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Supplementary Note 

 

Robustness of protein-specific noise estimation assessed by using different approaches to define 

empty/background droplets  

 

The dsb package utilizes the raw (unfiltered) output of UMI count aligners such as Cell Ranger, 

Kallisto1 or as we used here, CITE-seq Count2. The unfiltered output (for example, in Cell Ranger, 

the raw output) of droplet barcodes versus UMI counts includes all cell containing and empty (or 

“background”) droplets, both of which can be inferred using thresholding methods based on the 

mRNA and protein library sizes in combination with algorithms like EmptyDrops3 to distinguish 

cells from background noise (as done by default by Cell Ranger)–see dsb package documentation 

tutorial. In all datasets analyzed by us to date, a considerable number (at least 50,000 after QC) of 

background droplets (i.e., barcodes inferred to not contain at least one cell) can be found using 

library size based thresholding (see below for robustness assessments). The protein counts derived 

from these background droplets reflect contributions from ambient antibodies, which as shown in 

the main text, were highly correlated with the protein counts detected in unstained control cells 

included in our experiment. Thus, as discussed in the main text, protein counts in empty droplets 

can serve as an estimate of the expected ambient levels of antibodies. To assess the robustness of 

estimating protein-specific noise in relation to how background droplets are defined, we compared 

three approaches to define background droplets. As detailed in our previous report4, due to the 

number of samples included in our experiment, demultiplexing samples required data from both 

sample barcode (“cell hashing”) antibodies and mRNA (for genetic based demultiplexing, i.e., by 

cross referencing independently generated patient genotype data using demuxlet, see Methods and 

Kotliarov et. al. 2020). After removing doublets and defining singlets on the basis of data from 

both the hashing antibodies and genotypes, the remaining (non-doublet, non-singlet) droplets were 

used to define background droplets in two different ways. First, "Library size background 

droplets" were defined solely based on library size information where we used clear breaks in the 

distribution of protein library sizes across the remaining droplets followed by removal of droplets 

in the top 10th percentile based on the mRNA library size in order to eliminate droplets containing 

low quality cells. The library size approach to define background droplets is most compatible with 

experiments that do not have sample multiplexing or hashing antibody data, such as the external 

CITE-seq datasets from 10X Genomics used in this paper (Fig. 3 and Supplementary Fig. 4).  

 

The second background droplet inference method we tested requires CITE-seq 

experimental workflows similar to ours, where many samples are multiplexed in the same 

experiment using sample barcoding antibodies (and/or genetic based demultiplexing). After using 

Seurat's K-medoids function to computationally classify cell barcodes as containing singlets, 

doublets, or negatives based on the hashing antibody counts, we defined "Hashing background 

droplets" as those classified as "negative" by this demultiplexing software. These droplets had 

staining below the threshold to be called positive for any one of the hashing antibodies and 
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therefore in principle, their antibody counts should reflect only ambient capture. Such hashing 

“negatives” were an order of magnitude fewer in number than those determined by library size 

above, largely due to the threshold used for determining whether a droplet is included in the hash 

demultiplexing pipeline (the top 35,000 barcodes from each lane). Hashing background droplets 

were further filtered to: 1) include only droplets classified as “ambiguous” by SNP demultiplexing 

(via demuxlet), i.e., these cannot be attributed to a single or multiple distinct donors based on 

cross-referencing mRNA reads in the droplet with independently generated genotype data, and 2) 

exclude any droplet with >80 unique mRNAs to remove cell-containing droplets with low-quality 

mRNA capture. Using this alternative method to define background droplets, we similarly 

observed that the relative amount of antibody was highly correlated between unstained cells and 

these background droplets (along the unity line in Supplementary Fig. 1b, top).  

 

Interestingly, while the correlation was similarly high, antibody levels in unstained cells or 

in hashing background droplets were greater than those in library size background droplets 

(Supplementary Fig. 1b top vs bottom). The greater magnitude of antibody counts by a 

multiplicative factor in log-count space (slope in bottom panel of Supplementary Fig. 1b is 1.24 

with near zero intercept) suggests that unstained cells and demultiplexing background droplets 

capture additional antibodies. Unstained cells may serve as an additional antibody capturing 

“reservoir”, e.g., due to non-specific (or specific) binding of the ambient antibody remaining after 

multiple wash steps. However, this would not explain their concordance with demultiplexing 

background, which, as supported by both genetic (via demuxlet classification) and barcoding 

antibody (via Seurat k-medoids classification) data, should have a low chance of containing fully 

intact cells. It is still possible, despite filtering out droplets with low mRNA counts, that 

demultiplexing background droplets contained some very low-quality cells or cell membrane 

debris that together could capture additional antibodies from the environment via specific/non-

specific binding. Demultiplexing background droplets could also have more ambient mRNA (as 

described above in order to be included in the hashing antibody demultiplexing step) than droplets 

defined using the protein library size distribution alone, and thus they (as also in the unstained 

control cell droplets) could conceivably serve as an additional set of free antibody-capturing 

molecules. Importantly, however, we emphasize the difference between empty/background 

droplets defined using protein library size distribution versus hashing antibody demultiplexing had 

negligible effect in the resulting dsb normalized values (see below).  

 

We further investigated a third approach to estimate protein background noise–the mean of 

each protein across the subset of stained cells that were inferred to belong to the “negative” 

population for each protein. Without dsb rescaling, we fit a two component Gaussian mixture 

model to the log + 1 transformed count of each protein across single cells, resulting in 2 

populations of cells: those positive or negative for the protein. Each protein’s background mean, 

“A” (see Supplementary Fig.1a), reflects the average log transformed count of the non-staining 

cell population for that protein, i.e., cells that do not express that protein. The protein level in 
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unstained controls and empty drops were both highly correlated with A (Supplementary Fig. 1c). 

Thus, antibody levels in unstained droplets on average are similar to those in droplets with stained 

cells not expressing the target protein.  

 

We thus have tested three different ways to estimate the average background protein noise 

correlated across droplets. We further found that the noise signal captured in library size 

background droplets appears to be universally found in data from all of the droplet-based oligo 

barcoded antibody experiments we examined and is thus a generalizable method of estimating 

noise.   

 

Importance of using isotype control antibodies for estimating cell-intrinsic normalization 

factors 

 

Our method is compatible with experiments lacking isotype controls by either not removing the 

cell-specific technical variation (use denoise.counts = FALSE in dsb) or by removing the technical 

component with a single fitted parameter, the per-cell mean of the background protein population 

(parameters denoise.counts = TRUE, use.isotype.control = FALSE). However, additional analyses 

further support our findings that inclusion of isotype controls benefits cell to cell technical noise 

correction (step II). Despite the ability of µ1 alone to provide information about the cell-intrinsic 

technical component, we recommend the inclusion of multiple isotype controls in CITE-seq 

experiments to serve as anchors for better estimation of technical normalization factors because µ1 

alone may carry signals beyond those from technical factors (e.g., low-level antigen specific 

binding). In our data for example, µ1 exhibited greater correlation with µ2 than did the mean of 

the isotype controls (Supplementary Figs. 3b,c), including when sub-sampling random draws of 

four proteins from those used to compute µ1 within each cell to assess whether signal from four 

background proteins is equivalent to that of four isotype controls (Supplementary Fig. 3d). 

Furthermore, even with isotype controls as anchors, the estimated cell-intrinsic background may 

encompass signals from non-specific binding to surface Fc receptors. Cell types such as 

monocytes with higher relative Fc receptor expression may thus receive more correction than 

other cell types. However, empirically we have not found this to have adverse effects on 

normalized values in populations such as monocytes, cell type identification, or downstream 

analysis (Supplementary Figs. 6b, c). Careful blocking of Fc receptors before antibody staining, 

which is standard practice and was performed in our experiments, likely contributed to mitigating 

this effect. 

 

Robustness of dsb normalized values to background droplet definition  

 

Given the strong correlation observed between average protein levels in unstained control cells 

and both empty drops and droplets with stained cells expressing background level of the protein 

(Supplementary Fig. 1b,c), ambient antibodies appear to capture the major noise component that 
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contributes to each protein’s specific noise floor. In external 10X Genomics CITE-seq datasets, we 

distinguished between empty droplets and cells using the Cell Ranger alignment tool which uses a 

method inspired by the EmptyDrops3 algorithm to identify cell-containing droplets. The number of 

estimated cell-containing droplets depends on the number of cells loaded during droplet generation 

which should then inform the value input to the Cell Ranger expect_cells parameter; typical 

experiments recover on the order of 103 to104 droplets. Empty droplets capturing ambient ADTs, 

typically between 5x104 to 1x105 in number, can be robustly defined from the remaining, non-cell-

containing barcodes in the raw output matrix. The raw output matrix lists all possible cell barcode 

combinations (more than 6 million  barcodes in the Version 3 and Next Gem assays), many of 

which have no evidence of capture in the experiment (i.e. no data for mRNA or ADT reads) and 

empty droplets capturing ambient ADT must be subset from this output in order to avoid biasing 

the background estimates. The steps to complete this process are completed in a few lines of code 

as detailed in the dsb package documentation. A substantial subset of the cell barcodes estimated 

by Cell Ranger to not contain a cell had ADT reads with an order of magnitude lower protein 

library size compared to the cell-containing droplets. We then applied quality-control thresholds 

determined based on protein and mRNA counts for each dataset, for example, excluding certain 

“empty” droplets from being used in the background distribution that likely corresponded to 

potentially low-quality cells (e.g., removing empty droplets with more than 80 unique mRNA). 

This procedure revealed a clear population of more than 50,000 background droplets in each 

dataset. In some external datasets, there were two distinct background populations based on 

protein library size (Supplementary Fig. 7a). dsb normalized values were robust to using different 

background subpopulations (Supplementary Fig. 7a,b). When only the lower ADT background 

peak was used to simulate an experiment with extremely low background, dsb normalized values 

still separated canonical cell populations but were less zero-centered due to the low estimated 

background for some proteins (third row, Supplementary Fig. 7b). We have not encountered a 

dataset like this simulation scenario to date, however, in the future as antibody panels continue to 

increase in size, some antibodies may be titrated down to extremely low concentrations. 

Theoretically, this could decrease background levels in empty droplets for certain proteins to a 

level that could impact the first step of dsb as shown above. Our method could be easily adjusted 

in this hypothetical case by modifying the standardization step to accommodate lower background 

dispersion. 

 

Within batch normalization vs. pooled normalization across multiple batches 

 

The experimental design of the main dataset used here to develop our approach include n=20 

unique donors distributed over two experimental batches; this presented multiple options for dsb 

normalization. Background/empty drops could be defined with either of the two methods 

described above (demultiplexing or library size), and cells could then be normalized by combining 

all cells / background into a single matrix and normalizing both batches together, or each batch of 

cells could be normalized separately, using only the empty droplets within each batch. To test how 
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robust the resulting dsb normalized values were to single vs multi-batch normalization, as well as 

to further validate the findings described above on the robustness of dsb normalized values to 

different definitions of background, we tested the 4 possible normalization schemes with 

background droplets classified by either protein library size distribution or demultiplexing, then 

normalized with dsb by either merging cells and background from both batches together, or 

normalizing each batch separately. The resulting dsb normalized values were consistently similar 

across all four of these normalization schemes (Supplementary Fig. 8).  Since we expect ambient 

antibody to be a major contributor of correlated noise across cells, experimental standardization of 

staining time and the number of washing steps prior to droplet generation as well as use of the 

same pool of manually concentrated antibody on each batch could be important contributing 

factors in mitigating batch to batch variations. Our method is not designed as a batch effect 

removal tool, however, as enabled by the standard, normalized expression value scale from dsb, 

the approach of applying a uniform background cutoff threshold across proteins in diverse datasets 

can potentially help mitigate batch effects. The performance of existing batch correction tools5,6 

including single cell integration methods7–10 on ADT data could be an area of further investigation 

to compare upstream dsb to other normalization methods as more datasets become available.  
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Supplementary Figures 
 

Supplementary Fig. 1. Robustness assessment of estimating ambient ADT noise in cell-

containing droplets using ADT levels in empty droplets via comparison with unstained controls. 

 

Supplementary Fig. 2. Robustness assessment of models fitted to each cell in dsb (step II part I).  

 

Supplementary Fig. 3. Analysis of isotype control contribution to dsb technical component and 

comparison of dsb normalized values to centered log ratio normalization. 

 

Supplementary Fig. 4. Analysis of dsb normalization on external CITE-seq datasets. 

 

Supplementary Fig. 5. Analysis of dsb normalization on TEA-seq, ASAP-seq and Mission Bio  

datasets. 

 

Supplementary Fig. 6. Manual and automatic cell type identification with protein levels after dsb 

normalization from healthy donor PBMC data (data from Kotliarov et. al. 2020). 

 

Supplementary Fig. 7. Robustness assessment of dsb normalized values to different subsets of 

empty droplets used for background correction with dsb. 

 

Supplementary Fig. 8. Batch processing with dsb: analysis of merging multiple batches then 

normalizing, vs. separate normalization applied within each batch. 

 

Supplementary Fig. 9. Additional figures from analysis of TEA-seq data (data from Swanson et. 

al. 2021). 
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Supplementary Figure 1
a. Expanded from Fig. 1a: to assess the relative contribution of the ambient antibody 
component of noise correlated across droplets, three different measurements of protein- 
specific background noise were defined for each protein: 1) (top row, right column) for 
each protein, the average log transformed value of the subset of stained cells that were not 
part of the proteins “positive” population and comprised the “non-staining” population of 
cells (the negative cell population for each protein was inferred through a Gaussian 
mixture model fit separately to each protein, see Methods) 2) (middle row, right column): 
unstained control cells spiked into the cell mixture prior to droplet generation as shown in 
the experiment diagram (left column), 3) (bottom row, right column): empty droplets as 
defined by either the protein library size distribution or inferred by sample barcode 
antibody demultiplexing (see Methods). b. Pearson correlation coefficient and p value (two 
sided) between unstained control cells (y-axis) and empty droplets (x-axis) with empty 
droplets defined by either demultiplexing (top “hashing background droplets”) or library 
size distribution (bottom, “library size background droplets”, see supplemental note) c. 
Pearson correlation coefficient and p value (two sided) between y-axis: unstained controls 
(top panel) or library size background droplets (bottom panel) versus x-axis: the mean of 
the protein in stained cells that were negative for the protein (“mean A” as shown in top 
panel of a). In all plots the dashed line at unity (y = x) is shown for reference and the solid 
line is the fitted regression line with the shaded region representing the 95% confidence 
interval of the linear model fit centered around the fitted values. Illustration created with
BioRender.com.
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Supplementary Figure 2  

Assessment of the modeling assumptions for defining each cell’s background protein 

population mean µ1 with a k=2 component mixture model for use in the per-cell technical 

component regressed out of dsb normalized counts in step II–see related figures on 

external validation datasets (Supplementary Fig. 4). a. Gaussian mixture model fits (from 

Figs. 1d-e) partitioned by each protein-based cell cluster (clusters are the same as defined 

after dsb normalization in Kotliarov et. al. 2020). Boxplots show the median BIC with 

hinges at the 25th and 75th percentile and whiskers extending plus or minus 1.5 times the 

inter quartile range. The number of cells for each cluster: cluster 0 = 10927, 1 = 8268, 10 = 

1250, 11 = 967, 12 = 853, 13 = 773, 14 = 371, 15 = 343, 16 = 292, 17 = 225, 18 = 218, 19 

= 165, 2 = 6655, 20 = 137, 21 = 74, 3 = 4853, 4 = 4507, 5 = 4236, 6 = 2510, 7 = 2287, 8 = 

1892,  9 = 1398. b. Similar to the barplot shown in Fig.1e, but partitioned by high 

resolution protein based cluster; cells with k = 3 as the best fit were not biased to a specific 

protein-based cluster. c. For 17% of cells with k = 3 models having the best fit (cells from 

Fig 1e), the difference in BIC between k = 3 vs. k = 2 and k = 2 vs. k = 1 models is shown. 

d. The distribution of Gaussian mixture model subpopulation means for k = 2 and k = 3 

models for the subset of cells with k = 3 as the optimal fit (means < 15 shown to focus on 

µ1 distributions) shows k = 3 and k = 2 models fit similar values for µ1 in these cells. e. As 

in (d); the small minority of cells (shown in red in (b)) with k = 4 as the best fit. f. A single 

arbitrary example cell that had an optimal BIC with the k = 3 model; the distribution of 

inferred mixture model means is shown for the 2-subpopulation (left) and 3-subpopulation 

(right) model fits showing overlapping value for µ1. g. As in Fig.1h, using the 10X 

Genomics CITE-seq dataset “PBMC V3 10K” which measured only 14 surface 

phenotyping proteins and 3 isotype controls. The distribution of the dsb technical 

component as calculated using a 2 component (x-axis) vs. 3 component (y-axis) mixture 

model to define the µ1 parameter.  
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Supplementary Figure 3 

a. Each cell’s inferred technical component λ (y-axis) vs the cell’s protein library size; panel 

number indicates protein-based clusters (see Methods) as shown in Supplementary Fig. 6 

and Fig 3. R indicates Pearson correlation coefficient of linear fit, 95% confidence interval 

highlighted in grey. b. The Pearson correlation coefficient and p value (two sided) between 

µ1 and µ2 from single cell k = 2 component mixture models fit across all proteins in each 

cell. c. The average of isotype controls after dsb normalization step I (ambient correction) 

vs µ2 as in (b) Pearson correlation coefficient and p value (two-sided). d. The distribution 

of n=100 Pearson correlation coefficients between each cell’s µ2 and 100 random samples 

of k=4 µ1 proteins from each single cell (blue) shaded region is the 50% highest density 

interval, red line is the Pearson correlation coefficient of µ2 and the mean of isotype controls 

in each cell from batch 1 (28,229 cells). e. Single cell protein expression of CD4 vs. CD14 

normalized by different methods. Contour lines in red are the distribution of CD4 and CD14 

in unstained control cells after normalization in the exact same way as the stained cells in 

black within each panel, including dsb normalization using the same empty droplets for 

ambient correction of the unstained cells. Outlier cells (less than 0.3% of total cells in any 

panel) are removed to focus on the three main cell populations. The default implementation 

of dsb using steps I and II (top left panel) and CLR across cells are shaded in blue and grey 

respectively as these methods are further compared in subsequent panels and in Figs. 4 and 

5. f. The Gap Statistic (see Methods) for different number of clusters (k) obtained using the 

k-medoids clustering algorithm on normalized protein values from dsb vs. CLR (across 

cells), bars are standard errors of the gap statistic calculated by the clusGap R function. g. 

Log fold-change estimates from differential expression analysis of proteins for each major 

cell type shown in comparison with the rest of the cell types (blue – dsb, grey – CLR across 

cells).  
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Supplementary Figure 4  

Panels as shown in Fig. 2 (10X Genomics dataset “PBMC 5k” Next Gem assay) for 

additional 10X genomics datasets using different assays and protein panels. a-g “PBMC 

10k” V3 assay, h-n “PBMC 5k” V3 assay and o-u “PBMC 5k” 5 prime V2 assay. 95% 

confidence intervals of linear model fits (d,k,r) in grey. Pearson correlation coefficients 

and p values (two sided) are shown (c, j, q). 
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Supplementary Figure 5 

a. A mixture of n=4 leukemia cell lines from example data generated via the Mission Bio 

‘Tapestri” platform for simultaneous “proteogenomic” assessment of surface proteins and 

DNA. The protein library size (total UMI) distribution was used to distinguish between 

cell-containing and empty droplets without cells. b. UMAP analysis based on dsb 

normalized values; cells are labeled by graph-based cluster identity. c. heatmap of the 

average expression of each dsb-normalized protein in each cluster. The range of values is 

on the same scale for all proteins, ranging from less than 0 to 14, corresponding to 14 

standard deviations from the average background level estimated using empty droplets–

cell-to-cell technical variations were not inferred by calculating the technical component 

for each cell (step II of dsb) in this dataset due to the small number of proteins profiled 

(n=10, see Supplementary Note and Methods). d. As in (a) for TEA-seq and e. ASAP-seq 

datasets. Cell-containing droplets defined by the QC pipeline from Swanson et. al. and  

Mimitau et. al., respectively; note that only protein was used to estimate background from 

the subset of droplets that did not meet cell QC for the ASAP-seq dataset (see methods). f. 

As in Fig. 1f, correlation matrix of variables comprising the dsb technical component. g. 

As in Fig.1g, isotype control mean vs. background mean per cell. Pearson correlation 

coefficient and p value (two sided) is shown. h. As in Supplementary Fig. 3a, relationship 

between protein library size and the dsb technical component. Linear trend shown in blue 

with 95% confidence intervals in grey. i. UMAP projection and clusters based on dsb 

normalized protein values. j. Biaxial plot of CD3 vs. CD4 with the dsb threshold of 3.5 

shown. k. As in (j) but with data normalized using the CLR transformation (across cells). 
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Supplementary Figure 6  

a. Biaxial gating strategy for identifying major immune cell subsets with dsb normalized 

values. Grey = T cells, Blue = Monocytes, Purple = B cells. b. As in Fig. 3e, the average 

log transformed protein count in empty droplets (x-axis) vs the average dsb normalized 

values (y-axis) for each protein-based cell cluster–the threshold above which proteins are 

annotated in the plot is 3.5 corresponding to 3.5 standard deviations above expected noise 

+/- the technical component correction applied in step II (see methods). In each plot the 

same subset of proteins is highlighted in blue for comparison of individual marker values 

between clusters; proteins highlighted in blue are CD1d, CD1c, CD14, CD103, CD16, 

CD3, CD4, CD8, CD28, CD161, CD45RO, CD45RA, CD33, CD56, CD71, CD27, 

CD244, KLRG1, CD195, CD38, CD127, CD16, CD34. When the protein value is above 

the 3.5 threshold, it is labeled with the protein name in each individual panel. c. Heatmap 

of average dsb protein normalized expression in each cluster. 
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Supplementary Figure 7  

Robustness of dsb normalized values to different definitions of background droplets. a. 

Distribution of protein library size for the 10X genomics Chromium Version 3 “PBMC 

10K” dataset which had a bimodal distribution for the non-cell-containing droplets shown 

in blue. In each row, a different threshold based on the protein library size was used to 

define background droplets, which were then used to normalize the same population of 

cell-containing droplets (shown as the orange distribution) with the dsb package. b. The 

dsb normalized values are shown for canonical protein-based phenotypes with biaxial 

scatterplots. The scale of the 3rd row is negatively impacted by eliminating the major 

empty droplet background peak with greater mean value and only using the empty droplet 

background peak with very low mean protein library size.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



a                                        b                 c                                         d             

(a+b background) merged
single call to dsb for both batches

a, b background separate
separate call to dsb for each batch 

background 1: library size negatives              background 2: hashing negatives 

e                                        f                 g                                        h             
(c+d background) merged
single call to dsb for both batches

c, d background separate
separate call to dsb for each batch 

 batch 1 stained cells     
 batch 2 stained cells     

Supplementary Fig. 8

CD127_PROT
CD244_PROT

CD27_PROT
CD278 _PROT
CD279_PROT

CD28_PROT
CD3_PROT
CD4_PROT

CD45RA_PROT
CD45RO_PROT

CD5_PROT
CD7_PROT
CD8_PROT

KLRG1_PROT
TCRgd_PROT

0 10 20

T cells

CD18_PROT
CD185_PROT

CD19_PROT
CD1c_PROT
CD20_PROT
CD21_PROT
CD32_PROT
CD39_PROT
CD40_PROT

IgD_PROT
IgM_PROT

0 10 20 30

B cells

CD11b_PROT
CD11c_PROT
CD123_PROT

CD13_PROT
CD14_PROT

CD141_PROT
CD163_PROT

CD1d_PROT
CD303_PROT

CD33_PROT
CD64_PROT
CD86_PROT

0 10 20 30

Myeloid Cells

CD127_PROT
CD244_PROT

CD27_PROT
CD278 _PROT
CD279_PROT

CD28_PROT
CD3_PROT
CD4_PROT

CD45RA_PROT
CD45RO_PROT

CD5_PROT
CD7_PROT
CD8_PROT

KLRG1_PROT
TCRgd_PROT

0 10 20 30

T cells

CD18_PROT
CD185_PROT

CD19_PROT
CD1c_PROT
CD20_PROT
CD21_PROT
CD32_PROT
CD39_PROT
CD40_PROT

IgD_PROT
IgM_PROT

0 10 20 30

B cells

CD11b_PROT
CD11c_PROT
CD123_PROT

CD13_PROT
CD14_PROT

CD141_PROT
CD163_PROT

CD1d_PROT
CD303_PROT

CD33_PROT
CD64_PROT
CD86_PROT

0 10 20 30

Myeloid Cells

CD127_PROT
CD244_PROT

CD27_PROT
CD278 _PROT
CD279_PROT

CD28_PROT
CD3_PROT
CD4_PROT

CD45RA_PROT
CD45RO_PROT

CD5_PROT
CD7_PROT
CD8_PROT

KLRG1_PROT
TCRgd_PROT

0 10 20

T cells

CD18_PROT
CD185_PROT

CD19_PROT
CD1c_PROT
CD20_PROT
CD21_PROT
CD32_PROT
CD39_PROT
CD40_PROT

IgD_PROT
IgM_PROT

0 10 20 30

B cells

CD11b_PROT
CD11c_PROT
CD123_PROT

CD13_PROT
CD14_PROT

CD141_PROT
CD163_PROT

CD1d_PROT
CD303_PROT

CD33_PROT
CD64_PROT
CD86_PROT

0 10 20 30

Myeloid Cells

CD127_PROT
CD244_PROT

CD27_PROT
CD278 _PROT
CD279_PROT

CD28_PROT
CD3_PROT
CD4_PROT

CD45RA_PROT
CD45RO_PROT

CD5_PROT
CD7_PROT
CD8_PROT

KLRG1_PROT
TCRgd_PROT

0 10 20

T cells

CD18_PROT
CD185_PROT

CD19_PROT
CD1c_PROT
CD20_PROT
CD21_PROT
CD32_PROT
CD39_PROT
CD40_PROT

IgD_PROT
IgM_PROT

0 10 20 30

B cells

CD11b_PROT
CD11c_PROT
CD123_PROT

CD13_PROT
CD14_PROT

CD141_PROT
CD163_PROT

CD1d_PROT
CD303_PROT

CD33_PROT
CD64_PROT
CD86_PROT

0 10 20 30

Myeloid Cells

11872 empty drops batch 2 threshold 2

 droplet  log10 protein library size 

Fr
eq

ue
nc

y

2.5 3.0 3.5 4.0

0
10

00
20

00
30

00

6657 empty drops batch 1 threshold 2

 droplet  log10 protein library size 

Fr
eq

ue
nc

y

2.5 3.0 3.5 4.0

0
50

0
10

00
15

00
20

00
25

00

254127 empty drops batch 2 threshold 1

 droplet  log10 protein library size 

Fr
eq

ue
nc

y

2.5 3.0 3.5 4.0
0

20
00

0
40

00
0

60
00

0
80

00
0

303333 empty drops batch 1 threshold 1

 droplet  log10 protein library size 

Fr
eq

ue
nc

y

2.5 3.0 3.5 4.0

0e
+0

0
4e

+0
4

8e
+0

4



 24 

 

Supplementary Figure 8 

Stability of dsb normalized values when processing multiple batches in a single normalization vs 

normalizing each batch separately, both using two definitions of background droplets with the dsb 

package. a–d show protein library size distributions of background droplets defined using either 

the protein library size distribution alone or droplets defined as negative during demultiplexing 

(see Supplemental note) across n = 2 batches. The raw Cell Ranger outputs from each staining 

batch of cells were split across n=6 lanes per batch of the 10X Chromium instrument and for each 

definition of background, the dsb results for merged vs split batch normalization are shown in e-

h. 
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Supplementary Figure 9 

Analysis of TEA-seq (transcriptome, epitopes and accessibility) tri-modal single cell assay data. 

a. TEA-seq data normalized by Library size based normalization (as in Swanson et. al.), and b. 

CLR across cells. c. UMAP plot of single cells and clusters derived by WNN joint mRNA-protein 

clustering with data normalized using CLR (see Fig. 4b for dsb normalized data). d. Contingency 

of clustering results between joint mRNA and protein Weighted Nearest Neighbor (WNN) 

clustering with CLR normalized (rows) or dsb normalized (columns) values as input to the protein 

matrix. The bottom margin shows the same data as circles with area proportional to frequency to 

show clusters with cell assignment differences. The average protein expression profiles of the 

clusters from e. CLR and f. dsb for protein normalization are shown as heatmaps.  


