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ABSTRACT  

Functionally graded concrete, where multiple mixes are layered in structural elements, is a 

promising technology for minimising cement use. However, a challenge when fabricating wet-

on-wet graded concrete is the control of the fresh state deformations of multiple mixes cast into 

the same mould.  Horizontally cast elements with two different concrete mix layers were 

investigated to ascertain the influence of mix density, workability and layer sequence on the 

intended material placement.  Horizontal layers were achievable unless the workability of the 

top layer was much stiffer than that of the bottom, or the top layer was denser and both mixes 

were fluid.  The findings underpin opportunities for the exploitation of lower carbon materials 

and cement efficiency. 
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1 INTRODUCTION 

Cement is a key constituent of concrete, the most used construction material in the world. The 

production of cement alone accounts for 5-7% of global human-made carbon dioxide emissions 

[1],[2]. With projections that the number of buildings will double by 2060 [3], it is crucial that 

we pursue technologies that allow us to meet building and infrastructure demands while 

ensuring that cement is used as efficiently as possible.   

 Structural concrete elements have traditionally been cast with a single homogenous 

concrete mix. By contrast, Functionally Graded Concrete (FGC) elements explore the idea of 

utilizing multiple mixes in a single element. These mixes are spatially organized within the  

volume of a structural element such that the location of each unique mix is determined to satisfy 

performance requirements.  For example, to improve the durability [4],[5],[6],[7] high 

performance cementitious materials are located in peripheral regions to reduce permeability 

and improve the cracking resistance.  To enhance the mechanical response, flexural members 

are designed with a layer of strain-hardening fibre reinforced concrete for crack width reduction 

[4].  

In recent years, functional grading has experienced a resurgence as a means to develop 

more environmentally sensitive concrete structures. This has typically been done by reducing 

either the cement content [8] via locating concrete mixes with high cement contents only where 

they are truly required, or the overall element weight [9] by concentrating light weight mixes 

wherever possible. The decarbonisation opportunities that FGC present are expected to grow 

as low carbon concretes improve and gain wider acceptance. Low carbon mixes offer 

significant CO2 emission reductions [10] but are not always suitable for certain applications if 

they are the only mix used in an element. But if low carbon mixes are judiciously combined 

with other mixes in FGC solutions, these limitations can potentially be overcome to expand the 
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landscape for utilisation. To exploit this opportunity, FGC manufacturing processes must be 

compatible with concrete mixes that possess a variety of properties, largely in terms of 

workability, density, and aggregate size/type.  

Digital concrete manufacturing developments [11], such as 3D printing [12] or multi-

mix spraying [9], present exciting options for constructing FGC elements. However, the 

concrete mixes involved typically need to be fine-tuned to suit the manufacturing processes in 

terms of properties such as the rheology [13] and the maximum aggregate size [14],[15],[16]. 

This can increase the amount of binder content in the mix and lead to higher cement contents.  

The associated construction processes entail either no formwork (3D printing) or bespoke 

surface forms (spraying).  If instead conventional mould filling formwork is retained, bulk 

casting techniques [17] can be used.  The resulting accommodation of a broad scope of concrete 

fluidities and concrete types in the manufacturing process allows one to then truly design the 

concrete mixes in the FGC element for hardened performance and environmental impact rather 

than the strict requirements of the fabrication process itself.  

By accepting the use of formwork, the realization of FGC can be approached in a spectrum of 

ways that range from wet-on-hard casting to wet-on-wet casting [18]. Wet-on-hard is described 

as the casting of a fresh layer of concrete on top of, or beside, a previously placed volume of 

concrete that has had sufficient time to set. This process is commonly used today where in-situ 

concrete is placed against precast elements [19],[20],[21]. A key advantage of the wet-on-hard 

approach is that the hardened FGC geometry ends up as intended.  However, this method 

increases production times, and the interface adhesion between concrete layers can be 

negatively impacted due to a lack of cement hydration and/or intermixing [22],[23]. 

Conversely, wet-on-wet casting is a process where multiple mixes are cast into the same 

element within a small timeframe, thereby allowing the mixes to harden somewhat together.  

https://doi.org/10.1016/j.conbuildmat.2020.118514


Brault, A. & Lees, J. M. (2020). Wet casting of multiple mix horizontally layered concrete elements 

Construction and Building Materials. 247, 118514                 

https://doi.org/10.1016/j.conbuildmat.2020.118514 
 

5 
 

Horizontally layered FGC elements have been fabricated with a short delay (20-60 minutes) 

between the deposition of each concrete mix layer [4],[5],[7],[24]. The slight delay between 

castings (at least 20 minutes) allows for the base layer to experience a degree of thixotropic 

structuration prior to receiving a concrete layer on top, ensuring that the hardened layer 

geometries intended by the researchers were achieved. This approach captures the mechanical 

benefits of each mix undergoing cement hydration and shrinkage essentially in parallel. 

However, thixotropic structuration has been found to reduce the mechanical shear strength of 

a smooth interface between sequential layers of horizontally cast self-compacting concrete by  

30-40% for a delay time of 60 mins [25]. There is thus a need for more rigorous definitions of 

the mix parameters, rheological characteristics, density differentials, processing drivers and 

allowable setting times to inform what constitutes an acceptable delay between layers to attain 

a specified hardened state performance.   

‘Immediate’ wet-on-wet casting of layers (less than ~1 minute delay between pours) 

can eliminate these mechanical reductions by avoiding structurisation and invoking cement 

hydration across layers [23]. Shorter production times are a further advantage. However, 

‘immediate’ wet-on-wet casting presents a clear challenge: the fluid nature of the fresh concrete 

mixes that are placed into the same mould at essentially the same time may lead to hardened 

layered geometries that significantly deviate from the intended design. For example, it has been 

shown that the placement of side-by-side vertical columns of two different mixes may become 

unstable [26]. Figure 1 presents a schematic of this problem for two horizontal layers cast into 

the same mould. The different mix densities, time-dependent rheologies, and process controlled 

factors can all cause the mixes to flow in unintended manners that may or may not result in a 

satisfactory element layout.  For example, a denser top layer concrete may create deviations at 

the interface if both concrete mixes are quite fluid.  So while a designer may wish to deposit 
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different mixes in fairly regular horizontal layers, this is only achievable if the concrete 

properties and fresh state behaviours are compatible and their interactions are well understood.  

 

Figure 1. Schematic of a horizontally layered FGC with two different concrete mixes demonstrating 
potential hardened outcomes compared to the intended geometry.  
 

There has been no research to date to address the specific challenge of understanding 

the local flow of concrete at the interfaces between multiple mixes in a horizontally layered 

FGC. Yet the ability to isolate mix combinations that lead to satisfactory hardened layer 

geometries underpins the adoption of wet-on-wet casting of horizontally layered FGC. The aim 

of this work is therefore to investigate horizontally layered FGC elements in the fresh state to 

determine the effects of mix density and workability on the profile of the interface between 

different concrete mixes, and to discover a framework for predicting compatible mix 

combinations for wet casting horizontal layers. The underlying principles provide a means to 

identify a wide breadth of non-conventional and low-carbon concrete mixes that could be used 

in combination with other mixes to maximise environmental and performance enhancements, 

while also maintaining fast production times and optimal interface adhesion.   

2 EXPERIMENTAL PROGRAM 

 Concrete elements comprised of two horizontally cast concrete layers with different 

mixes and layer sequences were investigated. The rheology/workability and density of the 
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concrete layers were varied to investigate their effects on the mix distribution in the hardened 

layered specimens. The concrete density was modified by incorporating lightweight aggregates 

that were roughly 50% of the specific gravity of the normal aggregates used, while the concrete 

workability was adjusted by including various doses of Super Plasticizer (SP), as a technique 

for increasing the slump of otherwise identical mixes [27].  Each mix was used as either a top 

or bottom layer to ascertain the influence of the stacking sequence.  

2.1 Concrete Mixes 

 A total of 18 concrete mixes were designed with different densities and rheologies. The 

mix names, constituents, density measurements, and slump measurements are presented in 

Table 1. Half of the mixes were termed as normal concrete (NC), which contained standard 

coarse aggregate, with a target density of 2300 ± 100 kg/m3. The other 9 mixes were termed as 

light weight aggregate concrete (LWAC) with a target density of 1950 ± 100 kg/m3.  The 

LWAC mixes were similar to the NC mixes except that the volume of coarse aggregate was 

replaced with Lytag Concrete Aggregates. The mixes of each type (NC and LWAC) were 

designed to span a wide range of concrete slump values, encompassing stiff (slump ~50 mm) 

to highly fluid (slump ≥ 250 mm) fresh concrete mixes. To vary the workability of both the NC 

and LWAC concrete mixes, a poly-carboxylate ether (PCE) superplasticizer was added. Each 

mix name has a numeric identifier at the start followed by either NC or LWAC (e.g. 1NC), 

where the number corresponds to the layered specimen that the mix was subsequently used to 

cast (discussed further in the next section).  The density of the mix constituents and their 

properties are presented in Table 2. All of the NC mixes contained a red mortar dye based upon 

powdered oxide pigments (see Tables 1 and 2). This was to clearly distinguish between the NC 

(which became concrete with a pink hue) and the LWAC (which was typical concrete grey) at 

all stages of the experimental campaign. 

https://doi.org/10.1016/j.conbuildmat.2020.118514


Brault, A. & Lees, J. M. (2020). Wet casting of multiple mix horizontally layered concrete elements 

Construction and Building Materials. 247, 118514                 

https://doi.org/10.1016/j.conbuildmat.2020.118514 
 

8 
 

Table 1. Concrete mix designations, constituent proportions, densities, and slump measurements. 

Mix Water 
[kg/m3] 

Cement 
[kg/m3] w/c Sand 

[kg/m3] 

Coarse 
Agg. 

[kg/m3] 

Lytag 
[kg/m3] 

SP 
[%] 

Red 
Dye 

[kg/m3] 

Density 
[kg/m3] 

Slump 
[mm] 

1NC 180 514 0.35 605 1076 0 0 10 2380 15 
1LWAC 180 514 0.35 605 0 538 1 0 1900 230 

2NC 205 586 0.35 588 1045 0 0 10 2210 130 
2LWAC 180 514 0.35 605 0 538 0 0 2040 80 

3NC 205 586 0.35 588 1045 0 1.5 10 2300 270 
3LWAC 180 514 0.35 605 0 538 0 0 2030 60 

4NC 205 586 0.35 588 1045 0 0.3 10 2340 30 
4LWAC 180 514 0.35 605 0 538 1.5 0 1920 270 

5NC 205 586 0.35 588 1045 0 1.6 10 2200 275 
5LWAC 180 514 0.35 605 0 538 1.5 0 1900 280 

6NC 205 586 0.35 588 1045 0 0.5 10 2250 145 
6LWAC 180 514 0.35 605 0 538 1.5 0 1980 275 

7NC 205 586 0.35 588 1045 0 1.8 10 2200 265 
7LWAC 180 514 0.35 605 0 538 0.3 0 1880 220 

8NC 180 514 0.35 605 1076 0 0 10 2380 20 
8LWAC 150 429 0.35 638 0 567 0 0 2060 20 

9NC 180 514 0.35 606 1076 0 1.2 10 2320 130 
9LWAC 150 429 0.35 638 0 567 1.5 0 1940 135 

 
Table 2. Concrete mix constituent densities. 

Constituent Description Density [kg/m3] 
Coarse Aggregate 

<10 mm, uncrushed 2600 

Lytag Concrete Aggregates (LWA) 
4-14 mm, uncrushed 1300 

Sand 
60% passing 600 µm sieve, <4 mm 2600 

Cement 
CEM II/A-LL strength class 32.5R 3200 

Water 1000 
Super Plasticizer (SP) 

Polycarboxylate ether (PCE)  1100 

Red Concrete Dye 3000 
 

The mixes were designed to have a low water to cement ratio (w/c) of 0.35, as the 

effectiveness of SP decreases with increasing w/c ratios [28]. The NC mixes were designed 

using the Building Research Establishment (BRE) mix design method [29] to produce slump 

values between 30-60 mm. The LWAC mixes were also designed using the BRE method 

assuming normal aggregates but to achieve lower slump values of 10-30 mm. For the LWAC 

mixes, the volume fraction assigned to coarse aggregates in the design process was replaced 

with the equivalent volume of light weight aggregates. It should be noted that the LWAC mixes 
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were designed for a slightly stiffer slump range, as the more spherical shape of the light weight 

aggregates was expected to lead to more workable concrete; this was done as a correction effort. 

It was found through preliminary studies performed by the authors that by gradually adding SP 

to these baseline mixes, slump values ranging from <50 mm to >250 mm could be achieved 

without segregation, which is indeed an issue associated with the overdosing of SP [27]. This 

enabled the normal and light weight mixes to be designed for the full range of slump values 

while maintaining the same w/c ratio and mix composition. However, for some of the stiffer 

mixes, 1NC, 8NC, 9NC, 8LWAC, and 9LWAC, a slight water content reduction was still 

necessary.  

The NC mixes were made in an inclined drum mixer and the LWAC mixes were made 

in a horizontal drum mixer. Each mix with the same numeric denotation (e.g. 1NC and 

1LWAC) were made simultaneously. The slump values for each mix were measured 

immediately after mixing using the ASTM Abrams cone (height of 300 mm, bottom radius of 

200 mm, and top radius of 100 mm) according to the ASTM standard C143/C143M – 15a [30]. 

The density of each mix was measured in the fresh state by compacting the concrete into a 1 

litre volume using a vibrating table and subsequently measuring its weight.  The target density 

windows for both the NC and LWAC mixes were met with the exception of 8LWAC, which 

had a density that was slightly higher than the maximum target density. 

Figure 2 is a plot of mix density versus slump for all 18 mixes. The mixes have been 

visually divided into six different zones (each containing 3 mixes) based upon both their 

density and their slump: Fluid LWAC and NC (slump>250 mm), Medium LWAC and NC (100 

mm < slump< 250 mm), and Stiff LWAC and NC (slump<100 mm).  These designations 

helped inform the specimens that were fabricated for the study, which are discussed in the next 

section. As expected, the mixes with a lower water content (1NC, 8NC, 9NC, 8LWAC, and 

https://doi.org/10.1016/j.conbuildmat.2020.118514
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9LWAC) are denser than the other samples in their respective zones (e.g. 9NC versus 2NC and 

6NC in the Medium NC rectangle), as the volume of binder compared to aggregates is reduced 

(the binder is less dense than the aggregates).  

 

Figure 2. Concrete mix slump measurements versus density.  

The 28-day compressive strengths of selected mixes are also shown in Figure 2. For 

each mix, the results of three cubes with a 100 mm side length were averaged, and these values 

are presented. Except for the addition of SP, mixes 2LWAC (51MPa) and 4LWAC (50 MPa) 

have the same material composition, as do mixes 3NC (43 MPa) and 4NC (41 MPa).  The 

similarity of the compressive strengths of these comparator mixes suggests that the SP did not 

influence the strength.  Mix 8LWAC had a similar strength to that of 4LWAC and 2LWAC but 

the strength of Mix 8NC was 8-10 MPa larger than that of 3NC and 4NC.  As the water to 

cement ratios of the mixes were identical it is thought that any strength differences are a 

reflection of small variations due to differing mix proportions (see Table 1). 

 

2.2 Mix Layer Combinations 

 The concrete mixes were used in combination to create two-layered specimens.  Figure 

3 presents a visual representation for the layered concrete specimens in the form of a graphical 
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icon matrix. The icons are based upon the shapes of concrete slump tests (e.g. shallow ellipse 

for Fluid, trapezoid for Stiff), while NC mixes are pink and the LWAC are grey. The numerical 

indicator at the start of the designation refers to the mix number that the specimen was 

constructed with. For example, specimens 9A and 9B were fabricated with mixes 9NC and 

9LWAC.  The letter indicator following the number refers to which of the two mix density 

types was cast on top, where ‘A’ signifies that NC is on top, and ‘B’ signifies that LWAC is 

on top (see Figure 3). The geometry for all specimens is shown in Figure 3. Each sample was 

a rectangular prism with a length of 500 mm, a height of 100 mm, and a width of 100 mm, 

which were made by casting the concrete mixes into timber moulds.  The specimens were all 

comprised of two horizontal layers (details of how these were cast is discussed in the next 

section), one of each density type and each with a height of 50 mm. 

 The matrix of 18 specimens covers a large space of horizontal layering possibilities. 

This is seen in Figure 3, where each of the six mix types assigned in Figure 2 (e.g. Stiff NC, 

Fluid LWAC, etc.)  is cast both above and beneath all three workability classes of the other 

density type. In this way, the combinations span from 4A (top left corner in Figure 3), which 

is a Stiff NC on top of a Fluid LWAC, to 4B (bottom right corner in Figure 3), which is a Fluid 

LWAC on top of a Stiff NC. Intuitively, 4A is likely to be a worst-case scenario regarding the 

expected deviation from a horizontal interface between mixes, while 4B is likely a best-case 

scenario. The other 16 combinations capture cases in between.  

https://doi.org/10.1016/j.conbuildmat.2020.118514
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Figure 3. Layered concrete specimens.  

2.3 Layered Concrete Casting Device 

 Figure 4 presents a schematic of the concrete casting device that was manufactured for 

the purposes of this experimental program. The device deposits controlled volumes of concrete 

along the longitudinal length of the rectangular specimens at a specified rate, while also being 

able to accommodate a wide range of concrete rheologies. Incorporating a broad scope of 

concrete fluidities and larger sized aggregates (> ~3mm) was a priority in the development of 

this device so that ideally the mix design would not be governed by the casting process, but for 

the desired performance and environmental advantages.  

The device had five aluminium cylinders that were vertically oriented and placed in 

sequence. The outer and inner diameters of the cylinders were 100 mm and 94 mm, 

respectively. This led to the length of all five cylinders configured side-by-side to be 500 mm, 

which was equal to the length of the concrete specimens.  A rectangular aluminium panel was 

placed immediately beneath all five cylinders and could retract along the longitudinal direction. 

In this way, the concrete rests within the cylinders until the slider is retracted. The height of 

each cylinder was 100 mm, leading to an inner cylinder volume of ~0.7 litres. To cast a layer 
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with a height of 50 mm in each specimen required a compacted concrete layer volume of 2.5 

litres, or one 0.5 litre volume in each of the five cylinders.  

 

Figure 4. Concrete volume-control deposition device. 

2.4 Casting Procedure 

 A step-by-step schematic of the casting process is presented in Figure 5. First, the lower 

layer mix was placed into the placing device’s cylinders, with the weight of concrete that 

corresponds to a compacted volume of 0.5 litres in each cylinder. Once the device was filled, 

the sliding panel was used to deposit each volume of concrete into the timber mould at a 

controlled rate of 0.5 litres/second (step 1 in Figure 5). The concrete was dropped from above 

the form work as shown in Figure 5.  Next, the bottom mix was vibrated on a vibration table 

until level (vibration details discussed later).  The second mix layer was placed within 1 minute 

of when the first layer was vibrated level and was deposited on top of the bottom layer at 0.5 

litres/s. The top layer was then vibrated until level with the top of the timber mould. This 

process was the same for all specimens and enabled each to be cast in a consistent manner 

despite the differences in concrete rheology and density of the mixes involved.   

 The entire casting process was complete within 5 minutes from the mixing of each 

concrete batch and the slump measurements were performed concurrently. This was to ensure 
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that the workability characterization (slump in this case) of each concrete was a good 

representation of the concrete’s behaviour throughout the casting process. The fresh behaviour 

of concrete is time-dependant, and the yield stress of the concrete increases with time due to 

thixotropy (a reversible structuration that occurs when the concrete mix is at rest) and cement 

hydration (an irreversible chemical reaction). Although cement hydration commences as soon 

as water is mixed with cement, its effect on the concrete’s yield strength only becomes apparent 

around 45 minutes following mixing [31]. Thus the concrete’s fresh behaviour is likely not 

impacted by hydration during the process presented here. Thixotropy, however, does indeed 

influence the yield stress of the fresh concrete on a shorter time-scale, hence the motivation to 

perform the casting process and characterization measurements as soon as possible in this case.  

 

 

 Figure 5. Casting process. 

 

It was not possible to adjust the frequency or vibration amplitude of the vibration table 

used in this study. These were measured using an accelerometer (Figure 5) to be 50 Hz and 

0.15 mm, respectively. As previously mentioned, the duration that each concrete layer was 
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vibrated for varied as vibration in each case was halted once the layer was visually levelled. 

This process was not dissimilar to that of a “Vebe Consistometer” workability test. The time 

that each layer was vibrated for is shown in Table 3.  

 

Table 3. Vibration times. 
Vibration time [s] 

Specimen 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 

Bottom layer 6 9 9 5 8 4 4 9 3 2 4 4 3 3 15 18 7 8 

Top layer 5 5 4 3 0 4 4 3 2 1 3 2 1 3 16 14 4 7 

 

2.5 Measurement of Layer Profiles  

One week following the casting of each specimen, the hardened specimens were cut 

along three planes to provide insight on the final shape of the hardened concrete layers, as 

shown in Figure 6. Cut 1 was a vertical plane in the centre of each specimen along the 

longitudinal axis, Cut 2 was a transverse vertical plane 100 mm from the specimen’s end 

immediately between two of the deposited concrete volumes, while Cut 3 (250 mm from the 

end) was in the centre of the 3rd concrete volume deposited for each layer (mid-length). Each 

cut face was photographed with a high-resolution camera and subsequently converted into a 

digital schematic using CAD using a similar method to that of Torelli and Lees [26]. Two key 

measurements were taken (see Figure 6): 1) the maximum amount the interface boundary 

deviated from the mid-height (50 mm from bottom) of the specimen in the upward vertical 

direction (denoted as U), and 2) the maximum amount the interface boundary deviated from 

the mid-height of the specimen in the downward vertical direction (denoted as L). The sum of 

U and L for each cut represents the total vertical extent of the interface (denoted as Int in Figure 

6).   
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Figure 6. Specimen cut locations with example Cut 1. 

3 RESULTS AND DISCUSSION 

3.1 Concrete Rheology 

 The behaviour of fresh, or wet, concrete is often described using a Bingham material 

model [32], which is presented in Equation 1: 

𝜏𝜏 = 𝜏𝜏𝑜𝑜 + 𝜂𝜂�̇�𝛾                                                    (1) 

where τ is the shear stress, τo is the yield stress, η is the plastic viscosity of the fluid, and γ̇ is 

the shear rate. In this case, concrete that experiences a shear stress larger than its yield stress 

will begin to flow. An estimate of a concrete’s yield stress in the fresh state is likely to be 

important in understanding the flow interaction of wet concrete layers, and more specifically 

when flow occurs and when it is stable [26],[33].  

 Slump and slump flow are indicators of internal resistance mechanisms within fresh 

concrete, but are not pure measures of yield stress themselves. However, due to the wide-spread 

use and acceptance of slump and slump flow, especially in practical contexts, many 

relationships have been developed to predict yield stress from these measurements. For 

instance, Roussel [34] and Hu et al. [35] both proposed linear relationships to predict a 

concrete’s yield stress. Roussel’s function is suitable for slump values between 50 mm and 250 

mm. Chidiac et al. [36] found that the yield stress predictions for slump values greater than 250 
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mm have an undesirable amount of scatter. To address this limitation, Chidiac et al. [36]  

proposed the idea of estimating a concrete’s yield stress using slump flow measurements and 

slump measurements (note: the yield stresses were measured using a BTRheom concrete 

rheometer). Their prediction is presented in Equation 2, for concretes spanning a wide range of 

slump values. 

𝜏𝜏𝑜𝑜 = �300 - S
540 + 19800

Sf 
2 �ρ                                                 (2) 

where S is slump, Sf is slump flow, and ρ is the concrete density. As the concrete mixes in the 

current work also encompassed a wide range of slump values (15 mm to 280 mm), Equation 2 

was utilized to predict the concrete yield stress.  However, slump flow values were largely only 

obtained for mixes of slumps greater than 250 mm (as is common practice), except for one mix 

(7LWAC) whose slump and slump flow values were measured to be 220 mm and 360 mm, 

respectively. It was therefore necessary to relate the measured slump values to a corresponding 

slump flow prediction for any mix where the true slump flow was not measured. Equation 3 

[37] was used for this purpose.   

S = 300−  10000000
s𝑓𝑓2                                                     (3) 

This relationship is plotted in Figure 7a along with the experimental data from the 7 

mixes where slump flow was indeed measured in this work.  Figure 7a shows good agreement 

with the measured data, thus Equation 3 was used to predict slump flow from the slump 

measurements for the remaining 11 mixes. With slump values and slump flow values (7 mixes 

measured, 11 predicted) for all 18 mixes, Equation 2 was then used to estimate the yield stress 

of all 18 mixes, and these yield stresses are shown in Figure 7b.  The relationship between 

slump and yield stress is broadly linear. However, it can be seen that the NC mixes show higher 

yield stress values for the same slump. This makes sense as the density of the mix is the driving 
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force causing the concrete to slump in a slump test, thus to maintain the same slump as the 

lighter mix, the denser mix must possess more internal resistance to flow.  

                      
            a)               b) 

Figure 7. Fresh state measurements of concrete mixes: a) slump vs. slump flow compared to Chidiac 
et al. [37] relationship, and b) Chidiac et al. [36] prediction of yield stress for all 18 concrete mixes. 
 
3.2 Hardened Layered Specimen Results 

The layered specimen results are summarised in Table 4. Schematic versions of all 54 

cuts are presented (3 cuts for each of the 18 specimens) along with the measured maximum 

interface depth (Intmax) for each specimen. The Intmax term is determined for each specimen by 

analysing each of the three cuts and summing the largest upper deviation from mid-height (U) 

with the largest lower deviation from mid-height (L) (where U and L are defined in Figure 6). 

An Intmax measure of 100 mm would signify that the interface reaches the top and bottom of 

the specimen at some point on any of the vertical planes where each of the 3 cuts were taken. 

By contrast, an Intmax measure of 0 mm would mean that the interface lies exactly at the mid 

height of the specimen (50 mm above the bottom) on all of the vertical planes where each of 

the 3 cuts were taken.  
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Table 4. All specimen results, including CAD schematics of every cut. 
 
Notes: For any difference (for example Δ ρ) the properties of the top mix are subtracted from the 
bottom mix. 

 
  
                    Cut 1                      Cut 2   Cut 3 

 
Icon 

Intmax 
[mm] 

Δ ρ 
[kg/m3] 

Top τo 
[Pa] 

Bottom τo 
[Pa] 

Δ τo 

[Pa] 

1A  
      66 -480 2433 509 -1924 

1B 
       10 480 509 2433  1924 

2A 
       25 -170 1439 1719 280 

2B 
       

32 170 1719 1439 -280 

3A 
       10 -270 254 1866 1612 

3B 
       

52 270 1866 254 -1612 

4A 
       

79 -420 2420 228 -2192 

4B 
       12 420 228 2420 2192 

5A 
       79 -300 246 157 -89 

5B 
       21 300 157 246 89 

6A 
       55 -270 1336 208 -1128 

6B 
       9 270 208 1336 1128 

7A 
       16 -320 263 565 302 

7B 
       20 320 565 263 -302 

8A 
       

20 -320 2402 2087 -315 

8B 
       

16 320 2087 2402 315 

9A 
       10 -380 1511 1226 -285 

9B 
        13 380 1226 1511 285 
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The specimen mix layer icons are included in Table 4 using the symbols introduced in 

Figure 3. For example, a Fluid NC on a Stiff LWAC is a pink shallow ellipse on top of a grey 

trapezoid, which is Specimen 3A here. Table 4 also shows the difference in density between 

the two mixes, the yield stress of the top mix, the yield stress of the bottom mix, and the 

difference between the yield stress of the top and bottom mixes (top subtracted from bottom).  

In general, the results in Table 4 are largely promising regarding the potential for wet 

casting horizontal layers. 13 of the 18 specimens have measured Intmax values of 32 mm or less 

(~3 × coarse aggregate, or ± ~1.5 × coarse aggregate), and 11 of those 13 have measured Intmax 

values of 21 mm or less (~2 × course aggregate, or ± ~1 × coarse aggregate). Without surface 

finishing, the best interface boundary achievable would likely be somewhere in the order of 

the size of a single aggregate, indicating that respectable horizontal layering was achieved in 

these cases. The hardened boundaries between the top and bottom mixes for these 13 mixes are 

also visually suitable at the cut locations and agree with the intended layered geometry well. 

Lastly, and somewhat counterintuitively, 5 of the 13 passable specimens just described were 

cast with the denser concrete (NC) on top.  

For the 5 of the 18 specimens that show interfaces with more significant deviations 

from the specimen mid-height (1A, 3B, 4A, 5A, and 6A), it can be seen that the interface shape 

fluctuates above and below mid-height. Numerically, the Intmax term for all of these 5 specimens 

is also larger than 50 mm. Four of these have a noticeably similar interface shape in Cut 1 (1A, 

3B, 4A, and 6A), where the casting process of dropping 5 discrete concrete volumes along the 

length of the specimen for each layer (see Figure 5) appears to be imprinted in the boundary 

between the two mixes. These 4 specimens are thus clearly impacted by the specific deposition 

technique employed here, and will be referred to as “deposition influenced” from here on. 

These specimens have large negative yield stress differences (all more negative than - 1000 Pa) 
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when compared to the others. Specimen 5A, another with an Intmax term larger than 50 mm, 

has an interface shape that appears more random and less periodic. Additionally, Specimen 5A 

has a negative yield stress difference of only 89 Pa, the lowest negative difference for any 

specimen. The driving factors leading to the inaccurate interface boundary for 5A are likely to 

be due to the fact that both concrete mixes involved are highly fluid, and the denser mix is on 

top.  

To further investigate what appears to be affecting the interface boundary, the Intmax 

measurements are plotted against various parameters in Figure 8. Intmax is plotted against the 

yield stress of the bottom mix in Figure 8a, as this is a measure of the bottom layer’s resistance 

to flow, and thus potentially the loss of a desired interface geometry. Figure 8a shows that if 

the yield stress of the bottom layer is high (say, above the 1000 Pa mark on the x axis), the 

Intmax reduces. However, in the portion left of the 1000 Pa mark on the x axis, large scatter can 

be observed, with large Intmax measurements ranging from 16 mm to 79 mm. For fluid concretes 

on the bottom layer (150-300 Pa), the data points where the denser NC is on top are larger than 

those with LWAC on top. In Figure 8b, the x-axis is defined as the density of the top mix 

(assumed to be part of the driving force causing flow and undesirable interfaces) divided by 

the yield stress of the bottom mix (assumed to represent a resisting mechanism to flow). This 

appears to refine the data to a more consistent trend, where, as either the top mix density 

increases or the bottom mix yield stress decreases, Intmax increases. There is still a significant 

scatter in the data though, especially in the central portion of the plot.   
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     a)              b) 

                     
   c)              d)  
   
Figure 8. Comparison between maximum interface depth (Intmax) and various specimen properties: a) 
Intmax vs. yield stress of bottom layer mix, b) Intmax vs. the ratio of the top mix density over the bottom 
mix yield stress, c) Intmax vs. the yield stress difference between the top and bottom mix (top subtracted 
from bottom), and d) Intmax vs. the density difference between top and bottom mix (top subtracted from 
bottom).  
 
 

Figure 8c focuses on the rheological differences between the top and bottom mixes. 

The left hand side of the plot shows specimens with a negative yield stress difference (stiffer 

mix on top of a more fluid mix), while the right hand side shows the opposite. Here a vertical 

line on the y-axis aligned with 0 Pa on the x-axis represents cases when the yield stresses, an 
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indicator of workability, are similar on both the top and bottom. A clearer trend is evident in 

Figure 8c, where the Intmax measurements appear to linearly decrease from large negative yield 

stress differences towards a more constant plateau as the yield stress differences become 

positive. The one exception is the NC on top data point with an Intmax value of 79 mm and a 

small yield stress difference of -89 Pa. This point corresponds to Specimen 5A, which is the 

specimen with the unique interface shape discussed earlier. Figure 8c also succeeds in isolating 

the “deposition influenced” specimens evident in Table 4 and discussed previously (1A, 3B, 

4A, and 6A), as these are the 4 data points furthest left with large Intmax values.  

Figure 8d plots the relationship between an Intmax   and the density difference between 

the top and bottom mixes (top density subtracted from bottom).  Although it is evident in Figure 

8d that the specimens with a negative density portray more Intmax results in excess of ~20 mm, 

no clear trend is apparent. Many specimens with a negative density difference show equally 

promising Intmax values as some positive density cases. Overall, Figure 8 highlights that the 

interplay of the rheological characteristics of both mixes is likely the main driver of interface 

accuracy for the density differences used here. Therefore, the yield stress parameter is further 

explored in the next section as a candidate for structuring a guiding framework for the wet 

casting of horizontal layers.  

3.3 Discussion and Proposed Framework 

Figure 9 plots the top mix yield stress against the bottom mix yield stress for all 18 

specimens to map out regions of differing interface accuracy. The four corners of the plot are 

graphically represented with icons to help visually understand the figure. The top right corner 

is where the top and bottom mixes are stiff (both ~2500 Pa), the bottom left corner is where the 

top and bottom mixes are fluid (both < 400 Pa), the bottom right is where the top is fluid and 

the bottom is stiff, and the top left corner of the plot is where the top mix is stiff and the bottom 
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mix is fluid. To act as a guide, vertical and horizontal lines are plotted at the 400 Pa marks, 

which is a value that Banfill [38] provides as a common yield stress for flowable concretes. 

Lastly, the size of each data point is proportional to the Intmax measurement for each specimen 

to aid in interpreting trends. Figure 9 will be discussed further in the sections to follow.  

 

 

Figure 9. Yield stress of top mix vs yield stress of bottom mix with zones of different hardened 
interface types demarcated.  
 
 
3.3.1 Combinations of Similar Workability 

Two diagonal lines that extend from the 400 Pa marks on both axes towards the top 

right corner of the plot have been superposed on Figure 9. This highlights a “similar 

workability” band where the yield stresses of the top and bottom mixes are similar (difference 

< 400 Pa).  The “similar workability” band is further isolated by plotting in Figure 10 the Intmax 

value against the average yield stress of both the top and bottom mixes for Specimens 2A, 2B, 

5A, 5B, 7A, 7B, 8A, 8B, 9A and 9B.  
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Figure 10. Interface depth (Intmax) vs the average yield stress of both mixes for any specimen with 
similar workability on top and bottom (yield within 400 Pa of each other). 
  

From Figure 10, it is observed that specimens 2A/B, 7A/B, 8A/B and 9A/B have similar 

Intmax values (32 mm or less) and the results are fairly consistent regardless of whether the 

LWAC was on the top or bottom layer.  In contrast, Specimen 5A has an Intmax of 79 mm and 

this is ~3 times larger than 5B. The yield stresses of the concretes in Specimens 5A and 5B are 

both below 250 Pa. In this yield stress range, the density impacts the interface geometry and 

this zone is denoted as being “density driven” in Figure 9. When the lighter LWAC concrete 

(1900 kg/m3) is cast on top of the denser NC concrete (2200 kg/m3) (Specimen 5B) the interface 

deviations are limited (<20mm), but when the denser material is on top (Specimen 5A) there 

are significant deviations. This may have parallels with a Rayleigh-Taylor instability, which 

occurs when a denser fluid sits on a fluid that is lighter. The instability is driven by a density 
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difference, and the two fluids intermix in a manner such that the denser fluid penetrates beneath 

the initial interface plane and the lighter does the opposite. This characteristic is visually 

observed to be the case for the interface of 5A (Table 4 and Figure 10), which shows a uniquely 

irregular deformed shape compared to the others.  

It should be noted that the yield stresses of both concretes in Specimen 5A are still 

relatively large when compared to existing literature on Rayleigh-Taylor instabilities involving 

yield stress fluids. For instance, Maimouni et al. [39] found that for a Newtonian top fluid layer, 

instabilities would occur when the yield stress of the bottom fluid was in the order of 5-10 Pa 

for density differences of 200 – 800 kg/m3. The yield stress of the bottom mix in 5A is an order 

of magnitude higher, yet an instability still appears to be evident. This is likely due to the fact 

that the materials are vibrated once the two concrete layers are stacked. Previous research has 

found that vibration reduces, or even eliminates, the yield stress of fresh concrete [40]. 

Vibration could therefore reduce the yield stresses of specimen 5A such that a fluid-like 

instability takes place.  

Banfill et al. [41] found that the peak velocity of vibration needed to reduce the yield 

stress to zero was ~0.1 m/s for concretes with yield stresses around 200 Pa and up to ~0.3 m/s 

for stiffer concretes with yield stresses in the range of 1000-2500 Pa. The peak velocity of the 

vibration table used here was 0.06 m/s. Thus, according to Banfill et al.[41], the applied peak 

velocity would not have completely eliminated the yield stress in any of the concrete mixes 

used.  This seems to mostly correlate with the experimental results, since if the yield stresses 

had approached zero, fluid-like instabilities would be expected to have been more prevalent in 

the specimens with the denser concrete on top. However, it appears that the applied vibration 

was nevertheless sufficiently strong to provoke a more fluid-like behaviour in 5A.  

https://doi.org/10.1016/j.conbuildmat.2020.118514


Brault, A. & Lees, J. M. (2020). Wet casting of multiple mix horizontally layered concrete elements 

Construction and Building Materials. 247, 118514                 

https://doi.org/10.1016/j.conbuildmat.2020.118514 
 

27 
 

For the particular casting process used in the current work, there appears to be a 

minimum threshold yield stress where a fluid instability, driven by a negative density 

difference, will occur. Exactly what density difference will lead to instability remains a 

question, although as Maimouni et al. [39] found, the likelihood of instability is expected to 

decrease with a decrease in density difference.  The minimum threshold is also dependent on 

the vibration regime. For instance, if stronger vibration is applied, the threshold would move 

to the right in Figure 10, signifying that fluid instability may occur in mixes with higher un-

vibrated yield stresses than seen here. By contrast, if a very fluid concrete (yield stress range 

of 50-200 Pa) is layered in a level manner without any vibration, it is possible that a specimen 

like 5A may have instead been successful. The zone where density drives the occurrence of 

undesirable interface geometries for fresh horizontal layers of concrete is denoted as a “density 

driven” zone and is represented in Figure 9 as a red cloud in the bottom left corner.  This region 

demarcates the combination of top and bottom yield stresses that, for this particular process, 

have led to fluid instabilities if a negative density difference is present. 

3.3.2 Deposition Influenced Specimens 

In Figure 9, what are referred to as “deposition influenced” specimens (1A, 3B, 4A, 

and 6A) can be found in the top left corner. In this region, the top concrete layer is significantly 

stiffer than the bottom (> 1000 Pa difference in this work). The specific concrete deposition 

method used here appears to have led to high Intmax values with a signature deformed interface 

shape. Figure 11 presents a schematic of how this shape may have transpired.  Figure 11c is a 

plot of vibration time vs. yield stress for all the concrete mixes. This vibration parameter 

represents the time taken for each mix to become fairly level within the mould (when cast as 

the specimen bottom layer). This plot shows that generally, the vibration time increases with 

the concrete yield stress. 
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                                                a) 
 

 

  
                                                b) 

 

               
         c)         d)   

 
Figure 11. Deposition influenced interface characteristics: a) deposition influenced schematic and 
images, b) compatible schematic and images, c) vibration time vs. yield stress, and d) device. 

 

For the “deposition influenced” specimens, the stiffer top layer concrete (also with a 

slower vibration time) is dropped in cylindrical volumes on the bottom base layer (Figure 11a). 

Once all 5 cylindrical volumes are deposited, vibration occurs until the top of the specimen is 

level. During vibration, it is likely that centroid of each of the top layer volume shifts downward 

into the bottom layer, while slowly spreading outward as well. As the bottom layer is more 

fluid (quicker flowing), the bottom layer flows from beneath the top volume towards the edges 

of the volume before much (if any) of the top mass has spread to the edges. As the top layer 
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shifts downward in the centre of the volume, the lower layer is un-confined at the edges and 

can travel above the intended level of the interface. The schematic shape illustrated in Figure 

11a is prevalent in all the “deposition influenced” specimens, with 5 valleys along the 

longitudinal length (Cut 1) and 1 in each of the transverse directions (Cut 2 and Cut 3). It should 

be noted, however, that Cut 2 and Cut 3 typically differ, as the depth that the top layer reaches 

is lower for Cut 3 than Cut 2. This is because Cut 2 is between two deposited cylinders and Cut 

3 is through the centreline (Figure 11d).  

Specimens with mixes with similar yield stresses or with a top mix with a low yield 

stress were less susceptible to deposition influences (Figure 11b). In these cases, the top mix 

spreads outward in time to confine the bottom layer’s movement. This avoids the valley and 

peak issue, and leads to a consistent interface height as seen in Specimen 9A in Figure 11b.  

The interface deviation is not dependant on the stiffness of the top layer, but on the stiffness 

difference between the top and bottom layers. For example, specimens 4A and 8A each have a 

top concrete yield stress of ~2400 Pa, but the stiffness of the bottom layer of 4A is 228 Pa 

compared to 8A’s bottom layer of 2087 Pa. In 4A, the bottom layer material flows quickly to 

the edges of the formwork without adequate confinement from the top layer whereas in 8A the 

bottom layer flows at a speed more similar to the top layer which avoids this issue.  The 

“deposition influenced” interface deviations are a direct result of how the concrete was 

deposited, and such influences could potentially be mitigated e.g. if the volumes deposited 

more closely related to their intended hardened shape (for instance, a rectangular prism vs. a 

cylinder).  

3.3.3 Compatible Mix Combinations  

The third region highlighted in Figure 9 is the “compatible” zone.  This area covers a 

wide range of possible combinations in terms of mix rheology and density difference, 

highlighting the potential for layering concrete mixes horizontally in the wet state. 
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Interestingly, the density difference (whether or not NC is on top or bottom) does not appear 

to have a significant impact on the Intmax results within this region of Figure 9.  

3.3.4 Zone Boundaries 

Figure 9 maps out three regions of behaviour and the boundaries of these areas are 

defined by the specific results of this study.  Different geometries and aspect ratios, boundary 

conditions, timings, deposition methods, casting processes, density difference magnitudes, and 

vibration parameters, would all modify the characteristics of the interplay, and the extent of the 

identified regions. For example, if a higher peak vibrational velocity is used, then the “density 

driven” bubble would be expected to extend further, and if a more precise extrusion process 

was used to deposit the concrete layers the “deposition influenced” zone might contract.  The 

influence of the specimen size and selected vibration method are further considerations.  Other 

distinct deformed interface shape results may also occur for different processes, leading to 

additional regions that would map onto Figure 9.  The concepts that underpin Figure 9 represent 

a valuable framework in which to define mix combinations for horizontal wet layering.  

3.3.5 Desired Local Interface Characteristics 

Wet-on-wet casting promotes cement hydration at the boundary between mixes. This 

can be beneficial for mechanical performance and the mitigation of preferential substance 

transport. However, if the interface is visibly smooth, aggregates do not penetrate across the 

mix boundary and certain resistive mechanisms (such as aggregate interlock) will be 

compromised as a consequence. Figure 12 presents 3 different types of interfaces that were 

observed: 1) a smooth interface where aggregates do not pierce the boundary between mixes 

(Figure 12a), 2) a rough interface where aggregates penetrate the boundary (Figure 12b), and 

3) an interface shape with a depth of several aggregates in height with aggregates penetrating 

the boundary (Figure 12c).  It is of note that in all 18 specimens, the boundary between the two 
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concrete mixes is clear, and there appears to be no blending or gradient of the mixes at the 

interface.   

Four of the 18 specimens fabricated possessed a smooth interface like the one shown 

in Figure 12a. These were specimens 1B, 3A, 4B, and 6B which are all in the lower region of 

Figure 9 where the top concrete is much more fluid than the bottom.  The interface highlighted 

in Figure 12b is both rough and accurately located. This type of interface was exhibited by 

specimens in the portion of the “similar workability” diagonal band, that were outside the 

“density driven” zone. Hence these combinations are most likely to result in accurate interface 

geometries that also avoid the creation of a smooth interface plane. Finally, if the accuracy of 

the layering geometry is not a priority, the interface shown in Figure 12c generated due to an 

instability (Specimen 5A) may be the most suitable in providing interlocking between the 

mixes.   

                               

                      a)                                                  b)                                                  c)                               

Figure 12. Comparison between different interfaces: a) smooth interface and level, b) level interface 
with aggregates penetrating the boundary, and c) large Intmax with aggregates penetrating the 
boundary. 

4 CONCLUSIONS 

The functional gradation of concrete where multiple concrete mixes are layered within 

a single structural element offers a strategy to mitigate global CO2 emissions. Wet-on-wet 

fabrication of horizontally layered FGC elements benefits from cement hydration across the 
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interface between mixes and a quick production timeline.  However, wet casting layers of 

different concretes within the same volume presents a key question, which is whether the 

different mixes will stack as intended or result in undesirable intermixing or deviations along 

the interface mix boundary? This is the first investigation aimed at understanding how the 

density and workability of layered concrete mixes dictate the resulting distribution of material 

of horizontal layers. The interconnectivity with the deposition process is also highlighted.  

Eighteen concrete specimens with two horizontal layers of different concretes were cast into 

formwork. The mix density was varied by including light weight aggregates. Different 

quantities of superplasticiser enabled a wide range of workabilities (slump < 50 mm to slump 

> 250 mm) for a fixed set of constituent materials with similar mix proportions to be explored.  

Layer combinations whereby a denser and/or more fluid material was placed on the top or 

bottom layer were investigated. A bespoke casting device using controlled volume deposition 

was successfully developed to cast horizontally layered FGC concrete elements with a variety 

of concrete rheological properties.   The hardened layered concrete specimens were cut into 

sections to inspect the internal distribution of the materials. The proximity to a flat horizontal 

layer geometry, as defined by the deviation of the mix interfaces from mid-height, was 

assessed.  

The results showed that layer mix combinations of similar workability were successful 

unless both the top and bottom layer concretes were highly fluid (slump > 250 mm). If both 

mixes were indeed highly fluid, a fluid-like instability would occur if the denser mix was on 

top of the lighter mix.  Specimens that were cast with a much stiffer concrete mix on the top 

layer (slump of top << slump of bottom) led to an interface geometry that reflected the specific 

deposition technique employed here.  Specimens that were cast with a more fluid concrete on 

top were generally successful and density differences between mixes did not appear to be a 
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significant factor for such combinations. However, specimens with a relatively fluid top layer 

and stiffer bottom layer were most predisposed to smooth interfaces without any aggregates 

penetrating the boundary between mixes.  Overall, the work provides evidence to identify 

appropriate concrete mix combinations to meet the intended internal geometry of horizontally 

layered multiple mix elements. This understanding opens up opportunities for the wet casting 

of functionally graded layered concrete structures to exploit lower carbon materials and 

enhance cement efficiency. 
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