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Abstract
Non-abelian X -ray tomography seeks to recover a matrix potential � : M → C

m×m

in a domain M from measurements of its so-called scattering data C� at ∂M . For
dim M ≥ 3 (and under appropriate convexity and regularity conditions), injectivity
of the forward map � �→ C� was established in (Paternain et al. in Am J Math
141(6):1707–1750, 2019). The present article extends this result by proving a Hölder-
type stability estimate. As an application, a statistical consistency result for dim M = 2
(Monard et al. in Commun Pure ApplMath, 2019) is generalised to higher dimensions.
The injectivity proof in (Paternain et al. in Am JMath 141(6):1707–1750, 2019) relies
on a novel method by Uhlmann and Vasy (Invent Math 205(1):83–120, 2016), which
first establishes injectivity in a shallow layer below ∂M and then globalises this by
a layer stripping argument. The main technical contribution of this paper is a more
quantitative version of these arguments, in particular, proving uniform bounds on layer
depth and stability constants.

Keywords Inverse problems ·Microlocal analysis · Non-abelian X-ray tomography ·
Analysis of PDE’s

Mathematics Subject Classification 53C65 · 35A27 · 65R32

1 Introduction

Let (M, g) be a compact d-dimensional Riemannian manifold with strictly convex
boundary (d ≥ 2) and � : M → C

m×m (m ≥ 1) a continuous matrix potential.
Suppose γ : [0, τ ] → M is a unit-speed geodesic with endpoints on ∂M and consider
the linear matrix differential equation
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U̇ (t)+�(γ (t))U (t) = 0, U (τ ) = id. (1.1)

This has a unique continuous solution U : [0, τ ] → Gl(m,C) = {A ∈ C
m×m :

det A �= 0}, and we write C�(γ ) = U (0) ∈ Gl(m,C) for its value at the boundary.
The matrix C�(γ ) is called scattering data or non-abelian X-ray transform of �
(along γ ). For m = 1, we have logC�(γ ) =

∫ τ
0 �(γ (t))dt , which is the standard

X -ray transform; for m ≥ 2, this relation breaks as Gl(m,C) ceases to be abelian.
We are concerned with an inverse problem for the non-abelian X -ray transform

with access to partial data: Can one recover� in an open set O ⊂ M from measuring
C�(γ ) for geodesics γ that do not leave O? For d ≥ 3 and O ⊂ M satisfying the so-
called foliation condition (see Definition 1.1 below), it is known that locally, smooth
potentials are determined uniquely by their scattering data. Precisely, [20] establishes
injectivity of the map

C∞(O,Cm×m) 	 � �→ (C�(γ ) : γ ∈ �O), (1.2)

where �O is the set of unit-speed geodesics γ : [0, τ ] → M with γ ([0, τ ]) ⊂ O
and both endpoints on ∂M , so-called O-local geodesics. In this article, injectivity is
refined to a Hölder-type stability estimate; this estimate is our main result, precisely
formulated in Theorem 1.3 below.

Non-abelian X -ray tomography provides themathematical basis for the novel imag-
ing technology of polarimetric neutron tomography [10,21], which seeks to determine
a magnetic field within a medium by probing it with neutron beams and measuring
the spin change that results from traversing the magnetic field. In this setting,� takes
values in so(3) = {A ∈ R

3×3 : AT = −A} and encodes the magnetic field and
C�(γ ) ∈ SO(3) describes the resulting rotation of the spin vector for a neutron trav-
elling along γ . For a survey on further applications of non-abelian X -ray tomography,
we refer to [15].

Even in the simplest example, when M is a Euclidean ball (thus geodesics are
straight lines) and we have access to full data (O = M), the inverse problem described
above is very challenging. It is non-linear, and form ≥ 2, no explicit inversion formula
is known or expected to exist.

At the same time, real-life applications demand a computational approach to ‘solve’
the inverse problem, typically in the presence of statistical noise on the measurements.
An attractive andwidely used such approach is Stuart’s framework of Bayesian inverse
problems [4], in which� is estimated from draws of a ‘posterior probability measure’,
which can be computed from a finite number of observations C�(γ1), . . . ,C�(γn).
From a theoretical point of view, this shifts the focus to a rigorous study of the perfor-
mance of Bayesian algorithms. For the non-abelian X -ray transform, this was initiated
in [14], where the authors prove a statistical consistency result in dimension d = 2.
This roughly asserts that potentials � can be recovered from C� by a Bayesian algo-
rithm with arbitrary accuracy, as the number of measurements n → ∞. One of the
key ingredients in the statistical analysis of non-linear inverse problems is a quantita-
tive stability estimate with good control on the involved constants. This principle has
emerged in a series of recent papers, including [14] for the two-dimension non-abelian
X -ray transform, as well as [1] and [9], which analyse the Calderón-problem and an
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inverse problem for the Schrödinger equation, respectively. In our case, establishing
consistency in L2-norm requires a stability estimate of the form

‖�−�‖L2 ≤ C(�,�) · d(C�,C�), (1.3)

where C(�,�) > 0 is bounded over large classes of potentials �,� and d(·, ·) is
an appropriate (semi-)metric. In [14], the authors prove such an estimate in the two-
dimensional case for d(·, ·) given by the distance in an H1-Sobolev space. Using an
interpolation argument, they derive further stability estimates with d(·, ·) = ‖·−·‖μ

L2

and μ ∈ (0, 1). Our main theorem contains a version of this Hölder-type stability
estimate for d ≥ 3 and implies essentially the same consistency result as in two
dimensions, however, with the caveat of requiring priors of higher regularity and
obtaining a slower rate of convergence.

In a Euclidean setting, the two-dimensional results from [14] are relevant also
in higher dimensions, as one can reduce to d = 2 by recovering � slice by slice;
nevertheless, there are several reasons to study the case d ≥ 3 intrinsically. Besides
the applicability to a wider class of geometries, partial data results become available,
which for d = 2 are less well understood and not available in general [2]. This is of
direct relevance to real-life applications, where onemight have access only to localised
measurement data. Further, the methods for proving injectivity are very different in
d = 2 versus d ≥ 3 and the quest for new stability estimates requires refining the
methods to make them more quantitative, which might in turn prove useful in other
problems. This is especially true in d ≥ 3, where injectivity is proved by means of a
novel and extremely versatile technique, as explained in the next paragraph.

The working horse behindmany partial data results in d ≥ 3, for non-abelian X -ray
tomography as well as boundary rigidity and some other geometric inverse problems,
is a ground-breaking technique ofUhlmann andVasy [27]. Theirmethod automatically
provides a local stability estimate for the linearised problem; however, there are two
less welcome features: the necessity of smooth data and the need to globalise. Let us
elaborate on these points to explain the main technical contributions of this article.
With microlocal analysis at the core of the method, smoothness of the underlying data
(in our case, the potential �) is not easily relaxed to lower regularity; in particular,
the constants in the local stability estimate a priori depend continuously on� only in
the C∞-topology. However, statistical consistency demands better control and one of
our main contributions is to show uniformity on arbitrarily large Ck-balls (for k ≥ 0
sufficiently large).

By ‘globalisation’, wemean the extension of injectivity from small neighbourhoods
of boundary points to larger domains, or all ofM , via a layer-stripping argument.As the
initial domain of injectivity depends on the potentials�, the layer-stripping argument
becomes more delicate and another contribution of this paper is to carefully combine
the arguments from [20] and [24] to globalise stability estimates for the non-abelian
X -ray transform.
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1.1 Notation and Background

We denote with SM = {(x, v) ∈ T M : |v| = 1} the unit-sphere bundle of M and
write π : SM → M for the projection onto the base variable. SM is itself a manifold
with boundary and, writing ν for the inward-pointing unit-normal to ∂M , we can
decompose ∂SM into

∂±SM = {(x, v) ∈ SM : x ∈ ∂M,±〈ν(x), v〉 ≥ 0}.

Let X be the geodesic vector field on SM and ϕt the geodesic flow. We then write
γx,v(t) = π(ϕt (x, v)) for the geodesic adapted to (x, v) ∈ SM and τ(x, v) ∈ [0,∞]
for the first time that γx,v exitsM . If τ(x, v) <∞ for all (x, v) ∈ SM , thenM is called
non-trapping. Further, we say that ∂M is strictly convex if its second fundamental form
is positive definite everywhere.

If M is non-trapping and has strictly convex boundary, then ∂+SM naturally para-
metrises all geodesics with endpoints on ∂M and the non-abelian X -ray transform can
be recast as map

C(M,Cm×m)→ C(∂+SM,Gl(m,C)), � �→ C�. (1.4)

Precisely, we set C� = U�|∂+SM , where U� : SM → Gl(m,C) denotes the unique
continuous solution (differentiable along the geodesic flow) of

(X +�)U� = 0 on SM and U� = id on ∂−SM . (1.5)

For O ⊂ M open, we write MO ⊂ ∂+SM for the open set of all (x, v) for which
γx,v(t) ∈ O for 0 ≤ t ≤ τ(x, v). The set MO parametrises the collection �O of
O-local geodesics. The following condition, introduced in this form in [20], ensures
that O is scanned by sufficiently many geodesics emerging from MO and allows to
prove an injectivity result as stated below.

Definition 1.1 An open subset O ⊂ M satisfies the foliation condition, if there is a
smooth, strictly convex function ρ : O → R which is exhausting in the sense that
O≥c = {x ∈ O : ρ(x) ≥ c} ⊂ M is compact for all c > infO ρ.

Theorem 1.2 (Paternain et al. [20]) Let d ≥ 3, assume that ∂M is strictly convex and
O satisfies the foliation condition. Then for smooth potentials �,� : M → C

m×m,
we have that

C� = C� on MO �⇒ � = � on O. (1.6)

In fact, the authors of [20] consider a more general situation, where scattering
data are defined with respect to attenuations A(x, v) = �(x) + Ax (v) that may
depend on the direction v up to first order. That is,� is a matrix potential as above and
A ∈ �1(O,Cm×m) is amatrix-valued one form. In that case a similar result holds true,
but one only has injectivity up to the gaugeA �→ u−1du+u−1Au (u : O → Gl(m,C)
smooth).
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For the full-data problem (O = M), the foliation condition reduces to the existence
of a strictly convex function on M and is set into relation with other geometric proper-
ties of M in Section 2 of [20]: For example, if M (with ∂M strictly convex) supports a
strictly convex function, it is automatically non-trapping and contractible. Conversely,
if M has non-negative sectional curvatures (or non-positive sectional curvatures, and
it is simply connected), then it admits a strictly convex function.

Let us conclude with a brief overview of the history of the problem. Assuming a
flat background geometry and access to full data, the problem was first studied by
Vertgeim [29], with further pioneering work by Novikov [16] and Eskin [5], who
established injectivity in dimension d ≥ 3 and d = 2, respectively (up to gauge in the
general problem mentioned above).

In the geometric setting and for d = 2, the full-data problem is typically studied on
compact surfaces (M, g) that are simple in the sense that ∂M is strictly convex and M
is assumed to be non-trapping and free of conjugate points. There, injectivity of the
map

C∞(M, g)→ C∞(∂+SM,G),� �→ C� (1.7)

(where G ⊂ Gl(m,C) is a matrix Lie group with Lie-algebra g) was first proved
for G = U (m) (the unitary group) in [19]. In the case, G = Gl(m,C) injectivity
was established under a negative curvature assumption in [17] and, very recently, for
general simple surfaces [18]. Partial data results on the other hand (even for m = 1)
are less well understood in d = 2 [2], and there is no analogue for (1.2) for smooth
(non-analytic) potentials.

1.2 Main Result

Our main analytical result is the following stability estimate for the non-abelian X -
ray transform on a compact manifold (M, g), assumed to be non-trapping and have a
strictly convex boundary.

Theorem 1.3 Suppose d ≥ 3 and K ⊂ O ⊂ M are such that K is compact and O
is open and satisfies the foliation condition. Then for smooth potentials �,� : M →
C
m×m, we have

‖�−�‖L2(K ) ≤ C(�,�) · ‖C� − C�‖μ(�,�)L2(MO )
, (1.8)

where C > 0 and μ ∈ (0, 1) obey an estimate of the form

C(�,�) ∨ μ(�,�)−1 ≤ ω(‖�‖Ck (M) ∨ ‖�‖Ck (M)) (1.9)

for some non-decreasing function ω : [0,∞)→ [0,∞) and an integer k ≥ 0.

Here, the Lebesgue spaces L2(K ) and L2(MO) (with codomainCm×m suppressed
from the notation) are defined with respect to the natural Riemannian volume forms on
the ambient manifolds M and ∂+SM . The space Ck(M) consists of functions which
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are k-times continuously differentiable up to ∂M and a choice of continuous norm
‖ · ‖Ck (M) (defined with respect to some atlas) is assumed to be fixed throughout the
discussion. Further, the notation a ∨ b is used for the maximum of two quantities
a, b > 0.

Finally, we mention that in the formulation of Theorem 1.3 as well as below,
we assume smoothness of the involved potentials �,� only for convenience. In
all cases, one can derive results for potentials of finite regularity Ck (for k ≥ 0
determined by (1.9) or a similar bound) by means of an approximation argument: If
� ∈ Ck(M,Cm×m) is approximated by a sequence of smooth potentials (�n : n ≥ 0)
in Ck-norm, then C�n → C� in Hk(∂+SM) by Corollary 2.5 below. As the Ck-
norms are bounded along the sequence, a bound as in (1.9) prevents the constants
from blowing up, such that the stability estimate persists in the limit.

In view of the local stability estimates for the linearised problem in [20, Theorem
1.3] and the situation in d = 2 [14, Corollary 1.4], one might expect a stronger
result, with the right-hand side of (1.8) being replaced by a Lipschitz-type bound
≤ C(�,�) · ‖C� − C�‖F(MO ) in terms of a suitable function space F , say of
Sobolev regularity H1 or even H1/2. However, our result is both in line with the
available estimates for the related conformal boundary rigidity problem, and it is
sufficient to prove statistical consistency. Let us elaborate on these points:

The conformal boundary rigidity problem (determining a Riemannian metric g on
M within a fixed conformal class from its boundary distance function) shares many
features with the problem at hand: It is a gauge-free non-linear problem, which in
dimension d ≥ 3 is solved with Uhlmann–Vasy’s method, also requiring a layer-
stripping argument to propagate injectivity into the interior of M . It is, thus, natural to
compare the available stability estimates [24, Theorem 1.4] and indeed, equation (3),
there is of a similar form as (1.8) here. Both here and there, the passage to the weaker
Hölder-type estimate is an artefact of the globalisation procedure, which employs
interpolation at every step of the layer-stripping argument.

To understand the statistical consequences of Theorem1.3, we draw the comparison
with the stability estimates in [14]. Their result concerns the full-data problem on a
simple surface (M, g) and states that

‖�−�‖L2(M) ≤ C(�,�) · ‖C� − C�‖H1(∂+SM) (1.10)

for all smooth potentials�,� : M → u(m) and someC(�,�) > 0which is bounded,
as long as the C1-norms of� and� are bounded. This stability estimate is derived by
means of a Pestov-type energy estimate which does not extend to higher dimensions
and necessitates the restriction to u(m)-valued potentials (although, using the tech-
niques from a recent injectivity result [18], one might be able to extend it to general
matrix potentials). Bymeans of the forward estimates in [14] and an interpolation argu-
ment (as described in the proof of Theorem 5.16 there), estimate (1.10) can be brought
into the following Hölder-type form, again valid for smooth �,� : M → u(m)

‖�−�‖L2(M) ≤ Ck(�,�) · ‖C� − C�‖(k−1)/k
L2(∂+SM), k ≥ 2 (1.11)
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whereCk(�,�) = c1,k exp
(
c2,k

(‖�‖Ck (M) ∨ ‖�‖Ck (M)

))
for constants c1,k, c2,k >

0 only depending on (M, g) andm. This resembles the estimates given in Theorem 1.3
and indeed, in Sect. 6, we show that the statistical analysis of [14] carries over to the
full-data case (O = M) in d ≥ 3: In a Bayesian framework, and under a suitable
choice of priors �n on C(M,Rm×m), the following consistency result holds true:

Theorem 1.4 (Consistency) Let �0 ∈ C∞(M,Rm×m) and suppose we observe
(Xi , Vi ) and Yi = C�0(Xi , Vi ) + εi (i = 1, . . . , n), where the directions (Xi , Vi ) ∈
∂+SM are drawn uniformly at random and εi ∈ R

m×m is independent Gaussian noise.
Then, as the sample size n → ∞, the potential �0 can be recovered as L2-limit (in
probability) of the posterior means E�n [�|(Xi , Vi ,Yi )ni=1] ∈ C(M,Rm×m).

As the statistical analysis is conceptually independent of the remainingpaper, amore
detailed discussion of the underlying priors and a comparison with [14] is postponed
to Sect. 6. The theorem above is restated in Theorem 6.2 and the remarks thereafter.

Continuing our discussion of Theorem 1.3, we remark that estimate (1.9) is a way of
saying that for smooth potentials� and� lying inside of a fixed ball {‖ · ‖Ck (M) ≤ A}
(A > 0), one may choose the constants C and μ uniformly. This is a stronger result
than the uniformity in [24, Theorem 1.4] (conformal boundary rigidity), which only
holds over sufficiently small balls. However, similar to the just cited result, the required
regularity k for which (1.9) is true, is unknown. This is in stark contrast with the two-
dimensional situation in (1.11), where one can freely choose k ≥ 2. To the knowledge
of the author, the available techniques to reduce the required regularity to some smaller
k′ � k (cf. [6, Theorem 2b], where k′ = 2), only yield uniformity for generic elements
of Ck′ , which is not sufficient for the statistical application mentioned above.

1.3 Key Ideas and Structure

Analysis of the non-abelian X -ray transform starts with a pseudo-linearisation identity
that wewill now describe. Given a potential� ∈ C∞(M,Cm×m)we call any (smooth)
solution R : SM → Gl(m,C) to (X + �)R = 0 on SM an integrating factor for
�. Smooth integrating factors always exist in our setting (M compact, non-trapping
& with strictly convex boundary) and can be used to express the non-abelian X -ray
transform in terms of the linear, weighted X -ray transform

IW f (x, v) =
∫ τ(x,v)

0
W f (ϕt (x, v))dt, (x, v) ∈ ∂+SM, (1.12)

defined for W : SM → C
m×m and f : M → C

m . Precisely, we have

Lemma 1.5 Let �,� ∈ C∞(M,Cm×m) and suppose that R� and R� are smooth
integrating factors for � and �, respectively. Then we have

C� − C� = R� · IW�,�
(�−�) · α∗R−1

� on ∂+SM, (1.13)
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where α(x, v) = ϕτ(x,v)(x, v) is the scattering relation of (M, g) and the weight
W�,� : SM → End(Cm×m) is defined pointwise by W�,� A = R−1

� AR� for A ∈
C
m×m.

Note that the weighted X -ray transform in (1.13) is to be understood ‘one level
higher’, identifying C

m×m ∼= C
m′

and End(Cm×m) ∼= C
m′×m′

for m′ = m2.

Proof Let F� be a first integral for R−1
� |∂−SM that is F� : SM → Gl(m,C) solves

XF� = 0 on SM and F� = R−1
� on ∂−SM . Then U� = R�F� satisfies (1.5) and

C� = U�|∂+SM . Using the corresponding notation for �, we have

U� −U� = R� · (F�F−1
� − R−1

� R�) · F�, (1.14)

which, when restricted to ∂+SM , yields (1.13). To see this, note that G = F�F
−1
� −

R−1
� R� satisfies XG = −W�,�(� − �) on SM and G = 0 on ∂−SM . The fun-

damental theorem of calculus now implies that G|∂+SM = IW�,�
(� − �) and since

further F� |∂+SM = α∗R−1
� , the proof is complete. ��

We can now summarise the content of the subsequent sections and lay out the
general strategy to prove the main results of this article.

In Sect. 2, we prove a forward estimate for the map � �→ R�, which allows to
translate stability estimates for the weighted X -ray transform into one for the non-
abelian one. Further consequences are forward estimates for � �→ C�, which are of
interest in statistical applications. The techniques in this section are similar to the ones
in [14], suitably adjusted to deal with dimension d ≥ 3 and integrating factors taking
values in the non-compact group Gl(m,C).

Section 3 prepares the further analysis by proving a quantitative version of the
microlocal technique (local inversion of scattering operators near elliptic points),
introduced in the context of X -ray transforms by Uhlmann and Vasy [27]. We give a
self-contained proof, emphasising quantitative bounds on the involved constants.

In Sect. 4, we start the stability analysis by considering the weighted X -ray trans-
form f �→ IW f . By [20, Theorem1.3], ifW : SM → Gl(m,C) is a smooth invertible
weight, then every convex boundary point p ∈ ∂M has a neighbourhood O such that
for K ⊂ O compact, we have

‖ f ‖L2(K ) �K C · ‖IW f ‖H1(MO )
. (1.15)

Here, both C > 0 and the maximal size of O (say, measured by the largest radius
h > 0 for which the ball B(p, h) ⊂ O) depend on W , and we will be concerned with
understanding their behaviour as W varies. Standard techniques imply that C(W )
and h(W ) depend continuously on W in the C∞ topology, but this is not sufficient
for our purposes. Using the quantitative analysis from Sect. 3, we can upgrade this
to uniformity as long as ‖W‖Ck (SM) ∨ ‖W−1‖L∞(SM) (for some k � 1) remains
bounded.

In Sect. 5, we use the local stability result from the previous section to successively
derive further stability estimates. First, using a layer-stripping argument similar to
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the one in [20], we extend stability to arbitrary sets satisfying the foliation condition.
Next, we use the pseudo-linearisation formula to translate this into a stability estimate
for the non-abelian X -ray transform and finish the proof of our main theorem.

Finally, in Sect. 6, we illustrate the strength of Theorem 1.3 by proving a statis-
tical consistency result similar to the one in [14]. This section is mostly expository,
as the extension to higher dimensions and general Rm×m-valued potentials is fairly
straightforward.

2 Forward Estimates

In this section, (M, g) is a compact, non-trapping Riemannian manifold with strictly
convex boundary ∂M and dimension d ≥ 2. Further, as it requires no additional effort,
we work in a slightly more general setting and replace matrix potentials � : M →
C
m×m by attenuations A : SM → C

m×m .
Recall that an integrating factor for A is a solution to the transport equation (X +

A)R = 0 on SM . The main result of this section then reads as follows:

Theorem 2.1 For everyA ∈ C∞(SM,Cm×m), there exists an integrating factor RA ∈
C∞(SM,Gl(m,C)) with

‖R±1
A ‖Ck (SM) ≤ c1,k exp(c2,k‖A‖L∞(SM)) · (1+ ‖A‖Ck (SM))

k, k ≥ 0

for constants c1,k, c2,k > 0 only depending on M and m. If A takes values in u(m),
the exponential factors can be dropped.

In order to define RA, we use a standard trick to avoid differentiability issues at the
glancing region S∂M : We embed M into the interior of a slightly larger manifold M1
and extend A smoothly to an attenuation A1 : SM1 → C

m×m with compact support
in SM int

1 . Then

(X +A1)U = 0 on SM1 and U = id on ∂−SM1

has a unique solution UA1 : SM1 → Gl(m,C), which is constant ≡ id near S∂M1
and, thus, smooth on all of SM1. Setting RA = UA1 |SM gives the desired integrating
factor and the forward estimate above is a consequence of the following result, applied
to the larger manifold M1.

Proposition 2.2 Let A ∈ Ck(SM,Cm×m) (k ≥ 0) and suppose UA ∈ Ck(SM,
Gl(m,C)) solves (X +A)U = 0 on SM and U = id on ∂−SM.

(i) Writing τ∞ = supSM τ , we have ‖UA‖L∞(SM) ≤ m1/2 exp(τ∞‖A‖L∞(SM)).
(ii) If suppA ⊂ K for a compact set K ⊂ SM int, then

‖UA‖Ck (SM) ≤ ce(2k+1)τ∞‖A‖L∞(SM) (1+ ‖A‖Ck (SM))
k,

for a constant c = c(k,m, K ,M) > 0.
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(iii) The assertions remain true if UA is replaced by its inverse U−1
A . Further, if A

takes values in u(m), the exponential factors can be dropped.

Proof of Theorem 2.1 Following the construction outlined above, Proposition 2.2
yields an estimate of RA in terms of the norms ‖A1‖Ck (SM1)

and it remains to replace
this by ‖A‖Ck (SM). Formally, this can be achieved by using Seeley’s extension oper-
ator E : C∞(SM,Cm×m) → C∞(SM1,C

m×m) (Lemma 7.2). One can arrange (by
multiplying with a fixed cut-off) that supp EA ⊂ K for all A ∈ C∞(SM,Cm×m)

and a fixed K ⊂ SM int
1 . Then, as E is continuous between the respective Ck-spaces,

setting A1 = EA allows to estimate ‖A1‖Ck (SM1)
� ‖A‖Ck (SM) as desired. ��

2.1 Proof of Proposition 2.2

We start by constructing suitable commuting frames, adapting [14, Lemma 5.1] to
arbitrary dimensions d ≥ 2.

Lemma 2.3 Suppose � ⊂ ∂+SM\S∂M is open and {P1, . . . , P2d−2} is a commuting
frame of T�. Then these vector fields can be extended smoothly to the open set
W� = {ϕt (x, v) : (x, v) ∈ �, 0 ≤ t ≤ τ(x, v)} ⊂ SM to yield a commuting frame
{X , P1, . . . , P2d−2} of TW� .
Remark 1 The lemma can be strengthened to allow� ⊂ ∂+SM with�∩S∂M �= ∅. In
that case, the extended vector fields are continuous on W� and smooth on W�\S∂M .
(One can show that themap� below is a homeomorphism on�×R and an immersion
in �\S∂M × R. Since we do not use the stronger result, we omit the details.)

Proof Let (N , g) be a no return extension of M (cf. Lemma 7.1) and denote the
geodesic flow on N also by ϕt . We claim that the map

� : � × R → SN , (x, v, t) �→ ϕt (x, v)

is a diffeomorphism onto its image. Injectivity follows immediately from the no-return
property: If �(x, v, t) = �(y, w, s), then γx,v enters M both at times 0 and t − s,
which is impossible unless (x, v, t) = (y, w, s). It remains to prove that � is an
immersion, so let us compute its derivative at (x, v, t) ∈ � ×R: For a tangent vector
ξ ⊕ a∂t ∈ T(x,v)� ⊕ TtR, we have

�∗(ξ ⊕ a∂t ) = dϕt (x, v)(ξ)+ aX(ϕt (x, v)) ∈ Tϕt (x,v)SN .

If �∗(ξ ⊕ a∂t ) = 0, then the previous display implies ξ + aX(x, v) = 0 and as X is
transversal to �, we must have a = 0 and ξ = 0. Hence, � is an immersion and the
claim follows from invariance of domain.

Now extend the vector fields P1, . . . , P2d−2 to t-independent smooth vector fields
P̃1, . . . , P̃2d−2 on � ×R. Then {∂t , P̃1, . . . , P̃2d−2} is a commuting frame on � ×R

which pushes forward along� to a commuting frame {X , P1, . . . , P2d−2} on�(�×
R) ⊂ SN . Restricting to W� = �(� × R) ∩ SM finishes the proof. ��
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Proof of Proposition 2.2 Let us first remark why (iii) holds true. The inverse U−1
A sat-

isfies the equation XU−1
A −U−1

A A = 0 and forward estimates can be derived with the
same arguments as for UA. Further, if A is u(m) valued, then UA ∈ U (m), which is
compact. In particular ‖UA‖L∞(SM) can be bounded by an absolute constant, and no
exponentials arise below.

To prove part (i), fix (x, v) ∈ SM and note that U (t) = UA(ϕt (x, v)) solves

U̇ +A(ϕt (x, v))U = 0 for 0 ≤ t ≤ τ(x, v) and U (τ (x, v)) = id.

Let v(t) = |U (t)|2F (with | · |F the Frobenius norm), then v̇(t) = 2〈U̇ (t),U (t)〉F =
2〈−A(ϕt (x, v))U (t),U (t)〉F ≤ 2|A(ϕt (x, v))|F · |U (t)|2F , where we used the
Cauchy–Schwarz inequality and the sub-multiplicativity of the Frobenius norm. Thus,
by Gronwall’s inequality (with reversed time), we have

v(t) ≤ v(τ(x, v)) exp
(∫ τ(x,v)

t
2|A(ϕs(x, v))|Fds

)

, 0 ≤ t ≤ τ(x, v).

Choose t = 0, such that the left-hand side becomes |UA(x, v)|2F . Note that
v(τ(x, v)) = |id|2F = m and crudely bound the integral in the exponential by
2τ∞‖A‖L∞(M). This concludes the proof of (i).

In order to show (ii), we use the following inequality, which (in the unitary version)
appears as part of Lemma 5.2 in [14]: If A, F : SM → C

m×m are continuous and
G ∈ C(SM,Cm×m) is the unique solution to (X + A)G = −F on SM and G = 0
on ∂−SM , then

‖G‖L∞(SM) ≤ mτ∞ exp(2τ∞‖A‖L∞(SM)) · ‖F‖L∞(SM). (2.1)

We repeat its proof: One readily checks that

G(x, v) = −UA(x, v)
∫ τ(x,v)

0
U−1
A F(ϕt (x, v))dt, (x, v) ∈ SM

and thus, ‖G‖L∞(SM) ≤ τ∞‖UA‖L∞(SM)‖U−1
A ‖L∞(SM)‖F‖L∞(SM). The norms of

U±1
A can be bounded with (i) and thus, (2.1) follows.
To proceed, take � ⊂ ∂+SM\S∂M a small open subset (such that it admits a

commuting frame). Let P1, . . . , P2d−2 be the vector fields on W� , as provided by
Lemma 2.3 and write Pα = Pα11 · · · Pα2d−2

2d−2 for a multi-index α ∈ Z
2d−2. We claim

that

‖UA‖k,� def= sup
j+|α|=k

‖X j PαUA‖L∞(W�) �k,� e(2k+1)τ∞‖A‖L∞(SM)‖A‖kCk (SM)

(2.2)

for all k ∈ Z≥0. Since finitely many such sets �1, . . . , �n suffice to ensure K ⊂⋃
i W�i , we have ‖UA‖Ck (SM) ≤

∑
i
∑
�≤k ‖UA‖�,�i �k e2(k+1)τ∞‖A‖L∞(SM) (1 +

‖A‖Ck (SM))
k and (ii) follows.
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We prove (2.2) by induction over k ∈ Z≥0. The case k = 0 follows from part (i), so let
k ≥ 1 and assume the result is true for k − 1. Consider G = X j PαUA for an integer
j ≥ 0 and multi-index α such that j + |α| = k. We have

(X +A)G = [A, X j Pα]UA on SM and G = 0 on ∂−SM,

where [·, ·]denotes the commutator and the zero boundary values follow fromAhaving
compact support and thus UA being constant near ∂−SM . By (2.1) we conclude that
‖X j PαUA‖L∞(W�) � e2τ∞‖A‖L∞(SM) ·‖[A, X j Pα]UA‖L∞(W�) and since [A, X j Pα]
is a differential operator on SM of order k − 1 and with continuous coefficients
�k ‖A‖Ck (SM), we have

‖X j PαUA‖L∞(W�) �k e
2τ∞‖A‖L∞(SM) · ‖A‖Ck (SM) · ‖UA‖k−1,�. (2.3)

Inequality (2.2) follows from the induction hypothesis, and we are done. ��

2.2 Consequences and Further Forward Estimates

We first recall that the standard linear X -ray transform

I : C∞(SM)→ C∞(∂+SM), IF(x, v) =
∫ τ(x,v)

0
F(ϕt (x, v))dt,

is continuous as map Hk(SM) → Hk(∂+SM) for all k ≥ 0 [22, Theorem 4.2.1].1

Independently of Theorem 2.1, this yields the following:

Corollary 2.4 Let f ∈ C∞(M,Cm) and W ∈ C∞(SM,Cm×m). Then

‖IW f ‖Hk (∂+SM) �k ‖W‖Ck (SM) · ‖ f ‖Hk (SM) k ≥ 0. (2.4)

Proof As IW f = I(W f ), this follows immediately from the Hk-continuity of I (in
its straightforward extension to vector-valued functions) and the fact that pull-back by
π : SM → M yields a bounded linear map π∗ : Hk(M)→ Hk(SM). ��

Further, using Lemma 1.5 (pseudo-linearisation) and Theorem 2.1, we obtain the
following forward estimates for the non-abelian X -ray transform:

Corollary 2.5 Let �,� ∈ Ck(M,Cm×m), then

‖C� − C�‖Hk (∂+SM) ≤ ck(�,�) · ‖�−�‖Hk (M), k ≥ 0,

where

ck(�,�) = c1,k exp(c2,k‖�‖L∞(M) + ‖�‖L∞(M)) · (1+ ‖�‖Ck (M) + ‖�‖Ck (M))
2k

1 Alternatively one could start with a forward estimate for I with respect to different function spaces and
obtain corresponding results for weighted and non-abelian X -ray transforms.
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for constants c1,k, c2,k only depending on (M, g) and m. Further, if�,� take values
in u(m), the exponential factors can be dropped.

Proof Weuse the pseudo-linearisation identityC�−C� = R�·IW�,�
(�−�)·α∗R−1

�

from Lemma 1.5 for the integrating factors provided by Theorem 2.1. The inte-
grating factor R� , acting via multiplication on Hk(∂+SM), has operator norm
≤ ‖R�‖Ck (∂+SM) ≤ ‖R�‖Ck (SM). A similar bound holds for α∗R−1

� , as α is a diffeo-
morphism and thus, by Corollary 2.4, we obtain

‖C� − C�‖Hk (∂+SM) �k ‖R�‖Ck (M)‖W�,�‖Ck (SM)‖�−�‖Hk (M)‖R−1
� ‖Ck (SM).

As ‖W�,�‖Ck (SM) ≤ ‖R�‖Ck (SM)‖R�‖Ck (SM), the proof is finished by applying the
estimates from Theorem 2.1. ��

3 Local Inversion of Scattering Operators

This section prepares the local stability estimate from Sect. 4 by proving a quantitative
version of the microlocal argument that underlies Uhlmann and Vasy’s method from
[27].

Their argument relies on the following phenomenon: in the context of Melrose’s
scattering calculus, ellipticity of an operator near a boundary point yields local injectiv-
ity. More precisely, if X is a manifold with boundary and A : C∞

c (X
int)→ C∞(X int)

is a (classical) scattering pseudodifferential operator (ψdo), then the leading order
behaviour at ∂X is captured by its scattering principal symbol, which is a smooth
function σsc : scT ∗

∂X X → C, defined on the total space of the scattering cotangent
bundle over ∂X . Ellipticity at p ∈ ∂X then means that

inf
ζ∈scT ∗

p X
|σsc(p, ζ )| > 0 (3.1)

and implies the existence of a neighbourhood O ⊂ X of p for which

ker A ∩ {u ∈ L2(X) : supp(u) ⊂ O} = 0. (3.2)

Together with the Fredholm property between appropriate function spaces, this can
be upgraded to a stability estimate for functions supported in O . The purpose of this
section is to show that the size of O as well as constants in a stability estimate can be
controlled in terms of a lower bound on the scattering principal symbol and an upper
bound on a fixed semi-norm of A.

To formulate the theorem, let X be a compact manifold with boundary, fix a bound-
ary defining function ρ : X → [0,∞) and write B(∂X , h) = {x ∈ X : ρ(x) < h}.
Then in terms of the locally convex spaces

• �m,�
sc (X) = Fréchet space of classical scattering ψdo’s of order (m, �)

• Hs,r
sc (X) = Hilbert space of Sobolev-functions of regularity (s, r),

discussed in Sect. 3.1 below, our result reads as follows:
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Theorem 3.1 (Local inversion of scattering operators) Let V ⊂ ∂X be open and
K ⊂ X compact with K ∩ ∂X ⊂ V . Suppose A ∈ �m,�

sc (X) satisfies

λ(A) = inf{|σsc(A)(z, ζ )| : z ∈ V : ζ ∈ scT ∗
z X} > 0. (3.3)

(i) There are h,C > 0 such that all functions u ∈ L2(X) with support contained in
K ∩ B(∂X , h) obey the estimate

‖u‖L2(X) ≤ C‖Au‖
H−m,−(d+1+2�)/2
sc (X)

. (3.4)

(ii) As A varies, the constants h(A) and C(A) satisfy

C(A) ∨ h(A)−1 ≤ ω(‖A‖ ∨ λ(A)−1) (3.5)

for a non-decreasing function ω : [0,∞)→ [0,∞) (of polynomial growth) and
a continuous �m,�

sc -semi-norm ‖ · ‖.
The proof of Theorem 3.1 can be sketched as follows: After localising to an h-

neighbourhood of V ∩ K (where A is elliptic), one constructs a parametrix A+ for
which the residuals RA = id − A+A have L2-operator norms of order O(h), such
that for h � 1, a local inverse of A can be obtained by a Neumann series. In order
to derive a quantitative bound as in (ii) one then needs to find how certain operator
norms of A+ and RA depend on A.

From the usual construction of parametrises, it is clear that the maps A �→ A+
and A �→ RA will be continuous in the appropriate Fréchet topologies, but as the
maps are non-linear, a bound as in (3.5) is not immediate. However, using finite-order
parametrises, one can make microlocal constructions more economic, such that all
quantities depend only on λ(A) and fixed semi-norm of A (corresponding to a fixed
number of derivatives of its full symbol).
This reasoning seems to be part of themicrolocal analysis folklore; yet the author is not
aware of any reference for it, let alone in the setting of scattering pseudodifferential
operators on manifolds. The novelty and usefulness of Uhlmann–Vasy’s argument,
thus, warrants a careful analysis.

Finally, we remark that making the semi-norm ‖ · ‖ from (3.5) more explicit is
possible but requires to further open up the microlocal analysis machinery at the cost
of obscuring the main argument. At the same time, the added benefit is minimal, for
in later applications, A will be constructed in terms of a certain weight function W
and the map W �→ A is both costly (in the sense that many derivatives of W need to
be bounded in order to obtain control of ‖A‖) and difficult to analyse quantitatively.

3.1 The Scattering Calculus

We summarise some aspects of Melrose’s scattering calculus [13] with the purpose of
fixing notation and gathering the most relevant results at one place. See also [13,28]
[27, §2] and [25, §3.2].
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First some general notation. Denote with R̄
d the radial compactification of R

d ,
obtainedbyglueingRd and [0,∞)×Sd−1 along the identification x �→ (|x |−1, |x |−1x).
More generally, given a vector bundle E → X , one can radially compactify the fibres
to obtain a bundle Ē → X [13, §1]. Further, we let Ċ(X) = ⋂

k ρ
kC∞(X) denote the

space of functions which vanish to infinite order at ∂X (similarly defined over X × X )
and note that the natural inclusionRd ⊂ R̄

d induces an isomorphismS(Rd) ∼= Ċ(R̄d).
We can now recall the definition of �m,�

sc (X), the space of classical scattering
pseudodifferential operators on X .

Definition 3.2 A linear operator A : Ċ∞(X)→ Ċ∞(X) is in �m,�
sc (X), if the follow-

ing two conditions are satisfied:

(i) The Schwartz kernel of A is smooth away from the diagonal of X × X and
vanishes to infinite order at the boundary.

(ii) In local coordinates (x, y) = (x, y1, . . . , yd−1) with x |∂X = 0, we have

Au(x, y) =
∫

eiξ
x−x ′
x2

+iη· y−y′
x a(x, y, ξ, η)u(x ′, y′)dξdη dx ′dy′

(x ′)d+1 , (3.6)

for all u ∈ C∞(X) with compact support within the chart domain, where a :
(0,∞)x × R

d−1
y × Rξ × R

d−1
η → C is smooth and satisfies

x�〈(ξ, η)〉−ma(x, y, ξ, η) ∈ C∞([0,∞)x × R
d−1
y × R̄

d
(ξ,η)). (3.7)

Note that we use the order convention from [27], that is, �m,�
sc (X) increases as m and

� increase. The definition above differs from the (equivalent) one given in [27] in that
it describes A in terms of the local model [0,∞)x × R

d−1
y for X rather than in terms

of R̄d . The formulation here is for example used in [25, Proof of Prop. 4.2] and has the
advantage that (ξ, η) provide natural coordinates for the scattering cotangent bundle
introduced below.

For the sake of completeness, we mention here that (3.7) could be replaced by the
condition

|(x∂x )k∂αy ∂β(ξ,η)a(x, y, ξ, η)| �k,α,β x−�〈(ξ, η)〉m−|β|, (k, α), β ∈ Z
d≥0 (3.8)

to obtain the larger class�m,�
scc (X) of (not necessarily classical) scattering ψdo’s. The

advantage of using classical operators is that their principal symbols can be realised as
functions, rather than as elements in a quotient space. In particular, there is a natural
way to measure their magnitude (in the sense of size of semi-norms), which is crucial
for the quantitative aspect of Theorem 3.1.

Finally, we remark that �m,�
sc (X) has a natural Fréchet space structure in which

a sequence of operators An converges to 0, iff the (weighted) symbols an in (3.7)
converge to 0 in the C∞-topology. In this topology,�m,�

sc (X) ⊂ �m′,�′
sc (X) is a closed

subspace whenever m ≤ m′ and � ≤ �′2.
2 The equivalent statement is false in �m,�

scc (X), classicality is needed.
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Let us briefly discuss some key aspects of the scattering calculus: The leading order
behaviour of an operator A ∈ �m,�

sc (X) at ∂X can be described in coordinates, where
A takes form (3.6), by

σsc(A)(y, ξ, η) = x�〈(ξ, η)〉−ma(x, y, ξ, η)|x=0, (3.9)

which makes sense in view of the stated regularity in (3.7). In order to understand σsc
invariantly, one defines the so-called scattering cotangent bundle3 scT ∗X → X with
fibres having the following coordinate-description:

scT ∗
p X =

{

ξ
dx

x2
+ η · dy

x

∣
∣
p

}

≡ R
d
(ξ,η). (3.10)

Let scT̄ ∗X → X be the ball bundle obtained by radially compactifying the fibres
of scT ∗X . Then under the identification indicated in (3.10), definition (3.9) yields a
smooth map σsc(A) : scT̄ ∗

∂X X → C, defined on the total space of the pull-back of
scT̄ ∗X to ∂X . We call σsc(A) the scattering principal symbol of the operator A. The
principal symbol map A �→ σsc(A) fits into a split exact sequence of Fréchet spaces:

0 → �m,�−1
sc (X) ↪→ �m,�

sc (X)
σsc−→ C∞(scT̄ ∗

∂X X)→ 0 (3.11)

By this,wemean that it is a split exact sequence of vector spaces,with all involvedmaps
being continuous; in particular, there is a continuous right inverse r : C∞(scT̄ ∗

∂X X)→
�

m,�
sc (X) to σsc.
The scattering principal symbol is also called ‘principal symbol at finite points’ and

can be complemented by σp, the ‘principal symbol at fibre infinity’. While the joint
symbol (σp, σsc) is needed, e.g. for regularity questions, for our purposes, it suffices
to keep track of the boundary behaviour.

Exactness of (3.11) is stated in [13, Prop. 20] (where the scattering principal symbol
is called ‘normal operator’ and denoted Nsc), while a continuous linear right split (also
called quantisation map) is discussed below equation (5.30) in the same notes. Finally,
we remark here that our definition of σsc differs from the one in [27], where the authors
do not incorporate the pre-factor 〈(ξ, η)〉−m in (3.9), which implies that ellipticity is
witnessed by a lower bound |σsc| � 〈(ξ, η)〉m rather than |σsc| � 1 as in (3.1).

Next, we note that the product of two scattering ψdo’s is again a scattering ψdo.
In fact, multiplication of operators yields a bilinear continuous map

�m,�
sc (X)×�m′,�′

sc (X)→ �m+m′,�+�′
sc (X) (3.12)

and the principal symbol behaves multiplicatively, that is

σsc(AB) = σsc(A) · σsc(B). (3.13)

3 Formally, one checks that the one forms dx
x2
,
dy1
x , . . . ,

dyd−1
x (for local coordinates (x, y) as in (3.6))

span a locally free sheaf E over C∞(X). The vector bundle scT ∗X → X is then defined fibre-wise by
scT ∗p X = E (X)/IpE (X), where Ip ⊂ C∞(X) is the ideal of functions vanishing at p, and the smooth
structure is chosen such that the natural map E (X)→ C∞(X , scT ∗X) is an isomorphism.
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The continuity claim can be verified by keeping track of semi-norms, when proving
that scattering operators are closed under multiplication and is a direct consequence
of [28, Prop. 3.5]; for (3.13) see also [13, Eqs. (5.1) and (5.14)].

Finally, a natural scale of Hilbert spaces that scattering operators act on, is provided
by Hs,r

sc (X). On R̄
d (the radial compactification of Rd ), these spaces can be defined

in terms of the standard Sobolev space on R
d as

Hs,r (R̄d) = 〈z〉−r Hs(Rd
z ). (3.14)

In general, Hs,r
sc (X) is defined by locally identifying X with open subsets of R̄d . For

s ≥ 0, they are related to the standard Sobolev spaces Hs(X) as follows:

{
Hs(X) ⊂ Hs,r

sc (X) for r ≤ − d+1
2

Hs,r
sc (X) ⊂ Hs(X) for r ≥ − d+1

2 + 2s
(3.15)

An operator A ∈ �m,�
sc (X) then is continuous as map A : Hs,r

sc (X)→ Hs−m,r−�
sc (X)

and indeed the inclusion

�m,�
sc (X) ↪→ B(Hs,r

sc (X), H
s−m,r−�
sc (X)) (3.16)

into the space of bounded linear operators is continuous. The statements above are
proved in [27, Section 2] and [28, Section 3.8], modulo continuity of (3.16), which
follows from the open mapping theorem.

3.2 Proof of Theorem 3.1

As outlined above, we want to construct a local, finite-order parametrix for the scatter-
ing operator A. On the level of principal symbols, this corresponds to compositionwith
themap z �→ 1/z, suitably cut-off near zero.We, thus, start with a lemma that provides
norm bounds for this composition map. To this end let ϕ : C → [0, 1] be a smooth
function, vanishing near zero and constant ≡ 1 for |z| ≥ 1. Write ϕt (z) = ϕ(z/t) for
t > 0 and define

invt : C∞(M)→ C∞(M), u �→
(

x �→ ϕt (u(x))

u(x)

)

(3.17)

on an arbitrary compact manifold M (with or without boundary), which will later be
taken equal to the total space of scT̄ ∗

∂X X . Then

Lemma 3.3 The map invt : C∞(M) → C∞(M) is continuous with respect to the
C∞-topology; further, for every k ∈ Z≥0, there exists C = C(k) > 0 with

‖invt (u)‖Ck (M) ≤ C (1+ 1/t)k+1 (
1+ ‖u‖Ck (M)

)k
, u ∈ C∞(M), t > 0.
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Proof Weprovemoregenerally that compositionwithχ ∈ C∞
b (C) (that is,χ : C → C

is smooth and all derivatives are bounded) is continuous as map C∞(M)→ C∞(M),
and we have

‖χ ◦ u‖Ck (M) �k ‖χ‖Ck
b (C)

· (1+ ‖u‖Ck (M)

)k (3.18)

such that the result follows from setting χ(z) = ϕt (z)/z. For simplicity, we only con-
sider the case that u is real valued and χ ∈ C

∞
b (R,R) (the complex case only requires

notational changes) and assume that M has empty boundary, noting that the general
case can then be obtained by means of Seeley’s extension theorem (Lemma 7.2).

Choose local coordinates x1, . . . , xd and note that ∂α(χ ◦ u) (for α ∈ Z
d with

|α| = k) may be written as finite linear combination of terms of the form:

Pm,βu
def=

(
χ(m) ◦ u

)
·

m∏

i=1

∂βi u, m ≤ k, βi ∈ Z
d≥0 with

m∑

i=1

|βi | = k. (3.19)

Let K ⊂ M be a compact set inside the chart that supports x1, . . . , xd . Then

‖Pm,βu‖L∞(K ) �m,β ‖χ‖Ck
b (C)

· ‖u‖mCk (M) for all u ∈ C∞(M) (3.20)

and

‖Pm,βun − Pm,βu‖L∞(K ) → 0 when un → u in C∞(M). (3.21)

Since Ck(M) can be normed by the sum of ‖∂α · ‖L∞(K ), where α runs through multi-
indices in Z

d≥0 with |α| ≤ k and K through compacts inside of chart domains, the
previous two displays establish the desired result. ��

Next, we construct a local, finite-order parametrix for an operator A ∈ �m,�
sc (X)

which is elliptic in an open set U ⊂ scT̄ ∗
∂X X . By this, we mean that

λ(A) = inf
U
|σsc(A)| > 0, (3.22)

which encompasses the definition in Theorem 3.1, where we have U = {(z, ζ ) : z ∈
V , ζ ∈ scT̄ ∗

z X} for some open set V ⊂ ∂X . Then
Lemma 3.4 There exists a local parametrix A+ ∈ �−m,−�

sc (X) and a residual operator
RA ∈ �0,0

sc (X) with the following properties.

(i) We have A+A = id − RA and supp σsc(RA) ∩U = ∅
(ii) Given continuous semi-norms ‖ · ‖ and ‖ · ‖′ on�−m,−�

sc (X) and�0,0
sc (X) respec-

tively, there exists a continuous semi-norm ‖·‖′′ on�m,�
sc (X) and an integer k ≥ 0

such that, as A varies, we have

‖A+‖ ∨ ‖RA‖′ �m,�

(
1+ λ(A)−1

)k · (1+ ‖A‖′′)k . (3.23)
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Proof Let r : C∞(scT̄ ∗
∂X X) → �

−m,−�
sc (X) be a continuous right split for the short

exact symbol sequence in (3.11) and define

A+ = r
(
invλ(A)(σsc(A))

) ∈ �−m,−�
sc (X). (3.24)

Then, as U ⊂ {(z, ζ ) ∈ scT̄ ∗
∂X X : σ(A)(z, ζ ) ≥ λ(A)}, we have

σsc(A
+) = invλ(A)(σsc(A)) = σsc(A)−1 on U . (3.25)

In particular, defining RA = id − A+A, we see from the multiplicativity of principal
symbols that σsc(RA) = 0 on U , such that (i) holds true.

Next, given a continuous semi-norm ‖·‖ on�−m,−�
sc (X), as r is a continuous linear

map between Fréchet spaces, there exists an integer k ≥ 0 with

‖A+‖ � ‖invλ(A)(σsc(A))‖Ck (sc T̄ ∗
∂X X)

� (1+ λ(A)−1)1+k · ‖σsc(A)‖kCk (sc T̄ ∗
∂X X)

,

with implicit constants uniform in A ∈ �m,�(X)with λ(A) > 0 and where the second
inequality follows from the preceding lemma. Finally, σsc itself is a continuous linear
map and thus ‖σsc(A)‖Ck (sc T̄ ∗

∂X X)
� ‖A‖′ for an appropriate semi-norm ‖ · ‖′′. This

completes the bounds on A+.
In order to bound ‖RA‖′ (for a given semi-norm ‖ · ‖′ on �0,0

sc (X)), we use that
multiplication of scattering operators gives a continuous bilinear map, such that

‖RA‖′ � 1+ ‖A‖′′′ · ‖A+‖′′′′ (3.26)

for an appropriate choice of semi-norms on the right-hand side. Combining this with
the bounds on A+, the proof is complete. ��

We are now in a position to prove a slightly more general version of Theorem (3.1),
which does not require ellipticity in all fibre directions. For this recall that has fixed,
a boundary definition function ρ : X → [0,∞).
Proposition 3.5 (Microlocal version of Theorem 3.1) Let � ⊂ U ⊂ scT̄ ∗

∂X X subsets
such that � is compact and U is open.

(i) Let A ∈ �m,�
sc (X) with λ(A) > 0, as defined in (3.22). Then there exist constants

h,C > 0 as well as a continuous semi-norm ‖ · ‖0 on�0,0
sc (X) with the following

property: If Q = q1Q2 ∈ �0,0
sc (X) is the product of a function q1 ∈ C∞(X) and

an operator Q2 ∈ �0,0
sc (X) such that

‖ρq1‖L∞(X)‖Q2‖0 < h and supp σsc(Q2) ⊂ �, (3.27)

then for all u ∈ L2(X) we have

‖u‖L2(X) ≤ C‖Q‖0 · ‖Au‖H−m,−(d+1+2�)/2
sc (X)

+ 2‖(id − Q)u‖L2(X). (3.28)
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(ii) As A varies in the open set of operators with λ(A) > 0, the constants h(A) and
C(A) obey an estimate of the form:

C(A) ∨ h(A)−1 ≤
(
1+ λ(A)−1

)k · (1+ ‖A‖)k (3.29)

a continuous semi-norm ‖ · ‖ on �m,�
sc (X) and an integer k ≥ 0.

Let us first demonstrate how Theorem 3.1 follows from this result:

Proof of Theorem 3.1 We apply Proposition 3.5 withU = π−1(V ) and � = π−1(K ′),
where K ′ ⊂ V is a compact set that contains K ∩∂X in its interior and π : scT̄ ∗

∂X X →
∂X is the natural projection; we denote with h′ and C ′ the constants from (i). Let
Q = q1q2 ∈ �0,0(X) be the product of two functions q1, q2 ∈ C∞(X) with

1B(∂X ,h) ≤ q1 ≤ 1B(∂X ,2h) and 1K ≤ q2 ≤ 1V ′ , (3.30)

where h remains to be chosen and V ′ is a neighbourhood of K with V ′ ∩ ∂X ⊂ K ′.
Now let h > 0 be such that

‖ρq1‖L∞(X)‖q2‖ ≤ 2h‖q2‖ = h′, (3.31)

then (3.27) is satisfied and we obtain (3.28). Since {u : supp(u) ⊂ K ∩ B(∂X , h)} ⊂
ker(id − Q), this concludes the proof. ��
Proof of Proposition 3.5 Let A+ and RA be as in Lemma 3.4. We first estimate the
operator norm of QRA, acting on L2(X) = H0,−(d+1)/2

sc (X). To this end, we write
QRA = (ρq1) · (ρ−1Q2RA) and treat the two factors separately. To estimate the
second factor, consider the bilinear continuous map

�
0,0
sc,�(X)×�0,0

sc,�(X)→ �0,−1
sc (X)

×ρ−1

−−−→ �0,0
sc (X) ⊂ B(L2(X)), (3.32)

where the involved spaces and maps are defined as follows: For L ⊂ scT̄ ∗
∂X X com-

pact we write �0,0
sc,L(X) for the closed subspace of operators P ∈ �

0,0
sc (X) with

supp σsc(P) ⊂ L; we let � = scT̄ ∗
∂X X\U , such that RA ∈ �0,0

sc,�(X). Then the first

map in (3.32) is multiplication, which takes values in �0,−1
sc (X) as � ∩ � = ∅. Now

ρ−1Q2RA ∈ B(L2(X)) is the image of (Q2, RA) under the map (3.32), and hence,
its operator norm is bounded by ‖Q2‖0 · ‖RA‖0 for a continuous semi-norm ‖ · ‖0 on
�0,0(X). Further, multiplication by ρq1 has operator norm ≤ ‖ρq1‖L∞(X). Overall,
we get

‖QRA‖L2(X)→L2(X) ≤ ‖ρq1‖L∞(X) · ‖Q2‖0 · ‖RA‖0. (3.33)

Put h = h(A) = ‖RA‖−1
0 /2, then if Q obeys (3.27), the operator norm of QRA

is bounded by 1/2, which means that id − QRA is invertible in B(L2(X)). Write

123



11246 J. Bohr

N = (id − QRA)
−1 ∈ B(L2(X)) for the inverse, then

u = NQA+Au + N (id − Q)u for all u ∈ L2(X). (3.34)

Now ‖N‖L2(X)→L2(X) ≤ 2 and thus, assuming without loss of generality that ‖ · ‖0
dominates the L2(X)-operator norm, we obtain (3.28) with C(A) being twice the

H
0,− d+1

2
sc (X) → H

−m,−�− d+1
2

sc (X) operator norm of A+. Finally, the bound in (ii)
follows from the one in Lemma 3.4 and we are done. ��

3.3 Vector-valued Case

Theorem 3.1 works equally well for operators that act between sections of vector
bundles. In this section, we discuss the necessary changes in the case of trivial bundles
(which is all we need in the sequel).

Let us write A ∈ �m,�(X;Ck) for k × k-matrices of operators in �m,�(X),
understood to act between vector-valued functions in the obvious way. The scattering
principal symbol is then a matrix-valued map σsc(A) : scT̄ ∗

∂X X → C
k×k and, using

the notation |M | = (M∗M)1/2 ∈ C
k×k for matrices M ∈ C

k×k , ellipticity of A is
witnessed by an inequality of the form:

|σsc(A)| > λ ⇔ ∀t ∈ C
k : 〈σsc(A)t, t〉 > λ|t |2. (3.35)

Using this notation, Theorem 3.1 holds true for u ∈ L2(X ,Ck) and is proved in the
same way as the scalar case.

4 Local Stability of theWeighted X-ray Transform

This section is devoted to the proof of the following theorem, which is a more quan-
titative version of Theorem 1.3 in [20].

Theorem 4.1 Let (M, g) be a compact Riemannian manifold of dimension d ≥ 3 and
suppose p ∈ ∂M is a point of strict convexity. Then there exists a smooth function
x̃ : M → R, strictly convex near p and satisfying

x̃ ≤ 0 = x̃(p) and |dx̃ |g ≤ 1,

such that for all smooth, invertible matrix weights W : SM → Gl(m,C) the following
holds true:

(i) There exist C, h > 0 with the following property: For 0 < c < h let B =
B(p, c/2) and O = {x̃ > −c}, then

‖ f ‖L2(B) ≤ C‖IW f ‖H1(MO )
for f ∈ L2(M). (4.1)
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(ii) As W varies, the maps W �→ C(W ) and W �→ h(W ) obey

h(W )−1 ∨ C(W ) ≤ ω(‖W‖Ck (SM) ∨ ‖W−1‖L∞(SM)) (4.2)

for some non-decreasing ω : [0,∞)→ [0,∞) and an integer k ≥ 1.
(iii) Under small perturbations of M and p, in a sense made precise below, one can

choose ω and k to be constant.

Let us remark on a few aspects of the theorem: The bound |dx̃ |g ≤ 1 can always be
achieved by scaling x̃ and is included as it ensures that the set O = {x̃ > −c} (c > 0)
contains the geodesic ball B(p, c/2).

In order to make the perturbation result from part (iii) precise, assume that M =
{ϑ ≤ 0} for a smooth function ϑ : M → R that is strictly convex in a neighbourhood
U of p. Then for t > 0 small, also the boundary of themanifoldsMt = {ϑ ≤ −t} ⊂ M
is strictly convex in U and the Theorem applies to the weighted X -ray transform of
Mt (defined via integrals over the shorter geodesics with endpoints on ∂Mt ). Then
(iii) means that estimate (4.2) can be made uniform for t > 0 sufficiently small and
q ∈ ∂Mt ∩U close to p.

Remark 2 The compactness condition is non-essential and has only been included to
simplify bound (4.2). For non-compact M and h(W ) replaced by h(W ) ∨ h∗ for a
fixed upper bound h∗ > 0, the relevant sets from part (i) lie within a compact subset
L ⊂ M and (4.2) remains true after replacing the right-hand side by ω(‖W‖Ck

L (SM)
∨

‖W−1‖L∞(SM|L )). Here the semi-norm ‖ · ‖Ck
L (SM)

is defined in local coordinates by
taking the supremum over L of derivatives up to order k. In particular, if M can be
embedded into a compact manifold M ′, then ‖ · ‖Ck

L (SM)
� ‖ · ‖Ck (SM ′).

Proof of Theorem 4.1 The proof essentially consists of a careful inspection of the
Uhlmann–Vasy method, which is composed of the following steps:

(1) In a neighbourhood of p, the normal operator I ∗W IW is modified to a ‘localised
normal operator’ AχW , defined over an auxiliarymanifold X with p ∈ O = M∩X .

(2) The operator AχW is shown to lie in the class �−1,0
sc (X) (Definition 3.2), elliptic

near the ‘artificial boundary’ ∂X . By Theorem 3.1, it is, thus, locally invertible in
a neighbourhood of ∂X .

(3) A posteriori, the auxiliary manifold X is chosen such that the domain of injectivity
includes O = M ∩ X . Stability estimates for AχW can then be translated into ones
for IW .

Using Theorem 3.1(i), the constants in the resulting stability estimate are then uni-
form under some control on σsc(A

χ
W ) and ‖AχW‖ (for a semi-norm ‖ · ‖ on�−1,0

sc (X)).
As AχW depends homogeneously and (in the C∞-topology) continuously on W , this
easily translates to uniformity in terms of W and eventually yields (ii).

We will now discuss the three steps above in more detail. However, as the method
has been used in several previous articles (e.g. [20,24,25,27]), the exposition below
will be brief and focus on the application of our quantitative result from the previous
section.
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Step (1) We embed M into a closed manifold (N , g) of the same dimension and
extend the weight smoothly to W : SN → C

m×m . As p ∈ ∂M is a point of strict
convexity, it admits a neighbourhoodU ⊂ N and coordinates (x̃, y) : U ∼−→ R×R

d−1

for which

{x̃ ≥ 0} ∩ M = {p} and x̃ is strictly convex near p (4.3)

(cf. [20, Section 3] for a construction). The following constructions are carried outwith
respect to a small parameter 0 < c < c0 (and c0 chosen later), noting dependencies
when necessary. Change coordinates to (x, y) = (x̃ + c, y), such that {x ≥ 0} is the
intersection of U with a compact manifold X ⊂ N with strictly concave boundary
near p. Consider the parametrisation

Rx × R
d−1
y × Rλ × Sd−2

ω → SU , (x, y, λ, ω) �→ λ∂x + ω∂y
|λ∂x + ω∂y |g , (4.4)

with vectors parallel to ∂x missing in the image (they are negligible, as eventually we
are interested in geodesics that are ‘nearly tangent’ to ∂X ) . Pulling back the geodesic
flow via (4.4) yields integral curves

γx,y,λ,ω(t) =
(
γ
(1)
x,y,λ,ω(t), γ

(2)
x,y,λ,ω(t)

)
∈ R× R

d−1 (4.5)

and one may consider the following ‘localised normal operators’, acting on smooth
functions f : [0,∞)x × R

d−1
y → C

m with suitable decay at x = 0:

AχW f (x, y) = x−2e−1/x
∫∫∫

W ∗(x, y, λ, ω)(W f )
(
γx,y,λ,ω(t), γ̇x,y,λ,ω(t)

)

× e1/γ
(1)
x,y,λ,ω(t)χ(x, y, ω, λ/x) dtdλdω.

(4.6)

This corresponds to equation (4.1) in [20]. Let us discuss the ingredients of (4.6)
in detail: Without loss of generality, we may assume that the interior of the box
B = [0, 2c]x × [−1, 1]d−1

y contains the portion of M within U ∩ X . Further, the
‘localising function’ χ is assumed to satisfy4

suppχ ⊂ B × Sd−2 × [−C0,C0] (4.7)

for some C0 > 0 and will later be chosen such that AχW is elliptic in an appropriate
sense. The domain of integration in (4.6) is [−δ0, δ0]t × Rλ × Sd−2

ω , where δ0 > 0
is chosen small enough to satisfy the following criteria: First, we ask that the curves
(4.5), starting from B, do not leave the coordinate chart for |t | ≤ δ0. Second, and after
decreasing c0 if necessary, we ask that

γ
(1)
x,y,λ,ω(t) ≥

C1

2

(

t + λ

C 1

)2

+
(

x − λ2

2C1

)

, (x, y) ∈ B, |t |, |λ| < δ0, (4.8)

4 Note that in [20], the authors write χ = χ(λ/x), suppressing the dependency on (x, y, ω).
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for some C1 > 0. (See equation (3.2) in [27], where this inequality is derived for C1
essentially being a lower bound of the Hessian of x̃ near p).

Step (2)Note that AχW may be viewed as operatorC∞
c (X

int,Cm)→ C∞(X int,Cm)

with Schwartz kernel compactly contained in (U ∩ X)2. The crux is now that AχW fits

into Melrose’ scattering calculus in the sense that AχW ∈ �
−1,0
sc (X) and, upon a

judicious choice of localiser χ , is elliptic near ∂X ∩ M . In particular, Theorem 3.1
(local inversion of scattering operators) can be used.

In order to give a precise statement, we recall that the constructions above depend
on a parameter c > 0, and there is a whole family of operators AχW (c), defined over
sub-manifolds Xc ⊂ N (with Xc ∩U = {x̃ + c ≥ 0}). We may assume that there is a
flow ψc on N , defined for small c > 0, for which Xc = ψc(X0).

Theorem 4.2 Upon choosing c0, λ0 > 0 sufficiently small, we have

(i) For all smooth localisers χ with (4.7), the operator AχW (c) ∈ �−1,0
sc (Xc). Further,

allowing χ to depend continuously on c, the map

[0, c0)× C∞(SN ,Cm×m)→ �−1,0
sc (X0), (c,W ) �→ ψ∗

c A
χc
W (c) (4.9)

is continuous with respect to the natural Fréchet topologies. Moreover, for any
continuous semi-norm ‖ · ‖ of �−1,0

sc (X0) there is an integer k ≥ 0 such that

‖ψ∗
c A

χc
W (c)‖ � ‖W‖2Ck (SN ) for all 0 ≤ c < c0. (4.10)

(ii) There exists a localiser χ , smooth, satisfying (4.7) and depending continuously
on c, such that for all (c,W ) in (4.9) we have

|σsc(AχcW (c)(z, ζ ))| ≥ λ0‖W−1‖−2
L∞(SN ), z ∈ ∂Xc ∩ M, ζ ∈ scT ∗

z Xc.

(4.11)

Sketch of Proof The proof is essentially carried out in Sect. 4 of [20]. We sketch the
main aspects, highlighting dependencies on the weight.

Either by first computing the Schwartz kernel [20, Lemma 4.1.] or directly (akin to
[25]), one verifies that AχW has an oscillatory integral expression of the form (3.6) and
the pseudodifferential-property as well as the continuous dependency can be checked
directly. We note here that continuous dependence on c is already implicitly used in
[14] and continuous dependence onW is akin to continuous dependence on the metric
as stated in e.g. [25, Prop. 4.2].

Further, (4.10) can be derived from (4.9) and the homogeneity of AχcW (c) inW . This
can be seen easiest in a general functional analytic setting, where we are given two
Fréchet spaces E and F and a continuous map

ϕ : [0,∞)× E → F, with ϕ(c, t ·) = t2ϕ(c, ·) (t, c ≥ 0). (4.12)

Then the collection of sets {(t, w) : 0 ≤ t < ε : ‖w‖′ < 1}, where ε > 0 and ‖ · ‖′
runs through continuous semi-norms of E , constitute a basis for the neighbourhoods
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of (0, 0) ∈ [0,∞) × E . Given a continuous semi-norm ‖ · ‖ on F , the set {(c, w) :
‖ϕ(c, w)‖ < 1} is an open neighbourhood of (0, 0) and thus we can find c0 > 0 and
‖ · ‖′ with

{(c, w) : 0 ≤ c < c0, ‖w‖′ < 1} ⊂ {(c, w) : ‖ϕ(c, w)‖ < 1}. (4.13)

Now take 0 ≤ c < c0 and w ∈ E , then (c, w/(2‖w‖′)) lies in the left set and thus

‖ϕ(c, w)‖ = 4(‖w‖′)2 · ‖ϕ(c, w/(2‖w‖′))‖ ≤ 4(‖w‖′)2, (4.14)

as desired.
To prove (ii), we first fix c. Then the symbol in said oscillatory integral expression,
restricted to x = 0, takes the form:

a(0, y, ξ, η) =
∫∫∫

eiξ(λ̂t̂+α(0,y,0,ω)t̂2+iη·ωt̂ · e−λ̂t̂−α(0,y,0,ω)t̂2

×W ∗W (0, y, 0, ω)χ(0, y, λ̂, ω)dλ̂dt̂dω,
(4.15)

where α(x, y, λ, ω) = (d/dt)2γ (1)x,y,λ,ω(t) > 0 (say, for (x, y) ∈ B) and the

integral domain is R
λ̂
× Rt̂ × Sd−2

ω . For the particular choice χ(x, y, λ̂, ω) =
exp(−λ̂2/(2α(x, y, λ, ω))) (multiplied with a cut-off in (x, y) to ensure that it is
supported in B), the integral in the last display can further be evaluated to obtain a
non-zero multiple of

〈ξ 〉−1
∫

Sd−2
(W ∗W )(0, y, 0, ω)e−|η·ω/〈ξ〉|2/2α(0,y,0,ω)dω, (4.16)

which corresponds to the second display below equation (4.10) in [20]. Following the
reasoning of [20, proof of Prop. 4.3] below said expression yields

〈(ξ, η)〉a(0, y, ξ, η) ≥ 2λ0 · ‖W−1‖−2
L∞(SN ) (4.17)

for a constant λ0 only depending on the local geometry near p. Here, it was used that
W ∗W (0, y, 0, ω) is bounded from below by the square of the smallest singular value
of W , which is in turn lower bounded by ‖W−1‖−2

L∞(SN ).

The localiser χ above has full support in λ̂ and, thus, fails to satisfy (4.7). In the
proof of [20, Prop. 4.3] χ is, thus, approximated by localisers with compact λ̂-support,
thus, obeying (4.7) for some C0 > 0. From (4.15), it follows that the approximation is
uniform in W , at least under an a priori bound ‖W‖L∞(SN ) ≤ 1. This proves part (ii)
for allW with ‖W‖L∞(SN ) ≤ 1, and the general case follows from a scaling argument,
noting that both sides of (4.11) are homogeneous in W of degree 2.

Finally, we comment on the c-dependency: note that α(x, y, λ, ω) (and, thus, χ )
implicitly depends on c through the choice of x = x̃ + c. However, the dependence
is clearly continuous, and α can be bounded in terms of the geometry near p. In
particular, the bound (4.11) is uniform in c. ��

123



Stability of the Non-abelian X -ray Transform in Dimension≥ 3 11251

By Theorem 4.2, for an invertible weight W , the operator AχW (c) is locally elliptic
for suitably chosen χ and sufficiently small c > 0. In particular, Theorem 3.1 can be
applied and, for constants C, h > 0 (depending on W and c), we obtain

‖ f ‖L2(X) ≤ C‖AχW (c) f ‖H1,−(d+1)/2
sc (Xc)

, if supp f ⊂ M ∩ B(∂Xc, h).

(4.18)

Due to (4.10) and (4.11), the uniformity statement of Theorem 3.1(ii) gives

C(W , c) ∨ h(W , c)−1 ≤ ω(‖W‖Ck (SN ) ∨ ‖W−1‖L∞(SN )), (4.19)

valid for sufficiently small c > 0 and all smooth weightsW : SN → Gl(m,C). Here,
ω : [0,∞)→ [0,∞) is a non-decreasing function and k ≥ 1.

Step (3) From now on, we argue with a fixed weight W : SN → Gl(m,C) and
keep track of how the arising constants depend on

A = ‖W‖Ck (SN ) ∨ ‖W−1‖L∞(SN ) > 0. (4.20)

Fix 0 < c < h, then Oc = M ∩ Xc lies in M ∩ B(∂Xc, h) and consequently (dropping
the c-subscripts from now on)

‖ f ‖L2(O) �A ‖AχW f ‖H1,−(d+1)/2(X), f ∈ L2(M), (4.21)

where it is understood that f is extended by zero outside of M . In order to translate
this into a stability estimate for IW , we factor the operator AχW as

AχW f = x−2e−1/x LμW ĨW (e
1/x f ), f ∈ L2(M) (4.22)

where the operators LμW and ĨW are defined as follows:Wemay assume that Ū (viewed
as a manifold with boundary) is simple and denote with τU : SŪ → [0,∞) its exit
time. Note that we can write χ(x, y, λ/x, ω)dλdω = μ(z, v)dv on SU for a smooth
function μ : SU → R with compact support. Then

LμW : C(∂+SŪ )→ C(U ), LμWu(z) =
∫

Sz N
W ∗(z, v)u�(z, v)μ(z, v)dv,

(4.23)

where u� extends u constant along the geodesic flow. Further, ĨW is the weighted
X -ray transform, defined with respect to the manifold Ū and (4.22) is evident, as f |U
is supported in M ∩U , and thus, no additional mass is collected by integrating along
complete geodesics in Ū .

Define M̃ ⊂ ∂+SŪ to consist of initial conditions (z, v) for which z ∈ X , the
geodesic γz,v(t) enters B for some 0 ≤ t ≤ τU (z, v) but does not hit ∂X ∩ M . After
decreasing h if necessary, we can assume that

{ϕt (z, v) : 0 ≤ t ≤ τU (z, v)} ∩ suppμ = ∅ for (z, v) ∈ ∂+SŪ\M̃. (4.24)
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Indeed, assume that h < C1/C2
0 ∧ δ0/(2C0), where δ0,C0,C1 are the constants from

(4.7) and (4.8). Then if the integral curve starting at (z, v) ∈ ∂+SŪ enters the support
of μ at, say (x, y, λ, ω, we must have 0 < x < 2c < 2h and |λ/x | < C0, which
implies that |λ| < δ0 and x−λ2/(2C1) > x(1− xC2

0/(2C1)) > x(1−hC2
0/C1) > 0.

In particular the right-hand side of (4.8) is non-negative, and the curve cannot intersect
M ∩ ∂X .

To proceed, take K ⊂ O compact (such as the geodesic ball B(p, c/2), when x̃ is
scaled to satisfy |∇ x̃ | ≤ 1). We then have for all f ∈ L2(M)

‖ f ‖L2(K ) �K ‖e−1/x f ‖L2(O) �A ‖x− d−1
2 e−1/x LμW ĨW f ‖H1(X), (4.25)

where the first estimate follows from the fact that e1/x and all its derivatives are
bounded on K and the second estimate follows from equation (4.21) and inclusion
H1,�
sc (X) ⊂ x−�H1,0

sc ⊂ x−�H1(X) for � = −(d + 1)/2.
Note that the function on the right-hand side in (4.25) is compactly supported inU

(due to the support condition on μ) and that x−(d−1)/2e−1/x and all of its derivatives
extend by zero to a bounded function on U . Thus,

‖ f ‖L2(K ) �K ,A ‖LμW ĨW f ‖H1(U ), for all f ∈ L2(M) (4.26)

and it remains to bound the operator norm of LμW and relate ĨW to the transform IW
we are actually interested in.

Lemma 4.3 For all k ≥ 0, the operator LμW : Hk(M̃) → Hk(U ) is bounded with
operator norm � ‖W‖Ck (SŪ ).

Proof of Lemma 4.3 We prove the lemma in a slightly more general setting, when
M̃ ⊂ ∂+SŪ is any open subset with closure not intersecting S∂Ū and μ : SU → R

is a smooth function with compact support satisfying (4.24).
The lemma then follows from factorising LμW as

Hk(M̃)
E−→ Hk

c (∂+SŪ int)
�−→ Hk(SU )

×μW ∗
−−−−→ Hk(SU )

π∗−→ Hk(U ) (4.27)

with the following factors: E is an extension operator (cf. Lemma 7.2), which may be
chosen to map to compactly supported functions, as M̃ is assumed to have compact
closure in ∂+SŪ int = ∂+SŪ\S∂Ū . Due to condition (4.24), the precise choice of
E is irrelevant. Next, the map �, defined below (4.23), is continuous, as under the
isomorphism

{(z, v, t) ∈ ∂+SŪ int × R : 0 < t < τU (z, v)} ∼= SU , (z, v, t) �→ ϕt (z, v)

(4.28)

it corresponds to pull back by the projection pr1 : ∂+SŪ int×R → ∂+SŪ int. Multipli-
cation by μW ∗ is clearly bounded with operator norm �μ ‖W‖Ck (SŪ ). Finally, π∗ is
the push forward along the base projection, which is well known (and easily checked
in coordinates) to be Hk-continuous. ��

123



Stability of the Non-abelian X -ray Transform in Dimension≥ 3 11253

Lemma 4.4 ‖ ĨW f ‖Hk (M̃) �k ‖IW f ‖Hk (MO )
(k ≥ 0) for all f ∈ L2(M).

Proof of Lemma 4.4 Define β : MO → M̃ by β(z, v) = ϕ−τU (z,−v)(z, v), then
β∗( ĨW f ) = IW f on MO . Now pull-back β∗ : Hk(β(MO)) → Hk(MO)

(k ≥ 0) is an isomorphism, as β extends across the closure of MO to a diffeo-
morphism onto its image. Thus, ‖ ĨW‖Hk (M̃)

� ‖ ĨW f ‖Hk (β(MO ))
� ‖IW f ‖Hk (MO )

,
where the first inequality follows from the fact that f is supported in M , and thus,
supp ĨW f ⊂ β(MO). ��

Wecan nowfinish the proof of Theorem4.1. Using (4.26) togetherwith the previous
two lemmas yields ‖ f ‖L2(K ) �K ,A ‖IW f ‖H1(MO )

for all f ∈ L2(M) and, taking K
to be the geodesic ball B = B(p, c/2) and making theW -dependency explicit again,

‖ f ‖L2(B) ≤ C ′(W )‖IW f ‖H1(MO )
, f ∈ L2(M), (4.29)

where C ′(W ) ≤ ω′(‖W‖Ck (SN ) ∨ ‖W−1‖−1
L∞(SN )) for ω

′ : [0,∞) → [0,∞) non-
decreasing. One can further replace the norms on SN by their counterparts on SM , as
‖IW f ‖H1(MO )

only depends on W |SM . Thus, (i) and (ii) are proved.
Finally, part (iii) is clear from the above: When p is slightly perturbed to some

p′ ∈ ∂M , the ball B(p′, c/2) remains within O and K may be chosen accordingly.
Small perturbations of M correspond to an affine change of variables in x̃ and are,
thus, inconsequential. This concludes the proof. ��

5 Proof of the Stability Estimate

Let (M, g) be compact, non-trapping and with strictly convex boundary ∂M . We
complete the proof of Theorem 1.3.

5.1 Layer-stripping Argument

We first derive a (global) stability estimate for the linearised problem.

Theorem 5.1 Let d ≥ 3 and suppose that K ⊂ O ⊂ M, such that K is compact
and O is open and satisfies the foliation condition. Then for f ∈ C∞(M,Cm) and
W ∈ C∞(SM,Gl(m,C)), we have

‖ f ‖L2(K ) ≤ C(W ) · ‖ f ‖1−μ(W )
C2(M)

· ‖IW f ‖μ(W )
L2(O)

, (5.1)

where C > 0 and μ ∈ (0, 1) obey an estimate

C(W ) ∨ μ(W )−1 ≤ ω(‖W‖Ck (SM) ∨ ‖W−1‖L∞(SM)) (5.2)

for some non-decreasing ω : [0,∞)→ [0,∞) and an integer k ≥ 2.
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Let us outline the strategy of proof for Theorem 5.1. Using the strictly convex
exhaustion function on O , we can stratify K into finitely many layers, where the num-
ber of layers depends on the weight W . As each layer has a strictly convex boundary,
one can use the local stability result in Theorem 4.1 and propagate the stability esti-
mate into the interior of O layer by layer via an induction argument. More concretely,
Theorem 4.1 allows to bound the norm of f within a certain layer in terms of the
weighted X -ray transform, defined with respect to geodesics confined to that layer. As
we are actually interested in the transform along complete geodesics in M , an error
occurs. By virtue of our forward estimates, this error can be bounded in terms of the
magnitude of f in the previous layers, which is controlled by the induction hypothesis.

Remark 3 The Hölder exponent μ in the theorem is of order 2−N , where N is the
number of layers needed to stratify K . This in turn is of order N = O(h−1), where h
is the ‘depth’ fromTheorem 4.1. The integer k that appears in the theorem is essentially
the same as in the local stability estimates (Theorem 4.1), in particular a hypothetical
universal bound k ≤ cd in Theorem 4.1 would remain true in Theorem 5.1.

Remark 4 For a fixed weight W , the result can be improved to allow control on the
Hölder exponent μ at the cost of needing bounds on higher derivatives of f . Pre-
cisely, for any μ ∈ (0, 1), we have ‖ f ‖L2(K ) ≤ ω(‖ f ‖C�(M))‖IW f ‖μ

L2(MO )
for

ω : (0,∞) → (0,∞) non-decreasing (and dependent on the fixed weight W ) and
�� 1 sufficiently large. To see this, one needs to amend Lemma 5.2 below by using
different interpolation spaces.

We first discuss some notation and auxiliary results that are used in the proof of
Theorem 5.1. In the following, we fix a strictly convex function ρ : O → R with
compact super-level sets O≥c = {x ∈ O : ρ(x) ≥ c} for c > infO ρ. Then

Mc = {x ∈ M int : ρ(x) ≤ c} (5.3)

is a (possibly non-compact) manifold with strictly convex boundary and geodesics in
Mc with endpoints on the level set {ρ = c} can be parametrised by the set

Mc = {(x, v) ∈ SM int : ρ(x) = c, dρ(v) ≤ 0, γx,v(τ (x, v)) ∈ O}. (5.4)

We denote with I cW f : Mc → C
m the weighted X -ray transform on Mc, defined via

integrals along the portion of geodesics within Mc. The following Lemma compares
this with the full X -ray transform on M and provides the key estimate that drives the
layer-stripping argument.

Lemma 5.2 (Error-bound) Let f ∈ C∞(M,Cm) and W ∈ C∞(SM,Cm×m), then
for all 0 < μ ≤ 1, we have

‖I cW f ‖2H1(Mc)
�μ C(W )

[

1+
( ‖ f ‖L2(O≥c)
‖IW f ‖L2(MO )

)μ]

· ‖ f ‖2−μ
H2(M)

‖IW f ‖μ
L2(MO )

,

(5.5)
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where C(W ) > 0 is bounded when ‖W‖C2(SM) is bounded.

Proof Each geodesic in Mc with endpoints on the level set ρ = c can be extended
to a complete O-local geodesic in M and we denote the corresponding map between
initial conditions by

βc : Mc → MO ⊂ ∂+SM, (x, v) �→ ϕ−τ(x,−v)(x, v). (5.6)

The weighted X -ray transform on Mc can then be written as follows:

I cW f (x, v) = IW (1Mc f )(βc(x, v)), (5.7)

where 1Mc is the indicator function of Mc. As β extends smoothly to the closure of
Mc, pull-back by β−1 defines a bounded map Hs(β(Mc)) → Hs(Mc) and for all
s ∈ R, we have

‖I cW f ‖Hs (Mc) �c,s ‖IW (1Mc f )‖Hs (MO )

≤ ‖IW f ‖Hs (MO ) + ‖IW (1O≥c f )‖Hs (MO ).
(5.8)

The last term accounts for the error that ismade by integrating along complete geodesic
in M rather than the portion within Mc. We can bound this error by a forward estimate
(Cor. 2.4), as long as the truncated function 1O≥c f is of regularity Hs . This restricts
the choice of s to |s| < 1/2, for which we obtain

‖I cW f ‖Hs (Mc) �c,s ‖IW f ‖Hs (MO ) + ‖W‖C1(SM)‖ f ‖Hs (O≥c) (5.9)

In order to estimate the H1-norm of I cW f , we employ the interpolation inequality
‖ · ‖2

H1 ≤ ‖ · ‖L2‖ · ‖H2 on Mc and estimate the H2-term via the forward estimate5

‖I cW f ‖H2(Mc)
� ‖W‖C2(SM)‖ f ‖H2(O). (5.10)

Combining the estimates in the preceding displays (for s = 0) and bounding the
first factor in ‖IW f ‖L2(MO )

= ‖IW f ‖1−μ
L2(MO )

‖IW f ‖μ
L2(MO )

via another forward
estimate we get

‖I cW f ‖2H1(Mc)
�c,s

(
‖ f ‖1−μ

L2(M)
‖W‖1−μL∞(SM) · ‖IW f ‖μ

L2(MO )
+ ‖W‖C1(SM)‖ f ‖L2(O≥c)

)

× ‖W‖C2(SM) · ‖ f ‖H2(M)

≤ (1+ ‖W‖C2(SM))
2 ·

(
1+ ‖ f ‖μ

L2(O≥0)/‖IW f ‖μ
L2(MO )

)

× ‖ f ‖2−μ
H2(M)

‖IW f ‖μ
L2(MO )

,

(5.11)

as desired. ��
5 This follows from Corollary 2.4, applied to a suitable compact extension of Mc .
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The next result is a technical Lemma that provides a convenient stratification of
K into layers. The parameter h > 0 below will later be the ‘intial penetration depth’
from Theorem 4.1.

Lemma 5.3 Suppose K ⊂ O and |∇ρ| ≥ 1 on K .

(i) For every h > 0, there exists a radius 0 < r(h) ≤ h (non-decreasing in h) such
that for p ∈ K ∩ ∂Mc with dist(p, ∂M) > h/2 we have

B(p, r(h)) ∩ Mc ⊂
⋃

(x,v)∈β(Mc)

γx,v([0, τ (x, v)]). (5.12)

(ii) For all h > 0, there are finitely many numbers

sup
K
ρ = c0 > c1 ≥ · · · > cN > cN+1 = inf

K
ρ (N = O(h−1))

as well as points pi j ∈ K (i = 0, . . . , N , j = 1, . . . , Ji ) with the following
properties: We have p0 j ∈ ∂M, pi j ∈ {ρ = ci } (i = 1, . . . , N) and

{x ∈ K : ci ≥ ρ(x) ≥ ci+1} ⊂
J0⋃

j=1

B(p0 j , h) ∪
Ji⋃

j=1

B(pi j , r) (5.13)

for i = 0, . . . , N (where the second union is redundant for i = 0).

Proof Let us denote the set on the right-hand side of Lemma 5.12 by Vc. It is straight-
forward to see that ∂Mc ⊂ Vc and that Vc is open. In particular, Vc contains an open
ball around each point of ∂Mc. As the set of points on ∂Mc with dist(·, ∂M) ≥ h/2 is
compact, the radius of the balls can be chosen uniformly (depending on h), which is
equivalent to the statement of Lemma 5.3(i).

For part (ii) we let N (h) = 2%(supK ρ − infK ρ)/r(h)& and put ci = ci−1 − r/2
for i = 1, . . . , N , where c0 = supK ρ. The boundary points p01, . . . , p0J0 are
then chosen such that the h-balls around them cover the compact set ∂M ∩ K .
Now let x ∈ K be such that ci ≤ ρ(x) ≤ ci+1 for some i = 0, . . . , N .
If i = 0 or dist(x, ∂M) < h/2, then x ∈ B(p0, j , h) for some j =
1, . . . , J0. If i ≥ 1 and dist(x, ∂M) ≥ h/2 we claim that d(x, p) < r for

Fig. 1 The layers from
Lemma 5.3 ρ = ci

pi1

pi2

pi3
K

p01
p02

p03

pi1

pi2

pi3
K
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some p ∈ ∂Mci . Due to the compactness of ∂Mci ∩ {dist(·, ∂M) ≥ h/2},
finitelymany such points pi1, . . . , pi Ji ∈ ∂Mci suffice to establish (5.13), so it remains
to verify the claim.

Indeed, ifwe let t �→ cx (t) be the unit-length curvewith cx (0) = x and dρ(ċx (t)) =
|∇ρ(cx (t))|, then ρ increases along cx and by [20, Lem,2.5] the curve stays in O until
it hits the boundary ofM . Let � ≥ 0 be the first time forwhich p = cx (�) ∈ ∂M∪∂Mci .
Then

d(x, p) ≤ � ≤
∫ �

0
dρ(ċx (t))dt = ρ(p)− ρ(x) ≤ ci − ci+1 ≤ r/2 (5.14)

and we must have p ∈ ∂Mci and x ∈ B(p, r), as desired. ��
The next Lemma is of importance for the full-data problem (O = M) and allows

to perturb convex foliations in a way that shifts the point of degeneracy.

Lemma 5.4 Suppose ρ : M → R is smooth and strictly convex. Then there exists
another ρ̃ : M → R, smooth and strictly convex, such that ρ and ρ̃ achieve their
global minima at different points.

Proof Suppose ρ achieves its minimum at the point x∗ ∈ M and let V be a smooth
vector field on M which is tangent to ∂M and non-vanishing at x∗. Denote the flow
of V by (ψt : t ≥ 0), then ψ∗

t ρ ∈ C∞(M,R) is strictly convex for t sufficiently
small and achieves its (unique) minimum at x∗t = ψ−t (x∗). Since V (x∗) �= 0, we
have x∗t �= x∗ for t > 0 sufficiently small, and thus, ρ̃ = ψ∗

t ρ and ρ achieve their
minimum at different points. ��
Proof of Proposition 5.1 Let ρ : O → R be a strictly convex exhausting function and
denote ρ∗ = infO ρ. We first reduce to the situation that

|∇ρ(x)| ≥ 1 and ρ(x) > ρ∗ for x ∈ K . (5.15)

Indeed, after scaling ρ if necessary, (5.15) can only fail, when O = M [20, Lemma
2.5], and in this case, we argue as follows: Take ρ̃ as in Lemma 5.4, then we may
choose ε > 0 such that M = {ρ ≥ ρ∗ +ε}∪{ρ̃ ≥ infM ρ̃+ε} = K ∪ K̃ . Then K and
K̃ satisfy (5.15) for ρ and ρ̃, respectively, and the corresponding stability estimates
(5.1) can be combined to bound ‖I f ‖L2(M).

In the remaining proof, we argue with fixed f ∈ C∞(M,Cm) and W ∈
C∞(SM,Gl(m,C)) and keep track of the dependency of our constructions on

A = ‖W‖Ck (SM) ∨ ‖W−1‖L∞(SM) (5.16)

for an integer k ≥ 2 to be specified. Let us first summarise the consequences of
Theorem 4.1: Each p ∈ K is a strictly convex boundary point of either M itself or
of the manifold Mc, defined in (5.3). We can, thus, apply Theorem 4.1, either with
respect to the local X -ray transform IW on M or the one on Mc, which we denote by
I cW . Thus, for all f ∈ L2(M,Cm) we have

‖ f ‖L2(B(p,h)) ≤ C‖IW f ‖H1(MO )
, p ∈ K ∩ ∂M (5.17)
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‖ f ‖L2(B(p,r)∩Mc
) ≤ C‖I cW f ‖H1(Mc)

, p ∈ K ∩ ∂Mc\B(∂M, h/2) (5.18)

where C, h > 0 depend on W and r = r(h) is as in Lemma 5.3(i). By part (iii) of
the theorem, the choice of regularity k that appears in (4.2) can be made uniform over
the compactum K , and will be fixed from now on (assuming k ≥ 2 without loss of
generality). We then have C ∨ h−1 �A 1.

We proceed by stratifying K into layers {x ∈ O : ci ≥ ρ(x) > ci+1} (i =
0, . . . , N ) for c0, . . . , cN+1 as in Lemma 5.3(ii) with N � h−1 �A 1. We will prove
inductively that

‖ f ‖L2(Oci )
�A ‖ f ‖1−2−i

C2(M)
‖IW f ‖2−i

L2(MO )
, i = 1, . . . , N + 1 (5.19)

which implies (5.1). For i = 0, this is a straightforward consequence of (5.17). Indeed,
for every p ∈ ∂M , we can use the interpolation inequality ‖ · ‖2

H1 ≤ ‖ · ‖L2‖ · ‖H2 on
MO and a forward estimate (Thm.2.4) to obtain

‖ f ‖L2(B(p0 j ,h)) �A ‖ f ‖1/2
C2(M)

‖IW f ‖1/2
L2(MO )

, j = 1, . . . , J0, (5.20)

where the points p01, . . . , p0J0 are as in Lemma 5.3(ii). As the corresponding h-balls
cover O≥c1 , this implies (5.19) for i = 1.

Next assume the estimate has been established for some 1 ≤ i < N and consider
the points pi1, . . . , pi Ji from the lemma. Then (5.18) and Lemma 5.2, combined with
the induction hypothesis which allows to bound the bracketed term in (5.5), yield

‖ f ‖L2(B(pi j ,r)∩Mci )
�A ‖ f ‖1−2−(i+1)

C2(M)
‖IW f ‖2−(i+1)

L2(MO )
. (5.21)

A similar bound can be achieved on the balls B(p0 j , h) (decreasing the Hölder expo-
nent as in the proof of Lemma 5.2) and together with the induction hypothesis we
conclude (5.19) for i + 1. This finishes the proof. ��

5.2 Proof of Theorem 1.3

We conclude the main stability theorem by combining the linear estimates from the
previous section with pseudo-linearisation formula and the bounds on integrating
factors from Theorem 2.1.

Proof of Theorem 1.3 Let �,� ∈ C∞(M,Cm×m) and recall from Lemma 1.5, that
C� − C� = R� IW�,�

(� − �)α∗R−1
� , where W�,� A = R−1

� AR� and we may
choose smooth integrating factors R� and R� as in Theorem 2.1.
Now for K ⊂ O ⊂ M as in the theorem, we can apply Theorem 5.1 to obtain

‖�−�‖L2(K ) ≤ C(W�,�) · ‖�−�‖1−μ(W )
C2(M)

· ‖C� − C�‖μ(W�,�)

L2(MO )
(5.22)
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with C(W�,�) ∨ μ(W�,�)
−1 bounded above by

ω(‖W�,�‖Ck (SM) ∨ ‖W−1
�,�‖L∞(SM)) (5.23)

for a non-decreasing function ω : [0,∞)→ [0,∞). It remains to bound the norms in
the previous display in terms of ‖�‖Ck (M) ∨ ‖�‖Ck (M). Note that ‖W±1

�,�‖Ck (SM) �
‖R∓1
� ‖Ck (M) · ‖R±1

� ‖Ck (M); hence, the proof is finished by using the bounds from
Theorem 2.1. ��

6 Statistical Application

In this section, we demonstrate the scope of our stability estimate (Theorem 1.3) by
showing how it can be used to establish a statistical consistency result. We will focus
on the full-data problem (O = M) and discuss the two-dimensional results from [14]
alongside with the case d ≥ 3. Let us, therefore, assume that (M, g) is a compact
Riemannian manifold with strictly convex boundary and that we are in either of the
following cases:

(A) d = 2 and M is simple
(B) d ≥ 3 and M admits a strictly convex function

In both cases, we assume for simplicity6 that (as a smooth manifold) M is the closed
unit ball in Rd . We further assume that the potentials� take values in either so(m) =
{A ∈ R

m×m : AT = −A} or glm(R) = R
m×m and write g to denote either choice.

The plan for this section is as follows: We first record all necessary estimates at one
place, then give a brief overview of the Bayesian approach of inverse problems and
recall the main statistical theorem from [14], including a sketch of its proof. Finally, in
the last subsection, we explain how the proof can be amended to obtain a consistency
result in case (B).

In order to keep the overlap with [14] at a minimum, the discussion below is brief
and heavily relies on [14]. For more background on the statistical framework, we refer
to the books [7] and [8].

6.1 Available Estimates

In both cases, the available forward and stability estimates take the following form:

‖C� − C�‖L2(M) ≤ c1(�,�) · ‖�−�‖L2(M) (6.1)

‖C�‖L∞(M) ≤ c2(�) (6.2)

‖�−�‖L2(M) ≤ C(�,�) · ‖C� − C�‖μ(�,�)L2(∂+SM), (6.3)

6 For d = 2 and d = 3 no generality is lost, as any manifold satisfying (A) or (B) is automatically
diffeomorphic to a Euclidean ball. In higher dimensions, this might fail, but the author is not aware of any
counterexamples.
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Here, c1(�,�), c2(�),C(�,�) > 0 and μ(�,�) ∈ (0, 1) may depend on the
potentials. The validity of the estimates and the uniformity properties of the constants
can be summarised as follows:

• The forward estimates (6.1) and (6.2) are the same in case (A) and (B) and hold
true for smooth potentials �,� : M → g. If g = so(m), then c1 and c2 are
constant, due to the compactness of SO(m). If g = glm(R), then c1(�,�) and
c2(�) are uniform on L∞-balls.

• In case (A) and for g = so(m), we can choose any integer k ≥ 2. Then (6.3) holds
true for smooth �,� : M → so(m) with μ(�,�) = (k − 1)/k and C(�,�)
uniform on Ck-balls.

• In case (B) and for g = glm(R), there exists an integer k � 1 such that (6.3)
holds true for �,� : M → glm(R) with both C(�,�) and μ(�,�) uniform on
Ck-balls.

Here we say that a quantity is ‘uniform on F-balls’ (for F = L∞(M, g) or F =
Ck(M, g)) if its supremum (resp. infimum) over {�,� : M → g smooth : ‖�‖F ∨
‖�‖F ≤ A} is finite (resp. > 0) for all A > 0.

The forward estimates are proved in Corollary 2.5 for a general non-trapping man-
ifold (with strictly convex boundary). The stability estimate for case (B) is the content
of our main theorem (Thm.1.3), and the version for case (A) is discussed below the
main theorem.

Remark 5 An important difference between case (A) and (B) lies in the role of ‘regu-
larity parameter’ k and Hölder exponent μ, which – in the statistical analysis below –
determine the choice of prior and the rate of contraction, respectively. In case (A), one
can effectively choose the Hölder exponent arbitrarily close to 1 (by sending k →∞),
while in case (B), our method of proof yields an unknown k and there is no control
over the Hölder exponent. See also Remark 8.

6.2 Statistical Background

The statistical question we are concerned with arises in following experimental setup:
Suppose for � ∈ C(M, g) we observe the data (Xi , Vi ,Yi )ni=1, where

Yi = C�(Xi , Vi )+ εi , i = 1, . . . , n, (6.4)

with directions (Xi , Vi ) (i = 1, . . . , n) drawn independently and uniformly7 from
∂+SM and independent additive noise given by

εi = (εi j : 1 ≤ j ≤ dim g) ∈ R
dim g ≡ g for εi j∼N (0, 1) i.i.d. (6.5)

We write Pn
� = L(Dn|�) for the law of Dn = (Xi , Vi ,Yi : 1 ≤ i ≤ n), arising

from (6.4) with potential �. The statistical experiment just described is then encoded

7 Uniform here means that the law of (Xi , Yi ) is the standard Riemannian volume form on ∂+SM , nor-
malised to have mass 1.
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in the collection of probability measures (Pn
� : � ∈ C(M, g)) on the sample space

Dn = (∂+SM × g)n .
The Bayesian approach to estimate� from a sample Dn = ((Xi , Vi ,Yi ) : 1 ≤ i ≤

n) ∈ Dn is to choose a prior �n on C(M, g) and compute the posterior probability
under the sample Dn of a (Borel-measurable) set B ⊂ C(M, g) according to the
formula:

�n(� ∈ B|Dn) =
∫
B pn�(D

n)�(d�)
∫
pn�(D

n)�(d�)
, (6.6)

where pn�(D
n) is the likelihood of Dn being generated from �. Precisely, pn� =

p1�⊗· · ·⊗ p1� (n-times), where log p1�(x, v, y) = − 1
2 |C�(x, v)−y|2F− dim g

2 log(2π)
(for (x, v, y) ∈ D1) and | · |F is the Frobenius norm.

Given the posterior one can estimate�, for example, by the posteriormeanwhich in
our setting exists as Bochner integral in C(M, g). From a frequentist perspective, one
then asks howwell� is estimated, when the data are generated from (6.4) with a ‘true’
potential �0 and a first such quality assessment is given by the posterior consistency
results below.

6.3 Posterior Consistency in Case (A)

In order to state the posterior consistency result of [14], we first review the construction
of priors (in arbitrary dimension d ≥ 2), focusing on their key example based on
Matérn-Whittle processes.

For a given choice of regularity parameter α > d/2, define a base prior� = �(α)
on C(M,R) as law of a centred Gaussian process ( f (x) : x ∈ M) with covariance
E f (x) f (y) = ∫

Rd ei(x−y)ξ 〈ξ 〉−2αdξ, where it is understood that M ⊂ R
d . This

so-called Matérn-Whittle process of regularity α is a standard prior choice in non-
parametric Bayesian statistics (Example 11.8 in [7]) and satisfies

RKHS(�) = Hα(M,R), �(Ck(M,R)) = 1 for k ∈ Z ∩ [0, α − d/2) (6.7)

where RKHS(·) stands for the ‘reproducing kernel Hilbert-space’. The prior �1 on
C(M, g) is then obtained by drawing each component (in an identification g ≡ R

dim g)
independently from�. For n ≥ 2 the prior �n is defined by scaling �1, precisely

�n = L
(
n−

d
4α+2d�

)
, for � ∼ �1, (6.8)

where L(·) denotes the law of a random variable.
Then in case (A) (M is a simple surface), the following result holds true:

Theorem 6.1 (Thm.3.2 in [14]) Suppose we are in case (A) above, g = so(m) and
α > 3. Then for every �0 ∈ C∞(M, so(m)), there is a γ > 0 such that

�n(� : ‖�−�0‖L2(M) ≥ n−γ |Dn)→ 0 as n →∞ (6.9)
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in Pn
�0

-probability. Here�n(·|Dn) are the posteriors, defined in (6.6), with respect to
the scaled Matérn-Whittle priors in (6.8) of regularity α.

Remark 6 (Generalisations) The theorem remains true for a larger class of base priors
(specified in [14, Condition 3.1]). Further, the regularity of�0 can be relaxed and, by
varying α, one has control over the rate of contraction γ (Remark 3.3 in [14]).

Remark 7 The scaling rate ν = d/(4α + 2d) in(6.8) is chosen such that, writing
t∗ = 2t/(2+ t) for t > 0, we have

(4ν/(1− 4ν))∗ = d/α, (6.10)

which arises as exponent in a classical L2-entropy bound for the unit ball Bα ⊂
H1(M, g) = RKHS(�1) (cf.Lemma 7.5).

Sketch of proof Let δn = n−α/(2α+d)(= nν−1/2). Using (6.10) and a theorem of Li-
Linde [12, Thm.1.2], one computes the small ball probability

− log�n(‖�‖L2(M) ≤ δn) � nδ2n . (6.11)

The event in the last probability can be changed to ‖�−�0‖L2(M) ≤ δn by a standard
argument (Anderson’s Lemma, cf. [8, Cor. 2.6.18]) and expressed in terms of the
likelihoods pn�, p

n
�0

by using the forward estimates. A general contraction theorem (
[14, Thm.5.13]) then implies that, for some sufficiently large m′ > 0, we have

�n(� : h(pn�, pn�0
) ≤ m′δn|Dn)

Pn
�0−−→ 1, as n →∞. (6.12)

Here h(pn�, p
n
�0
) denotes the Hellinger distance, which is ≈ ‖C� − C�0‖L2(∂+SM),

as the scattering data are SO(m) valued ( [14, Lem.5.14]).
By (6.7), it follows for 0 ≤ k < α−d/2 that the eventsF ′(A) = {‖�‖Ck (M) ≤ A}

(A > 0) have �n-mass approaching 1 as n → ∞ (Fernique’s theorem, cf. [8,
Thm.2.1.20]), which suggests that one can intersect the event in (6.12) with F ′(A)
without destroying the limit. Tomake this precise one shows, usingBorell’s isoperimet-
ric inequality [3] that the slightly smaller events Fn(A) = {�1 +�2 : ‖�1‖L2(M) ≤
δn, ‖�2‖Hα(M) ≤ A} ∩ F ′(A) obey

− log�n(Fn(A)
c) ≥ ω(A)nδ2n and logN (Fn(A), h, δn) �A nδ2n (6.13)

with ω(A) unbounded and non-decreasing in A [14, Lemma5.17] and where logN
is the metric entropy, defined above Lemma 7.5. Then, for A > 0 sufficiently large,
[14, Theorem5.13] indeed implies that

�n(� : ‖C� − C�0‖L2(∂+SM) ≤ Aδn, ‖�‖Ck (M) ≤ A|Dn)
Pn
�0−−→ 1, (6.14)
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as n → ∞ [14, Thm.5.19]. If α > 3, we may choose k ∈ Z ∩ [2, α − d/2) and
apply stability estimate (6.3) with Hölder exponent (k − 1)/k. Thus on the event in
the previous display we have

‖�−�0‖L2(M) ≤ (A′δn)(k−1)/k (6.15)

for some A′ > 0 which incorporates the constant from the stability estimate. Choosing
a slightly slower rate 0 < η < (k − 1)/k, the constant A′ can be absorbed in the limit
n →∞ and thus

�n(� : ‖�−�0‖L2(M) ≤ δηn , ‖�‖Ck (M) ≤ A′|Dn)→ 1 (6.16)

in Pn
�0

-probability. Dropping the constraint ‖�‖Ck (M) ≤ A′ yields (6.9) and finishes
the proof. ��

6.4 Posterior Consistency in Case (B)

The proof above can be adapted to case (B) (M of dimension d ≥ 3, supporting a
strictly convex function) and g = glm(R) to obtain the following result:

Theorem 6.2 Suppose we are in case (B) above and g = gl(m). Then there exist α > 0
and γ > 0, such that for all �0 ∈ C∞(M, g) we have

�n(� : ‖�−�0‖L2(M) ≥ n−γ |Dn)→ 0 as n →∞ (6.17)

in Pn
�0

-probability. Here,�n(·|Dn) is again the posterior defined in (6.6) with respect
to the scaled Matérn-Whittle priors in (6.8) of regularity α. ��

Under the hypotheses of the theorem and essentially with the same arguments as
in [14], one can use the theorem above to derive a consistency result for the posterior
mean. This is defined as �̄n(Dn) = E�n [�|Dn] and exists as Bochner integral in
C(M, g). Using the precise exponential convergence rate in (6.17) (above withhold
for simplicity), one then shows that

P�0

(‖�̄n(Dn)−�0‖L2(M) > n−γ
) → 0, as n →∞, (6.18)

which gives precisely Theorem 1.4 as stated in the introduction.

Remark 8 In comparison with Theorem 6.1, the theorem has two shortcomings: First,
the rate of contraction, while being polynomial, is unknown. Second, and more impor-
tantly, the required regularity of the prior (the choice ofα) is unknown aswell, and thus,
the theorem does not provide a precise guideline for the choice of prior in applications.

Possibly the latter issue can be alleviated by choosing a prior with C∞-smooth
sample paths, such as a squared exponential prior. However, as our ignorance of α
rather seems to be an artefact of the proof of the underlying stability estimate than an
intrinsic feature of the inverse problem, it is questionable whether such a prior choice
is advisable.
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Sketch of proof of Theorem 6.2 Let us first discuss the case g = so(m). Then, as we
have identical forward estimates as in case (A) and the general contraction theory is
independent of the dimension, the proof of Theorem 6.1 extends verbatim to case (B)
up to equation (6.14). That is, for A > 0 large enough (and 0 ≤ k < α − d/2) we
have, as n →∞

�n(� : ‖C� − C�0‖L2(∂+SM) ≤ Aδn, ‖�‖Ck (M) ≤ A|Dn)
Pn
�0−−→ 1. (6.19)

To proceed, one chooses α > 0 so large that α−d/2 exceeds the regularity parameter
k from Theorem 1.3. Then stability estimate (6.3) implies that on the event in (6.19),
we have

‖�−�0‖L2(M) ≤ (A′δn)μ, (6.20)

where A′ incorporates the constant from the stability estimate and (in the notation of
(6.3)) μ = inf μ(�,�0) > 0, where the infimum is taken over {� : ‖�‖Ck (M) ≤ A}.
The proof is then finished as in case (A).

For g = glm(R), (6.19) remains true, but one has to take some care in its derivation,
as the scattering data now assume values in the non-compact group Gl(m,C) and
the forward estimates are only uniform on L∞-balls. We will explain the necessary
changes in the following:

As for the small ball probabilities, (6.11) has to be replaced by

− log�n(‖�‖L2(M) ≤ δn, ‖�‖L∞ ≤ A) �A nδ2n, (6.21)

which follows from (6.11) and the Gaussian correlation inequality [11]

�n(‖�‖L2(M) ≤ δn, ‖�‖L∞ ≤ A) ≥ �n(‖�‖L2(M) ≤ δn)�n(‖�‖L∞(M) ≤ A),

noting that − log�n(‖�‖L∞(M) ≤ A) = o(1) as n →∞ due to Fernique’s theorem.
Mutatis mutandis, the same arguments as in case (A) imply (6.12).

Next, the comparison between Hellinger- and L2-distance in the general case (and
with essentially the same proof) takes the form:

ω(‖�‖L∞(M))−1‖C� − C�0‖L2(∂+M) � h(pn�, p
n
�0
) � ‖C� − C�0‖L2(∂+M)

(6.22)

for a non-decreasing function ω : [0,∞) → [0,∞) coming from (6.2). As we use
the lower bound only on the event F ′(A) = {‖�‖Ck (M) ≤ A}, this adjustment is
unproblematic, as ω can be controlled.

Finally, we note that the proof of (6.13) is completely independent of the forward
estimates and only uses the upper bound in (6.22). In particular, [14, Thm.5.13] can
again be used to conclude (6.19), as desired. ��
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7 Appendix

7.1 Extensions

Let M be a compact manifold with boundary. By an ‘extension’ of M , we mean a a
larger manifold N (of the same dimension) with interior containing M as embedded
sub-manifold. For example by glueing two copies of M along the common boundary,
one can always extend M to a closed manifold.

If N is an extension of M , then smooth functions and tensors on M can themselves
be extended to N , and one can ask them obey certain geometric or functional analytic
properties. We record here two useful constructions:

Lemma 7.1 (No-return extension) Suppose (M, g) is a compact Riemannianmanifold
with strictly convex boundary. Then there exists a complete extension (N , g) with the
property that geodesics that leave M never re-enter and do not get trapped in N\M.
Precisely, if (x, v) ∈ ∂−SM and K ⊂ N is compact, then γx,v(t) ∈ N\M for all
t > 0 and γx,v(t) ∈ N\K for t � 1 sufficiently large.

Proof Asa smoothmanifold, N is obtained byglueingM and the cylinder [0,∞)×∂M
along ∂M . The metric on M can then be extended smoothly to all of N such that on
[0,∞)s × ∂M it takes the form g̃ = ds2 + h̃s , where (h̃s) is a family of Riemannian
metrics on ∂M , depending smoothly on s ≥ 0.

We now construct (hs), agreeing with h̃s for s near zero, such that g = ds2 + hs
satisfies the desired properties. First note that 2∂s h̃s |s=0 is positive definite, as it
coincides with the second fundamental form of ∂M . Thus, by continuity, there is an
ε > 0 such that ∂s h̃s is positive definite for all 0 ≤ s < 2ε. Let ξi : [0,∞) → [0, 1]
(i = 1, 2) be smooth and monotonic with ξ1+ξ2 = 1 and 1[0,ε) ≤ ξ1 ≤ 1[0,2ε) and set
hs = ξ1(s)h̃s + sξ2(s)k, where k is a Riemannian metric on ∂M that will be chosen
later. We want to arrange that

hs > 0 and Is ≡ 2∂shs > 0 for all s ≥ 0, (7.1)
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where Is is the second fundamental form of {s} × ∂M ⊂ (N , g) and ‘>’ is to be
understood in the sense of positive definiteness of symmetric bilinear forms on T ∂M .
First note that, since ξ2(s) = 0 for s < ε, we have hs ≥ ξ1(s)h̃s + εξ2(s)k > 0 for all
s ≥ 0. Next,

∂shs = ξ ′2(s)
(
sk − h̃s

)
+

[
ξ1(s)∂s h̃s + ξ2(s)k

]
, (7.2)

and we can argue as follows: As (h̃s/s : ε ≤ s ≤ 2ε) is a compact family of
Riemannian metrics, it can be majorised by some k in the sense that sk − h̃s ≥ 0 on
[ε, 2ε]. Hence, since ξ ′2 is non-negative with support contained in [ε, 2ε], the first term
in (7.2) is non-negative. The second term is easily seen to be positive, and thus, (7.1)
follows.

Let us verify that (N , g) is indeed complete and has the no-return/non-trapping
property. Take p : N → R a smooth function, non-positive on M and agreeing with
projection onto the first factor on [0,∞) × ∂M ⊂ N . Then p is proper and |dp|g
is bounded, which implies that (N , g) must be complete. Further, the Hessian of p
on [0,∞) × ∂M is given by the second fundamental form in (7.1), and thus, p is
strictly convex. Then for (x, v) ∈ ∂−SM , the function q(t) = p(γx,v(t)) (t ≥ 0)
satisfies q(0) = 0, q ′(0) > 0 and further, as long as q(t) ≥ 0, we must have q ′′(t) =
Iq(s)[γ̇ (t), γ̇ (t)] ≥ c > 0. This shows that q(t) ≥ 0 for all t ≥ 0 and that q is
unbounded. This immediately implies the no-return property (γ (t) ∈ {p ≥ 0} for
t ≥ 0) and shows that γ is not trapped. ��

Lemma 7.2 (Seeley, 1963) Suppose M is a compact manifold with boundary and N
is an extension. Then there exists a linear operator E : C∞(M)→ C∞(N ) which is
continuous and has closed range in the all of the following functional settings:

E : Hs(M)→ Hs(N ) (s ∈ R), E : Ck(M)→ Ck(N ) (k ∈ Z≥0 ∪ {∞}) (7.3)

7.2 Sobolev spaces

Let M be a compact manifold (with or without boundary) of dimension d ≥ 1 and
O ⊂ M an open set. We collect here some well-known results (interpolation inequal-
ity, metric entropy bound) concerning the Sobolev spaces Hs(O) (s ∈ R), briefly
discussing their proofs in the manifold case, which is avoided in many available ref-
erences.

To avoid any notational ambiguity, we first discuss our definition of Hs(O), assum-
ing the notion of Hs(N ) for a closedmanifold N to be known (cf. [26, Ch.4.3]). ForM
a compactmanifoldwith boundary,we then let Hs(M) = {u = U |M int : U ∈ Hs(N )},
where N is any closed extension of M . Similarly, elements in Hs(O) are defined as
restrictions (to O int) of functions in Hs(M).

Lemma 7.3 Suppose that ∂M = ∅. Then there are smooth functions ϕk : M → R,
(k = 1, 2, . . . ) such that for all s ∈ R, an equivalent norm on the Sobolev space
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Hs(M) is given by

‖u‖2s =
∑

k≥1
k2s/d |〈u, ϕk〉|2, u ∈ Hs(M). (7.4)

Proof Let g be a Riemannian metric on M , then the differential operator 1+ g has
positive principal symbol and its spectrum consists of eigenvalues 0 < λ21 ≤ λ22 ≤
· · · → ∞. Let ϕk (k = 1, 2, . . . ) be the corresponding eigenfunctions (normalised to
‖ϕk‖L2(M) = 1), then the Lemma follows from standard spectral theory.
Let us nevertheless sketch the main ideas leading to the result: For u ∈ D ′(M) one
writes ûk = 〈u, ϕk〉 for its Fourier-coefficients, and formally defines

Psu
def=

∑

k≥1
λsk ûkϕk, s ∈ R. (7.5)

A priori it is not clear that the operator Ps is well defined, but the theory of complex
powers of elliptic operators (cf. Theorem 10.1, Theorem 10.2, Proposition 10.3 and
Theorem 11.2 in [23]) yields that Ps is a classical, elliptic ψdo of order s with

P2 j = (1+ g)
j for j ∈ Z≥0, Ps Pt = Ps+t for s, t ∈ R (7.6)

and the series in (7.5) converges in D ′(M). In particular, ‖u‖′s = ‖Psu‖L2 =
(∑

k≥1 λ2sk |ûk |2
)1/2

defines a compatible norm on Hs(M), and the result follows
from the the asymptotic equivalence λ2k ∼ k2/d (Proposition 13.1 in [23]). ��
Lemma 7.4 (Interpolation inequality) Suppose s0 < s1 and let sθ = (1− θ)s0 + θs1
(θ ∈ [0, 1]). Then for all u ∈ Hsθ (O) we have

‖u‖Hsθ (O) ≤ C‖u‖1−θHs0 (O)‖u‖θHs1 (O) (7.7)

for a constant C > 0 only depending on O, s0, s1.

Proof Extend M to a closed manifold N , such that O ⊂ M ⊂ N . Extend u to a
function U ∈ Hsθ (N ) and consider the following inequality (for the norms ‖ · ‖s on
Hs(N ) defined in the previous Lemma):

‖U‖2sθ =
∑

k≥1

(
k2s0/d |Ûk |2

)1−θ (
k2s1/d |Ûk |2

)θ

≤
⎛

⎝
∑

k≥1
k2s0/d |Ûk |2

⎞

⎠

1−θ ⎛

⎝
∑

k≥1
k2s1/d |Ûk |2

⎞

⎠

θ

= ‖U‖2(1−θ)s0 ‖U‖2θs1

Here, Ûk = 〈U , ϕk〉 andwehave used theHölder inequality for the exponents 1/(1−θ)
and 1/θ . This implies that ‖u‖Hsθ (O) ≤ ‖U‖(1−θ)s0 ‖U‖θs1 for all extensions U and the
Lemma follows by choosing U = Eu as in Lemma 7.2. ��
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Next, recall the notation N (X , d, ε) for the smallest number of ε-balls needed to
cover a (totally bounded) metric space (X , d). Then,

Lemma 7.5 (Metric entropy bound) Let Bs ⊂ Hs(M) (s > 0) be the unit ball. Then,
as ε → 0, we have log N (Bs, ‖ · ‖L2(M), ε) = O(ε−s/d).

Proof Using the representation as sequence space fromLemma7.3, the lemma is easily
proved in the case ∂M = ∅ by the same arguments as in [8, Theorem 4.3.36]. The case
∂M �= ∅ follows immediately by extending M to a closed manifold N and realising
Hs(M) as closed subspace of Hs(N ) via an extension operator E as in Lemma 7.2.

��
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