
mListTM REPORT

Biochemical profiling of rare disease cohort human plasma

samples (BLUEPRINT)

UCAM-0303B-15MLBL+

AUTHOR: Edward D. Karoly, PhD

APPROVAL: Robert Mohney, PhD

DATE: May 06, 2016

Metabolon, Inc. • 617 Davis Drive, Suite 400, Durham, NC 27713 • (919) 572-1711 www.metabolon.com •
Contact: info@metabolon.com



Table of Contents
Objective

Experimental Procedures

Results and Biological Interpretation

Metabolite Summary and Significantly Altered Biochemicals

Study Parameters

Data Quality: Instrument and Process Variability

Appendix

Metabolon Platform

Objective

Purpose of Experiment

The goal of this study was to biochemically profile human EDTA plasma samples submitted

for analysis. These samples are associated with BLUEPRINT and includes samples

(UCAM-09597 through UCAM-09819) originally submitted as part of UCAM-0303-15MLBL+.

Experimental Procedures

Experimental design

Metabolon received 223 human EDTA plasma samples on October 7, 2015. The total

number of samples submitted for analysis under this study is also presented below.

Matrix n

Human Plasma 223



Results and Biological Interpretation

Metabolite Summary and Significantly Altered Biochemicals

The present dataset comprises a total of 1368 biochemicals, 909 compounds of known

identity (named biochemicals) and 459 compounds of unknown structural identity

(unnamed biochemicals). Information related to biochemical pathways, chemical

properties, and public databases are included in the electronic data files that accompany this

report.

Matrix Named Biochemicals Unnamed

Biochemicals

Total Biochemicals

Human Plasma 909 459 1368

[Biological interpretation is available as a component of the mView deliverable]

Study Parameters

Data Quality: Instrument and Process Variability

QC Sample Measurement Median RSD

Internal Standards Instrument Variability 4 %

Endogenous Biochemicals Total Process Variability 8 %



Instrument variability was determined by calculating the median relative standard deviation

(RSD) for the internal standards that were added to each sample prior to injection into the

mass spectrometers. Overall process variability was determined by calculating the median

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the

Client Matrix samples, which are technical replicates of pooled client samples. Values for

instrument and process variability meet Metabolon’s acceptance criteria as shown in the

table above.

Appendix

Metabolon Platform

Sample Accessioning: Following receipt, samples were inventoried and immediately stored

at -80oC. Each sample received was accessioned into the Metabolon LIMS system and was

assigned by the LIMS a unique identifier that was associated with the original source

identifier only. This identifier was used to track all sample handling, tasks, results, etc. The

samples (and all derived aliquots) were tracked by the LIMS system. All portions of any

sample were automatically assigned their own unique identifiers by the LIMS when a new

task was created; the relationship of these samples was also tracked. All samples were

maintained at -80oC until processed.

Sample Preparation: Samples were prepared using the automated MicroLab STAR® system

from Hamilton Company. Several recovery standards were added prior to the first step in

the extraction process for QC purposes. To remove protein, dissociate small molecules

bound to protein or trapped in the precipitated protein matrix, and to recover chemically

diverse metabolites, proteins were precipitated with methanol under vigorous shaking for 2

min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was

divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS

methods with positive ion mode electrospray ionization (ESI), one for analysis by

RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with

negative ion mode ESI, and one sample was reserved for backup. Samples were placed

briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were

stored overnight under nitrogen before preparation for analysis.

QA/QC: Several types of controls were analyzed in concert with the experimental samples:

a pooled matrix sample generated by taking a small volume of each experimental sample (or

alternatively, use of a pool of well-characterized human plasma) served as a technical



replicate throughout the data set; extracted water samples served as process blanks; and a

cocktail of QC standards that were carefully chosen not to interfere with the measurement

of endogenous compounds were spiked into every analyzed sample, allowed instrument

performance monitoring and aided chromatographic alignment. Tables 1 and 2 describe

these QC samples and standards. Instrument variability was determined by calculating the

median relative standard deviation (RSD) for the standards that were added to each sample

prior to injection into the mass spectrometers. Overall process variability was determined

by calculating the median RSD for all endogenous metabolites (i.e., non-instrument

standards) present in 100% of the pooled matrix samples. Experimental samples were

randomized across the platform run with QC samples spaced evenly among the injections, as

outlined in Figure 1.

Table 1: Description of Metabolon QC Samples

Type Description Purpose

MTRX Large pool of human plasma

maintained by Metabolon that

has been characterized

extensively.

Assure that all aspects of the Metabolon

process are operating within

specifications.

CMTRX Pool created by taking a small

aliquot from every customer

sample.

Assess the effect of a non-plasma matrix

on the Metabolon process and distinguish

biological variability from process

variability.

PRCS Aliquot of ultra-pure water Process Blank used to assess the

contribution to compound signals from

the process.

SOLV Aliquot of solvents used in

extraction.

Solvent Blank used to segregate

contamination sources in the extraction.

Table 2: Metabolon QC Standards

Type Description Purpose

RS Recovery Standard Assess variability and verify performance

of extraction and instrumentation.

IS Internal Standard Assess variability and performance of

instrument.



Figure 1. Preparation of client-specific technical replicates. A small aliquot of each client

sample (colored cylinders) is pooled to create a CMTRX technical replicate sample

(multi-colored cylinder), which is then injected periodically throughout the platform run.

Variability among consistently detected biochemicals can be used to calculate an estimate of

overall process and platform variability.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy

(UPLC-MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap

mass analyzer operated at 35,000 mass resolution. The sample extract was dried then

reconstituted in solvents compatible to each of the four methods. Each reconstitution

solvent contained a series of standards at fixed concentrations to ensure injection and

chromatographic consistency. One aliquot was analyzed using acidic positive ion conditions,

chromatographically optimized for more hydrophilic compounds. In this method, the extract

was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using

water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid

(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it was

chromatographically optimized for more hydrophobic compounds. In this method, the

extract was gradient eluted from the same afore mentioned C18 column using methanol,

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic

content. Another aliquot was analyzed using basic negative ion optimized conditions using a

separate dedicated C18 column. The basic extracts were gradient eluted from the column

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The

fourth aliquot was analyzed via negative ionization following elution from a HILIC column

(Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted

between methods but covered 70-1000 m/z. Raw data files are archived and extracted as

described below.

Bioinformatics: The informatics system consisted of four major components, the Laboratory

Information Management System (LIMS), the data extraction and peak-identification

software, data processing tools for QC and compound identification, and a collection of

information interpretation and visualization tools for use by data analysts. The hardware

and software foundations for these informatics components were the LAN backbone, and a

database server running Oracle 10.2.0.1 Enterprise Edition.

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory

automation through a secure, easy to use, and highly specialized system. The scope of the



Metabolon LIMS system encompasses sample accessioning, sample preparation and

instrumental analysis and reporting and advanced data analysis. All of the subsequent

software systems are grounded in the LIMS data structures. It has been modified to

leverage and interface with the in-house information extraction and data visualization

systems, as well as third party instrumentation and data analysis software.

Data Extraction and Compound Identification: Raw data was extracted, peak-identified and

QC processed using Metabolon’s hardware and software. These systems are built on a

web-service platform utilizing Microsoft’s .NET technologies, which run on

high-performance application servers and fiber-channel storage arrays in clusters to provide

active failover and load-balancing. Compounds were identified by comparison to library

entries of purified standards or recurrent unknown entities. Metabolon maintains a library

based on authenticated standards that contains the retention time/index (RI), mass to

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all

molecules present in the library. Furthermore, biochemical identifications are based on

three criteria: retention index within a narrow RI window of the proposed identification,

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores

between the experimental data and authentic standards. The MS/MS scores are based on a

comparison of the ions present in the experimental spectrum to the ions present in the

library spectrum. While there may be similarities between these molecules based on one of

these factors, the use of all three data points can be utilized to distinguish and differentiate

biochemicals. More than 3300 commercially available purified standard compounds have

been acquired and registered into LIMS for analysis on all platforms for determination of

their analytical characteristics. Additional mass spectral entries have been created for

structurally unnamed biochemicals, which have been identified by virtue of their recurrent

nature (both chromatographic and mass spectral). These compounds have the potential to

be identified by future acquisition of a matching purified standard or by classical structural

analysis.

Curation: A variety of curation procedures were carried out to ensure that a high quality

data set was made available for statistical analysis and data interpretation. The QC and

curation processes were designed to ensure accurate and consistent identification of true

chemical entities, and to remove those representing system artifacts, mis-assignments, and

background noise. Metabolon data analysts use proprietary visualization and interpretation

software to confirm the consistency of peak identification among the various samples.

Library matches for each compound were checked for each sample and corrected if

necessary.



Metabolite Quantification and Data Normalization: Peaks were quantified using

area-under-the-curve. For studies spanning multiple days, a data normalization step was

performed to correct variation resulting from instrument inter-day tuning differences.

Essentially, each compound was corrected in run-day blocks by registering the medians to

equal one (1.00) and normalizing each data point proportionately (termed the “block

correction”; Figure 2). For studies that did not require more than one day of analysis, no

normalization is necessary, other than for purposes of data visualization. In certain

instances, biochemical data may have been normalized to an additional factor (e.g., cell

counts, total protein as determined by Bradford assay, osmolality, etc.) to account for

differences in metabolite levels due to differences in the amount of material present in each

sample.

Figure 2:  Visualization of data normalization steps for a multiday platform run.
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Objective

The goal of the study was to identify metabolic differences in rare disease group samples

that are associated with BLUEPRINT samples from the Ouwehand group. As per delineated

in a client-provided manifest, 20 plasma samples from the current study were merged with

223 samples from the previous 0303B study, totaling 243 samples.

Experimental Procedures

Experimental design

Global biochemical profiles were determined in human plasma samples associated with

samples below.

Matrix Sample n Description

Human Plasma 243 Willem Ouwehand’s BLUEPRINT samples

Results and Biological Interpretation

[Biological Interpretation is available as a component of mView service deliverable.]

Metabolite Summary and Significantly Altered Biochemicals

Numbers of compounds of known structural identity (named biochemicals) as well as

compounds of unknown structural identity (unnamed biochemicals) detected in the present

datasets are presented in the table below. Information related to biochemical pathways,

chemical properties, and public databases are included in the electronic data files that

accompany this report.

Matrix Named Biochemicals Unnamed

Biochemicals

Total Biochemicals

Human Plasma 793 362 1155



Study Parameters

Data Quality: Instrument and Process Variability

QC Sample Measurement Median RSD

Internal Standards Instrument Variability 4%

Endogenous Biochemicals Total Process Variability 9%

Instrument variability was determined by calculating the median relative standard deviation

(RSD) for the internal standards that were added to each sample prior to injection into the

mass spectrometers. Overall process variability was determined by calculating the median

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the

Client Matrix samples, which are technical replicates of pooled client samples. Values for

instrument and process variability as shown in the table above meet Metabolon’s

acceptance criteria.

Appendix

Metabolon Platform

Sample Accessioning: Following receipt, samples were inventoried and immediately stored

at -80oC. Each sample received was accessioned into the Metabolon LIMS system and was

assigned by the LIMS a unique identifier that was associated with the original source

identifier only. This identifier was used to track all sample handling, tasks, results, etc. The

samples (and all derived aliquots) were tracked by the LIMS system. All portions of any

sample were automatically assigned their own unique identifiers by the LIMS when a new

task was created; the relationship of these samples was also tracked. All samples were

maintained at -80oC until processed.

Sample Preparation: Samples were prepared using the automated MicroLab STAR® system

from Hamilton Company. Several recovery standards were added prior to the first step in

the extraction process for QC purposes. To remove protein, dissociate small molecules

bound to protein or trapped in the precipitated protein matrix, and to recover chemically

diverse metabolites, proteins were precipitated with methanol under vigorous shaking for 2

min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was



divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS

methods with positive ion mode electrospray ionization (ESI), one for analysis by

RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with

negative ion mode ESI, and one sample was reserved for backup. Samples were placed

briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were

stored overnight under nitrogen before preparation for analysis.

QA/QC: Several types of controls were analyzed in concert with the experimental samples:

a pooled matrix sample generated by taking a small volume of each experimental sample (or

alternatively, use of a pool of well-characterized human plasma) served as a technical

replicate throughout the data set; extracted water samples served as process blanks; and a

cocktail of QC standards that were carefully chosen not to interfere with the measurement

of endogenous compounds were spiked into every analyzed sample, allowed instrument

performance monitoring and aided chromatographic alignment. Tables 1 and 2 describe

these QC samples and standards. Instrument variability was determined by calculating the

median relative standard deviation (RSD) for the standards that were added to each sample

prior to injection into the mass spectrometers. Overall process variability was determined

by calculating the median RSD for all endogenous metabolites (i.e., non-instrument

standards) present in 100% of the pooled matrix samples. Experimental samples were

randomized across the platform run with QC samples spaced evenly among the injections, as

outlined in Figure 1.

Table 1: Description of Metabolon QC Samples

Type Description Purpose

MTRX Large pool of human plasma

maintained by Metabolon that

has been characterized

extensively.

Assure that all aspects of the Metabolon

process are operating within

specifications.

CMTRX Pool created by taking a small

aliquot from every customer

sample.

Assess the effect of a non-plasma matrix

on the Metabolon process and distinguish

biological variability from process

variability.

PRCS Aliquot of ultra-pure water Process Blank used to assess the

contribution to compound signals from

the process.

SOLV Aliquot of solvents used in

extraction.

Solvent Blank used to segregate

contamination sources in the extraction.



Table 2: Metabolon QC Standards

Type Description Purpose

RS Recovery Standard Assess variability and verify performance

of extraction and instrumentation.

IS Internal Standard Assess variability and performance of

instrument.

Figure 1. Preparation of client-specific technical replicates. A small aliquot of each client

sample (colored cylinders) is pooled to create a CMTRX technical replicate sample

(multi-colored cylinder), which is then injected periodically throughout the platform run.

Variability among consistently detected biochemicals can be used to calculate an estimate of

overall process and platform variability.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy

(UPLC-MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap

mass analyzer operated at 35,000 mass resolution. The sample extract was dried then

reconstituted in solvents compatible to each of the four methods. Each reconstitution

solvent contained a series of standards at fixed concentrations to ensure injection and

chromatographic consistency. One aliquot was analyzed using acidic positive ion conditions,

chromatographically optimized for more hydrophilic compounds. In this method, the extract

was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using

water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid

(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it was

chromatographically optimized for more hydrophobic compounds. In this method, the

extract was gradient eluted from the same afore mentioned C18 column using methanol,

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic

content. Another aliquot was analyzed using basic negative ion optimized conditions using a

separate dedicated C18 column. The basic extracts were gradient eluted from the column

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The

fourth aliquot was analyzed via negative ionization following elution from a HILIC column

(Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted

between methods but covered 70-1000 m/z. Raw data files are archived and extracted as

described below.



Bioinformatics: The informatics system consisted of four major components, the Laboratory

Information Management System (LIMS), the data extraction and peak-identification

software, data processing tools for QC and compound identification, and a collection of

information interpretation and visualization tools for use by data analysts. The hardware

and software foundations for these informatics components were the LAN backbone, and a

database server running Oracle 10.2.0.1 Enterprise Edition.

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory

automation through a secure, easy to use, and highly specialized system. The scope of the

Metabolon LIMS system encompasses sample accessioning, sample preparation and

instrumental analysis and reporting and advanced data analysis. All of the subsequent

software systems are grounded in the LIMS data structures. It has been modified to

leverage and interface with the in-house information extraction and data visualization

systems, as well as third party instrumentation and data analysis software.

Data Extraction and Compound Identification: Raw data was extracted, peak-identified and

QC processed using Metabolon’s hardware and software. These systems are built on a

web-service platform utilizing Microsoft’s .NET technologies, which run on

high-performance application servers and fiber-channel storage arrays in clusters to provide

active failover and load-balancing. Compounds were identified by comparison to library

entries of purified standards or recurrent unknown entities. Metabolon maintains a library

based on authenticated standards that contains the retention time/index (RI), mass to

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all

molecules present in the library. Furthermore, biochemical identifications are based on

three criteria: retention index within a narrow RI window of the proposed identification,

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores

between the experimental data and authentic standards. The MS/MS scores are based on a

comparison of the ions present in the experimental spectrum to the ions present in the

library spectrum. While there may be similarities between these molecules based on one of

these factors, the use of all three data points can be utilized to distinguish and differentiate

biochemicals. More than 3300 commercially available purified standard compounds have

been acquired and registered into LIMS for analysis on all platforms for determination of

their analytical characteristics. Additional mass spectral entries have been created for

structurally unnamed biochemicals, which have been identified by virtue of their recurrent

nature (both chromatographic and mass spectral). These compounds have the potential to

be identified by future acquisition of a matching purified standard or by classical structural

analysis.

Curation: A variety of curation procedures were carried out to ensure that a high quality

data set was made available for statistical analysis and data interpretation. The QC and

curation processes were designed to ensure accurate and consistent identification of true

chemical entities, and to remove those representing system artifacts, mis-assignments, and



background noise. Metabolon data analysts use proprietary visualization and interpretation

software to confirm the consistency of peak identification among the various samples.

Library matches for each compound were checked for each sample and corrected if

necessary.

Metabolite Quantification and Data Normalization: Peaks were quantified using

area-under-the-curve. For studies spanning multiple days, a data normalization step was

performed to correct variation resulting from instrument inter-day tuning differences.

Essentially, each compound was corrected in run-day blocks by registering the medians to

equal one (1.00) and normalizing each data point proportionately (termed the “block

correction”; Figure 2). For studies that did not require more than one day of analysis, no

normalization is necessary, other than for purposes of data visualization. In certain

instances, biochemical data may have been normalized to an additional factor (e.g., cell

counts, total protein as determined by Bradford assay, osmolality, etc.) to account for

differences in metabolite levels due to differences in the amount of material present in each

sample.

Figure 2:  Visualization of data normalization steps for a multiday platform run.

Statistical Methods and Terminology

Statistical Calculations: For many studies, two types of statistical analysis are usually

performed: (1) significance tests and (2) classification analysis. Standard statistical analyses

are performed in ArrayStudio on log transformed data. For those analyses not standard in

ArrayStudio, the programs R (http://cran.r-project.org/) or JMP are used. Below are

examples of frequently employed significance tests and classification methods followed by a

discussion of p- and q-value significance thresholds.

1. Welch’s two-sample t-test

Welch’s two-sample t-test is used to test whether two unknown means are different

from two independent populations.

This version of the two-sample t-test allows for unequal variances (variance is the

square of the standard deviation) and has an approximate t-distribution with degrees

of freedom estimated using Satterthwaite’s approximation. The test statistic is given

by t , and the degrees of freedom is given by , where , are the sample means, s1, s2,

are the sample standard deviations, and n1, n2 are the samples sizes from groups 1

http://cran.r-project.org/


and 2, respectively. We typically use a two-sided test (tests whether the means are

different) as opposed to a one-sided test (tests whether one mean is greater than the

other).

2. Matched Pairs t-test

The matched pairs t-test is used to test whether two unknown means are different

from paired observations taken on the same subjects.

The matched pairs t-test is equivalent to the one-sample t-test performed on the

differences of the observations taken on each subject (i.e., calculate (x1 – x2) for each

subject; test whether the mean difference is zero or not). The test statistic is given

by , with n – 1 degrees of freedom, where , are the sample means for groups 1 and

2, respectively, sd is the standard deviation of the differences, n is the number of

subjects (so there are 2n observations).

3. One-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations

have the same variances. One-way ANOVA is used to test whether at least two

unknown means are all equal or whether at least one pair of means is different. For

the case of two means, ANOVA gives the same result as a two-sided t-test with a

pooled estimate of the variance.

An ANOVA uses an F-test which has two parameters – the numerator degrees of

freedom and the denominator degrees of freedom. The degrees of freedom in the

numerator are equal to g – 1, where g is the number of groups. If n is the total

number of observations (n1 + n2), then, the denominator degrees of freedom is equal

to n – g. The F-statistic is the ratio of the between-groups variance to the

within-groups variance, hence the higher the F-statistic the more evidence we have

that the means are different.

Often within ANOVA, one performs linear contrasts for specific comparisons of

interest. For example, suppose we have three groups A, B, C, then examples of some

contrasts are A vs. B, the average of A and B vs. C, etc. For single-degree of freedom

contrasts, these give the same result as a two-sided t-test with the pooled estimate

of the variance from the ANOVA and degrees of freedom n – g. Below, we show the

three formulas for A vs. B from a three group design as shown above. The

numerator is same in each case, but the denominator differs by the estimates of the

variances, and the degrees of freedom are different for each (if the theoretical

assumptions hold, then the contrast has the most power, as it has the largest degrees

of freedom).



Welch’s two-sample t-test

By t , and the degrees of freedom is given by

Two-sample t-test with pooled estimate of variance from A and B

where ,  where the degrees of freedom is nA + nB – 2.

The contrast from the ANOVA,

where , where the degrees of freedom is given by where the degrees of freedom is

nA + nB + nC – 3.

4. Two-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations

have the same variances. For a two-way ANOVA, three statistical tests are typically

performed: the main effect of each factor and the interaction. Suppose we have

two factors A and B, where A represent the genotype and B represent the diet in a

mouse study. Suppose each of these factors has two levels (A: wild type, knock out;

B: standard diet, high fat diet). For this example, there are 4 combinations

(“treatments”): A1B1, A1B2, A2B1, A2B2. The overall ANOVA F-test gives the

p-value for testing whether all four of these means are equal or whether at least one

pair is different. However, we are also interested in the effect of the genotype and

diet. A main effect is a contrast that tests one factor across the levels of the other

factor. Hence the A main effect compares (A1B1 + A1B2)/2 vs. (A2B1 + A2B2)/2, and

the B-main effect compares (A1B1 + A2B2)/2 vs. (A1B2 + A2B2)/2. The interaction is

a contrast that tests whether the mean difference for one factor depends on the

level of the other factor, which is (A1B2 + A2B1)/2 vs. (A1B1 + A2B2)/2.

Some sample plots follow. For the first plot, there is a B main effect, but no A main

effect and no interaction, as the effect of B does not depend on the level of A. For

the second plot, notice how the mean difference for B is the same at each level of A

and the difference in A is the same for each level of B, hence there is no statistical

interaction. The final plot also has main effects for A and B, but here also has an

interaction: we see the effect of B depends on the level of A (0 for A1 but 2 for A2),

i.e., the effect of the diet depends on the genotype. We also see here the

interpretation of the main effects depends on whether there is an interaction or not.

5. Two-way Repeated Measures ANOVA

This is typically an ANOVA where one factor is applied to each subject and the second

factor is a time point. See two-way ANOVA as many of the details are similar except

that the model takes into account the repeated measures, i.e., the treatments are



given to the same subject over time. The two main effects and the interaction are

assessed, with particular interest to the interaction, as this shows where the time

profiles are parallel or not for the treatments (parallel mean no interaction).

One additional note, the standard analysis assumes a condition referred to as

compound symmetry, which assumes the correlation between each pair of levels of

the repeated-measures factor is the same. Thus, for the case of time, it assumes the

correlation is the same between time points 1 and 2, 1 and 3, and 2 and 3.

6. Correlation

Correlation measures the strength and direction of a linear association between two

variables. The statistical test for correlation tests whether the true correlation is zero

or not.

The square of the correlation is the percentage of the total variation explained by a

linear relationship between the two variables. Thus, with large sample sizes there

may be a sample correlation of 0.1 that is statistically significant. This means we

have high confidence that the true correlation is zero, however, only 100*(0.1*0.1)%

= 1% of the variation of one variable is explained by a linear relationship with the

other variable, so while there is an association, it has little predictive ability.

7. Hotelling’s T2 test

The Hotelling’s T2 test is a multivariate generalization of the t-test, but here we are

testing whether the mean vectors are different or not (the vector consists of multiple

metabolites).

The Hotelling statistic is: , where nx and ny are the numbers of samples in each group,

is the mean vector of the variables from group 1, is the mean vector of variables

from group 2 and S is the pooled estimate of the variance-covariance matrix of the

variables. This analysis assumes the underlying variance-covariance matrix is the

same for each group. Notice that in the case of uncorrelated variables, this is simply

a weighted average of the squared mean differences with weights inversely

proportional to the sample variances (i.e., the metabolites less variable within a

group are given higher weights).

8. p-values

For statistical significance testing, p-values are given. The lower the p-value, the

more evidence we have that the null hypothesis (typically that two population means

are equal) is not true. If “statistical significance” is declared for p-values less than



0.05, then 5% of the time we incorrectly conclude the means are different, when

actually they are the same.

The p-value is the probability that the test statistic is at least as extreme as observed

in this experiment given that the null hypothesis is true. Hence, the more extreme

the statistic, the lower the p-value and the more evidence the data gives against the

null hypothesis.

9. q-values

The level of 0.05 is the false positive rate when there is one test. However, for a large

number of tests we need to account for false positives. There are different methods

to correct for multiple testing. The oldest methods are family-wise error rate

adjustments (Bonferroni, Tukey, etc.), but these tend to be extremely conservative

for a very large number of tests. With gene arrays, using the False Discovery Rate

(FDR) is more common. The family-wise error rate adjustments give one a high

degree of confidence that there are zero false discoveries. However, with FDR

methods, one can allow for a small number of false discoveries. The FDR for a given

set of compounds can be estimated using the q-value (see Storey J and Tibshirani R.

(2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100:

9440-9445; PMID: 12883005).

In order to interpret the q-value, the data must first be sorted by the p-value then

choose the cutoff for significance (typically p<0.05). The q-value gives the false

discovery rate for the selected list (i.e., an estimate of the proportion of false

discoveries for the list of compounds whose p-value is below the cutoff for

significance). For Table 1 below, if the whole list is declared significant, then the false

discovery rate is approximately 10%. If everything from Compound 079 and above is

declared significant, then the false discovery rate is approximately 2.5%.

Table 1: Example of q-value interpretation

10. Random Forest



Random forest is a supervised classification technique based on an ensemble of

decision trees (see Breiman L. (2001) Random Forests. Machine Learning. 45: 5-32;

http://link.springer.com/article/10.1023%2FA%3A1010933404324). For a given

decision tree, a random subset of the data with identifying true class information is

selected to build the tree (“bootstrap sample” or “training set”), and then the

remaining data, the “out-of-bag” (OOB) variables, are passed down the tree to obtain

a class prediction for each sample. This process is repeated thousands of times to

produce the forest. The final classification of each sample is determined by

computing the class prediction frequency (“votes”) for the OOB variables over the

whole forest. For example, suppose the random forest consists of 50,000 trees and

that 25,000 trees had a prediction for sample 1. Of these 25,000, suppose 15,000

trees classified the sample as belonging to Group A and the remaining 10,000

classified it as belonging to Group B. Then the votes are 0.6 for Group A and 0.4 for

Group B, and hence the final classification is Group A. This method is unbiased since

the prediction for each sample is based on trees built from a subset of samples that

do not include that sample. When the full forest is grown, the class predictions are

compared to the true classes, generating the “OOB error rate” as a measure of

prediction accuracy. Thus, the prediction accuracy is an unbiased estimate of how

well one can predict sample class in a new data set. Random forest has several

advantages – it makes no parametric assumptions, variable selection is not needed, it

does not overfit, it is invariant to transformation, and it is fairly easy to implement

with R.

To determine which variables (biochemicals) make the largest contribution to the

classification, a “variable importance” measure is computed. We use the “Mean

Decrease Accuracy” (MDA) as this metric. The MDA is determined by randomly

permuting a variable, running the observed values through the trees, and then

reassessing the prediction accuracy. If a variable is not important, then this

procedure will have little change in the accuracy of the class prediction (permuting

random noise will give random noise). By contrast, if a variable is important to the

classification, the prediction accuracy will drop after such a permutation, which we

record as the MDA. Thus, the random forest analysis provides an “importance” rank

ordering of biochemicals; we typically output the top 30 biochemicals in the list as

potentially worthy of further investigation.

11. Hierarchical Clustering

Hierarchical clustering is an unsupervised method for clustering the data, and can

show large-scale differences. There are several types of hierarchical clustering and

many distance metrics that can be used. A common method is complete clustering



using the Euclidean distance, where each sample is a vector with all of the

metabolite values. The differences seen in the cluster may be unrelated to the

treatment groups or study design.

12. Principal Components Analysis (PCA)

Principal components analysis is an unsupervised analysis that reduces the

dimension of the data. Each principal component is a linear combination of

every metabolite and the principal components are uncorrelated. The number of

principal components is equal to the number of observations.

The first principal component is computed by determining the coefficients of the

metabolites that maximizes the variance of the linear combination. The second

component finds the coefficients that maximize the variance with the condition that

the second component is orthogonal to the first. The third component is orthogonal

to the first two components and so on. The total variance is defined as the sum of

the variances of the predicted values of each component (the variance is the square

of the standard deviation), and for each component, the proportion of the total

variance is computed. For example, if the standard deviation of the predicted values

of the first principal component is 0.4 and the total variance = 1, then 100*0.4*0.4/1

= 16% of the total variance is explained by the first component. Since this is an

unsupervised method, the main components may be unrelated to the treatment

groups, and the “separation” does not give an estimate of the true predictive ability.

13. Z-scores

An intensity measurement for a metabolite by itself does not tell much. If for

example a patient contains a blood glucose level of 300, this could be very good

news if most people have blood glucose levels around 300, but less so if most people

have levels around 100. In other words a measurement is meaningful only relative to

the means of the sample or the population. This can be achieved by transforming the

measurements into Z-scores which are expressed as standard deviations from the

mean.

The Z-score, also called the standard score or normal score, is a dimensionless

quantity derived by subtracting the control population mean from an individual raw

score and then dividing the difference by the control population standard deviation.

The Z-score indicates how many standard deviations an observation is above or

below the mean of the control group. The Z-score is negative when the raw score is

below the mean, positive when above. Since knowing the true mean and standard

deviation of a control population is often unrealistic, the mean and standard



deviation of the control population may be estimated using a random control

sample.

Z-score =

where: x is a raw score to be standardized, μ is the mean of the control

population,  σ is the standard deviation of the control population

Subtracting the mean centers the distribution, and dividing by the standard deviation

standardizes the distribution. The interesting properties of Z-scores are that they

have a zero mean (effect of “centering”) and a variance and standard deviation of 1

(effect of “standardizing”). This is because all distributions expressed in Z-scores have

the same mean (0) and the same variance (1), so we can use Z-scores to compare

observations coming from different distributions. When a distribution is normal most

of the Z-scores (more than 99%) lay between the values of -3 and +3.
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Purpose of Experiment

The goal of the study was to identify metabolic differences in rare disease group samples

that are associated with BPD samples from the Ouwehand group.

Experimental Procedures

Experimental design

Global biochemical profiles were determined in human plasma samples associated with

samples below.

Matrix Sample n Description

Human Plasma 58 Willem Ouwehand’s BPD samples

Results and Biological Interpretation

[Biological Interpretation is available as a component of mView service deliverable.]

Metabolite Summary and Significantly Altered Biochemicals

Numbers of compounds of known structural identity (named biochemicals) as well as

compounds of unknown structural identity (unnamed biochemicals) detected in the present

datasets are presented in the table below. Information related to biochemical pathways,

chemical properties, and public databases are included in the electronic data files that

accompany this report.

Matrix Named Biochemicals Unnamed

Biochemicals

Total Biochemicals

Human Plasma 947 433 1380

Study Parameters



Data Quality: Instrument and Process Variability

QC Sample Measurement Median RSD

Internal Standards Instrument Variability 4%

Endogenous Biochemicals Total Process Variability 9%

Instrument variability was determined by calculating the median relative standard deviation

(RSD) for the internal standards that were added to each sample prior to injection into the

mass spectrometers. Overall process variability was determined by calculating the median

RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of the

Client Matrix samples, which are technical replicates of pooled client samples. Values for

instrument and process variability as shown in the table above meet Metabolon’s

acceptance criteria.

Appendix

Metabolon Platform

Sample Accessioning: Following receipt, samples were inventoried and immediately stored

at -80oC. Each sample received was accessioned into the Metabolon LIMS system and was

assigned by the LIMS a unique identifier that was associated with the original source

identifier only. This identifier was used to track all sample handling, tasks, results, etc. The

samples (and all derived aliquots) were tracked by the LIMS system. All portions of any

sample were automatically assigned their own unique identifiers by the LIMS when a new

task was created; the relationship of these samples was also tracked. All samples were

maintained at -80oC until processed.

Sample Preparation: Samples were prepared using the automated MicroLab STAR® system

from Hamilton Company. Several recovery standards were added prior to the first step in

the extraction process for QC purposes. To remove protein, dissociate small molecules

bound to protein or trapped in the precipitated protein matrix, and to recover chemically

diverse metabolites, proteins were precipitated with methanol under vigorous shaking for 2

min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was

divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS

methods with positive ion mode electrospray ionization (ESI), one for analysis by



RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with

negative ion mode ESI, and one sample was reserved for backup. Samples were placed

briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were

stored overnight under nitrogen before preparation for analysis.

QA/QC: Several types of controls were analyzed in concert with the experimental samples:

a pooled matrix sample generated by taking a small volume of each experimental sample (or

alternatively, use of a pool of well-characterized human plasma) served as a technical

replicate throughout the data set; extracted water samples served as process blanks; and a

cocktail of QC standards that were carefully chosen not to interfere with the measurement

of endogenous compounds were spiked into every analyzed sample, allowed instrument

performance monitoring and aided chromatographic alignment. Tables 1 and 2 describe

these QC samples and standards. Instrument variability was determined by calculating the

median relative standard deviation (RSD) for the standards that were added to each sample

prior to injection into the mass spectrometers. Overall process variability was determined

by calculating the median RSD for all endogenous metabolites (i.e., non-instrument

standards) present in 100% of the pooled matrix samples. Experimental samples were

randomized across the platform run with QC samples spaced evenly among the injections, as

outlined in Figure 1.

Table 1: Description of Metabolon QC Samples

Type Description Purpose

MTRX Large pool of human plasma

maintained by Metabolon that

has been characterized

extensively.

Assure that all aspects of the Metabolon

process are operating within

specifications.

CMTRX Pool created by taking a small

aliquot from every customer

sample.

Assess the effect of a non-plasma matrix

on the Metabolon process and distinguish

biological variability from process

variability.

PRCS Aliquot of ultra-pure water Process Blank used to assess the

contribution to compound signals from

the process.

SOLV Aliquot of solvents used in

extraction.

Solvent Blank used to segregate

contamination sources in the extraction.

Table 2: Metabolon QC Standards



Type Description Purpose

RS Recovery Standard Assess variability and verify performance

of extraction and instrumentation.

IS Internal Standard Assess variability and performance of

instrument.

Figure 1. Preparation of client-specific technical replicates. A small aliquot of each client

sample (colored cylinders) is pooled to create a CMTRX technical replicate sample

(multi-colored cylinder), which is then injected periodically throughout the platform run.

Variability among consistently detected biochemicals can be used to calculate an estimate of

overall process and platform variability.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy

(UPLC-MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap

mass analyzer operated at 35,000 mass resolution. The sample extract was dried then

reconstituted in solvents compatible to each of the four methods. Each reconstitution

solvent contained a series of standards at fixed concentrations to ensure injection and

chromatographic consistency. One aliquot was analyzed using acidic positive ion conditions,

chromatographically optimized for more hydrophilic compounds. In this method, the extract

was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using

water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid

(FA). Another aliquot was also analyzed using acidic positive ion conditions, however it was

chromatographically optimized for more hydrophobic compounds. In this method, the

extract was gradient eluted from the same afore mentioned C18 column using methanol,

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic

content. Another aliquot was analyzed using basic negative ion optimized conditions using a

separate dedicated C18 column. The basic extracts were gradient eluted from the column

using methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The

fourth aliquot was analyzed via negative ionization following elution from a HILIC column

(Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between

MS and data-dependent MSn scans using dynamic exclusion. The scan range varied slighted

between methods but covered 70-1000 m/z. Raw data files are archived and extracted as

described below.



Bioinformatics: The informatics system consisted of four major components, the Laboratory

Information Management System (LIMS), the data extraction and peak-identification

software, data processing tools for QC and compound identification, and a collection of

information interpretation and visualization tools for use by data analysts. The hardware

and software foundations for these informatics components were the LAN backbone, and a

database server running Oracle 10.2.0.1 Enterprise Edition.

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory

automation through a secure, easy to use, and highly specialized system. The scope of the

Metabolon LIMS system encompasses sample accessioning, sample preparation and

instrumental analysis and reporting and advanced data analysis. All of the subsequent

software systems are grounded in the LIMS data structures. It has been modified to

leverage and interface with the in-house information extraction and data visualization

systems, as well as third party instrumentation and data analysis software.

Data Extraction and Compound Identification: Raw data was extracted, peak-identified and

QC processed using Metabolon’s hardware and software. These systems are built on a

web-service platform utilizing Microsoft’s .NET technologies, which run on

high-performance application servers and fiber-channel storage arrays in clusters to provide

active failover and load-balancing. Compounds were identified by comparison to library

entries of purified standards or recurrent unknown entities. Metabolon maintains a library

based on authenticated standards that contains the retention time/index (RI), mass to

charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all

molecules present in the library. Furthermore, biochemical identifications are based on

three criteria: retention index within a narrow RI window of the proposed identification,

accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores

between the experimental data and authentic standards. The MS/MS scores are based on a

comparison of the ions present in the experimental spectrum to the ions present in the

library spectrum. While there may be similarities between these molecules based on one of

these factors, the use of all three data points can be utilized to distinguish and differentiate

biochemicals. More than 3300 commercially available purified standard compounds have

been acquired and registered into LIMS for analysis on all platforms for determination of

their analytical characteristics. Additional mass spectral entries have been created for

structurally unnamed biochemicals, which have been identified by virtue of their recurrent

nature (both chromatographic and mass spectral). These compounds have the potential to

be identified by future acquisition of a matching purified standard or by classical structural

analysis.

Curation: A variety of curation procedures were carried out to ensure that a high quality

data set was made available for statistical analysis and data interpretation. The QC and

curation processes were designed to ensure accurate and consistent identification of true

chemical entities, and to remove those representing system artifacts, mis-assignments, and



background noise. Metabolon data analysts use proprietary visualization and interpretation

software to confirm the consistency of peak identification among the various samples.

Library matches for each compound were checked for each sample and corrected if

necessary.

Metabolite Quantification and Data Normalization: Peaks were quantified using

area-under-the-curve. For studies spanning multiple days, a data normalization step was

performed to correct variation resulting from instrument inter-day tuning differences.

Essentially, each compound was corrected in run-day blocks by registering the medians to

equal one (1.00) and normalizing each data point proportionately (termed the “block

correction”; Figure 2). For studies that did not require more than one day of analysis, no

normalization is necessary, other than for purposes of data visualization. In certain

instances, biochemical data may have been normalized to an additional factor (e.g., cell

counts, total protein as determined by Bradford assay, osmolality, etc.) to account for

differences in metabolite levels due to differences in the amount of material present in each

sample.

Figure 2:  Visualization of data normalization steps for a multiday platform run.

Statistical Methods and Terminology

Statistical Calculations: For many studies, two types of statistical analysis are usually

performed: (1) significance tests and (2) classification analysis. Standard statistical analyses

are performed in ArrayStudio on log transformed data. For those analyses not standard in

ArrayStudio, the programs R (http://cran.r-project.org/) or JMP are used. Below are

examples of frequently employed significance tests and classification methods followed by a

discussion of p- and q-value significance thresholds.

http://cran.r-project.org/


1. Welch’s two-sample t-test

Welch’s two-sample t-test is used to test whether two unknown means are different

from two independent populations.

This version of the two-sample t-test allows for unequal variances (variance is the

square of the standard deviation) and has an approximate t-distribution with degrees

of freedom estimated using Satterthwaite’s approximation. The test statistic is given

by t , and the degrees of freedom is given by , where , are the sample means, s1, s2,

are the sample standard deviations, and n1, n2 are the samples sizes from groups 1

and 2, respectively. We typically use a two-sided test (tests whether the means are

different) as opposed to a one-sided test (tests whether one mean is greater than the

other).

2. Matched Pairs t-test

The matched pairs t-test is used to test whether two unknown means are different

from paired observations taken on the same subjects.

The matched pairs t-test is equivalent to the one-sample t-test performed on the

differences of the observations taken on each subject (i.e., calculate (x1 – x2) for each

subject; test whether the mean difference is zero or not). The test statistic is given

by , with n – 1 degrees of freedom, where , are the sample means for groups 1 and

2, respectively, sd is the standard deviation of the differences, n is the number of

subjects (so there are 2n observations).

3. One-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations

have the same variances. One-way ANOVA is used to test whether at least two

unknown means are all equal or whether at least one pair of means is different. For

the case of two means, ANOVA gives the same result as a two-sided t-test with a

pooled estimate of the variance.

An ANOVA uses an F-test which has two parameters – the numerator degrees of

freedom and the denominator degrees of freedom. The degrees of freedom in the

numerator are equal to g – 1, where g is the number of groups. If n is the total

number of observations (n1 + n2), then, the denominator degrees of freedom is equal

to n – g. The F-statistic is the ratio of the between-groups variance to the

within-groups variance, hence the higher the F-statistic the more evidence we have

that the means are different.



Often within ANOVA, one performs linear contrasts for specific comparisons of

interest. For example, suppose we have three groups A, B, C, then examples of some

contrasts are A vs. B, the average of A and B vs. C, etc. For single-degree of freedom

contrasts, these give the same result as a two-sided t-test with the pooled estimate

of the variance from the ANOVA and degrees of freedom n – g. Below, we show the

three formulas for A vs. B from a three group design as shown above. The

numerator is same in each case, but the denominator differs by the estimates of the

variances, and the degrees of freedom are different for each (if the theoretical

assumptions hold, then the contrast has the most power, as it has the largest degrees

of freedom).

Welch’s two-sample t-test

By t , and the degrees of freedom is given by

Two-sample t-test with pooled estimate of variance from A and B

where ,  where the degrees of freedom is nA + nB – 2.

The contrast from the ANOVA,

where , where the degrees of freedom is given by where the degrees of freedom is

nA + nB + nC – 3.

4. Two-way ANOVA

ANOVA stands for analysis of variance. For ANOVA, it is assumed that all populations

have the same variances. For a two-way ANOVA, three statistical tests are typically

performed: the main effect of each factor and the interaction. Suppose we have

two factors A and B, where A represent the genotype and B represent the diet in a

mouse study. Suppose each of these factors has two levels (A: wild type, knock out;

B: standard diet, high fat diet). For this example, there are 4 combinations

(“treatments”): A1B1, A1B2, A2B1, A2B2. The overall ANOVA F-test gives the

p-value for testing whether all four of these means are equal or whether at least one

pair is different. However, we are also interested in the effect of the genotype and

diet. A main effect is a contrast that tests one factor across the levels of the other

factor. Hence the A main effect compares (A1B1 + A1B2)/2 vs. (A2B1 + A2B2)/2, and

the B-main effect compares (A1B1 + A2B2)/2 vs. (A1B2 + A2B2)/2. The interaction is

a contrast that tests whether the mean difference for one factor depends on the

level of the other factor, which is (A1B2 + A2B1)/2 vs. (A1B1 + A2B2)/2.

Some sample plots follow. For the first plot, there is a B main effect, but no A main

effect and no interaction, as the effect of B does not depend on the level of A. For

the second plot, notice how the mean difference for B is the same at each level of A

and the difference in A is the same for each level of B, hence there is no statistical



interaction. The final plot also has main effects for A and B, but here also has an

interaction: we see the effect of B depends on the level of A (0 for A1 but 2 for A2),

i.e., the effect of the diet depends on the genotype. We also see here the

interpretation of the main effects depends on whether there is an interaction or not.

5. Two-way Repeated Measures ANOVA

This is typically an ANOVA where one factor is applied to each subject and the second

factor is a time point. See two-way ANOVA as many of the details are similar except

that the model takes into account the repeated measures, i.e., the treatments are

given to the same subject over time. The two main effects and the interaction are

assessed, with particular interest to the interaction, as this shows where the time

profiles are parallel or not for the treatments (parallel mean no interaction).

One additional note, the standard analysis assumes a condition referred to as

compound symmetry, which assumes the correlation between each pair of levels of

the repeated-measures factor is the same. Thus, for the case of time, it assumes the

correlation is the same between time points 1 and 2, 1 and 3, and 2 and 3.

6. Correlation

Correlation measures the strength and direction of a linear association between two

variables. The statistical test for correlation tests whether the true correlation is zero

or not.

The square of the correlation is the percentage of the total variation explained by a

linear relationship between the two variables. Thus, with large sample sizes there

may be a sample correlation of 0.1 that is statistically significant. This means we

have high confidence that the true correlation is zero, however, only 100*(0.1*0.1)%

= 1% of the variation of one variable is explained by a linear relationship with the

other variable, so while there is an association, it has little predictive ability.

7. Hotelling’s T2 test

The Hotelling’s T2 test is a multivariate generalization of the t-test, but here we are

testing whether the mean vectors are different or not (the vector consists of multiple

metabolites).

The Hotelling statistic is: , where nx and ny are the numbers of samples in each group,

is the mean vector of the variables from group 1, is the mean vector of variables

from group 2 and S is the pooled estimate of the variance-covariance matrix of the



variables. This analysis assumes the underlying variance-covariance matrix is the

same for each group. Notice that in the case of uncorrelated variables, this is simply

a weighted average of the squared mean differences with weights inversely

proportional to the sample variances (i.e., the metabolites less variable within a

group are given higher weights).

8. p-values

For statistical significance testing, p-values are given. The lower the p-value, the

more evidence we have that the null hypothesis (typically that two population means

are equal) is not true. If “statistical significance” is declared for p-values less than

0.05, then 5% of the time we incorrectly conclude the means are different, when

actually they are the same.

The p-value is the probability that the test statistic is at least as extreme as observed

in this experiment given that the null hypothesis is true. Hence, the more extreme

the statistic, the lower the p-value and the more evidence the data gives against the

null hypothesis.

9. q-values

The level of 0.05 is the false positive rate when there is one test. However, for a large

number of tests we need to account for false positives. There are different methods

to correct for multiple testing. The oldest methods are family-wise error rate

adjustments (Bonferroni, Tukey, etc.), but these tend to be extremely conservative

for a very large number of tests. With gene arrays, using the False Discovery Rate

(FDR) is more common. The family-wise error rate adjustments give one a high

degree of confidence that there are zero false discoveries. However, with FDR

methods, one can allow for a small number of false discoveries. The FDR for a given

set of compounds can be estimated using the q-value (see Storey J and Tibshirani R.

(2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100:

9440-9445; PMID: 12883005).

In order to interpret the q-value, the data must first be sorted by the p-value then

choose the cutoff for significance (typically p<0.05). The q-value gives the false

discovery rate for the selected list (i.e., an estimate of the proportion of false

discoveries for the list of compounds whose p-value is below the cutoff for

significance). For Table 1 below, if the whole list is declared significant, then the false

discovery rate is approximately 10%. If everything from Compound 079 and above is

declared significant, then the false discovery rate is approximately 2.5%.

Table 1: Example of q-value interpretation



10. Random Forest

Random forest is a supervised classification technique based on an ensemble of

decision trees (see Breiman L. (2001) Random Forests. Machine Learning. 45: 5-32;

http://link.springer.com/article/10.1023%2FA%3A1010933404324). For a given

decision tree, a random subset of the data with identifying true class information is

selected to build the tree (“bootstrap sample” or “training set”), and then the

remaining data, the “out-of-bag” (OOB) variables, are passed down the tree to obtain

a class prediction for each sample. This process is repeated thousands of times to

produce the forest. The final classification of each sample is determined by

computing the class prediction frequency (“votes”) for the OOB variables over the

whole forest. For example, suppose the random forest consists of 50,000 trees and

that 25,000 trees had a prediction for sample 1. Of these 25,000, suppose 15,000

trees classified the sample as belonging to Group A and the remaining 10,000

classified it as belonging to Group B. Then the votes are 0.6 for Group A and 0.4 for

Group B, and hence the final classification is Group A. This method is unbiased since

the prediction for each sample is based on trees built from a subset of samples that

do not include that sample. When the full forest is grown, the class predictions are

compared to the true classes, generating the “OOB error rate” as a measure of

prediction accuracy. Thus, the prediction accuracy is an unbiased estimate of how

well one can predict sample class in a new data set. Random forest has several

advantages – it makes no parametric assumptions, variable selection is not needed, it

does not overfit, it is invariant to transformation, and it is fairly easy to implement

with R.

To determine which variables (biochemicals) make the largest contribution to the

classification, a “variable importance” measure is computed. We use the “Mean

Decrease Accuracy” (MDA) as this metric. The MDA is determined by randomly

permuting a variable, running the observed values through the trees, and then

reassessing the prediction accuracy. If a variable is not important, then this

procedure will have little change in the accuracy of the class prediction (permuting

random noise will give random noise). By contrast, if a variable is important to the

classification, the prediction accuracy will drop after such a permutation, which we

record as the MDA. Thus, the random forest analysis provides an “importance” rank



ordering of biochemicals; we typically output the top 30 biochemicals in the list as

potentially worthy of further investigation.

11. Hierarchical Clustering

Hierarchical clustering is an unsupervised method for clustering the data, and can

show large-scale differences. There are several types of hierarchical clustering and

many distance metrics that can be used. A common method is complete clustering

using the Euclidean distance, where each sample is a vector with all of the

metabolite values. The differences seen in the cluster may be unrelated to the

treatment groups or study design.

12. Principal Components Analysis (PCA)

Principal components analysis is an unsupervised analysis that reduces the

dimension of the data. Each principal component is a linear combination of

every metabolite and the principal components are uncorrelated. The number of

principal components is equal to the number of observations.

The first principal component is computed by determining the coefficients of the

metabolites that maximizes the variance of the linear combination. The second

component finds the coefficients that maximize the variance with the condition that

the second component is orthogonal to the first. The third component is orthogonal

to the first two components and so on. The total variance is defined as the sum of

the variances of the predicted values of each component (the variance is the square

of the standard deviation), and for each component, the proportion of the total

variance is computed. For example, if the standard deviation of the predicted values

of the first principal component is 0.4 and the total variance = 1, then 100*0.4*0.4/1

= 16% of the total variance is explained by the first component. Since this is an

unsupervised method, the main components may be unrelated to the treatment

groups, and the “separation” does not give an estimate of the true predictive ability.

13. Z-scores

An intensity measurement for a metabolite by itself does not tell much. If for

example a patient contains a blood glucose level of 300, this could be very good

news if most people have blood glucose levels around 300, but less so if most people

have levels around 100. In other words a measurement is meaningful only relative to

the means of the sample or the population. This can be achieved by transforming the

measurements into Z-scores which are expressed as standard deviations from the

mean.



The Z-score, also called the standard score or normal score, is a dimensionless

quantity derived by subtracting the control population mean from an individual raw

score and then dividing the difference by the control population standard deviation.

The Z-score indicates how many standard deviations an observation is above or

below the mean of the control group. The Z-score is negative when the raw score is

below the mean, positive when above. Since knowing the true mean and standard

deviation of a control population is often unrealistic, the mean and standard

deviation of the control population may be estimated using a random control

sample.

Z-score =

where: x is a raw score to be standardized, μ is the mean of the control

population,  σ is the standard deviation of the control population

Subtracting the mean centers the distribution, and dividing by the standard deviation

standardizes the distribution. The interesting properties of Z-scores are that they

have a zero mean (effect of “centering”) and a variance and standard deviation of 1

(effect of “standardizing”). This is because all distributions expressed in Z-scores have

the same mean (0) and the same variance (1), so we can use Z-scores to compare

observations coming from different distributions. When a distribution is normal most

of the Z-scores (more than 99%) lay between the values of -3 and +3.


