
Research Ideas and Outcomes 3: e12346
doi: 10.3897/rio.3.e12346

Reviewed v1

Project Report

Laminar Python: tools for cortical depth-resolved

analysis of high-resolution brain imaging data in

Python

Julia M Huntenburg , Konrad Wagstyl , Christopher J Steele , Thomas Funck , Richard A.I.
Bethlehem , Ophélie Foubet , Benoit Larrat , Victor Borrell , Pierre-Louis Bazin

‡ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
§ Free University Berlin, Berlin, Germany
| University of Cambridge, Cambridge, United Kingdom
¶ Montreal Neurological Institute, Montreal, Canada
Douglas Mental Health University Institute of McGill University, Montreal, Canada
¤ Institut Pasteur, Paris, France
« Institut d'Imagerie Biomédicale, CEA, Paris, France
» Instituto de Neurociencias de Alicante, Alicante, Spain

Corresponding author: Julia M Huntenburg (ju.huntenburg@gmail.com)

Received: 20 Feb 2017 | Published: 23 Feb 2017

Citation: Huntenburg J, Wagstyl K, Steele C, Funck T, Bethlehem R, Foubet O, Larrat B, Borrell V, Bazin P
(2017) Laminar Python: tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python.
Research Ideas and Outcomes 3: e12346. https://doi.org/10.3897/rio.3.e12346

Abstract

Increasingly available high-resolution brain imaging data require specialized processing
tools that can leverage their anatomical detail and handle their size. Here, we present user-
friendly Python tools for cortical depth resolved analysis in such data. Our implementation
is based on the CBS High-Res Brain Processing framework, and aims to make high-
resolution data processing tools available to the broader community.

Keywords

laminar analysis, high-resolution MRI

‡,§ |,¶ ‡,# ¶

| ¤ « » ‡

© Huntenburg J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

https://doi.org/10.3897/rio.3.e12346
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12346&domain=pdf&date_stamp=2017-2-23
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12346&domain=pdf&date_stamp=2017-2-23
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12346&domain=pdf&date_stamp=2017-2-23
mailto:ju.huntenburg@gmail.com
https://doi.org/10.3897/rio.3.e12346

Introduction

Recent advances in ultra-high field and quantitative MRI facilitate non-invasive imaging of
the whole brain at an unprecedented level of detail (Weiskopf et al. 2015). Standard
neuroimaging software is not optimised for processing such images. Thus, there is a
growing demand for dedicated tools that can take advantage of the additional information
provided by the new data, and scale well with their increasing size. CBS High-Res Brain
Processing Tools (CBSTools, Bazin et al. 2014) is a suite of software tools for processing
MR images at submillimeter resolution. CBSTools have been developed in Java as a set of
plugins for the MIPAV software package and the JIST pipeline environment (https://
www.nitrc.org/projects/cbs-tools/).

In this project, we made a subset of CBSTools modules available in Python (https://
github.com/juhuntenburg/laminar_python, Huntenburg 2017). The standalone package no
longer requires installation of MIPAV and JIST, and allows for interactive data exploration at
each processing stage. The Python interfaces also enable easy integration with other
popular Python-based neuroimaging software tools such as Nibabel (Brett et al. 2016),
Nipype (Gorgolewski et al. 2011) and Nilearn (Abraham et al. 2014). We focused on a set
of modules that enable the analysis of multiple horizontal laminae within the cortical sheet
(Waehnert et al. 2016). The package implements an equivolumetric approach for
generating intracortical laminae (Waehnert et al. 2014), which accounts for the
dependence of layer thickness on cortical folding (Bok 1929).

Approach

Our aim was to provide user-friendly Python interfaces to the CBSTools modules and make
these available in a platform independent manner with minimal dependencies. We used the
JCC package (http://lucene.apache.org/pylucene/jcc/index.html) to encapsulate the original
Java classes. We then implemented a set of Python wrapper functions which convert the
input data to Java data structures, initiate a Java virtual machine, call the main Java class
with the specified parameters, collect, convert and return the output data.

Input and output data can either be passed as files or specific Python data structures. We
chose to represent volumetric data as Nibabel SpatialImages (http://nipy.org/nibabel/
reference/nibabel.spatialimages.html), in particular Nifti1Images. These standardized
objects simplify data exchange with other software tools. Finding a solution to represent
surface data proved to be more difficult, since neither a community standard, nor a suitable
precedent solution in other Python tools exists. Here, we decided to represent a surface
mesh as a dictionary with the entries coords, an array containing the coordinates of the
mesh vertices, and faces, an array containing the vertex indices of the mesh faces.

Functions for loading and saving of volumetric and surface mesh data in various file
formats (currently nifti, gifti, ply, vtk, obj and Freesurfer formats) can be called directly by
the user, but are also employed by the main processing functions. The loading functions

2 Huntenburg J et al

https://www.nitrc.org/projects/cbs-tools/
https://www.nitrc.org/projects/cbs-tools/
https://github.com/juhuntenburg/laminar_python
https://github.com/juhuntenburg/laminar_python
http://lucene.apache.org/pylucene/jcc/index.html
http://nipy.org/nibabel/reference/nibabel.spatialimages.html
http://nipy.org/nibabel/reference/nibabel.spatialimages.html

automatically determine the input type: supported file formats are loaded and Python data
structures are tested for compliance with the expected pattern. This approach is inspired by
the input and output management in Nilearn. It makes it easy for the user to call the main
functions directly on their data files, without further specifications. At the same time, it is
flexible to accommodate non-standard data formats, which the user can load into the
appropriate Python data structure with custom scripts.

Results

The set of functions implemented in this package enables sampling of a given intensity
image on multiple intracortical laminae, starting from a simple tissue classification. We
illustrated their usage in an example workflow (https://github.com/juhuntenburg/
laminar_python/blob/master/examples/laminar_python_demo.ipynb). Here, the initial inputs
are two binary images demarcating the inner and outer boundary of the cortical grey matter
of a ferret (Mustela putorius furo) brain (Fig. 1a). Both images are converted into levelset
representations using the create_levelsets function (Fig. 1b). The levelsets are passed to
the layering function, which subdivides the intracortical space between the two boundaries
in equivolumetric laminae. This function outputs three images: a continuous (Fig. 1c) and a
discrete (Fig. 1d) representation of equivolumetric intracortical depth, and levelset
representations of each of the intracortical surfaces. In the example, the latter output is
passed to the profile_sampling function, together with an aligned T2 contrast image. T2
values are then sampled at different cortical depths (Fig. 1e). Importantly, the
equivolumetric laminae do not represent architectonic layers, but provide an anatomically
meaningful coordinate system of cortical depth.

The example data is taken from a 7 Tesla MR scan of an adult ferret (voxel size = 120 µm
isotropic). With no additional manipulation, the package was readily applied to the animal
data, testifying that it can also be used for cross-species analysis. Nilearn plotting functions
were used for visualization, demonstrating the straightforward integration between the two
packages.

Limitations and future directions

The current stage of the project faces several limitations, which might be overcome in
future work. First, we focused on a subset of CBSTools modules. A more complete
migration of CBSTools functionality to Python is a logical next step. Second, platform
independence has not yet been achieved and requires pre-compilation of the JCC
wrappers on different platforms. Third, atlases, lookup tables and example data are
currently located within the GitHub repository. Better solutions for providing these files and
other relevant datasets to the user should be found in the long term. Fourth, while our
approach ensures general compatibility with other Python-based neuroimaging software,
we aim for a closer integration, for instance by providing Nipype interfaces. Fifth, CBSTools
are mainly used for processing MRI data, but are generally applicable to other types, such

Laminar Python: tools for cortical depth-resolved analysis of high-resolution ... 3

https://github.com/juhuntenburg/laminar_python/blob/master/examples/laminar_python_demo.ipynb
https://github.com/juhuntenburg/laminar_python/blob/master/examples/laminar_python_demo.ipynb

as histological data. It would be interesting to expand usability to different data types and
provide respective examples.

Conclusion

We encapsulated a subset of CBSTools in Python and implemented user-friendly interfaces
for the laminar analysis of high-resolution MR images. This is a first step to making high-
resolution data processing tools available to the broader community, which also aims to
encourage other scientists to contribute with their own code.

Acknowledgements

This work was completed during OHBM Hackathon Lausanne 2016 and Brainhack
Anatomy Paris 2016.

Figure 1.

Laminar python pipeline, demonstrated using high-resolution MR data of a ferret brain. a)
Binary images demarcating inner (grey-white matter interface, top) and outer (pial surface,
bottom) boundaries of the cortex. b) Levelset representations of the same surfaces, where
positive values are assigned to voxels outside of the volume deliminated by the surface, and
negative values to voxels inside, each increasing in value with euclidean distance from the
surface. c) Continuous equivolumetric intracortical depth, which models the positions of
laminae relative to cortical morphology. d) Discrete representations of equivolumetric depth
levels. e) T2 values, sampled at the six equivolumetric intracortical depths. Note that the
equivolumetric laminae do not represent architectonic layers, but provide an anatomically
meaningful coordinate system of cortical depth.

4 Huntenburg J et al

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3545890
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3545890
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3545890

Author contributions

JMH and PLB conceived the project. JMH, KW, CJS, TF and PLB contributed to the code.
RAIB and OF tested the code and gave feedback for revision. JMH wrote the initial draft of
the manuscript. KW, CJS, TF, RB, OF and PLB revised the manuscript. OF, BL and VB
provided the example data.

Conflicts of interest

None declared.

References

• Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A,
Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn.
Frontiers in Neuroinformatics 8 https://doi.org/10.3389/fninf.2014.00014

• Bazin P, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R (2014) A computational
framework for ultra-high resolution cortical segmentation at 7Tesla. NeuroImage 93:
201‑209. https://doi.org/10.1016/j.neuroimage.2013.03.077

• Bok ST (1929) Der Einfluss der in den Furchen und Windungen auftretenden
Kruemmungen der Grosshirnrinde auf die Rindenarchitektur. Zeitschrift für die gesamte
Neurologie und Psychiatrie 12: 682‑750. https://doi.org/10.1007/bf02864437

• Brett M, Hanke M, Cipollini B, Côté M, Markiewicz C, Gerhard S, Larson E, Lee G,
Halchenko Y, Kastman E, cindeem, Morency F, moloney, Millman J, Rokem A, jaeilepp,
Gramfort A, den Bosch JFv, Subramaniam K, Nichols N, embaker, bpinsard,
chaselgrove, Oosterhof N, St-Jean S, Amirbekian B, Nimmo-Smith I, Ghosh S,
Varoquaux G, Garyfallidis E (2016) nibabel: 2.1.0. Zenodo https://doi.org/10.5281/
ZENODO.60808

• Gorgolewski K, Burns C, Madison C, Clark D, Halchenko Y, Waskom M, Ghosh S
(2011) Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing
Framework in Python. Frontiers in Neuroinformatics 5 https://doi.org/10.3389/
fninf.2011.00013

• Huntenburg J (2017) juhuntenburg/laminar_python: initial release. v1.0. Zenodo.
Release date: 2017 2 02. URL: http://doi.org/10.5281/zenodo.268021

• Waehnert M, Dinse J, Schäfer A, Geyer S, Bazin P, Turner R, Tardif CL (2016) A
subject-specific framework for in vivo myeloarchitectonic analysis using high resolution
quantitative MRI. NeuroImage 125: 94‑107. https://doi.org/10.1016/
j.neuroimage.2015.10.001

• Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, Turner R, Bazin
P- (2014) Anatomically motivated modeling of cortical laminae. NeuroImage 93:
210‑220. https://doi.org/10.1016/j.neuroimage.2013.03.078

• Weiskopf N, Mohammadi S, Lutti A, Callaghan M (2015) Advances in MRI-based
computational neuroanatomy. Current Opinion in Neurology 28 (4): 313‑322. https://
doi.org/10.1097/wco.0000000000000222

Laminar Python: tools for cortical depth-resolved analysis of high-resolution ... 5

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1016/j.neuroimage.2013.03.077
https://doi.org/10.1007/bf02864437
https://doi.org/10.5281/ZENODO.60808
https://doi.org/10.5281/ZENODO.60808
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
http://doi.org/10.5281/zenodo.268021
https://doi.org/10.1016/j.neuroimage.2015.10.001
https://doi.org/10.1016/j.neuroimage.2015.10.001
https://doi.org/10.1016/j.neuroimage.2013.03.078
https://doi.org/10.1097/wco.0000000000000222
https://doi.org/10.1097/wco.0000000000000222

	Abstract
	Keywords
	Introduction
	Approach
	Results
	Limitations and future directions
	Conclusion
	Acknowledgements
	Author contributions
	Conflicts of interest
	References

