocated to give the updated form diagram. All these transformations
happen in the space of the stress functions; as a result, the form-finding is performed within
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equilibrium space and there is no need for extra algorithmic steps of converting this to an
equilibrated structure.

Fig. 6.3 Polyhedral Airy stress function (P) and plane form and force diagrams (F, F’) for a
Pratt truss under local and global transformations, from top to bottom: local transformation
by moving a truss node; global transformation by shearing the Airy stress function; global
transformation by scaling the form diagram; combination of the above transformations.
Equivalently, F can be seen as a force diagram and F’ as a reciprocal form diagram.
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Fig. 6.4 Incorporation of boundary conditions / external forces in the form diagram. Left:
adding concurrent forces on the structural boundary for a 2D (top) and 3D (bottom) truss
and equivalent self-stressed form diagrams. Right: adding concurrent forces anywhere in the
structure.
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Fig. 6.5 Top: Pairs of spatial reciprocal diagrams in a Rankine 3D configuration: Tensegrity
3-prism. Jessen icosahedral tensegrity, Spoked cube. Bottom: (a): A polyhedral spatial truss
(F) with three states of self-stress (top) and its corresponding Rankine 3D force diagram
(F’) (bottom) or equivalently a polyhedral spatial truss (F’) and a Rankine 3D force diagram
(F); (b): Local transformation by moving an internal node of F; (c): Global projective
transformations (non-uniform scaling and shearing) applied on F; (d): Combinations of local
and global transformations.
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Fig. 6.6 Designing a tensile stadium roof in static equilibrium: The form diagram is a
projection of a polyhedral Airy stress function so it is by definition in static equilibrium. The
four reciprocal geometries are presented (form, force diagram, reciprocal stress functions) as
well as the Minkowski sum of the resulting net.
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Fig. 6.7 Designing a tensile stadium roof in static equilibrium: The form diagram is a
projection of a polyhedral Airy stress function so it is by definition in static equilibrium. The
four reciprocal geometries are presented (form, force diagram, reciprocal stress functions)
as well as the Minkowski sum of the resulting net. In this second case the reciprocal stress
functions are altered geometrically to produce a more even distribution of tensile axial forces.
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6.1.2 3D trusses and polyhedral spatial structures

Tensegrities

Drawing analogues and using results from rigidity theory, projective geometry and structural
mechanics we apply a graphic statics and kinematics analysis to trusses, tensegrities and
flexible polyhedra, extending the definition to study graphically the redistribution of internal
forces in statically balanced tensegrity mechanisms.

Tensegrities can be defined as a rigid configuration of an ‘ordered finite collection
of points in Euclidean space’ comprising inextendable cables and incompressable struts
(Connelly and Whiteley, 1996). The tensegrities we will analyse here also have the property
of their compressed elements being a discontinuous set whereas their tensioned elements are
a continuous set (Motro, 2003). Tensegrities are essentially self-stressed, reticulated, rigid
structures which can be traced back to the patents of Emmerich, Fuller and Snelson (1950s
and 1960s) and before them to a few prototype structural sculptures developed amidst the
Russian avant-garde as described by Laszlo Moholy Nagy (Motro, 2003).

The 3-prism F(6, 12, 8, 1) is the simplest prismatic spatial tensegrity and is an example
of a pre-stress stable structure. It is a triangulated 2-surface in R3 and has an underlying
generically rigid graph for the corresponding bar framework. As the 3-prism has only
one internal cell, we cone it (Figure 6.8-a) resulting in its coned/ spoked version Fc(7, 18,
20, 9). If we now lift the newly created 8 internal cells one dimension up, we obtain a
Maxwell-Rankine stress function through which we can easily derive the Rankine reciprocal
(Figure 6.8-b). We observe that the faces of the force cells which correspond to the internal
spokes of the structure (connecting the added vertex v0 with V) have zero oriented area
– meaning that they are not load-bearing; an expected result since those spokes are just a
geometrical construction and not real edges per se – in contemporary nomenclature they are
also called zero bars (McRobie, 2016). Moreover, from the counting rule we have that p=q
and thus since we have one state of self-stress we will also have one, infinitesimal in this
case, mechanism. As a matter of fact, the force cells can slide relative to each other in a
unique way (Figure 6.8-d) revealing the infinitesimal mechanism (Figure 6.8-c). This slide
corresponds to the rotation on the z-axis and the translation on the xy plane of the upper three
internal cells c1, c2, c3 relative to the lower three internal cells c4, c5, c6. We should note that
the faces corresponding to the internal spokes can separate, albeit retaining their parallelism,
since they have infinite flexibility/ zero stiffness.

The Jessen icosahedral tensegrity F(12, 30, 20, 1) analysed statically and kinematically
(Konstantatou and McRobie, 2017; McRobie et al., 2017), is also an example of a spherical,
triangulated, 1-cell, pre-stress stable tensegrity which possesses one state of self-stress
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and one infinitesimal mechanism. As for the 3-prism, we cone it (Figure 6.9), obtain the
reciprocal Rankine reciprocal through a 4D polarity (Figure 6.9) and slide the force cells
(which we show in detail in Figure 6.9), revealing the displacement vectors of the mechanism
(Figure 6.9). As above the internal spokes correspond to faces of zero oriented area and the
corresponding faces are free to separate.

Some of the special cases which deviate from Maxwell’s counting rules as well as from his
assumption on the rigidity of triangulated surfaces are tensegrities and flexible polyhedra. By
synthesizing Maxwell’s approach on form and force diagrams based on polarities, Calladine’s
generalised counting rules, as well as newly formed theory on graphic kinematics (McRobie
et al., 2017) it is possible to study these interesting spatial geometries both statically and
kinematically (Konstantatou and McRobie, 2017). The Jessen icosahedral tensegrity F(12,
30, 20, 1), is an example of a spatial structure which possesses one state of self-stress (q) and
one infinitesimal mechanism (p). Since this polyhedral structure is essentially just a single
faceted cell, it can be coned to derive a richer geometrical structure with numerous cells.
Then the 3D Rankine reciprocal can be obtained through a 4D polarity and the compatible
sliding of the resulting force cells (McRobie et al., 2017) will reveal the displacement vectors
of the mechanism (Figure 6.9). As a result, a purely geometrical two-fold structural analysis
can be used to derive the static and kinematic behaviour of this tensegrity structure.

Flexible Polyhedra

The Steffen flexible polyhedron F(9, 21, 14, 1) (Figure 6.10) is a generically rigid, triangu-
lated polyhedron, which in this particular geometrical embedding is not rigid, exhibiting a
range of motion of π/6 → π/60 while flexing. From Calladine’s counting rules we have that
p=q (where p is the number of mechanisms and q the number of states of self-stress) which
equals to zero for the general case of a triangulated polyhedron, being an isostatic structure,
but in the special case of the Steffen polyhedron p=q=1 with the corresponding spatial truss
possessing one state of self-stress and one finite mechanism. As above, the Steffen has
only one cell so we cone it and lift it in a Maxwell-Rankine stress function to obtain the
Rankine reciprocal (Figure 6.10). We then observe that the sliding of the force cells is unique,
revealing the nodal vectors for the finite mechanism of the form polyhedron (Figure 6.10),
which do coincide with the applications in literature (McClure, 2005). Interestingly, we
observe that this time the internal spokes do not correspond to force faces of zero oriented
area (Figure 6.10) - even though we assumed that they have infinite flexibility and they do
not even exist structurally. The reason for this is that when we create the Maxwell-Rankine
stress function this is essentially over the coned structure Fc(10, 30, 35, 15) for which q-p=6;
evidently the coned structure does not have any mechanisms and is rigid since e>3v-6, as
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Fig. 6.8 Graphic statics and kinematics analysis of a 3-Prism tensegrity.
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Fig. 6.9 Graphic statics and kinematics analysis of a Jessen icosahedron.
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a result it has 6 states of self-stress. The 4D polarity used here maps the form cells to
reciprocal vertices in a 1-1 fashion. Thus, for a structure which has more than one states of
self-stress but only one linearly independent vertex which can be lifted to a Maxwell-Rankine
stress function, we obtain only one of the possible Rankine reciprocals. In this way it is not
possible to find a state of self-stress corresponding to the original - without internal spokes
- Steffen polyhedron. A geometrical construction which provides the correct equilibrium
analysis for this truss geometry has been developed in (McRobie, 2017b). This works by
decomposing the polyhedron into two crinkles using a number of zero bars arranged to form
zero cubes. However, this does not constitute a problem for the graphic kinematic analysis;
since we can obtain one force reciprocal, we can still treat the internal spokes as having
infinite flexibility and obtain the same, unique vectors of the finite mechanisms of the Steffen
flexible polyhedron.

Fig. 6.10 Graphic statics and kinematics analysis for the Steffen flexible polyhedron.

6.1.3 Statically balanced tensegrity mechanisms

The 3-prism can be also an example of a statically balanced tensegrity mechanism if the
tensioned members are substituted by zero free length springs (Schenk et al., 2007). In that
case the hybrid structure will have zero-stiffness modes which correspond to a continuous
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spectrum of configurations - on any one of which the structure is in static equilibrium.
This category of structures is of interest in fields such as robotics, medical applications,
architecture and generally where energy-efficient transformable design is a requirement
(Schenk et al., 2007). It should be noted that even though the lengths of the compression
members are fixed, the lengths of the tensioned members are not, thus, the 3-prism can
change its shape considerably over large displacements without the corresponding motions
being finite mechanisms (Schenk et al., 2007). The graphic static-kinematic analysis for
every statically balanced configuration of this spectrum would reveal one state of self-stress
and one infinitesimal mechanism for the corresponding conventional 3-prism. However, we
observe that since the structure is continuously in static equilibrium it should have a dynamic
Rankine reciprocal which gets continuously updated (Figure 6.11), giving an intuitive and
visual inspection of the continuous reconfiguration of internal forces over the spectrum of
movement. Thus, following equation (2.10), we define the dynamic Minkowski sum over the
configuration space C to be:

AAA j +++BBB j = {aAAAi j +bBBBi j|AAAi ∈ AAA,BBBi ∈ BBB,a,b scalars, j ∈C} (6.1)

where A and B are two sets of vectors - for example, the set of form nodes and the set of
force cells (see section 2.7).

Fig. 6.11 Graphic statics analysis and dynamic Minkowski sums for a statically balanced
tensegrity mechanism. Note that the Minkowski prisms of zero-bars have been omitted for
visualisation purposes.
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6.1.4 Large infrastructure: Towers

As discussed in Chapter 5, stress functions can be used as a tool for structural morphogenesis
of forms in static equilibrium. Here we apply the theory of section 3.2.3 to design spatial
trusses in the form of exoskeletons/ mega trusses of high-rise towers. As outlined above, the
designer can start from the force diagram (Figure 6.13) - the topology and geometry of which
will define the resulting spatial truss. Alternatively, the designer can choose to work straight
in the form space. This particular geometry is essentially two interconnected envelopes.
This is a direct application of Maxwell’s Figure IV in the 4th dimension. Specifically, in
Figure 2.12 we see how two planes intersect in 3-space to a line w and at the same time
define a pyramid with a flat top - the projection of which is a truss in static equilibrium. In
fact, the line w signifies the relative position of these two planes and is thus a design freedom
with regards to the design of the 2D truss. Equivalently, if this construction is translated one
dimension up in 4-space (Figure 6.12) then two hyperplanes will intersect to a plane w (which
now signifies a design freedom), these two hyperplanes can be used to define a plane-faced
4D pyramid, the projection of which is thus guaranteed to be in static equilibrium. The lines
of action of the external forces are added to the structural members resulting to an equivalent
self-stressed truss which can be then be analysed.

By following this methodology and working solely in the form space a wide range of
typologies for towers in static equilibrium can be generated as in Figure 6.14.

These geometries are self-stressed spatial systems comprising interconnected polyhedral
truss envelopes. Each one of these systems will have a Rankine force reciprocal (Figure 6.13)
which visualises the state of self-stress of the tower. The number of interconnected polyhedral
envelopes can be decided by the designer based on the architectural brief. The geometry
of Figure 6.13 was selected for developing a physical model of this tower typology. In
collaboration with Dr. Masoud Akbarzadeh, Dr. Andrei Nejur and PhD students from the
Polyhedral Structures Lab at UPenn, a computational and physical model was developed
which comprised structural members of varying diameters and custom-made joints which
connected to the edges. In particular, the structural members were timber rods whereas the
joints were 3D-printed with flexible plastic material. The glass facade panels were laser-cut
from perspex material and attached to the timber rods via 3D-printed rings. The finished
model (Figure 6.15) is 1m heigh and has been exhibited at UPenn.
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Fig. 6.12 Left-Top: Maxwell’s Figure IV is a projection of a polyhedron where the position
of line w signifies a design freedom; Left-Bottom: Polyhedral lifting of Maxwell’s Figure IV;
Right-Top: The 3D generalisation of Maxwell’s Figure IV is a projection of a 4-polytope
where the position of plane w signifies a design freedom; Right-Bottom: 4-polytopic lifting
of the form diagram, showing the geometrical principles resulting in self-stressed spatial
trusses in static equilibrium such as towers.
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Fig. 6.13 Self-stressed mega truss of a tower in static equilibrium as a form diagram and its
reciprocal Rankine 3D force diagram.
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Fig. 6.14 Various typologies and heights of trusses of towers in static equilibrium.
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Fig. 6.15 CAD and CAM produced physical model of the 4-polytopic tower typology.
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6.1.5 Large infrastructure: Vaults, shells and grid-shells

The Airy stress function can be used in conjunction with the force density method as a
form finding tool for compression-and-tension spatial structures while providing design and
analysis freedoms. Specifically, for a tessellation given from a form diagram and for a given
constant vertical load, different polyhedral liftings of the corresponding stress function result
in different grid-shell forms in static equilibrium (Figure 6.19, Figure 6.20). The grid-shell
model chosen here is a simplified version inspired from the Great Court roof of the British
Museum. The latter, is an iconic structure designed by Foster + Partners and constructed
by Buro Happold Engineering, and represents a great example of collaboration between
architects and engineers where the structural analysis directly informed the geometry of the
structure. In particular, the form-finding of the geometry was developed by Chris Williams
of Bath University by using analytic and numerical methods - specifically the method of
dynamic relaxation (Williams, 2001). The resulting structure is a grid-shell, the design
load path of which includes bending action. It should be noted that in the methodology
developed here the solutions are axial-only. Similar geometries have been designed and
analysed in the literature using the RhinoVault framework (Rippmann et al., 2012); however,
these explorations apply only to regular quad topologies and the resulting solutions are
compression-only. Thus, they do not extend to tension-and-compression cases. In this section
we design and analyse two different models of tension-and-compression grid-shells with an
internal oculus, while exploring different solutions with regards to their load paths.

Firstly, a 2-connected polyhedral Airy stress function is developed for the topology of
Figure 6.16 (top). The initial choice of the surface in space, on which the vertices that
initially lie on the plane z = 0 are mapped, results from wanting to create a smooth curvature
while the surface intersects both boundary curves (the external rectangle C1 and the internal
circe C2). To achieve this, we lift every non-fixed point P(x,y,0) of the form diagram in the
z-axis. Specifically, for every P(x,y,0) with distance DP−C1,DP−C2 from C1,C2 respectively,
we assign a z-coordinate using the equation: z = min{DP−C1,DP−C2}lDP−C2, where l is
a scalar. When the resulting polyhedron is mapped to its force reciprocal (Figure 6.21)
and combined with force density it gives a valid solution for a spatial grid-shell in static
equilibrium (Figure 6.19 (top)); however, the resulting load path is unorthodox - it comprises
two tension hoops interconnected by tension and compression members (Figure 6.16 (top)).
Also, the initial form has sharp angles between adjacent faces - should the designer want
to smooth this, local transformations can be applied. In particular, by controlling the z-
coordinates of some of the vertices in the Airy stress function, the curvature of the form can
be altered resulting in a smoother roof shape (Figure 6.16 (bottom)), (Figure 6.22).
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In order to design a more conventional load path - where an external tension ring encloses
an internal compression ring through an interconnected truss - a second polyhedral Airy
stress function is devised. This time we define this as an 1-connected polyhedron, the initial
surface equation of which is: for every point P(x,y,z) : z = (x2 −a2)(y2 −b2) where a,b are
the half dimensions of the external rectangle.This needs to be slightly altered near the oculus
(internal ring) for this face to be plane. Also, for this topology we delete any 0-force edges
near the external boundary. The resulting load path is indeed different (Figure 6.16 (bottom)).
The resulting initial form also has some sharp edges which are smoothened through local
transformations of sets of individual nodes resulting in a roof-like geometry (Figure 6.20
(top), Figure 6.24). We observe the 2D Minkowski sums of the two final grid-shell geometries
(Figure 6.17, Figure 6.18). These show the primary trusses formed in the grid-shell by giving
an intuitive and visual representation of the horizontal components of the axial forces and the
force densities of each edge (through the aspect ratio of the corresponding parallelepiped).
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Fig. 6.16 Top right: Form diagram of a 2-connected simplified model of the Great Court Roof
of the British Museum; Top left: Form diagram with tension members in red, compression
members in blue and 0-force members in grey; Bottom right: form diagram of a 1-connected
simplified model of the Great Court Roof of the British Museum; Bottom left: Form diagram
with tension members in red and compression members in blue
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Fig. 6.17 Minkowski sum of a given grid-shell topology and for a 2-connected stress function:
the primary truss of the load path can be observed (internal and external tension hoops
interconnected through compression members) while the aspect ratio of the rectangles give
the force density of the grid-shell edges
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Fig. 6.18 Minkowski sum of a given grid-shell topology and for a 1-connected stress function:
the primary truss of the load path can be observed (external tension hoop interconnected with
an internal compression hoop) while the aspect ratio of the rectangles give the force density
of the grid-shell edges
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Fig. 6.19 Top: Initial grid-shell geometry resulting from a 2-connected polyhedral Airy
stress function (right column); Corresponding form and force diagrams (left column). As
the topology is triangulated there are infinite solutions of possible geometries/ states of
self-stress/ design and analysis freedoms for the grid-shell; Bottom: Small changes in the
initial geometry of the ASF/ state of self-stress result in a significantly different form (the
nodes that have moved in the z-direction are indicated with dots on the form diagram).
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Fig. 6.20 Top: Initial grid-shell geometry resulting from a 1-connected polyhedral Airy
stress function (right column); Corresponding form and force diagrams (left column). As
the topology is triangulated there are infinite solutions of possible geometries/ states of
self-stress/ design and analysis freedoms for the grid-shell; Bottom: Small changes in the
initial geometry of the ASF/ state of self-stress result in a significantly different form (the
nodes that have moved in the z-direction are indicated with dots on the form diagram).
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Fig. 6.21 Top: The 2-connected, polyhedral Airy stress function corresponding to the form
diagram of the Great Court Roof; Bottom: Reciprocal polyhedral Airy stress function
corresponding to the force diagram.
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Fig. 6.22 The 2-connected polyhedral Airy stress function and the resulting smooth geometry
of a grid-shell roof via the force density method.
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Fig. 6.23 Top: The 1-connected, polyhedral Airy stress function corresponding to the form
diagram of the Great Court Roof; Bottom: Reciprocal polyhedral Airy stress function
corresponding to the force diagram.
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Fig. 6.24 The 1-connected polyhedral Airy stress function and resulting smooth geometry of
a grid-shell roof via the force density method.
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6.2 Summary

In this Chapter numerous applications and case studies of this PhD theory were presented.
We showed how by using a direct and unified graphic statics framework a designer can

design, analyse, and transform 2D and 3D trusses within the equilibrium space.
We highlighted the graphic and kinematic analysis of spatial frameworks in a unified and

purely geometrical basis. We showed that this twofold analysis can be applied to a wide
variety of structures from trusses, to tensegrities, and flexible polyhedra; deriving Rankine
reciprocals for frameworks which may or may not be projections of Maxwell-Rankine stress
functions, using geometrical techniques like coning. Attention was restricted to special cases
of ‘rare’ configurations of generically rigid frameworks in which the structures change their
structural behavior by possessing mechanisms and states of self-stress. Specifically, we
obtained accurately the nodal vector displacements of the Steffen flexible polyhedron and
we generalised Minkowski sums to visualise the redistribution of internal forces in statically
balanced tensegrity mechanisms; applicable to energy-efficient transformable design.

We showed how to design spatial trusses such as trusses of exoskeletons of towers
in static equilibrium without having to start from subdivisions of the force diagram - in
fact, structural morphogenesis can occur directly in the form space by obeying geometrical
conditions of the corresponding stress function. Moreover, we showed how to design by
analysis compression-and-tension shells, grid-shells, and vaults, such as the Great Court
roof of the British Museum, by defining and sculpting stress functions. In particular, by
sculpting the Airy stress function the designer can sculpt the form and design the load path -
essentially shifting the method of free-form design from the form space to the force space.
Any polyhedral stress function is an admissible self-stress - resulting in a different form.

In this way, the designer has explicit local and global control on the stress function
and can choose: which members, or areas, are tension and which are compression; which
members have axial forces and which do not (by imposing adjacent faces to lie on the same
plane); which form areas of the shell need to be altered locally and impose the necessary
alterations interactively while ensuring global equilibrium throughout the process. As the
form and force reciprocal objects are interlinked the designer can also update the force
diagram.

This method results in a truly interactive design and analysis process where the structural
performance is a design freedom and the method is as meaningful as the output. In this
framework the lower bound theorem not only ensures that a solution is admissible but it can
also ensure this creative range of design and analysis freedoms.



Chapter 7

Impact study and cross-disciplinary
applications

This Chapter discusses cross-disciplinary applications of this PhD research. In particular, it
develops design and analysis applications on structural concrete, such as automatic generation
of 2D and 3D discrete stress fields and geometrical criteria for admissibility of yield line
patterns and geometrical representations of internal and external work. This work started
as a collaboration with Dr. Pierluigi D’Acunto of ETH Zurich - Chair of Structural Design
of Prof. Dr. Josheph Schwartz - during an academic secondment in December 2018. The
results of this research will be presented in two conferences: Symposium for the International
Association of Shell and Spatial Structures - Barcelona, October 2019 (Konstantatou et al.,
2019a) and the International fib Symposium on Conceptual Design of Structures - Madrid,
September 2019 (Konstantatou et al., 2019b).

7.1 Introduction

The reciprocity and duality of graphic statics is a fundamental notion that can be observed in
many places around us. In particular, graphic statics is currently experiencing a renaissance
for the analysis and design of structures in static equilibrium while also showing the potential
of being applied to other fields such as structural concrete.

Methods such as stress fields and yield lines are valuable; however, their automation,
generalisation in 3D cases, and geometrical admissibility are active research topics. In this
Chapter, we introduce a twofold geometrical and interactive design and analysis methodology
for: the generation of discrete stress fields of 2D and 3D reinforced concrete structures;
the design and analysis of admissible yield line patterns in concrete slabs. This is based
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on the polarities graphic statics framework. Specifically, on the construction of reciprocal
stress functions and the interlink of form, force diagrams and Minkowski sums. Based on
this proposed approach, for a given form diagram (which represents the topology of the
strut-and-tie model), its polyhedral Airy stress function is transformed through a series of
geometrical manipulations to produce a valid stress field that respects the specified topology
of the strut-and-tie model, boundary constraints and applied external forces. This results not
only to the generation of valid stress fields but also to the introduction of design and analysis
freedoms on how to achieve this. Moreover, this methodology discusses yield line theory and
how its fundamental principles (internal and external work) can be represented geometrically
in an intuitive way. It is highlighted how both these applications are underpinned by the same
fundamental geometry. Lastly, the application of these techniques has been also investigated
in relation to cosmology (large-scale structure of the universe) and origami (Neyrinck et al.,
2018). However, these areas will not be considered as part of this thesis.

7.2 Discrete stress fields in reinforced concrete

This section introduces a twofold geometrical methodology for generating valid 2D and 3D
discrete stress fields in reinforced concrete structures and yield line patterns via the use of
polyhedral stress functions in the context of graphic statics. This methodology contributes
to more intuitive, visual and at the same time automated design and analysis of concrete
structures which at the moment rely heavily on step-by-step calculations and experience. It
discusses yield line theory and how its fundamental principles and notions can be represented
geometrically in a clear and intuitive way. Moreover, it is highlighted how both these
applications are underpinned by the same fundamental geometry which can be fine-tuned
depending on the specific practical considerations of each one of them. This methodology is
applied to 2D examples and is then generalised to 3D cases.

Strut-and-tie models and stress fields are useful tools for the design, analysis, and
assessment of reinforced concrete structures. These two methods, which are both based on
the lower bound theorem of plasticity theory, are complementary and closely related but
do not coincide. Specifically, stress fields are a simplified version of strut-and-tie models,
which can be obtained from the former by taking the stress resultants. As a result, different
approaches and techniques may be followed with regards to each other (Muttoni et al.,
2015). Strut-and-tie models are a consistent and rational design and analysis method for
reinforced concrete structures. Strut-and-tie models were developed in Stuttgart (Schlaich
et al., 1987) based on the earlier truss model. Before the introduction of computational
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frameworks based on optimisation, the development of truss models for D-regions1 was
heavily based on experience, rules-of-thumb and intuition of practitioners. A method for
deriving strut-and-tie models is by using the principal stress trajectories of linear elastic
finite element models (Schlaich et al., 1987). However, there are still challenges and scope
for improvement, particularly with regards to automation, selection, and refinement of the
model (Tjhin and Kuchma, 2007). In response to that, several computational frameworks
have been recently introduced such as (Tjhin and Kuchma, 2007). These are mostly based on
topological optimisation of ground trusses (Ali and White, 2001; Liang et al., 2000) or finite
element analysis approaches (Biondini et al., 2001; Muttoni et al., 2015). Stress fields on the
other hand sprang out of the theory of plasticity based on the work of Gvozdev (Gvozdev,
1960) and Drucker (Drucker, 1961) and are useful design and analysis tools (Muttoni et al.,
2015). Stress fields can be used for calculating the internal forces, the required reinforcement,
and for describing the stress distribution with regards to the compression struts. Moreover,
they are useful for dimensioning of members, detailing, and specifying the nodal geometries.
However, their widespread use can be hampered by lack of automation. In recent years,
research on this has been less extended in comparison to the strut-and-tie counterpart. An
example based on stiffness can be found in (Kostic, 2006). However, currently there are no
direct approaches which also generalise 2D discrete stress fields to 3D.

The concept of the strut-and-tie models was introduced in late 19th century through
Ritter’s and Mörsch’s truss analogy. As mentioned in the seminal publication of Schlaich
et al. (Schlaich et al., 1987), this was further developed by Leonhardt (Leonhardt, 1965),
Rüsch (Rüsch, 1964), and Kupfer (Kupfer, 1964) and then formally defined and based on the
theory of plasticity by Thürlimann (Thürlimann et al., 1983), Marti (Marti, 1985), and Müller
(Müller, 1978) in Zürich. Other contributions include the work of Collins and Mitchell
(Collins and Mitchell, 1980) who studied shear and torsion in relation to the deformations of
the truss analogy model and of Leonhardt and Walther (Leonhardt and Walther, 1966), who
showed the applicability and usefulness of this method to the design of reinforced concrete
structures such as deep beams and corbels.

Strut and tie models for reinforced concrete are underpinned from plasticity theory (this
implies a rigid-plastic material behavior, where everything is based on pure equilibrium
solutions in compliance with the lower bound theorem). The crack pattern helps to describe
load transfer in the member by means of forces that are concentrated in compressive struts
and tensile loaded steel bars.

1D stands for discontinuity. Such regions can be found in areas where the strain distribution is non-linear.
For example: corners, openings, and points of application of concentrated loads. Strut-and-tie models provide a
good description of the flow of forces in these areas.
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The lower bound, or safe, theorem and the upper bound, or unsafe, theorem are central
to the theory of plasticity. The first theorem states that (Heyman, 2008): if a set of internal
forces can be identified that satisfies both equilibrium and the yield criterion for a given set
of external forces at a specific load factor, then this is less than or equal to the actual load
factor of the structure. In other words, if the designer can find an equilibrium state for a
structure which nowhere exceeds yield then, subject to various conditions such as ductility,
the structure is safe. The upper bound theorem states that (Heyman, 2008): ‘if a plastic mode
of deformation is assumed, and the work done by the external loads is equated to the internal
work dissipated, then the resulting load factor λ is always greater than, or at best equal to, the
true load factor λ c. In other words, if there is a compatible collapse mechanism where the
internal and external work are equal, then the structure will collapse at this or a lower load.

There are number of key publications from the late 1980s (Schlaich et al., 1987) and 90s
(Muttoni et al., 1997; Schlaich and Schäfer, 1991) which have contributed to the develop-
ment of this methodology. These aimed to provide a design concept for reinforced concrete
structures, comprising both tension and compression elements, which was based on a gener-
alization of the truss analogy in beams (Schlaich and Schäfer, 1991). Specifically, some of
the main design principles of the strut-and-tie methodology are (Schlaich and Schäfer, 1991):

• In concrete stress fields, the struts will represent compression vectors in concrete and
the ties, tension vectors in reinforcement.

• There is compliance with the lower bound theorem of plasticity.

• The ductility requirement is fulfilled and the resulting structure will conform with the
hypothesized strut-and-tie model.

• Practical issues are taken in consideration when arranging the tensile reinforcement.

• The initial topology of the strut-and-tie model follows the results of an elastic theory
analysis with regards to the force paths; however, unlike in the case of elasticity
analysis, some ultimate load capacity is neglected.

• The strut-and-tie modelling concept equips the engineer with a level of design free-
dom, namely, a suitable solution can be tailor-made with regards to some specific
requirements (cost, optimality, safety, etc).

• This method can also output and systemize detailing information related to the rein-
forcement layout, a process which is normally done based on experience in a ‘guess-
work’ approach.
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• The load paths subdivide and connect the D-regions in a consistent way while not
overlapping each other.

The geometry of compression fields is much richer than the idealized rectangles used in
the strut-and-tie approximation. Specifically, there are three main configurations that cover all
the different cases (Schlaich and Schäfer, 1991): the fan-shape which has negligible curvature
and no transverse stresses; the bottle-shape which has significant curvature and transverse
stresses (which require tensile reinforcing); and the prismatic/ parallel-shape which is a
common special case of the two aforementioned. However, it is this very characteristic of
strut-and-tie models, namely, their simplified and understandable nature, that renders them
a powerful method for designing reinforced concrete structures. The fact that the actual
distribution of the stress fields differs in practice is not a problem following the applicability
of the lower bound theorem and the theory of plasticity.

The stress distribution is also quite complicated at the nodes where the stress fields
meet. However, there is a limited number of specific cases that are recurring in practice,
the geometry of which is of particular interest. There are several rules for the design of
these nodal geometries and detailing (Schlaich and Schäfer, 1991): the nodal geometry
must comply with the incoming stress fields/ applied forces, specifically the height and
location of tensile anchorage; safe anchorage is of paramount importance. Given a static
equilibrium configuration for incoming stress fields at a node, its geometry can be altered
to incorporate specific practical considerations. For example, the nodal geometry, which in
fact is the reciprocal force polygon for this node of the strut-and-tie model, can be altered
by re-distributing the edges of the force polygon in such a way that the tensile anchorage
is in a convenient location from a practical point of view. In the case of compression-only
nodes no further re-arrangement of the node is required. In other words, graphic statics
gives a theoretically correct solution which may need to be altered to fit specific practical
considerations depending on the particular application.

Discrete stress fields and strut-and-tie models are advantageous in early conceptual design
phases, detailing, checking of the resulting design, as well as the education of engineers
and architects. Through their simplified and fundamentally geometrical nature they can
efficiently capture the flows of internal forces while at the same time providing valuable
insight to detailing. (Schlaich and Schäfer, 1991). Moreover, if we compare them to Finite
Element Analysis (FEA), FEA can be quite accurate and useful for substantiation and analysis,
however, its accuracy is based on the accuracy of the material model and is generally less
intuitive and suitable for design purposes. Moreover, it is computationally demanding and
slow. On the other hand strut-and-tie because of its simplified and geometrical nature can be
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more easily implemented in the CAD environment by designers, it is computationally much
faster, and is more intuitive and visual - adding to its educational value.

7.2.1 Methodology

We discuss and interpret discrete stress fields and strut-and-tie models in reinforced concrete
from a geometrical point of view based on graphic statics and the theory of plasticity. By
using strut-and-tie models, we aim to automate the generation of stress fields within a given
boundary of material and an initial input topology. The main tools we will use are the
polyhedral Airy stress functions, reciprocal diagrams and the combination thereof in terms
of Minkowski sums.

The general methodology is as follows:

• Input: Topology of strut-and-tie network, material boundaries, magnitude, direction
and point of application of external forces (Figure 7.1).

• We choose an initial form diagram which has the same topology as the stress field/
Minkowski sum. For example, every node of this initial form diagram maps to a force
polygon in the stress field/ reciprocal force diagram. We should note that both the
geometry and topology of the final strut-and-tie model will differ.

• We replace the external forces in the geometry of the initial ‘form’ diagram with an
auxiliary structure to produce an equivalent self-stressed truss (Figure 7.1).

• We lift this self-stressed truss to the 3-dimensional space to produce the polyhedral
Airy stress function (Figure 7.1). We highlight that this lifting process of the form
diagram will ensure that the corresponding strut-and-tie model is in static equilibrium
by correcting any nodes of the initial chosen geometry (Vansice et al., 2018). Thus,
the designer only needs to choose a topology and define an auxiliary geometry which
then will be automatically corrected to one of a truss in static equilibrium. Another
advantage of this approach is that that the geometry of the polyhedral Airy stress
function will automatically inform the designer as to which struts are compressive and
which indicate tensile reinforcement.

• We then map the polyhedral stress function to its reciprocal polyhedron, which we
then project one dimension down to obtain the force reciprocal in a Maxwell 2D
configuration (Figure 7.1).

• The two diagrams are combined to a Minkowski sum, which is topologically the same
as the stress field (Figure 7.1).
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• We can freely apply affine transformations (1D Scaling) on the polyhedral Airy stress
function, as well as translation of its planes, knowing that its orthographic projection
(form diagram) is always in equilibrium as a consequence of the theory of Maxwell.

• This Minkowski sum is now a stress field for uniform hydrostatic stress-state under
the given external forces (Figure 7.2). However, it corresponds to a case where
the application points of the external forces may differ (but not their magnitude)
(Figure 7.2).

• In order to fit the stress field within the material boundaries and to the specific points
of application of the external forces we apply transformations on the polyhedral Airy
stress function of the form diagram (Figure 7.3) until the Minkowski sum conforms to
the geometrical requirements (Figure 7.2). In the general case, the way to relocate the
force polygons of the stress field to the desired locations, without altering the direction
of the lines of application and magnitude of external forces, is by parallel translations
of the faces of the 3D form Airy stress function. As a result, the magnitudes of the
external forces remain the same (the dihedral angles between the faces of the 3D form
Airy stress function do not change) but their point of application changes in the stress
field. In the simple but common 2D case where the applied loads are vertical, these
operations can include global affine transformations such as 1D scaling - the force
diagram can then be scaled uniformly to match the again the magnitude of the external
forces.

Specifically, the way to relocate the force polygons of the stress field to the wanted
locations is by parallel translations of the faces adjacent to the ‘form’ nodes. In the
special case that affine transformations (1D scaling) and . As a result, the forces
remain the same (the kink between faces does not change) but their point of application
changes in the stress field.

• We should note that the resulting strut-and-tie network has more vertices than the
initial ‘form’ diagram. That is, some of the nodes of the ‘form’ diagram, which
corresponded to one force polygon were actually clusters of overlapping nodes that
become distinct nodes in the new strut-and-tie network (Figure 7.2). This effect is due
to a subtle difference between the Minkowski sum and the stress field. Namely, the
initial Minkowski sum represents static equilibrium given a form diagram for which
every n-sided force polygon corresponds to a node with n number of concurrent form
edges (truss analogy). However, these form edges do not necessarily pass from the
midpoint of the force edges – they are just perpendicular to them. As a result, the form
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edges cannot be seen as the lines of action of the resultants. The force polygon is still
in hydrostatic static equilibrium, but the resulting resultants are different.

• In the general case the stress fields in reinforced concrete can be diffused or non-
perpendicular at the node as long as the stress resultant is kept constant in terms of
location and magnitude. Consequently, along with the force diagram (which corre-
sponds to static equilibrium of the resultants) we have the flexibility to define the ‘stress
diagram’ which depicts the particular stress distribution given a static equilibrium of
force resultants (Figure 7.4).

To sum up through the Minkowski sum we solve the topological problem of the stress
field and we obtain a geometrical solution for one particular case. If our example differs
geometrically from this solution the resulting stress field needs to be adapted through
geometrical transformations of the polyhedral Airy stress function.

7.2.2 Practical interpretation and considerations

When a reciprocal diagram and a Minkowski sum are obtained for a strut-and-tie model,
this is a valid solution from a theoretical standpoint (through the lower bound theorem of
plasticity theory). Nonetheless, there are practical considerations that should be taken into
account and the geometry may need to be refined, particularly in the nodal locations.

Force polygon - nodal static equilibrium

If we assume hydrostatic pressure for each one of the nodes, then the method readily
works for compression-only cases where the compressive struts do not overlap each other.
However, geometrical changes need to be made at the corresponding force polygon in other
cases where compressive struts meet with tensile reinforcement (compression and tension
nodes) (Figure 7.2) for the theoretical solution to be applicable in this particular material
(reinforced concrete). As a result, by rearranging the order of the edges of the force polygon
which corresponds to a particular node, we can ensure appropriate anchorage of the tensile
reinforcement as seen in literature (Muttoni et al., 1997).

Stress field distribution

The stress fields in reinforced concrete are not always uniform: it is very common, particularly
in cases of continuous, rather than point, loading for some of the fields to vary. In this case
even though the direction, magnitude and point of application of the force resultant remains
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Fig. 7.1 a) External forces and reactions on a concrete slab; b) Force polygon; c) Equiva-
lent geometry of a self-stressed truss including a funicular element deriving from the force
polygon (initial form diagram); d) Reciprocal in a Maxwell 2D configuration (initial force di-
agram); e) Corresponding polyhedral Airy stress function of (c); f) Corresponding polyhedral
Airy stress function of (d).
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Fig. 7.2 g) Minkowski sum (initial stress field); h) Transformation of the nodal geometry to
convert the force polygon into a compression only hydrostatic field; i) Superposition of the
initial stress field with the boundaries of the slab show that this is not an acceptable solution;
j) The final stress field coincides with the material boundary following transformations of (e).
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Fig. 7.3 k) Final form diagram; l) Reciprocal (final) force diagram; m) Final polyhedral
Airy stress function after the transformations corresponding to the final stress field (j); n)
Corresponding polyhedral Airy stress function of the final force diagram; o) The axial forces
corresponding to the truss analogy are concurrent; p) The force resultants of the stress field
are not concurrent.
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the same, the corresponding stress field can be varied or spread with respect to a node in
order to capture more accurately the structural behaviour of the concrete structure.

Taking as a starting point a valid stress field, which is uniform and hydrostatic, we
can now scale some of the force polygons/ nodes of the stress field so as to correspond to
continuous loading (Figure 7.4). For these force polygons we observe that the stress fields
become non-uniform and non-hydrostatic. However, if the changes in the stress distribution
are such that the force resultants remain the same, the static equilibrium is not violated.
This also applies to the edges of the force polygon being curved rather than straight and
perpendicular with respect to the underlying truss (form diagram). These transformations
of the stress field distribution lead to a more nuanced representation of the force diagram
which can also be seen as a ‘stress distribution’ diagram (Figure 7.4). This provides insight
to the changes of stress distribution along a strut. It should be highlighted how the Airy stress
function behaves geometrically differently in the two cases of discrete and continuous loading
(Figure 7.4). In the case of discrete loading and uniform hydrostatic pressure the Airy stress
function over the stress field comprises plane-faced rectangles connected to plane-faced force
polygons. The change of slope between adjacent geometrical elements gives the magnitude
of the force resultants and each of the rectangles represents a uniaxial stress of the material.
In the limit of continuous loading the rectangles are no longer parallelepipeds and we have a
non-uniform biaxial stress distribution. This applies to both regions of the stress field: the
fans stemming from the force polygons of the bottom reactions towards the loading on the
top edge of the slab, and of the triangular top region of the slab directly under the continuous
loading. The biaxial non-uniform stress is translated in terms of geometry in these regions
to be gauche. Also, at the continuous limit the numerous rectangles have merged to only
three geometrical elements: the two fans and the triangular region connecting them with the
loading. These three areas consist of closed polygonal loops in 3-space which do not lie on a
plane and are spanned by doubly curved surfaces. Any such surface is admissible, and it will
correspond to a different biaxial state of self-stress. Thus, the continuous limit introduces
shear, where there were only axial forces in the discrete case. Special case is the circular
symmetric fan with no transverse stresses.

At the continuous limit we end up with the general description of the Airy stress function
as a surface ϕ (rather than the polyhedral version P that we are using in graphic statics for
trusses) for which we can calculate the Cauchy stress components as known:

σxx =
∂ 2ϕ

∂y2 , σyy =
∂ 2ϕ

∂x2 , σxy =− ∂ 2ϕ

∂x∂y

This framework of designing and analysing stress fields in reinforced concrete based on
polyhedral Airy stress functions is also useful for optimisation purposes. Specifically, by



7.2 Discrete stress fields in reinforced concrete 143

optimising the form diagram while its corresponding polyhedron remains plane-faced, the
designer can be sure that the space of possible configurations corresponds to an admissible
stress field in static equilibrium.

7.2.3 Implementation and results

We implement the above methodology to characteristic cases of stress fields found in the
literature (Muttoni et al., 1997; Schlaich and Schäfer, 1991; Schlaich et al., 1987). For the
2D case, the initial topology of the strut-and-tie model, material boundary, and points of
application of external forces are given. Then with simple transformations of the polyhedral
Airy stress function a valid discrete stress field can be found (Figure 7.5, Figure 7.6, Fig-
ure 7.7) while automatically guaranteeing global static equilibrium throughout the process. It
is shown how the force polygons at the nodes are converted to compression-only regions and
the corresponding changes of the force reciprocal. Moreover, this process automates the ge-
ometry of the nodes where the stress fields intersect. There is no need for further calculations
or special geometrical operations. When the stress field is found the stress resultants can be
directly obtained to produce a valid and accurate geometry of the strut-and-tie network. 3D
stress fields are not common in literature. However, using the polarities method which is
unified for 2D and 3D cases we can obtain valid stress fields for known cases (Muttoni et al.,
1997). In the 3D examples, the equivalent truss is lifted one dimension up to a plane-faced
4-polytopic stress function which when reciprocated and projected down gives a Rankine 3D
reciprocal. Then by following the same methodology as in the 2D case the Minkowski sum
provides a uniform hydrostatic stress field within the boundaries of the concrete wall.
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Fig. 7.4 Left) Stress field and corresponding force diagram for uniform hydrostatic stresses
under point loading; Right) Stress field and corresponding force diagram for non-uniform
stresses under continuous loading.
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Fig. 7.5 Top) A common stress field case of a concrete wall with an opening is solved via the
Airy stress function methodology. Simple geometrical manipulations of the polyhedron and
changes in the resulting force diagram give a valid stress field with compression-only nodes.
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Fig. 7.6 Top and Bottom) Two common stress field cases are solved via the Airy stress
function methodology. Simple geometrical manipulations of the polyhedron and changes in
the resulting force diagram give a valid stress field with compression-only nodes.
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Fig. 7.7 Top and Bottom) Two common stress field cases are solved via the Airy stress
function methodology. Simple geometrical manipulations of the polyhedron and changes in
the resulting force diagram give a valid stress field with compression-only nodes.



148 Impact study and cross-disciplinary applications

Fig. 7.8 a) A common strut-and-tie case for a cubic concrete block; b) The corresponding
form diagram as a polyhedral spatial truss; c) The reciprocal Rankine 3D force diagram;
d) The resulting discrete 3D stress field derived from a spatial Minkowski sum; e) The
polyhedral form diagram is lifted to the a 4-polytopic stress function by lifting the internal
nodes in the 4th dimension.
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7.3 Yield line mechanisms

Yield line analysis has been developed in the context of reinforced concrete slabs to identify
their peak load capacity. Specifically, it follows the upper bound theorem in limit analysis and
requires the postulation of compatible mechanisms consisting of rigid regions which intersect
at yield lines. The yield lines are the axes along which rotation of the rigid regions can occur.
The ultimate load can then be found by calculating the rate of internal energy dissipation
of the yield lines and equating it to the rate of work resulting from the applied forces while
the slab deforms in a specific mechanism (Denton, 2001). An issue of yield line theory is
deciding whether a proposed mechanism is compatible or not (Moy, 1981). A systematic
method has been proposed from (Denton, 2001) for the identification of compatible yield
line mechanisms. Advantages of this approach include its applicability in cases where the
concrete slabs have free edges and/or internal supports.

This method is based on the truss analogy, namely, on the analogy between a compatible
yield line mechanism and a self-stressed truss the members/ edges of which lie on the
mechanism’s hinge lines. In particular, the yield lines are tensioned members e of the
corresponding truss P(v, e, f) which meet at points which correspond to truss nodes v. Thus,
a compatible mechanism of yield lines satisfies both requirements: rotational compatibility
of the yield line mechanism and equilibrium of a corresponding self-stress truss. As a result,
the compatibility of a yield line mechanism can be checked by examining the geometry
of its corresponding truss. If the latter is self-stressed (without any external loads) and in
static equilibrium, then the mechanism is compatible. Evidently, a self-stressed truss has at
least one state of self-stress and the number of states of self-stress is equal to the number of
degrees of freedom of the corresponding mechanism (Denton, 2001). Hence, a mechanism
with one degree of freedom (DoF) corresponds to a truss with one state of self-stress. It
follows from the upper bound theorem that the yield line mechanisms of concrete slabs
that are of interest have DoF = 1 (Denton, 2001). This is because if a mechanism has Dof
> 1 then it can never result in lower critical collapse loads compared to mechanisms with
DoF = 1. Also, it suffices for the yield line mechanism to be a part or subset of a bigger
truss for it to be compatible. As a result, the edges of the equivalent truss can expand beyond
the boundaries of the slab. Consequently, the truss geometries that are of interest in this case
are spiderwebs (see section 2.4) with one state of self-stress.

The truss analogy in the context of reinforced concrete slabs was explicitly highlighted
by (Denton, 2001). Before that, it was discussed in more general terms from Calladine
(Calladine, 1983) as part of the ‘static-geometric analogies’. More recently, the truss analogy
has been linked to graphic statics through the Airy stress function. Specifically, Williams
and McRobie (Williams and McRobie, 2016) established that since a self-stress 2D truss is a
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projection of a polyhedral Airy stress function then a yield line mechanism is compatible if it
is a projection of a polyhedron. Moreover, since small deflections are assumed and small
angle approximation for the relative rotational angle between slabs, compatible yield line
mechanisms are equivalent to small-displacement origami patterns (Williams and McRobie,
2016).

We implement the above methodology to common cases of yield line patterns (Figure 7.9).
For every one of those the equivalent truss geometry is found. Then the polyhedral Airy stress
function checks for compatibility of the mechanism while giving a visual representation
of the external work. By reciprocating, the Minkowski sum can be found which gives the
visual representation of the internal work (assuming a uniform and isotropic plastic moment
of resistance). It should be highlighted that if there are free edges only the regions of the
polyhedron and Minkowski sum which correspond to the material boundary are taken into
consideration for the geometrical assessment of internal/ external work.

7.3.1 Methodology

We analyse and design yield line mechanisms by using the polyhedral Airy stress function of
the corresponding truss and the resulting Minkowski sum. This geometrical method can check
for compatibility of the mechanism while providing an intuitive and simple representation of
the internal and external work.

The general methodology is as follows:

• Input: the geometry of the hinge lines of the proposed mechanism which gives the
underlying truss geometry P(v, e, f).

• P is lifted one dimension up and is checked whether it can form a plane-faced poly-
hedron for the specific nodal coordinates of v. If it does, it is a compatible yield line
mechanism. If it does not and the designer wants to create one, then imposing the
plane-faced condition in 3-spaces some of the nodal coordinates will be corrected and
will result in a P’ which represents a compatible mechanism (see section 5.1).

• We define the angles between adjacent faces of the polyhedral Airy stress function to
be equal to the small rotational angles between adjacent rigid regions of the mechanism
and we reciprocate to obtain a Minkowski sum. This will have dimensions of length of
the yield lines multiplied by the corresponding rotational angle. Once multiplied by the
plastic moment of resistance per unit length (which is here assumed to be uniform and
isotropic), the areas of the rectangles in the Minkowski sum diagram give a geometrical
representation of the internal work, where the blue internal rectangles denote the work
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of compressive members enclosed from the red external rectangles denoting the work
of tensile members (boundaries). The internal work in equation form (Moy, 1981) for
the general case of reinforcement:

InternalWork = ∑

[
θ

∫
S

Mnds
]

is the integral over all lengths S of all yield lines of the rotation θ of the yield line
multiplied by the total plastic moment of resistance M transverse to the yield line.

• Also, for a uniformly distributed load q, the volume of the Airy stress function, when
multiplied by q, is the external work, which in equation form is given as follows (Moy,
1981):

ExternalWork = ∑

[∫
A

q∆dA
]

where ∆ is the height of the stress function.

• Then the general expression of the work equation is:

∑

[∫
A

q∆dA
]
= ∑

[
θ

∫
S

Mnds
]

over all rigid regions and every yield line. So, the (weighted) volume of the Airy
stress function is equated with (weighted) surface areas of rectangular regions of the
Minkowski sum.

Generally concrete slabs have a 2-directional reinforcement which most commonly placed
orthogonally. The equation of the plastic moment of resistance per unit length Mn is then
given by (Moy, 1981):

Mn = Msin2
θ
′+µMcos2

θ
′

where µ denotes different resistance moments and θ ’ the angle of the yield line with
respect to the direction of the reinforcement. If µ = 1 the reinforcement is isotropic and

Mn = M

In this case, the internal work is the same as the total surface area of the Minkowski sum
rectangles multiplied by the scalar M. If µ ̸= 1 then for the geometrical analogy between the
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Minkowski sum and the internal work to hold, the rectangles should be scaled 1-dimensionally
in the plane by a factor of sin2θ ′+µcos2θ ′ and perpendicular to the yield lines.

7.3.2 Implementation and results

We apply the above methodology for common cases of yield line patterns found in the
literature (Denton, 2001; Moy, 1981) and for isotropic reinforcement. In Figure 7.9 numerous
patterns are shown on the left column - these geometries are compatible since they are
projections of polyhedra and thus the corresponding truss is self-stressed. The corresponding
polyhedral Airy stress function can be seen in the middle column. Up to a factor, this
represents the external work. Through reciprocation the Minkowksi sum can be created (right
column) whose constituent rectangles represent (up to a factor) the internal work.

7.4 Summary

The methodologies and discussions presented here highlighted how graphic statics and Airy
stress functions are valuable tools in other fields of engineering other than simple truss design.
We showed how they can be used for the automatic generation of 2D and 3D discrete stress
fields and geometries of strut-and-tie models given an initial topology. Moreover, they can
be employed for the geometrical representation of internal/ external work and compatibility
checking of yield line mechanisms, contributing towards a visual, geometrical, and intuitive
analysis and design approach in these fields. The graphic statics framework developed in
this PhD research proved to have a number of advantages with regards to these applications.
Specifically, given that the method works in a unified way both for 2D and 3D cases, handles
tension and compression, and is not limited to regular geometries/ topologies, the designer
can start working from any one of the four reciprocal objects (form or force) thus allowing
for a wide applicability of the method depending on the specific needs of the case-study.
Most notably, the fact that it hinges on reciprocal stress functions results in a framework
where the designer can interact at any step and is equipped with novel design and analysis
freedoms. Moreover, the fact that this method is direct and analytical rather than based on
iterative optimisation algorithms adds extra educational value.
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Fig. 7.9 Left) Common cases of yield line patterns; Middle) Their corresponding polyhedral
Airy stress function checks for compatibility of the mechanism while providing a visual
interpretation of the external work; Right) Their corresponding Minkowski sum gives an
intuitive representation of the internal work and of compression-tension areas.
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Stress fields are underpinned by the lower bound theorem whereas yield line theory uses
the upper bound theorem, even though, the same fundamental geometry can be applied
to both. The proposed approach is a general valid theoretical model, however, when it is
applicable to specific materials (reinforced concrete for instance) there are a number of
constraints and the theory needs to be adjusted to be useful to practitioners. These are
specific to the application and change from one material to the other. In other words, we
have a theoretical model which is universally valid but depending on the real-life case study
may need to be refined following a set of constraints and rules specific to every one of the
applications. Here we examined reinforced concrete and yield lines and we show how the
same theory can be amended in different ways to satisfy both these fields of research.



Chapter 8

Conclusions

8.1 Discussion

This thesis described the development of geometry-based, direct, analytical and unified design
and analysis methodologies for compression-and-tension 2D and 3D pin-jointed structures
based on reciprocal stress functions, while introducing design and analysis freedoms in
an interactive framework. These methodologies can tackle a wide range of structures in a
unified way without the need for case-specific iterative algorithms. Moreover, this theory,
through its elegant and abstract mathematical description, has a cross-disciplinary impact
and contributes towards the educational value of graphic statics.

8.2 Contributions

This PhD research contributes to the field of contemporary graphic statics by creating
and interpreting new knowledge on geometry-based structural and architectural design
and analysis methods based on reciprocal stress functions. This is achieved by drawing
insights from Maxwell’s seminal, but largely unknown and inaccessible, 19th century work on
graphic statics and connecting this knowledge to other fields of research, such as projective
geometry and rigidity theory to develop new theory. Moreover, this theoretical acquisition
of knowledge is combined with advanced CAD and visualisation tools to produce methods
which are interactive and user-friendly within a computational framework but at the same
time theoretically rigorous based on direct operations and elegant mathematical descriptions.
Specifically, contributions developed in this research include:

• Explaining and visualising some of Maxwell’s key contributions such as the idea of
reciprocal polyhedral Airy stress functions, which through projection produce a pair of
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form and force diagrams, as well as the idea of using geometrical properties, such as
the states of self-stress, as design and analysis freedoms.

• Presenting research on Maxwell’s comparatively unknown – but profound – impact on
graphic statics in conjunction with his contemporary scientific context.

• Underpinning the fundamental role of polarities, or geometrical mappings, in a wide
range of applications in structural analysis and design.

• Introducing a direct, unified, visual and intuitive graphic statics framework for global
static equilibrium of 2D and 3D trusses which are projections of discrete stress func-
tions by generalising Maxwell’s reciprocal constructions in the 4th dimension (i.e., this
method has an elegant, three-fold, equivalent mathematical description: purely geomet-
rical construction, analytical description, and matrix representation; it applies to any
2D truss (resulting in Maxwell 2D/ Cremona 2D force reciprocals) and to polyhedral
spatial trusses with plane faces (resulting in Rankine 3D force reciprocals); it works for
any loading case (tension-, compression-only as well as for tension-and-compression
structures) for self-stressed structures or equivalent ones with external loading).

• Within this context, developing novel design and analysis capabilities, specifically,
through employing various states of self-stress, which through the lower bound theorem
can equip designers with creative form-finding potential.

• Discussing how geometry optimisation based on minimising the load path, and thus
the volume of the structure, can have a visual and intuitive geometrical interpretation
through Minkowski sums.

• Presenting an interactive design and analysis method based on the reciprocity between
stress functions where the designer operates within the equilibrium space without the
need for iterative convergence after every step (i.e., all four reciprocal objects can
be controlled and interlinked (form, force, or stress functions) while the user has the
flexibility to start from any one of these; this method was developed for 2D and 3D
trusses, as well as for tension-and-compression shells, grid-shells, and vaults, in the
latter case, by combining global horizontal static equilibrium and the force density
method).

• Highlighting how the stress function is useful not only for designing structures within
static equilibrium but also as an intuitive and geometrical way of correcting form
diagrams should the designer decide to start a free-form design exploration of the
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geometry (form and force features can be introduced by sculpting, transforming, and
carving locally and globally the polyhedral Airy stress function).

• Performing case studies of: tensegrities with infinitesimal mechanisms and flexible
polyhedra with finite mechanisms (two-fold, purely geometrical static and kinematic
analysis); dynamic Minkowski sums for statically balanced tensegrity mechanisms; the
design and analysis of large infrastructure - tensile nets, shells, grid-shells and vaults;
and the structural morphogenesis of large infrastructure - exoskeletons and trusses of
towers.

• Proposing cross-disciplinary applications for the design and analysis of structural
concrete: i.e., the automatic generation of 2D and 3D discrete stress fields; geometrical
criteria for the admissibility of yield line patterns and geometrical representations of
internal and external work achieved by developing an interactive framework where
stress functions play the central role and provide the designer with design and analysis
freedoms while operating within equilibrium space ( the method is unified both for 2D
and 3D cases).

The method presented here is applicable to tension-and-compression pin-jointed struc-
tures of general geometry and topology in the 2D case. In the 3D case of polyhedral structures,
the geometrical limitation is that they are plane-faced, and the topological limitation is that
every face belongs to two cells – this covers a plethora of spatial structures but not all.

8.3 Impact

The impact of this PhD research is three-fold. Firstly, with regards to the contemporary
research field of graphic statics, it is suggested that direct methods of global equilibrium can
replace, where applicable, or be used in conjunction with conventional iterative node-by-node
procedures to develop interactive design and analysis frameworks. Thus, algorithms could
be simplified since there is no need for iterative convergence after every step. Related to
this, stress functions embed rich information on the structural performance of the structure,
whether tension-/compression-only or tension-and-compression, or whether self-stressed
or externally loaded. Furthermore, users can start from any reciprocal object – form or
force – and the method per se is more elegant mathematically, accessible to users, and
adds educational value and intuitiveness. Secondly, with regard to practitioners since both
the method and the output are geometrical, a wider range of users from different skill sets
could benefit from understanding both aspects of the process. Specifically, designers could
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benefit from simple geometrical rules and observations which reveal the structure’s behaviour
while equipping them with design and analysis freedoms for sculpting complex forms in
static equilibrium. Lastly, the impact with regards to educational methods derives from the
directness and fundamentally geometrical nature of the method. Specifically, as shown in
the cross-disciplinary applications of Chapter 7 the notion of reciprocal stress functions and
of duality can be applied to numerous different fields – providing a transferable theoretical
framework.

8.4 Future work

As for where this piece of research is heading next, possible applications include material
considerations and conservation of historic structures. Specifically, graphic statics are
geometry-based and material properties are not considered. This is powerful since geometry
has universal applicability for different materials. At the same time as shown in Chapter
7, the application of graphic statics to specific case studies needs to take materiality into
consideration to refine and tailor the fundamental theory. Other examples or materials
that could be investigated in the future based on this PhD research are: anisotropic natural
materials such as timber and bamboo; sustainable materials such as adobe, bricks, and tiles.
Moreover, the theory of reciprocal stress functions as a tool for assessing whether 2- and
3-dimensional trusses are in static equilibrium, as well as a tool for correcting them if they are
not, could have applicability in the conservation of tension-and-compression spatial historic
structures.

8.5 Personal Reflection

Coming from a maths and physics background I did not know much about architecture.
This started to change when I went to the Architectural Association (AA) in London for a
Master’s degree in Emergent Technologies and Design. This predominantly form-centric
school educated me and challenged my ideas on what contemporary architectural design is,
and what it should be. I still remember one night at the beautiful AA library overlooking
Bedford square I came across a book by Heinz Isler. I eagerly started reading about merging
architectural and structural design, purity of concept, scientific rational and the form as an
output rather as an input. I was attracted from the idea of elegant and bold, structurally
expressive forms where the geometry manifests the forces. Of course, good architecture
is not limited to this, but this felt like the right direction for me. I then knew that if I
wanted to contribute towards good architectural design this had to be through a knowledge
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of fundamental structural engineering theory. This is how I ended up at the University of
Cambridge for a Master’s in civil engineering and a subsequent PhD – unclear on what
at that point. A direction was given during an unexpected encounter with Bill Baker who
brought Maxwell’s seminal, but largely unknown and inaccessible, 19th century graphic
statics publications to my supervisor Allan McRobie. It was an eye-opener and I knew what
my PhD would be. Since that moment, summer of 2014, a trip started on trying to decipher
what Maxwell was saying and on who to generalise this and apply it to today’s architectural
and structural design. I was extremely lucky to be working with Allan and Bill for the last 5
years, I could not have found better mentors in every aspect. Their impact on my personal
development has been tremendous and I am grateful for this. During my time at Cambridge
I had the opportunity to travel and present my work to influential conferences such as the
International Association for Shell and Spatial Structures (IASS) where I got useful input,
met many colleagues, started fruitful long-standing collaborations and had a great time. As a
result of the last five years I have come to appreciate forms which are conceptually pure and
bold. The form though, not as a one-directional output of some algorithm in a generative
sense, but rather as an output in conjunction with the designer’s input and creativity in an
interactive, bi-directional process. My hope is that this PhD research will contribute towards
this direction.
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Appendix A

Algebraic description of Lemma.01

Two planes π1, π2 intersect in a line l3 on which points P1 = [x1,y1,z1]
′, P2 = [x2,y2,z2]

′

lie on. The projection of this line (l3pr) is given by the two fixed points: P1pr = [x1,y1,0]′,
P2pr = [x2,y2,0]′. Given that the planes go through the given lines l1, l2 respectively, we find
the z-coordinate of the point P1 which satisfy the fixed elements: l1, l2, P1pr and P2pr.

We express line l1 as:

l1 = A1 +B1t

and line l2 as:

l2 = A2 +B2t

as a result,

n1 = B1 × (A1 −P1)

and

n2 = B2 × (A2 −P2)

Then the equations of planes π1, π2 are respectively:

n1 ·X = D1

and

n2 ·X = D2
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where X = [x,y,z]′

Given that points P1, P2 belong to both planes π1, π2, that x1, y1, x2, y2 are known and
only the z-coordinates z1, z2 remain to be found, we substitute the coordinates of P1, P2 in
the above two equations to find the two unknowns.
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